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Abstract. Histological images provide reliable information on tissue
characteristics which can be used to validate and improve our under-
standing for developing radiological imaging analysis methods. However,
due to the large amount of deformation in histology stemming from
resected tissues, estimating spatial correspondence with other imaging
modalities is a challenging image registration problem. In this work
we develop a three-stage framework for nonlinear registration between
ex vivo MRI and histology of rectal cancer. For this multi-modality
image registration task, two similarity metrics from patch-based feature
transformations were used: the dense Scale Invariant Feature Transform
(dense SIFT) and the Modality Independent Neighbourhood Descriptor
(MIND). The potential of our method is demonstrated on a dataset of
eight rectal histology images from two patients using annotated land-
marks. The mean registration error was 1.80 mm after the rigid registra-
tion steps which improved to 1.08 mm after nonlinear motion correction
using dense SIFT and to 1.52 mm using MIND.

1 Introduction

[F-18] fluoromisonidazole positron emission tomography (FMISO-PET), per-
fusion computed tomography (pCT) and dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) are imaging techniques that can extract
relevant quantitative information from tumours. Understanding the tumour
micro-environment can improve its characterisation and enable more effective
personalised treatment for patients. Recent research effort focused on exploring
these imaging techniques to identify hypoxia in tumours. Having a reliable non-
invasive method to quantify hypoxia will help to predict chemoradiotherapeutic
treatment, and to develop and administer hypoxic sensitisers on patients under-
going treatment [15]. Determining whether and how these imaging modalities
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can be used to determine hypoxia is inherently difficult. FMISO-PET uses a
tracer that binds to hypoxic regions and it has been shown to be effective in
some regions of the body [8]. However, for rectal cancers, the excretions present
in the rectal region generate a very high background uptake. For this reason,
clearly identifying hypoxic regions is difficult and studies must be performed to
determine whether and at what level of enhancement these can be distinctively
found. DCE-MRI and pCT do not directly measure hypoxia, but the perfusion
information provided by these techniques could possibly be used as a surrogate
measure of hypoxia and to segment tumour regions [7,13]. Determining ground
truth is challenging and requires a more reliable imaging method. Histopatholog-
ical imaging is a generally accepted choice to provide a localised ground truth for
hypoxia. Hypoxia can be identified in these images with Pimonidazole staining.

Naturally, image registration is an appropriate way to obtain a mapping
between these different images and to enable a localised comparison between
them. The large amount of deformation and other distortions caused by the
process of resecting, slicing and preparing tissues for histological acquisitions
present the main difficulty in registering these images. The most common app-
roach taken for the registration of in vivo radiological images to ex vivo histology
is to have an intermediate radiological ex vivo acquisition of the resected tissue
before slicing.

Previously, functional radiological imaging of cancer has been validated using
histological findings in a pre-clinical study [3,13]. Rat prostate cancers were
imaged using FMISO-PET, DCE-MRI and hypoxia-marked histological imag-
ing. However, these images were only rigidly registered using fiduciary markers
inserted in the animals before image acquisition, a method which cannot be
used in human trials. Several works have explored ex vivo MRI/CT to histology
registration, but the different tissue locations configure them as very different
problems to the one addressed here. Most of the research to-date has focused on
aligning brain images, where there is a relevant amount of coherence of the main
types of brain tissue (white matter, grey matter and cerebrospinal fluid) which
allows for segmentation-driven registration or histogram matching between the
images [1]. Similarly, rigid registration of μCT to histology has been studied [2],
which presents tissues with very well defined structures, similar representation
across both modalities and very little nonrigid deformation. Ex vivo MRI to his-
tology nonlinear registration was performed for prostate cancer, for which both
segmentation-based and intensity-based approaches have been investigated [4].

In this work we present a new method to register ex vivo MRI to histology
images of rectal cancer. It differs from previous works by showing an automated
solution to register images with large amounts of nonlinear deformation on dif-
ferent imaging representations by applying non-specific methods which could be
employed for different body parts and modalities (as opposed to segmentation-
based and histogram matching approaches). Another relevant contribution is the
application of two patch-based techniques to extract features which can be used
as similarity metrics for image registration: dense SIFT and MIND [5,9].
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Fig. 1. Example of rectal cancer images before registration: (a) histology, (b) corre-
sponding ex vivo MRI slice and (c) blockface photograph.

