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Abstract. In structural and functional MRI studies there is a need for robust
and accurate automatic segmentation of various brain structures. We present a
comparison study of three automatic segmentation methods based on the new
T1-weighted MR sequence called MP2RAGE, which has superior soft tissue
contrast. Automatic segmentations of the thalamus and hippocampus are com-
pared to manual segmentations. In addition, we qualitatively evaluate the seg-
mentations when warped to co-registered maps of the fractional anisotropy
(FA) of water diffusion. Compared to manual segmentation, the best results were
obtained with a patch-based segmentation method (volBrain) using a library of
images from the same scanner (local), followed by volBrain using an external
library (external), FSL and Freesurfer. The qualitative evaluation showed that
volBrain local and volBrain external produced almost no segmentation errors
when overlaid on FA maps, while both FSL and Freesurfer segmentations were
found to overlap with white matter tracts. These results underline the importance
of applying accurate and robust segmentation methods and demonstrate the
superiority of patch-based methods over more conventional methods.

Keywords: Patch-based segmentation � MRI � volBrain � Freesurfer � FSL �
MP2RAGE

1 Introduction

The extensive use of imaging techniques to investigate brain diseases and the need to
outline specific region of interests (ROIs) for quantitative analysis emphasize the
importance of accurate and robust segmentation methods. Accurate tracing of deep
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brain structures, such as the thalamus and hippocampus, requires a high degree of
expertise and preferably standardized outlining protocols. Even though an acceptable
intra- and inter-rater reliability can be achieved using standardized protocols [1],
manual segmentation is very time consuming. In large datasets, segmentation can
become a bottleneck in post-processing and data analysis. Moreover, manual region
outlining is prone to inconsistencies. Automatic or semi-automatic segmentation
methods have the potential to solve these issues.

Several software solutions for automatic segmentation are publicly available.
Functional MRI of the Brain (FMRIB) Software Library (FSL) and Freesurfer are tools
frequently used for segmentation and appear to be reasonably reliable [2, 3]. However,
there are still a potential to improve the automatic segmentation methods, especially in
longitudinal studies [4] and for diseases that cause small structural changes.

Novel segmentation methods utilize redundancy in images to exploit a represen-
tative image library with corresponding validated structure labels [5–7]. These methods
are called non-local means patch-based segmentation (NLM-PBS), since similar image
patches are searched for in a non-local fashion, i.e. spatially located in a neighborhood
around the target structure. NLM-PBS has been shown to be superior to conventional
atlas-based techniques and even to other library-based methods [5, 6]. State-of-the-art
segmentation methods like NLM-PBS have been shown to perform well even in a
longitudinal setting [8].

An MRI sequence that has become widely used to obtain T1-weighted (T1w)
anatomical images with good grey matter (GM)/white matter (WM) contrast is the
magnetization-prepared rapid gradient-echo sequence (MPRAGE). However, at high
static field strengths, increasing B1 field inhomogeneity leads to high intensity varia-
tions across the image. To mitigate this bias field, an improved MPRAGE sequence
was recently proposed. By acquiring two MPRAGE images at different inversion times,
this so-called MP2RAGE sequence is less influenced by B1 as well as M0 and T2* [9].
The resulting T1w image contrast is improved, but is also different from conventional
MPRAGE images. Thus, current segmentation methods are not performing well on this
new sequence [10].

To the best of our knowledge, the accuracy of different automated segmentation
methods has not been compared using MP2RAGE images. Furthermore, NLM-PBS
has not yet been directly compared to more conventional methods. In this study, we
compared the performance of NLM-PBS (with two different libraries) to two widely
used methods (Freesurfer and FSL) using manual segmentation as the gold standard.
We measured the segmentation accuracy on two deep brain structures, thalamus and
hippocampus, imaged with MP2RAGE.

2 Methods

2.1 Participants, MRI Acquisition and Pre-processing

For this study we collected 22 healthy subjects (age range 19–40 years, 12 females)
from another internal research project. MP2RAGE images were obtained as part of the
study protocol in all subjects, and 10 subjects were additionally examined with dif-
fusion weighted imaging (DWI) as approved by the Regional Ethics Committee.
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All subjects were scanned on a Siemens Magnetom Skyra 3T MRI system with a
32 channel head coil. MP2RAGE parameters were TR = 5 s, TI1 = 0.7 s, TI2 = 2.5 s,
α1 = 4°, α2 = 5° reconstructed at isotropic 1 mm3 resolution (acquisition matrix:
240 × 256, 176 sagittal slices). The final MP2RAGE images were reconstructed by
combining the two inversion times as described in [9]. DWI was acquired with 32
directions and 5 B0 maps. Parameters were TR = 10.9 s, TI = 2.1 s, reconstructed at
isotropic 2.3 mm3 resolution (acquisition matrix: 96 × 96, 38 axial slices).

