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Preface

The 13th International Conference on Applied Cryptography and Network Security
(ACNS 2015) was held during June 2–5, 2015, at Columbia University in New York
City.

The conference received 157 submissions. They went through a double-anonymous
review process, and 33 papers were selected. We were helped by 50 Program Com-
mittee members and 138 external reviewers.

We were honored to host Matthew Green and Vitaly Shmatikov as invited speakers.
This volume represents the revised version of the accepted papers, along with the

abstracts of the invited talks.
The Program Committee selected two papers to receive the Best Student Paper

Award. To be eligible, papers had to be co-authored by a full-time student who pre-
sented the paper at the conference. This year’s co-winners of the award were:

Alberto Compagno, Mauro Conti, Paolo Gasti, Luigi V. Mancini, Gene Tsudik,
“Violating Consumer Anonymity: Geo-locating Nodes in Named Data
Networking”
Esha Ghosh, Olga Ohrimenko, Roberto Tamassia, “Zero-Knowledge Authenti-
cated Order Queries and Order Statistics on a List”

This year’s conference was the result of a collaborative effort by four of us: Tal
Malkin served as the program chair, selecting the Program Committee and leading their
efforts in the careful selection of the papers that you will find in this volume. Vladimir
Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis served as general
chairs, taking care of all logistic and organizational needs, from the website, regis-
tration, publicity, sponsors, and all local arrangements required for hosting the con-
ference at Columbia University.

We would like to thank the Program Committee members as well as the external
reviewers for their volunteered hard work invested in selecting the program. We thank
the ACNS Steering Committee for their support; Shai Halevi for providing his
Web-review and submission system to be used for the conference, and for providing
technical support; Marios Pomonis and Suphannee Sivakorn for their help with the
local arrangements. We gratefully acknowledge the generous financial support of our
industrial sponsors: Facebook and Google as golden sponsors, and AT&T as a silver
sponsor. Finally, big thanks are due to all authors of submitted papers.

June 2015 Tal Malkin
Vladimir Kolesnikov

Allison Bishop Lewko
Michalis Polychronakis
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All Your SSL Are Belong To Us

Vitaly Shmatikov

Cornell Tech

Abstract. SSL/TLS is the de facto standard for secure Internet communications.
Deployed widely in Web browsers and non-browser software, it is intended to
provide end-to-end security even against active, man-in-the-middle attacks. This
security fundamentally depends on correct validation of X.509 certificates
presented when the connection is established.

I will first demonstrate that many SSL/TLS deployments are completely
insecure against man-in-the-middle attacks. Vulnerable software includes cloud
computing clients, merchant SDKs responsible for transmitting payment infor-
mation from e-commerce sites to payment processors, online shopping software,
and many forms of middleware. Even worse, several popular SSL/TLS imple-
mentations do not validate certificates correctly and thus all software based on
them is generically insecure. These bugs affect even common Web browsers,
where minor validation errors such as recent certificate expiration can mask
serious issues such as failure to authenticate the Web server’s identity.

I will then analyze the root causes of these vulnerabilities and describe how
we used “frankencerts,” a new methodology for automatically testing SSL/TLS
implementations, to uncover dozens of subtle certificate validation bugs in
popular SSL/TLS implementations.



From Strong Mathematics to Weak
Cryptography

Matthew Green

Johns Hopkins University

Abstract. The past three decades have been a remarkable time for the science of
cryptography. From the first provably-secure protocols to the practice-oriented
work of the 1990s, the research community has accumulated a wealth of
knowledge about secure protocol design. However, the distribution of this
wealth has not been even. Even in 2015 we continue to see routine ‘breaks’ of
core cryptographic standards and software, often caused by the continued use of
obsolete primitives and protocol design techniques. These failures have serious
consequences – ranging from the immediate cost of remediation to a long-term
potential loss of confidence in security protocols.

In this talk I will discuss the interaction between the cryptographic research
community and cryptographic community responsible for bringing cryptogra-
phy into practice. I will summarize some of the recent and important research
results related to core cryptographic standards, and how cryptographers have
both impacted – or failed to impact – standards development. I will also discuss
the implications of this interaction, and the how poor communication between
communities may have facilitated some decryption efforts revealed by recent
NSA leaks.
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and New Models



Universally Verifiable Multiparty Computation
from Threshold Homomorphic Cryptosystems

Berry Schoenmakers and Meilof Veeningen(B)

Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

berry@win.tue.nl, m.veeningen@tue.nl

Abstract. Multiparty computation can be used for privacy-friendly out-
sourcing of computations on private inputs of multiple parties. A com-
putation is outsourced to several computation parties; if not too many
are corrupted (e.g., no more than half), then they cannot determine the
inputs or produce an incorrect output. However, in many cases, these
guarantees are not enough: we need correctness even if all computation
parties may be corrupted; and we need that correctness can be verified
even by parties that did not participate in the computation. Protocols
satisfying these additional properties are called “universally verifiable”.
In this paper, we propose a new security model for universally verifi-
able multiparty computation, and we present a practical construction,
based on a threshold homomorphic cryptosystem. We also develop a
multiparty protocol for jointly producing non-interactive zero-knowledge
proofs, which may be of independent interest.

1 Introduction

Multiparty computation (MPC) provides techniques for privacy-friendly out-
sourcing of computations. Intuitively, MPC aims to provide a cryptographic
“black box” which receives private inputs from multiple “input parties”; performs
a computation on these inputs; and provides the result to a “result party” (an
input party, any third party, or the public). This black box is implemented by dis-
tributing the computation between multiple “computation parties”, with privacy
and correctness being guaranteed in case of passive corruptions (e.g., [BCD+09]),
active corruption of a minority of computation parties (e.g., [CDN01]), or active
corruption of all-but-one computation parties (e.g., [DPSZ12]).

However, multiparty computation typically does not provide any guarantees
in case all computation parties are corrupted. That is, the result party has to
trust that at least some of the computation parties did their job, and has no
way of independently verifying the result. In particular, the result party has
no way of proving to an external party that his computation result is indeed
correct. Universally verifiable multiparty computation addresses these issues by
requiring that the correctness of the result can be verified by any party, even if
all computation parties are corrupt [dH12]. It was originally introduced in the
context of e-voting [CF85,SK95], but it is relevant whenever MPC is applied in
a setting where not all of the parties that provide inputs or obtain outputs are
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 3–22, 2015.
DOI: 10.1007/978-3-319-28166-7 1



4 B. Schoenmakers and M. Veeningen

participants in the computation. In particular, apart from contexts like e-voting
where “the public” or an external watchdog wants to be sure of correctness,
it is also useful in scenarios where (many) different input parties outsource a
computation to the cloud and require a correctness guarantee.

Unfortunately, the state-of-the-art on universally verifiable MPC is unsatis-
factory. The concept of universally verifiable MPC was first proposed in [dH12],
where it was also suggested that it can be achieved for MPC based on thresh-
old homomorphic cryptosystems. However, [dH12] does not provide a rigorous
security model for universal verifiability or analysis of the proposed construc-
tion; and the construction has some technical disadvantages (e.g., a proof size
depending on the number of computation parties). The scheme recently pro-
posed in [BDO14] solves part of the problem. Their protocols provide “public
auditability”, meaning that anybody can verify the result of a computation, but
only if that result is public. In particular, it is not possible for a result party to
prove just that an encryption of the result is correct, which is important if this
result is to be used in a later protocol without being revealed.

In this paper, we propose a new security model for universally verifiable
multiparty computation, and a practical construction achieving it. As in [dH12],
we adapt the well-known actively secure MPC protocols based on threshold
homomorphic cryptosystems from [CDN01,DN03]. Essentially, these protocols
perform computations on encrypted values; security against active adversaries
is achieved by letting parties prove correctness of their actions using interactive
zero-knowledge proofs. Such interactive proofs only convince parties present at
the computation; but making them non-interactive makes them convincing also
to external parties. Concretely, the result of a computation is a set of encryptions
of the inputs, intermediate values, and outputs of the computation, along with
non-interactive zero-knowledge proofs of their correctness. Correctness of the
result depends just on the correct set-up of the cryptosystem. Privacy holds
under the original conditions of [CDN01], i.e., if under half of the computation
parties are corrupted; but as we discuss, this threshold can be raised to n −
1 at the expense of sacrificing robustness. (Note that when computing with
encryptions, we cannot hope to achieve privacy if all computation parties are
corrupted: this would essentially require fully homomorphic encryption.)

We improve on [dH12] in two main ways. First, we provide a security model
for universal verifiability (in the random oracle model), and security proofs for
our protocols in that model. Second, we propose a new “multiparty” variant
of the Fiat-Shamir heuristic to make the zero-knowledge proofs non-interactive,
which may be of independent interest. Compared to [dH12], it eliminates the need
for trapdoor commitments. Moreover, it makes the proof size independent of the
number of parties performing the computation. We achieve this latter advantage
by homomorphically combining contributions from the different parties.

As such, universally verifiable MPC provides a practical alternative to recent
(single-party) techniques for verifiable outsourcing. Specifically, many papers
on verifiable computation focus on efficient verification, but do not cover pri-
vacy [PHGR13,WB13]. Those works that do provide privacy, achieve this by
combining costly primitives, e.g., fully homomorphic encryption with verifiable
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a ∈R S a S
send(v; P), recv(P) v P
bcast(v) v

P S P S
i ∈ Q S i ∈ Q S

H : {0, 1}∗ {0, 1}2l l
F ⊂ I ∪ P ∪ {R, V}
paillierdecode(x)

((x − 1) ÷ N)(4Δ2)−1 N
fsprove(Σ; v; w; aux) (a, s) := Σ.ann(v, w);

c := H(v||a||aux); r := Σ.res(v, w, a, s, c); π := (a, c, r)
fsver(Σ; v; a, c, r; aux) Σ

H(v||a||aux) = c ∧ Σ.ver(v; a; c; r)

Fig. 1. Notation in algorithms, protocols, and processes

computation [FGP14]; or functional encryption with garbled circuits [GKP+13].
A recent work [ACG+14] also considers the possibility of achieving verifiable
computation with privacy by distributing the computation; but it does not guar-
antee correctness if all computation parties are corrupted, nor does it allow third
parties to be convinced of this fact. In contrast, our methods guarantee correct-
ness even if all computation parties are corrupted, and even convince other par-
ties than the input party. In particular, any third party can be convinced, and
the computation may involve the inputs of multiple mutually distrusting input
parties. Moreover, in contrast to the above works, our methods rely on basic
cryptographic primitives such as Σ-protocols and the threshold homomorphic
Paillier cryptosystem, readily available nowadays in cryptographic libraries like
SCAPI [EFLL12].

