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Abstract. In this paper, we propose a novel automatic hippocampus segmen-
tation framework called distance field fusion (DFF). We perform a distance
transformation for each label image of training subjects and obtain a distance
field (DF), which contains the shape prior information of hippocampus. Mag-
netic resonance (MR) and DF dictionaries are constructed for each voxel in the
testing MR image. We combine the MR dictionary through local linear repre-
sentation to present the testing sample and the DF dictionary by using the
corresponding coefficients derived from local linear representation to predict the
DF of the testing sample. We predict the label of testing images through
threshold processing for DF. The proposed method was evaluated on brain
images derived from the MICCAI 2013 challenge dataset of 35 subjects. The
proposed method is proven effective and yields mean Dice similarity coefficients
of 0.8822 and 0.8710 for the right and left hippocampi, respectively.
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1 Introduction

Hippocampus, a brain structure situated in the temporal lobe, is associated with
learning and memory. Comprehensive atrophy of brain, particularly in hippocampus
and medial temporal lobe, is the pathological characteristic of Alzheimer’s disease [1].
For accurate disease diagnosis and prognosis, the size and shape of hippocampus
should be compared between healthy and diseased subjects. Magnetic resonance
imaging (MRI) is a method used to observe brain structures and delineate hippocampus
to calculate its volume. Therefore, accurate and reliable segmentation of hippocampus
in MR images is important for clinical applications; this technique has attracted sig-
nificant attention with the widespread use of MRI.

Various methods have been proposed for hippocampus segmentation. Atlas-based
methods exhibit superior performance over other state-of-the-art techniques [2]. In
atlas-based methods, an anatomical image from an atlas is registered to the target image
to be segmented; the target image is then segmented by warping the manual label of the
atlas to the target image space via the deformation field derived from the registration
procedure [3]. Biased segmentation is likely to occur when using only one atlas but can
be reduced using multiple atlases. In multi-atlas segmentation methods, we register the
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anatomical image intensity of each atlas to the target image to be segmented; the
manual label of each atlas is then warped to the target image space via the corre-
sponding deformation field derived from the registration procedure. A fused label is
generated by combining the warped labels from all atlases and regarded as the seg-
mentation of the target image [3].

Atlas-based methods present two limitations. On one hand, segmentation accuracy
in these methods is dependent on the registration procedure. On the other hand, seg-
mentation accuracy can be improved with development of accurate and reliable
label-fusion techniques, which exhibit an inherent constraint in segmentation accuracy
because they do not utilize the shape prior information of hippocampus. To overcome
these limitations, we propose a method in the present study.

In this study, a patch-based method is developed for hippocampus segmentation in
MR brain images. Considering that the distance field (DF) of the training dataset
contains sufficient shape prior information, we combine DFs, rather than the labels of
the dataset. The proposed method was evaluated on 35 subjects, including 20 training
subjects and 15 testing subjects. Results show that the proposed distance field fusion
(DFF) is a promising technique for hippocampus segmentation.

2 Methods

2.1 Basic Idea of DFF

A segmentation problem can be described as follows. Given a training dataset, T ¼
xMR
i ; xDFi

� �N
i¼1 , which consists of N MR/DF image patch pairs, we calculate the patch

xDF of a testing MR image patch xMR, which is sampled from the MR image centered at
point x. The proposed method is based on two assumptions:

Assumption I: Image patches from MR image and DF are located on different non-
linear manifolds, and a patch can be approximately represented as a linear combi-
nation of several nearest neighbors from its manifolds.

Assumption II: Under a local constraint, the mapping from MR manifold to DF
manifold f: MMR ! MDF approximates a diffeomorphism.

Assumption I has been verified in several studies [4, 5]. In this paper, the manifolds
of MR and DF patches are denoted as MMR and MDF, respectively, and MMR and MDF

are assumed to be spanned by the patches in the training dataset T. To simplify the

calculation, we transform the patch xMR to a column vector, xMR
�!

. The column vector

xMR
�!

can be linearly represented as follows:

xMR
�! ¼ DMR w! þ e ¼

Xn
i¼1

xMR
l

�!
wi þ e

s:t: ek k \ s

8 xMR
l

�! 62 Nk xMR
�!� �

; wi ¼ 0

ð1Þ
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where DMR ¼ xMR
1

�!
; xMR

2

�!
; . . .xMR

n

�!� �
is a matrix called MR dictionary. The column

vectors of DMR are derived from the training dataset T. w! ¼ w1; w2; . . .; wn½ �T is a
column vector, whose elements are the coefficients of linear combination. e is the
reconstruction error of the sample xMR and is lower than a small non-negative number

s. Nk xMR
�!� �

is a set that consists of k-nearest neighbors (i.e., red circles filled with

yellow in Fig. 2) of the sample xMR
�!

in the dictionary DMR.
We use f to denote the mapping between MMR and MDF. According to assumption

II, f is locally linear; thus, the DF patch xDF of the testing MR patch xMR can be
calculated as follows:

xDF
�! ¼ f xMR

�!� �
� f

Xn

i¼1
xMR
l

�!
wi

� �
¼

Xn

i¼1
f xMR

l

�!� �
wi

¼
Xn

i¼1
xDFl
�!

wi ¼ DDF w! ð2Þ

where xDF
�!

is the DF corresponding to the testing sample xMR
�!

