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1 Introduction

Properties of the Estermann zeta function have been used by Balasubramanian
et al. [2] to prove asymptotic formulas for mean-values of the product consisting of
the Riemann zeta function and a Dirichlet polynomial. These asymptotic formulas
contain cotangent sums which also appear in recent work of Bettin and Conrey
[4] on period functions. Very recently, Maier and Rassias in their paper [14] prove
asymptotic results and upper bounds for the moments of cotangent sums under
consideration. Their main result is the existence of a unique positive measure �
on R with respect to which these cotangent sums are equidistributed.

2 The Cotangent Sum and Its Applications

In the present paper, we consider the following cotangent sum:

Definition 2.1 If r, b 2 N, b � 2, 1 � r � b and .r; b/ D 1, we define

c0
� r
b

�
WD �

b�1X
mD1

m

b
cot
��mr

b

�
:

The function c0.r=b/ is odd and has period 1. Its value is an algebraic number. We
first exhibit some relations of the cotangent sums to the Estermann and Riemann
zeta functions and connections to the Riemann Hypothesis.

Definition 2.2 The Estermann zeta function E
�
s; rb ; ˛

�
is defined by the Dirichlet

series

E
�
s;
r

b
; ˛
�

D
X
n�1

�˛.n/ exp .2�inr=b/

ns
;

where Re s > Re ˛ C 1, b � 1, .r; b/ D 1 and

�˛.n/ D
X
djn

d˛ :

It can be proved that the Estermann zeta function can be continued analytically to a
meromorphic function, on the whole complex plane up to two simple poles s D 1

and s D 1C ˛ if ˛ ¤ 0 or a double pole at s D 1 if ˛ D 0 (see [9, 11, 17]).
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The Estermann zeta function satisfies the functional equation:

E
�
s;

r

b
; ˛
�

D 1

�

�
b

2�

�1C˛�2s
� .1 � s/� .1C ˛ � s/

�
�

cos
��˛
2

�
E

�
1C ˛ � s;

r

b
; ˛

�
� cos

�
�s � �˛

2

�
E

�
1C ˛ � s;� r

b
; ˛

��
;

where r is such that rr � 1 .mod b/ and � .s/ stands for the Gamma function.
Balasubramanian et al. [2] used properties of E

�
0; rb ; 0

�
to prove an asymptotic

formula for

I D
Z T

0

ˇ̌
ˇ̌�
�
1

2
C it

�ˇ̌
ˇ̌
2 ˇ̌
ˇ̌A
�
1

2
C it

�ˇ̌
ˇ̌
2

dt ;

where A.s/ is a Dirichlet polynomial.
Asymptotics for functions of the form of I have been used for theorems which

give a lower bound for the portion of zeros of the Riemann zeta-function �.s/ on the
critical line (see [12, 13]).

A nice result concerning the value of E
�
s; rb ; ˛

�
at s D 0 was presented by

Ishibashi in [10].

Theorem 2.3 (Ishibashi) Let b � 2, 1 � r � b, .r; b/ D 1, ˛ 2 N [ f0g. Then
(1) If ˛ is even, it holds

E
�
0;

r

b
; ˛
�

D
�

� i

2

�˛C1 b�1X
mD1

m

b
cot.˛/

��mr
b

�
C 1

4
ı˛;0 ;

where ı˛;0 is the Kronecker delta function.
(2) If ˛ is odd, it holds

E
�
0;

r

b
; ˛
�

D B˛C1
2.˛ C 1/

:

If r D b D 1, one has

E .0; 1; ˛/ D .�1/˛C1B˛C1
2.˛ C 1/

;

where B˛ denotes the Bernoulli number (see Definition 2.4).

Hence for b � 2, 1 � r � b, .r; b/ D 1, we have

E
�
0;

r

b
; 0
�

D 1

4
C i

2
c0
� r
b

�
;

where c0.r=b/ is the cotangent sum (see Definition 2.1).