Outline. First, we briefly recap the CDN scheme for secure computation in
the presence of active adversaries from [CDN01,DN03], instantiated using Pail-
lier encryption (Sect. 2). Then, we show how the proofs in this protocol can be
made non-interactive using the Fiat-Shamir heuristic and our new multiparty
variant (Sect. 3). Finally, we propose a security model for universally verifiable
MPC, and show that CDN with non-interactive proofs is universally verifiable
(Sect. 4). We conclude in Sect. 5. We list potentially non-obvious notation in our
pseudocode in Fig. 1.

2 Secure Computation from Threshold Cryptography

We review the “CDN protocol” [CDN01] for secure computation in the presence
of active adversaries based on a threshold homomorphic cryptosystem. The pro-
tocol involves m input parties i ∈ I, n computation parties i ∈ P, and a result
party R. The aim of the protocol is to compute a function f(x1, . . . , xm) (seen
as an arithmetic circuit) on private inputs xi of the input parties, such that the
result party obtains the result.
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2.1 Computation Using a Threshold Homomorphic Cryptosystem

The protocol uses a (t, n)-threshold homomorphic cryptosystem, with t = �n/2�.
In such a cryptosystem, anybody can encrypt a plaintext using the public key;
add two ciphertexts to obtain a (uniquely determined) encryption of the sum of
the corresponding plaintexts; and multiply a ciphertext by a constant to obtain a
(uniquely determined) encryption of theproduct of theplaintextwith the constant.
Decryption is only possible if at least t out of the n decryption keys are known. A
well-known homomorphic cryptosystem is the Paillier cryptosystem [Pai99]: here,
the public key is an RSA modulus N = pq; a ∈ ZN is encrypted with randomness
r ∈ Z

∗
N as (1+N)arN ∈ Z

∗
N2 ; and the product of two ciphertexts is an encryption

of the sum of the two corresponding plaintexts. (From now on, we suppress moduli
for readability.) A threshold variant of this cryptosystem was presented in [DJ01].
The (threshold) decryption procedure is a bit involved; we postpone its discussion
until Sect. 2.2. The CDN protocol can also be instantiated with other cryptosys-
tems; but in this paper, we will focus on the Paillier instantiation.

Computation of f(x1, . . . , xm) is performed in three phases: the input phase,
the computation phase, and the output phase. In the input phase, each input
party encrypts its input xi, and broadcasts the encryption Xi. In the computa-
tion phase, the function f is evaluated gate-by-gate. Addition and subtraction
are performed using the homomorphic property of the encryption scheme. For
multiplication1 of X and Y , each computation party i ∈ P chooses a random
value di, and broadcasts encryptions Di of di and Ei of di · y. The compu-
tation parties then compute X · D1 · · · Dn, and threshold decrypt it to learn
x + d1 + . . . + dn. Observe that this allows them to compute an encryption of
(x+d1+ . . .+dn) ·y, and hence, using the Ei, also an encryption of x ·y. Finally,
in the output phase, when the result of the computation has been computed as
encryption X of x, the result party obtains x by broadcasting random encryption
D of d and obtaining a threshold decryption x − d of X · D−1.

Active security is achieved by letting the parties prove correctness of all
information they exchange. Namely, the input parties prove knowledge of their
inputs Xi (this prevents parties from choosing inputs depending on other inputs).
The computation parties prove knowledge of Di, and prove that Ei is indeed a
correct multiplication of Di and Y ; and they prove the correctness of their con-
tributions to the threshold decryption of X ·D1 · · · Dn and X ·D−1. Finally, the
result party proves knowledge of D. We now discuss these proofs of correctness
and their influence on the security of the overall protocol.

2.2 Proving Correctness of Results

The techniques in the CDN protocol for proving correctness are based on Σ-
protocols. Recall that a Σ-protocol for a binary relation R is a three-move pro-
tocol in which a potentially malicious prover convinces a honest verifier that he
1 Here, we use the improved multiplication protocol from [DN03]: the multiplication

protocol from [CDN01] has a subtle problem, in which the subroutine for additively
sharing an encrypted value requires unknown encryption randomness to be returned.
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Σ-Protocol 1. ΣPK: Proof of plaintext knowledge
[Relation] R = {(X; x, r) | X = (1 + N)xrN}
[Announcement] Σ.ann(X; x, r) :=

a ∈R ZN ; u ∈R Z
∗
N ; A := (1 + N)auN ; return (A; a, u)

[Response] Σ.res(X; x, r; A; a, u; c) :=

t := �(a + cx)/N� ; d := a + cx; e := urc(1 + N)t; return (d, e)

[Verification] Σ.ver(X; A; c; d, e) := (1 + N)deN ?
= AXc

[Extractor] Σ.ext(X; A; c; c′; d, e; d′, e′) :=

α, β := “values such that α(c − c′) + βN = 1”; return ((d − d′)α, (e/e′)αXβ)

[Simulator] Σ.sim(X; c) :=

d ∈R ZN ; e ∈R Z
∗
N ; A := (1 + N)deNX−c; return (A; c; d, e)

knows a witness w for statement v such that (v;w) ∈ R. First, the prover sends
an announcement (computed using algorithm Σ.ann) to the verifier; the verifier
responds with a uniformly random challenge; and the prover sends his response
(computed using algorithm Σ.res), which the verifier verifies (using predicate
Σ.ver). Σ-protocols satisfy the following properties:

Definition 1. Let R ⊂ V × W be a binary relation and LR = {v ∈ V | ∃w ∈
W : (v;w) ∈ R} its language. Let Σ be a collection of p.p.t. algorithms Σ.ann,
Σ.res, Σ.sim, Σ.ext, and polynomial time predicate Σ.ver. Let C be a finite set
called the challenge space. Then Σ is a Σ-protocol for relation R if:

Completeness. If (a; s) ← Σ.ann(v;w), c ∈ C, and r ← Σ.res(v;w; a; s; c),
then Σ.ver(v; a; c; r).

Special Soundness. If v ∈ V , c �= c′, Σ.ver(v; a; c; r), and Σ.ver(v; a; c′; r′),
then w ← Σ.ext(v; a; c; c′; r; r′) satisfies (v;w) ∈ R.

Special Honest-Verifier Zero-Knowledgeness. If v ∈ LR, c ∈ C, then
(a; r) ← Σ.sim(v; c) has the same probability distribution as (a; r) obtained
by (a; s) ← Σ.ann(v;w), r ← Σ.res(v;w; a; s; c). If v /∈ LR, then (a; r) ←
Σ.sim(v; c) satisfies Σ.ver(v; a; c; r).

Completeness states that a protocol between a honest prover and verifier
succeeds; special soundness states that there exists an extractor Σ.ext that can
extract a witness from two conversations with the same announcement; and spe-
cial honest-verifier zero-knowledgeness states that there exists a simulator Σ.sim
that can generate conversations with the same distribution as full protocol runs
without knowing the witness. While special honest-verifier zero-knowledgeness
demands an identical distribution for the simulation, statistical indistinguisha-
bility is sufficient for our purposes; in this case, we speak of a “statistical Σ-
protocol”. In the remainder, we will need that our Σ-protocols have “non-trivial
announcements”, in the sense that when (a; r) and (a′; r′) are both obtained
from Σ.sim(v; c), then with overwhelming probability, a �= a′. (Indeed, this will
be the case for all Σ-protocols in this paper.) This property, which is required
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Σ-Protocol 2. ΣCM: Proof of correct multiplication
[Relation] R = {(X, Y, Z; y, r, s) | Y = (1 + N)yrN ∧ Z = XysN}
[Announcement] Σ.ann(X, Y, Z; y, r, s) :=

a ∈R ZN ; u, v ∈R Z
∗
N ; A := (1 + N)auN ; B := XavN ; return (A, B; a, u, v)

[Response] Σ.res(X, Y, Z; y, r, s; A, B; a, u, v; c) :=

t := �(a + cy)/N� ; d := a + cy; e := urc(1 + N)t; f := vXtsc; return (d, e, f)

[Verification] Σ.ver(X, Y, Z; A, B; c; d, e, f) := (1 + N)deN ?
= AY c ∧ XdfN ?

= BZc

[Extractor] Σ.ext(X, Y, Z; A, B; c; c′; d, e, f ; d′, e′, f ′) :=
α, β := “values such that α(c − c′) + βN = 1”

return ((d − d′)α, (e/e′)αY β , (f/f ′)αZβ)

[Simulator] Σ.sim(X, Y, Z; c) :=

d ∈R ZN ; e, f ∈R Z
∗
N ; A := (1 + N)deNY −c; B := XdfNZ−c

return (A, B; c; d, e, f)

by the Fiat-Shamir heuristic [AABN08], essentially follows from the hardness of
the relation; see [SV15] for details.

The CDN protocol uses a sub-protocol in which multiple parties simulta-
neously provide proofs based on the same challenge, called the “multiparty Σ-
protocol”. Namely, suppose each party from a set P wants to prove knowledge
of a witness for a statement vi ∈ LR with some Σ-protocol. To achieve this, each
party in P broadcasts a commitment to its announcement; then, the computa-
tion parties jointly generate a challenge; and finally, all parties in P broadcast
their response to this challenge, along with an opening of their commitment.
The multiparty Σ-protocol is used as a building block in the CDN protocol by
constructing a simulator that provides proofs on behalf of honest parties with-
out knowing their witnesses (“zero-knowledgeness”), and extracts witnesses from
corrupted parties that give correct proofs (“soundness”).

The CDN protocol uses three Σ-protocols: ΣPK proving plaintext knowledge,
ΣCM proving correct multiplication, and ΣCD proving correct decryption. The
first two are due to [CDN01] (which also proves that they are Σ-protocols). ΣPK

(Σ-Protocol 1) proves knowledge of x, r such that X = (1+N)xrN is an encryp-
tion of x with randomness r. ΣCM (Σ-Protocol 2) proves knowledge of (y, r, s)
for (X,Y,Z) such that Y = (1+N)yrN is an encryption of y with randomness
r and Z = XysN is an encryption of the product of the plaintexts of X and Y
randomised with s.