This paper is structured as follows. In Sect. 2 the methods developed to
register ex vivo MRI to histology are presented. Section 3 describes the images
used in this work, as well as the experiments conducted to evaluate the proposed
framework and their results. Finally, Sect. 4 discusses and concludes this work.

2 Methods

The challenge addressed in this work can be described as finding a transformation
T i for each histology image Ii

H to an MRI volume IM , where the grouping of all
the histology images form a histology stack IH . To solve this problem we have
designed a three-stage solution. Firstly, a global transformation TZ to axially
(Z-direction) align IM to IH is estimated. Then, after applying this transforma-
tion we rigidly register each Ii

H to its corresponding MRI slice Ii
M , thus estimat-

ing T i
r . This is followed by nonlinear registration, which ultimately computes

T i
nl for each of the histology slices. These steps are described in Sects. 2.1, 2.2

and 2.3.
As can be seen from Fig. 1, MRI and histology tumour images show different

types of tissues, but the main feature characteristics are preserved (albeit under
severe deformation). Hence, we opted to use similarity metrics with strong edge
responses. Two similarity metrics with such property were explored in this work:
the Scale Invariant Feature Transform, both its original form and dense variant
(SIFT [10] and dense SIFT [9]), and the Modality Independent Neighbourhood
Descriptor (MIND) [5]. Both of these metrics extract descriptor vectors based
on the intensity relationships between voxels in regions of the images.

SIFT is a method to localise points of interest (POIs) in images and extract
high dimensional discriminative descriptor vectors based on the gradient profile
on the regions around these salient points [10]. Dense SIFT is a variant of this
method where an image is converted to a vector-valued image by computing
these descriptors at each voxel without the POI detection of classic SIFT [9].

MIND is a transform that computes a feature vector for each voxel of an
image [5]. This feature vector is determined by the similarity of nonlocal patches
around each voxel. Its descriptors have much smaller dimensions than SIFT and
have already shown to generate good results in medical image registration tasks.

Both dense SIFT and MIND can be used as a similarity measure. Each of the
images being registered (I1, I2) is transformed using these methods generating
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the vector-valued images (SIFT(I(x)) or MIND(I(x))) with d descriptors. Then
the sum-of-squared differences (SSD) can be computed between these images
resulting in a similarity measure (SIM). For the SIFT case this is expressed as:

SIMSIFT(I1(x), I2(x)) =
∣
∣
∣

∣
∣
∣SIFT(I1(x)) − SIFT(I2(x))

∣
∣
∣

∣
∣
∣
2

(1)

An analogous equation can be used for SIMMIND.

2.1 Histology to MRI Axial Registration

Initialisation is one of the main difficulties in registering 2D histological slices to
3D MRI. In general, the specimens are sliced axially before the histology image
acquisition, hence finding corresponding axial MRI slices for each histology image
is a good first step towards image registration.

SIFT is a fitting solution for this problem as it reduces the large MR volume
space to a small number of POIs which can be matched to the histology slices
ones. However, due to the large amount of deformations found in the histology,
the POIs from the histology may not always be similar to the MRI ones. Thus,
to robustly perform this step we opted to jointly register all the histology slices
from a tumour to the corresponding MRI volume. This is done by first gener-
ating a histology stack by placing each of the slices on their expected relative
axial positions (which can be determined with the aid of the blockface images
Fig. 1(c)). This initial axial translational transformation (TZ) is obtained with
the following sequence of steps:

– SIFT is applied to the histology stack, generating a set of POIs and descriptors
PH . Where Pn = [x,D], x denoting the interest point’s coordinates and D
its descriptor vector.

– SIFT is applied to the MRI volume, finding a set of POIs PM .
– For each POI of the histology stack (Pn

H) the most similar point in the MRI
volume (P k

M ) is found by minimising the SSD between descriptors:

[Pn
H , P k

M ] = arg min
Pm

M

(∣
∣
∣
∣Pn

H [D] − Pm
M [D]

∣
∣
∣
∣
2

)

(2)

– Each correspondence pair denotes an axial translation Tn
Z = Pn

M [z] − P k
H [z]

between the histology and MRI stacks.
– A final axial transformation (TZ) is obtained as the mode of all these trans-

formations: TZ = Mode{Tn
Z}.