MP2RAGE images have amplified background noise due to the reconstruction
process. In our experience, Freesurfer and FSL perform poorly with this artificially
amplified background noise, thus we masked out the background noise prior to
applying the segmentation methods. Diffusion images were preprocessed using
ExploreDTI [11]. We applied eddy current correction, motion correction and distortion
correction before calculation of fractional anisotropy (FA) maps and co-registration to
the MP2RAGE images. Using the inverse transformation, manual and automatic seg-
mentation masks were then warped to DWI space and overlaid the FA maps.

2.2 Manual Segmentation

The thalamus and hippocampus from the 22 MP2RAGE images were manually seg-
mented by an experienced neuroradiologist (EN) and a trained assistant (TA) using
ITK-SNAP (www.itk-snap.org) [12]. First, EN manually traced the thalami in the axial
plane using anatomical landmarks. Then, both EN and TA adjusted the thalami in all
three principal planes using the protocol outlined by Power et al. [13]. The hippocampi
were outlined according to the EADC-ADNI segmentation protocol [1] by TA
supervised by EN. All segmentations were performed in MNI space to have similar
orientation and make consistent decisions according to the protocols. The final seg-
mentations were transformed back to scanner native space for comparison.

2.3 Automatic Segmentation Methods

We used a publicly available implementation (volBrain) of NLM-PBS [5]. For com-
parison we selected the publicly available and widely used segmentation tools FSL and
Freesurfer. Default settings were used for all pipelines except for the added noise
removal as described above. The following provides a brief overview of the three
segmentation methods along with the applied settings.

FSL: Images were processed using FMRIB’s Integrated Registration & Segmentation
Tool (FIRST) from FSL v5.0, a tool to segment subcortical structures [14]. FIRST is a
model-based segmentation tool, which uses training data from 317 manually seg-
mented images. The manual labels are parameterized as surface meshes and modelled
as a point distribution model. The deformable surfaces are then used to automatically
parameterize the volumetric labels in terms of meshes and are constrained to preserve
vertex correspondence across the training data. In addition, normalized intensities along
the surface normals are sampled and modeled. We omitted the bias field correction step
as MP2RAGE images are minimally affected by B1 field inhomogeneity. We used the
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default settings of FIRST, as they have been empirically optimized and include shape
and boundary correction.

Freesurfer: Images were processed with Freesurfer version 5.3 [15]. Briefly, the
processing includes removal of non-brain tissue, spatial normalization, segmentation of
the subcortical WM and deep GM structures, and intensity normalization. The seg-
mentation maps are created using spatial intensity gradients across tissue classes and
are therefore not simply reliant on absolute signal intensity. Therefore, both intensity
and continuity information are being carried out in this segmentation method.

volBrain: The volBrain system (http://volbrain.upv.es) is based on an advanced
pipeline providing automatic segmentations of several brain structures from T1w MRI.
Images are denoised using an adaptive non-local means filter [16], registered to MNI
space using ANTS [17], inhomogeneity corrected using SPM8 routines [18], and
intensity normalized. Then, thalamus, hippocampus and six other subcortical structures
are segmented using and updated version of NLM-PBS [5]. We tested the segmentation
method using two different libraries: 1) the default volBrain library (external) of 50
conventional T1w images (MPRAGE and SPGR), and 2) our own manually segmented
library of 22 MP2RAGE images in a leave-one-out fashion (local). In both cases, the
images were flipped across the mid-sagittal plane to artificially increase the library size
as done in related work [6].

For all segmentation methods, error logs were recorded, and quality was visually
inspected with ITK-SNAP, overlaying the segmentations onto the T1w image.

2.4 Comparison Metrics

The segmentations obtained from the four automatic methods were compared to the

manual segmentations using Dice similarity index (DSI) given by 2 A\Bj j
Aj j þ Bj j, where A is

the set of voxels in the proposed segmentation and B is the set of voxels in the
reference (manual) segmentation and |∙| is the cardinality. DSI ranges from zero to one
where one indicates a perfect match. Furthermore, the false positive and false negative
rate (FPR, FNR) of the automatic segmentations were calculated.

