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Abstract. The objective of this paper is to devise an efficient and accu-
rate patch-based method for image segmentation. The method presented
in this paper builds on the work of Wu et al. [14] with the introduction of
a compact multi-scale feature representation and heuristics to speed up
the process. A smaller patch representation along with hierarchical prun-
ing allowed the inclusion of more prior knowledge, resulting in a more
accurate segmentation. We also propose an intuitive way of optimizing
the search strategy to find similar voxel, making the method compu-
tationally efficient. An additional approach at improving the speed was
explored with the integration of our method with Optimised PatchMatch
[11]. The proposed method was validated using the 100 hippocampus
images with ground truth segmentation from ADNI-1 (mean DSC =
0.892) and the MICCAI SATA segmentation challenge dataset (mean
DSC = 0.8587).

1 Introduction

Proliferation of atlas images along with the growing availability of computational
resources has made multi-atlas based segmentation techniques popular. These
techniques primarily revolve around using multiple atlas images to introduce
expert knowledge into the segmentation process. These atlases are registered
to the target images space and the information is propagated to determine the
label of the target image. Heckemann et al. [1] pioneered such techniques using
30 normal brain MR images providing accurate segmentation. Aljabar et al.
[2] proposed improvements by selecting only a subset of the complete atlas set
that are more anatomically similar to the target image. In contrast to global
selection of atlases, various patch-based techniques [6,7] that look at patch wise
similarity have gained popularity. A local weight is computed for each of the local
patch extracted from the atlas. These computed weights are based on intensity
similarity with the target patch and are then used in the label fusion process to
produce the final segmentation. Sparse representation, with its success in face
recognition [4], have been extensively used [8,9,14] to estimate these weights.

However, calculating these weights can be very costly especially when larger
3D patches are required to capture the appropriate level of information. Pre-
selections strategies for discarding atlases or patches [5,6] have been employed
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to alleviate this problem. Even though these strategies ease the process of calcu-
lating weights, they discard information, which could lead to sub-optimal results
[11]. The use of large patches introduces another problem in segmenting small
structures, as pointed out by [14]. Patch similarity of large anatomical structures
could misguide the labeling of small structures around it.

Another common technique used in patch-based methods is to define a search
window, around the target voxel, where similar patches are searched. They are
used to increase the accuracy of the method as similar patches would lie in
the vicinity of the target voxel in a well registered atlas. This also provides a
computational boost as the search is limited to a small window rather than the
whole image. However, these windows are constant and do not evolve depending
on the knowledge provided by the atlases or the anatomy of the structure under
consideration. This results in identical effort being exerted in calculating weights
for each patch. But in reality the effort required is not uniform and can be
approximated using prior information available. For example effort required to
label a patch near the centre of a solid sphere should be much less, as a majority
of atlas labels would belong to sphere class, than a patch which is closer to its
surface. Similarly a large search window might adversely affect the segmentation
result of a small well registered structure, by bringing in more outliers.

In this paper, we use a compact multi-scale feature to avoid the use of pre-
selection strategies while still being discriminative. We also propose a search
criterion that evolves according to the confidence level of a region provided by
the atlas, to lower the execution time. We have also integrated our method with
Optimised PatchMatch as an additional approach to make our method com-
putationally efficient. Our method is validated against the ADNI and MICCAI
SATA data set. A comprehensive validation is performed to show the efficacy of
the proposed enhancements.