Reconstruction of a 3D histology volume is not possible in our case, as the
histology images are not contiguous and sometimes incomplete, but individual
slices can be matched to the MR volume. For that reason, we can only perform a
translation in the axial direction in this first step. Note that, a similar approach
was proposed to estimate rigid transforms for histology to μCT registration of
bone structures [2].
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2.2 2D MRI Rigid Registration

After finding a corresponding MRI slice (Ii
M ) for each histology image (Ii

H),
the next step is to perform 2D to 2D rigid registration between this image pair
(estimating T i

r). We investigated both dense SIFT and MIND similarity metrics
for this step (using Eq. 1), by iteratively minimising:

T̂r = arg min
Tr

(
∫ Ω

x=0

SIM(I1, I2)(x)dx

)

(3)

where Ω is the image domain and SIM denotes Eq. 1 using either dense SIFT
or MIND. This minimisation was performed using a Levenberg-Marquandt opti-
mizer from the alglib library1.

The results for this step using dense SIFT were very unsatisfactory (and thus
will not be reported in the results section). The cause for this is that regions
with very low match values with dense SIFT dominate its response as a global
similarity metric. Thus, its use as a global measure requires some adaptations
(such as mutual saliency weighting [11]).

2.3 2D MRI Nonlinear Registration

Histological images show high levels of nonlinear deformation, especially as some
regions shrink while others expand, in addition to tissue tearing and shearing. We
performed nonlinear motion correction in this work using logDemons [14], which
provides invertible diffeomorphic transformation fields (Tnl). Even though the
deformation present in these images are not diffeomorphic, such approach is cho-
sen as a one-to-one correspondence is relevant for future data analysis between
functional and histology images. A multi-resolution framework was applied for
this registration and we compared the use of dense SIFT, MIND (minimising
Eq. 1) and local cross-correlation (LCC) [6], a standard similarity metric.

3 Experiments and Results

3.1 Data Acquisition, Preparation and Landmark Selection

T2-weighted MRI images were acquired from 2 resected rectums with adeno-
carcinomas while in formalin for 12 to 24 h. The images were acquired using
1.5 T scanner (TwinSpeed, GE Healthcare) with 3 mm oblique axial sections
with 0.3 mm spacing. The specimens were then sectioned in 3 mm sections when
possible and 6 mm at more friable sections of the tumour. Haematoxylin and
eosin stains were applied and histological imaging acquisitions were performed. A
total of 8 histological slices with axial resolution of 2µm were obtained this way.

A number of steps were taken to prepare the images for the proposed method.
The ex vivo MRI images of the resected cancer possessed a much larger field of
1 alglib, available on http://mloss.org/software/view/231/.

http://mloss.org/software/view/231/
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Fig. 2. Registration of two cases from different patients (row 1 and 2, respectively).
(a,e) Histology and (b,f) corresponding MRI slice after rigid registration, (c,g) after
nonlinear registration using dense SIFT and (d,h) after nonlinear registration with
yellow overlay of the histology. Landmarks are shown by the crosses: histology (blue),
MRI after rigid registration (green) and MRI after nonlinear registration (red) (Color
figure online).

view than the histology, thus, to facilitate the registration algorithm a region
around the tumour was cropped. For each of the histology images, an expert
histologist and oncologist jointly annotated a set of two to five landmarks (25
in total) in both the histology and the ex vivo MRI using the software VV [12].

3.2 Framework Parameters and Results

The parameters for the registration framework were empirically determined. For
the initial slice estimation, an off-the-shelf implementation of SIFT, ezSIFT 2,
was used along with its standard parameters: 36 bins, threshold set to 8 and
number of layers set to 3. For nonlinear registration, the logDemons framework
was applied with three resolution levels with 40 iterations at each level and
transformation field smoothing σdiff = 4 pixels. The SIFT Flow library was used
for dense SIFT with the standard parameters: cell size = 2 and 8 bins [9]. For
MIND, the search region was R = 2 and the Gaussian weighting σMIND = 0.5.

The proposed method was quantitatively evaluated using the annotated land-
marks. For each of the histological images, the obtained transformations were
applied to the landmarks and the mean distance to the MRI landmarks were
computed. The mean registration error for each of the images was evaluated
after the rigid registration steps and after nonlinear registration, Table 1 presents
these results. It can be observed that nonlinear registration was able to compen-
sate some of the deformation in these images and considerably decrease the
distance between the landmarks, in the best case, with dense SIFT, an aver-
age improvement of 60 % was observed which corresponds to a mean error of
1.08 mm. Figure 2 presents some registered images using this similarity metric.
2 ezSIFT, available on http://sourceforge.net/projects/ezsift/.

http://sourceforge.net/projects/ezsift/
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Table 1. Average mean squared error and standard deviation of the landmarks after
rigid and nonlinear registration with different similarity metrics.

