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Abstract. Image super-resolution is of great interest in medical imaging field.
However, different from natural images studied in computer vision field, the
low-resolution (LR) medical imaging data is often a stack of high-resolution
(HR) 2D slices with large slice thickness. Consequently, the goal of super-
resolution for medical imaging data is to reconstruct the missing slice(s)
between any two consecutive slices. Since some modalities (e.g., T1-weighted
MR image) are often acquired with high-resolution (HR) image, it is intuitive to
harness the prior self-similarity information in the HR image for guiding the
super-resolution of LR image (e.g., T2-weighted MR image). The conventional
way is to find the profile of patchwise self-similarity in the HR image and then
use it to reconstruct the missing information at the same location of LR image.
However, the local morphological patterns could vary significantly across the
LR and HR images, due to the use of different imaging protocols. Therefore,
such direct (un-supervised) adaption of self-similarity profile from HR image is
often not effective in revealing the actual information in the LR image. To this
end, we propose to employ the existing image information in the LR image to
supervise the estimation of self-similarity profile by requiring it not only being
optimal in representing patches in the HR image, but also producing less
reconstruction errors for the existing image information in the LR image.
Moreover, to make the anatomical structures spatially consistent in the recon-
structed image, we simultaneously estimate the self-similarity profiles for a stack
of patches across consecutive slices by solving a group sparse patch represen-
tation problem. We have evaluated our proposed super-resolution method on
both simulated brain MR images and real patient images with multiple sclerosis
lesion, achieving promising results with more anatomical details and sharpness.

1 Introduction

In most imaging-based studies and clinical diagnosis, image resolution is important to
reveal disease-specific imaging markers and quantify the structure/functional difference
across individual subjects. However, a high-resolution 3D image is not always avail-
able due to consideration of radiation dose or scanning time, thus leading to a com-
promised low-resolution image (i.e., a stack of high in-plane resolution 2D slices with
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large slice thickness). Hence, the key to resolution enhancement in medical imaging is
to reconstruct the missing slices between any adjacent HR 2D slices.

So far, various image super-resolution (SR) methods have been proposed by using
either single LR image or multiple LR images. In contrast, Rousseau [1] attempted to
use both LR and HR images of the same subject for SR in magnetic resonance
(MR) imaging. As an HR 3D T1-weighted MR image is often scanned, it is very
attractive to enhance an LR image (e.g., T2-weighted MR image) by learning some
prior from its corresponding HR T1 image. A possible choice of such prior is the
patchwise self-similarity profile, which describes the representation of an image patch
by a set of surrounding patches in the HR image. The underlying assumption is that: if
the LR (T2) image and its HR (T1) image lie in the same space, their corresponding
points should have a similar self-similarity profile. Thus, the LR (T2) image point can
borrow the self-similarity profile computed from the HR (T1) image to recover the
missing intensity value by a weighted average of existing intensity values in the LR
(T2) image.

Since different imaging modalities measure different tissue properties, the above
assumption could fail. For example, the imaging pattern of multiple sclerosis
(MS) lesion is clearly visible in the T2-weighted image, but not in the T1-weightd
image. Hence, Rousseau [1] proposed to transfer the self-similarity profiles from the
HR image to the LR image according to the correlation between the self-similarity
profiles separately estimated in the HR and LR images, where the latter has to be
estimated from certain initialization. Due to the lack of clear guidance in adapting the
self-similarity profiles from HR image, it is still limited in revealing the actual
appearances in the LR image. In addition, most of the existing super-resolution
methods estimate self-similarity profile at each image point independently, thus leading
to inconsistency along the structure boundaries due to the independent estimations.

To overcome all the above limitations, we propose to use the existing image
information in the LR image to guide the adaption of self-similarity profile from the HR
image. Specifically, we require the estimated patchwise self-similarity profile should
satisfy the following conditions: (1) it should best represent each image patch by its
nearby patches in the HR image; (2) it should produce the lowest reconstruction error
between the existing image appearance in the LR image and the predicted image
appearance by adapting the self-similarity profile from HR image; (3) it should be
consistent across neighboring slices; and (4) it should be free of initialization. We
accordingly propose a novel SR method for jointly recovering all missing intensities for
a stack of patches across consecutive slices by solving a group sparse patch repre-
sentation problem.

