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1 Introduction

Let s D � C it be a complex variable, and a D fam W m 2 Ng and b D fbm W m 2
N0 D N[f0gg be two periodic sequences of complex numbers with minimal periods
k 2 N and l 2 N, respectively. The periodic zeta-function �.sI a/ and periodic
Hurwitz zeta-function �.s; ˛I b/ with parameter ˛, 0 < ˛ � 1, are defined, for
� > 1, by the series

�.sI a/ D
1X

mD1

am
ms

and �.s; ˛I b/ D
1X

mD0

bm
.m C ˛/s
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Let �.s; ˛/ denote the classical Hurwitz zeta-function which is for � > 1 given by

�.s; ˛/ D
1X

mD0

1

.m C ˛/s
;

and can be analytically continued to the whole complex plane, except for a simple
pole at the point s D 1 with residue 1. In view of the periodicity of the sequences a
and b, we have that, for � > 1,

�.sI a/ D 1

ks

kX

mD1

am�
�
s;
m

k

�

and

�.s; ˛I b/ D 1

ls

l�1X

mD0

bm�

�
s;
m C ˛

l

�
:

Thus, by the above remark on the function �.s; ˛/, these equalities give analytic
continuation for the functions �.sI a/ and �.s; ˛I b/ to the whole complex plane,
except for a hypothetical simple pole at s D 1 with residues

a D 1

k

kX

mD1

am and b D 1

l

l�1X

mD0

bm;

respectively. If a D 0 or b D 0, then both functions �.sI a/ and �.s; ˛I b/ are entire.
Clearly, �.sI a/ is a generalization of the Riemann zeta-function, and �.s; ˛I b/

generalizes the Hurwitz zeta-function.
In [3], a joint universality theorem on the approximation of a pair of analytic

functions by shifts �.s C i� I a/ and �.s C i�; ˛I b/ has been obtained. Let D D˚
s 2 C W 1

2
< � < 1

�
. Denote by K the class of compact subsets of the strip D with

connected complements, by H.K/, K 2 K, the class of continuous functions on
K which are analytic in the interior of K, and by H0.K/, K 2 K, the subclass of
H.K/ of non-vanishing functions on K. We remind that a sequence of numbers an is
multiplicative if a1 D 1 and amn D aman for all coprime integers m; n. Now we state
the main result of [3].

Theorem 1.1 Suppose that the sequence a is multiplicative, and that the number ˛

is transcendental. Let K1;K2 2 K, f1.s/ 2 H0.K1/, and f2.s/ 2 H.K2/. Then, for
every " > 0,

lim inf
T!1

1

T
meas

(
� 2 Œ0;T� W sup

s2K1

j�.s C i� I a/ � f1.s/j < ";

sup
s2K2

j�.s C i�; ˛I b/ � f2.s/j < "

)
> 0:
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Here measA denotes the Lebesgue measure of a measurable set A � R. Theorem 1.1
is a generalization of the Mishou theorem proved in [9] for the Riemann zeta
and Hurwitz zeta-functions. Theorem 1.1 is the so-called continuous universality
theorem because analytic functions are approximated by the continuous shifts
�.s C i� I a/ and �.s C i�; ˛I b/, � 2 R. The aim of this paper is to prove a discrete
version of Theorem 1.1 where analytic functions are approximated by discrete shifts
�.s C ikhI a/ and �.s C ikh; ˛I b/, or, more generally, by shifts �.s C ikh1I a/ and
�.s C ikh2; ˛I b/, k 2 N0, with fixed positive numbers h, h1, and h2.

Denote by P the set of all prime numbers, and define the set

L.P ; ˛; h; �/ D
n
.log p W p 2 P/; .log.m C ˛/ W m 2 N0/;

�

h

o
:

Theorem 1.2 Suppose that the set L.P ; ˛; h; �/ is linearly independent over the
field of rational numbers Q, and that the sequence a is multiplicative. Let K1;K2 2
K, f1.s/ 2 H0.K1/, and f2.s/ 2 H.K2/. Then, for every " > 0,

lim inf
N!1

1

N C 1
#

(
0 � k � N W sup

s2K1

j�.s C ikhI a/ � f1.s/j < ";

sup
s2K2

j�.s C ikh; ˛I b/ � f2.s/j < "

)
> 0:

Now let

L.P ; ˛; h1; h2; �/ D f.h1 log p W p 2 P/; .h2 log.m C ˛/ W m 2 N0/; �g :

We note that this set consists of all elements of two sequences in addition with the
number � . Then we have the following generalization of Theorem 1.2:

Theorem 1.3 Suppose that the set L.P ; ˛; h1; h2; �/ is linearly independent over
Q, and that the sequence a is multiplicative. Let K1;K2 2 K, f1.s/ 2 H0.K1/, and
f2.s/ 2 H.K2/. Then, for every " > 0,

lim inf
N!1

1

N C 1
#

(
0 � k � N W sup

s2K1

j�.s C ikh1I a/ � f1.s/j < ";

sup
s2K2

j�.s C ikh2; ˛I b/ � f2.s/j < "

)
> 0:

Obviously, for h1 D h2 D h Theorem 1.3 reduces to Theorem 1.2.
By the Nesterenko theorem [11], the numbers � and e� are algebraically

independent over Q. Therefore, the set L.P ; ˛; h1; h2; �/ with ˛ D ��1 and rational
h1, h2 is linearly independent over Q.
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Professor Wolfgang Schwarz was a mathematician with a broad outlook. Among
other problems of probabilistic and analytic number theory, he was also interested
in universality of zeta-functions, and this is confirmed by the paper [7].

2 Two Lemmas

For the proof of Theorem 1.3, we will apply the probabilistic approach based on a
limit theorem on weakly convergent probability measures in the space of analytic
functions. In this section, we present two lemmas which play an important role in
the proof of such a limit theorem.

Let � D fs 2 C W jsj D 1g, and

˝1 D
Y

p2P
�p and ˝2 D

Y

m2N0

�m;

where �p for all p 2 P and �m D � for all m 2 N0. By the classical Tikhonov
theorem, with the product topology and pointwise multiplication, the tori ˝1 and
˝2 are compact topological abelian groups. Therefore, denoting by B.X/ the Borel
�-field of the space X, we observe that on .˝j;B.˝j// the probability Haar measure
mjH can be defined, j D 1; 2. Denote by !1. p/ the projection of !1 2 ˝1 to
the coordinate space �p, p 2 P , and by !2.m/ the projection of !2 2 ˝2 to
the coordinate space �m, m 2 N0. Then !1. p/, p 2 P , and !2.m/, m 2 N0,
are complex-valued random variables defined on the spaces .˝1;B.˝1/;m1H/ and
.˝2;B.˝2/;m2H/, respectively.

We define one more set by ˝ D ˝1 � ˝2. Then ˝ is also a compact
topological abelian group. This leads to the probability space .˝;B.˝/;mH/ with
the probability Haar measure mH. We denote by ! D .!1; !2/ the elements of ˝ ,
where !j 2 ˝j, j D 1; 2:.

Next, for A 2 B.˝/, let

QN.A/
defD 1

N C 1
#
˚
0 � k � N W �. p�ikh1 W p 2 P/;

..m C ˛/�ikh2 W m 2 N0/
� 2 A

�
:

Lemma 2.1 Suppose that the set L.P ; ˛; h1; h2; �/ is linearly independent over Q.
Then QN converges weakly to the Haar measure mH as N ! 1.

Proof We apply the Fourier transform method, and use similar arguments as in the
proof of Lemma 7 in [3]; recalling the proof of this lemma, we observe that the
Fourier transform gN.k; l/, k D .kp W kp 2 Z; p 2 P/, l D .lm W lm 2 Z; m 2 N0/

of the measure QN is of the form

gN.k; l/ D
Z

˝

0

@
Y

p2P
!

kp
1 . p/

Y

m2N0

!
km
2 .m/

1

A dQN ;
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where only a finite number of integers kp and lm are distinct from zero. Thus, by the
definition of QN ,

gN.k; l/ D 1

N C 1

NX

kD0

Y

p2P
p�ikkph1

Y

m2N0

.m C ˛/�iklmh2

D 1

N C 1

NX

kD0

exp

8
<

:�ikh1

X

p2P
kp log p � ikh2

X

m2N0

lm log.m C ˛/

9
=

; ; (2.1)

where, as above, only a finite number of integers kp and lm are distinct from zero.
Obviously,

gN.0; 0/ D 1: (2.2)

Before to consider the case .k; l/ ¤ .0; 0/, we observe that, in this case,

exp

8
<

:�ih1

X

p2P
kp log p � ih2

X

m2N0

lm log.m C ˛/

9
=

; ¤ 1: (2.3)

Indeed, if inequality (2.3) is not true, then, for a certain Om 2 Z,

exp

8
<

:�ih1

X

p2P
kp log p � ih2

X

m2N0

lm log.m C ˛/

9
=

; D e2� i Om:

Hence,

h1

X

p2P
kp log p C h2

X

m2N0

lm log.m C ˛/ D �Ol

with Ol 2 Z. Since only a finite number of integers kp and lm are distinct from zero,
this contradicts the linear independence of the set L.P ; ˛; h1; h2; �/. Thus, (2.3) is
true. Therefore, in the case .k; l/ ¤ .0; 0/, using the formula for the geometric series,
we obtain

gN.k; l/ D
1�exp

(

�i.NC1/

 

h1

P
p2P

kp log pCh2

P
m2N0

lm log.mC˛/

!)