Registration Rigid (mm) Nonlinear (mm)

Patient MIND Dense SIFT MIND LCC

Patient 1 1.97 ± 0.45 1.10 ± 0.58 1.61 ± 0.44 1.80 ± 0.53

Patient 2 1.51 ± 0.42 1.06 ± 0.57 1.37 ± 0.64 1.42 ± 0.33

Overall 1.80 ± 0.44 1.08 ± 0.58 1.52 ± 0.49 1.62 ± 0.57

Fig. 3. Histology slice (right) and MRI image (left) after nonlinear registration using
(a) MIND and (b) dense SIFT. A close inspection shows that both methods are good
at matching edges, but MIND is not very discriminative and consequently registers
noncorresponding edges, while dense SIFT is more accurate.

As expected, the similarity metrics with a strong edge response, dense SIFT
and MIND, could better characterise and compare the images being registered,
leading to better registration results. However, despite MIND being very good
at identifying edges, it is not as good as dense SIFT in discriminating them, this
is observed in Fig. 3, a case where MIND matches noncorresponding edges.

4 Discussion and Conclusions

We have presented a comprehensive framework that addresses the challenging
tasks of aligning histological slices through a tumour with volumetric ex vivo
MRI of the tumour. Despite it being developed for a rectal cancer application,
the proposed method does not use any specific characteristic of the region of
the body being analysed and thus could be employed for other similar histology
registration tasks. The framework was evaluated through landmarks, and visual
inspection also confirmed its validity of this solution for this problem.

For this, we have investigated the potential of dense SIFT as a patch-based
similarity metric within the logDemons framework, achieving good results com-
pared to other multi-modality and feature vector based similarity metric. Due
to some limiting factors dense SIFT has not been widely used yet for medical
image registration: its descriptors have very high dimensions and were originally
developed for 2D images, two aspects that need to be adapted to be used with
the very large 3D volumes found in medical imaging.

To-date, the validation was performed in a small dataset, which is one of the
difficulties when working with histology images and we intend to increase the
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number of cases as part of an ongoing trial. There are several aspects that can
be explored in future works. Dense SIFT was not a viable option as a global
similarity metric and could be further developed for such task. Moreover, this
application should be extended to also account for nonlinear deformation across
MRI volume slices. This work will follow by registering ex vivo to in vivo MRI
volumes and then to the functional acquisitions (DCE-MRI, pCT and FMISO-
PET), obtaining a correspondence between the histology and these acquisitions.

Acknowledgements. We would like to acknowledge the funding from CRUK/EPSRC
Cancer Imaging Centre at Oxford. AH also acknowledges the support of the Research
Council UK Digital Economy Programme EP/G036861/1 (Oxford Centre for Doctoral
Training in Healthcare Innovation) and CAPES Foundation, process BEX 0725/12-9.

References

1. Ceritoglu, C., Wang, L., Selemon, L.D., Csernansky, J.G., Miller, M.I.,
Ratnanather, J.T.: Large deformation diffeomorphic metric mapping registration
of reconstructed 3D histological section images and in vivo MR images. Front Hum.
Neurosci. 4, 43 (2010)

2. Chicherova, N., Fundana, K., Müller, B., Cattin, P.C.: Histology to µCT data
matching using landmarks and a density biased RANSAC. In: Golland, P., Hata,
N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol.
8673, pp. 243–250. Springer, Heidelberg (2014)

3. Cho, H., Ackerstaff, E., Carlin, S., Lupu, M.E., Wang, Y., Rizwan, A., O’Donoghue,
J., Ling, C.C., Humm, J.L., Zanzonico, P.B., et al.: Noninvasive multimodality
imaging of the tumor microenvironment: registered dynamic MRI and PET studies
of a preclinical tumor model of tumor hypoxia. Neoplasia 11(3), 247–259 (2009)

4. Feldman, M., Tomaszewski, J., Davatzikos, C.: Non-rigid registration between his-
tological and MR images of the prostate: a joint segmentation and registration
framework. In: IEEE CVPR, pp. 125–132 (2009)

5. Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F., Brady, M.,
Schnabel, J.A.: MIND: modality independent neighbourhood descriptor for multi-
modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

6. Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational methods for multimodal
image matching. Int. J. Comput. Vis. 50(3), 329–343 (2002)
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