We have extensively evaluated our novel SR method on both simulated brain MR
images (from Brainweb) and the clinical images with MS lesion. Promising results are
achieved, with significant improvement on structural details and image sharpness.
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2 Method

Super-Resolution Model in Medical Imaging Scenario. The SR model, widely used
in computer vision, assumes that an LR image is a degraded version of the
to-be-estimated HR image. Various regularization terms are used to constrain the space
of solutions, which inevitably alters the existing intensity values in LR image. In
medical imaging field, the task is slightly different since the LR image is usually a stack
of HR 2D images. The goal of SR is mainly to increase the resolution across slices.
Meanwhile, the estimated HR image is required to preserve the existing intensity values
since they are critical in diagnosis and investigation.

In light of this, our proposed SR method is fully data-driven, aiming to achieve
M-times SR by reconstructing the M � 1 missing slices between every two consecutive
slices L0t and L0tþ 1 in the LR image L ¼ L01; . . .; L

0
t ; . . .; L

0
N

� �
, which has N 2D slices.

Hence, the enhanced HR image H is constructed as H ¼ H1½ �; . . .; Ht½ �. . .; HN½ �½ �,
where each slice bundle Ht½ � ¼ L0t ;H

1
t ; . . .;H

M�1
t

� �
starts with one original slice L0t ,

followed by M � 1 recovered slices Hm
t jm ¼ 1; . . .;M � 1

� �
. In our method, there is

an HR prior image Y ¼ Y1½ �; . . .; Y t½ �; . . .; YN½ �½ � that can be used to guide the SR,
where ½Y t� ¼ ½Y0

t ; . . .; Y
M�1
t � denotes a particular slice bundle of HR prior image. As

the HR prior image is acquired from the same subject, it is not difficult to obtain good
registration between Y and L.

Unsupervised Self-similarity Adaption. Assume that the space of a 2D plane has
been divided into the overlapped patches. For an arbitrary patch centered at v 2 R

2 in
the 2D plane, we use ymt ðvÞ, a column vector (green solid box in Fig. 1), to denote the
intensity values within the patch from slice Ym

t in the HR prior image. Next, we can
estimate the self-similarity profile for ymt ðvÞ by using the image patches extracted from
a search neighborhood n vð Þ in slices Y0

t and Y0
tþ 1, which form the HR patch dictionary

D ¼fy0tþ e(u)ju 2 n(v), e ¼ 0; 1g. Note that we only collect the image patches from the
HR prior image at slices Y0

t and Y0
tþ 1, since we will reconstruct the missing intensity

values by only using the existing imaging data in slices L0t and L0tþ 1 of LR image.
Similarly, we can construct another dictionary E by replacing each column in D with
the corresponding patch from the LR image. Since the SR procedure is the same at
every location v, we drop off the variable v in ymt ðvÞ for clarity. Non-local mean
technique is used in [1] to determine the self-similarity of each atom in D w.r.t. the
target ymt . In order to suppress the noisy patches, we go one step further to solve the
self-similarity profile wm

t (a column vector) with sparsity constraint [2, 3] as:

ŵm
t ¼ argminwm

t
ymt � Dwm

t

�� ��2
2 þ k wm

t

�� ��
1; ð1Þ

where large value in the weighting vector bwm
t suggests high self-similarity between

particular atom in D and ymt . Since the HR prior image Y is aligned with the LR image
L, the unsupervised way to recover the image patch hmt in LR image domain is to

directly apply the self-similarity profile bwm
t to the dictionary E by bhmt ¼ Ebwm

t .
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As shown in Fig. 1, dots in the middle right and middle left are the centers of the
atoms in D and E, respectively. Due to the sparsity constraint in (1), only a few atoms
in D have the non-zero weights (i.e., those red dots), and the rest have zero weights
(i.e., yellow dots). The unsupervised adaption of self-similarity profile is to simply
copy and apply the weighting vector to E, as shown in the bottom of Fig. 1.

Supervised Self-similarity Adaption by Group Sparse Patch Representation. To
overcome the limitations of unsupervised self-similarity adaption, we propose our new
supervised approach with the following improvements.

