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Abstract Nagell conjectured in the 1930s that the set of discriminants for which
the negative Pell equation has an integral solution has an explicitly given positive
proportion within the set of discriminants having no prime factor congruent to 3
modulo 4. In a series of papers, Fouvry and Klüners succeeded in showing that
the order of magnitude of such discriminants up to x is indeed x.log x/�1=2. Here
we present a short independent argument that the order of magnitude is at least
x.log x/�0:62.
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1 Introduction

There are many open questions in connection with the solvability and the size of
possible solutions of Pell-type equations

x2 � dy2 D C; x; y 2 Z; (1.1)

for given squarefree d > 0. Let us write K WD Q.
p
d/ and

D WD disc K=Q D f 2d; f 2 f1; 2g:
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While (1.1) has always integral solutions for C D 1, only some d admit integral
solutions to

x2 � dy2 D �1: (1.2)

This is tantamount to asking for which real quadratic discriminantsD the fundamen-
tal unit �D has negative norm, N�D D �1. Let D be the set of such discriminants. It
is well known that D 2 D if and only if the period length of the continued fraction
of

p
d is odd (which, however, might be as long as about

p
d). In more algebraic

terms, (1.2) is solvable in x; y 2 Z if and only if the class group of K coincides with
the narrow class group, in other words if the narrow Hilbert class field of K is real.
It is, however, a hard problem to find necessary and sufficient criteria for D that are
both efficient from an algorithmic point of view and simple enough for theoretical
purposes, e.g. counting the number of D 2 D up to x.

Let S be the set of integers having no prime divisor p � 3 (mod 4). By the
Hasse principle we see that (1.2) admits rational solutions if and only if d 2 S, in
particular

#fD � x j D 2 Dg � #fdiscriminants D � x j D 2 Sg � xp
log x

:

On the other hand, by an observation of Redei the negative Pell equation does have
integral solutions if d 2 S and in addition the two-part CŒ2� of the class group is
isomorphic to .Z=2Z/!.D/�1, that is, the class group C of K has no element of order
4. For, in the latter case, the narrow 2-Hilbert class field coincides with the genus
field and is in particular real. In other words, if D denotes the set of discriminants of
real quadratic fields in S with no element of order 4 in the class group, then D � D.

On probabilistic grounds, one may expect

#fD � x j D 2 Dg � xp
log x

I (1.3)

more precisely, there is theoretical and (some) empirical evidence [8] that

#fD � x j D 2 Dg
#fdiscriminants D � x j D 2 Sg � 1 �

1Y

jD1

�
1 � 1

22j�1

�
	 0:581; x ! 1:

(1.4)

Nagell [6] conjectured more than 80 years ago that the limit (1.4) exists in the open
interval .0; 1/, but no proof has been found so far. The beauty in this conjecture lies
in the mix of analytic and algebraic number theory that is already apparent in the
formulation of the problem.
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A first step was made by Cremona and Odoni who proved ([1], see also [8])

#fD � x j D 2 D; !.D/ D ng
#fdiscriminants D � x j D 2 S; !.D/ D ng �

n=2Y

jD1

�
1 � 1

22j�1

�
; x ! 1

(1.5)

for each fixed n 2 N, so that in particular

#fD � x j D 2 Dg 
n
x.log log x/n

log x
: (1.6)

In an impressive series of long and difficult papers, Fouvry and Klüners [3–5]
made great progress and essentially solved the problem (along with several related
questions) by showing that the left-hand side of (1.4) is asymptotically bounded
between two constants:

0:524 � 5

4

1Y

jD1

�
1 � 1

22j�1

�
Co.1/ � #fD � x j D 2 Dg

#fdiscriminants D � x j D 2 Sg � 2

3
Co.1/:

Our goal in this note is much more modest. Here we show that a short argument
suffices to bring us half-way between (1.6) and the correct order of magnitude
x.log x/�1=2.

Theorem 1.1 Let ˛0 D 0:616 : : : be the minimum of the function

f .˛/ WD 1 � ˛

�
1 C log

1 � ˛ log 2

2˛

�
:

Then

#fD � x j D 2 Dg 
"

x

.log x/˛0C"

for any " > 0.

