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Abstract. In this paper, we have presented a manifold embedding
based method for denoising volumetric MRI data. The proposed method
via kernel mapping tries to find linearity among data in the projec-
tion/feature space. Prior to kernel mapping, a Rough Set Theory (RST)
based clustering technique has been used with extension to volumetric
data. RST clustering method groups similar voxels (3D cubes) using class
and edge information. The basis vector representation of each cluster is
then explored in the Kernel space via Principal Component Analysis
(known as KPCA). The work has been compared with state-of-the-art
methods under various measures for synthetic and real databases.
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1 Introduction

Being a non-invasive technique, Magnetic Resonance Imaging (MRI) is widely
used modality (along with X-Ray, CT, etc.) for clinical diagnosis. The acqui-
sition process of medical images is highly sensitive to get accumulated with
noise or undesired signals. It has been shown that the noise in Magnetic Res-
onance (MR) Image is Rician in nature [7]. It has been shown that the inten-
sities of MR images are magnitude of underlying complex data following Rice
distribution [6,7]. The real and imaginary parts are modeled as being inde-
pendently distributed Gaussian with means ar and ai respectively, with same
variance σ2. The rician random variable y with PDF can be defined as follows:
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noise free signal amplitude and In(z) is nth order modified bessel function of
first kind. Let SNR be the signal to noise ratio (here, it is a/σ). When SNR
is high, the Rician distribution approaches to Gaussian; when SNR approaches
to zero (that is only noise is present, a → 0) the Rician distribution becomes

Rayleigh distribution and the PDF becomes fY (y|a → 0, σ) = y
σ2 e
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Many state-of-the-art methods for 3D image denoising are extension of their
2D counterpart version. However, computational complexity becomes a crucial
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factor during the extension. The 3D MR image denoising was introduced in
modern literature in [5] and then followed by [4,8–10,14,16] etc. Instead of play-
ing with patches in 2D images, here a voxel is defined as 3D cube centered at
location (i, j, k) in R3. Hence, a voxel is simply counterpart of a patch with size
w × w × w. Consequently, exploring relationship among intensity values in R3

is highly sought and thus leads to computational intensive process. There have
been many denoising/restoration methods proposed for Medical Images ranging
from diffusion filters to dictionary and clustering based filters.

The Non Local Means (NLM) method [1] has been extended to Optimized
Blockwise NLM (OBNLM, [5]) for volumetric data. It tweaks the computation
of similarity weight between voxels and constrained with predefined criteria for
mean and variance of both the voxels. At the same time, it adopted the block-
wise strategy to drop restoration of adjacent n voxels which effectively reduce the
computation load by n3 times instead of processing each voxel in the image space.
The same has been adopted in [4,8]. In case of ABONLM method [4], denoising
is performed under Wavelet framework using adaptive soft wavelet coefficient
mixing (ASCM) approach. A non-parametric kernel regression framework has
been adopted for 3D MR image denoising in Unbiased Kernel Regression (UKR)
method [14]. UKR is rooted on a zeroth order 3D kernel regression and similarity
weight between voxels is derived on small sized feature vectors based image
intensity and gradient information. The sparseness and self-similarity has been
unified in PRI-NLM method [10]. It incorporates rotational invariant NLM and
discrete cosine transform hard thresholding for sparsity.

The well-known BM3D method has been extended to 3D MR image denoising
as BM4D method [8]. Similar to BM3D, BM4D is also equipped with collabo-
rative filtering notion where similar voxels are arranged in fourth dimension.
It is also a two stage method where the output of first stage guides the sec-
ond stage and uses hard thresholding in first pass and wiener filtering in second
pass. Ideally, BM4D is designed for Gaussian noise whereas Variance Stabiliza-
tion Technique (VST) has been adopted to deal with Rician noise in 3D MRI
data. The VST based scheme is also adopted in two phased HOSVD-R method
[16]. Recently, another two stage method PRI-NL-PCA [9] was proposed based
on sparsity and self-similarity of voxels. It is encompassed with PCA threshold-
ing strategy in first stage where rotational invariant NLM method is deployed in
second stage. In this paper, we present manifold embedding based method for
MR image denoising. A nonparametric variant of PCA, known as Kernal Prin-
cipal Component Analysis (KPCA) has been explored for Rician noise removal.
The KPCA tries to explore the structure in the data in Feature space instead of
data space itself and tries to capture higher-order dependencies in the data.

This paper is organized as follows: Sect. 2 discusses RST based clustering
approach followed by overview of Kernel Principal Component Analysis. The
proposed method in presented last in Sect. 2. Section 3 presents simulation results
of proposed method along with state-of-the-art-method on phantom and real
MRI data. The manuscript is concluded in Sect. 4.
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(a) Rough Set Theory (b) T1 volume (noise free)

Fig. 1. (a) Image granules with upper and lower approximation of an object as con-
ceptualized in Rough Set Theory and (b) Noise free T1 volume data from BrianWeb
Database [3].