280 H. Maier and M.Th. Rassias

The above result gives a relation between the cotangent sum c0.r=b/ and the
Estermann zeta function.

The cotangent sum c0.r=b/ can be associated with the so-called Vasyunin sum,
which is defined as follows:

V
� r
b

�
WD

b�1X
mD1

nmr
b

o
cot
��mr

b

�
;

where fug D u � buc, u 2 R:

One can prove that (see [3, 4])

V
� r
b

�
D �c0

�
r

b

�
;

where, as mentioned previously, r is such that rr � 1 .mod b/.
The Vasyunin sum [19] is itself associated with the study of the Riemann

Hypothesis through the following identity (see [3, 4]):

1

2�.rb/1=2

Z C1

�1

ˇ̌
ˇ̌�
�
1

2
C it

�ˇ̌
ˇ̌
2 � r

b

�it dt
1
4

C t2
D log 2� � �

2

�
1

r
C 1

b

�
(2.1)

C b � r

2rb
log

r

b
� �

2rb

�
V
� r
b

�
C V

�
b

r

��
:

The only non-explicit function in the right-hand side of (2.1) is the Vasyunin sum.
Formula (2.1) is related to the Nyman–Beurling–Baéz-Duarte–Vasyunin

approach to the Riemann Hypothesis (see [1, 3]). The Riemann Hypothesis is
true if and only if

lim
N!C1 dN D 0;

where

d2N D inf
DN

1

2�

Z C1

�1

ˇ̌
ˇ̌1 � �

�
1

2
C it

�
DN

�
1

2
C it

�ˇ̌
ˇ̌
2 dt
1
4

C t2

and the infimum is taken over all Dirichlet polynomials

DN.s/ D
NX

nD1

an
ns
:

From the above considerations we see that the behavior of c0.r=b/ helps to
understand the behavior of V.r=b/. From (2.1) we may hope to obtain some
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information related to the Nyman–Beurling–Baéz-Duarte–Vasyunin approach to the
Riemann Hypothesis.

Definition 2.4 The m-th Bernoulli number Bm is defined by

B2m D 2
.2m/Š

.2�/2m

X
��1

��2m; B2mC1 D 0 ;

where m 2 N. Furthermore, we have B�1 D �1=2.

3 Main Result

We now discuss the equidistribution of certain normalized cotangent sums with
respect to a positive measure, which is also constructed in the following theorem.

Definition 3.1 For z 2 R, let

F.z/ D measf˛ 2 Œ0; 1	 W g.˛/ � zg;

where “meas” denotes the Lebesgue measure,

g.˛/ D
C1X
lD1

1 � 2fl˛g
l

and

C0.R/Df f 2 C.R/ W 8
 > 0; 9 a compact setK � R; such that j f .x/j < 
;8x 62 Kg:

Remark The convergence of this series has been investigated by de la Bretèche and
Tenenbaum (see [7]). It depends on the partial fraction expansion of the number ˛.

We now state Theorem 3.2, the main result of our paper. An overview of the basic
steps of its proof is provided in Sect. 4. The only fact, whose proof is provided in
greater detail, is stated in Lemma 4.8. It implies the continuity of the distribution
function of the cotangent sums c0.

Theorem 3.2

(i) F is a continuous function of z.
(ii) Let A0; A1 be fixed constants, such that 1=2 < A0 < A1 < 1. Let also

Hk D
Z 1

0

�
g.x/

�

�2k
dx;

where Hk is a positive constant depending only on k, k 2 N.
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There is a unique positive measure � on R with the following properties:

(a) For ˛ < ˇ 2 R we have

�.Œ˛; ˇ	/ D .A1 � A0/.F.ˇ/� F.˛//:

(b)

Z
xkd� D

�
.A1 � A0/Hk=2 ; for even k
0 ; otherwise :

(c) For all f 2 C0.R/, we have

lim
b!C1

1

�.b/

X
r W .r;b/D1
A0b�r�A1b

f

�
1

b
c0
� r
b

��
D
Z

f d�;

where �.�/ denotes the Euler phi-function.
Remark Bruggeman (see [5, 6]) and Vardi (see [18]) have studied the equidistri-
bution of Dedekind sums. In contrast with the work in this paper, they consider an
additional averaging over the denominator.

