
Chapter 4

Bacterial Opportunistic Pathogens of Fish

Nicolas Derome, Jeff Gauthier, Sébastien Boutin, and Martin Llewellyn

Abstract Bacterial opportunistic pathogens are defined as microorganisms caus-

ing disease in hosts experiencing atypical environmental stressors or having

impaired immune function. In intensive aquacultural rearing, stress factors (such

as hypoxia, abnormal pH, and high population density) generate an optimal setting

for such pathogens to thrive. The status of these organisms—either as natural

components of a healthy microbiome, or a latent step in disease establishment, or

both—is still not entirely clear. In this chapter, we outline the current understanding

(i.e., taxonomy, biology, disease impact, and current treatment options) of major

opportunist bacterial genera of special interest in aquaculture: Aeromonas,
Flavobacterium, and Vibrio. On a broader scale, we consider the importance of

host/microbiota/environment interactions in opportunistic infections of teleost fish.

Not only does this cross talk play a crucial role in defining disease, but their

importance also reveals novel strategies to prevent and cure opportunistic diseases.

As such, preventive measures to reduce host stress, along with active interventions
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Département de Biologie, Université Laval, Québec, QC, Canada
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to enhance (or restore) the protective effect of the microbiome (i.e., prebiotics,

probiotics, synbiotics), can mitigate bacterial opportunistic diseases.

4.1 Introduction

In recent decades, we have developed a better understanding of the role of micro-

organisms in beneficial long-term interactions with their host. Fish mucosae (skin,

gills, and gut) and associated microbiota are an important primary defense barrier

against pathogens (Trivedi 2012). Endogenous fish bacteria contribute to host

defense in several ways:

1. Colonization resistance (CR) which prevents pathogen growth with competitive

use of resources (Dillon and Charnley 2002)

2. Friction-preventing polymers

3. Stimulation of the innate immune response

4. Production of inhibitory compounds (Austin 2006; Ramsey and Whiteley 2009)

Disturbance of the relative taxonomic abundance of commensal microbiota (i.e.,

dysbiosis, often representing broken integrity of the microbiome (Dillon and

Charnley 2002, see Sect. 4.2.3) is linked to specific human diseases (Frank

et al. 2011). The decrease of commensal nonpathogenic bacteria in fish mucosae

is correlated to increased abundance of potential pathogens (Boutin et al. 2013b). In

many cases, pathogens may be isolated from healthy fish (Cahill 1990; Austin

2006). It is not clear whether asymptomatic carriers are merely a latent step of a

disease cycle. Nonetheless, known pathogenic organisms present as a component of

healthy fish microbiota are termed “opportunistic pathogens” (Austin and Austin

2007). Here, we review bacterial opportunistic pathogens involved in fish disease.

4.2 Overview

Opportunistic pathogens are defined as microorganisms associated with disease

only in host individuals experiencing atypical environmental stressors or having

impaired immune function (Boutin et al. 2013b). Most pathogens that impact

aquaculture are deemed opportunistic. Important bacterial pathogens are

represented by multiple species and several genera (Austin 2006). In this chapter,

we focus on three genera with special reference to aquaculture: Aeromonas,
Flavobacterium, and Vibrio.

4.2.1 The Genus Aeromonas

Aeromonas is a genus belonging to the Gammaproteobacteria that is ubiquitous in

freshwater (Cahill 1990) and commonly found in the commensal microbiota of
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aquatic or terrestrial animals, plants, and natural soils (Abbott et al. 1992). Species

among this genus are mainly pathogenic to fish and, to some extent, mammals and

reptiles (Janda and Abbott 2010). Aeromonads are separated into two major groups,

according to their morphological traits and optimum growth conditions (Janda and

Abbott 2010): motile aeromonads, which tend to be mesophilic, and nonmotile

aeromonads, which develop in psychrophilic conditions (Janda and Duffey 1988).

The main diseases associated with motile aeromonads vary from opportunistic

infections of fish to bacterial gastroenteritis in humans leading to bacteremia in

immunocompromised patients (Austin and Austin 2012a, b). Due to their low

salinity and cold temperature requirements, nonmotile aeromonads are almost

exclusively pathogenic to freshwater fish. Especially in industrial aquaculture,

their contribution to economic losses is worldwide and substantial (Nielsen

et al. 2001). Solely in the province of Quebec, Canada, aeromonads are responsible

for 30–60 % of all infection diagnoses in farmed salmonids each year (Morin 2010).

The conditions to which farmed fish are exposed have been shown to disturb their

natural microbiota (Boutin et al. 2013b), leaving them more vulnerable to oppor-

tunistic pathogens (Stecher et al. 2013). Aeromonads apparently exploit dysbiosis

in aquaculture to emerge as virulent and damaging.

4.2.1.1 Aeromonas hydrophila

This bacterium is a ubiquitous and potent opportunistic pathogen of fish and

humans. Zoonosis is unlikely in healthy individuals, but may occur via contact

with mucus or tissue from a carrier fish (Lowry and Smith 2007). In farmed

freshwater fish, A. hydrophila causes motile aeromonas septicemia (MAS), found

in two main forms (Cipriano et al. 1984): (1) The acute form induces internal

hemorrhages and generalized bacteremia, without apparent external symptoms,

except for darkening of the skin and erratic behavior. (2) The chronic form is

characterized by skin ulcers and underlying necrosis of the musculature. Inflam-

matory cells are often absent in necrotized tissue, but abundant in the adjacent

epidermis. Aeromonas hydrophila is naturally present in the microflora of healthy

fish (Trust et al. 1979). However, it takes advantage of environmental stresses to

which fish are exposed. High-nutrient diets, combined with the lack of oxygen-

producing plankton, lead to faster oxygen depletion, which facilitates A. hydrophila
outbreaks in farmed channel catfish (Plumb et al. 1976).

