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Abstract. Recurrent miscarriage can be caused by an abnormally high
number of Uterine Natural Killer (UNK) cells in human female uterus
lining. Recently a diagnosis protocol has been developed based on the
ratio of UNK cells to stromal cells in endometrial biopsy slides immuno-
histochemically stained with Haematoxylin for all cells and CD56 as a
marker for the UNK cells. The counting of UNK cells and stromal cells
is an essential process in the protocol. However, the cell counts must not
include epithelial cells from glandular structures and UNK cells from
epithelium. In this paper, we propose a novel superpixel based epithe-
lium segmentation algorithm based on the observation that neighbouring
epithelial cells packed at the boundary of glandular structures or back-
ground tend to have similar local orientations. Our main contribution
is a novel cell orientation congruence descriptor in a machine learning
framework to differentiate between epithelial and non-epithelial cells.
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1 Introduction

Uterine Natural Killer (UNK) cells normally make up no more than 5% of all
cells in the womb lining and it has recently been shown [1] that an over-presence
of UNK cells leads to recurrent miscarriage. Thus UNK testing plays a signifi-
cant role in clinical diagnosis of recurrent miscarriages. The diagnosis protocol
devised by Quenby et al. in [1] calculates the ratio of UNK cells to stromal cells
in histology images of endometrial tissue slides stained with Haematoxylin and
CD56, which stains UNK cells brown when used with DAB staining. The task
is challenging in that the epithelial cells should not be counted in calculating
the ratio, which means that epithelium from glands or luminal epithelium from
tissue boundary should be excluded from the counting process. The problems of
the detection of UNK and stromal cells, and localisation of luminal epithelium
from tissue boundaries were addressed in [2]. However, [2] does not solve the
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segmentation problem of epithelium from glands. In this paper, we present a
method designed for segmenting both glandular epithelium and luminal epithe-
lium (examples are shown in Fig. 1(a)) from tissue boundary.

Existing methods of segmenting glandular structure are mainly based on tex-
ture and structure. Farjam et al. [3] proposed a variance filter which produces
different texture features on lumen and cell regions and the segmentation is
accomplished by clustering the texture features. This method is only capable of
segmenting lumen regions in our case, due to epithelium and cell regions hav-
ing similar texture features. Naik et al. [4] used a Bayesian classifier to detect
potential lumens and then initialised level set curve on the boundaries of detected
luminal area to finalise the segmentation. The drawback of this method is that
level set curve is not capable of approximating epithelium boundaries with com-
plex shape and texture. Nguyen et al. [5] first label nuclei, cytoplasm and lumen
by colour space analysis and utilise the constitution of these glandular com-
ponents to achieve the segmentation. Demir et al. [6] constructed an object
graph of a set of circular objects decomposed from the image to identify cell and
lumen. Then cell objects are used to form the boundary of glandular structures.
Recently, Sirinukunwattana et al. [7] proposed a novel Random Polygons Model
(RPM) using epithelial cells as the vertices of a polygon to approximate bound-
aries of glandular at cost of relatively high computational complexity. A major
limitation of such structure-based methods is that they rely on prior knowledge
of the glandular structures. In our case, epithelium is characterized by strong
inhomogeneity, i.e., discontinuity or multiple layers of epithelial cells.

Epithelium is formed by layers of epithelial cells and identification of these
cells is a primary task of the segmentation. Generally, there are not significant
distinctive features, in terms of colour and morphology, between epithelial cells
and stromal cells. However, we observe that epithelial cells normally surround
lumen or are located at the boundary of the background region in a locally and
neatly oriented manner. Based on this observation, we propose a novel cell orien-
tation congruence (COC) descriptor using a cell and its neighbours’ orientations,
which can be used to accurately identify epithelial regions. A major advantage
of the proposed algorithm over the above methods is that unlike these methods,
our algorithm is not restricted to the detection and segmentation of a closed
epithelial structure such as a gland, but it is also capable of segmenting luminal
epithelium from the tissue boundary.

2 Materials and Methods

Endometrial biopsies were collected in a clinic at University Hospitals
Coventry and Warwickshire NHS Trust from patients suffering from recurrent
pregnancy loss or recurrent IVF treatment failure. The biopsy tissue slides are
stained with Haematoxylin and CD56 is used as a marker for the UNK cells.
More details about the slides preparation can be found in [1]. The image data
in our experiment are image regions manually cropped from the high power
fields (HPFs) of digitised images of endometrial biopsy slides at 40× resolution.
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(a) Original image (b) Ground truth
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(c) Block diagram of the proposed method

(d) Classification of cells (e) Segmentation results

Fig. 1. The cyan window in (a) shows an image region used in (c); ground truth is
shown in orange in (b); lumen segmentation is shown in yellow in (c); in (c) and (d),
blue dots depict all cells, green dots depict epithelial cells after the classification using
the proposed COC descriptor, black bar represents the orientation of a cell, red grids
mark superpixels, potential epithelial superpixels are shown in red; and final epithelial
segmentation is shown in green in (c) and (e) (Color figure online).
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The image regions are saved in the JPEG format with a resolution of 1, 700×900
pixels (0.25µm/pixel).