4 Outline of the Proof and Further Results

Rassias [15, 16] proved the following asymptotic formula:

Theorem 4.1 For b � 2, b 2 N, we have

c0

�
1

b

�
D 1

�
b log b � b

�
.log 2� � �/C O.1/ :

In that paper, the fractional parts are expressed in terms of cotangent sums. This
method is generalized in the present paper, where some stronger results are being
proved.

In [16] also the following improvement of Theorem 4.1 is proved. It is not needed
in the proof of Theorem 3.2.

Theorem 4.2 Let b; n 2 N, b � 6N, with N D bn=2c C 1.There exist absolute real
constants A1;A2 � 1 and absolute real constants El, l 2 N with jElj � .A1l/2l, such
that for each n 2 N we have

c0

�
1

b

�
D 1

�
b log b � b

�
.log 2� � �/� 1

�
C

nX
lD1

Elb
�l C R�

n .b/
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where

jR�
n .b/j � .A2n/

4n b�.nC1/:

In the following Proposition 4.3, due to the second author (see [16]), a relation is
obtained between the cotangent sum c0 and the modified sum Q. Thus the study of
c0 is reduced to the study of Q, which is crucial. In [16] also Theorem 4.4 is proved.

Proposition 4.3 For r, b 2 N with .r; b/ D 1, it holds

c0
� r
b

�
D 1

r
c0

�
1

b

�
� 1

r
Q
� r
b

�
;

where

Q
� r
b

�
D

b�1X
mD1

cot
��mr

b

� j rm
b

k
:

Theorem 4.4 Let r; b0 2 N be fixed, with .b0; r/ D 1. Let b be a positive integer
such that b � b0 .mod r/. Then, there exists a constant C1 D C1.r; b0/, with
C1.1; b0/ D 0, satisfying

c0
� r
b

�
D 1

�r
b log b � b

�r
.log 2� � �/C C1 b C O.1/;

for large integer values of b.

We now list other results proven in [16]. In the sequel we shall give a few hints
concerning their proofs.

Theorem 4.5 Let k 2 N be fixed. Let also A0, A1 be fixed constants such that 1=2 <
A0 < A1 < 1. Then there exist explicit constants Ek > 0 and Hk > 0, depending
only on k, such that

(a)

X
rW.r;b/D1

A0b�r�A1b

Q
� r
b

�2k D Ek � .A2kC11 � A2kC10 /b4k�.b/.1C o.1//; .b ! C1/:

(b)

X
rW.r;b/D1

A0b�r�A1b

Q
� r
b

�2k�1 D o
�
b4k�2�.b/

�
; .b ! C1/:
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(c)

X
rW.r;b/D1

A0b�r�A1b

c0
� r
b

�2k D Hk � .A1 � A0/b
2k�.b/.1C o.1//; .b ! C1/:

(d)

X
rW.r;b/D1

A0b�r�A1b

c0
� r
b

�2k�1 D o
�
b2k�1�.b/

�
; .b ! C1/:

Applying the method of moments, we deduce detailed information about the
distribution of the values of c0.r=b/, where A0b � r � A1b and b ! C1. In
fact, we prove Theorem 3.2.

Finally, we study the convergence of the series

X
k�0

Hkx
2k

and prove the following theorem:

Theorem 4.6 The series
X
k�0

Hkx
2k;

converges only for x D 0.

Another interesting question is whether the series

X
k�0

Hk

.2k/Š
x2k;

has a positive radius of convergence. This would lead to a simplification in the
proof of our equidistribution result, since in this case we could apply the theory
of distributions which are determined by their moments. We now give a few hints
concerning the proofs of Theorems 4.4 and 4.5.