The general approach is similar as in [1], but we modify the argument as follows:
(a) we only aim at getting lower bounds for the quantity on the left-hand side
of (1.5), (b) we use the large sieve to estimate primes in arithmetic progressions
on average and (c) we exclude exceptional (Siegel) discriminants at an early stage
of the argument. The idea of the method dates back several years, and Theorem 1.1
is already mentioned in [4].
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2 Proof of the Theorem

We start with the Siegel–Walfisz Theorem (e.g. [2, Sect. 20]). Let .a; q/ D 1. There
is a constant C > 0 such that

�.xI q; a/ WD
X

n�x
n�a .mod q/

1 D 1

�.q/

Z x

2

dt

log t
C O

�
xe�C

p
log x
�

(2.1)

for all q � e
p

log x, except possibly for a thin sequence q1 < q2 < : : : satisfying
qjC1 > q2

j . In particular, there is a set of rational primes P WD f�1; �2; : : :g with

�n > 22n�1
such that (2.1) holds for all q � e

p
log x not divisible by any of the �j.

Our aim is to find a lower bound for the number of D 2 D which implies
automatically a lower bound for the number of D 2 D. To this end we utilize a
criterion of Redei–Reichardt to characterize the 4-rank of the class group. Let

D� WD fD 2 N j �2.D/ D 1; p j D ) . p � 1 .mod 4/; p 62 P/g;
D�

n WD fD 2 D� j !.D/ D ng;

and let

Un WDf.uij/1�i;j�n j uij D 0 for j � i; uij 2 f˙1g for 1 � i < j � ngD
( 

0 ˙1
:::

0 0

!)
:

For any D D Qn
iD1 pi 2 D�

n let ."ij/ DW U.D/ 2 Un be given by "ij WD
�
pi
pj

�
for

i < j. Then the 4-rank of the class group of Q.
p
D/ is determined by U.D/ in the

following way. Let QU.D/ WD .�ij/ 2 F
n�n
2 be defined by .�1/�ij D "ij for i < j,

�ij D �ji and �ii D P
j6Di �ij. Then by a criterion of Redei–Reichardt [7] (see also

[8]),

4-rank of the class group of Q.
p
D/ D n � 1 � rkF2

QU.D/: (2.2)

We shall need the following lemma [1, Proposition 2.5]:

Lemma 2.1 Out of the 2. n2 / matrices U 2 Un exactly

2. n2 /
n=2Y

jD1

�
1 � 1

22j�1

�

 2. n2 /

matrices give rise to a matrix QU having rank n � 1 over F2.
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For any V 2 Un let

D�
n .x;V/ WD #fD 2 D�

n j D � x; U.D/ D Vg:

The idea is to estimate this quantity from below, sum over all admissible V and then
optimize the value of n. To this end, let us fix a small " > 0, let C."/ be a sufficiently
large constant depending only on ", and let

�n WD C."/.2C4"/n�1

:

In the following, all implied constant may depend on ", but not on n. We shall show
by induction:

D�
n .x;V/ 
" 	n2

�. n2 / x

log x

.log log x � log log �n/
n�1

2n.n � 1/Š
(2.3)

for any V 2 Un and x > �n where

	n WD
nY

jD1

 
1 � c."/ exp. j2/

exp.c1

p
log �j/

!

 1

for a suitable constant c."/ > 0. Here we choose C."/ large enough (in terms of
c."/ and c1) so that each factor is positive. We will also choose n � log log x, so that
�n � exp.logC."/ � .log x/0:7/ for " sufficiently small and the condition �n < x is
not void.