.NC1/

 
1�exp

(
�i

 
h1

P
p2P

kp log pCh2

P
m2N0

lm log.mC˛/

!)! :
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From this and (2.2), we find that

lim
N!1 gN.k; l/ D

	
1 if .k; l/ D .0; 0/,
0 if .k; l/ ¤ .0; 0/.

Therefore, a continuity theorem for probability measures on compact groups proves
the lemma.

The next lemma uses again the linear independence of the set L.P ; ˛; h1; h2; �/

over Q, and is devoted to ergodicity of a certain transformation on the space
.˝;B.˝/;mH/.

Define the element a˛;h1;h2 2 ˝ by the formula

a˛;h1;h2 D ˚
. p�ih1 W p 2 P/; ..m C ˛/�ih2 W m 2 N0/

�
;

and let, for ! 2 ˝ ,

'˛;h1;h2 .!/ D a˛;h1;h2 !:

Since the Haar measure mH is invariant with respect to translations by points from
˝ , we have that '˛;h1;h2 is a measurable measure preserving transformation on the
probability space .˝;B.˝/;mH/. We remind that a set A 2 B.˝/ is called invariant
with respect to the transformation '˛;h1;h2 if the sets A and '˛;h1;h2 .A/ differ one from
another at most by a set of zero mH-measure, and that the transformation '˛;h1;h2 is
ergodic if the �-field of invariant sets consists of sets with mH-measure 0 or 1.

Lemma 2.2 Suppose that the set L.P ; ˛; h1; h2; �/ is linearly independent over Q.
Then the transformation '˛;h1;h2 is ergodic.

Proof We know (see the proof of Lemma 11 of [3]) that characters � of the group
˝ are of the form

�.!/ D
Y

p2P
!

kp
1 . p/

Y

m2N0

!
lm
2 .m/;

where only a finite number of integers kp and lm are distinct from zero. If � is
non-trivial character of ˝ , then, from this and inequality (2.3), it follows that, for
.k; l/ ¤ .0; 0/,

�.a˛;h1;h2 / D exp

8
<

:�ih1

X

p2P
kp log p � ih2

X

m2N0

lm log.m C ˛/

9
=

; ¤ 1: (2.4)
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Let A be an invariant set of the transformation '˛;h1;h2 . Denote by IA the indicator
function of A, and by Of the Fourier transform of the function f . Then

OIA.�/ D
Z

˝

�.!/IA.!/mH.d!/ D �.a˛;h1;h2 / OIA.�/;

since the measure mH is invariant, and, for almost all ! 2 ˝ ,

IA.a˛;h1;h2 !/ D IA.!/:

This and (2.4) imply that

OIA.�/ D 0 (2.5)

for every non-trivial character � of ˝ .
Now let �0 be the trivial character of ˝ , i.e., �0.!/ � 1. Suppose that OI.�0/ D a.

Since

Z

˝

�.!/mH.d!/ D
	

1 if � D �0,
0 if � ¤ �0,

we have in view of (2.5) that, for every character � of the group ˝ ,

OIA.�/ D a
Z

˝

�.!/mH.d!/ D a O1.�/ D Oa.�/: (2.6)

It is well known that the function IA.!/ is uniquely determined by its Fourier
transform OIA.!/. Therefore, we have from (2.6) that IA.!/ D a for almost all
! 2 ˝ . However, since IA.!/ is the indicator of A, a D 0 or 1. Hence, IA.!/ D 0 for
almost all ! 2 ˝ , or IA.!/ D 1 for almost all ! 2 ˝ . This shows that mH.A/ D 0

or mH.A/ D 1, i.e., the transformation '˛;h1;h2 is ergodic.

