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Abstract We give a survey on classical and recent applications of dynamical
systems to number theoretic problems. In particular, we focus on normal numbers,
also including computational aspects. The main result is a sufficient condition for
establishing multidimensional van der Corput sets. This condition is applied to
various examples.
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1 Dynamical Systems in Number Theory

In the last decades dynamical systems became very important for the development
of modern number theory. The present paper focuses on Furstenberg’s refinements
of Poincaré’s recurrence theorem and applications of these ideas to Diophantine
problems.

A (measure-theoretic) dynamical system is formally given as a quadruple
.X;B; �;T/, where .X;B; �/ is a probability space with �-algebra B of mea-
surable sets and � a probability measure; TWX ! X is a measure-preserving
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transformation on this space, i.e. �.T�1A/ D �.A/ for all measurable sets
A 2 B. In the theory of dynamical systems, properties of the iterations of the
transformation T are of particular interest. For this purpose we only consider
invertible transformations and call such dynamical systems invertible.

The first property, we consider, originates from Poincaré’s famous recurrence
theorem (see Theorem 1.4 of [32] or Theorem 2.11 of [13]) saying that starting
from a set A of positive measure �.A/ > 0 and iterating T yields infinitely many
returns to A. More generally, we call a subset R � N of the positive integers a set
of recurrence if for all invertible dynamical systems and all measurable sets A of
positive measure �.A/ > 0 there exists n 2 R such that �.A \ T�nA/ > 0. Then
Poincaré’s recurrence theorem means that N is a set of recurrence.

A second important theorem for dynamical systems is Birkhoff’s ergodic
theorem (see Theorem 1.14 of [32] or Theorem 2.30 of [13]). We call T ergodic if
the only invariant sets under T are sets of measure 0 or of measure 1, i.e. T�1A D A
implies �.A/ D 0 or �.A/ D 1. Then Birkhoff’s ergodic theorem connects average
in time with average in space, i.e.,

lim
N!1

1

N

N�1X

nD0

f ı Tn.x/ D
Z

X
f .x/d�.x/

for all f 2 L1.X; �/ and �-almost all x 2 X.
Let us explain an important application of this theorem to number theory. For

q � 2 a positive integer, consider TW Œ0; 1/ ! Œ0; 1/ defined by T.x/ D fqxg;
where ftg D t � btc denotes the fractional part of t. If x 2 R is given by
its q-ary digit expansion x D bxc C P1

jD1 aj.x/q
�j, then the digits aj.x/ can be

computed by iterating this transformation T: aj.x/ D d if Tj�1x 2
h
d
q ; dC1

q

�
with

d 2 f0; 1; : : : ; q�1g. Moreover, since aj.Tx/ D ajC1.x/ for j � 1 the transformation
T can be seen as a left shift of the expansion.

Now we call a real number x simply normal in base q if

lim
N!1

1

N
#f j � NW aj.x/ D dg D 1

q

for all d D 0; : : : ; q�1, i.e., all digits d appear asymptotically with equal frequencies
1=q: A number x is called q-normal if it is simply normal with respect to all bases
q; q2; q3; : : :. This is equivalent to the fact that the sequence .fqnxg/n2N is uniformly
distributed modulo 1 (for short: u.d. mod 1), which also means that all blocks
d1; d2; : : : ; dL of subsequent digits appear in the expansion of x asymptotically with
the same frequency q�L (cf. [8, 12, 16]). For completeness, let us give here one
possible definition of u.d. sequences .xn/: a sequence of real numbers xn is called
u.d. mod 1 if for all continuous functions f W Œ0; 1� ! R

lim
N!1

1

N

NX

nD1

f .xn/ D
Z 1

0

f .x/dx: (1.1)
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Note, that by Weyl’s criterion the class of continuous functions can be replaced
by trigonometric functions e.hx/ D e2� ihx, h 2 N or by characteristic functions 1I.x/
of intervals I D Œa; b/. Applying Birkhoff’s ergodic theorem shows that Lebesgue
almost all real numbers are q-normal in any base q � 2. Defining a real number to
be absolutely normal if it is q-normal for all bases q � 2, this immediately yields
that almost all real numbers are absolutely normal.