By Proposition 4.3 we know that

c0
� r
b

�
D 1

r
c0

�
1

b

�
� 1

r
Q
� r
b

�
;

where

Q
� r
b

�
D

b�1X
mD1

cot
��mr

b

� j rm
b

k
:
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We partition the range of the above summation into intervals on which the term
brm=bc assumes a constant value j:

Q
� r
b

�
D

r�1X
jD0

j
X

j�b rm
b c<jC1

cot
��mr

b

�

and define

Sj D frm W bj � rm < b.j C 1/;m 2 Zg:

We write

Sj D fbj C sj; bj C sj C r; : : : ; bj C sj C djrg;

where dj 2 f0; 1g and introduce s D sj as a new variable of summation.
The relation between j and sj is given by

sj � �bj.modr/

and thus for a given value sj D s we can find j by

j

r
D
�

� sb�

r

	
;

where b� is defined by

bb� � 1.modr/; 1 � b� � r � 1:

Since cot.�x/ has a pole of first order at x D 0, the sum Q.r=b/ is dominated by
small values of s. The substitution

˛ D ˛.r; b/ D b�

r

and the asymptotics

cot.�x/ 	 1

�x

lead to the approximation of Q.r=b/ by

br

�
g.˛/:
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For the proof of Theorem 1.5 of [14], the crucial property is the continuity of the
function F.z/, where

F.z/ D measf˛ 2 Œ0; 1	 W g.˛/ � zg:

We shall give a proof of this fact shortly. The proof of Theorem 4.6 is obtained by
studying the contribution of the interval

I.k/ D Œe�2k�1; e�2k	

to the moment

Hk D
Z 1

0

�
g.x/

�

�2k
dx :

Definition 4.7 A distribution function G is a monotonically increasing function

G WR ! Œ0; 1	:

The characteristic function  of G is defined by the following Stieltjes integral:

 .t/ D
Z C1

�1
eitudG.u/:

(cf. [8, p.27])

Lemma 4.8 The distribution function G is continuous if and only if the character-
istic function  satisfies

lim inf
T!C1

1

2T

Z T

�T
j .t/j2dt D 0:

Proof See [8, p. 48, Lemma 1.23].

Definition 4.9 Let t � 1. We set

K D K.t/ D bt9=10c; L D L.t/ D bt11=10c; R D R.t/ D bt9=5c

and

g.˛;K/ D �2
X
l�K

B�.l˛/
l

; h.˛/ D �2
X
l>K

B�.l˛/
l

;

where B�.u/ D u � buc � 1=2, u 2 R.
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Assume that .˛i/ with 0 D ˛0 < ˛1 < � � � < ˛R D 1 is a partition of Œ0; 1	 with
the following properties:

1

2
R�1 � ˛iC1 � ˛i � 2R�1

and g.˛;K/ is continuous at ˛ D ˛i for 0 < i < R.

We now make preparations for an application of Lemma 4.8 with G D F, and

 .t/ D ˚.t/ WD
Z 1

0

e

�
tg.˛/

2�

�
d˛:

Lemma 4.10 The function h.˛/ has a Fourier expansion

h.˛/ D
X
n>K

c.n/ sin.2�n˛/;

with

jc.n/j � 2�.n/

�n
;

where � stands for the divisor function.

Proof From the Fourier expansion

B�.u/ D i

2�

C1X
nD�1
n¤0

e.nu/

n
;

we obtain

h.˛/ D � i

�

X
l>K

1

l

C1X
mD�1
m¤0

e.lm˛/

m
D
X
jnj>K

d.n/e.n˛/

with

d.n/ D � i

�n
jf.l;m/ W lm D n; l > Kgj :

We have

h.˛/ D
X
n>K

d.n/ .e.n˛/� e.�n˛// D 2i
X
n>K

d.n/ sin.2�n˛/;

which completes the proof of the lemma.
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Definition 4.11 We set

h1.˛/ WD
X

K<n�L

c.n/ sin.2�n˛/

and

h2.˛/ WD
X
n>L

c.n/ sin.2�n˛/:

