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Abstract. In this paper, we present a novel superpixel based Region
of Interest (ROI) search and segmentation algorithm. The proposed
superpixel generation method differs from pioneer works due to its com-
bination of boundary update and coarse-to-fine refinement for superpixel
clustering. The former maintains the accuracy of segmentation, mean-
while, avoids much of unnecessary revisit to the ‘non-boundary’ pixels.
The latter reduces the complexity by faster localizing those boundary
blocks. The paper introduces the novel superpixel algorithm [10] to
the problem of ROI detection and segmentation along with a coarse-
to-fine refinement scheme over a set of image of different magnifica-
tion. Extensive experiments indicates that the proposed method gives
better accuracy and efficiency than other superpixel-based methods for
lung cancer cell images. Moreover, the block-wise coarse-to-fine scheme
enables a quick search and segmentation of ROIs in whole slide images,
while, other methods still cannot.

1 Introduction

The detection and segmentation of region of interest (ROI) is a crucial inter-
mediate step between histopathology images acquisition [4] and computer-aided
automated diagnosis [11,12] for those hazardous diseases, such as infectious dis-
eases and cancers, which are still big threats to both personal health and public
sanitation.

Thinking about the scenarios of clinic application and the pathophysiology
requirements, we have some challenging but natural technical requirements, e.g.
the low time and energy cost of the ROI search process as well as the high fidelity
and the trustworthiness of segmented ROIs. The whole slide images (WSI) are
here the digitized histopathology images of highest resolution (e.g. 106 × 106).
The size of typical WSI in original data of lung cancer slide is roughly as large as
1.5 GByte. We need a novel efficient solution to handle such big volume of data
without losing too much accuracy. Our main task is to accelerate the search for
specific patches or patch clusters, e.g. ROI, and then to increase the accuracy of
classification for ROI and background pixels via a much improved segmentations.
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Fig. 1. An example of the brand new coarse-to-fine/boundary-only update based super-
pixel segmentation algorithm first presented in [10]. The basic manipulation unit is the
rectangular block instead of pixels during each stage. We start from a coarse segmen-
tation and end with pixel-level refinement on superpixel boundary. The block size is
respectively 10 × 10, 2 × 2, 1 × 1 (single pixel) from left to right.

Fortunately, we are not alone in solving the problem by harnessing the latest
machine learning and computer vision techniques. In [2], a multi-scale super-
pixel classification approach has been proposed for efficient detection of ROIs in
WSI. However, the method does not correctly notice the effect of wrong label-
ing in early classification stage may not be compensated by later more accurate
classification. The classifier worked on different scales of magnification, and so
it has to be trained multiple times with samples extracted from superpixels of
different magnification. The [7] reduced the workload of labeling and grading
by two ways: by excluding the areas of definitely normal tissues within a single
specimen or by excluding entire specimens which do not contain any tumor cells.
Besides, [7] presented a multi-resolution cancer detection algorithm to boost the
latter. Another superpixel automated segmentation method is [8], which trains
a classifier to predict where mitochondrial boundaries occur using diverse cues
from superpixel graph. However, because of the old superpixel algorithm [1], the
slow speed and the low accuracy of superpixel encumber the overall performance.
The superpixel generation algorithm used in the paper is totally different from
[1] where the superpixels were clustered pixel-wise. Combining the coarse-to-
fine scheme [3] and boundary-only update policy [9], our method manipulates
the rectangular blocks of pixel to construct a coarse segmentation of superpixel
before the more accurate refinement using boundary-only update (See Fig. 1).

The proposed approach is able to generate better superpixels of perfect snap-
ping to the actual boundaries between the foreground and the background. The
improvement brought by the algorithm on patch classification and image anno-
tation accuracy has been proved and verified in [10], we, for the first time,
apply the method and quantitatively verify the improvement of the accuracy of
ROI detection in histopathology images, e.g. lung cancer H&E-stained WSI. The
paper is organized as followings: we first introduce the new superpixel generation
algorithm and coarse-to-fine strategy for reducing dimensionality for optimiza-
tion in Sect. 1. Then we introduce the details of the algorithm as well as the
mathematical and optimization background in Sect. 2. Finally, we will present
experimental results and analysis in Sects. 3 and 4.
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Fig. 2. The comparison of superpixel generated over lung cancer histopathology
images: (1) the origin (with ROI groundtruth), (2) SLIC [1], (3) SPSS [9], (4) the
new method [10]. The true ROI is contoured as green (Color figure online).

