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Abstract This article determines the order of magnitude of integers not exceeding
x that can be written as sums of two squares of integers that are themselves sums of
two squares. The tools include Selberg’s sieve and contour integration in the spirit
of the Selberg-Delange method.
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1 Introduction

In about 1900 Landau calculated the cardinality of sums of two squares in a long
interval Œ1; x�. With S D fn 2 N j n D a2 C b2g he proved in [3] the asymptotic
formula

X

n�x
n2S

1 D C
xp

log x
CO

�
x

.log x/3=2

�
; (1.1)

where C WD 1p
2

Q
p�3.4/.1 � p�2/�1=2.

It is possible to diversify the summation condition in a lot of ways. In this paper
we want to consider the situation where each of the two squares is again a sum of
two squares.
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We define some notation. Let QS D fn 2 N j pjn) p 6� 3.4/g � S, and let

R.n/ D #fa; b 2 S j n D a2 C b2g;
QR.n/ D #fa; b 2 QS j n D a2 C b2g:

Finally we write

Si.x/ D
X

n�x

R.n/i

for iD0; 1; 2 with the convention 00D0, and analogously

QSi.x/ D
X

n�x

QR.n/i:

Our aim is to estimate these quantities from above and below. We start with the
following which can be obtained from (1.1) by partial summation.

Theorem 1.1 For x � 3 we have the asymptotic formula

S1.x/ D �

4

Y

p�3.4/

.1 � p�2/�1 x

log x
CO

� x

.log x/2

�
:

An analogous asymptotic formula (with a different constant) can be proved for
QS1.x/.

Our next aim is an upper bound for QS2.x/. As a preparation we define the function

's.n/ WD
Y

pjn

�
1 � p�s

�
: (1.2)

Then we prove the following

Theorem 1.2 Let qj, rj 2 Z for j D 1; : : : ; k with Q D Q
j
qj
Q
i¤j
jqirj � qjrij ¤ 0.

Then

#fn � x j qjnC rj 2 QS 8j D 1; : : : ; kg

� x

.log x/k=2

� .k=2C 1/2k

Fk.1/

1

'k
1.Q/

 
1CO

�� logQ
'k

1.Q/
C '�2k

1�ı0.Q/
� 1

log x

�!
;

for a constant ı0 > 0 and Fk.1/ given by the convergent Euler product

Y

p

�
1 � ��4. p/

p

�k=2 Y

p�3.4/

�
1C

kX

lD2

�k
l

�
p�l
��

1 � p�2
��k=2

:
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This furnishes an upper bound for numbers such that k arithmetic progressions
are not divisible by a prime congruent to 3 modulo 4.

To prove this theorem we use Selberg’s sieve which requires a calculation that is
reminiscent of the Selberg-Delange method. Having this bound available, we will
prove the following theorem.

Theorem 1.3 For x � 3 we have the upper bound

QS2.x/� x

log x
: (1.3)

We see that QS1.x/ and QS2.x/ have the same order of magnitude, thus with the
Cauchy-Schwarz inequality we get a good lower bound for QS0.x/. Furthermore we
have the inequality QS0.x/ � S0.x/, so we get a lower bound for S0.x/. This gives us
our final result.

Theorem 1.4 For x � 3 we have

x

log x
� S0.x/ � Co

x

log x

�
1CO

� 1

log x

��

with Co D �
4

Q
p�3.4/

.1 � p�2/�1.

In other words, the number of sums of two squares of sums of two squares is of
order of magnitude x

log x .

2 Useful Lemmas

First we will prove three lemmas which are useful to prove the theorems.

Lemma 2.1 For fixed n;m 2 N we get

�
p
xZ

0

tp
log tm

d

dt

� p
x � t2

p
log.x � t2/

n

�
dt D

p
2
m
�

4

xp
log x

nCm

�
1CO

� 1

log x

��
:

Proof Let X D
p
x

.log x/.mCnC2/=2 . We consider the two integrals over Œ0;X� and ŒX;
p
x�

separately, and denote them by Ie.x/ and Im.x/, respectively.
In the integrand of Ie.x/ the derivative is bounded by

d

dt

� p
x � t2

p
log.x � t2/

n

�
� Xp

x � X2
p

log.x � X2/
n �

Xp
x � X2

:
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Using this and the estimate tp
log t

m � X we obtain

Ie.x/�
XZ

0

X2

p
x � X2

dt� X3

p
x
� x

.log x/.mCnC2/
:

For the integrand of Im.x/ we use Taylor’s formula around t D px

1p
log tm

D
p

2
m

p
log xm

CO
� t �px
p
x
p

log x
mC2

�
:

For the integral over the error term we compute the derivative term and use trivial
bounds for the factors

p
xZ

X

.
p
x � t/t2p

x � t2
p

log.x � t2/
n jn � log.x � t2/�1jdt 1

p
x
p

log xmC2
� xp

log xmCnC2
:

In the remaining integral for the main term
�

2
log x

�m=2
of Taylor’s formula we

expand the lower bound to zero. With partial integration and the substitution y D
x � t2 we get an integral similar to the one above, whence

p
xZ

X

t
d

dt

� p
x � t2

p
log.x � t2/

n

�
dt D

xZ

0

p
y

2
p
x � y
p

log yn
dyCO

� xp
log xnC2

�
:

We need to compute the integral. Again we split it into two parts Œ0;Z� and ŒZ; x�
with Z D x

.log x/n=2C1 and repeat the estimates to get

xZ

0

p
y

2
p
x � y
p

log y
n dy D

1p
log x

n

Z x

0

p
y

2
p
x � y

dy
�
1CO

� 1

log x

��
:

The remaining integral
R x

0

p
yp

x�y dy can be computed exactly with the result x�
2

and our claim follows.

Lemma 2.2 The map

f.k; l;m; n/ 2 N
4 j kl D mng  ! f.s; t; u; v/ 2 N

4 j .s; u/ D 1g;

.k; l;m; n/ 7�!
� k

.k;m/
; .k;m/;

m

.k;m/
;
n.k;m/

k

�
;

.st; uv; tu; sv/ 7�!.s; t; u; v/

is a bijection.
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The proof is straightforward.

Lemma 2.3 Let k 2 N and s > 1=2. Then for x � 3 we have

X

n�x

1

n
'�k
s .n/� log x:

Proof The case s D 1 and k D 1 was proved by Landau (c.f. [2]). Note that n'1.n/

is Euler’s phi function.
The expression 1

's.n/
can be rewritten as

1

's.n/
D
Y

pjn

�
1 � 1

ps
��1 D

Y

pjn

�
1C 1

ps � 1

� D
X

djn

�2.d/

ds's.d/

where � is the Möbius function. We insert this in our summation to get

X

n�x

1

n
'�k
s .n/ D

X

n�x

1

n

�X

djn

�2.d/

ds's.d/

�k

D
X

dj�x
jD1;:::;k

�2.d1/ � � ��2.dk/

ds1's.d1/ � � � dsk's.dk/

1

lcmi.di/

X

m� x
lcmi.di/

1

m

�
X

dj�x
jD1;:::;k

ˇ̌
ˇ

�2.d1/ � � ��2.dk/

ds1's.d1/ � � � dsk's.dk/

ˇ̌
ˇ

1

lcmi.di/
� log x:

We complete the remaining sum into an infinite sum and see

1X

djD1

jD1;:::k

ˇ̌
ˇ

�2.d1/ � � ��2.dk/

ds1's.d1/ � � � dsk's.dk/

ˇ̌
ˇ

1

lcmi.di/
�
Y

p

�
1C 1

p. ps � 1/

�k
:

This product converges absolutely for s > 1=2.

3 Numbers in QS in Arithmetic Progressions

In this section we prove Theorem 1.2. For simplification we assume k � 2, since in
the case k D 1 we can apply the proof of (1.1) with a different constant. In addition,
if .qj; rj/ has a divisor which is congruent to 3 (mod 4) there are no solutions, hence
the inequality is true. If .qj; rj/ has a prime divisor p � 1 (mod 4), we can simply
divide it out without changing the condition qjnCrj 2 QS . Hence we assume without
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loss of generality that .qj; rj/ D 1. We use Selberg’s sieve, c.f. [1, Theorem 6.4,
p. 10]. Let

P D
Y

p�3.4/
k<p�x

p and

Q.t/ D .q1tC r1/ : : : .qktC rk/:

Then the cardinality of fn � x j .Q.n/;P/ D 1g is an upper bound for the quantity
we want to bound.

