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Abstract. In non-local patch-based (NLPB) labeling, a target voxel can
fuse its label from the manual labels of the atlas voxels in accordance
to the patch-based voxel similarities. Although state-of-the-art NLPB
method mainly focuses on labeling a single target image by many atlases,
we propose a novel semi-supervised strategy to address the realistic case
of only a few atlases yet many unlabeled targets. Specifically, we create
an �1-graph of voxels, such that each target voxel can fuse its label from
not only atlas voxels but also other target voxels. Meanwhile, each atlas
voxel can utilize the feedbacks from the graph to check whether its expert
labeling needs to be corrected. The �1-graph is built by applying (dual-
layer) sparsity learning to all target and atlas voxels represented by their
surrounding patches. By embedding the voxel labels to the graph, the
target voxels can jointly compute their labels. In the experiment, our
method with the capabilities of (1) joint labeling and (2) atlas label
correction has enhanced the accuracy of NLPB labeling significantly.

1 Introduction

Medical image labeling aims to parcellate each target image under consideration
into individual anatomical structures, thus enabling region-based quantitative
analyses within and across images. The technique has drawn intense attention
from the community of medical image computing in recent years due to its
importance to imaging-based clinical studies. Though manual labeling is still
regarded as one of the most promising ways to generate the “ground truth”,
automatic methods are emerging as competitive solutions rapidly. In particular,
automatic labeling has demonstrated its advantages of low cost and high effi-
ciency in processing a huge number of images. The scales of related studies can
thus become much larger, leading to more statistical powers of their findings.

Multi-atlas strategy has proven its effectiveness for automatic labeling of
medical images. The strategy can be divided into three steps in general. First, a
few atlases need to be manually delineated by human experts. Then, The expert
labeling information is transferred to the unlabeled target images [1–3]. Finally,
the contributions from the atlases are fused to label the target images [4–10].
In the simple majority voting (MV) method, for instance, all atlas and target
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images are spatially normalized. Given each target voxel, the probability of its
label can then be computed by counting the frequencies of the labels occurring
at the same locations of all registered atlases.

A key notion for multi-atlas image labeling is that visually similar voxels in
different images should have similar anatomical labels [6]. The non-local patch-
based (NLPB) method [5] is a typical implementation bearing this notion. Specif-
ically, all voxels can signify their visual appearances by their surrounding image
patches for the computation of voxel similarity. Each target voxel may incorpo-
rate contributions from the non-local atlas voxels within a certain neighborhood.
The contributions of the atlas voxels are adaptively fused regarding their visual
similarities to the target voxel. The NLPB method, as well as its many variants,
is widely applied to medical image labeling nowadays.

The NLPB method asks for as many atlases as possible, and handles the
target images in a sequential order. However, this many-to-one scheme may not
always function well in real clinical studies, as people tend to provide minimal yet
high-cost expert labeling of the atlases. For example, researchers often manually
label only a few healthy subjects as the atlases, and expect to further label
other normal/pathological images automatically. In this scenario, we argue that
a sophisticated few-to-many scheme can be better, since the introduction of more
target images may contribute to labeling each other [1].

Motived by the above, we propose a novel semi-supervised strategy for the
few-to-many NLPB labeling. Our method is capable of (1) jointly labeling all
target images and (2) compensating for possible incorrect expert labeling of the
atlases. Specifically, we create an �1-graph of voxels, such that each target voxel
can fuse its label from the atlas voxels and other target voxels. At the same time,
the atlas voxels can also utilize the feedbacks from the graph to check whether
their expert labeling needs to be adjusted. The �1-graph is built by applying
(dual-layer) sparsity learning to capture the similarities within all target and
atlas voxels under consideration. By embedding the labels of all voxels to the
�1-graph, the target voxels can compute their labels jointly.

2 Method

In NLPB labeling, each target voxel calculates the probability of its possible
label based on the expert labeling transferred from the non-local atlas voxels.
For convenience, we define a set of unlabeled target voxels (i.e., at the same
locations of different target images) as U and a set of labeled atlas voxels (i.e.,
with potential contributions to U) as L throughout this paper. Given i ∈ U and
j ∈ L, their appearances are signified by xi and xj , respectively. In particu-
lar, xi and xj are often the vectorized image patches surrounding corresponding
voxels (i.e., i and j). The length of xi or xj thus equals the size of the image
patch. We further denote the probabilities of the labels of the voxels i and j
as yi and yj , respectively. The length of yi or yj is the same with the num-
ber of possible labels including the background. The task of NLPB labeling is
then to estimate {yi, i ∈ U}, given {xi, i ∈ U}, {xj , j ∈ L}, and {ỹj , j ∈ L}.
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Note that we deliberately use ỹj , instead of yj , to indicate that the labels of the
atlas voxels are already known.