In particular, this shows the existence of absolutely normal numbers. However,
it is a different story to find constructions of (absolutely) normal numbers. It is a
well-known difficult open problem to show that important numbers like

p
2, ln 2, e,

� etc. are simply normal with respect to some given base q � 2. A much easier task
is to give constructions of q-normal numbers for fixed base q. Champernowne [9]
proved that

0:1 2 3 4 5 6 7 8 9 10 11 12 : : :

is normal to base 10 and later this type of constructions was analyzed in detail. So,
for instance, for arbitrary base q � 2

0:hbg.1/ciq hbg.2/ciq : : :

is q-normal, where g.x/ is a non-constant polynomial with real coefficients and
the q-normal number is constructed by concatenating the q-ary digit expansions
hbg.n/ciq of the integer parts of the values g.n/ for n D 1; 2; : : :. These constructions
were extended to more general classes of functions g (replacing the polynomials)
(see [11, 18, 19, 22, 23, 29]) and the concatenation of hŒg. p/�iq along prime numbers
instead of the positive integers (see [10, 17, 18, 24]).

All such constructions depend on the choice of the base number q � 2, and thus
they are not suitable for constructing absolutely normal numbers. A first attempt
to construct absolutely normal numbers is due to Sierpinski [30]. However, Turing
[31] observed that Sierpinski’s “construction” does not yield a computable number,
thus it is not based on a recursive algorithm. Furthermore, Turing gave an algorithm
for a construction of an absolutely normal number. This algorithm is very slow and,
in particular, not polynomially in time. It is very remarkable that Becher et al. [2]
established a polynomial time algorithm for the construction of absolutely normal
numbers. However, there remain various questions concerning the analysis of these
algorithms. The discrepancy of the corresponding sequences is not studied and the
order of convergence of the expansion is very slow and should be investigated
in detail. Furthermore, digital expansions with respect to linear recurring base
sequences seem appropriate to be included in the study of absolute normality from
a computational point of view.
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Let us now return to Poincaré’s recurrence theorem which shortly states that the
set N of positive integers is a recurrence set. In the 1960s various stronger concepts
were introduced:

1. R � N is called a nice recurrence set if for all invertible dynamical systems and
all measurable sets A of positive measure �.A/ > 0 and all " > 0; there exist
infinitely many n 2 R such that

�.A \ T�nA/ > �.A/2 � ":

2. H � N is called a van der Corput set (for short: vdC set) if the following
implications holds:

.xnCh � xn/n2N is u.d. mod 1 for all h 2 H H) .xn/n2N is u.d. mod 1.

Clearly, any nice recurrence set is a recurrence set. By van der Corput’s difference
theorem (see [12, 16]) the set H D N of positive integers is a vdC set. Kamae
and Mendès-France [15] proved that any vdC set is a nice recurrence set. Ruzsa
[25] conjectured that any recurrence set is also a vdC set. An important tool in the
analysis of recurrence sets is their equivalence with intersective (or difference) sets
established by Bertrand-Mathis [5]. We call a set I intersective if for each subset
E � N of positive (upper) density, there exists n 2 I such that n D x � y for some
x; y 2 E. Here the upper density of E is defined as usual by

d.E/ D lim sup
N!1

#.E \ Œ1;N�/

N
:

Bourgain [7] gave an example of an intersective set which is not a vdC set, hence
contradicting the above mentioned conjecture of Ruzsa.

Furstenberg [14] proved that the values g.n/ of a polynomial g 2 ZŒx� with
g.0/ D 0 form an intersective set and later it was shown by Kamae and Mendès-
France [15] that this is a vdC set, too. It is also known that for fixed h 2 Z the set of
shifted primes fp˙hW p primeg is a vdC set if and only if h D ˙1: [20, Corollary 10].
This leads to interesting applications to additive number theory, for instance to new
proofs and variants of theorems of Sárközy [26–28]. A general result concerning
intersective sets related to polynomials along primes is due to Nair [21].