Aeromonas hydrophila consists of heterotrophic facultative–anaerobic Gram-

negative bacteria. They are rod shaped and motile, and their size is from 0.3 to

1.0 μm wide by 1.0–3.5 μm long (Horneman et al. 2007). Layered cell surface

proteins (S-layers) facilitate osmotolerance, resistance to bactericidal compounds,

and increased adherence (Sara and Sleytr 2000). Other virulence factors include

fimbriae for increased adherence to the host tissues, cytotoxic enterotoxin, and

hemolysin. The AH-3 strain also expresses effector proteins secreted by a molec-

ular nanosyringe complex known as the type III secretion system (T3SS). The

expression of this complex is activated by low extracellular calcium concentrations

and allows specific injection of effector proteins in eukaryotic cells of the host
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(Vilches et al. 2009). As for many Gammaproteobacteria, the T3SS is a key

determinant in virulence (Coburn et al. 2007). Secreted effectors cause direct

toxicity to infected cells by disrupting actin polymerization and disruption of

intracellular signaling.

4.2.1.2 Aeromonas salmonicida

Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis,
a ravaging opportunistic disease affecting salmonids in industrial aquaculture. Its

role as the causative agent of salmonid furunculosis was first established near the

end of the nineteenth century (Emmerich and Weibel 1890). In the province of

Quebec, Canada, where the brook trout accounts for 95 % of farmed salmonids,

furunculosis represents 30–60 % of all diagnoses of fish infections each year (Morin

2010). This disease is highly contagious and can decimate an experimental sea trout

(Salmo trutta morpha trutta) and induce 75 % mortality in a group of brown trout

(Salmo trutta morpha fario) in less than 7 days after challenge (Scott 1968).

Zoonoses are not a concern, since the growth temperature range of this bacterium

is not compatible with the internal temperature of humans. The concern is, how-

ever, not only on the high pathogenic potential of A. salmonicida between fish but

on how its proliferation is facilitated in industrial fish culture systems. Elevated

temperature makes optimum growth of A. salmonicida easier to achieve, and the

high density of fish stocks allows rapid and proximal transmission of the bacteria

between fish. Even outside aquaculture basins, high temperature (more than 18 �C)
is correlated to increased abundance of A. salmonicida in the wild. Climate change

has been shown to accelerate the prevalence of furunculosis in wild fish of the

James Bay, Quebec, Canada (Tam et al. 2011).

Salmonid furunculosis manifests itself in three major forms (Cipriano and

Bullock 2001): (1) The peracute form of furunculosis mostly affects fingerlings.

Clinical indications are not obvious, since the only evident marks are darkening of

the skin, slight exophthalmia, and premature death. (2) Acute infections affect

mostly juvenile and adult salmonids. This form is notorious for the variety of

physiological and behavioral damages induced in the infected fish. First signs

include color darkening and hemorrhage at the base of fins and the oral cavity.

This condition worsens with hemorrhages in internal and reproductive organs,

necroses of the kidney and spleen, and also gross intestine congestion (Scott

1968). Aeromonas salmonicida then gains access to the bloodstream via the mul-

tiple internal lesions, which leads to generalized septicemia and, ultimately, death

of the infected fish. (3) The chronic form of furunculosis primarily affects older fish

or species which have greater innate resistance to infection by A. salmonicida, such
as the rainbow trout (Oncorhynchus mykiss) (Scott 1968). It is this form of furun-

culosis which is characterized by boil-like lesions in varying numbers on the skin of

infected fish. The underlying ulcers may extend deep into the musculature.

Aeromonas salmonicida are Gram-negative rod-shaped bacteria of about

1� 1.5 μm in size, with cells arranged in bunches (Loch and Faisal 2010). They

are facultative anaerobes whose optimum growth temperature ranges between
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22 and 25 �C. A vast range of virulence factors allow rapid and efficient coloniza-

tion of eukaryotic cells. These include an extracellular matrix of lipopolysaccharide

(LPS) and a surface protein array (A-layer) which, respectively, enhance

autoaggregation (Johnson et al. 1985) and adherence to eukaryotic cells (Gardu~no
and Kay 1992). An arsenal of effector products are also secreted specifically to

eukaryotic hosts by a molecular nanosyringe complex known as the type III

secretion system (T3SS). The T3SS is the main virulence factor of

A. salmonicida, and loss-of-function (LOF) mutations can drastically reduce viru-

lence. Compared to the fully virulent wild-type (wt) strain JF5054, 2� 105 times

more CFU per fish of T3SS-negative mutants must be administered in order to

achieve similar fish mortality (Vanden Bergh and Frey 2013). Genome sequencing

of the reference strain A449 (Reith et al. 2008) has revealed major insights about

other secretion routes such as the T2SS or T6SS. However, the T3SS genes are

located on a large conjugative plasmid (pAsa5), while the others are on chromo-

somal loci. Previous studies have revealed that loss of virulence in A. salmonicida is
due to thermolability of this plasmid (Stuber et al. 2003). High temperature (more

than 25 �C) and stressful growth conditions lead to rearrangement of the T3SS-

bearing plasmid by DNA recombination events between insertion sequences

(IS) (Tanaka et al. 2012).