Proof ΣCD of correct decryption (Σ-protocol 3) is due to [Jur03]. In the
threshold variant of Paillier encryption due to Damg̊ard and Jurik [DJ01,Jur03],
safe primes p = 2p′ + 1, q = 2q′ + 1 are used for the RSA modulus N = pq. Key
generation involves generating a secret value d such that, given c′ = c4Δ2d,
anybody can compute the plaintext of c by “decoding” c′ as paillierdecode(c′) :=
((c′ − 1) ÷ N)(4Δ2)−1 mod N . Here, Δ = n! and ÷ denotes division as integers
(using N |c′ −1). The value d is then (t, n) Shamir-shared modulo Np′q′ between
the computation parties as shares si. Threshold decryption is done by letting t



Universally Verifiable Multiparty Computation 9

Σ-Protocol 3. ΣCD: Proof of correct decryption (statistical)
[Relation] R = {(d, di, v, vi; Δsi) | d2

i = d4Δsi ∧ vi = vΔsi}
[Announcement] Σ.ann(d, di, v, vi; Δsi) := // k = log2 N ; k2 stat. sec. param

u ∈R [0, 22k+2k2 ]; a := d4u; b := vu; return (a, b; u)

[Response] Σ.res(d, di, v, vi; Δsi; a, b; u, c) :=
r := u + cΔsi; return r

[Verification] Σ.ver(d, di, v, vi; a, b; c; r) := d4r ?
= a(di)

2c ∧ vr ?
= b(vi)

c

[Extractor] Σ.ext(d, di, v, vi; a, b; c; c′; r; r′) := return (r − r′)/(c − c′)

[Simulator] Σ.sim(d, di, v, vi; c) :=

r ∈R [0, 22k+2k2 ]; return(d4r(di)
−2c, vr(vi)

−e; c; r)

parties each compute ci = c2Δsi ; the value c4Δ2d is obtained by applying Shamir
reconstruction “in the exponent”. Correct decryption is proven with respect to
a public set of verification values. Namely, the public key includes values v,
v0 = vΔ2d, and vi = vΔsi for all computation parties i ∈ P. Hence, in ΣCD,
parties prove correctness of their decryption shares ci of c by proving knowledge
of Δsi = logc4(c2i ) = logv(vi) for (c, ci, v, vi). (In the same way, v0 can be used
to prove correctness of c′ with respect to c using a single instance of ΣCD.) Note
that this is a statistical Σ-protocol: this is because witness Δsi is a value modulo
the secret value Np′q′, so modulo reduction is not possible.

2.3 Security of the CDN Protocol

In [CDN01], it is shown that the CDN protocol implements secure function
evaluation in Canetti’s non-concurrent model [Can98] if only a minority of com-
putation parties are corrupted. Essentially, this means that in this case, the com-
putation succeeds; the result is correct; and the honest parties’ inputs remain
private. This conclusion is true assuming honest set-up and security of the Pail-
lier encryption scheme and the trapdoor commitment scheme used. If a majority
of computation parties is corrupted, then because threshold �n/2� is used for the
threshold cryptosystem, privacy is broken. As noted [ST06,IPS09], this can be
remedied by raising the threshold, but in that case, the corrupted parties can
make the computation break down at any point by refusing to cooperate. In
Sect. 4.1, we present a variant of this model in which we prove the security of
our protocols (using random oracles but no trapdoor commitments).

3 Multiparty Non-interactive Proofs

In this section, we show how to produce non-interactive zero-knowledge proofs in
a multiparty way. At several points in the above CDN protocol, all parties from
a set P prove knowledge of witnesses for certain statements; the computation
parties are convinced that those parties that succeed, do indeed know a witness.
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In CDN, these proofs are interactive; but for universal verifiability, we need non-
interactive proofs that convince any third party. The traditional method to make
proofs non-interactive is the Fiat-Shamir heuristic; in Sect. 3.1, we outline it,
and show that it is problematic in a multiparty setting. In Sect. 3.2, we present
a new, “multiparty” Fiat-Shamir heuristic that works in our setting, and has
the advantage of achieving smaller proofs by “homomorphically combining” the
proofs of individual parties. In the remainder, C ⊂ I ∪ P ∪ {R,V} denotes the
set of corrupted parties; and F denotes the set of parties who failed to provide
a correct proof when needed; this only happens for corrupted parties, so F ⊂ C.

Our results are in the random oracle model [BR93,Wee09], an idealised model
of hash functions. In this model, evaluations of the hash function H are modelled
as queries to a “random oracle” O that evaluates a perfectly random function.
When simulating an adversary, a simulator can intercept these oracle queries
and answer them at will, as long as the answers look random to the adversary.
Security in the random oracle model does not generally imply security in the
standard model [GK03], but it is often used because it typically gives simple,
efficient protocols, and its use does not seem to lead to security problems in
practice [Wee09]. See [SV15] for a detailed description of our use of random
oracles; and Sect. 5 for a discussion of the real-world implications of the particular
flavour of random oracles we use.

3.1 The Fiat-Shamir Heuristic and Witness-Extended Emulation

The obvious way of making the proofs in the CDN protocol non-interactive, is
to apply the Fiat-Shamir heuristic to all individual Σ-protocols. That is, party
i ∈ P produces proof of knowledge π of a witness for statement v as follows2:

(a; s) := Σ.ann(v;w); c := H(v||a||aux); r := Σ.res(v;w; a; s; c);π := (a; c; r).

Let us denote this procedure fsprove(Σ; v;w; aux). A verifier accepts those proofs
π = (a; c; r) for which fsver(Σ; v;π; aux) holds, where fsver(Σ; v; a, c, r; aux) is
defined as H(v||a||aux) = c ∧ Σ.ver(v; a; c; r).

Recall that security proofs require a simulator that simulates proofs of honest
parties (zero-knowledgeness) and extracts witnesses of corrupted parties (sound-
ness). In the random oracle model, Fiat-Shamir proofs for honest parties can be
simulated by simulating a Σ-protocol conversation (a, c, r) and programming the
random oracle so that H(v||a||aux) = c. Witnesses of corrupted parties can be
extracted by rewinding the adversary to the point where it made an oracle query
for v||a||aux and supplying a different value; but, as we discuss in [SV15], this
extraction can make the simulator very inefficient. In fact, if Fiat-Shamir proofs
take place in R different rounds, then extracting witnesses may increase the run-
ning time of the simulator by a factor O(R!). The reason is that the oracle query
2 Here, aux should contain at least the prover’s identity. Otherwise, corrupted parties

could replay proofs by honest parties, which breaks the soundness property below
because witnesses for these proofs cannot be extracted by rewinding the adversary
to the point of the oracle query and reprogramming the random oracle.
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for a proof in one round may have in fact already been made in a previous round,
in which case rewinding the adversary to extract one witness requires recursively
extracting witnesses for all intermediate rounds. Hence, we can essentially only
use the Fiat-Shamir heuristic in a constant number of rounds.

Moreover, in the CDN protocol, applying the Fiat-Shamir heuristic to each
individual proof has the disadvantage that the verifier needs to check a num-
ber of proofs that depends linearly on the number of computation parties. In
particular, for each multiplication gate, the verifier needs to check n proofs of
correct multiplication and t proofs of correct decryption. Next, we show that
we can avoid both the technical problems with witness extended emulation and
the dependence on the number of computation parties by letting the computa-
tion parties collaboratively produce “combined proofs”. (As discussed in [SV15],
there are other ways of just solving the technical problems with witness extended
emulation, but they are not easier than the method we propose.)

3.2 Combined Proofs with the Multiparty Fiat-Shamir Heuristic

The crucial observation (e.g., [Des93,KMR12]) allowing parties to produce non-
interactive zero-knowledge proofs collaboratively is that, for many Σ-protocols,
conversations of proofs with the same challenge can be “homomorphically com-
bined”. For instance, consider the classical Σ-protocol for proving knowledge of
a discrete logarithm due to Schnorr [Sch89]. Suppose we have two Schnorr con-
versations proving knowledge of x1 = logg h1, x2 = logg h2, i.e., two tuples
(a1; c; r1) and (a2; c; r2) such that gr1 = a1(h1)c and gr2 = a2(h2)c. Then
gr1+r2 = (a1a2)(h1h2)c, so (a1a2; c; r1 + r2) is a Schnorr conversation prov-
ing knowledge of discrete logarithm x1 + x2 = logg(h1h2). For our purposes, we
demand that such homomorphisms satisfy two properties. First, when conver-
sations of at least �n/2� parties are combined, the result is a valid conversation
(the requirement of having at least �n/2� conversations is needed for decryption
proofs to ensure that there are enough decryption shares). Second, when fewer
than �n/2� parties are corrupted, the combination of different honest announce-
ments with the same corrupted announcements is likely to lead to a different
combined announcement. This helps to eliminate the rewinding problems for
Fiat-Shamir discussed above.

Definition 2. Let Σ be a Σ-protocol for relation R ⊂ V ×W . Let Φ be a collec-
tion of partial functions Φ.stmt, Φ.ann, and Φ.resp. We call Φ a homomorphism
of Σ if:

Combination. Let c be a challenge; I a set of parties such that |I| ≥ �n/2�; and
{(vi; ai; ri)}i∈I a collection of statements, announcements, and responses. If
Φ.stmt({vi}i∈I) is defined and for all i, Σ.ver(vi; ai; c; ri) holds, then also
Σ.ver(Φ.stmt({vi}i∈I);Φ.ann({ai}i∈I); c;Φ.resp({ri}i∈I)).