In the present paper we want to extend the concept of recurrence sets, nice
recurrence sets, and vdC sets to subsets of Zk; following the program of Bergelson
and Lesigne [3] and our earlier paper [4]. In Sect. 2 we summarize basic facts
concerning these concepts, including general relations between them and counter
examples. Section 3 is devoted to a sufficient condition for establishing the vdC
property. In the final Sect. 4 we collect various examples and give some new
applications.
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2 van der Corput Sets

In this section we provide various equivalent definitions of van der Corput sets in
Z
k. In particular, we give four different definitions, which are k-dimensional variants

of the one-dimensional definitions, whose equivalence is due to Ruzsa [25]. These
generalizations were established by Bergelson and Lesigne [3]. Then we present a
set, which is not a vdC set in order to give some insight into the structure of vdC
sets. Finally, we define the higher-dimensional variant of nice recurrence sets.

2.1 Characterization via Uniform Distribution

Similar to above we first define a van der Corput set (vdC set for short) in Z
k via

uniform distribution.

Definition 2.1 A subset H � Z
k n f0g is a vdC set if any family .xn/n2Nk of real

numbers is u.d. mod 1 provided that it has the property that for all h 2 H the family
.xnCh � xn/n2Nk is u.d. mod 1.

Here the property of u.d. mod 1 for the multi-indexed family .xn/n2Nk is defined via
a natural extension of 1.1:

lim
N1;N2;:::;Nk!C1

1

N1N2 � � �Nk

X

0�n<.N1;N2;:::;Nk/

f .xn/ D
Z 1

0

f .x/dx (2.1)

for all continuous functions f W Œ0; 1� ! R: Here in the limit N1;N2; : : : ;Nk are
tending to infinity independently and < is defined componentwise.

Using the k-dimensional variant of van der Corput’s inequality we could
equivalently define a vdC set as follows:

Definition 2.2 A subset H � Z
k n f0g is a van der Corput set if for any family

.un/n2Zk of complex numbers of modulus 1 such that

8h 2 H; lim
N1;N2;:::;Nk!C1

1

N1N2 � � �Nk

X

0�n<.N1;N2;:::;Nk/

unChun D 0

the relation

lim
N1;N2;:::;Nk!C1

1

N1N2 � � �Nk

X

0�n<.N1;N2;:::;Nk/

un D 0

holds.
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2.2 Trigonometric Polynomials and Spectral Characterization

The first two definitions are not very useful for proving or disproving that a setH is a
vdC set. Similar to the one-dimensional case the following spectral characterization
involving trigonometric polynomials is a better tool.

Theorem 2.3 ([3, Proposition 1.18]) A subset H � Z
k n f0g is a van der Corput

set if and only if for all " > 0, there exists a real trigonometric polynomial P on the
k-torus Tk whose spectrum is contained inH and which satisfies P.0/ D 1, P � �".

The set of polynomials fulfilling the last theorem for a given " forms a convex set.
Moreover the conditions may be interpreted as some infimum. Therefore we might
expect some dual problem, which is actually provided by the following theorem.
For details see Bergelson and Lesigne [3] or Montgomery [20].

Theorem 2.4 ([3, Theorem 1.8]) LetH � Z
knf0g. ThenH is a van der Corput set

if and only if for any positive measure � on the k-torus Tk such that, for all h 2 H,
O�.h/ D 0, this implies �.f.0; 0; : : : ; 0/g/ D 0.

2.3 Examples

The structure of vdC sets is better understood by first giving a counter example. The
following lemma shows to be very useful in the construction of counter examples.

Lemma 2.5 Let H � N. If there exists q 2 N such that the set H \ qN is finite,
then the set H is not a vdC set.

Proof The proof is a combination of the following two observations of Ruzsa [25]
(see Theorem 2 and Corollary 3 of [20]):

1. Let m 2 N. The sets f1; : : : ;mg and fn 2 NWm − ng are both not vdC sets.
2. Let H D H1 [ H2 � N. If H is a vdC set, then H1 or H2 also has to be a vdC

set.

Suppose there exists a q 2 N such that H \ qN is finite. Then we may split H into
the sets H \ qN and H n qN. The first one is finite and the second one contains no
multiples of q. Therefore both are not vdC sets and henceH is not a vdC set.

The first counter example deals with arithmetic progressions.

Lemma 2.6 Let a; b 2 N. If the set fan C bW n 2 Ng is a vdC set, then a j b.
Proof Let b 2 N and H D fan C bW n 2 Ng be a vdC set. Then by Lemma 2.5 we
must have

an C b � b � 0 mod a infinitely often.