, DDF ¼

xDF1
�!

; xDF2
�!

; . . .; xDFn
�!� �

is a matrix called DF dictionary, and xDFl
�!

is the DF of xMR
l

�!
; thus,

the DF of point x is defined as:

M xð Þ ¼ �dist x;Bð Þ; x outside C
dist x;Bð Þ; otherwise

	
ð3Þ

where C is the boundary of the hippocampus, B is the nearest point from x, and
B 2 C. dist x; Bð Þ denotes the distance between x and B.

The proposed method contains three main parts: pre-processing (including regis-
tration, distance transformation, etc.), fusion (including local dictionary construction,
local linear representation, and DF prediction), and threshold segmentation. The
framework of the proposed method and detailed procedures of fusion in DFF are shown
in Figs. 1 and 2, respectively.

Fig. 1. The framework of the proposed DFF
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Local Dictionary Construction. We use I 00 ¼ IMR0
j ; IDFj


 �
j ¼ 1; 2; . . .; sj

n o
to

denote the pre-processed training dataset, which is registered to the testing image and
undergoes distance transformation procedure; in the formula, s denotes the number of
training subjects and IDFj is the DF corresponding to the MR image IMR0

j . For a testing
image YMR, we aim to construct local dictionaries for each point x.

For a point x on the testing subject, we extract patch pairs xMR
i

�
xDFi on the training

dataset I 00 in the search window centered at point x. We vectorize patches xMR
i and xDFi

to column vectors xMR
l

�! 2 Rm and xDFl
�! 2 Rm, respectively. We collect vectors xMR

l

�!
and

xDFl
�!

and to build dictionaries DMR ¼ xMR
1

�!
; xMR

2

�!
; . . .; xMR

n

��!� �
2 Rm�n and

DDF ¼ xDF1
�!

; xDF2
�!

; . . .; xDFn
��!� �

2 Rm�n, respectively.

Local Linear Representation. Several methods have been proposed to linearly rep-
resent a testing sample by combining training samples. Sparse coding with L1 (least
absolute shrinkage and selection operator) [6] emphasizes the sparsity of coefficients.
This coding represents a testing sample with the least training samples and minimum
construction error. By contrast, local linear classification (LCC) [7] accentuates
locality, rather than sparsity. LCC represents a testing sample by using several training
samples located in a local region, where the training samples are similar to the testing
sample. Compared with LLC, local anchor embedding (LAE) [8] combines a
non-negative constraint to coefficients. Therefore, in the current paper, we solve the
linear representation problem using LAE because the testing sample in the proposed
method is represented by convex combination of its closest neighbors.

Fig. 2. The detailed procedures of fusion in DFF (Color figure online)
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DF Prediction. For a testing sample xMR
�!

, we predict the DF xDF
�!

via Eq. (2). Each

testing sample xMR
�!

has a predicted DF xDF
�!

, and several overlapping points exist for

different testing samples. Hence, the DF of the point x for a testing sample xMR
�!

is
determined using several predicted DFs near the point x. As such, a weighted-average

strategy is introduced. First, we reshape the vector xDF
�! 2 Rm to a patch xDF 2 Ra�b�c,

where m ¼ a � b � c. The weight for a point u in the region P(x), which denotes
the area centered at point x, with size similar to that of patch xDF, is defined as follows:

wx
u ¼ 1

m
ð4Þ

Second, we obtain the average DF in the region P(x) to predict DF for point x by
using the following formula:

F xð Þ ¼
P

u2P xð Þ w
x
uI

x
uP

u2P xð Þ wx
u

ð5Þ

where Ixu denotes the DF of x predicted by patch xMR centered at the point u using
Eq. (2).

2.2 Threshold Segmentation

Basing on the definition of DF in Eq. (3), we can predict the label for a point x by using
a threshold:

L xð Þ ¼ 1; F xð Þ[ 0
0; F xð Þ� 0

	
ð6Þ

where F(x) is the predicted DF of the point x in Eq. (5). After predicting the label of
each voxel, we obtain a binary image and the point with the value of one belongs to
hippocampus.