4.2.2 The Genus Flavobacterium

The genus Flavobacterium occurs in most aquatic ecosystems. Some species

belonging to this genus are known as pathogenic agents of flavobacteriosis in

fish. The four most important etiological agents of flavobacteriosis are

F. psychrophilum, F. columnare, F. branchiophilum, and F. johnsoniae (Bernardet
and Bowman 2006). Flavobacteriosis is a major problem in Scandinavian aquacul-

ture, but it also affects fisheries worldwide (Decostere et al. 1998; Durborow

et al. 1998; Madetoja et al. 2002; Bernardet and Bowman 2006; Mohamed and

Ahmed Refat 2011). Flavobacterium sp. are naturally present in the fish microbiota.

When the immune defenses of their host weaken, they undergo a positive shift in

their virulence (Cahill 1990; Nematollahi et al. 2003; Austin 2006; Bernardet and

Bowman 2006; Boutin et al. 2013b). Common symptoms of Flavobacteriosis

include the erosion of external tissues of the fish (e.g., gills, fin, jaws, and tails).

Evidence shows that Flavobacterium sp. is transmitted vertically as well as hori-

zontally through water and physical contact (Bernardet and Bowman 2006).

4.2.2.1 Flavobacterium psychrophilum

Flavobacterium psychrophilum is the etiological agent of the (1) peduncle disease,

the (2) cold-water disease, and the (3) rainbow trout fry syndrome. Those diseases

occur mostly in salmonids, but its prevalence as a pathogen has also been
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demonstrated in other fish families (Amita et al. 2000; Liu et al. 2001). The

symptoms of those diseases are characteristic lesions and necrosis occurring on,

or near, the peduncle (Davis 1946); skin lesions located near the dorsal fin are

associated in severe cases with a systemic infection causing anorexia, distended

abdomen, and darkened pigmentation in the region of the caudal peduncle. In those

severe cases, the bacterium may be isolated from internal organs such as the spleen

and kidney. In rainbow trout fry syndrome, the several symptoms include lethargy

and abnormal spiral swimming behavior. Subsequently, darkening of the gills,

swelling of the abdomen, and reddening of the vent may be observed prior to death.

Flavobacterium psychrophilum are strictly aerobic, Gram-negative, slender,

flexible rods. Their typical growth temperature ranges from 4 to 23 �C and is

supported in water of low salinity but not high salinity. Strains of

F. psychrophilum showed genetic heterogeneity with four serotypes identified in

Japan, the United States, and Europe and the presence of diverse plasmids

(Chakroun et al. 1998) (Wakabayashi et al. 1994; Lorenzen and Olesen 1997;

Chakroun et al. 1998; Izumi et al. 2003). As the bacteria can be detected in sexual

products from both female and male fish, parental transmission could likewise

constitute a route of colonization (Holt 1993; Ekman et al. 1999; Amita

et al. 2000; Vatsos et al. 2001, 2006; Cipriano 2005). This transmission route

may lead to the development of disease in fry (Rangdale et al. 1996; Brown

et al. 1997; Rangdale et al. 1997a, b; Kumagai et al. 2000; Cipriano 2005).

Furthermore, F. psychrophilum is part of the natural microbiota, which makes

fish a main reservoir for horizontal transmission (Bullock and Snieszko 1981;

Holt 1993; Lorenzen 1994; Madetoja et al. 2002). Transmission via water streams

is also demonstrated as a possible cross-contamination route—a claim that is

supported by the ability of this bacterium to survive in streaming water and

sediments for several months (Rangdale 1995; Brown et al. 1997; Madsen and

Dalsgaard 1999; Vatsos et al. 2001; Madetoja et al. 2002; Sundell and Wiklund

2011).

However, even if F. psychrophilum is widely transmissible, the disease can

occur only in immune-suppressed or stressed fish. Some studies proved that contact

of the bacterium even at high concentrations is not sufficient to trigger an outbreak

in healthy fish (Iida and Mizokami 1996; Ostland et al. 1997; Decostere et al. 2000).

When the fish are stressed, the bacteria can outcompete the immune system and the

natural microflora to invade the organisms via the gills, skin injuries, or gut

(Lorenzen 1994; Liu et al. 2001).

4.2.2.2 Flavobacterium columnare

Flavobacterium columnare is an aerobic Gram-negative rod responsible for the

columnaris disease. Phylogenetic analysis of the 16S rRNA gene has revealed

strong heterogeneity among F. columnare strains. However, the high percentage

of DNA–DNA hybridization further leads to a consideration of all those strains as

being one species.
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The virulence of this bacterium is strain dependent and is effective against a

large range of host families, such as the Salmonidae, Cyprinidae, and Anguillidae.

As is the case for many pathogens, a phylogenetic relationship between strain

genotype and host species range is observed (Darwish and Ismaiel 2005). In

fingerlings, death occurs early and no external lesions are observed. In the

Salmonidae, specific lesions located near the dorsal fin have led to the naming of

this condition as “saddleback disease.” Flavobacterium columnare is also an

etiological agent of gill disease, along with F. branchiophilum. Symptoms of this

disease include (1) white spots on the side of the head, the gills, and fins, (2) erosion

of the mouth and fins, (3) necrosis, and (4) hemorrhagic lesions. In severe cases, the

disease becomes systemic, and the bacteria colonize internal organs (Durborow

et al. 1998). Stressful conditions have been shown to increase the probability of

infections. Once fish are infected, they become a reservoir for the pathogen, which

facilitates epizootic transmission of the disease. Presence of F. columnare favors

colonization by other secondary pathogens like Saprolegnia. The disease is mostly

transmitted via the surrounding waters and via moribund fish. Survival of

F. columnare in water was estimated to be (1) 77 h in freshwater at 20 �C and

(2) up to 16 days in alkaline water at 25 �C (Fijan 1967). The bacterial agent is able

to colonize and infect fish without interindividual contact via the water column

(Welker et al. 2005).