This implies that a j b.
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The sufficiency (and also the necessity) of the requirement a j b follows from the
following result of Kamae and Mendès-France [15] (cf. Corollary 9 of [20]).

Lemma 2.7 Let P.z/ 2 ZŒz� and suppose that P.z/ ! C1 as z ! C1. Then
H D fP.n/ > 0W n 2 Ng is a vdC set if and only if for every positive integer q the
congruence P.z/ � 0 .mod q/ has a root.

Now we want to establish a similar result for sets of the form fap C bW p primeg.
In this case the following result is due to Bergelson and Lesigne [3] which is a
generalization of the case f .x/ D x due to Kamae and Mendès-France [15].

Lemma 2.8 ([3, Proposition 1.22]) Let f be a (non zero) polynomial with integer
coefficients and zero constant term. Then the sets f f . p � 1/W p 2 Pg and f f . p C
1/W p 2 Pg are vdC sets in Z.

We show the converse direction.

Lemma 2.9 Let a and b be nonzero integers. Then the set fap C bW p 2 Pg is a vdC
set if and only if jaj D jbj, i.e., ap C b D a. p ˙ 1/.

Proof It is clear from Lemma 2.8 that fap C bW p 2 Pg is a vdC set if jaj D jbj.
On the contrary a combination of Lemma 2.5 and Lemma 2.6 yields that a j b.

Now we consider the sequence modulo b. Then by Lemma 2.5 we get that

ap C b � ap � 0 mod b infinitely often.

Since . p; b/ > 1 only holds for finitely many primes p we must have b j a.
Combining these two requirements yields jaj D jbj.

3 A Sufficient Condition

In this section we want to formulate a general sufficient condition which provides
us with a tool to show for plenty of different examples that they generate a vdC
set. This is a generalization of the conditions of Kamae and Mendès-France [15]
and Bergelson and Lesigne [3]. Before stating the condition we need an auxiliary
lemma.

Lemma 3.1 ([3, Corollary 1.15]) Let d and e be positive integers, and let L be a
linear transformation from Z

d into Z
e (represented by an e 	 d matrix with integer

entries). Then the following assertions hold:

1. If D is a vdC set in Zd and if 0 62 L.D/, then L.D/ is a vdC set in Z
e.

2. Let D � Z
d. If the linear map L is one-to-one, and if L.D/ is a vdC set in Z

e,
then D is a vdC set in Zd.

Our main tool is the following general result. Applications are given in the next
section.
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Proposition 3.2 Let g1; : : : ; gkWN ! Z be arithmetic functions. Suppose that
gi1 ; : : : ; gim is a basis of the Q-vector space span.g1; : : : ; gk/. For each q 2 N, we
introduce

Dq WD ˚
.gi1 .n/; : : : ; gim.n/W n 2 N and qŠ j gij.n/ for all j D 1; : : : ;m

�
:

Suppose further that, for every q, there exists a sequence .h.q/
n /n2N in Dq such that,

for all x D .x1; : : : ; xm/ 2 R
mnQm, the sequence .h.q/

n �x/n2N is uniformly distributed
mod 1. Then

QD WD f.g1.n/; : : : ; gk.n//W n 2 Ng 2 Z
k

is a vdC set.

Proof We first show that the set

D WD f.gi1 .n/; : : : ; gim.n//W n 2 Ng

is a vdC set in Zm. For q;N 2 N we define a family of trigonometric polynomials

Pq;N WD 1

N

NX

nD1

e
�
h.q/
n � x� :

By hypothesis, limN!1 Pq;N.x/ D 0 for x 62 Q
m. For fixed q there exists a

subsequence .Pq;N0/ which converges pointwise to a function gq. Since gq.x/ D 1

(for x 2 Q
m and q sufficiently large) and gq.x/ D 0 (for x 62 Q

m), the sequence
.gq/ is pointwise convergent to the indicator function ofQm. For a positive measure
� on the m-dimensional torus with vanishing Fourier transform O� on D, we haveR
Pq;Nd� D 0 for all q;N. Thus �.Qm/ D 0 follows from the dominating

convergence theorem, obviously �.f0; 0; : : : ; 0g/ D 0, and thus D is a vdC set.
In order to prove that QD is a vdC set we apply Lemma 3.1 twice. Since gi1 ; : : : ; gim