3 A Limit Theorem

Denote by H.D/ the space of functions which are analytic on D, equipped with the
topology of uniform convergence on compacta, and, for A 2 B.H2.D//, define

PN.A/ D 1

N C 1
#
n
0 � k � N W �.s C ikh; ˛I a; b/ 2 A

o
;

where h D .h1; h2/ and

�.s C ikh; ˛I a; b/ D .�.s C ikh1I a/; �.s C ikh2; ˛I b// :
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Moreover, on the probability space .˝;B.˝/;mH/, define the H2.D/-valued ran-
dom element �.s; ˛; !I a; b/ by the formula, see [3],

�.s; ˛; !I a; b/ D .�.s; !1I a/; �.s; ˛; !2I b// ;

where

�.s; !1I a/ D
1X

mD1

am!1.m/

ms

with

!1.m/ D
Y

pr jm
prC1−m

!r
1. p/;

and

�.s; ˛; !2I b/ D
1X

mD0

bm!2.m/

.m C ˛/s
:

We note that the series for �.s; !1I a/ and �.s; ˛; !2I b/ converge uniformly on
compact subsets of the strip D for almost all !1 2 ˝1 and !2 2 ˝2, respectively,
and thus they define H.D/-valued random elements on the probability spaces
.˝1;B.˝1/;m1H/ and .˝2;B.˝2/;m2H/, respectively. Moreover, in view of mul-
tiplicativity of the sequence a, we have that for almost all !1 2 ˝1 and s 2 D,

�.s; !1I a/ D
Y

p2P

 
1 C

1X

kD1

apk!
k
1. p/

pks

!
:

Let P� be the distribution of random element �.s; ˛; !I a; b/, i.e., let P� be a
probability measure given by

P�.A/ D mH

�
! 2 ˝ W �.s; ˛; !I a; b/ 2 A

�
; A 2 B.H2.D//:

Now we are ready to state a limit theorem for PN . Let

S D fg 2 H.D/ W g.s/ ¤ 0 or g.s/ � 0g:

Theorem 3.1 Suppose that the set L.P ; ˛; h1; h2; �/ is linearly independent over
Q, and that the sequence a is multiplicative. Then PN converges weakly to P� as
N ! 1. Moreover, the support of P� is the set S � H.D/.
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Proof The proof is similar to the one for Theorem 6 from [3], therefore, we do not
give all details.

For fixed �1 > 1
2

and m; n 2 N, let

v.m; n/ D exp
n
�
�m
n

��1
o

;

and for m 2 N0, n 2 N,

v.m; n; ˛/ D exp

	
�
�
m C ˛

n C ˛

��1



:

Define the functions

�n.sI a/ D
1X

mD1

amv.m; n/

ms

and

�n.s; ˛I b/ D
1X

mD0

bmv.m; n; ˛/

.m C ˛/s
:

Then it is known (see [2, 6]) that the latter series are absolutely convergent for
� > 1

2
. For brevity, let

�
n
.s C ikh; ˛I a; b/ D .�n.s C ikh1I a/; �n.s C ikh2; ˛I b//

and

PN;n.A/ D 1

N C 1
#
n
0 � k � N W �

n
.s C ikh; ˛I a; b/ 2 A

o
;

A 2 B.H2.D//:

Similarly, for ! D .!1; !2/ 2 ˝ , define

�n.s; !1I a/ D
1X

mD1

am!1.m/v.m; n/

ms

and

�n.s; ˛; !2I b/ D
1X

mD0

bm!2.m/v.m; n; ˛/

.m C ˛/s
;
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the series also being absolutely convergent for � > 1
2
. Let

�
n
.s C ikh; ˛; !I a; b/ D .�n.s C ikh1; !1I a/; �n.s C ikh2; ˛; !2I b// ;

and

PN;n;!.A/ D 1

N C 1
#
n
0 � k � N W �

n
.s C ikh; ˛; !I a; b/ 2 A

o
;

A 2 B.H2.D//:

Now, using Lemma 2.1, Theorem 5.1 of [1] and the invariance of the Haar measure
mH, we easily find that, on .H2.D/;B.H2.D///, there exists a probability measure
Pn such that the measures PN;n and PN;n;! both converge weakly to Pn as N ! 1.
The latter assertion is an analogue of Theorem 8 from [3].