4.2.2.3 Flavobacterium branchiophilum

This bacterial species was first isolated from gills of salmonids in Japan, Ontario,

and Oregon, as well as rainbow trout, sheatfish, and silver carp in Hungary. The

etiological agent of gill disease is a Gram-negative rod which grows at temperatures

ranging from 5 to 30 �C in low salinity (0–0.1 %).

Bacterial gill disease is one of the most important conditions affecting the

salmonid aquaculture industry in Ontario (Ferguson et al. 1991; Turnbull 1993;

Ostland et al. 1994). This disease is characterized by colonization of the gills at the

lamellar surface by F. branchiophilum, which induces lamellar epithelial necrosis

(Speare and Ferguson 1989; Speare et al. 1991). All the isolated strains so far are

able to attach to the gills; however, only the most virulent ones colonize the gills

substantially (Turnbull 1993; Ostland et al. 1995). Virulence of F. branchiophilum
is not as pronounced as F. columnare or F. psychrophilum. Even in severe cases, the
disease does not become systemic and usually does not invade the inner organs. In

fact, the disease causes mortality only in juveniles (Kimura et al. 1978;

Wakabayashi et al. 1980). The virulence of F. branchiophilum is attributed to

various enzymatic and hemagglutinating activities detected in the extracellular

products. Touchon et al. showed that the genome of F. branchiophilum presents

the first observation of a cholera-like toxin gene acquired by a non-Proteobacteria
(Touchon et al., 2011). Several adhesin-encoding genes are present, which may be

linked to the virulence of the pathogen (Touchon et al. 2011). Few studies have

focused on the transmission route of F. branchiophilum in aquaculture systems.
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Evidence suggests, however, that it probably occurs horizontally from the water

supply. Indeed, bath exposure experiments reveal the presence of the pathogen in

the water during outbreaks (Heo et al. 1990; Ostland et al. 1995).

4.2.3 The Genus Vibrio

The link between the genus Vibrio and pathogenicity dates from the beginning of

modern microbiology. Several marine Vibrio, such as V. anguillarum, V. harveyi,
and V. vulnificus, have proven to be potent pathogens of marine fish, migrating

freshwater fish, bivalves, and crustaceans (Austin 2010). In an aquacultural context,

high stock density facilitates epizootic transmission and augments the incidence of

zoonoses affecting human consumers (Ghittino et al. 2003).

4.2.3.1 Vibrio anguillarum

The 1718’s outbreak of pestis rubra anguillarum (Lat. “red pest of eels”) in Italy

was the first reference to a bacterial fish disease in the scientific literature (Bonaveri

1761 (quoted by Drouin de Bouville 1908)). However, it was not until the end of the

nineteenth century that the causal agent of this disease was determined. Following

an epizootic episode dating back to 1817 in migrating eels, Canestrini isolated the

causal agent, which he named Bacterium anguillarum (1893). Sixteen years later,

the etiological agent of the “red pest” in the Baltic Sea was described by Bergman

(1909), who proposed the name Vibrio anguillarum from his findings. Subse-

quently, it was established that both researchers had described the same etiological

agent, whose latter name has been retained. The disease, now generally referred to

as “vibriosis,” causes fin and mouth rot, hemorrhages, generalized septicemia, and

superficial skin lesions (Egidius 1987). Currently, it is widely known that vibriosis

affects not only eels but also benthopelagic or benthic fish such as cod (Bagge and

Bagge 1956), halibut (Hoare et al. 2002), and turbot (Grisez et al. 1996). Migrating

freshwater fish, like Pacific and Atlantic salmon, also are susceptible targets of

vibriosis (Evelyn 1971; Arkoosh et al. 1998; Frans et al. 2011). To a lesser extent,

bivalves and crustaceans are occasionally infected (Paillard et al. 2004; Aguirre-

Guzmán et al. 2004).

Vibrio anguillarum are Gram-negative, curved-rod-shaped bacteria. Their motil-

ity is guided by chemotaxis and mediated by a monotrichous polar flagellum

(Larsen and Boesen 2001). Colonies growing on 2 % NaCl blood agar at 22 �C
typically are yellowish, low, convex, and shiny and have unguent consistency and

are sized from 3 to 5 mm after 48 h (Myhr et al. 1991).

The first pillar of bacterial virulence is proper recognition of the host. Vibrio
anguillarum is not an exception and exhibits motility driven by chemotactic

recognition of skin or gut mucus components (O’Toole et al. 1996, 1999). Active

motility is required in the early stages of infection. A decrease in virulence and
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persistence in systemic infections is observed when the flagellin genes flaA, flaD,
and flaE undergo deleterious mutations (Milton et al. 1996; McGee et al. 1996).

Following movement toward the host, virulent bacteria “grip” to the host epithelial

cells. In V. anguillarum, bacterial adherence is facilitated by a myriad of adherence

factors (i.e., adhesins) such as fimbriae, outer membrane proteins (OMP), and

extracellular polysaccharides (Pizarro-Cerdá and Cossart 2006). Invasion of host

tissue is followed by degradation of epithelial mucus due to extracellular

metalloprotease EmpA (Han et al. 2011). Once V. anguillarum has reached the

blood vessels, the activity of hemolysins causes erythrocyte lysis and release of

intracellular heme. Chelated iron ions are then captured by a siderophore-dependent

iron acquisition system, which is encoded on pJM1, a ~65 kb plasmid (Stork

et al. 2002).

4.3 Factors Triggering Opportunistic Infections

Examples of pathogenic outbreaks in aquaculture present some common trends:

• Opportunistic pathogens seem to be present at low prevalence in healthy fish,

indicating that under normal conditions, the immune system can maintain these

organisms at low abundance.