Randomness. Let c be a challenge; C ⊂ I sets of parties such that |C| <
�n/2� ≤ |I|; {vi}i∈I statements s.t. Φ.stmt({vi}i∈I) is defined; and {ai}i∈I∩C

announcements. If (ai; ·), (a′
i; ·) ← Σ.sim(vi; c) ∀i ∈ I \ C, then with over-

whelming probability, Φ.ann({ai}i∈I) �= Φ.ann({ai}i∈I∩C ∪ {a′
i}i∈I\C).
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Protocol 4. MΣ: The Multi-Party Fiat-Shamir Heuristic
1. // pre: Σ is a Σ-protocol with homomorphism Φ, P is a set of non-failed
2. // parties (P ∩ F = ∅), vP = {vi}i∈P statements w/ witnesses wP = {wi}i∈P

3. // post: if |P \ F | ≥ �n/2�, then vP\F is the combined statement
4. // Φ.stmt({vi}i∈P\F ), and πP\F is a corresponding Fiat-Shamir proof
5. // invariant: F ⊂ C: set of failed parties only includes corrupted parties
6. (vP\F , πP\F ) ← MΣ(Σ, Φ, P, vP , wP , aux) :=
7. repeat
8. parties i ∈ P \ F do
9. (ai; si) := Σ.ann(vi; wi); hi := H(ai||i); bcast(hi)

10. parties i ∈ P \ F do bcast(ai)
11. F ′ := F ; F := F ∪ {i ∈ P \ F | hi �= H(ai||i)}
12. if F = F ′ then // all parties left provided correct hashes
13. c := H(Φ.stmt({vi}i∈P\F )||Φ.ann({ai}i∈P\F )||aux)
14. parties i ∈ P \ F do ri := Σ.res(vi; wi; ai; si; c); bcast(ri)
15. F := F ∪ {i ∈ P \ F | ¬Σ.ver(vi; ai; c; ri)}
16. if F = F ′ then // all parties left provided correct responses
17. return (Φ.stmt({vi}i∈P\F ),
18. (Φ.ann({ai}i∈P\F ); c; Φ.resp({ri}i∈P\F )))
19. until |P \ F | < �n/2� // until not enough parties left
20. return (⊥, ⊥)

Given a Σ-protocol with homomorphism Φ, parties holding witnesses {wi} for
statements {vi} can together generate a Fiat-Shamir proof (a;H(v||a||aux); r) of
knowledge of a witness for the “combined statement” v = Φ.stmt({vi}). Namely,
the parties each provide announcement ai for their own witness; compute a =
Φ.ann({ai}) and H(v||a||aux); and provide responses ri. Taking r = Φ.resp({ri}),
the combination property from the above definition guarantees that we indeed
get a validating proof. However, we cannot simply let the parties broadcast their
announcements in turn, because to prove security in that case, the simulator
needs to provide the announcements for the honest parties without knowing the
announcements of the corrupted parties, hence without being able to program
the random oracle on the combined announcement. We solve this by starting
with a round in which each party commits to its announcement (the same trick
was used in a different setting in [NKDM03])3.

The multiparty Fiat-Shamir heuristic (Protocol 4) let parties collaboratively
produce Fiat-Shamir proofs based on the above ideas. Apart from the above
procedure (lines 8, 9, 10, 13, and 14), the protocol also contains error handling.
Namely, we throw out parties that provide incorrect hashes to their announce-
ments (line 11) or incorrect responses (line 15). If we have correct responses
for all correctly hashed announcements, then we apply the homomorphism (line
17–18); otherwise, we try again with the remaining parties. If the number of
parties drops below �n/2�, the homomorphism can no longer be applied, so we

3 As in [NKDM03], it may be possible to remove the additional round under the
non-standard known-target discrete log problem.
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return with an error (line 20). Note that, as in the normal Fiat-Shamir heuristic,
the announcements do not need to be stored if they can be computed from the
challenge and response (as will be the case for the Σ-protocols we consider).

Concerning security, recall that we need a simulator that simulates proofs
of honest parties without their witnesses (zero-knowledgeness) and extracts the
witnesses of corrupted parties (soundness). In [SV15], we present such a simula-
tor. Essentially, it “guesses” the announcements of the corrupted parties based
on the provided hashes; then simulates the Σ-protocol for the honest parties;
and programs the random oracle on the combined announcement. It obtains wit-
nesses for the corrupted parties by rewinding to just before the honest parties
provide their announcements: this way, the corrupted parties are forced to use the
announcements that they provided the hashes of (hence special soundness can
be invoked), whereas the honest parties can provide new simulated announce-
ments by reprogramming the random oracle. The simulator requires that fewer
than �n/2� provers are corrupted so that we can use the randomness property of
the Σ-protocol homomorphism (Definition 2). (When more than �n/2� provers
are corrupted, we use an alternative proof strategy that uses witness-extended
emulation instead of this simulator.)

3.3 Homomorphisms for the CDN Protocol

In the CDN protocol, the multiparty Fiat-Shamir heuristic allows us to obtain a
proof that multiplication was done correctly that is independent of the number
of computation parties. Recall that, for multiplication of encryptions X of x and
Y of y, each computation party provides encryptions Di of di and Ei of di · y,
and proves that Ei encrypts the product of the plaintexts of Y and Di; and each
computation party provides decryption share Si of encryption XD1 · · · Dn, and
proves it correct. As we will show now, the multiplication proofs can be combined
with homomorphism ΦCM into one proof that

∏
Ei encrypts the product of the

plaintexts of Y and
∏

Di; and the decryption proofs can be combined with
homomorphism ΦCD into one proof that a combination S0 of the decryption
shares is correct. In the CDN protocol, the individual Di, Ei, and Si are not
relevant, so also the combined values convince a verifier of correct multiplication.

In more detail, the homomorphism ΦCM for ΣCM is defined on statements
{(X,Yi, Zi)}i∈I which share encryption X, and it proves that the multiplication
on plaintexts of X with

∏
Yi is equal to

∏
Zi. We let Φ.stmt({(X,Yi, Zi)}i∈I) =(

X,
∏

i∈I Yi,
∏

i∈I Zi

)
and Φ.ann({Ai, Bi}i∈I) =

(∏
i∈I Ai,

∏
i∈I Bi

)
. For the

response, we would like to define d =
∑

i∈I di, e =
∏

i∈I ei, and f =
∏

i∈I fi; but
because

∑
i∈I di is computed modulo N , we need to add correction factors to e

and f : e =
(∏

i∈I ei

)
(1+N)k and f =

(∏
i∈I fi

)
Y k (where k =

⌊
(
∑

i∈I di)/N
⌋
).

The homomorphism ΦCD for ΣCD combines correctness proofs of decryption
shares into a proof of correct decryption with respect to an overall verification
value. Let I ≥ �n/2� be sufficiently many parties to decrypt a ciphertext, let
{λi}i∈I be Lagrange interpolation coefficients for these parties. (Note that λi are
not always integral; but we will always use Δλi, which are integral.) Let si be
their shares of the decryption key d =

∑
i∈I Δλisi. Recall that decryption works
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by letting each party i ∈ I provide decryption share ci = c2Δsi ; computing c′ =∏
i∈I c2Δλi

i ; and from this determining the plaintext as paillierdecode(c′). Parties
prove correctness of their decryption shares ci by proving that logc4 c2i = logv vi,
where v, vi are publicly known verification values such that vi = vΔsi . Now, if
logc4 c2i = logv vi for all i, then

logc4 c′ = logc4

∏

i∈I

c2Δλi
i = logv

∏

i∈I

vΔλi
i = logv

∏

i∈I

(vΔsi)Δλi = logv vΔ2d.

Hence, decryption proofs for shares ci with respect to verification values vi can
be combined into a decryption proof for c′ with respect to verification value
v0 := vΔ2d. Formally, Φ.stmt({(d, di, v, vi)}i∈I =

(
d,

∏
i∈I cΔλi

i , v,
∏

i∈I vΔλi
i

)
;

Φ.ann({(ai, bi)}i∈I) =
(∏

i∈I aΔλi
i ,

∏
i∈I bΔλi

i

)
; and Φ.resp({ri}i∈I) =

∑
Δλiri.

For the combination property of Definition 2, note that we really need I ≥ �n/2�
in order to apply Lagrange interpolation. For the randomness property, note that
if |C| < �n/2�, then at least one party in I /∈ C has a non-zero interpolation
coefficient, hence the contribution of this party to the announcement ensures
that the two combined announcements are different.

4 Universally Verifiable MPC

In the previous section, we have shown how to produce non-interactive zero-
knowledge proofs in a multiparty way. We now use this observation to obtain uni-
versally verifiable MPC. We first define security for universally verifiable MPC;
and then obtain universally verifiable MPC by adapting the CDN protocol.

4.1 Security Model for Verifiable MPC

Our security model is an adaptation of the model of [Can98,CDN01] to the
setting of universal verifiability in the random oracle model. We first explain
the general execution model, which is as in [Can98,CDN01] but with a random
oracle added; we then explain how to model verifiability in this execution model
as the behaviour of the ideal-world trusted party. The general execution model
compares protocol executions in the real and ideal world.

In the real world, a protocol π between m input parties i ∈ I, n computation
parties i ∈ P, a result party R and a verifier V is executed on an open broadcast
network with rushing in the presence of an active static adversary A corrupting
parties C ⊂ I ∪ P ∪ {R,V}. The protocol execution starts by incorruptibly
setting up the Paillier threshold cryptosystem, i.e., generating public key pk =
(N, v, v0, {vi}i∈P) with RSA modulus N and verification values v, v0, vi, and
secret key shares {si}i∈P (see Sect. 2.2). Each input party i ∈ I gets input
(pk, xi); each computation party i ∈ P gets input (pk, si); and the result party
R gets input pk. The adversary gets the inputs (pk, {xi}i∈I∩C , {si}i∈P∩C) of
the corrupted parties, and has an auxiliary input a. During the protocol, parties
can query the random oracle; the oracle answers new queries randomly, and
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Process 5. TVSFE: trusted party for verifiable secure function evaluation
1. // compute f on {xi}i∈I for R with corrupted parties C; V learns encryption
2. TVSFE(C, (N, v, v0, {vi}i∈P)) :=
3. // input phase
4. foreach i ∈ I \ C do xi := recv(Ii) // honest inputs
5. {xi}i∈I∩C := recv(S) // corrupted inputs
6. if |P ∩ C| ≥ �n/2� then send({xi}i∈I\C , S) // send to corrupted majority
7. // computation phase
8. r := f(x1, . . . , xm)
9. // output phase

10. if R /∈ C then // honest R: adversary learns encryption, may block result

11. s ∈R Z
∗
N ; R := (1 + N)rsN ; res := (r, s); send(R, S)

12. if |P ∩ C| ≥ �n/2� and recv(S) = ⊥ then res := ⊥; R := ⊥
13. send(res, R)
14. else // corrupted R: adversary learns output, may block result to V
15. send(r, S); s := recv(S)

16. if s = ⊥ then R := ⊥ else R := (1 + N)rsN

17. // proof phase
18. if V /∈ C then send(R, V)

repeated queries consistently. At the end of the protocol, each honest party
outputs a value according to the protocol; the corrupted parties output ⊥; and
the adversary outputs a value at will. Define EXECπ,A(k, (x1, . . . , xm), C, a) to
be the random variable, given security parameter k, consisting of the outputs
of all parties (including the adversary) and the set O of oracle queries and
responses.

The ideal-world execution similarly involves m input parties i ∈ I, n compu-
tation parties i ∈ P, result party R, verifier V, and an adversary S corrupting
parties C ⊂ I ∪P ∪{R,V}; but now, there is also an incorruptible trusted party
T . As before, the execution starts by setting up the keys (pk, {si}i∈P) of the
Paillier cryptosystem. The input parties receive xi as input; the trusted party
receives a list C of corrupted parties and the public key pk. Then, it runs the code
TVSFE shown in Process 5, which we explain later. The adversary gets inputs
(pk, C, {xi}i∈I∩C , {si}i∈P∩C), and outputs a value at will. In this model, there
is no random oracle; instead, the adversary chooses the set O of oracle queries
and responses (typically, those used to simulate a real-world adversary). As in
the real-world case, IDEALTSFE,S(k, (x1, . . . , xm), C, a) is the random variable,
given security parameter k, consisting of all parties’ outputs and O.