3 Experiment Results

A dataset was obtained from MICCAI Challenge Workshop on Segmentation: Algo-
rithms, Theory and Applications (“SATA”)1. We applied the proposed method to the
subdataset with 35 subjects, including 20 subjects as the training dataset and 15 sub-
jects as the testing dataset. The BET approach [9] was used to remove the skull in the
MR images, and the N4 algorithm [10] was utilized to remove bias field artifacts from
the images. All training MR images were non-rigidly registered to a testing MR image

1 https://masi.vuse.vanderbilt.edu/workshop2013/.
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via different deformation fields, which were applied to all corresponding label training
images. The images were registered through DRAMMS [11], and the registered label
training images were transformed to DFs via Eq. (3). The parameters were set as
follows: a patch size of 5 � 5 � 5, a search window size of 7 � 7 � 7 for con-
structing dictionaries, and 30 nearest neighbors in LAE.

We used dice similarity coefficient (DSC), a common evaluation measure, to
quantify the effectiveness of the proposed method for hippocampus segmentation and
compare with other state-of-the-art segmentation algorithms. All experiments were
conducted with MATLAB.

3.1 Influence of Distance Field Fusion Compared with Label Fusion

Two sets of experiments were performed to verify the effectiveness of DFF. First, we
used the proposed DFF method. Second, after obtaining the coefficient vector w! of the
local linear representation via Eq. (1), we combined the label corresponding to the
center point of the element of the dictionary DMR. Table 1 shows the mean DSC values
of 15 testing subjects by using DFFs; these values were improved by 1.21 % and
1.11 % for the right and left hippocampi, respectively. The results show that DFF can
improve the accuracy of hippocampus segmentation.

3.2 Comparison with the Relevant Methods

To investigate the contribution of DFF, we compared the proposed method with several
state-of-the-art fusion algorithms, such as major voting [12], weight voting [13],
SIMPLE [14], STAPLE [15], and spatial STAPLE [16]. Comparison was performed
using MASI Label Fusion toolbox2 with default parameters. Table 2 shows the mean

Table 1. Mean and standard deviation of Dice similar coefficient obtained using LF and DFF.

Subject\Method Label fusion(LF) Distance field
fusion(DFF)

Right hippocampus 0.8701 ± 0.0160 0.8822 ± 0.0154
Left hippocampus 0.8599 ± 0.0207 0.8710 ± 0.0185

Table 2. Mean and standard deviation of Dice similar coefficient for 15 testing subjects using
the proposed method and five relevant methods.

Method\Subject Right hippocampus Left hippocampus

Major voting 0.8521 ± 0.0373 0.8387 ± 0.0502
Weight voting 0.8531 ± 0.0369 0.8384 ± 0.0523
SIMPLE 0.8525 ± 0.0373 0.8394 ± 0.0479
STAPLE 0.8481 ± 0.0434 0.8351 ± 0.0610
Spatial STAPLE 0.8526 ± 0.0374 0.8384 ± 0.0538
Our 0.8822 ± 0.0154 0.8710 ± 0.0185

2 http://www.nitrc.org/projects/masi-fusion.
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and standard deviation of DSC for 15 testing subjects by using the proposed method
and the five relevant methods. The mean and standard deviations of DSC obtained by
the proposed method are 0.8822 ± 0.0154 for the right hippocampus and
0.8710 ± 0.0185 for the left hippocampus. The results show that the proposed method
is more accurate than the five relevant fusion algorithms.

For visual comparison, we present the coronal view of the segmentation of the right
hippocampus of the testing subject by using the proposed method (Fig. 3. (a)) and the
five other methods (Fig. 3. (b)–(f)). The hippocampus segmented by the proposed
method is similar to the ground truth than any of the five methods. In particular, in the
blue arrow region, the proposed method can delineate the boundary of hippocampus,
whereas the five other methods lead to large estimation errors.

4 Conclusion

In this study, we propose a novel DFF-based method to segment hippocampus in MR
images. The method was established using the following procedures: (1) we used a
distance transformation for label training images to obtain DF and utilize the shape
information of hippocampus in training subjects; and (2) the local diffeomorphic
mapping from the MR manifold was introduced to the DF manifold to predict the DF
for a testing subject. The proposed method was evaluated for MR brain images on a
dataset including 35 subjects. The proposed method exhibits superior performance over
other fusion algorithms.

Fig. 3. Coronal view of the right hippocampus segmentation results for the testing subject by
our method (Fig. 3. (a)), and five other methods (Fig. 3. (b)–(f)): Major Voting, Weight Voting,
SIMPLE, STAPLE and Spatial STAPLE, along with the manual segmentation. Red contour and
green contour denote the automatic segmentation results and manual segmentation results,
respectively (Color figure online).
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