Lemma 4.12 We have

Z 1

0

�
e
� t

2�
.g.˛;K/C h1.˛//

�
� e

�
tg.˛/

2�

��
d˛ D O

�
t�1=100

�
:

Proof By Parseval’s identity, it follows that for every 
 > 0 it holds

Z 1

0

h2.˛/
2d˛ D

X
n>L

c.n/2 
 L�.1�2
/;

because of the estimate

c.n/ 
 n�1C
:

Thus, for all ˛ 2 Œ0; 1	 not belonging to an exceptional set E with

meas.E/ D O
�
t�1=100

�
;

we have

h2.˛/ D O
�
t�1�1=100

�

and therefore
ˇ̌
ˇ̌e
�
th2.˛/

2�

�
� 1

ˇ̌
ˇ̌ D O

�
t�1=100

�

by the Taylor expansion of the exponential function.
Hence,

ˇ̌
ˇ̌
Z 1

0

e

�
tg.˛/

2�

�
d˛ �

Z 1

0

e
� t

2�
.g.˛;K/C h1.˛//

�
d˛

ˇ̌
ˇ̌

�
Z 1

0

ˇ̌
ˇ̌e
�
t.g.˛;K/C h1.˛//

2�

�ˇ̌
ˇ̌
ˇ̌
ˇ̌e
�
th2.˛/

2�

�
� 1

ˇ̌
ˇ̌ d˛
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�
Z

E
2 d˛ C

Z

Œ0;1	nE

ˇ̌
ˇ̌e
�
th2.˛/

2�

�
� 1

ˇ̌
ˇ̌ d˛

D O
�
t�1=100

�
:

Lemma 4.13 There exists a set I � f1; : : : ;Rg of non-negative integers, such that
X
i2I
.˛iC1 � ˛i/ D O

�
t�1=100

�

and for i 62 I, ˛ 2 Œ˛i; ˛iC1	 we have

jh1.˛/ � h1.˛i/j � t�.1C1=100/:

Proof We have

d

d˛
h1.˛/ D

X
K<n�L

2�nc.n/ cos.2�n˛/

and

d2

d˛2
h1.˛/ D �

X
K<n�L

4�2n2c.n/ sin.2�n˛/:

By Parseval’s identity, for every 
 > 0 we get

Z 1

0

ˇ̌
ˇ̌ d
d˛

h1.˛/

ˇ̌
ˇ̌
2

d˛ D O
�
L1C2


�

and by the Cauchy–Schwarz inequality, it follows that

Z 1

0

ˇ̌
ˇ̌ d
d˛

h1.˛/

ˇ̌
ˇ̌ d˛ D O

�
L1=2C


�
: (4.1)

We now define the set I as the set of all subscripts i for which the closed interval
Œ˛i; ˛iC1	 contains an ˛ with

jh1.˛/ � h1.˛i/j > t�.1C1=100/:

Since

h1.˛/ D h1.˛i/C
Z ˛

˛i

d

dˇ
h1.ˇ/dˇ (4.2)
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and

j˛ � ˛ij D O
�
t�9=5

�
;

it follows that for i 2 I there must exist ˇ 2 .˛i; ˛iC1/ with

ˇ̌
ˇ̌ d
dˇ

h1.ˇ/

ˇ̌
ˇ̌ � t3=5:

Because of the estimation of the Fourier coefficients of d2

d˛2
h1.˛/, we obtain

ˇ̌
ˇ̌ d2
d˛2

h1.˛/

ˇ̌
ˇ̌ D O

�
L2C


�
:

Analogously to (4.2) we obtain that

ˇ̌
ˇ̌ d
d˛

h1.˛/

ˇ̌
ˇ̌ � 1

2
t3=5;

for every ˛ 2 Œ˛i; ˛iC1	 and therefore

Z aiC1

ai

ˇ̌
ˇ̌ d
d˛

h1.˛/

ˇ̌
ˇ̌ d˛ � 1

2
t3=5.˛iC1 � ˛i/:

From (4.1) we obtain that the measure of the union of the closed intervals Œ˛i; ˛iC1	
with i 2 I is O.t�1=100/, which concludes the proof of the lemma.