Definition 3. Protocol π implements verifiable secure function evaluation in the
random oracle model if, for every probabilistic polynomial time real-world adver-
sary A, there exists a probabilistic polynomial time ideal-world adversary SA such
that, for all inputs x1, . . . , xm; all sets of corrupted parties C; and all auxiliary
input a: EXECπ,A(k;x1, . . . , xm;C; a) and IDEALTVSFE,SA(k;x1, . . . , xm;C; a)
are computationally indistinguishable in security parameter k.
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We remark that, while security in non-random-oracle secure function evalua-
tion [Can98,CDN01] is preserved under (subroutine) composition, this is not the
case for our random oracle variant. The reason is that our model and protocols
assume that the random oracle is not used outside of the protocol. Using the
random oracle model with dependent auxiliary input [Unr07,Wee09] might be
enough to obtain a composition property; but adaptations are needed to make
our protocol provably secure in that model. See Sect. 5 for a discussion.

We now discuss the trusted party TVSFE for verifiable secure function eval-
uation. Whenever the computation succeeds, TVSFE guarantees that the results
are correct. Namely, TVSFE sends the result r of the computation and random-
ness s to R (line 13), and it sends encryption (1 + N)rsN of the result with
randomness s to V (line 18); if the computation failed, R gets (⊥,⊥) and V
gets ⊥.4 Whether TVSFE guarantees privacy (i.e., only R can learn the result)
and robustness (i.e., the computation does not fail) depends on which parties
are corrupted. Privacy and robustness with respect to R are guaranteed as long
as only a minority of computation parties are corrupted. If not, then in line 6,
TVSFE sends the honest parties’ inputs to the adversary; and in line 12, it gives
the adversary the option to block the computation by sending ⊥. Note that the
adversary receives the inputs of the honest parties after it provides the inputs of
the corrupted parties, so even if privacy is broken, the adversary cannot choose
the corrupted parties’ inputs based on the honest parties’ inputs. For robustness
with respect to V, the result party needs to be honest. If not, then in line 15,
TVSFE gives the adversary the option to block V’s result by sending ⊥; in any
case, it can choose the randomness. (Note that these thresholds are specific to
CDN’s “honest majority” setting; e.g., other protocols may satisfy privacy if all
computation parties except one are corrupted.)

Note that this model does not cover the “universality” aspect of universally
verifiable MPC. This is because the security model for secure function evaluation
only covers the input/output behaviour of protocols, not the fact that “the
verifier can be anybody”. Hence, we design universally verifiable protocols by
proving that they are verifiable, and then arguing based on the characteristics
of the protocol (e.g., the verifier does not have any secret values) that this
verifiability is “universal”.

4.2 Universally Verifiable CDN

We now present the UVCDN protocol (Protocol 6) for universally verifiable
secure function evaluation. At a high level, this protocol consists of the input,
4 Although we only guarantee computational indistinguishability and the verifier does

not know what value is encrypted, this definition does guarantee that V receives
the correct result. This is because the ideal-world output of the protocol execution
contains R’s r and s and V’s (1 + N)rsN , so a distinguisher between the ideal and
real world can check correctness of V’s result. (If s were not in R’s result, this would
not be the case, and correctness of V’s result would not be guaranteed.) Also, note
that although privacy depends on the security of the encryption scheme, correctness
does not rely on any knowledge assumption.
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Protocol 6. UVCDN: universally verifiable CDN
1. // pre: pk/{si}i∈P threshold Paillier public/secret keys, {xi}i∈I function input
2. // post: output R according to ideal functionality ITM 5
3. R ← UVCDN(pk = (N, v, v0, {vi}i∈P), {si}i∈P , {xi}i∈I) :=
4. parties i ∈ I do // input phase

5. ri ∈R Z
∗
N ; Xi := (1 + N)xirN

i ; πPK,i := fsprove(ΣPK; Xi; xi, ri; i)
6. hi := H(Xi||πPK,i||i); bcast(hi); bcast(Xi, πPK,i)
7. F := {i ∈ I | hi �= H(Xi||πPK,i||i) ∨ ¬fsver(ΣPK; Xi; πPK,i; i)}
8. foreach i ∈ F do Xi := 1
9. foreach gate do // computation phase

10. if 〈constant gate c with value v〉 then Xc := (1 + N)v

11. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

12. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX−1
b

13. if 〈multiplication gate c with inputs a, b〉 then // [DN03] multiplication
14. parties i ∈ P \ F do

15. di ∈R ZN ; ri, ti ∈R Z
∗
N ; Di := (1 + N)dirN

i ; Ei := (Xb)
ditN

i

16. bcast(Di, Ei)
17. (·, Dc, Ec; πCMc) :=
18. MΣ(ΣCM, ΦCM, P \ F, {(Xb, Di, Ei)}i∈P\F , {(di, ri, ti)}i∈P\F )
19. if |P \ F | < �n/2� then break
20. Sc := Xa · Dc

21. parties i ∈ P \ F do Si := (Sc)
2Δsi ; bcast(Si)

22. (·, S0,c, ·, ·; πCDc) :=
23. MΣ(ΣCD, ΦCD, P \ F, {(Sc, Si, v, vi)}i∈P\F , {Δsi}i∈P\F )
24. if |P \ F | < �n/2� then break

25. s := paillierdecode(S0,c); Xc := (Xb)
s · E−1

c

26. if |P \ F | < �n/2� then parties i ∈ I ∪ P ∪ {R} do return ⊥
27. party R do d ∈R ZN ; s ∈R Z

∗
N ; D := (1 + N)dsN // output phase

28. party R do πPKd := fsprove(ΣPK; D; d, s; R); bcast(D, πPKd)
29. if ¬fsver(ΣPK; D; πPKd; R) then parties i ∈ I ∪ P ∪ {R} do return ⊥
30. Y := Xoutgate · D−1;parties i ∈ P \ F do Yi := Y 2Δsi ; bcast(Yi)
31. (·, Y0, ·, ·; πCD; y) := MΣ(ΣCD, ΦCD, P \ F, {(Y, Yi, v, vi)}i∈P\F , {Δsi}i∈P\F , D)
32. if |P \ F | < �n/2� then parties i ∈ I ∪ P ∪ {R} do return ⊥
33. party R do
34. y := paillierdecode(Y0); r := y + d
35. send({(Dc, Ec, ΠCMc, S0,c, ΠCDc)}c∈gates, (D, πPKd, Y0, πCDy); V) // proof
36. return (r, s) // phase
37. parties i ∈ I ∪ P do return ⊥
38. party V do π := recv(R); return vercomp(pk, {Xi}i∈I , π)

computation, and multiplication phases of the CDN protocol, with all proofs
made non-interactive, followed by a new proof phase. As discussed, we can use
the normal Fiat-Shamir (FS) heuristic in only a constant number of rounds; and
we can use the multiparty FS heuristic only when it gives a “combined state-
ment” that makes sense. Hence, we choose to use the FS heuristic for the proofs
by the input and result parties, and the multiparty FS heuristic for the proofs
by the computation parties.
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Algorithm 7. vercomp: verifier’s gate-by-gate verification of the computation
1. // pre: pk public key, {Xi}i∈I encryptions, ({Πmuli}, Πresult) tuple
2. // post: if ({Πmuli}, Πresult) proves correctness of Y , Xo = Y ; otherwise, Xo = ⊥
3. Xo ← vercomp(pk = (N, v, v0, {vi}i∈P), {Xi}i∈I , ({Πmuli}, Πresult)) :=
4. // verification of input phase: see lines 6–8 of UVCDN
5. // verification of computation phase
6. foreach gate do
7. if 〈constant gate c with value v〉 then Xc := (1 + N)v

8. if 〈addition gate c with inputs a, b〉 then Xc := XaXb

9. if 〈subtraction gate c with inputs a, b〉 then Xc := XaX−1
b

10. if 〈multiplication gate c with inputs a, b〉 then

11. (D; E; a, c, r; S0; a
′, c′, r′) := Πmulc; S := Xa · D−1

12. if ¬fsver(ΣCM; Xb, D, E; a; c; r) then return ⊥
13. if ¬fsver(ΣCD; S, S0, v, v0; a

′; c′; r′) then return ⊥
14. s := paillierdecode(S0); Xc := (Xb)

sE−1

15. // verification of output phase
16. (D; aout, cout, rout; Y0; adec, cdec, rdec) := Πresult

17. if ¬fsver(ΣPK; D; aout, cout, rout; R) then return ⊥
18. Y := Xoutgate · D−1

19. if ¬fsver(ΣCD; Y, Y0, v, v0; adec, cdec, rdec; D) then return ⊥
20. y := paillierdecode(Y0)
21. return (1 + N)yD // encryption of y + d = r

In more detail, during the input phase of the protocol, the input parties
provide their inputs (lines 4–8). As in the CDN protocol, each party encrypts
its input and compiles a FS proof of knowledge (line 5). In the original CDN
protocol, these encryptions and proofs would be broadcast directly; however, if a
majority of computation parties are corrupted, then this allows corrupted parties
to adapt their inputs based on the inputs of the honest parties. To prevent this,
we let each party first broadcast a hash of its input and proof; only after all
parties have committed to their inputs using this hash are the actual encrypted
inputs and proofs revealed (line 6). All parties that provide an incorrect hash or
proof have their inputs set to zero (line 7–8).

The remainder of the computation follows the CDN protocol. During the
computation phase, the function is evaluated gate-by-gate; for multiplication
gates, the multiplication protocol from [DN03] is used, with proofs of correct
multiplication and decryption using the multiparty FS heuristic (lines 14–25).
During the output phase, the result party obtains the result by broadcasting an
encryption of a random d and proving knowledge using the normal FS heuristic
(lines 27–28); the computation parties decrypt the result plus d, proving cor-
rectness using the multiparty FS heuristic (line 31). From this, the result party
learns result r (line 34); and it knows the intermediate values from the protocol
and the proofs showing they are correct.