2 Methodology

Our method for detection and segmentation of ROIs has two components. We
first obtain a initial identification of ROIs by clustering the superpixels at low
magnification. Then the superpixels were mapped to image of higher magnifi-
cation by labeling corresponding pixels. The process was repeated several times
until segmentations are stable. The last, the classifier labels superpixels repre-
tented by selected features. Different from previous classic superpixel based seg-
mentation methods [1,9], the proposed algorithm gives topologically preserving
segmentation of the image. The better segmentation the superpixels define, the
more accurate the classification of ROIs will be attained.

2.1 ROIs in Lung Cancer Histopathology Images

The main idea of superpixel based segmentation methods is to cluster those
pixels of similar spacial, color and topological properties and to construct a
group of superpixels of all similar pixels within. As to build a fast and efficient
search technique for regions of interest in lung cancer histopathology WSI, which
are usually at least of trillions of pixels, previous methods may not be suitable.
Because they neglected some important features in cancer cell histopathology
images. The tumor cells of lung cancer patients (not only for lung cancer, but
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also generally appear in other subtypes of cancer) infest as cell mass. If we treat
the regions where tumor cell mass appears as ROIs, it is easy to have direct
observations from the H&E stained histopathology images that those tumor cells
are more deeply colored due to the massive reproduction of genetic materials
inside tumor nuclei (See Fig. 2).

2.2 Superpixel Clustering

As the metric of superpixel generation, we indicate the following objective func-
tions as the one which to be minimized at each round updating the classification
of pixels (or blocks):

E(s, μ, c) =
∑

p

Ecol(sp, csp) + λpos

∑

p

Epos(sp, μsp)+

λb

∑

p

∑

q∈N8

Eb(sp, sq) + Etopo(s) + Esize(s). (1)

with c = (c1, c2, . . . , cM ), μ = (μ1, μ2, . . . , μM ) the group of centers and mean
position of each superpixels. And, the N8 means the 8 neighbors surrounding
the pixel p in a 3 × 3 block. Ecol(sp, csp) = (I(p) − csp)

2 is the color intensity
of pixel inside the superpixel to the average intensity value of this suerpixel,
in other word, it is the variance of the color intensity distribution over [0, 255],
also known as appearance coherence. The shape regularization is described as
the energy term averaging the distance between each contained pixel to the
mean position of the superpixel, Epos(sp, μsp) = ‖p − μsp‖22, where μsp is the
center of each superpixel. On the other hand, the regularization on the size
of superpixels and the connectivity of superpixels will give penalty on those
superpixels of too small size and those disconnected superpixels by making the
objective function positive infinity. It needs to be noted that we only consider
the 4 neighbors (up, down, left and right) of the pixel (block) when we maximize
ŝbli = arg minsli∈N4

E(s, μ, c).

2.3 Boundary-Only Update

The proposed superpixel generation method should be more costly efficient due
to its strategy of boundary-only update at each round of pixel clustering. The
boundary-only update scheme is to only update those blocks closely nearby the
boundary of superpixels.

Eb(sp, sq) =

{
1, sp �= sq,

0, otherwise.
(2)

E(sp) =
∑

q∈N4
Eb(sp, sq). Only if E(sp) = 0, then the corresponding block p

is not a boundary block. Otherwise, it is a boundary block and has at least one
neighbor belongs to other superpixel. When using the boundary-only update,
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Algorithm 1. Coarse-to-Fine ROI Search and Segmentation (CROISS)
for M = 1 to MagMax do

for l = 1 to levelMax do
if l = 1 then

Initialize each block on level l with a regular grid;
end if
Compute the mean color and position in each block; Initialize the list of bound-
ary blocks on level l;
while list is not empty do

Pop out boundary block bli from the list;
if connectivity is valid then

ŝbli
= argminsli∈N4

E(s, µ, c);

if sbli
is updated then

update uŝ
bl
i

and cŝ
bl
i

for the involved two superpixels; append the 4 neigh-

bors of bli to the list if they become boundary blocks after this update;
end if

end if
end while

end for
Mapping s to the image of M+1 magnification in the term of pixel to block;

end for

there are two keypoints: (1) if we update the label of any block, it may change
the list of boundary blocks; (2) we need to append the new boundary block to
the end of the list because and follow the FIFO principle when deciding the
order of blocks for consideration of changing label, in order to avoid the risk of
divergence given by correlated dimensions in coordinate descent optimization.