2 Method

The main objective of any multi-atlas segmentation approach is to estimate
a label map Lt for a given target image It. This is achieved by using a set
of N atlas of images I = {Is|s = 1, 2 · · · IN} and their corresponding label
map L = {Ls|s = 1, 2 · · · N} which is registered to the target image. For each
voxel x (x ∈ It) a set of Q voxels are selected from the atlas around a search
neighbourhood n(x). A feature vector vb (b = 1, 2 · · · Q) is created for each of
these voxels and assembled column wise into a matrix V . A set of weights wb

is estimated to reconstruct the target voxel’s feature vector A using V . The
label for the target voxel Lt(x), out of M possible labels, can be calculated by
arg max
m=1···M

∑Q
b=1(wb.δ(lb, Lm)) where lb is the label corresponding to each feature

vector vb. This gives a general overview of the method used for segmentation.
Details of each component after the registration step has been explained below.
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2.1 Multi-scale Feature

Patch-based techniques traditionally use only a single scale patch, which puts
a hard limit on the available information. These methods [6,7,9] generally use
a larger patch to compensate for the lack of high level information which leads
to an increase in computation time. Multi-scale approaches have been proposed
[14] to increase the prior information, but, somewhat surprisingly, they dedicate
a majority of the voxels to represent the coarser scale making them bulky. We
argue that there is no compelling benefit in assigning a large number of voxels
to represent these coarser scale. It is especially true when these scale are not
crucial in determining the final label of the target voxel and a downsampled
version could prove to be equally effective. To overcome this problem we use a
simple multi-scale patch consisting of δ patches (one per scale) of size ε × ε × ε
at different scales. It can also be naturally extended to include variable patch
size for each scale. For a typical feature vector (δ = ε = 3) the size of the vector
would be 81, which is an order of magnitude smaller than the vectors used in
related work [14].

The effectiveness of the proposed feature vector is illustrated by a simple
example shown in Fig. 1, which shows the response of different feature vectors
of the emphasized voxel over the whole image. We can observe that multi-scale
patch response (c) and (d) is more precise and localised than that of single scale
patch response (a) and (b). It is also evident that the response of our patch
(d) is much more targeted than that of (c). This may be attributed to the fact
that the patch used in (c) uses a Gaussian filter at the original scale without
sub-sampling thus would require a much larger patch to encode the same level
of information as compared to ours (d).

Fig. 1. Response of the feature using sum of squared differences. (a) Small scale patch
(b) Large scale patch (c) Multi-scale patch of Wu et al. [14] (d) Our multi-scale patch

Patch-based techniques by design are computationally very expensive there-
fore most of the proposed methods use pre-selection techniques to limit the
atlas/patches to make it computationally efficient. As pointed out by [11], this
reduces the problem scope, which might lead to less desirable results. The size
of the feature vector also contributes to the computational burden, thus using
a light weight feature vector allows to include rich information while staying
computationally efficient.
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2.2 Sparse Label Fusion

Sparse representation is the method of representing an input data using a linear
combination of a small part of an over-complete dictionary leading to a compact
representation. Such representation has been proven very successful in classi-
fication applications such as face recognition [4]. The use of these techniques,
for multi-atlas segmentation, was first proposed by [8,9]. Here the target feature
vector vt can be represented as a combination of the selected vectors vb weighted
by factor wb such that vt =

∑Q
b=1(wb.vb). The whole system can be represented

as A = V ×W where W is the matrix formed by concatenating the weights. This
being an under-determined system does not have a unique solution. Therefore,
a sparse constrain min‖W‖1 is added, which converts the problem into a �1
minimization problem where a majority of the weights wb are zero. The weights
can be obtained using Eq. 1. The weights obtained are used to estimate the tar-
get label from atlas labels providing the final segmentation. This optimization
problem has been solved using the SLEP package [3].

Ŵ = arg min
1
2
‖A − V × W‖2 + λ‖W‖1. (1)

2.3 Hierarchical Pruning

During the process of finding the sparse coefficients to determine the label of
the target, a hierarchical pruning step proposed by Wu et al. [14] has been used.
This process has been found to improve accuracy and reduce computational
burden. The basic idea of hierarchical pruning is to break the complex task of
obtaining the sparse coefficients into several stages. Initially, information from
all the scales is used to determine a set of candidate patches. Information from
coarser scale and weak patches is removed iteratively until only patches from the
finest scale remains. This ensures that final set of patches are similar to target
patch at all scales and that no scale, particularly the coarse ones, dominates.
This technique, with reduced iterations at earlier stage, can also act as a holistic
and robust pre-selection criteria which is in tune with the overall optimization
strategy.