• Practices from aquaculture modify the environmental conditions that greatly

impact the virulence or diversification of the pathogens (virus or bacteria).

In the following sections, we will explore the three main factors triggering

opportunistic infections: (1) environmental factors, (2) relationships between path-

ogens and commensals, and (3) host–microbe interactions.

4.3.1 Environmental Factors

Fish welfare is known to be influenced by environmental parameters, as for all

animals. There are now strong indications that circadian and seasonal variation of

temperature and light can affect health (Zapata et al. 1992; Nelson 2004; Bowden

et al. 2007). Such factors can affect fish susceptibility to infectious diseases due to

increased prevalence of the pathogen or due to increased susceptibility in the host

(Revie et al. 2002; Lillehaug et al. 2003; Hjelm et al. 2004; Ondračková et al. 2004).

Temperature is one of the most influential environmental factors as fish are ecto-

therms and their inability to regulate their internal temperature influences their

immune response (Baras 1995). For example, the columnaris disease occurs when

temperature rises higher than 14 �C and most infections are observed between

20 and 30 �C (Durborow et al. 1998). Temperature may therefore influence both

innate and adaptive immune responses in many different fish species (Bly and Clem

1992; Ellis 2001). Usually, higher temperature enhances the immune response in
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fish whereas lower temperature exerts an adverse effect (Bly and Clem 1992).

Opportunistic diseases that appear at higher temperature are thus either due to

(1) autoimmune damage triggering the infections or to (2) a direct effect on

pathogen growth.

A second influential environmental parameter triggering opportunistic infections

in fish is stress. The growing demand for fish is answered by the industry with

extensive production, which often negatively affects the welfare of farmed fish

(Ashley 2007). Based on health, physiological, and behavioral indicators, animal

stress is a widely used indicator of welfare. Stress is a response reaction to a

stimulus that can alter the homeostatic state of an individual (Barton and Iwama

1991). In aquaculture, stress results from handling, sorting, grading, transporting,

and stocking. When these stress factors overwhelm the adaptive capacity of the fish,

the stress response becomes detrimental to the fish’s health. Adams considered that

stress can be divided into two different effects (Adams 1990):

• Direct effects influence the organisms by altering their physiological, hormonal,

or cellular functions.

• Indirect effects operate at a higher level integrating the population or community

effect by affecting the energy resources available for fish.

At the interface between direct and indirect effects, we can now append the

effect of stress on the associated microbiome of fishes. Infectious diseases are

known to be triggered by stress (Snieszko 1974; Wakabayashi 1991; Freestone

et al. 2008; Littman et al. 2010; Boutin et al. 2012; Moloney et al. 2013). It is widely

accepted that opportunistic pathogens, among which some are present in healthy

fish microbiota, become infectious when hosts are stressed (Durborow et al. 1998;

Le Moullac et al. 1998; Starliper 2011). However, it is nearly impossible to draw a

global framework of how and when opportunistic diseases occur following stressful

conditions. Fortunately, the number of studies on infectious outbreaks in aquacul-

ture is growing. Recent studies highlight some patterns which increase the infec-

tivity and spread of an infection, such as the number of host species cultured

together and the intensity of culture.

Population density is the other factor that clearly influences the spread of the

infection. In aquaculture settings, density is often a thousand times higher than in

nature (Pulkkinen et al. 2010). This increases the probability of horizontal pathogen

transmission through fish-to-fish contact. Indeed, host limitation (the frequency of

host encounter) is one of the major limiting factors in pathogen population dynam-

ics. The probability of transmission increases greatly when hosts are numerous and

homogeneously distributed, especially if hosts are stressed by crowding or other

factors (Snieszko 1974; Lipsitch et al. 1995; Ebert 1998; Pulkkinen et al. 2010).

This disappearance of host range limitations also changes how the dynamics

between hosts and pathogens evolve. The classical trade-off in this dynamics is

that pathogens will reduce their virulence in order to avoid depletion of available

hosts (Anderson and May 1982; Ebert and Mangin 1997). However, in aquaculture

settings, frequency of host contact no longer is a limiting resource. Consequently,

the removal of host encounter as a selection pressure may lead to increased
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virulence and transmission, resulting in increased pathogen fitness (Day 2002). A

notable example illustrating this assumption is F. columnare. Virulence assays

showed that F. columnare is not only able to survive in water and in carcasses

but is also able to increase its dispersal rate. This results in more efficient trans-

mission from dead to living fish, rather than between two living fish (Pulkkinen

et al. 2010).

4.3.2 Microbe–Microbe Interactions

Interactions between microbial organisms including opportunistic pathogens in the

environment as part of the host’s commensal microbiome can also influence disease

outcome.

4.3.2.1 Horizontal Gene Transfer

High microbial density correlates to the occurrence of horizontal gene transfer

(HGT), especially of resistance and virulence genes. HGT can occur by three

different ways:

1. Transformation, which is the acquisition of free DNA from the environment

2. Transduction, involving transfer of genetic material via phage infection

3. Conjugation, which is gene transfer through a type IV pilus connecting two cells

(Sorensen et al. 2005)

Acquisition of antimicrobial resistance genes is mostly due to mutations, but the

spreading of resistance is linked to HGT. The spread of virulence factors via HGT

may potentially explain the emergence of some opportunistic pathogens.