Figure 1(c) shows a block diagram with the intermediate result of each main
step of the proposed method. We first identify lumen and background regions to
localise the potential epithelial regions. Second, we detect cells in the potential
epithelial regions and compute their cell orientation congruence (COC) descrip-
tors. Third, we perform a two-stage classification process. The first stage is to
distinguish epithelial and stomal cells in the potential epithelial regions using
their COC descriptors and the second stage is to label true epithelial regions
using the epithelial cells. At last, the labelled epithelial regions form the final
epithelium segmentation. Experimental results show that the accuracy of the
proposed method is competitive compared with 3 state-of-the-art methods.

2.1 Localisation of Potential Epithelial Superpixels

Segmenting epithelial cells is the way of achieving epithelium segmentation. It
is difficult to directly segment epithelial cells due to them having very similar
stained colour and similar morphological appearances as stromal cells in our
case. However, epithelium normally covers the exterior of lumen region or is
often located near the non-tissue (background) region. Thus, segmentation of
lumen and background regions can be used to locate potential epithelial regions.
A sample input image is shown Fig. 1(a).

We first separate the input image into the two underlying stain channels,
Haematoxylin and DAB (CD56), using a colour deconvolution method proposed
in [8]. The lumen and background regions are segmented on the Haematoxylin
channel using a lumen segmentation method proposed in [3], which is based on
the observation that lumen and cell regions have distinct local standard devi-
ations. The result of lumen segmentation on an image region from the input
image is shown in Fig. 1(c).

Next, we decompose the input image into small image patches, the so-called
superpixels using the Simple Linear Iterative Clustering (SLIC) algorithm pro-
posed in [9]. In our cases, the superpixel is a small homogeneous region depicting
lumen, background or cell. Superpixels generated on an image region from the
input image are shown in Fig. 1(c). We classify superpixels into two types: cell
superpixels, which depict either epithelial cell or stromal cell regions, and lumen
superpixel, which depict either lumen or background region. We classify a super-
pixel as lumen superpixel if more than half of its region overlaps with the mask of
the lumen mask obtained from the lumen segmentation step, otherwise it is cat-
egorised as a cell superpixel. Next, we define that a cell superpixel is a first level
potential epithelial superpixel if it immediately connects to lumen superpixels.
However, thick epithelium is formed by multiple layers of epithelial cells, a layer
of superpixels which immediately connects to lumen superpixels is not enough
to represent the epithelium in general. To retrieve as much potential epithelial
superpixels as possible, we define that a cell superpixel is a second level poten-
tial epithelial superpixel if it immediately connects to the first level epithelial
potential superpixels. In addition, we remove a potential epithelial superpixel if
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more than half of its area is segmented (Otsu thresholding [10]) as non-cell in
the Haematoxylin channel, which more likely depicts a background region. The
result of potential epithelial superpixel localisation for on an image region from
the input image is shown in Fig. 1(c).

2.2 Computation of Cell Orientation Congruency (COC) Descriptor

The Haematoxylin channel of the input image is normalised with zero mean and
unit standard deviation in pixel intensities by following the approach introduced
in [11]. Let us denote the normalised Haematoxylin channel as N(i, j), where
(i, j) denotes pixel coordinates. The directional gradients in x and y directions
of N(i, j) are calculated and the local orientation O(i, j) of N(i, j) is estimated
as follows,

Gxy(i, j) =
(
(Gx · Gy) � Φ

)
(i, j) (1)

Gxx(i, j) =
(
G2

x � Φ
)
(i, j) (2)

Gyy(i, j) =
(
G2
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)
(i, j) (3)

O(i, j) =
π

2
+ tan−1

(
Gxy(i, j)

Gxx(i, j) − Gyy(i, j)

)
(4)

where Gx(i, j) and Gy(i, j) are gradient images of N(i, j) in x and y direction,
respectively, Φ is a 2D Gaussian filter of window size w and standard deviation
σ, and � represents the image convolution operation. O(i, j) is the least squared
estimation of the local orientation of N(i, j).

Orientation Bin 1

Orientation Bin 2

Orientation Bin 3

Fig. 2. An illustration of the cell orientation congruence (COC) descriptor. Black arrow
represent the orientation vector of a cell.
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Li et al. in [2] demonstrated that their cell detection method based on phase
symmetry attains high accuracy in endometrial histology images. Thus, we
employ the detection method in [2] to detect cells in N(i, j). The orientation
of a cell with its nucleus centred at the spatial coordinates C is statistically
represented by the local orientations using its surrounding pixels as follows:

1. Pixels in a circular neighbourhood with radius α centred at C are sampled,
we use α = 7 pixels in practice.

2. The local orientation, in radians, of the sampled pixels are rescaled to [0, π].
To more precisely approximate the cell orientation, we quantise the sampled
pixels into seven overlapping orientation bins: [0, π/4], [π/8, 3π/8], [π/4, π/2],
[3π/8, 5π/8], [π/2, 3π/4], [5π/8, 7π/8], [3π/4, π].