2.1 NLPB Labeling and Graph Embedding

Since similar voxels should have similar labels, we can compute the similarity
between voxels based on their surrounding image patches and gauge the con-
tributions from individual atlas voxels for determining the labels of the target
voxels. Typically, we calculate the similarity between xi and xj following

wij = exp
(

−‖xi − xj‖2
2σ2

)
, ∀i ∈ U ,∀j ∈ Ni ⊆ L. (1)

The label probability of the target voxel, namely yi, can then be fused by

yi =

∑
j∈Ni⊆L wijỹj∑

j∈Ni⊆L wij
, ∀i ∈ U . (2)

The term Ni often qualifies the contributions from the non-local atlas voxels
located within the neighborhood of each target voxel only. The NLPB model
combining (1) and (2) can be reduced to MV by increasing σ to infinity and
reducing the size of Ni to minimum. Meanwhile, we note that the labeling of
individual target voxels are independent of each other as in the above.

We further interpret the NLPB labeling through the theory of graph embed-
ding. For the target voxel i ∈ U specifically, it is contributed and connected by
the atlas voxel j ∈ Ni. The edge between them represents the contribution from
j to i, and is assigned with the similarity measure wij . Then, the task of NLPB
labeling is to embed the labels of all voxels in accordance to the graph that is
derived from the similarities of image patches, following

yi = arg min
yi

∑
j∈Ni⊆L

wij‖yi − ỹj‖2, ∀i ∈ U . (3)

It is easy to derive the solution that is exactly the same with (2). An illustra-
tion of the graph embedding process for NLPB labeling can be found in Fig. 1(a).

We aim to introduce the semi-supervised strategy for NLPB labeling. To
this end, we re-write (3) to (4) as a summary of the proposed method, which is
featured by:

1. All target voxels in U are jointly labeled. For a certain target voxel, the
contributions to determine its label may come from not only the atlas voxels
but also its connected target voxels in the graph (c.f. the first term in (4)).

2. The atlas voxels can deviate from their expert labeling adaptively (c.f. the
second term in (4)), in order to alleviate the influences of possibly incorrect
contributions from the atlases.

{yi}i∈U = arg min
{yi}i∈U

∑

m∈{U∪L}

∑

n∈{U∪L}
wmn‖ym − yn‖2 + α

∑

j∈L
‖yj − ỹj‖2. (4)

We will detail our solution to (4) in the form of graph embedding in the next.
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(a)

(b)

(c)

Target voxel
Primary atlas voxel
Secondary atlas voxel
Image patch

Fig. 1. NLPB labeling can be solved through graph embedding by: (a) the conventional
method (e.g., [5]); (b) using the �1-graph; (c) the proposed method. Note that only a
single target voxel is used for simplicity in this figure (Color figure online).

2.2 Laplacian-Based Embedding of �1-Graph

Graph Laplacian can help us solve (3) as well as (4). Specifically, we create an
augmented matrix Y =

[
YU , ỸL

]
, such that yi (i ∈ U) and ỹj (j ∈ L) are

ordered as individual column vectors in YU and ỸL, respectively. The adja-
cency matrix W, which is filled in by wij , records the similarity between each
pair of voxels. We then define the graph Laplacian of W as Δ = D − W. D is
the diagonal degree matrix, where each diagonal entry is the sum of the corre-
sponding row in W. If the similarity is calculated by (1), both W and Δ are
symmetric. Thus, the problem in (3) is equivalent to minimize Y′ΔY, as

YU = −ỸLΔUL
(
ΔUU

)−1
, Δ =

[
ΔUU ΔUL

ΔLU ΔLL

]
. (5)

Our proposed method utilizes the �1-norm-based sparsity learning to estimate
voxel similarity and thus build an �1-graph of voxels. An illustration of the �1-
graph is available in Fig. 1(b). In the �1-graph, each target voxel only needs to
consider the contributions from a limited number of most similar atlas/target
voxels. By discarding many other redundant and confusing contributions, the
labeling results can be more accurate [10]. Meanwhile, since the number of edges
of the �1-graph is reduced due to sparsity constraint, the computation burden
(i.e., regarding (5)) can be saved significantly.