4.3.2.2 Agonism and Antagonism

Different types of interactions occur between bacterial species. One of them,

mutualism, consists of a beneficial relationship between one or more different

individuals or species. In bacteria, mutualism can induce a specialization of certain

taxa which efficiently produce select gene products consumed by the microbial

community. Such mutualism in return favors the loss of genes by inefficient pro-

ducers. Gene loss, leading to interdependency between taxa, is tentatively

explained by the Black Queen Hypothesis (Morris et al. 2012). On the other

hand, bacterial species also compete against each other. Indeed, competition is

one of the most abundant interactions between not only bacteria but also most of

living organisms (Begon et al. 1990). Patterns of agonism and antagonism explain

most of the network of interactions that exist in the bacterial meta-community.
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Changes among these interactions that result in dysbiosis are also likely to trigger

an opportunistic pathogen emergence.

4.3.2.3 Quorum Sensing

Microbes have developed a process to communicate between cells. This process,

named quorum sensing (QS), changed the vision that bacteria regulate their bio-

logical processes independently. This system was first discovered in Aliivibrio
fischeri, which expresses its bioluminescence in mid-exponential growth phase

(Nealson et al. 1970). The signal molecule was found to be acyl-homoserine lactone

(AHL). However, several other types of cell–cell communication signals have also

been characterized in recent years: furanosyl borate (AI-2), cyclic thiolactone

(AIP), hydroxyl palmitic acid methyl ester (PAME), methyl dodecanoic acid

which acts as a diffusible signal factor (DSF), and farnesoic acid (FA) (Miller

and Bassler 2001; Whitehead et al. 2001; Fuqua and Greenberg 2002). Quorum

sensing is involved in the regulation of various biological processes, such as

bioluminescence, antimicrobial compound production, plasmid conjugation, motil-

ity, virulence, and biofilm formation (Whitehead et al. 2001; Federle and Bassler

2003). It may also influence the emergence of opportunistic pathogens.

4.3.2.4 Quorum Quenching

As a response to this interspecies communication, some bacteria had developed a

way to interfere to outcompete their rivals. This process, quorum quenching,

consists of inhibiting the QS pathways by two different ways: (1) binding of

non-signal molecules to the receptor (noncognate AHLs, intermediates of the

AHL biosynthetic pathway, dicyclic peptides) or (2) degrading the QS signal

with different enzymes (AHL-lactonases, decarboxylases, AHL-acylase, and deam-

inase) (Kalia 2013). Many opportunistic pathogens of fish have based their capac-

ities to respond to environmental factors on QS. Indeed, Aeromonas hydrophila,
A. salmonicida, Vibrio anguillarum, V. harveyi, and Yersinia ruckeri express their
pathogenicity through QS systems (Bruhn et al. 2005).

4.3.3 Host–Microbe Interactions

Fish are in permanent interaction with microbes. This leads them to develop

efficient processes to recognize potential partners. The most evolved system in

that field is the immune system, based on molecular recognition of microbes.

Recognition induces a signal which activates the effective immune functions.

Two components of the immune system have emerged:
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1. The innate immune system, which deals with the recognition of conserved

patterns, accessible and shared by many pathogens

2. The adaptive immune response, based on receptors targeting specific structures

of a given pathogen

4.3.3.1 Innate Immunity

The innate receptors are present on the periphery of all cells of the immune system

(e.g., macrophages, dendritic cells). This process is important for the maintaining of

homeostasis (i.e., stability in the structure of the commensal microbiome). To

maintain homeostasis, receptors and signals of innate immunity are constitutively

expressed by the host (Dixon et al. 2004). Innate immunity receptors are named

pattern recognition receptors (PRR) (Akira et al. 2006). There are different types of

those receptors: toll-like receptors (TLRs) and their coreceptor CD14, scavenger

receptors, mannose receptors, integrins CD11b-c/CD18, and complement receptors

CR1,2,3. Those cell surface receptors bind conserved structures of microbes named

pathogen-associated molecular patterns (PAMPs) (Medzhitov and Janeway 1999).

These surface molecules are specifically produced by bacteria as peptidoglycans

(PGN), lipopolysaccharides (LPS), or lipoteichoic acid (LTA) and are not specific

to pathogenic bacteria (Delneste et al. 2007).

4.3.3.2 Adaptive Immunity

The adaptive response will target specific pathogens via the activation of B and T

cells. This response is characterized by immunological memory, which allows

quicker recognition of the pathogen after a first infection. The B cells can recognize

antigens in their native form. However, T cells recognize only those peptides which

have been presented by the major histocompatibility complex (MHC), located at

the surface of antigen-presenting cells.

Innate and adaptive immunity were considered as separate for a long time.

However, in recent decades, studies have shown that both systems are

interconnected, with innate immunity shaping the adaptive response (Medzhitov

and Janeway 1999). Furthermore, the role of commensal bacteria was unknown. It

is now acknowledged that commensal bacteria are involved in the maturation of

both immune responses. Such bacteria even interfere with colonization of the host

by pathogenic agents (Rakoff-Nahoum et al. 2004; Kelly et al. 2005; Mazmanian

and Kasper 2006; O’Mahony et al. 2008). Protection against pathogens is then

influenced by both host-mediated immunity and by the microbiome, but also by the

dialog between those two components.

When the integrity of the microbiome is broken, this state is called dysbiosis.

Stress on the host, changes in the environmental factors, or antibiotic use can

disturb the natural microflora of fish (i.e., dysbiosis). This results in a weakening

of the primary defense barrier of the host (Boutin et al. 2013b; Stecher et al. 2013).
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As we previously discussed, endogenous fish bacteria contribute to the immune

function by such factors as colonization resistance (CR), immune response stimu-

lation, and production of microbially inhibitory compounds (Dillon and Charnley

2002; Austin 2006; Ramsey and Whiteley 2009; Maslanik et al. 2012; Naik

et al. 2012). The importance of commensal bacteria to fish health is starting to be

understood. Furthermore, their role in disease prevention explains why probiotics

are successful in aquaculture against many of the previously discussed fish patho-

gens (Moriarty 1998; Nikoskelainen et al. 2003; Farzanfar 2006; Nakayama

et al. 2009; Nayak 2010; Burbank et al. 2011; Boutin et al. 2012, 2013a).