Lemma 4.14 We have

lim
t!C1˚.t/ D lim

t!�1˚.t/ D 0:

Proof We shall prove the result only for t ! C1, since the proof of the part when
t ! �1 is analogous.

By Lemma 4.12, we have

˚.t/ D
Z 1

0

e

�
tg.˛/

2�

�
d˛ D

Z 1

0

e
� t

2�
.g.˛;K/C h2.˛//

�
C O

�
t�1=100

�
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and thus

˚.t/ D
Z 1

0
e

�
tg.˛/

2�

�
d˛ D

RX
iD0
i62I

e

�
th1.˛i/

2�

�Z ˛iC1

˛i

e

�
tg.˛;K/

2�

�
d˛

C
RX

iD0
i62I

Z ˛iC1

˛i

e

�
tg.˛;K/

2�

��
e

�
th1.˛/

2�

�
� e

�
th1.˛i/

2�

��
d˛

C O

 X
i2I
.˛iC1 � ˛i/

!
C O

�
t�1=100

�
:

From Lemma 4.13 we get

˚.t/D
Z 1

0

e

�
tg.˛/

2�

�
d˛D

RX
iD0
i62I

e

�
th1.˛i/

2�

�Z ˛iC1

˛i

e

�
tg.˛;K/

2�

�
d˛CO

�
t�1=100

�
:

(4.3)

We now estimate
Z ˛iC1

˛i

e

�
tg.˛;K/

2�

�
d˛;

for i 62 I. Let Ji � 1 be the number of discontinuities of the function g.˛;K/ in the
interval Œ˛i; ˛iC1	. Let ˇi;0 D ˛i, ˇi;Ji D ˛iC1 and let the discontinuities of g.˛;K/
in Œ˛i; ˛iC1	 occur at the points ˇi;1 < ˇi;2 < � � � < ˇi;Ji�1.

In the intervals Œˇi;r ; ˇi;rC1	 the function g.˛;K/ is a linear function, that is

g.˛;K/ D dr � 2K˛;

where dr 2 R. Therefore,

ˇ̌
ˇ̌
Z ˛iC1

˛i

e

�
tg.˛;K/

2�

�
d˛

ˇ̌
ˇ̌ �

JiX
rD0

ˇ̌
ˇ̌
ˇ
Z ˇi;rC1

ˇi;r

e

�
tg.˛;K/

2�

�
d˛

ˇ̌
ˇ̌
ˇ

�
JiX

rD0

ˇ̌
ˇ̌
ˇ
Z ˇi;rC1

ˇi;r

e

�
� tK˛

�

�
d˛

ˇ̌
ˇ̌
ˇ

D O
�
Ji.tK/

�1� : (4.4)
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From (4.3) and (4.4), we get

Z 1

0

e

�
tg.˛/

2�

�
d˛ �

RX
iD0
i62I

ˇ̌
ˇ̌
Z ˛iC1

˛i

e

�
tg.˛;K/

2�

�
d˛

ˇ̌
ˇ̌C O

�
t�1=100

�

D O

0
BB@.tK/�1

RX
iD0
i62I

Ji

1
CCAC O

�
t�1=100

�
:

The number of discontinuities of g.˛;K/ is O.K2/, since each of the K terms

B�.l˛/
l

has O.K/ discontinuities in the interval Œ0; 1	. We thus have

RX
iD0

Ji D O.K2/:

Then

˚.t/ D O
�
t�1=100

�
:

Therefore

lim
t!C1˚.t/ D 0:

Similarly, we obtain

lim
t!�1˚.t/ D 0;

which completes the proof of the lemma.

Lemma 4.15 F is a continuous function of z.

Proof This follows from Lemmas 4.8 and 4.14.
Thus, part (i) of Theorem 3.2 is now proved.
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