2 Material and Methods

2.1 Rough Set Based Cluster Formation

Rough Set Theory (RST) can be utilized to explore structural similarity between
pixel or set of pixels even in the presence of noise. This classification is defined on
predefined attribute(s), Θ, by forming granules within the image space, Ω. This
indeed establishes an equivalence classes among the data based on attributes.
Rough sets define a class by approximating two sets, namely lower approximation
and upper approximation sets of a class with respect to an attribute(s). The
lower approximation set of class w.r.t. attribute(s), CΘ, consists of certainly
classified granules of Ω whereas the upper approximation set of class with respect
to attribute(s), CΘ, constructed by possible granules of that class defined by
attribute(s), Θ [12]. The figurative description is given in Fig. 1.

Rough set based derivation of class label (RCL) information and edge details
(REM) have been derived in [13]. For given attribute(s), granules can be classified
in either lower or upper approximation of an object. The attribute considered is
the intensity values at each location in the image space. The objects present in
the image are categorized in intensity range by optimizing image histogram. The
Rough set based entropy criteria [12] was used in optimizing intensity thresholds.
The class label can be assigned by comparing intensity value at each location
against the intensity ranges of all the objects. A granule (set of adjacent pixels) is
assigned to an object’s lower if all the pixels fall in its intensity range. Otherwise
it will assign in object’s upper approximation only if any pixel in that granule
belongs to intensity range. The difference of both the approximations of any
objects will generate pixels which are possible edges of the object in the image.
Thus, union of all such edges will generate edge map of the image.
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We have extended method proposed in [13] to 3D imaging. A voxel is con-
verted to vector representation. We use the same approach for deriving lower
and upper approximation of all the objects. For K number of objects present in
the image, the number of pool constructed would be

∑K
i=1

(
K
i

)
. There will be

K clusters corresponding to K lower approximations of each object and rest are
union approximations of combinations of the objects.

2.2 Kernel Principal Component Analysis

In KPCA, the non-linearity is introduced by first mapping the data into another
space F using a nonlinear map Φ : RN → F , before a standard linear PCA is
carried out in F using the mapped samples φ(xk). The map Φ and the space F
are determined implicitly by the choice of a kernel function k, which acts as a
similarity measure. This mapping computes the dot product between two input
samples x and y mapped into F via

k(x; y) = Φ(x).Φ(y) (1)

One can show that if k is a positive definite kernel, then there exists a map
Φ into a dot product space F such that Eq. 1 holds. The space F then has
the structure of a Reproducing Kernel Hilbert Space (RKHS) [2]. Equation 1 is
important for KPCA since PCA in F can be formulated entirely in terms of
inner products of the mapped samples. This has two important consequences:
first, inner products in F can be evaluated without computing Φ(x) explicitly.
This allows to work with a very high-dimensional, possibly infinite-dimensional
RKHS F . Second, if a positive definite kernel function is specified, we need to
know neither Φ nor F explicitly to perform KPCA since only inner products are
used in the computations.

In PCA, the covariance matrix is defined as C = 1
N−1XtX where is X is

called data matrix containing samples in columns. The covariance matrix in case
of KPCA of size M × M , calculated by CF = 1

N

∑N
i=1 φ(xi)φ(xi)T . Its eigenval-

ues and eigenvectors are given by CFvk = λkvk, where k = 1, 2, . . . ,M . Mathe-
matical simplification leads to vk =

∑N
i=1 akiφ(xi) and hence ak (N-dimensional

column vector of aki) can be solved by CFak = λkNak. If projected dataset
φ(xi) does not have zero mean, one can use Gram matrix C̃F to substitute the
kernel matrix CF which is given by C̃F = CF − 1NCF − CF1N + 1NCF1N ,
where 1N is the N × N matrix with all elements equal to 1/N .

2.3 Proposed Method

MRI data is corrupted with rician noise which is not additive in nature, hence, it
is expected in this work that transformation of data into high dimensional space
may rise to linearity of data. This work cascades clustering method and manifold
embedding method. We derive clusters of similar voxels based on classes present
in those. Then KPCA finds the linearity in the higher dimensional space. To
denoising voxels, each voxel is projected on the corresponding class basis vectors
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Fig. 2. Flowchart of proposed method

and coefficients below threshold are truncated assumed as noise part in the data.
The voxels are reprojected in the image space via invertible basis vectors and bias
correction is performed. Figure 2 shows flow of proposed method. The outline of
present work can be described as follows:

1. Get the clusters of voxels (p× p× p) from the given noisy image using Rough
set based method (as described in [13]).

2. For each cluster, get the basis vectors using KPCA method along pixel posi-
tions. For cluster matrix of size p3×N , kernel matrix would be of size p3×p3,
where N is number of voxels in the cluster.

3. Project the noisy image voxels on the obtained basis vectors in the KPCA
domain. Apply coefficient shrinkage method on these projected voxels to get
the denoised voxels. Transform them back to image space.

4. Remove the bias term from each pixel of the denoised image i.e.

Îunbiased(i, j, k) =
√

max(Î(i, j, k)2 − 2h2, 0), where h is the standard devia-

tion of noise and Î is the image obtained by step (4).