3 Speed Improvements

In addition to computing the labels of each voxel in parallel and caching the
computed feature vector v we will discuss two strategies used to increase the
speed of the overall process.

3.1 Search Optimization

Patch-based methods determine the label for a particular voxel by a weighted
voting scheme where each selected voxel casts a vote depending on its label. The
task becomes relatively easy when most of the voxels belong to the same class
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and have the same label. In this scenario there is no need to find the exact voting
power or weight of every voxel as the label of the target would be determined
by the majority, regardless of the weights. Conversely the process becomes quite
challenging when there is roughly an equal distribution of voxels from different
classes making the weight calculation step crucial.

This information has been utilized to adaptively change the behaviour of the
algorithm so that most of the computational time is spent in regions of high
uncertainty. The throttling of speed is obtained by defining a search window for
each level θ (θ ∈ {0, 1, 2 . . .}). The search window at each level is set to ω×ω×ω
where ω = 2.θ + 1. A threshold gθ is defined for every level θ such that each
level would only handle regions which satisfies this condition gθ ≥ β > gθ−1

where β is the percentage of majority voxels with the same label. β is calculated
dynamically for each voxel, in a computationally inexpensive step, by looking
at the all the atlas labels corresponding to each voxel’s location. The complete
search strategy is defined as {g0, g1, . . .} such that level 0 would handle regions
where at-least g0% of voxels have the same label. The remaining region would
be handled by level 1 and so on. For example a search strategy of {100} would
process all patches that have the same label at level 0 and the rest of the patches
are handled by level 1; this corresponds to using a window of 3 × 3 × 3 in
traditional approaches. The number of iterations at each of the θ levels is also
set to compensate for the change in the total amount of patches being selected
while increasing or decreasing the window size.

In Fig. 2(a), (b) and (c) a search optimization strategy has been created
using the atlas labels. Figure 2(d), (e) and (f) show their corresponding manual
delineation. The dark gray region, which denotes an easy region, would require
a small search window with fewer number of iterations as the majority of voxels
belong to the object. The opposite is the case for the white region, where there
is an equal distribution of classes. A larger patch with a greater number of
iteration is required. This strategy works very well providing faster execution
time without any significant decrease in accuracy. This method is generic and
can be used with any patch-based method. It can also be extended to include
the anatomical information linked with the label to create a strategy tuned for
a particular anatomy.

(a) Coronal (b) Sagittal (c) Axial (d) Coronal (e) Sagittal (f) Axial

Fig. 2. Search optimization strategy ({95,65}) obtained from the atlas images (see text
above). (a)–(c) shows the strategy and (d)–(f) their corresponding manual delineation
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3.2 Integration with Optimised PatchMatch

Ta et al. [11] proposed Optimised PatchMatch (OPAL) that provides very accu-
rate segmentation of MR images in a comparatively short time. The algorithm
works by first generating k-Approximate Nearest Neighbour (ANN) from a given
atlas and then uses a label fusion technique to obtain the desired segmentation.
The algorithm runs with a constant complexity and doesn’t discard any a priori
information, the details of this algorithm have been omitted for brevity. The inte-
gration with OPAL was done primarily as an experiment to reduce the overall
computational complexity by introducing a pre-selection stage in our pipeline.

To integrate OPAL within our proposed pipeline, the number k was increased
while reducing the number of iteration in order to obtain a wide variety of patches
which could later be fed to our method. This was done in order to reduce the
probability of the same voxel being selected multiple times while still having a
large collection of relevant voxels to choose from for our segmentation pipeline.
This resulted in drastic reduction in overall time with comparable accuracy.

4 Results

4.1 Hippocampus Segmentation

The imaging data used for this experiment used the Harmonized Protocol1 for
Hippocampal volumetry. We used 100 T1-weighted MR images acquired follow-
ing the ADNI-1 imaging protocol of 37 AD, 34 MCI and 29 Normal subjects
along with their manual delineation.

