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Abstract. In this paper, we propose a multi-atlas-based framework for labeling
hippocampus regions in the MR images. Our work aims at extending the ran-
dom forests techniques for better performance, which contains two novel con-
tributions: First, we design a novel strategy for training forests, to ensure that
each forest is specialized in labeling the certain sub-region of the hippocampus
in the images. In the testing stage, a novel approach is also presented for
automatically finding the forests relevant to the corresponding sub-regions of the
test image. Second, we present a novel localized registration strategy, which
further reduces the shape variations of the hippocampus region in each atlas.
This can provide better support for the proposed sub-region random forest
approach. We validate the proposed framework on the ADNI dataset, in which
atlases from NC, MCI and AD subjects are randomly selected for the experi-
ments. The estimations demonstrated the validity of the proposed framework,
showing that it yields better performances than the conventional random forests
techniques.

1 Introduction

Accurate hippocampus labeling in the Magnetic Resonance (MR) brain images is a task
of pivotal importance to the researches of many neural diseases including the Alz-
heimer’s disease, schizophrenia and epilepsy [1]. The approaches are highly demanded,
since it is infeasible to manually label a large set of 3D MR images. The main challenge
in the segmentation of the hippocampus is that its grey intensity has close similarity to
the surrounding region-of-interests (ROIs), such as amygdala, caudate nucleus, and
thalamus [2]. Recent developments in this field concentrate on utilizing the information
of manually labeled atlas images for the estimation of the test image. Currently a
popular way among those techniques is the multi-atlas label propagation (MALP),
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because of its robustness and simplicity for brain image labeling. Basically, there are
two steps in the MALP approaches: (1) implement image registration to spatially align
all images, and (2) use manual labels of the atlases to label the test image following
certain label fusion strategies. There are many efforts aiming at improving the two
steps. The detailed literature can be found in [3–6].

Random forest [7, 8] has been proven as a robust and fast multi-class classifier,
which has been widely applied in many applications. A major contribution of the
random forest is its bagging strategy, which adds randomness when training the
classifiers. Zikic et al. [9] developed an “atlas forest” approach, which encodes each
individual atlas and its corresponding label map via random forest. In the testing stage,
atlas forests produce individual probabilistic labeling maps for the test image, the
average of which is then regarded as the final labeling. Lombaert et al. [10] introduced
Laplacian forests, in which the training images are re-organized and embedded into a
low-dimensional manifold. Images having close similarities are grouped together. In
the training stage, each tree is learned using only specific group of similar atlases
following a guided bagging approach. The strategy concerning tree selection for the
given test image is also proposed. The method is demonstrated experimentally to yield
higher training efficiency and segmentation accuracy.

In this paper, we focus on the high variation across individual sub-regions in the
ROI, and present a novel hierarchical learning framework to further improve the
labeling performance. In the training stage, we develop a set of random forests, in
which each forest is trained for a specific sub-region of the ROI. The random forests are
placed into a hierarchical structure, which is derived from the registration-based
auto-context technique. Specifically, for a higher level in the hierarchy, the random
forests are trained with the context features that are extracted from the outputs of the
lower level. Moreover, the lower-level outputs also guide all atlas and test images to be
better registered for the higher level. In the testing stage, we select optimal forests for
individual sub-regions of the test image. Therefore, the labeling results can be grad-
ually improved by the hierarchy of random forests.

2 Method

In this section, we present the detailed description of the hierarchical learning frame-
work, which consists of the training and the testing stages. The random forests
implemented in this work are trained following a novel sub-region labeling strategy,
while as in the testing stage a corresponding forest selection approach is applied for
predicting the labeling information of the test image. In Sect. 2.1 we elaborate the
strategy of sub-region random forests along with the forest selection method. Following
the registration-based auto-context strategy, the method of sub-region random forest is
extended as a hierarchical structure, in which each level contains a set of forests for
image labeling. In Sect. 2.2, we describe the registration-based auto-context model,
while as in Sect. 2.3 we present the methodologies of the proposed framework in the
training and testing stages, respectively.
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2.1 Sub-region Random Forest

The main idea of the sub-region random forest for labeling, as presented in Fig. 1, is
that individual sub-regions should be trained and tested with the most suitable clas-
sifiers, as the variation across individual sub-regions can be high. In the training stage,
we commence by randomly extracting numerous patches from the training images.
Note that there is a higher priority of choosing patches in the boundary parts of the
hippocampus. Suppose there are m patches selected, the set of 3D cubic patches is
denoted as P ¼ fp1; p2; . . .; pmg.

Next, we cluster the selected patches based on their intensity similarities, which are
measured by the mean of squared intensity differences between each pair of patches,
given as: S pi; pj

� � ¼ Pr
x¼1

Pr
y¼1

Pr
z¼1½pi x; yð Þ � pjðx; yÞ�2=r3, where r is the patch

length. The similarity measures are then utilized by the affinity propagation method
[11] for clustering. When similar patches are grouped together, each cluster has its own
forest to be trained, which can be used for predicting the labeling result of the corre-
sponding sub-regions in test images.