3 Results

Figure 1 shows examples of manual segmentations and the corresponding automatic
segmentations of the thalamus and hippocampus generated by the four evaluated
methods overlaid on the T1w image and the FA map. As the examples illustrate, the
thalamus is over-segmented by Freesurfer and to a lesser extent by FSL. As can be seen
from the FA map, the internal capsule is partly included in the segmentation. volBrain
local does not include any WM tracts, while volBrain external slightly over-segments
the thalamus. This observation is reflected in the significantly larger FPRs of FSL and
Freesurfer compared to volBrain using both libraries (Fig. 2). The consistent
over-segmentation of FSL results in relatively few false negatives, while Freesurfer
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Best volBrain local (thalamus DSI=0.929, hippocampus DSI=0.911):

Worst volBrain local (thalamus DSI=0.882, hippocampus DSI=0.885):

Fig. 1. Examples of manual and automatic segmentations of thalamus and hippocampus
overlaid MP2RAGE and FA images. Examples are selected as respectively the best and worst
volBrain local cases. From left to right: manual, volBrain local, volBrain external, FSL,
Freesurfer.
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also suffers from a relatively large FNR. In general, volBrain local performs best on
thalamus segmentation with very high DSI (0.913 ± 0.014) followed by volBrain
external (0.868 ± 0.024), FSL (0.806 ± 0.034) and Freesurfer (0.798 ± 0.049).

In terms of segmentation accuracy, the hippocampus follows a similar pattern with
high DSI for volBrain local (0.892 ± 0.016), followed by volBrain external
(0.859 ± 0.014), FSL (0.808 ± 0.017), and Freesurfer (0.771 ± 0.022) (Fig. 2). In terms
of FPR and FNR, the pattern for hippocampus is slightly different from that of tha-
lamus. FPR is reflecting the same order as DSI, with volBrain local performing best
(8.9 % ± 2.7 %) and Freesurfer performing worst (41.2 % ± 7.2 %). However, in terms
of FNR the methods are very similar with a relatively short range (mean FNR: 5.2 %–

12.4 %). The consistent over-segmentation of FSL and Freesurfer naturally leads to
relatively low FNRs. volBrain local is the only method with well-balanced FPR and
FNR for hippocampus, while volBrain using both libraries demonstrate balanced over-
and under-segmentations on thalamus.

4 Discussion

In this study we evaluated the performance of a recent patch-based segmentation
method [5] and compared the results to those of FSL and Freesurfer, two widely
applied methods in the neuroimaging community. Using MP2RAGE, a recently pro-
posed T1w MRI sequence with superior soft tissue contrast, we tested the algorithms
on two often investigated deep brain structures, the hippocampus and the thalamus.

Fig. 2. Dice overlap, false positive rate and false negative rate for segmentations of the thalamus
and the hippocampus using the four methods under evaluation. Box lines indicate 1st quartile,
median, and 3rd quartile. Whiskers indicate extreme values, which are within the range of two
times the length of the box. Dots are values outside this range.
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The results demonstrated that the patch-based method outperforms both Freesurfer and
FSL on these structures.

The accuracies we obtained on MP2RAGE images are similar to previously
reported accuracies on the hippocampus using conventional MPRAGE [5, 7, 19]. For
thalamus, average accuracies are in the same range as hippocampal accuracies for all
four methods. However, for FSL and Freesurfer thalamic segmentation accuracies
varied more than for hippocampus (Fig. 2). This may be caused by the fuzzy boundary
of the thalamus where the image texture is important for making segmentation deci-
sions, not just the image intensity and gradient. Patches can capture texture similarities,
and this is perhaps why NLM-PBS attains consistently high accuracy on thalamus.

Using volBrain with a local library provided the best results. In this case the
training data was matched perfectly to the test data, while the external library consisted
of different imaging sequences from different scanners and manually labeled by dif-
ferent experts. The differences between local and external library reflects the impor-
tance of using a coherent labeling protocol and a similar image type within the template
library. However, it is worth to note that even with these differences, volBrain external
was able to provide good results highlighting the robustness of the method.

FSL and Freesurfer excessively over-segmented the structures with FPRs in the
range 15 %–62 %. This resulted in consistent inclusion of WM in the segmentation of
the two evaluated GM structures as qualitatively verified using FA maps. This is a
major problem for morphometric as well as functional studies, where the
over-segmentation leads to increased variance and impaired ability to detect differences
and changes. Only volBrain external on hippocampus were found to over-segment.
This may be due to differences in how the raters interpret the EADC-ADNI protocol.

The protocols for manual segmentation were based only on T1w images. As can be
seen from the overlay on FA maps, it seems that WM voxels are occasionally included
in the manual mask. This may be due to difficulty in determining the correct border
when using T1w contrast only or simply due to co-registration errors between T1 and
DWI. If the former, an improved manual segmentation may be obtained using
multi-spectral data combining T1 and FA. Also, the automatic methods will most likely
benefit from a multispectral approach. However, for a method to be versatile it is
desired to work well on just T1w sequences as acquired in most MRI studies.
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