For all the experiments, the atlases have been affinely registered using the
robust block matching approach MIRORR [15]. To provide a fair comparison, all
the other factors have been kept constant. The value for λ, used for label fusion,
has been set to 0.2 for all the experiments. The values of δ and ε has been set
to 3 giving us a feature vector that consists of 3× 3× 3 patches at 3 different
scales (1, 1/2 and 1/4 of the original image size). A 12 core Intel Xeon(R) system
clocked at 3.20 GHz with 16 GB RAM was used for all the experiments.

A leave-one-out cross validation has been used to validate the proposed
method. The proposed method with 5× 5× 5 window using pruning and multi-
scale feature yielded the highest Dice score of 0.892 and is used for comparison
with other methods. To show the effectiveness of the proposed improvements,
degraded versions of our method has been compared with this variant as shown
in Table 1. We can see that multi-scale feature increased the accuracy by 0.022.
Pruning provided an improvement of 0.006 in the Dice score with a slight reduc-
tion in the overall time. An improvement of 0.007 is observed when increasing
the search window from 3× 3× 3 to 5× 5× 5.

The proposed search optimization strategy, with a configuration of {95,65},
gave a comparable result with the best variant leading to an approximate 60 %
reduction in the overall time. The integration with Optimised PatchMatch, with
1 http://www.hippocampal-protocol.net.

http://www.hippocampal-protocol.net
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Table 1. Dice ratios and time taken for 6 variations of our method

Method Time (s) DSC

5×5×5 window with pruning and multi scale 428 0.892

No multi-scale 167 0.870

No pruning 689 0.887

3× 3× 3 window 91 0.885

Optimised search {95,65} 182 0.890

Proposed + Optimised PatchMatch (k = 200) 51 0.885

(a) 0.923 (b) 0.896 (c) 0.821 (d) 0.927 (e) 0.896 (f) 0.787

Fig. 3. Segmentation of left(a–c) and right(d–f) hippocampus of subjects with best,
median and worst Dice scores (red and blue denote over and under segmentation)
(Color figure online).

k = 200, provided a drastic reduction in overall time with just a slight reduction
in the Dice score. A visual summary of the segmentation result provided by our
method is shown in Fig. 3.

We compared our mean dice coefficients with other published results on
ADNI-1 dataset. Roche et al. (BMAS) [12] and Gray et al. (LEAP) [13] reported
an average dice score of 86.6 ± 1.70 and 87.6 ± 2.07 respectively on the ADNI-1
dataset. Our method yielded an average dice score of 89.2 ± 2.22 on the same
dataset. It can be seen that the accuracy of our proposed method is comparable
to the accuracy reported by the above mentioned methods.

4.2 MICCAI SATA Challenge

Our algorithm was validated using MICCAI SATA challenge [10]. The stan-
dardized registered diencephalon dataset containing 35 training samples and 12
testing samples were used for the validation. The images were acquired using
MPRAGE (Magnetization Prepared Rapid Acquisition Gradient Echo) having
a resolution of 1 × 1 × 1mm3. All the images were already registered to remove
any variability introduced due to the registration algorithm.

An automated system for submission provided by the challenge organisers
was used to validate the result. Our method, “HALF R 1 4”, gave an aver-
age(median) Dice score of 0.8587(0.8696), which is just 0.0084 lower than the
current leading method “UNC MCseq”. It should be noted that this challenge
does not take into account the computational complexity to evaluate the results.
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5 Conclusion

The use of a smaller patch representation made it possible to include more
prior knowledge which improved the overall accuracy of the method. This was
validated by comparing it with a degraded version version of our method. The
proposed dynamic search optimization technique was used while searching for
similar patches. This approach proved to be computationally efficient and also
provided comparable accuracy. A further decrease in the overall computational
time was achieved by integrating our method with OPAL. Encouraging results
has been obtained on the ADNI and MICCAI SATA datasets when compared
with the state of the art.
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