3. The mean of the orientation bin containing the highest number of local ori-
entations is then used to represent the orientation of C, denoted as Oc.

Next, the neighbouring cell detections in a circular neighbourhood with radius
λ centred at C are sampled, we use λ = 120 pixels in practice. The circular
neighbourhood is uniformly divided into 16 half overlapping orientation bins of
width π/4. The first bin is from [Oc, Oc +π/4], the second bin is [Oc +π/8, Oc +
3π/8], and so on. An illustration of the overlapping orientation bins is shown in
Fig. 2. The cell orientation congruence descriptor of C is then constructed using
the orientations of its neighbouring detections as follows,

Sd =
Nd∑

i=1

Ωi cos(Θi) (5)

Ωi =
ωi

∑Nd

i=1 ωi

, ωi = e
−D2

i
2σ2 (6)

where Sd is the weighted orientation congruence of the d-th orientation bin, Nd

is the total number of sampled neighbouring detection in the d-th orientation
bin of C, Θi is the angle between the orientation vectors of C and the i-th
neighbouring detection in the d-th orientation bin, Ωi is the normalised weight
used to indicate the importance of the orientation difference. Di is the Euclidean
distance between C and the i-th neighbouring detection in the d-th orientation
bin, and σ = 70 is used in our case. The cell orientation congruence (COC)
descriptor is expressed by a 16 dimensional vector as given below,

COC = [S1, S2, ..., Sd, ..., S16]T (7)

2.3 Labelling of Epithelial Superpixels

We perform a two-stage classification to distinguish the epithelial and stomal
superpixels. First, the cell detections located within potential epithelial super-
pixels are considered as potential epithelial cell detections. We compute the cell
orientation congruence (COC) descriptors of all potential epithelial cells. Then
we employ the random forests classifier using the descriptors to classify the
potential epithelial cells. These epithelial cells are marked as either false or true.
The classification results of epithelial cells are shown in Fig. 1(d).
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Next, a potential epithelial superpixel which contains any false epithelial
cell or no cell is initially classified as a non-epithelial superpixel, otherwise it is
classified as an epithelial superpixel. A false epithelial superpixel may contain a
true epithelial cell, which is also likely to be an epithelial superpixel. A refinement
process for the non-epithelial superpixels is performed as follows:

1. Let us denote a non-epithelial superpixel as P , we define that a potential
epithelial superpixel which immediately connects to P as level 1 neighbour-
hood of P , denoted as Hi

1, and a set of level 1 neighbours is denoted as{
Hi

1

}
;

2. We define that a potential epithelial superpixel which immediately connects
to Hi

1 and also does not belong to
{
Hi

1

}
as level 2 neighbourhood of P ,

denoted as Hj
2 , and a set of level 2 neighbours is denoted as

{
Hj

2

}
;

3. We count the number of true epithelial cells and the number of false epithelial
cells within P ,

{
Hi

1

}
and

{
Hj

2

}
, denoted as NCtrue and NCfalse respectively.

Then P is corrected to be an epithelial superpixel if NCtrue ≥ NCfalse,
otherwise it remains the same.

The epithelial superpixels after the refinement process are merged to form the
final epithelium segmentation. The final segmentation of a sample image in
Fig. 1(a) is shown in Fig. 1(e). The ground truth is shown in Fig. 1(b).

3 Results

We calculate the Dice scores of the segmentation results by a gland segmentation
accuracy measures introduced in [7] to compare their performance of the pro-
posed method with 3 state-of-the-art methods: [4,5,7]. We trained these methods
using 5 sample images and the segmentations using these methods are performed
on 30 unseen sample images. Since the algorithms in [4,5,7] are proposed for only
segmenting glandular structures, so we remove luminal epithelium (which come
from tissue boundaries rather than glands) in the ground truth while calculat-
ing the Dice scores. Table 1 shows the segmentation accuracies of the proposed
method and the other methods on 30 unseen sample images. The results show
that our method offers superior segmentation accuracy compared with [4,5,7].

Table 1. Segmentation accuracies of the proposed method and the other methods on
30 unseen sample images. The Dice scores are reported by the averages ± standard
deviations. The best results are in bold.

Methods Dice

Pixel-Level Object-Level

Naik et al. [4] 0.74 ± 0.13 0.73 ± 0.12

Nguyen et al. [5] 0.78 ± 0.14 0.76 ± 0.13

Sirinukunwattana et al. [7] 0.82 ± 0.08 0.79 ± 0.05

COC (Proposed) 0.85 ± 0.07 0.83 ± 0.06
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4 Conclusions

In conclusion, we proposed a superpixel based epithelium segmentation method
using a novel cell orientation congruence descriptor. The descriptor is used to
discriminate between epithelial and stromal cells based on the observation that
the epithelial cells in normal endometrium are packed such that their orientation
is more or less similar to their neighbouring epithelial cells. The results show that
our method attains a good accuracy which is ready to be employed in practice.
In future work, we plan to extend the design of the descriptor, e.g., multi-scale
nature of the descriptor, and to conduct a large-scale validation of our method.
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