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Abstract. Lung cancer cell detection serves as an important step in the
automation of cell-based lung cancer diagnosis. In this paper, we pro-
pose a robust and efficient lung cancer cell detection method based on
the accelerated Deep Convolution Neural Network framework(DCNN).
The efficiency of the proposed method is demonstrated in two aspects:
(1) We adopt a training strategy, learning the DCNN model parameters
from only weakly annotated cell information (one click near the nuclei
location). This technique significantly reduces the manual annotation
cost and the training time. (2) We introduce a novel DCNN forward
acceleration technique into our method, which speeds up the cell detec-
tion process several hundred times than the conventional sliding-window
based DCNN. In the reported experiments, state-of-the-art accuracy and
the impressive efficiency are demonstrated in the lung cancer histopatho-
logical image dataset.

1 Introduction

Automatic lung cancer cell detection is the basis of many computer-assisted
methods for cell-based experiments and diagnosis. However, at present, very few
work has been focused on lung cancer cell detection. The difficulty in lung cancer
cell detection problem is basically three-fold. First, the density of lung tumor cells
is generally very high in the histopathological images. Second, the cell size might
vary and cell clumping is usual. Third, the time cost of cell detection method,
especially in high-resolution histopathological images, is very high in cell-based
diagnosis. With these challenges mentioned above, it is still in great demand for
researchers to develop efficient and robust lung cancer cell detection methods.
To alleviate these problems, we propose an efficient and robust lung cancer
cell detection method based on the Deep Convolution Neural Network(DCNN)
[1]. Other than computationally-intensive frameworks [2,3], or ROI(region of
interest)-based detection method [4,5], it exploits the deep architecture to learn
the hierarchical discriminative features, which has recently achieved significant
success in biomedical image analysis [6,7].
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In the proposed method, the training process is only performed on the local
patches centered at the weakly annotated dot in each cell area with the non-
cell area patches of the same amount as the cell areas. This means only weak
annotation of cell area (a single dot near the center of cell area) are required
during labeling process, significantly relieving the manual annotation burden.
Another benefit for this technique is to reduce the over-fitting effect and make
the proposed method general enough to detect the rough cell shape information
in the training image, providing the benefit for further applications, e.g. cell
counting, segmentation and tracking.

During testing stage, the conventional sliding window manner for all local
pixel patches is inefficient due to the considerable redundant convolution com-
putation. To accelerate the testing process for each testing image, we present
a fast forwarding technique in DCNN framework. Instead of preforming DCNN
forwarding in each pixel patch, the proposed method performs convolution com-
putation in the entire testing image, with a modified sparse convolution kernel.
This technique almost eliminates all redundant convolution computation com-
pared to the conventional pixel-wise classification, which significantly acceler-
ates the DCNN forwarding procedure. Experimental result reports the proposed
method only requires around 0.1 s to detect lung cancer cells in a 512 × 512
image, while the state-of-the-art DCNN requires around 40 s.

To sum up, we propose a novel DCNN based model for lung cancer cell detec-
tion in this paper. Our contributions are summarized as three parts: (1) We built
up a deep learning-based framework in lung cancer cell detection with modi-
fied sliding window manner in both training and testing stage. (2) We modify
the training strategy by only acquiring weak annotations in the samples, which
decreases both labeling and training cost. (3) We present a novel accelerated
DCNN forwarding technology by reducing the redundant convolution computa-
tion, accelerating the testing process several hundred times than the traditional
DCNN-based sliding window method. To the best of our knowledge, this is the
first study to report the application of accelerated DCNN framework for lung
cancer cell detection.

2 Methodology

Given an input lung cancer histopathological image I, the problem is to find a set
D = {d1, d2, . . . , dN} of detections, each reporting the centroid coordinates for a
single cell area. The problem is solved by training a detector on training images
with given weakly annotated ground truth information G = {g1, g2, . . . , gM},
each representing the manually annotated coordinate near the center of each
cell area. In the testing stage, each pixel is assigned one of two possible classes,
cell or non-cell, the former to pixels in cell areas, the latter to all other pixels.
Our detector is a DCNN-based pixel-wise classifier. For each given pixel p, the
DCNN predicts its class using raw RGB values in its local square image patch
centered on p.
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2.1 Training the Detector

Using the weakly annotated ground truth data G, we label each patch centered
on the given ground truth gm as positive(cell) sample. Moreover, we randomly
sample the negative(non-cell) samples from the local pixel patches whose center
are outside of the boundary of positive patches. The amount of negative sample
patches is the same as the positive ones. If a patch window lies partly outside of
the image boundary, the missing pixels are fetched in the mirror padded image.