4.4 Prevention and Treatment of Opportunistic Infections

4.4.1 Antimicrobial Compounds

Aquaculture is a growing industry that encounters many issues with disease. The

way to prevent and control those outbreaks was once exclusively the use of

antimicrobial agents (Armstrong et al. 2005; Cole et al. 2009; Burridge

et al. 2010). These chemicals were not only used to treat diseases but also as

prophylaxis against bacterial infections. Beyond disease control, their side effects

are exploited by the industry. For example, in the United States, 70 % of the annual

production of antibiotics is used to increase the growth of the livestock (SCAN and

the European Commission Health and Consumer Protection Directorate-General

2003; Balcazar et al. 2006). The extensive use of those chemicals in aquaculture

leads to certain drawbacks for human and animal health (Witte 1998; Phillips

et al. 2004; Marshall and Levy 2011). One of these is the persistence of antimicro-

bials in the environment, which induces a selective pressure on resistant bacteria.

The results likely will include an increase in multiresistant microbial strains which

could possibly be pathogenic for humans or livestock (Gold and Moellering 1996;

Rangdale et al. 1997b; Levy 1998; Waldvogel 1999; Lindsay and Holden 2006;

Arias and Murray 2009). In this context, the new methods being considered to

prevent bacterial diseases are (1) the research of new antimicrobials acting upon

secreted products of bacteria, instead of the cellular machinery itself (Chapra

et al. 1997; Stephens and Shapiro 1997), and (2) alternative approaches such as

vaccines, phages, probiotics, or genetic selection.

4.4.2 Vaccines

Vaccines exploit the adaptative immune response of fish (Foott and Hedrick 1987;

Kent et al. 1999). Vaccines mimic a first infection by introducing antigens from the

pathogens into the organism. Three types of inoculation are available in
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aquaculture: oral vaccination with antigen included in the food, immersion in

diluted solution of the antigens, or intraperitoneal injection in the body cavity.

Oral vaccination is seen as the easiest way to vaccinate fish because it does not

require many efforts to administer. However, the decrease in fish mortality resulting

from exposure to pathogens by this route is also significantly lower than what is

traditionally associated with other methods, perhaps due to antigen destruction in

the gut (Hart et al. 1988; Nakanishi and Ototake 1997; Sommerset et al. 2005).

Vaccinations by immersion and by injection are the two main ways used so far in

aquaculture. Vaccines for most viral and bacterial pathogens are available for

salmonids and other fish species of significant economical value (Biering

et al. 2004; Håstein et al. 2004). Vaccines have proven efficient in preventing

many major bacterial diseases. However, for some pathogens, a single exposure

to the vaccine is not enough to induce a long-term protection, and a second

vaccination is needed during the production period. Most available virus vaccines,

based on either inactivated virus or recombinant subunit proteins, are generally not

efficient unless delivered by injection. Live viral vaccines have shown interesting

results (Benmansour and De Kinkelin 1996) but are not yet considered safe for

widespread use (Sommerset et al. 2005). Furthermore, the cost of developing new

vaccines for virus and parasites is an important drawback to their commercial

usage.

4.4.3 Phage Therapy

The use of bacteriophage as a therapy was developed as an alternative to antibiotics.

As phage particles are very specific to their bacterial hosts, they do not target both

pathogens and the normal flora, and thus, their use may minimize the chance of

secondary infections following antibiotic-induced dysbiosis. Furthermore, phage

particles replicate at the site of infection; thus, curative doses can be fairly small.

Moreover, although bacteria can become resistant to phage, these viral organisms

can mutate and therefore evolve to counter phage-resistant bacteria (Matsuzaki

et al. 2005). In aquaculture, phage therapy is a new field, but the growing number of

phage types isolated in the last decades is promising (Matsuzaki et al. 2005; Vinod

et al. 2006; Shivu et al. 2007; Stenholm et al. 2008; Crothers‐Stomps et al. 2010;

Defoirdt et al. 2011). The most important advantage of phage is that they might kill

planktonic pathogens living in the surrounding water in addition to pathogens

proliferating in carrier fish. Possible drawbacks of phage therapy include the

possible transduction of virulence factors between bacteria, as well as the fact

that the vertebrate host may mount an immune response against the phage itself.
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4.4.4 Probiotics

The use of probiotics is probably the most widespread alternative to antibiotics so

far. Probiotics are defined as a “live microbial culture added to feed or environment

(water) to increase viability (survival) of the host” (Gram and Ringø 2005). This

definition was recently modified by Merrifield et al. (2010) who defined a probiotic

in aquaculture as:

A live, dead or component of a microbial cell that, when administered via the feed or to the

rearing water, benefits the host by improving either disease resistance, health status, growth

performance, feed utilisation, stress response, which is achieved at least in part via

improving the hosts or the environmental microbial balance.

Although the mechanisms by which probiotics exert their beneficial effects

require further investigation, probiotic administration showed promising results

on growth performance and general health of teleost fish (Gatesoupe 2010). Despite

the aforementioned advantages of probiotics, the viability of live bacteria during

large-scale production of food (i.e., commercial diets) and during transition through

the gastrointestinal tract is not always reliable (Ringø et al. 2014).