In the testing stage, we follow the forest selection strategy to find the appropriate
classifiers for labeling each voxel in the test image. It is implemented by utilizing a
labeling prior (i.e., from tentative labeling output) as the reference. The estimation of
the prior is presented in Sect. 2.3. Denoting the test image as I 0, and the prior as D

0
, the

i-th trained forest in the k-th level as Fk
i with their corresponding estimate Dk

i , we also

Fig. 1. The process of training and testing sub-region random forests. Fi is the trained forest
specialized for labeling the corresponding sub-region in the test image.
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obtain the overall mask informationMi in each cluster, which is the union of all regions
that the patches in that cluster have ever covered. Denote the set of patches in the i-th
cluster as Pi ¼ fpi1; pi2; . . .; pimi

g, we have: Mi ¼
Smi

j¼1 RðpijÞ, where RðpijÞ is the region
for pij. The novel metric for the testing image is given as follows:

W I
0
;Fk

i

� �
¼ DSC D

0
;Dk

i ;Mi

� �
; ð1Þ

where W I
0
;Fk

i

� �
is the score for the forest selection. DSC D

0
;Dk

i ;Mi
� �

is the function

for measuring the Dice overlapping ratio between the two labeling estimates D
0
and Dk

i ,
as it only counts the voxels within the mask regionMi. When the forests with the top W
scores are selected, their corresponding estimates Dk

i are combined together for pro-
ducing the labeling result of the test image.

2.2 Registration-Based Auto-Context

Our aim in proposing the registration-based auto-context method is to further improve
the robustness and performance of the sub-region random forest. To fulfill this goal, we
consider the auto-context model in [13], which enables the higher-level forests to encode
more comprehensive information provided by the lower-level classifiers. Following the
auto-context model, the sub-region random forest approach is extended to be a hierar-
chical structure framework. In each level of the hierarchy, the forests are trained using
not only the image appearance features from the training images, but also the context
features computed from the estimates of the lower-level forests. The method is proved to
be effective, and is considered suitable to be incorporated in this framework.

Besides, we extend the auto-context model with the aid of deformable registration
approach, in order to solve the issue of spatial alignment in individual images, as men-
tioned in Sect. 1. Due to the variation of hippocampus across individual training/test
images, the robustness of the sub-region random forest can be strongly challenged. As
only the patches within a certain sub-region are provided for training the classifier, the
forest would certainly give poor labeling predictions when it was applied to other
mis-aligned sub-regions in test images. Therefore, the labeling performances can be
greatly reduced.

In this paper, the tool of the diffeomorphic Demons [12] is applied to reduce the
shape variations of the ROIs in the training/test images1. The conventional process of
deformable registration is to align the intensity images into the template space that
could be arbitrarily chosen, and then apply the computed warps to their corresponding
label maps. However, the global registration process is ineffective in experiments, as
the hippocampus is too small compared with the whole brain MR images.

1 Settings for the diffeomorphic demons are: 15, 10 and 5 iterations in low, middle and high resolution.
The smoothing kernel size is set as 2.0.
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Therefore, we decide to implement a localized deformable registration in this work,
which only focuses on aligning the ROI of hippocampus instead. This novel strategy is
incorporated with the auto-context model, which is regarded as the registration-based
auto-context method in this paper. The detailed methodology is given as follows:

(1) In the bottom level, we commence by initializing the context feature by averaging
the initially-aligned label maps of all training atlases. It is shown in the experi-
mental section that this strategy is proved valid when labeling the hippocampus
region in the brain MR images. Since the shape and location variations of different
atlases are stable, the average information of all label maps can be basically
considered as the initial context feature for training the classifiers. The deformable
registration in this level is also implemented following the traditional way, by
registering whole intensity images directly.

(2) In the higher level, we first perform the localized registration to the training and
test images. Since the labeling information for the test image is unknown, we use
the estimated label maps in the lower level instead, to align with the label maps in
the training images. In order to avoid the potential registration error, the label
maps are smoothed by a Gaussian filter with σ = 1 mm. We then register the
smoothed label maps to the template space, and apply the obtained warp infor-
mation to the intensity images.

(3) Since the quality of registration is gradually improved when approaching the
topmost of the hierarchy, the training and testing for individual levels of the
hierarchy of random forests actually happen in different image spaces. Therefore,
the estimated labeling is first warped back to the original image space using the
inverted warp information in the lower level, and then registered to the template
space in the higher level. Therefore, the tentative labeling results will get updated
automatically through the increased levels of the hierarchy, enabling the
higher-level forests to generate more robust and accurate labeling results.

2.3 Hierarchical Learning Framework

The methodologies in the training and testing stages for the proposed hierarchical
learning framework are presented as follows:

Training Stage

(1) In the bottom level, we initialize the context feature and perform deformable
registration by following the strategy of the registration-based auto-context
method. Also note that since the localized registration strategy is not implemented
in the bottom level as described in Sect. 2.2, the sub-region random forest is
therefore not eligible to be applied in this level. Hence we instead apply the
conventional random forest approach to the training images, where the bagging
procedure is applied by the uniform sampling of the whole region in all training
images.
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(2) In the higher level, the estimates in the lower level are utilized for the deformable
registration. Their corresponding probability label estimates for each hippocam-
pus region are aligned to the template space using the computed warp information,
and then considered as the context feature for training the forests in the higher
level.