A. Concurrent Self-similarity Profile Computation. Instead of computing the
self-similarity profile for each patch independently, we simultaneously determine the
self-similarity profiles for a stack of 2D image patches W ¼ y0t ; y

1
t . . .; y

M�1
t ; y0tþ 1

� �
,

where they have the same centers in the 2D plane but in consecutive slices. The goal is
to jointly estimate the stack of the missing patches ½hmt �m¼1;...M�1 between the two

existing LR slices L0t and L0tþ 1. It is apparent that the patches between two consecutive
LR slices L0t and L0tþ 1 have similar appearances, although the slice thickness might be
large. Thus, it is reasonable to require their self-similarity profiles should be similar as
well. Thus, by placing all self-similarity profiles into a weighting matrix
W ¼ w0

t ;w
1
t . . .;w

M�1
t ;w0

tþ 1

� �
, the joint sparse patch representation can be formulated

by introducing the L2,1-norm [4] for requiring each weighting vector in W to have a
similar sparsity pattern:

ŵ ¼ arg minW W� DWk k22 þ k1 Wk k1 þ k2 Wk k2;1 ð2Þ

where k1 and k2 are the coefficients balancing the strength of sparsity and the con-
sistency of sparsity pattern.

Fig. 1. Unsupervised adaptation of the self-similarity profile from HR image Y to LR image L
(Color figure online).
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B. Supervised Self-similarity Adaption. There are numerous possible self-similarity
profiles wm

t in the solution space of (2) if ymt is located in the white matter (WM) region
of T1-weighted image. This is because most of the patches from WM region are very
similar in T1-weighted image, regardless of having MS lesion or not. However, the MS
lesions have unique and visible pattern in T2-weighted image. Therefore, clear
supervision to adapt the self-similarity profile from HR prior image to the LR image
domain is the key to obtain reasonable SR result.

Fortunately, by directly adapting w0
t and w0

tþ 1 to the LR image domain, we can

reconstruct the 2D patches bh0t ¼ Ew0
t and bh0tþ 1 ¼ Ew0

tþ 1. On the other hand, we have
the observed image patches l0t and l0tþ 1 at location v from the existing slices L0t and

L0tþ 1, respectively. Thus, bh0t and bh0tþ 1 should be same as l0t and l0tþ 1. With this
guidance, we can supervise the adaption of self-similarity profile by minimizing the

residuals, e.g., l0t � Ew0
t

�� ��2
2 and l0tþ 1 � Ew0

tþ 1

�� ��2
2. Since we use the L2,1-norm to

enforce each column vector inW having the similar sparsity pattern, the adaption of w0
t

and w0
tþ 1 can be propagated to other self-similarity profiles wm

t . Hence, we further
extend the objective function of joint self-similarity profiles estimation in (2) to the
supervised adaption as below:

ŵ ¼ arg minW W� Dwk k22 þ k1 Wk k1 þ k2 Wk k2;1 þ k3
X1

e¼0
l0tþ e � Ew0

tþ e

�� ��2
2; ð3Þ

where k3 is a coefficient to control the strength of supervision. To optimize (3), we use
the L2,1 regularized Euclidian projection method in [4, 5].

Figure 2 illustrates 2× super resolution scenario (M ¼ 2) of our supervised
self-similarity profile adaption. The pink solid boxes denote the patches from the HR
prior image, while the pink dash boxes denote the corresponding patches in the LR
image. We jointly optimize the self-similarity profiles for the image patches on the HR
prior image (pink and green boxes in the right panel of Fig. 2) via the L2,1-norm sparse
patch representation. Meanwhile, we steer the adaption of the self-similarity profiles
towards the LR image domain by minimizing the residuals between the existing and
reconstructed image patches (black dash arrows in the bottom of Fig. 2). After we
repeat the same procedure to all locations with missing intensity values, we can obtain
the resolution enhanced image H from the LR image L.