From Lemma 2.1, (2.2), (2.3) and the definition of D, we find

#fD 2 D j D � xg 
 x

log x

.log log x � .n � 1/ log.2 C 4"/ � log logC."//n�1

2n.n � 1/Š

for n � log log x (and sufficiently large x). Choosing n D Œ˛ log log x� for some real
0 < ˛ < 1, this is by Stirling’s formula


 x

log x

�
1 � ˛ log 2

2

e

˛

�.˛Co.1// log log x

D x.log x/ f .˛/Co.1/;

with f .˛/ as in Theorem 1.1, and the proof follows.
The rest of the paper is devoted to the proof of (2.3). This is certainly true for n D

1 by the prime number theorem (or Chebyshev-type estimates) for the progression 1
(mod 4). Suppose now (2.3) holds for some n 2 N, and let V D ."ij/1�i;j�nC1 2 UnC1

be given. Let U WD ."ij/1�i;j�n 2 Un be obtained by deleting the last row and column
from V . Let us consider some t D Qn

iD1 pi 2 D�.x;U/. We denote by At the set of
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residue classes a (mod 4t) satisfying

a � 1 .mod 4/ and
�pi
a

�
D "i;nC1; 1 � i � n:

By the Chinese remainder theorem we have

#At D �.4t/

2nC1
:

If p satisfies the three conditions p � a (mod 4t) for some a 2 At, pn < p < x=t,
and p 62 P , then pt 2 D�

nC1.x;V/. Let us assume x > �nC1, and write

y WD x.1�"/=2:

Without loss of generality we also assume that x D Œx� C 1
2

is a half-integer. Then
we have

D�
nC1.x;V/ �

X

tDQ pi2D�

n .y;U/

X

a2At

#
n
pn < p � x

t
j p � a .mod 4t/; p 62 P

o

D
X

t2D�

n .y;U/

X

a2At

�
�x
t
I 4t; a

�
C O

 
X

t�y

�
.�.t/ C #f� � x j � 2 Pg/

!

D 1

2nC1

X

t2D�

n .y;U/

�
�x
t

�
C O

 
X�

t�y

X

a2At

ˇ̌
ˇ̌�
�x
t
I 4t; a

�
� �.x=t/

�.4t/

ˇ̌
ˇ̌
!

C O.x1�"/;
(2.4)

where
P� indicates that the summation is taken over t coprime to all � 2 P . By

the prime number theorem and partial summation, the main term is

� 1

2nC1

X

t2D�

n .y;U/

Z x=t

2

dt

log t
C O

 
X

t�y

x=t

exp.c2

p
log.x=t//

!

� x

2nC1

Z y

�n

D�
n .u;V/

u2 log.x=u/
du C O

�
x

exp.c3

p
log x/

�
I

(2.5)
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note that y � x1=2, so that log x
t 
 log x. By the induction hypothesis (2.3) the main

term here is

� 	n2
�. n2 / x

2nC1 log x

Z y

�n

.log log u � log log �n/
n�1

2n.n � 1/Šu log u
du

D 	n2
�. n2/ x

2nC1 log x

.log log y � log log �n/
n

2nnŠ

D 	n2
�
�
nC1

2

�
x

log x

.log log x � log 2
1�"

� log log �n/
n

2nC1nŠ
:

(2.6)

It remains to estimate the first error term on the right-hand side of (2.4). This is
a standard application of the large sieve. We split the t-sum in O.log x/ dyadic
segments. A typical of these terms is at most

X�

z�t�2z

X�

a .mod 4t/

ˇ̌
ˇ̌
ˇ

X

p�x=t
p�a .mod 4t/

1 � 1

�.4t/

X

p�x=t

1

ˇ̌
ˇ̌
ˇ (2.7)

for z � y. It is convenient to make the summation range independent of t by
replacing the condition p � x=t with p � x=z. This can be easily done by integral
transforms. We use the formula (see, e.g., [2, p. 165])

Z T

�T
ei
˛ sin.
ˇ/

�

d
 D

�
1 C O..T.ˇ � j˛j//�1/; j˛j < ˇ;

O..T.j˛j � ˇ//�1/; j˛j > ˇ

for T; ˇ > 0 with ˇ D logX, ˛ D logm getting

X

m�X

am D
Z T

�T

X

m�Y

amm
i
 sin.
 logX/

�

d
 C O

 
1

T

X

m�Y

jamj
ˇ̌
ˇlog

m

X

ˇ̌
ˇ
�1

!