Finally, we include a proof phase in the UVCDN protocol in which the result
party sends these intermediate values and proofs to the verifier (line 35). The
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verifier runs procedure vercomp (Algorithm 7) to verify the correctness of the
computation (line 38). The inputs to this verification procedure are the public
key of the Paillier cryptosystem; the encrypted inputs {Xi}i∈I by the input
parties; and the proof π by the result party (which consists of proofs for each
multiplication gate, and the two proofs from the output phase of the protocol).
The verifier checks the proofs for each multiplication gate from the computation
phase (lines 6–14); and the proofs from the output phase (lines 16–20), finally
obtaining an encryption of the result (line 21). While not specified in vercomp,
the verifier does also verify the proofs from the input phase: namely, in lines
7–8 of UVCDN, the verifier receives encrypted inputs and verifies their proofs
to determine the encrypted inputs {Xi}i∈I of the computation.

Apart from checking the inputs during the input phase, the verifier does not
need to be present for the remainder of the computation until receiving π from
R. This is what makes verification “universal”: in practice, we envision that a
trusted party publicly announces the Paillier public keys, and the input parties
publicly announce their encrypted inputs with associated proofs: then, anybody
can use the verification procedure to verify if a given proof π is correct with
respect to these inputs. In [SV15], we prove that:

Theorem 1. Protocol UVCDN implements verifiable secure function evaluation
in the random oracle model.

The proof uses two simulators: one for a honest majority of computation
parties; one for a corrupted majority. The former simulator extends the one
from [CDN01], obtaining privacy with a reduction to semantic security of the
threshold Paillier cryptosystem. The latter does not guarantee privacy, and so
can simulate the adversary by running the real protocol, ensuring correctness by
witness-extended emulation.

5 Concluding Remarks

Our security model is specific to the CDN setting in two respects. First, we
explicitly model that the verifier receives a Paillier encryption of the result (as
opposed to another kind of encryption or commitment). We chose this formula-
tion for concreteness; but our model generalises easily to other representations
of the result. Second, it is specific to the setting where a minority of parties may
be actively corrupted; but it is possible to change the model to other corruption
models. For instance, it is possible to model the setting from [BDO14] where
privacy is guaranteed when there is at least one honest computation party (and
our protocols can be adapted to that setting). The combination of passively
secure multiparty computation with universal verifiability is another interesting
possible adaptation.

Our protocols are secure in the random oracle model “without dependent
auxiliary input” [Wee09]. This means our security proofs assume that the ran-
dom oracle has not been used before the protocol starts. Moreover, our simulator
can only simulate logarithmically many sequential runs of our protocol due to
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technical limits of witness-extended emulation. These technical issues reflect the
real-life problem that a verifier cannot see if a set of computation parties have
just performed a computation, or they have simply replayed an earlier computa-
tion transcript. As discussed in [Unr07], both problems can be solved in practice
by instantiating the random oracle with a keyed hash function, with every com-
putation using a fresh random key. Note that all existing constructions require
the random oracle model; achieving universally verifiable (or publicly auditable)
multiparty computation in the standard model is open.

Several interesting variants of our protocol are possible. First, it is easy to
achieve publicly auditable multiparty computation [BDO14] by performing a
public decryption of the result rather than a private decryption for the result
party. Another variant is basic outsourcing of computation, in which the result
party does not need to be present at the time of the computation, but afterwards
gets a transcript from which it can derive the computation result. Finally, it is
possible to achieve universal verifiability using other threshold cryptosystems
than Paillier. In particular, while the threshold ElGamal cryptosystem is much
more efficient than threshold Paillier, it cannot be used directly with our pro-
tocols because it does not have a general decryption operation; but universally
verifiable multiparty using ElGamal should still be possible by instead adapting
the “conditional gate” variant of the CDN protocol from [ST04].

Finally, to close the loop, we note that our techniques can also be applied to
reduce the cost of verification in universally verifiable voting schemes. Namely,
for voting schemes relying on homomorphic tallying, we note that the Σ-proofs
for correct decryption of the election result by the respective talliers can be
combined into a single Σ-proof of constant size (independent of the number
of talliers). Similarly, for voting schemes relying on mix-based tallying, the Σ-
proofs for correct decryption of each vote by the respective talliers is reduced to
a constant size per vote.
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Abstract. Proactive secret sharing (PSS) schemes are designed for set-
tings where long-term confidentiality of secrets is required, specifically,
when all participating parties may eventually be corrupted. PSS schemes
periodically refresh secrets and reset corrupted parties to an uncorrupted
state; in PSS the corruption threshold of parties is replaced with a corrup-
tion rate which cannot be violated. In dynamic proactive secret sharing
(DPSS) the group of participating parties can vary during the course
of execution. Accordingly, DPSS is ideal when the set of participating
parties changes over the lifetime of the secret or where removal of par-
ties is necessary if they become severely corrupted. This paper presents
the first DPSS scheme with optimal amortized per-secret communica-
tion in the number of parties, n: This paper requires O(1) communi-
cation, as compared to O(n4) or exp(n) in previous work. We present
perfectly and statistically secure schemes with near-optimal threshold in
each case. We also describe how to construct a communication-efficient
dynamic proactively-secure multiparty computation (DPMPC) protocol
which achieves the same thresholds.

Keywords: Proactive security · Secret sharing · Mobile secret sharing ·
Dynamic groups · Secure multiparty computation

1 Introduction

Secret sharing [6,31] is a foundational primitive in cryptography, especially in
secure computation. A secret sharing scheme typically consists of a protocol
for sharing a secret (or multiple secrets) and a protocol for reconstructing the
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shared secret(s). The secret sharing protocol distributes shares of the secret
among n parties in the presence of an adversary who may corrupt up to t parties;
security of the secret sharing scheme ensures that such an adversary will learn
no information about the secret.

However, traditional secret sharing may be insufficient in some real-world
settings; specifically, settings that may require a secret to be secured for a long
period of time, especially with respect to the ability of an adversary to even-
tually corrupt all parties. Traditional (threshold-based) secret sharing schemes
are insecure once t + 1 parties have been corrupted. Of particular concern are
distributed storage and computing settings in the presence of advanced persis-
tent threats who, given sufficient time, will successfully corrupt enough parties
to break the threshold that guarantees security. To address this issue, Ostrovsky
and Yung [28] introduced the proactive security model. In this model, the execu-
tion of the protocol(s) is divided into phases. The adversary is allowed to corrupt
and decorrupt parties at will, under the constraint that no more than a threshold
number of parties are corrupt in any given phase. This means that every party
may eventually become corrupt subject to the corruption rate constraint. Such
an adversary is called a mobile adversary.1

While standard proactively-secure protocols are able to satisfy security
requirements of long-term storage and computation, they lack the ability to
change the number of parties during the course of the protocol. Such a restraint
is particularly challenging in the case of long-term storage or computation, which
was one of the reasons that the proactive security model was constructed in the
first place. We refer to secret sharing schemes that are both proactively-secure
and allow the set of parties to dynamically change as dynamic proactive secret
sharing (DPSS) schemes. Such schemes have also been the subject of numerous
papers [17,30,33,34] but none of them has satisfying (linear or constant) commu-
nication complexity. The dynamic setting allows for the reality that some parties
(deployed as physical or virtual servers) may be attacked to the point of not being
able to be reset to a pristine, uncorrupted state (e.g., they may become physi-
cally damaged). When the set of parties can be dynamically changed, this issue
could be addressed by excluding the severely corrupted one(s) entirely (and, ide-
ally, include new uncorrupted ones). In addition, DPSS within large distributed
systems enables a truly “moving target defense”, where the set of participating
nodes is a smaller, dynamically changing subset of the whole distributed system
that is therefore more difficult to target for attack.

We argue that adopting efficient DPSS schemes in the future may help pre-
vent large-scale compromises of servers that store user data, often at financial
institutions or large enterprises [27,32]. Such breaches show an increasing need
for secure long-term storage solutions. Standard secret sharing can address this
issue by distributing data to avoid single points of compromise or failure, but

1 The term “mobile” is heavily used in the secure computation literature: “dynamic”
secret sharing, as discussed in this paper, has historically been called “mobile” secret
sharing (for instance, see [30]), which is a completely different concept than the
mobile adversary definition.
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given enough time, an adversary may be able to compromise all the servers
that store the data. Proactive secret sharing partially addresses this issue by
refreshing and recovering, yet still has no means of securing against a server
that becomes “permanently” compromised (e.g., by compromising its boot sys-
tem and/or firmware). Dynamic proactive secret sharing addresses this issue
by allowing the set of servers to change dynamically in response to corruptions
and removing permanently compromised servers. Furthermore, the total number
of servers may change, thereby increasing the concrete number of servers that
would have to be corrupted to exceed the threshold corruption rate. Thus in
response to an attack, the threshold may be temporarily raised to increase secu-
rity, and when the attack is resolved, the threshold may be reduced by reducing
the number of participating servers to increase efficiency. Our goal is therefore
to construct a communication-efficient DPSS scheme, particularly one that can
be used as a building block in a system for storing large data files and where
the proactive refresh and recovery of shares becomes a performance bottleneck
when the number of parties (or servers) increases. While we acknowledge that
several other layers of security must be developed for a complete data storage
solution to be secure against a mobile adversary, we argue that constructing an
efficient DPSS is an important step towards realizing this goal though.

1.1 Techniques

We first briefly outline the techniques utilized in the rest of the paper.

Batched Secret Sharing. One of the foundational techniques allowing us to
achieve optimal amortized communication complexity is batched secret sharing
[21]. Such sharings are used to encode a “batch” of multiple secrets as distinct
points on a single polynomial, and then distribute shares to each party as in
standard Shamir secret sharing [31]. The number of secrets stored in the poly-
nomial (the “batch size”) is chosen to be O(n). This allows the parties to share
O(n) secrets with O(n) total communication complexity so that the amortized
complexity is O(1) per secret.

Hyper-Invertible Matrices. A hyper-invertible matrix [5] satisfies the
property that any square submatrix formed by removing rows and columns is
invertible. Hyper-invertible matrices are used in our protocol for efficient error
detection. If a vector of n − 3t secret sharings is concatenated with t random
sharings and then multiplied by a n × (n − 2t) hyper-invertible matrix, then
each party can be given one of the sharings in the resultant vector of n sharings
without revealing any information about the n − 3t secrets. Furthermore, if any
of the original n − 2t sharings are malformed (meaning that the shares do not
lie on a polynomial of correct degree), then at least 2t + 1 of the resultant n
sharings will be malformed. This allows the parties to verify that sharings are
correct while preserving the privacy of the secrets. Since n − 3t (which is O(n))
sharings are verified by sending n (also O(n)) sharings to n parties, this only
requires constant amortized communication bandwidth.
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Party Virtualization. Party virtualization [8] is a method for transforming
a multiparty protocol by replacing each party in the protocol with a “virtual”
party. The virtual party is a committee of parties that perform a multiparty
protocol to emulate the actions of an individual party in the original (untrans-
formed) protocol. The advantage of this technique is that it allows the corrup-
tion threshold to be raised from that of the untransformed protocol. In [15], the
authors demonstrate how to raise the corruption threshold to near-optimal while
only increasing the communication complexity by a constant factor, which is the
approach we take in this paper.