Consider the function �.d/ D #fa .mod d/ j Q.a/ � 0 .mod d/g. We see that
�. p/ � minfk; pg for p j P . In particular it is �. p/ D k if . p;Q/ D 1. By the
Chinese remainder theorem, � is multiplicative. Hence we get

X

n�x
djQ.n/

1 D x

d
�.d/CO.�k�1.d//;

where �k is the k-th iterated divisor function
P

a1���akDn 1.

We define the multiplicative function g by g. p/ D �. p/

p��. p/
for primes p j P ,

g. p/ D 0 for p − P and g. p	/ D 0 for all p and all 	 � 2. For a parameter z to be
chosen later let Z D P

d�z
g.d/. Therefore by Selberg’s sieve

X

n�x
.Q.n/;P/D1

1 � x

Z
CO

�X

d�z2

pjP

�3.d/�k�1.d/

�
: (3.1)

Hence we need to find a lower bound for Z to get the information we want.
Writing

Z0 D
X

d�z

�2.d/
Y

pjd
pjQ

p�3.4/

g. p/
Y

pjd
p−Q

p�3.4/

�k�1. p/

p
;

it is easy to see that Z � Z0.
For the sum Z0 we use Perron’s formula to find a lower bound. It will be useful

to use a refined version due to Liu and Ye [4]. Consider the Dirichlet series of Z0,
given by the Euler product

D.s/ W D
Y

pjQ
p�3.4/
p>k

�
1C g. p/

ps

��
1C �k�1. p/

psC1

��1 Y

p�3.4/

�
1C �k�1. p/

psC1

�

D D0.s/ � 
k=2.sC 1/L�k=2.sC 1; ��4/H.s/;
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where

D0.s/ D
Y

pjQ
p�3.4/
p>k

�
1C g. p/

ps
��

1C �k�1. p/

psC1

��1
:

The function H.s/ is holomorphic and nonzero in Re s > � 1
2
. The finite product

D0.s/ also is a holomorphic function and bounded by

'2k
1CRe s.Q/� ˇ̌

D0.s/
ˇ̌� 1

'2k
1CRe s.Q/

;

where 's is as in (1.2). Define F2.sC 1/ D 
.sC 1/L�1.sC 1; ��4/H2=k.s/s, then
F is holomorphic in the zero-free region of the L-function as in [6, II §5.4] and we
get D.s/ D Fk.sC 1/s�k=2D0.s/.

Let 2 � T < z be a parameter which we choose later. For the error terms in
Perron’s formula we need to bound the quantity

X

jz�nj� z
p

T

g.n/�
X

jz�nj� z
p

T

�2.n/�k�1.n/
Y

pjn
k<p;pjQ

1

p � k

Y

pjn
p−Q

1

p

� '�k
1 .Q/

X

jz�nj� z
p

T

�2.n/
�k�1.n/

n
� '�k

1 .Q/
.log.z//k�2

p
T

:

The last bound follows by [5, Theorem 2]. The second part of the error term is given
by

zbB.b/p
T
� zbp

T

X

n

jg.n/j
nb
�


k.1C 1
log z /p

T
� .log z/kp

T
;

where we choose b D 1
log z .

By applying Perron’s formula in the version of [4, Corollary 2.2] we get

Z0 D 1

2�i

1
log zCiTZ

1
log z �iT

Fk.sC 1/

sk=2
D0.s/zs

ds

s
CO

�
'�k

1 .Q/
.log.z//k�2

p
T

C .log z/kp
T

�
:

(3.2)

Now we integrate over the same contour as in Tenenbaum [6, II §5.4] but shifted to
zero, so that the order of the singularity at 0 is k

2
C 1.
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We split the contour into various pieces

�1; �7 D
h
c	 iT;� ı

2 log.2C T/
	 iT

i
;

�2; �6 D � ı

2 log.2C jtj/ C it; for t 2 Œ�T; 0�; t 2 Œ0;T�;

�4 D @Br.0/;

�3 D
h
� ı

2 log 2
;�r

i
;

�5 D
h
� r;� ı

2 log 2

i
;

with r D 1
log z and ı > 0 is chosen so small that

1

L.s; ��4/
� log jtj; 
.s/� log jtj;

for � > 1 � ı
2 log.2Cjtj/ (see [6, p. 262]).