For these images, we only feed very few patches into the proposed model for
training, therefore extremely accelerating the training stage. Besides, this tech-
nique also partly eliminates the effect of over-fitting due to the under-sampling
usage of sample images (Fig. 1).

Positive Samples

Tile

Negative Samples

Whole Slide Image

Fig. 1. The illustration of generation of training samples: (1) Tiles are randomly sam-
pled from the whole slide images. (2) The sampled tiles are manually annotated by
well-trained pathologists, which construct the weakly annotated information. (3) We
only feed the local pixels patches center on the annotated pixels and the randomly
sampled non-cell patches of the same amount as the cell ones.

2.2 Deep Convolution Neural Network Architecture

Our DCNN model contains two pairs of convolution and max-pooling layers,
followed by a fully connected layer, rectified linear unit layer and another fully
connected layer as output. Figure 2 illustrates the network architecture for train-
ing stage. Each convolution layer performs a 2D-convolution operation with a
square filter. If the activation from previous layer contains more than one map,
they are summed up first and then convoluted. In the training process, the stride
of max-pooling layer is set the same as its kernel size to avoid overlap, provide
more non-linearity and reduce dimensionality of previous activation map. The
fully connected layer mixes the output from previous map into the feature
vector. A rectified linear unit layer is followed because of its superior non-
linearity. The output layer is simply another fully connected layer with just two
neurons(one for cell class, the other for non-cell class), activated by a softmax
function to provide the final possibility map for the two classes. We detail the
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Fig. 2. The DCNN architecture used in the training process of the proposed framework.
C, MP, FC, ReLU represents the convolution layer, max pooling layer, fully connected
layer and rectified linear unit layer, respectively.

Table 1. Backward (left) and accelerated forward (right) network architecture. M : the
number of patch samples, N : the number of testing images. Layer type: I - Input, C -
Convolution, MP - Max Pooling, ReLU - Rectified Linear Unit, FC - Fully Connected

Type Maps Filter Filter Stride
and neurons size num

I 3 × 20 × 20M - - -
C 20 × 16 × 16M 5 20 1
MP 20 × 8 × 8M 2 - 2
C 50 × 4 × 4M 5 50 1
MP 50 × 2 × 2M 2 - 2
FC 500M 1 - -
ReLU 500M 1 - -
FC 2M 1 - -

Type Maps Filter Filter Stride
and neurons size number

I 3 × 531 × 531N - - -
C 20 × 527 × 527N 5 20 1
MP 20 × 526 × 526N 2 - 1
C 50 × 518 × 518N 9 50 1
MP 50 × 516 × 516N 3 - 1
FC(C) 500 × 512 × 512N 5 - 1
ReLU 500 × 512 × 512N 1 - -
FC(C) 2 × 512 × 512N 1 - -

layer type, neuron size, filter size and filter number parameters of the proposed
DCNN framework in the left of Table 1.

2.3 Acceleration of Forward Detection

The traditional sliding window manner requires the patch-by-patch scanning for
all the pixels in the same image. It sequentially and independently feeds patches
to DCNN and the forward propagation is repeated for all the local pixel patches.
However, this strategy is time consuming due to the fact that there exists a lot
of redundant convolution operations among adjacent patches when computing
the sliding-windows.

To reduce the redundant convolution operations, we utilize the relations
between adjacent local image patches. In the proposed acceleration model, at
the testing stage, the proposed model takes the whole input image as input and
can predict the whole label map with just one pass of the accelerated forward
propagation. If a DCNN takes n×n image patches as inputs, a testing image of
size h × w should be padded to size (h + n − 1) × (w + n − 1) to keep the size
consistency of the patches centered at the boundary of images. The proposed
method, in the testing stage, uses the exact weights solved in the training stage to
generate the exactly same result as the traditional sliding window method does.
To achieve this goal, we involve the k-sparse kernel technique [8] for convolution
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and max-pooling layers into our approach. The k-sparse kernels are created by
inserting all-zero rows and columns into the original kernels to make every two
original neighboring entries k-pixel away. To accelerate the forward process of
fully connect layer, we treat fully connected layer as a special convolution layer.
Then the fully connect layer could be accelerated by the modified convolution
layer. The proposed fast forwarding network is detailed in Table 1(right). Exper-
imental results show that around 400 times speedup is achieved on 512 × 512
testing images for forward propagation (Fig. 3).