is a base of span.g1; : : : ; gk/, we can write each gj as a linear combination (with
rational coefficients) of gi1 ; : : : ; gim . Multiplying with the common denominator of
the coefficients yields

ajgj D bj;1gi1 C � � � C bj;mgim

for j D 1; : : : ; k and certain aj; bj;` 2 Z. Considering the transformation LWZm ! Z
k

given by the matrix .bj;`/ and applying part (1) of Lemma 3.1 shows that

f.a1g1.n/; : : : ; akgk.n//W n 2 Ng

is a vdC set for certain integers a1; : : : ; ak.
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Now consider the transformation QLWZk ! Z
k given by the k 	 k diagonal matrix

with entries a1; : : : ; ak in the diagonal. Then by part (2) of Lemma 3.1 also QD is a
vdC set and the proposition is proved.

4 Various Examples and Applications to Additive Problems

In this section we consider multidimensional variants of prime powers, entire
functions and x˛ logˇ x sequences.

4.1 Prime Powers

In a recent paper the authors together with Bergelson, Kolesnik, and Son [4]
consider sets of the form

f.˛1. pn ˙ 1/�1; : : : ; ˛k. pn ˙ 1/�k/W n 2 Ng;

where ˛i; ˇi 2 R and pn 2 P runs over all prime numbers. These sets are vdC,
however, we missed the treatment of a special case in the proof. In particular, if
for some i ¤ j the exponents satisfy �i D �j DW � , then the vector . p�

n ; p�
n/ is not

uniformly distributed mod 1.
Here we close this gap.

Theorem 4.1 If ˛i are positive integers and ˇi are positive and non-integers, then

D1 D f�. p � 1/˛1 ; � � � ; . p � 1/˛k ; Œ. p � 1/ˇ1 �; � � � ; Œ. p � 1/ˇ`�
� j p 2 Pg;

and

D2 D f�. p C 1/˛1 ; � � � ; . p C 1/˛k ; Œ. p C 1/ˇ1�; � � � ; Œ. p C 1/ˇ`�
� j p 2 Pg

are vdC sets in ZkC`.

Proof Since x�1 and x�2 are Q-linear dependent for all x 2 Z if and only if �1 D �2,
an application of Proposition 3.2 yields that it suffices to consider the case where
all exponents are different. However, this follows by the same arguments as in the
proof of Theorem 4.1 in [4].



272 M.G. Madritsch and R.F. Tichy

4.2 Entire Functions

In this section we consider entire functions of bounded logarithmic order. We fix a
transcendental entire function f and denote by S.r/ WD maxjzj�r jf .z/j. Then we call
� the logarithmic order of f if

lim sup
r!1

log S.r/

log r
D �:

The central tool is the following result of Baker [1].

Theorem 4.2 ([1, Theorem 2]) Let f be a transcendental entire function of
logarithmic order 1 < � < 4

3
. Then the sequence

. f . pn//n�1

is uniformly distributed mod 1.

Our second example of a class of vdC sets is the following.

Theorem 4.3 Let f1; : : : ; fk be entire functions with distinct logarithmic orders 1 <

�1; �2; : : : ; �k < 4
3
, respectively. Then the set

D WD f.b f1. pn/c; : : : ; b fk. pn/c/W n 2 Ng

is a vdC set.

Proof We enumerate D D .dn/n�1, where

dn WD .b f1. pn/c; : : : ; b fk. pn/c/ :

First we show that for every q 2 N the set

D.q/ WD f.d1; : : : ; dk/ 2 DW q j dig

has positive relative density in D. We note that if 0 �
n
fi. pn/

q

o
< 1

q for 1 � i � k,

then dn 2 D.q/. By Theorem 4.2 the sequence

��
f1. pn/

q
; : : : ;

fk. pn/

q

��

n�1

is uniformly distributed and thus D.q/ has positive density in D.