The next step of the proof of Theorem 3.1 consists of approximation. For this
purpose, the metric of H2.D/ is substantial. It is well known that there exists a
sequence of compact sets fKl W l 2 Ng � D such that

D D 1[
lD1

Kl;

Kl � KlC1 for l 2 N, and if K � D is a compact set, then K � Kl for some l. For
g1; g2 2 H.D/, define

	.g1; g2/ D
1X

lD1

2�l sups2Kl
jg1.s/ � g2.s/j

1 C sups2Kl
jg1.s/ � g2.s/j :

Then 	 is a metric on H.D/ which induces the topology of uniform convergence on
compacta. Now if, for g

1
D .g11; g12/, g2

D .g21; g22/ 2 H2.D/,

	.g
1
; g

2
/ D max

jD1;2
	.g1j; g2j/;

then 	 is a metric in H2.D/ inducing its topology.
We also remind the Gallagher lemma, Lemma 1.4 of [10], which allows to deduce

discrete mean square estimates from those of continuous type.

Lemma 3.2 Let T0 and T � ı > 0 be real numbers, and let T be a finite set lying
in the interval ŒT0 C ı

2
;T0 C T � ı

2
�. Define

Nı.x/ D
X

t2T
jt�xj<ı

1;
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and let S.x/ be a complex-valued continuous function on ŒT0;T C T0� having a
continuous derivative on .T0;T C T0/. Then

X

t2T
N�1

ı .t/jS.t/j2 � 1

ı

Z T

T0

jS.x/j2dx C
�Z T

T0

jS.x/j2dx
Z T

T0

jS0.x/j2dx
� 1

2

:

For n 2 N, let

ln.s/ D s

�1




�
s

�1

�
ns;

where 
 .s/ is the Euler gamma-function. Then an application of the Mellin formula

1

2�i

Z bCi1

b�i1

 .s/a�sds D e�a; a; b > 0;

leads to the representation

�n.sI a/ D 1

2�i

Z bCi1

b�i1
�.s C zI a/ln.z/

dz

z
:

Let K � D be a compact subset. Then the above representation for �n.sI a/ and an
application of the residue theorem imply, for an arbitrary h1 > 0, the estimate

1

N

NX

kD0

sup
s2K

j�.s C ikh1I a/ � �n.s C ikh1I a/j

�
Z 1

�1
jln. O� C i�/j

 
1

N

NX

kD0

j�.� C it C ikh1 C i� I a/j
!

dt; (3.1)

where O� < 0, 1
2

< � < 1 and t is bounded by a constant. Since, for a fixed � ,
1
2

< � < 1, the estimate [6]

Z T

0

j�.� C itI a/j2dt D O.T/
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is valid, Lemma 3.2 implies the bound

1

N

NX

kD0

j�.� C it C ikh1 C i� I a/j �
 

1

N

NX

kD0

j�.� C it C ikh1 C i� I a/j2
! 1

2

� 1

h1

Z Nh1

0

j�.� C it C i� I a/j2dtC
�Z Nh1

0

j�.� C it C i� I a/j2dt
Z Nh1

0

j� 0.� C it C i� I a/j2dt
� 1

2

� 1 C j!� j:

Therefore, in view of (3.1),

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

sup
s2K

j�.s C ikh1I a/ � �n.s C ikh1I a/j D 0:

From this, by the definition of the metric 	, we find that

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	 .�.s C ikh1I a/; �n.s C ikh1I a// D 0: (3.2)

In [5], Theorem 4.1, it was shown that for an arbitrary h2 > 0 and a compact
subset K � D,

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

sup
s2K

j�.s C ikh2; ˛I b/ � �n.s C ikh2; ˛I b/j D 0:

Thus,

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	 .�.s C ikh2; ˛I b/; �n.s C ikh2; ˛I b// D 0:

The latter equality together with (3.2) and the definition of the metric 	 shows that

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	
�
�.s C ikh; ˛I a; b/; �

n
.s C ikh; ˛I a; b/

�
D 0: (3.3)

Standard arguments show that for almost all !1 2 ˝1,

Z T

0

j�.� C it; !1I a/j2dt D O.T/
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with a fixed � , 1
2

< � < 1. Therefore, by a reasoning as in the proof of (3.2) we find
that, for almost all !1 2 ˝1,

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	 .�.s C ikh1; !1I a/; �n.s C ikh1; !1I a// D 0: (3.4)

The linear independence over Q of the set L.P ; ˛; h1; h2; �/ implies the linear
independence of the set

	
..m C ˛/ W m 2 N0/ ;

�

h2



:

Thus, repeating the proof of Lemma 2.6 of [4], we have that for almost all !2 2 ˝2,

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	 .�.s C ikh2; ˛; !2I b/; �n.s C ikh2; ˛; !2I b// D 0:

This together with (3.4), for almost all ! 2 ˝ , implies the equality

lim
n!1 lim sup

N!1
1

N C 1

NX

kD0

	
�
�.s C ikh; ˛; !I a; b/; �

n
.s C ikh; ˛; !I a; b/

�

D 0; (3.5)

where

�.s C ikh; ˛; !I a; b/ D .�.s C ikh1; !1I a/; �.s C ikh2; ˛; !2I b//:

For ! 2 ˝ , we define one more probability measure by

PN;!.A/ D 1

N C 1
#
n
0 � k � N W �.s C ikh; ˛; !I a; b/ 2 A

o
;

A 2 B.H2.D//:

Then the weak convergence of PN;n and PN;n;! to the same measure Pn as
N ! 1, equalities (3.3) and (3.5), and Theorem 4.2 of [1] show that the
measures PN and PN;! both converge weakly to the same probability measure P
on .H2.D/;B.H2.D/// as N ! 1.

It remains to prove that P D P� . For this, Lemma 2.2 is applied. On the space
.˝;B.˝/;mH/, define the random variable � by the formula

�.!/ D
(

1 if �.s; ˛; !I a; b/ 2 A,
0 otherwise,
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where A is a fixed continuity set of the measure P. Then, for the expectation E� , we
have

E� D
Z

˝

�dmH D P�.A/: (3.6)

Lemma 2.2 together with the Birkhoff–Khintchine ergodicity theorem yields the
equality

lim
N!1

1

N C 1

NX

kD0

�
�
'k

˛;h1;h2
.!/

� D E�: (3.7)

On the other hand, by the definitions of � and '˛;h1;h2 , we have that

1

N C 1

NX

kD0

�
�
'k

˛;h1;h2
.!/

� D PN;!.A/: (3.8)

Since PN;! converges weakly to P, and A is a continuity set of P, it follows that

lim
N!1PN;!.A/ D P.A/:

However, (3.6)–(3.8) imply that, for every continuity set A of P,

P�.A/ D P.A/:

Hence, P� D P.
The limit measure P� does neither depend on h1 and h2 nor on the arithmetic

of ˛. Therefore, by Lemma 12 of [3], the support of P� is the set S � H.D/. The
theorem is proved.

4 Proof of the Universality Theorem

A proof of Theorem 1.3 is based on Theorem 3.1 and the Mergelyan theorem on the
approximation of analytic functions by polynomials, and is quite standard. We state
the Mergelyan theorem as the following lemma:

Lemma 4.1 Let K � C be a compact set with connected complement, and let f .s/
be a continuous function on K which is analytic in the interior of K. Then, for every
" > 0, there exists a polynomial p.s/ such that

sup
s2K

j f .s/ � p.s/j < ":
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The proof of this lemma can be found in [8] and [12].
We will also use an equivalent of the weak convergence of probability measures

in terms of open sets.

Lemma 4.2 Suppose that Pn, n 2 N, and P are probability measures on .X;B.X//.
Then Pn converges weakly to P as n ! 1 if, and only if, for every open set G � X,

lim inf
n!1 Pn.G/ � P.G/:

The proof of this lemma is given in [1], Theorem 2.1.

Proof (Proof of Theorem 1.3) By Lemma 4.2, there exist polynomials p1.s/ and
p2.s/ such that

sup
s2K1

ˇ̌
f1.s/ � ep1.s/

ˇ̌
<

"

2
: (4.1)

and

sup
s2K2

j f2.s/ � p2.s/j <
"

2
: (4.2)

Define the set

G D
(

.g1; g2/ 2 H2.D/ W sup
s2K1

ˇ̌
g1.s/ � ep1.s/

ˇ̌
<

"

2
; sup
s2K2

jg2.s/ � p2.s/j <
"

2

)
:

Then we observe that G is an open set, and, in view of the second assertion
of Theorem 3.1, .ep1.s/; p2.s// is an element of the support of the measure P� .
Therefore, P�.G/ > 0. Thus, by first assertion of Theorem 3.1 and Lemma 4.2,

lim inf
N!1

1

N C 1
#
n
0 � k � N W �.s C ikh; ˛; !I a; b/ 2 G

o
� P�.G/ > 0:

Therefore, the definition of G implies that

lim inf
N!1

1

N C 1
#

(
0 � k � N W sup

s2K1

ˇ̌
�.s C ikh1I a/ � ep1.s/

ˇ̌
<

"

2
;

sup
s2K2

j�.s C ikh2; ˛I b/ � p2.s/j <
"

2

)
> 0:

Combining this with (4.1) and (4.2) proves the theorem.
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