3 Experimental Section

This Section encompasses the qualitative and quantitative evaluation of the
proposed method along with some of the state-of-the-art methods. The exper-
iments have been carried out on 3D monochrome phantom human brain MRI
images obtained from Brain Web Database [3]. The parameters are as follows:
Modality = T1, RF = 0, protocol = ICBM, slice thickness = 1 mm, volume
size = 181 × 217× 181 (shown in Fig. 1b). The skull portion have been from the
volume and considered four classes: (a) White Matter, (b) Gray matter, (c) Cere-
brospinal Fluid and (d) Background. The evaluation measures used are Peak-
Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE), Structural
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Table 1. Results of state-of-the-art Methods for T1 modality (represented row-wise
against each method). In each 2× 2 block, top-left figure is PSNR, top-right is RMSE,
bottom-left is SSIM and bottom-right is BC measure. The best figure against each
noise level is represented in Bold face.

h → 5 10 15 20 25

Noise 31.78 06.57 25.76 13.13 22.25 19.69 19.75 26.24 17.82 32.77

0.3473 0.3497 0.2170 0.2910 0.1583 0.2859 0.1209 0.3033 0.0949 0.3207

UKR 36.04 04.02 30.59 07.53 33.72 05.25 32.11 06.32 32.85 05.81

0.5084 0.5373 0.3359 0.2760 0.6507 0.7809 0.6364 0.8210 0.7762 0.8902

PRI-NLM 45.16 01.41 39.95 02.56 36.91 03.64 34.84 04.62 33.27 05.53

0.9527 0.9009 0.8769 0.8291 0.8129 0.8173 0.7734 0.8276 0.7297 0.8225

BM4D 43.81 06.57 39.17 02.81 36.50 03.81 34.61 04.74 33.14 05.62

0.9452 0.9008 0.8729 0.8690 0.8167 0.8597 0.7735 0.8549 0.7390 0.8518

PRI-NL-PCA 40.36 02.45 35.01 04.53 32.0 06.41 29.90 08.16 28.32 09.78

0.6640 0.4699 0.4918 0.5332 0.4243 0.5705 0.3864 0.5930 0.3662 0.6173

RST-KPCA 44.09 01.59 39.45 02.72 36.83 03.67 32.93 05.76 32.11 06.33

0.9904 0.9818 0.9770 0.9760 0.9535 0.9641 0.9446 0.9505 0.9391 0.9446

(a) Noisy volume (b) UKR (c) PRINLM3D

(d) BM4D (e) PRINLPCA (f) RST-KPCA

Fig. 3. Comparison of various methods on T1 from BrainWeb Database

Similarity Index (SSIM) [15] and Bhattacharya Coefficient (BC). The meth-
ods used for comparisons are: (a) UKR [14], (b) PRI-NLM [10], (c) BM4D [8],
(d) PRI-NL-PCA [9]. In all the experiment, voxels of size p = 3 are consid-
ered. We have used simple/linear kernel only i.e. k(x,y) = xT .y. Table 1 shows
quantitative results over varying level of Rician noise. It can be observed that
our methods outperforms state-of-the-art methods in terms of SSIM and BC
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(a) Noisy volume (b) UKR (c) PRINLM3D

(d) BM4D (e) PRINLPCA (f) RST-KPCA

Fig. 4. Comparison of various methods on subject 018 from OASIS Database

measures. However, our method is behind PRI-NLM method and better than
BM4D (at lower noise levels) in terms of PSNR and RMSE measures. Figure 3
shows cross sectional views of denoised volumes from all methods. The proposed
method with single threaded MATLAB implementation takes around 45 min on
core i7 processor, 2.10 GHz and 8 GB RAM machine. The UKR is observed to
have same computational time whereas BM4D with MATLAB/C implementa-
tion takes 11 min and others run in less than five minutes.

The subject details from OASIS dataset [11] are as follows: Subject ID: 018,
Age: 39 (male) respectively, scan number: mpr-1, type: MPRAGE, voxel reso-
lution: 1.0mm × 1.0mm × 1.25mm, Orientation: Sagittal, TR (ms) = 9.7, TE
(ms) = 4.0, TI (ms) = 20.0, Flip angle = 10. The results are shown in Fig. 4 for
subject 018 as cross sectional view.

4 Conclusion

Kernel method is explored in this work to deal with Rician noise present in
the MRI data. Being signal dependent noise, applicability of linear denoising
operation such as PCA is not advisable. It is expected in the present work that
kernel method may project the nonlinear data in the linear feature space. We
have a extended Rough Set based clustering method to collect similar voxels
conditioned on class and edge information. These similar voxels are then used
to define kernel matrix via kernel function. However, it can be exercised with
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other known kernels with suitable parameter estimation method or data adaptive
kernel for rician model can be thought of.

The proposed method is non-iterative and single stage method in compari-
son to some of predecessor methods like BM4D, PRI-NL-PCA etc. In this work,
intensity values are used as feature in clustering step and in kernel space however
more features can be considered like gradient information as in UKR. The pre-
decessor methods restrict the search space for searching similar voxels. However,
current method exploits the whole volume and thereby form clusters of similar
voxels.
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