In order to build the �1-graph, we first create a dictionary matrix X =
{· · · ,xm, · · · }. Without loss of generality, the index m denotes all target and
non-local atlas voxels under consideration. Then, the sparse representation of
xm, regarding all other column vectors in X, can be acquired through
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wm = arg min
wm

‖xm − Xwm‖2 + β‖wm‖�1 ,

s.t. wmn ≥ 0, wmm = 0.
(6)

The n-th entry in the coefficient vector wm, namely wmn, is often perceived
as the similarity from xn to xm. Due to the �1-norm constraint controlled by β,
there are only a few edges associated with each target voxel in the �1-graph.

It is worth noting that the embedding solution in (5) cannot be directly
applied to the �1-graph. The reason is that the similarity measure derived from
(6) is directional, leading to: (1) directed edges in the �1-graph (c.f. blue arrows
in Fig. 1(b)); (2) asymmetry of W and Δ. To this end, we define a diagonal
matrix D∗, in addition to D, as each diagonal entry in D∗ is the sum of the
corresponding column of W. Then, Δ∗ = D∗ − W′ is defined to be the column
graph Laplacian. It is shown by [11] that the optimization problem in (3) can
be converted to minimize Y′CY, as the matrix C = Δ+Δ∗ is symmetric. The
labels of all target voxels can thus be jointly computed following

YU = −ỸLCUL
(
CUU

)−1
, C =

[
CUU CUL

CLU CLL

]
. (7)

2.3 Dual-Layer Sparsity Learning

It is possible that certain atlas labeling is incorrect. Therefore, we allow the
atlas voxels to deviate from their original labels in the proposed method (c.f.
the second term in (4)). That is, the �1-graph not only transfers the labeling
information from the atlases to the targets, but also provides feedbacks to indi-
vidual atlases at the same time. Since the edges in the �1-graph are directed, we
need to compute the inward edges for the atlas voxels. Specifically, we use the
dual-layer sparsity learning approach as follows.

1. For each target voxel, we apply the first-layer sparsity learning (c.f. (6)). The
target voxel is thus connected from the primary atlas voxels (i.e., in the set
P ⊆ L) and other target voxels (i.e., in U).

2. For each primary atlas voxel, the second-layer sparsity learning is applied.
More secondary atlas voxels (i.e., in the set S ⊆ L\P) are incorporated into
the graph. Note that the secondary atlas voxels are directly connected to the
primary atlas voxels only, rather than the target voxels.

The dual-layer sparsity learning is illustrated by Fig. 1(c), where the edges
of the first layer and the second layer are colored in blue and red, respectively.
Other atlas voxels (in L\{P ∪S}) are inactive and thus excluded from the graph.
In general, the �1-graph allows us to (1) compute the labels of the target voxels
jointly and (2) adjust the expert labeling of the primary atlas voxels at the same
time. Specifically, the objective function in (4) can be converted to minimize

[
YU YP ỸS

]′
⎡
⎣CUU CUP CUS

CPU CPP CPS

CSU CSP CSS

⎤
⎦ [

YU YP ỸS
]
+ α‖YP − ỸP ‖2. (8)



Dual-Layer �1-Graph Embedding for Semi-supervised Image Labeling 51

The closed-form solution to the above is

YU = −
(
αỸP − ỸSCSP

)
· (

CPP + αI
)−1 · CPU

·
(
CUU − CUP

(
CPP + αI

)−1
CPU

)−1 (9)

Note that (9) is equivalent to (5) and (7) when α is set to infinity. Therefore,
our method can be regarded as a generalized form of the NLPB labeling.

2.4 Summary

We briefly summarize the proposed method as follows:

1. For a certain location, we extract all image patches regarding U and L;
2. We apply sparsity learning to U and acquire the first layer of the �1-graph;
3. Sparsity learning is further applied to reveal the second layer of the graph;
4. The labels of all target voxels are jointly embedded following (9).

3 Experimental Results

In order to demonstrate the capability of the proposed method, we apply it to
hippocampus labeling of brain MR images. In particular, we randomly select 10
atlas and 60 target images from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. All atlas images are from healthy subjects. The target images
can be divided into three equally-sized sub-groups, corresponding to the subjects
of health control (HC), mild cognitive impairment (MCI), and the Alzhermer’s
disease (AD), respectively. It is worth noting that MCI is typically regarded as a
transitional stage between HC and AD. Meanwhile, abnormal atrophy of the hip-
pocampus is closely related to AD, making the morphology of the hippocampus
an important bio-marker to AD diagnosis and treatment [12].