4.4.5 Prebiotics

To resolve the problem of viability, the prebiotic concept has been suggested and

developed (Mahious and Ollevier 2005). A prebiotic is defined by Roberfroid

(2007) as:

A non digestible food ingredient that beneficially affects the host by selectively stimulating

the growth and/or activity of one or a limited number of bacteria in the colon, that can

improve the host health.

To be classified as a prebiotic, a dietary ingredient needs to follow one of several

different criteria: (1) resist gastric acidity, hydrolysis by digestive enzymes, and

gastrointestinal absorption; (2) be fermented by the intestinal microbiota; and (3) be

able to selectively stimulate the growth and activity of beneficial bacteria (Gibson

2004). First used in 1995 by Hanley, the number of prebiotics is increasing and

includes many compounds, such as inulin and oligosaccharide compounds (Hanley

et al. 1995; Ringø et al. 2014). Prebiotics are used as nutrients by probiotic bacteria

(Geraylou et al. 2012). Many prebiotics are fermented by the gut microbiota into

short-chain fatty acids (SCFA), which are the main energy source for colonic

epithelial cells. Prebiotics are thus associated with maintenance of the epithelium

(Cummings and Macfarlane 2002; Maslowski and Mackay 2010). The SCFA also

modulate lipid synthesis (Marcil et al. 2002) as well as stimulate the immune

system and aid with host resistance against pathogens (Maslowski and Mackay

2010).
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4.4.6 Synbiotics

Synbiotics refer to nutritional complements combining probiotics and prebiotics

(Cerezuela et al. 2011). Synbiotics aim to simultaneously seed and maintain

probiotic strains as the dominant species in the gut after treatment cessation

(Rurangwa et al. 2009). Despite recent progress in the field of synbiotics in

aquaculture, there is limited information available on different aspects of synbiotic

effects on fish (Cerezuela et al. 2011).

4.4.7 Selection Genetics

Selection of livestock to improve the growth and resistance is an old method used

for centuries. However, selection programs in aquaculture represent a relatively

recent field. Historically, the focus has been on fish growth rate. However, with the

growing threat of infectious disease, pathogen resistance became a major pheno-

type for breeding programs. With the substantial advances in genetics, breeding

programs are now based on genetic loci, which are quantitatively linked to the

resistance (Baerwald et al. 2011; Langevin et al. 2012; Massault et al. 2011; Ozaki

et al. 2001; Rodrı́guez-Ramilo et al. 2011; Verrier et al. 2013). These regions,

named quantitative trait loci (QTL), are becoming interesting markers for the

breeding program.

A new way assess the genetic basis of resistance is to observe QTL associated

with the relationship between host and microbiome. There is evidence that QTL

correlate with an influence of host genetic variation on fecal microbiome compo-

sition in mice (Benson et al. 2010; McKnite et al. 2012). Those taxa under host

genetic control correspond with species and genera thought to interact with host

immunity (Benson et al. 2010; McKnite et al. 2012). The QTL analysis of skin

microbiome composition has recently been undertaken in the salmonid Salvelinus
fontinalis (Boutin et al. 2014). Standing genetic variation among components of the

teleost adaptive immune system is increasingly well characterized (Dionne

et al. 2009; Pavey et al. 2013). While toll-like receptors (TLRs) are present in

multiple teleost species (Palti 2011), there has been no work to date to correlate

genetic diversity at these innate immune loci (inter- or intraspecies) with commen-

sal microbiome diversity. Experiments in zebra fish highlight the role that TLRs

play in modulating the intestinal microbiota, whereby alkaline phosphatase is

produced via a TLR-4-myD88-controlled pathway to inhibit an inflammatory

responses to gut microbiota (Bates et al. 2007). Given that desirable microbiome

characteristics may exist from an aquaculture perspective (e.g., disease resistance,

nutrient absorption, stress resilience), it is encouraging that a host genetic basis may

exist for selection of such traits.
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4.5 Conclusion

In this chapter, we have defined opportunistic teleost pathogens as pathogen species

whose presence can be detected from apparently healthy teleost hosts. The status of

these organisms—either as a natural component of a healthy commensal

microbiome, or a latent step in disease establishment, or both—is still not entirely

clear. In our discussion, we have limited ourselves to bacterial pathogens. We

excluded viruses, which make up a significant proportion of known teleost patho-

gens, because these cannot safely be classed as opportunists owing to their obligate

parasitic lifestyle. We outlined the major opportunist bacterial genera with special

emphasis on disease in aquaculture. In doing so, we discussed the current under-

standing of bacterial pathogen taxonomy, biology, disease impact, and treatment

options.

Unlike directly transmitted pathogens, understanding disease evolution and

transmission caused by opportunistic pathogens necessitates a holistic view.

Thus, in the second section of this chapter, we consider the importance of

environment–host, pathogen–microbiome, and host–pathogen interactions in the

context of opportunistic pathogens in teleosts. We demonstrate that not only do

these factors play a crucial role in defining disease, but their importance opens up

exciting new avenues to treat disease. As such, preventive measures to reduce

stress, along with active interventions to enhance the protective effect of the

microbiome (prebiotic, probiotics), can all mitigate the impact and prevalence of

infectious disease.

The global demand for fish protein grows daily. Meanwhile, wild stocks are

dwindling. Furthermore, anthropogenic activities have resulted in the epizootic

dispersal of disease agents between farmed and wild individuals, as well as between

wild populations via the introduction of invasive host species. A clear understand-

ing of the drivers of disease caused by opportunistic pathogens is thus critical, not

only to guarantee safe and sustainable aquaculture but also to protect existing wild

fish species.
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