For the parts �i with i D 1; 2; 6; 7 an upper bound for D0.s/ is given by the
function '�2k

1�ı0.Q/ with ı0 D ı
2 log 2

. We get for �1 and analogously for �7 the bound

Z

�1

Fk.sC 1/

sk=2
D0.s/zs

ds

s
� .logT/k

'2k
1�ı0.Q/

1
log zZ

� ı
2 log.2CT/

z� d�

T

� '�2k
1�ı0.Q/

.logT/k

T

1
log zZ

� ı
2 log.2CT/

z�d� � '�2k
1�ı0.Q/

.logT/k

T
:

(3.3)

For the parts �2 and �6 the bound is given by

Z

�2

Fk.sC 1/

sk=2
D0.s/zs

ds

s

� '�2k
1�ı0.Q/.logT/kz�ı=.2 log T/

TZ

0

ˇ̌ ı

2 logT
� it

ˇ̌�1
dt

� '�2k
1�ı0.Q/z�ı=.2 log T/ 2.logT/1Ck

ı
:

(3.4)
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We choose T D exp. ı
2

p
log z/ to optimize the error term composed from (3.2), (3.3)

and (3.4).
By writing  0 D �3�4�5 for the contribution not yet considered we get with the

bounds from (3.2), (3.3) and (3.4) the asymptotic formula

Z0 D 1

2�i

Z

 0

Fk.sC 1/

sk=2
D0.s/zs

ds

s
CO

��
'�2k

1�ı0.Q/C '�k
1 .Q/

� .log z/k

exp.ı
p

log z/

�
:

(3.5)

The remaining integral does not have an explicit solution, but by using the Taylor
expansion

Fk.sC 1/D0.s/ D Fk.1/D0.0/CO
�
'�k

1 .Q/ logQ � jsj
�

we obtain

ˇ̌
ˇ

1

2�i

Z

 0

Fk.sC 1/

sk=2
D0.s/zs

ds

s

ˇ̌
ˇ

� 'k
1.Q/Fk.1/

ˇ̌
ˇ

1

2�i

Z

 0

s�k=2zs
ds

s

ˇ̌
ˇCO

�
'k

1.Q/ logQ
ˇ̌
ˇ
Z

 0

jsj
sk=2

zs
ds

s

ˇ̌
ˇ
�
D Ih.z/C Ie.z/:

The product D0.0/ is bounded from below by 'k
1.Q/. Now we change Ih.z/ by

the substitution s D w
log z into the form of Theorem 5.2 from [6, II §5.2]. Let  be

the resulting contour from  0. Applying Corollary 2.1 of [6, II §5.2], for Hankel’s
contour we get

Ih.z/ � Fk.1/'k
1.Q/.log z/k=2

ˇ̌
ˇ

1

2�i

Z



eww�.k=2C1/dw
ˇ̌
ˇ

D Fk.1/'k
1.Q/.log z/k=2

� 1

� .k=2C 1/
CO.z�	/

�
;

for some 	 > 0.
To compute the integral Ie.z/ we use trivial bounds on the circle and on the lines

separately to get Ie � '�k
1 .Q/ logQ.log z/k=2�1. Combining the obtained results

we get a lower bound for Z0 and hence for Z. The error terms from Perron’s formula
and from the other pieces of the contour (3.5) combine with Ie.x/ to give

'�k
1 .Q/ logQ.log z/k=2�1 C �'�2k

1�ı0.Q/C '�k
1 .Q/

� .log z/k

exp.ı
p

log z/

� �
'�k

1 .Q/ logQC '�2k
1�ı0.Q/

�
.log z/k=2�1:

(3.6)
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The error terms in Eqs. (3.1) and (3.6) are optimized by choosing z D x1=2

.log x/d with

d D 1
2
. k

2
C 1C 3k/ and we get

#fn � x j qjnC rj 2 QS 8j D 1; : : : ; kg

� x

.log x/k=2

� .k=2C 1/2k=2

Fk.1/

1

'k
1.Q/

�
1CO

�� logQ
'k

1.Q/
C '�2k

1�ı0.Q/
� 1

log x

��
:

4 Proof of Theorem 1.1

In this section we find an asymptotic formula for S1.x/.
Let r0.n/ be the characteristic function on the numbers that can be written as a

sum of two squares. By rewriting the sum in terms of r0.n/ and (1.1) we get

S1.x/ D
X

a�p
x

r0.a/C

p
2
p
x � a2

p
log.x � a2/

�
1CO�.log.x � a2//�1

��
:

By applying partial summation and once more (1.1) we get the integrals

S1.x/ D� C2
p

2

p
xZ

0

tp
log t

d

dt

� p
x� t2p

log.x � t2/

�
dt

C
X

n�
p

x

r0.n/ lim
a!

p
x

p
x � a2

p
log.x � a2/

�
1C 1

log.x � a2/

�

CO
 p

xZ

0

tp
log t3

d

dt

� p
x � t2p

log.x � t2/

�
dtC

p
xZ

0

tp
log t

d

dt

� p
x� t2

p
log.x � t2/

3

�
dt

!

DWM.x/C 0C E.x/:

The boundary expression vanishes since lim
a!p

x

p
x�a2p

log.x�a2/

�
1C .log.x�a2//�1

� D 0.

With Lemma 2.1 at our disposal the computation of M.x/ and E.x/ is simple.
For M.x/ we have m D n D 1 and hence

M.x/ D C2
p

2

p
2�

4

x

log x
CO

� x

.log x/2

�
:
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The error term E.x/ has two integrals, where in the first one we have m D 3,
n D 1 and in the second one m D 1, n D 3. Since Lemma 2.1 is symmetric in n and
m it yields E.x/� x

.log x/2 .
Combining these two terms we conclude that

S1.x/ D C2 �

2

x

log x
CO

� x

.log x/2

�
: (4.1)

The asymptotic formula for QS1.x/ is almost the same as S1.x/, and for x � 3 we get

QS1.x/ D �

4

Y

p�3.4/

.1 � p�2/
x

log x
CO

� x

.log x/2

�
:

5 Proof of Theorem 1.3

The upper bound of QS2.x/ requires a bit more work. Opening the square we have

QS2.x/ D
X

a;b;c;d2 QS
a2Cb2Dc2Cd2�x

1:

We need to understand the summation condition a2 C b2 D c2 C d2. The diagonal
term is QS1.x/ which we have bound above. Hence we can assume that fa; bg ¤ fc; dg
and the condition a2Cb2 D c2Cd2 is equivalent to .aCd/.a�d/ D .cCb/.c�b/.
Using Lemma 2.2 this can be rewritten with s; t; u; v 2 N with .s; u/ D 1 as

aC d D st; a � d D uv; cC b D tu; c � b D sv:

Without loss of generality we can assume that a > b and c > d, then the condition
a; b; c; d 2 QS changes to stC uv, st � uv, utC sv, ut � sv 2 QS . It follows that

QS2.x/ �
X

st;uv;ut;sv�2
p

x
st˙uv;ut˙sv2 QS

1:

Now we want to apply Theorem 1.2. We fix u; t; v and think of s as our variable. In
accordance with Theorem 1.2, we define Q D tv.t � v/.t C v/.t2 C v2/.

In the case t D v our conditions imply that t.s˙ u/ > 0 and t.u˙ s/ > 0 which
is obviously impossible.

In the following let t ¤ v, so that Q ¤ 0. Isolating the sum over s we get

X

st;uv;ut;sv�2
p

x
st˙uv;ut˙sv2 QS

1 D
X

tu;uv�2
p
x

X

s�minf
ut
v ;

2
p

x
t ;

2
p

x
v g

st˙uv;ut˙sv2 QS

1:
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We use Theorem 1.2 to calculate the inner sum, and obtain

X

s�minf
ut
v ;

2
p

x
t ;

2
p

x
v g

st˙uv;ut˙sv2 QS

1� ut

v

1

.log ut
v

/2

1

'4
1.Q/

�
1C

� logQ
'4

1.Q/
C '�8

1�ı0.Q/
� 1

log ut
v

�
;

with ı0 defined in Sect. 3. For the sum over t; u; v we get the condition v < t, since
uv
t < ut

v
. Furthermore in the term '4

1.Q/ we split the product Q. To this end a
short look at the definition shows that 's.nm/ � 's.n/'s.m/ and with the Hölder
inequality it follows that