After standard pre-processing (i.e., bias correction, skull-stripping, histogram
matching, and affine registration), we utilize the 10 HC atlases to label the
60 targets by the proposed method (designated as “Proposed III” in Table 1)
and four alternatives. In addition to the well-known “MV” and “NLPB” [5]
methods, “Sparse-NLPB” computes the similarities between the target and the
non-local atlas voxels via sparsity learning. “Joint-NLPB” [10], a latest NLPB
variant, allows each atlas voxel to estimate the confidence of its contribution
by interacting with other atlas voxels through a generative probability model.
Note that all four existing methods label individual target voxels sequentially,
in contrary to the joint labeling style in our method.

We evaluate the Dice ratio, a widely accepted metric, as the indicator of the
labeling quality. The Dice ratio measures the overlapping between the multi-
atlas labeling result and the expert labeling in the ADNI database, as higher
Dice ratio often implies more accurate labeling. The Dice ratios of individual
methods are compared in Table 1. The scores are averaged over the left/right
hippocampus across target images already. For fair comparison, all voxels are
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signified by 5×5×5 image patches. The size of the non-local search neighborhood
is 9 × 9 × 9. We set β to 0.1 for the fist-layer sparsity learning of our method
and for Sparse/Joint-NLPB as recommended by [10]. In the second layer of our
method, however, we increase β to 0.2 for selecting fewer secondary atlas voxels
and also less computation. The parameter α is arbitrarily set to 5.

Table 1. The Dice ratios of hippocampus labeling through different methods.

Method HC MCI AD Overall

MV 0.591 ± 0.078 0.589 ± 0.089 0.566 ± 0.111 0.582 ± 0.093

NLPB 0.682 ± 0.042 0.675 ± 0.040 0.660 ± 0.061 0.672 ± 0.048

Sparse-NLPB 0.729 ± 0.035 0.704 ± 0.039 0.684 ± 0.048 0.706 ± 0.041

Joint-NLPB 0.755 ± 0.027 0.733 ± 0.038 0.719 ± 0.046 0.736 ± 0.037

Proposed I 0.742 ± 0.027 0.720 ± 0.044 0.691 ± 0.050 0.718 ± 0.040

Proposed II 0.741 ± 0.028 0.728 ± 0.041 0.716 ± 0.045 0.728 ± 0.038

Proposed III 0.756 ± 0.025 0.750 ± 0.040 0.744 ± 0.041 0.750 ± 0.035

As in Tabel 1, our method (Proposed III) yields significantly higher Dice ratio
in overall, compared to the four existing methods. We note that the performances
of our method and Joint-NLPB are close for the target images of HC. However,
regarding MCI and AD where hippocampus labeling is more difficult in general,
our method owns a large margin ahead. We attribute this improvement to the
introduction of the semi-supervised strategy, which enables (1) joint labeling of
all target voxels and (2) adaptive label correction for primary atlas voxels.

We design two degraded cases of our method for further evaluation. In “Pro-
posed I”, each HC/MCI/AD sub-group of 20 target images is jointly labeled.
In “Proposed II”, all three sub-groups of 60 target images are jointly labeled.
The parameter β is set to infinity for both Proposed I and II, such that the pri-
mary atlas voxels follow their expert labeling strictly. Comparing Proposed I to
(Sparse-)NLPB, the joint labeling strategy has shown its advantages in all three
sub-groups. Comparing Proposed II to I, we conclude that the introduction of
more target images leads to better labeling quality, especially for the MCI/AD
target images whose appearances are less similar to the atlases. Comparing Pro-
posed III to II, we conclude that the primary atlas voxels can effectively correct
their original labels and thus improve their contributions to the target voxels,
once the secondary atlas voxels are incorporated.

4 Discussion

We have proposed a semi-supervised patch-based labeling method, and applied
it to hippocampus labeling for brain MR images. Specially, we build a dual-layer
�1-graph of voxles, and jointly label all target voxels through graph embedding.
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The dual-layer graph topology is “deeper” than the flat design of most state-of-
the-art methods, where atlas voxels are directly connected to the target voxels
only. In our method, however, the primary atlas voxels can interact with the
graph to adjust its original expert labeling. In this way, the contributions of the
atlas voxels can become much more accurate.

Our method well fits the clinical studies in which a few atlas images are
expected to label many targets. To this end, we have shown that it is necessary
to incorporate all target images for the joint labeling. It is also worth noting
that the accuracy of multi-atlas labeling is strongly dependent on the number
and the composition of the atlases. To this end, we will investigate a possible
way to select the minimal number of optimal atlases in future. We will also work
on to improve the speed performance of our method.
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