1.2 Contributions

In this paper we present a new communication-optimal dynamic proactive secret
sharing (DPSS) scheme. In addition to a protocol for distributing shares of a
secret and a protocol for reconstructing the secret, a DPSS scheme must also
contain a protocol for refreshing the shares and (in the case of a malicious adver-
sary) for recovering the shares amongst a group of parties that may change from
one refresh to the next. A refresh protocol changes the shares held by the parties
such that old shares (before the refresh) cannot be combined with new shares
(after the refresh) to gain any information about the secret. A recovery proto-
col allows decorrupted parties to recover shares that may have been destroyed
or altered by the adversary. The communication complexity of the refresh and
recovery protocols are often a bottleneck for proactive secret sharing schemes.

As will be defined in Sect. 4.1 (Definition 4), a DPSS scheme consists of
three protocols: Share, Redistribute, and Open that distribute, redistribute, and
reconstruct shares of a secret, respectively. For the protocols Share and Open,
we use the protocols RobustShare and Reco (respectively) from [15].

Our main contribution is the construction of a new Redistribute protocol
with the following properties: (1) Optimal (Constant Amortized) Communica-
tion Bandwidth: Out of currently published protocols for DPSS, ours has the
lowest amortized communication complexity. We achieve O(1) per-secret amor-
tized communication complexity (measured as the number of field elements).2

(2) No Cryptographic Assumptions: Ours is the first DPSS scheme that provides
information-theoretic security without making any cryptographic assumptions.
(3) Eliminating Party Virtualization: The most efficient DPSS protocol to date
is that of [30] where “party virtualization” is utilized when the set of parties
is decreased.3 “Party virtualization” occurs when each real party holds inter-
nal data (i.e., shares) corresponding to some virtual party. That is, there are n

2 We only claim that the amortized communication complexity is optimal. Reducing
the non-amortized complexity is a possible area for future work.

3 Note that the term “party virtualization” has a different meaning in [30] than is
typically used, either in Sect. 1.1 or in other secure computation literature such as
[15]; we use here the terminology of [30] in quotes and only in this paragraph.
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parties, but there are n + v virtual parties, and while each real party gets her
own private share, each real party also gets all v shares of all the virtual parties.
As stated in [30], this technique is “somewhat unsatisfying theoretically because
using this method to reduce the threshold does not reduce the asymptotic com-
putational overhead of the protocol.” In this paper, we present a DPSS protocol
that does not use party virtualization as in [30] and thus reduces the asymptotic
computational and communication overhead of the protocol.

Finally, as an application of our DPSS scheme we briefly describe how to
construct a dynamic proactively-secure multiparty computation (DPMPC) pro-
tocol.

1.3 Outline

The rest of the paper is organized as follows: In Sect. 2 we discuss related work.
The roadblocks facing constructing an efficient DPSS scheme are described in
Sect. 3. We give the necessary technical preliminaries in Sect. 4 and then give the
details of our DPSS scheme in Sect. 5 (while some of the subprotocols are deferred
to the full version of this paper [4]). In Sect. 6 we describe how the threshold
may be raised in the statistical security setting. We show how our DPSS scheme
can be applied to secure multiparty computation in Sect. 7. Security definitions
and proofs are given in the full version of this paper [4].

2 Related Work

The same work [28] introducing the proactive security model also contained the
first proactive secret sharing (PSS) scheme and proactively-secure multiparty
computation (PMPC) protocol. PSS was the central tool introduced in [28], and
there has been significant follow up work on PSS schemes, both in the synchro-
nous and asynchronous network models (see Table 1 for a comparison). Cur-
rently the most efficient (non-dynamic) PSS scheme is [3], which has an optimal
O(1) amortized communication complexity per secret share, is UC-secure and
achieves near-optimal thresholds for both perfect and statistical cases. Currently,
the most efficient DPSS scheme is that of [30], which works in asynchronous net-
works, provides cryptographic security and achieves a corruption threshold of
t/n < 1/3, but has prohibitive communication complexity in the number of
parties, namely O(n4). Compared to [30], our DPSS protocols require only con-
stant (amortized) communication are perfectly (resp. statistically) secure with
near-optimal corruption thresholds of t/n < 1/3 − ε (resp. t/n < 1/2 − ε) and
work with synchronous networks. Extending our work to asynchronous networks
and improving the threshold and communication bounds of [30] is still an open
problem.

In addition to proactive secret sharing, proactive security has played a fun-
damental role in several areas, including proactively secure threshold encryp-
tion and signature schemes [7,10,18–20,25,26,29] (and in particular [1], which
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also sketches a definition of UC security in the proactive framework), intrusion-
resilient signatures [24], eavesdropping games [22], pseudorandomness [11], and
state-machine replication [12,13].

Table 1. Comparison of Non-Dynamic Proactive Secret Sharing (PSS) and Dynamic
Proactive Secret Sharing (DPSS) Schemes. Threshold is for each reboot phase. Our
communication complexity is amortized per bit.

Paper Dynamic Network Security Threshold Communication complexity

[33] Yes synch. Cryptographic t/n < 1/2 exp(n)

[34] Yes asynch. Cryptographic t/n < 1/3 exp(n)

[9] No asynch. Cryptographic t/n < 1/3 O(n4)

[30] Yes asynch. Cryptographic t/n < 1/3 O(n4)

[23] No synch. Cryptographic t/n < 1/2 O(n2)

[3] No synch. Perfect t/n < 1/3−ε O(1)

[3] No synch. Statistical t/n < 1/2−ε O(1)

This paper Yes synch. Perfect t/n < 1/3−ε O(1)

This paper Yes synch Statistical t/n < 1/2−ε O(1)

The only two known general PMPC protocols are [28] and [3]. The former
protocol is proven secure in the stand-alone corruption model and requires at
least O(Cn3) communication complexity (where C is the size of the circuit),
while the latter is UC-secure and has near-linear communication complexity
of O(DC log2(C)polylog(n) + D poly(n) log2(C)) (where D is the depth of the
circuit). We provide a dynamic PMPC protocol in this paper, whereas neither
of the above PMPC protocols is dynamic.

3 Roadblocks in Constructing Communication-Optimal
DPSS

The most efficient DPSS scheme to date is that of [30], and the most efficient
PSS scheme to date is that of [3]. In this section, we explain why straightforward
modifications of either of these would not produce a DPSS scheme with optimal
communication requirements.

In [3], the refresh is performed by having the parties generate new polynomials
Q to mask the old polynomials H; then each party generates a share of the new
polynomial by locally computing her share of H + Q and relabeling H ← H + Q.
Although this works in the non-dynamic proactive setting, in the dynamic proac-
tive setting this would allow t corrupt parties in the old group and an additional
t′ corrupt parties in the new group to learn their shares on the new polynomial
(where t′ is the corruption threshold in the new group). This could be enough for
the adversary to reconstruct the secret(s) rendering the scheme insecure.
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In [30], this issue is prevented by constructing the polynomial Q such that
no party in the old group knows her share of Q. More specifically, the parties in
the old group construct a polynomial Rj for each P ′

j in the new group such that
Rj(βj) = 0. Then the Q and the Rj are generated simultaneously so that each
party in the old group only learns her share of Q+Rj for each j. This technique
preserves security but would not yield the optimal communication bandwidth
that we aim for. Generating one polynomial for each party in the new group
would result in a communication complexity of at least O(n2) for masking O(n)
secrets while our goal is O(1) (amortized) communication per secret.

In this paper we provide a solution that generates the polynomials Q without
revealing any share of Q to the parties in the old group, and maintains optimal
communication efficiency. This technique is one of the main contributions of the
paper and is described in detail in Sect. 5.2.

4 Preliminaries

In this section we provide some preliminaries required for the rest of the paper.

4.1 Definitions

We first provide definitions of secret sharing (SS), proactive secret sharing (PSS),
and dynamic proactive secret sharing (DPSS) schemes. The definitions below are
for perfectly secure protocols; the definitions for statistically secure protocols
are the same, except that the termination, correctness, and secrecy properties
are allowed to be violated with negligible probability. As our protocols are for
sharings of multiple secrets, we write the protocols for a vector of secrets over a
finite field F, treating the case in which the vector is of length one as a special
case.

Definition 1. A secret sharing scheme consists of two protocols, Share and
Open, which allows a dealer to share a vector of secrets s among a group of
n parties such that the secrets remain secure against an adversary, and allows
any group of n − t uncorrupted parties to reconstruct the secrets.

Assuming that no more than t parties are corrupt throughout the execution
of the protocols, the following three properties hold:

– Termination: All honest parties will complete the execution of Share and
Open.

– Correctness: Upon completing Share, there is a fixed vector v ∈ F
W (where W

is the number of secrets to be shared) such that all honest parties will output
v upon completion of Open. Furthermore, if the dealer was honest during the
execution of Share, then v = s.

– Secrecy: If the dealer is uncorrupted, then the adversary gains no information
on s.
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The definition of a PSS scheme is essentially the same as the definition of
an SS scheme, with the addition of Refresh and Recovery protocols for secur-
ing against a mobile adversary. The Refresh protocol refreshes data to prevent
a mobile adversary from learning secrets, and the Recovery protocols allows de-
corrupted parties to recover their secrets, preventing the adversary from destroy-
ing data. Before defining a PSS scheme, we need to define refresh and recovery
phases.

Definition 2. A refresh phase (resp. recovery phase) is the period of time between
two consecutive executions of the Refresh (resp. Recovery) protocol. Further-
more, the period between Share and the first Refresh (resp. Recovery) is a phase,
and the period between the last Refresh (resp. Recovery) and Open is a phase. Any
Refresh (resp. Recovery) protocol is considered to be in both adjacent phases.

Definition 3. A proactive secret sharing scheme consists of four protocols,
Share, Refresh, Recover, and Open, which allows a dealer to share a vector of
secrets s among a group of n parties such that the secrets remain secure against a
mobile adversary, and allows any group of n−t uncorrupted parties to reconstruct
the secrets. The Refresh protocol prevents the mobile adversary from discovering
the secrets, and the Recover protocol prevents the adversary from destroying the
secrets.

Assuming that no more than t parties are corrupt during any recovery phase,
the following two properties hold:

– Termination: All honest parties will complete each execution of Share, Refresh,
Recover, and Open.