for real numbers Y � X and any sequence .am/. In particular, (2.7) is at most

Z T

�T

X�

z�t�2z

X�

a .mod 4t/

ˇ̌
ˇ

X

p�x=z
p�a .mod 4t/

pi
 � 1

�.4t/

X

p�x=z

pi

ˇ̌
ˇmin

�
1

j
j ; log x

�
d


C O

0

BB@
1

T

X�

z�t�2z

X�

a .mod 4t/

 
X

p�x=z
p�a .mod 4t/

ˇ̌
ˇlog

pt

x

ˇ̌
ˇ
�1

C 1

�.4t/

X

p�x=z

ˇ̌
ˇlog

pt

x

ˇ̌
ˇ
�1
!
1

CCA

(2.8)
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for some 0 < T < x to be chosen later. Gluing together t and p, the error term
in (2.8) is at most

� 1

T

X

q�2x

d.q/
ˇ̌
ˇlog

q

x

ˇ̌
ˇ
�1 � x.log x/2

T
I (2.9)

here we need our assumption that x is not too close to an integer. The main term
in (2.8) is by Cauchy’s inequality

�
Z T

�T

0

@
X�

z�t�2z

X�

a .mod 4t/

ˇ̌
ˇ

1

�.4t/

X

�6D�0

N�.a/
X

p�x=z

�. p/pi

ˇ̌
ˇ
2

1

A
1=2

zmin

�
1

j
j ; log x

�
d
:

We open the square and express each character modulo 4t in terms of its underlying
primitive character modulo t0 D 4t=`. Using �.`t0/ � �.`/�.t0/ we get

Z T

�T

 
X

`�x

1

�.`/

X�

4z
` �t0� 8z

`

1

�.t0/
X�

� mod t0

ˇ̌
ˇ
X

p�x=z
. p;`/D1

�. p/pi

ˇ̌
ˇ
2

!1=2

zmin

�
1

j
j ; log x

�
d
:

(2.10)

We recall that the asterisk at the t0-sum denotes non-exceptional discriminants and
the asterisk at the �-sum denotes primitivity. We split the t0-sum into two parts,
t0 � P and t0 < P for some P � exp.

p
log x/ to be chosen later. By the large sieve

inequality (e.g. [2, p. 160]), the t0-sum restricted to t0 � P can be bounded by

�
�

x

zP
C z

`

�
�

�
x

z

�
I

summing over ` and integrating over 
 we get

x.log x/3=2

p
P

C x1� "
2 log x (2.11)

since z � y D x.1�"/=2. Let us now deal with the terms t0 < P. In this case, the
innermost p-sum in (2.10) equals

X

b .mod t0/

�.b/
X

p�x=z
p�b .mod t0/

. p;`/D1

pi
 :
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By partial summation, and (2.1) where we use the fact that we have excluded
exceptional characters, this double sum is

� t0
x

z
exp

�
�C0

r
log

x

z

�
.1 C j
j/

for some absolute constant 0 < C0 < 1 (without loss of generality). Therefore the
terms t0 < P contribute at most

P3=2x.T C log x/ exp

�
�C0

2

r
log

x

z

�
� P3=2x.T C log x/ exp

�
�C0

4

p
log x

�

(2.12)

to (2.10) where we used again z � x1=2. Now we choose

T WD exp

�
C0

20

p
log x

�
; P WD exp

�
C0

10

p
log x

�
:

Collecting the error terms (2.9), (2.11) and (2.12), we see that (2.7) is

� x.log x/2 exp

�
�C0

20

p
log x

�
;

and thus the total error in (2.4) and (2.5) is at most

O

�
x exp

�
� min

�
C0

30
; c3

�p
log x

��
:

For x � �nC1, the main term (2.6) is


 2
�
�
nC1

2

�
x

log x

.log.1 C " � 2"2//n

2nC1nŠ

"

x

log x
2�.nC1/2

:

Thus we can bound (2.4) from below by

	n2
�
�
nC1

2

�
x

log x

.log log x � log log �nC1/
n

2nC1nŠ

 
1 � O"

 
exp..n C 1/2/

exp
�
c1

p
log �nC1

�
!!

for x � �nC1 and some c1 > 0. This is exactly (2.3) for n C 1.
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