3 Experiments

We evaluate the performance of our new SRmethod on simulatedMR brain image (from
Brainweb) and real patient image with MS lesion, using PSNR (Peak Signal-to-Noise
Ratio) and SSIM (Structural Similarity Index) [6] as quantitative measures. We compare
the SR performance with both cubic and B-spline interpolations. In addition, we evaluate
the role of supervised self-similarity profile adaption by comparing our full method (with
the supervision term in Eq. 3) with the degraded method (only using the group sparsity
term in Eq. 2).
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3.1 Simulated MR Brain Image from Brainweb

Brainweb provides a simulated brain database, which is often used as gold standard for
evaluating image enhancement performance. In this experiment, we use the HR
T1-weighted image of 181� 217� 180 voxels (voxel resolution 1� 1� 1mm3) as
the HR prior image. And, the HR T2-weigthed image (181� 217� 180 voxles, with
voxel resolution 1� 1� 1mm3) is used as the ground truth to compute the PSNR and
SSIM measures. Table 1 shows the PSNR and SSIM scores on the noise free normal
images, by cubic interpolation, B-spline interpolation, our degraded method (without
supervised self-similarity profile adaption), and our full method. In order to specifically
evaluate the advantage of supervised self-similarity profile adaption in our method,
Table 2 shows the PSNR/SSIM scores computed only in the MS regions (i.e., the blue
boxes shown in Fig. 3), instead of the entire brain. In both normal and MS cases, our
supervised SR method achieves the highest PSNR and SSIM scores.

The reconstructed HR images by four methods are displayed in Fig. 3, with the
normal image shown in the top panel while the MS images shown in the bottom panel.
It is obvious that our method reveals more anatomical details than all other three
methods, as indicated by the red arrows in normal image group and the blue boxes in

Fig. 2. Overview of the supervised self-similarity adaption (Color figure online).

Table 1. PSNR/SSIM scores of SR methods on the noise free normal images.

Thickness Cubic B-spline Degraded method Our full method

2 mm 27.26/0.9380 27.35/0.9388 36.23/0.9682 36.96/0.9802
3 mm 22.21/0.8945 22.74/0.9015 30.18/0.9518 32.83/0.9735
5 mm 20.68/0.7692 20.93/0.7699 26.13/0.8126 26.54/0.8163
7 mm 18.31/0.7292 18.41/0.7305 24.36/0.7584 24.89/0.7589
9 mm 16.96/0.7024 17.11/0.7040 22.41/0.7306 22.77/0.7353
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MS lesion group. Since our full method provides supervision on adaption of
self-similarity profile, the MS regions in the reconstructed T2-weighted image are
much closer to gold standard than our degraded methods, as shown by the zoom-in
views in the blue dash boxes in Fig. 3.

3.2 Real Patient MR Brain Image with MS Lesion

We repeat the experiment on 12 T2-weighted MR images of MS patients with slice
thickness 3mm. The T1-wighted prior image for each patient reaches 1mm slice
thickness. To quantitatively evaluate the SR performance, we first generate the
low-resolution images from 3mm to 6mm thickness by discarding the odd number
slices. Then we apply 2× super resolution using four different SR methods to recon-
struct back to 3mm thickness. Table 3 shows the averaged PSNR and SSIM scores

Fig. 3. The reconstructed HR T2-weighted images by four SR methods (Color figure online)

Table 2. PSNR/SSIM scores (only in MS region) of SR methods on the noise free MS images.

Thickness Cubic B-spline Degraded method Our full method

2 mm 26.74/0.8945 26.83/0.8949 35.97/0.9635 36.25/0.9662
3 mm 21.59/0.8831 27.36/0.9262 29.65/0.9438 32.17/0.9637
5 mm 20.05/0.7506 20.15/0.7510 25.43/0.8037 25.83/0.8100
7 mm 17.68/0.7161 17.83/0.7167 23.54/0.7416 23.81/0.7422
9 mm 16.16/0.7005 16.26/0.7011 21.86/0.7264 22.05/0.7304
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(in whole brain and MS regions, respectively) by cubic interpolation, B-spline inter-
polation, our degraded method, and our full method.

Second, we enhance the original T2-weighted image from 3mm to 1mm. The
reconstructed HR images by four SR methods are shown in Fig. 4. Through visual
inspection, the reconstructed images by our full SR method have better image quality
(i.e., anatomical details and sharpness) than other three methods.

4 Conclusion

We have developed a novel super-resolution method that can reconstruct the missing
slices of a given image for resolution enhancement. This is achieved by adapting the
self-similarity profiles from the HR prior image, using the LR image to supervise the
adaption procedure via group sparse patch representation. Promising super resolution
results have been achieved on both simulated and real patient data, which demonstrate
its wide possible applications in various clinical studies.
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