2.4 Coarse-to-Fine Refinement

In the paper, we does not only utilize the coarse-to-fine strategy in the generation
of superpixels, but also in the mapping to the images of higher magnification.
When generating superpixels, the fundamental unit for manipulation is not sin-
gle pixel but a series of rectangular blocks of size from large to small. We start
from clustering coarse superpixels using the biggest blocks. Based on the result
of last round, we then manipulate smaller blocks to form boundaries with more
details. Combining with the boundary-only update strategy, the coarse-to-fine
refinement could more efficiently construct the superpixels of irregular bound-
ary. Besides, we construct superpixels over multiple layers of images of different
magnification. In this way, the localization of boundary blocks will be much
easier and the boundary update only happens to those blocks fallen into the
boundary regions constructed at higher magnification. The effect of acceleration
will become more significant as the size of whole slide image increases.

2.5 Complexity Analysis

Based on similar philosophy in sparse learning [5,6], we are able to reduce the
total computational complexity from O(

∑
l Nl × nMaxIter), where N is the
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size of image, to O(
∑

l

∑
i B

i
l ). N is usually extremely large since the WSI has

trillions of pixels. For pixel-wise methods, nMaxIter should be large enough
to guarantee the convergence. However, for this algorithm, at each iteration, we
manipulate blocks instead of pixels in image of low resolution (size is also shrink-
ing to 103 × 103 level), and then conduct mapping to image of high resolution
and refine the boundaries. The boundary length Bi

l in image of magnification
l for iteration i is much smaller than the size of current image Nl. Due to the
reduced dimensionality, the convergence comes faster than pixel-wise methods.

3 Experiments

3.1 Experimental Setup

In the experimental stage, a random forest and a SVM classifier were built
which operated on the regions defined by the superpixels generated by
Algorithm 1. A total of 384 features were extracted from 100 WSIs including local
binary patterns and statistics derived from the histogram of the three-channel
HSD color model as well as texture features, e.g. color SIFT. The proposed
method was compared with superpixels generated by SLIC [1] and tetragonum
(non-superpixel). The experiments used the adenocarcinoma and squamous cell
carcinoma lung cancer images from the NLST (National Lung Screening Trial)
Data Portal11. We conduct 10-fold cross-validation before recording and perform
all experiments in a workstation of Intel i7-4770 CPU.

Table 1. The table presents the comparison results of the proposed superpixels, SLIC
and tetragonum (non-superpixel) in term of classification statistics including: the rate
of error classification, precision and recall. Tetragonum: sliding rectangular windows.

Ours [10] SLIC [1] Tetragonum Ours [10] SLIC [1] Tetragonum

Random forest SVM

Error rate 0.1326 0.1933 0.2047 0.3011 0.3343 0.3061

Precision 0.7127 0.6835 0.6740 0.6754 0.6672 0.6723

Recall 0.7333 0.6108 0.6450 0.7450 0.6604 0.6972

3.2 Numerical Results

Due to the overwhelming fidelity of our superpixels, the classifier operates over
the regions segmented by the proposed superpixel algorithm is able to deliver bet-
ter classification accuracy (See Table 1). Since the feature descriptors were built
on the patches segmented by contours of superpixels, the better the superpixel
fitting the natural boundaries, the better the extracted features characterize the
sample patches. In Fig. 3, we show a typical process of recursive coarse-to-fine
1 https://biometry.nci.nih.gov/cdas/studies/nlst/.

https://biometry.nci.nih.gov/cdas/studies/nlst/
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Fig. 3. A coarse-to-fine approach operates on a multi-resolution images set of a lung
cancer WSI: (1) Coarse segmentation of superpixels using large blocks in images of low
magnification (180×180); (2) Refine the segmentation using small blocks; (3) Mask
mapping to images of higher magnification (3 ∗ 103 × 5 ∗ 103); (4) ROC of random
forest classifier trained on set of superpixel-based patches generated by our algorithm
[10], SLIC [1] and rectangular patches.

refinement over the multi-resolution image set for lung cancer histopathology
images. We first do a coarse-to-fine superpixel generation over low magnification
image (Step 1 & 2), and then we map the superpixel mask (Fig. 3) to an image
of higher magnification (Step 3) and repeat the Step 1 & 2. The recursive refine-
ment does not stop until the image of highest resolution (WSI) with converged
energy function [10]. Due to the reduced complexity of superpixel construction,
we could significantly finish the patch-feature extraction in a much shorter time.
Our method is possible to shrink the processing time cost to B/N, where N � B
in WSI. The ROC curves indicates the improvement on ROI detection accuracy
brought by the new superpixel algorithm.

4 Conclusion

In the paper, we presented a novel solution to fast detection of ROI in whole slide
lung cancer histopathology image. We integrated the novel superpixel generation
algorithm with a multi-level block-wise optimization scheme. Our algorithm per-
formed a faster and finer ROI detection and segmentation process, which ensure
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a more accurate classification of ROI. The effectiveness and efficiency of our
algorithm has been verified on large histopathology WSI database, e.g. NLST.
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