(3) Process of patch extraction and clustering is implemented, following the strategies
introduced in Sect. 2.1. The procedure of the forest clustering and re-training is
therefore implemented iteratively for completing the hierarchical structure of the
forests in the end.

Testing Stage

(1) Given a new test image, we also commence by obtaining the context feature and
implementing the registration following the same strategy as the training stage. In
the bottom level, the forest selection strategy is not implemented, since the
sub-region corresponds to the whole ROI and only one forest is available in this
level, and the selection strategy requires prior labeling information.

(2) In the second and higher levels, the labeling estimate in the lower level is con-
sidered as the prior for the selection strategy, and also the source of the context
features in the hierarchy. Using the introduced fusion strategy, iteratively the
labeling results will be further refined, which is ended when reaching the top-most
level in the hierarchy.

3 Experimental Results

In this section, we evaluate the proposed framework for labeling hippocampus in MR
brain images. The dataset employed is the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset2 [14], which provides a large number of adult brain MR images
acquired from 1.5T MR scanners, along with the annotated left and right hippocampi.

We have randomly selected 101 ADNI images from the Normal Control (NC),
Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) subjects, in which
one atlas containing the closest label map similarity in overall with the rest is con-
sidered as the template for the registration process. The template itself is excluded from
subsequent training and testing. We used the standard preprocessing procedures fol-
lowing the works introduced in [6] to ensure the validity of the estimation. Besides, the
ITK-based histogram matching program was also applied to all the ADNI images for
the experiments, which were then rescaled to the intensity range [0 255]. Next, we
implemented the FLIRT program in the FSL library [15] for affine registration to bring
all images into the template space.

We implemented 10-fold cross-validation experiments for demonstrating the
validity of the proposed methods. State succinctly, the 100 images are equally divided
into 10 folds. In each fold, we select one fold for testing, and the rest for training.

2 http://adni.loni.ucla.edu.

24 L. Zhang et al.

http://adni.loni.ucla.edu


It is also noted that the same settings and parameters were used in all the experi-
ments. Their values are decided by considering both aspects of computation costs and
estimation performance. The maximum depth of each tree is 20, and each leaf node has
a minimum of 8 samples. Each node chooses Haar-like features from a pool at the size
of 1000. The Haar-like features are calculated from the 3D patches with the maximal
size of 10 mm × 10 mm × 10 mm.

In this paper we construct a two-level hierarchical structure in the training stage for
efficient computation. In the bottom level, one single random forest is trained using the
conventional approach, which has 720 trees since the number of training atlases is
large. In the second level, 20 patches with size of 15 × 15 × 15 are extracted in each
training image. The number of forests are decided by the clustering process using
affinity propagation based on the default settings, and each forest has 15 trees.

Our goal in this section is to demonstrate the improvements of the performance
when the novel strategies are applied in the second level. Table 1 shows the com-
parison results between the labeling estimates and the groundtruth using the Dice ratio.
Figure 2 presents the box plots that visualize the performances of the two levels. The
left and the right panels show the information of the left and the right hippocampi,
respectively. It can be observed that in both hippocampi, the DSC scores of the second

Table 1. Quantitative comparison of performances in different configurations when labeling the
left and the right hippocampi.

DSC Bottom level Second level

Left Hippo. 81.82 % ± 0.89 % 82.31 % ± 0.90 %
Right Hippo. 82.08 % ± 0.60 % 82.33 % ± 0.60 %
Overall 81.95 % ± 0.66 % 82.32 % ± 0.67 %

Fig. 2. The box plot for the labeling accuracies of different configurations on the left (left panel)
and the right (right panel) hippocampi.
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level are better than that in the bottom level, which represent the performances of the
conventional random forest technique. It is also worth noting that the p-value in the
two-tailed paired t-test between any two levels for both left and right hippocampi is
lower than 0.05, indicating that the proposed strategies can significantly improve the
labeling accuracy when applied to MR brain images. The average runtime of the
labeling process is around 10 min using a standard computer (Intel Core i7-4770 K
3.50 GHz, 16 GB RAM), which is affordable in the applications of medical image
analysis. It is also noted that in the future work, more levels will be developed in the
current hierarchical structure of random forests.

4 Conclusion

In this paper, we present a novel framework using the random forests and several other
techniques. While the conventional methods train the forests using whole region
information, each forest obtained following the proposed training strategy is focused on
only the specific sub-regions of the ROI. We also provide the novel registration-based
auto-context method to aid our work, and also a forest selection strategy for choosing
the most suitable classifiers. In the experimental section, we apply the proposed
framework to the ADNI dataset, in which we observe some significant improvements
in the labeling performance. In the future work, we will seek possibilities of applying
the proposed frameworks to labeling of other ROIs in the brain images.
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