For each q 2 N we enumerate the elements of D.qŠ/ D .d.qŠ/
n /n�1, such that

ˇ̌
ˇd.qŠ/

n

ˇ̌
ˇ

is increasing. Since the logarithmic orders are distinct we immediately get that the
functions fi are Q-linearly independent. Thus by Proposition 3.2 it is sufficient to
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show that for all q 2 N and all x D .x1; : : : ; xk/ 2 R
k nQk the sequence .d.qŠ/

n � x/n�1

is u.d. mod 1.
Using the orthogonality relations for additive characters we get for any nonzero

integer h that

1ˇ̌fn � NWdn 2 D.qŠ/gˇ̌
X

n�N

e
�
h
�
d.qŠ/
n � x��

D 1ˇ̌fn � NWdn 2 D.qŠ/gˇ̌
1

.qŠ/k

qŠX

j1D1

� � �
qŠX

jkD1

1

N

X

n�N

e

�
dn �

�
hx C

�
j1
qŠ

; : : : ;
jk
qŠ

���
:

The innermost sum is of the form

X

n�N

e.g. pn//;

with g.x/ D Pk
iD1 ˛ib fi.x/c for a certain .˛1; : : : ; ˛k/ 2 R

k n Q
k.

By relabeling the terms we may suppose that there exists an ` such that
˛1; : : : ; ˛` 62 Q and ˛`C1; : : : ; ˛k 2 Q. Furthermore we may write ˛j D aj

q for
` C 1 � j � m. Then

e.g. pn// D e

 
kX

iD1

˛kb fi. pn/c
!

D
Ỳ

jD1

sj.˛jfj. pn/; fj. pn//
kY

jD`C1

tj.b fj. pn/c/;

where sj.x; y/ D e.x � fyg˛j/ (1 � j � `) and tj.z/ D e
�
aj

z
q

�
(` C 1 � j � k).

Since sj.x; y/ is Riemann-integrable on T
2 for j D 1; : : : ; ` and tj.z/ is

continuous on Zq D Z=qZ, the function
Q`

jD1 sj
Qk

jD`C1 tj is Riemann-integrable
on T2` 	 Z

k�`
q .

Now an application of Theorem 4.2 yields that for any u 2 N the sequence

�
˛1f1. pn/; f1. pn/; : : : ; ˛`f`. pn/; f`. pn/;

f`C1. pn/

u
; : : : ;

fk. pn/

u

�

n�1

is u.d. in T
2` 	 T

k�`. Since bxc � a .mod q/ is equivalent to x
q 2 Œ aq ; aC1

q �, we
deduce that

.˛1f1. pn/; f1. pn/; : : : ; ˛`f`. pn/; f`. pn/; b f`C1. pn/c; : : : ; b fk. pn/c/n�1
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is u.d. in T
2` 	 Z

k�`
q , and Weyl’s criterion implies that

lim
N!1

1

N

X

n�N

e

 
kX

iD1

˛ib fi. pn/c
!

D 0;

proving the theorem.

4.3 Functions of the Form x˛ logˇ x

In the one-dimensional case Boshernitzan et al. [6] showed, among other result, that
these sets are vdC sets. Our aim is to show an extended version for the k-dimensional
case. Therefore we use the following general criterion, which is a combination of
Fejer’s theorem and van der Corput’s difference theorem.

Theorem 4.4 ([16, Theorem 3.5]) Let f .x/ be a function defined for x > 1 that is
k-times differentiable for x > x0. If f .k/.x/ tends monotonically to 0 as x ! 1 and
if limx!1 x

ˇ̌
f .k/.x/

ˇ̌ D 1, then the sequence . f .n//n�1 is u.d. mod 1.

Applying this theorem we get the following

Corollary 4.5 Let ˛ ¤ 0 and

– either � > 0 not an integer and � 2 R arbitrary
– or � > 0 an integer and � 2 R n Œ0; 1�.

Then the sequence .˛n� log� n/n�2 is u.d. mod 1.

Our third example is the following class of vdC sets.

Theorem 4.6 Let ˛1; : : : ; ˛k > 0 and ˇ1; : : : ; ˇk 2 R, such that ˇi 62 Œ0; 1�

whenever ˛i 2 Z for i D 1; : : : ; k. Then the set

D WD f.bn˛1 logˇ1 nc; : : : ; bn˛k logˇk nc/W n 2 Ng

is a vdC set.

Proof Following the same arguments as is the proof of Theorem 4.3 and replacing
the uniform distribution result for entire functions (Theorem 4.3) by the correspond-
ing result for n˛ logˇ n sequences (Corollary 4.5) yields the proof.
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