Fig. 3. The illustration of acceleration forward net: (1) The proposed method takes
the whole image as input in testing stage. (2) The input image is mirror padded as
the sampling process in the training stage. (3) The padded image is then put into the
accelerated forward network which generates the whole label map in the rightmost.
Note that the fully connected layer is implemented via a modified convolution layer to
achieve acceleration.

3 Materials, Experiments and Results

3.1 Materials and Experiment Setup

Data Set. The proposed method is evaluated on part of the National Lung
Screening Trial (NLST) data set [9]. Totally 215 tile images of size 512×512 are
selected from the original high-resolution histopathological images. The nuclei in
these tiles are manually annotated by the well-trained pathologist. The selected
dataset contains a total of 83245 nuclei objects.

Experiments Setup. We partition the 215 images into three subsets: training
set (143 images), validation set (62 images) and evaluation set (10 images).
The evaluation result is reported on evaluation subset containing 10 images. We
compare the proposed method with the state-of-the-art method in cell detection
[4] and the traditional DCNN-based sliding window method [1].
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Table 2. F1 scores on the evaluation set

1 2 3 4 5 6 7 8 9 10 Mean

MSER [4] 0.714 0.633 0.566 0.676 0.751 0.564 0.019 0.453 0.694 0.518 0.559

Proposed 0.790 0.852 0.727 0.807 0.732 0.804 0.860 0.810 0.770 0.712 0.786

Table 3. Mean time cost comparison on the evaluation set

1 2 3 4 5 6 7 8 9 10 Mean

MSER [4] 37.897 29.000 37.172 43.332 42.806 37.843 28.548 41.570 38.346 37.012 37.353

Pixel-wise [10] 38.936 38.923 38.306 38.080 37.126 38.038 37.030 37.398 37.407 38.470 37.972

Proposed 0.128 0.124 0.116 0.115 0.114 0.125 0.115 0.127 0.116 0.126 0.121

Fig. 4. Visual Comparison between the proposed method and MSER-based method
[4]. The green area denotes the detected cell area by the corresponding method. Blue
dots denote the ground-truth annotation. The proposed method is able to detect the
cell area missed by the MSER-based method as denoted in red circle. Better viewed in
×4 pdf (Color figure online).

3.2 Results

Training Time Cost. The mean training time for the proposed method is
229 s for the training set described below. The unaccelerated version with the
same training strategy costs the same time as the proposed method. Besides,
the state-of-the-art MSER-based method [4] costs more than 400000 s, roughly
5 days for training 143 images of size 512× 512. The proposed method is able to
impressively reduce several thousand times time cost of training stage than the
state-of-the-art MSER-based method due to the proposed training strategy.

Accuracy of Testing. Table 2 reports the F1 score metric comparison between
the proposed method and MSER-based method. The proposed method out-
performs the state-of-the-art method in almost all of the evaluation images in
terms of F1 scores. We also visually compares our results with the MSER-based
method in Fig. 4. The proposed method detects almost all of the cell regions
even in images with intensive cells.
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Testing Time Cost. As shown in Table 3, the proposed method only costs
around 0.1 s for a single 512×512 tile image, which is the fastest among the three
methods. The proposed method accelerates the forwarding procedure around 400
times compared with the traditional pixel-wise sliding-window method, which is
due to the accelerated forwarding technique.

4 Conclusion

In this paper, we propose an efficient and robust lung cancer cell detection
method. The proposed method is designed based on the Deep Convolution Neural
Network framework [10], which is able to provide state-of-the-art accuracy with
only weakly annotated ground truth. For each cell area, only one local patch
containing the cell area is fed into the detector for training. The training strategy
significantly reduces the time cost of training procedure due to the fact that
only around one percent of all pixel labels are used. In the testing stage, by
utilizing the relation of adjacent patches, the proposed method provides the
exact same results within a few hundredths time. Experimental results clearly
demonstrate the efficiency and effectiveness of the proposed method for large-
scale lung cancer cell detection. In the future, we shall attempt to combine the
structured techniques [11–13] to further improve the accuracy.
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