X

uv<ut
ut<2

p
x

ut

v

1

.log ut
v

/2

� 1

'1.t/

1

'1.v/

1

'1.t � v/

1

'1.tC v/

1

'1.t2 C v2/

�4

�
� X

uv<ut
ut<2

p
x

ut

v

1

.log ut
v

/2

1

'20
1 .v/

�4=5� X

u<2
p

x

n< 2x
u2

u

.log u/2

r.n/

'20
1 .n/

�1=5

;
(5.1)

where r.n/ counts the number of solutions a2 C b2 D n.
First we compute the sum over v and use .log ut

v
/�2 < .log u/�2. Using

Lemma 2.3 to compute the remaining sum over v we get

X

ut�2
p
x

X

v�t

ut

v

1

.log u/2

1

'4
1.v/

�
X

ut�2
p
x

u

.log u/2
t log t:

With partial integration we get for the sum over t log t the upper bound

X

t� 2
p

x
u

t log t� x

u2

�
log

2
p
x

u
� 1

�
:

There remains the sum over u for which once again we use partial summation. We
obtain

X

u�2
p
x

1

u.log u/2
log

2
p
x

u
� 1

log x
:

Hence the first factor of (5.1) is computed.
Using r.n/ D P

djn ��4.d/ the second factor of (5.1) can be transformed
similarly as in Lemma 2.3 and it follows that

X

n� 2x
u2

r.n/

'20
1 .n/

� x

u2
:
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And the sum over u can be computed as above to get

X

u<2
p

x
n<2 x

u2

u

.log u/2

r.n/

'20
1 .n/

� x

log x
:

Combining these two results we get

X

uv<ut
ut<2

p
x

ut

v

1

.log ut
v

/2

1

'4
1.Q/

� x

log x
:

For the sums over logQ
'4

1 .Q/
and '�8

1�ı0.Q/ the argument is the same and it follows in

the same way that

X

uv<ut<2
p
x

ut

v

1

.log ut
v

/3

logQ
'8

1.Q/
�

X

uv<ut<2
p
x

ut

v

1

.log ut
v

/3

log t

'8
1.Q/

� x

log x

and

X

uv<ut<2
p
x

ut

v

1

.log ut
v

/3
'�8

1�ı0.Q/'�4
1 .Q/� x

.log x/2
:

Combining these two results we get the final bound

QS2.x/� x

log x
:

6 Final Result

Theorem 1.4 is now a consequence of the Cauchy-Schwarz inequality. We have

QS1.x/ �
�X

n�x

QR.n/0
�1=2�X

n�x

QR.n/2
�1=2 D QS0.x/

1=2 QS2.x/1=2:

Thus

S0.x/ � QS0.x/ �
QS2
1.x/
QS2.x/

:

By replacing QS2.x/ with (1.3) and QS1.x/ with (4.1) we get the lower bound stated in
Theorem 1.4.

On the other hand we have S0.x/ � S1.x/, which yields the upper bound.



230 R.U. Jakob

Acknowledgements I am very grateful to Prof. Valentin Blomer for suggesting this topic to me
and his constant advice and encouragement.

References

1. H. Iwaniec, E. Kowalski, Analytic Number Theory. American Mathematical Society Colloquium
Publications, vol. 53 (American Mathematical Society, Providence, 2004)

2. E. Landau, Über die Zahlentheoretische Funktion '(n) und ihre Beziehung zum Goldbachschen
Satz. Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 1900, 177–186 (1900)

3. E. Landau, Über die Zerlegung der Zahlen in zwei Quadrate. Annali di Matematica 20(1), 1–28
(1913)

4. J. Liu, Y. Ye, Perron’s formula and the prime number theorem for automorphic L-functions. Pure
Appl. Math. Q. 3(2), 481–497 (2007)

5. P. Shiu, A Brun-Titschmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313,
161–170 (1980)

6. G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory. Cambridge Studies
in Advanced Mathematics (Cambridge University Press, Cambridge, 1995)


	Sums of Two Squares of Sums of Two Squares
	1 Introduction
	2 Useful Lemmas
	3 Numbers in S̃ in Arithmetic Progressions
	4 Proof of Theorem 1.1
	5 Proof of Theorem 1.3
	6 Final Result
	References