– Correctness: Same as in Definition 1.

Assuming that no more than t parties are corrupt during any refresh phase, the
following property holds:

– Secrecy: Same as in Definition 1.

For the definition of a DPSS scheme, we combine the Refresh and Recover
protocols into one protocol, Redistribute, which also allows transferring the set of
secrets from one group of parties to another and change the threshold. Similarly,
we combine refresh phase and recovery phase, and refer to it simply as a phase.

As the number of parties changes, the threshold must change as well. For
any given number of parties, n, there is a corresponding threshold, t, which will
depend on the particular security and network assumptions of the scheme. Let
τ(n) denote the threshold corresponding to n, and let n(i) denote the number of
parties during phase i.

Definition 4. A dynamic proactive secret sharing scheme consists of three pro-
tocols, Share, Redistribute, and Open, which allows a dealer to share a vector
of secrets s among a group of n(1) parties such that the secrets remain secure
against a mobile adversary, and allows any group of n(L) − t(L) uncorrupted
parties to reconstruct the secrets (where L is the last phase). The Redistribute
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protocol prevents the mobile adversary from discovering or destroying the secrets,
and allows the set of parties and the threshold to change.

Assuming that for each i, no more than t(i) = τ(n(i)) parties are corrupt
during phase i, the following three properties hold:

– Termination: All honest parties currently engaged in the protocol will complete
each execution of Share, Redistribute, and Open.

– Correctness: Same as in Definition 1.
– Secrecy: Same as in Definition 1.

4.2 Notation and Technical Details

We assume that there are W secrets in some finite field F stored among a party
set P of size n. The secrets are stored as follows:

We fix some generator ζ of F∗. Each batch of � secrets is stored in a polynomial
H of degree d (where the value of d depends on the security model as described
below). The polynomial H is chosen such that H(ζj) is the jth secret for j ∈ [�]
and H(ζ�+j) is random for j ∈ [d−�+1]. (We use the notation [X] to denote the
set {1, . . . , X}, and we let [X]×[Y ] denote the Cartesian product of the two sets.
We let [A,B] denote the set of integers [A, . . . , B]). Each party Pi ∈ P is given
H(αi) as her share of the secret. In our scheme we use the protocol RobustShare
from [15] to perform the sharing. When the secrets are to be opened, all parties
send their shares to some party, who interpolates the shares on the polynomials
to reconstruct the secrets. We use the protocol Reco from [15] to perform secret
opening.

Our new redistribution protocol given in Sect. 5 redistributes the secrets to a
new set of parties P ′ of size n′. The parties in P ′ are denoted by P ′

j for j ∈ [n′].
The share of a party P ′

j ∈ P ′ is H(βj). We require that αi �= βj for each i, j

(and that no αi or βj is equal to ζk for any k ∈ [�]). Since we use the labels t, �,
and d for P, we use the labels t′, �′, and d′ for P ′.

For simplicity of notation, our redistribution protocol below assumes that
W is a multiple of 4�2(n − 3t). If W is not a multiple of 4�2(n − 3t), we can
generate random sharings of batches to make it so. Using RanDouSha from [15],
this can be done with poly(n) communication complexity, and since it adds only
a poly(n) amount of data to W , this does not affect the overall communication
complexity of redistributing W secrets.

In this paper we provide a perfectly secure and a statistically secure version of
the redistribution protocol required to construct our DPSS scheme. For the per-
fectly (statistically) secure protocol, the threshold can be made arbitrarily close
to n/3 (n/2). We describe the threshold, batch size, and degree of polynomials
for the two versions below.

In the perfectly secure protocol, we fix three nonzero constants η, θ, and ι
that satisfy η + θ + ι < 1/3. The batch size, �, is the highest power of 2 not
greater than �ηn�; the threshold is t = �θn�; and the degree of the polynomials
that share the secrets are d = �+t+�ιn�−1. The number of parties may increase
or decrease by no more than a factor of 2 at each redistribution. Furthermore,
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the number of parties cannot decrease so much that the corrupt parties in the
old group can interpolate the new polynomials (i.e., d′ − �′ ≥ t); and the number
of parties cannot increase so much that the uncorrupted parties in the old group
cannot interpolate the new polynomials in the presence of corrupt shares (i.e.,
d′ + 2t + 1 ≤ n).

In the statistically secure protocol, we initially pick a low threshold, and then
later raise the threshold using the party virtualization4 technique of [15]. The
protocol in Sect. 5 is written as a perfectly secure protocol with a lower threshold,
and then this is raised using statistically secure virtualization (see Sect. 6 for a
discussion of this). For the initial, low threshold, we select the batch size, �, to
be the highest power of 2 not greater than n/4; the threshold is t < n/16; and
the degree of the polynomials is d = �+2t−1. In the statistically secure version,
we assume that t will increase or decrease by a factor of no more than 2 at each
redistribution (i.e., t/2 ≤ t′ ≤ t).

Note that while (theoretically) it may seem that there is no reason to raise
n without raising t, in a real world setting one may increase n while fixing t
precisely to increase the concrete number of additional servers that an adversary
has to corrupt. To simplify demonstration in this paper we assume that n is
minimal for a given t (i.e., we assume that n could not be decreased without
decreasing t).

Our redistribution protocol requires the use of a hyper-invertible matrix.
A hyper-invertible matrix is such that any square submatrix formed by remov-
ing rows and columns is invertible. It is shown in [5] that one can con-
struct a hyper-invertible matrix as follows: Pick 2a distinct field elements
θ1, . . . , θa, φ1, . . . , φa ∈ F, and let M be the matrix be such that if (y1, . . . , ya)T =
M(x1, . . . , xa)T , then the points (θ1, y1), . . . , (θa, ya) lie on the polynomial of
degree ≤ a − 1 which evaluates to xj at φj for each j ∈ [a]. (In other words, M
interpolates the points with x-coordinates θ1, . . . , θa on a polynomial given the
points with x-coordinates φ1, . . . , φa on that polynomial.) Then any submatrix
of M is hyper-invertible. For our protocol, we let M be some (publicly known)
hyper-invertible matrix with n rows and n − 2t columns.

Throughout the protocol, the Berlekamp-Welch algorithm is used to interpo-
late polynomials in the presence of corrupt shares introduced by the adversary.
As was noted in [16], if M is as above and y = Mx, then we can also use
Berlekamp-Welch to “interpolate” x from y if the adversary corrupts no more
than t coordinates of y.

5 The Redistribution Protocol

In this section, we provide the details of the protocol that redistributes sharings
of secrets from one set of parties to another. The first portion of the protocol
changes the threshold of the polynomials that share the secret (if the number of
servers is changing). Recall that the batch size is the highest power of two not

4 The term “party virtualization” has a different meaning in [30] than it has in [15].



Communication-Optimal Proactive Secret Sharing for Dynamic Groups 33

greater than �ηn� (resp. n/4) in the perfectly (resp. statistically) secure protocol.
This means that a change in the threshold/number of servers does not necessarily
lead to a change in batch size. Thus there are four cases to consider: (1) The
threshold is decreasing, and the batch size is not changing; (2) the threshold is
decreasing, and the batch size is decreasing; (3) the threshold is increasing, and
the batch size is not changing; and (4) the threshold is increasing, and the batch
size is increasing. The second portion of the protocol refreshes the sharings and
allows parties in the new group to learn their shares.

To simplify exposition, the protocol is broken into several sub-protocols.
The four protocols Threshold Changei for i = 1, 2, 3, 4 correspond to the four
cases outlined in the previous paragraph. The protocol Refresh Recovery per-
forms refresh and recovery.

In order to change the set of parties, the current (honest) parties must agree
on which parties to remove and which parties to add. This could be determined
by the parties jointly invoking a voting algorithm, by a trusted administrator
making the decision, or by following some pre-determined schedule. How exactly
this is implemented is beyond the scope of this paper.

We now provide an overview and the intuition behind the operation of the
protocol.

5.1 Overview of Threshold Change

To simplify the illustration of the operation of the protocol we will treat Thresh-
old Change2 as an example. In this case we are decreasing the threshold and
batch size. Since we restrict the batch size to be a power of 2, the batch size will
be cut in half (that is, �′ = �/2). If the parties had access to an uncorruptible
trusted party, then the parties could have the trusted party change the threshold
and batch size for a polynomial H as follows:

1. Each party sends all their shares of the degree d polynomial H to the trusted
party.

2. The trusted party constructs two new polynomials h1 and h2 of degree d′

such that h1(ζj) = H(ζj) and h2(ζj) = H(ζ�′+j) for each j ∈ [�′]. Fresh
randomness is used for to determine the points hi(ζj) for i = 1, 2 and j =
[�′ + 1, d′ + 1].

3. The trusted party sends each party their shares of h1 and h2.

In the absence of a trusted party, the parties emulate this simplified protocol
using hyper-invertible matrices. The parties will take a vector of n−3t sharings,
add to this t extra random sharings, and then via local computations, multiply
the vector by a n × n − 2t hyper-invertible matrix to get a vector of n sharings.
Each party is assigned one of these n sharings and is sent all shares of this
sharing from the other parties. Then each party acts as the trusted party in the
steps above. The fact that the original vector of n−3t sharings was padded with
an extra t sharings prevents the adversary from learning any information on the
secrets.
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Once each party is done acting as the trusted party, she then sends the shares
of the results to the other parties. Each party, upon receiving the n (or fewer)
shares, can apply the Berlekamp-Welch algorithm to interpolate the vector of n
shares in the presence of errors to reconstruct the pre-image under multiplication
by the hyper-invertible matrix, which is a vector of n−2t shares. The first n−3t
of these are taken to be the party’s shares of the new sharings.

In the case where the trusted party performs the operations, fresh randomness
is generated by the trusted party to use in the new sharings. When the parties
jointly perform this operation without a trusted party, they instead generate
random sharings R, apply a hyper-invertible matrix to these sharings (as they
did with the sharings of the actual secrets), and use the points on the resultant
sharings as randomness for the new sharing polynomials.

5.2 Overview of Refresh and Recovery

The protocol Refresh Recovery is a modification of the protocol Block-Redistribute
from [3] that is still secure in the dynamic setting (recall that a straightforward
adoption is insecure as discussed in Sect. 3). The recovery is performed in essen-
tially the same way as in [3], with the exception that in our scheme the shares
are transferred to a new group of parties instead of back to the same group.
(The scheme in [3] is for PSS, not DPSS.)

In the dynamic setting, refresh cannot be performed as in [3]. As mentioned
in Sect. 3, we need a way for the parties to mask the polynomials H with poly-
nomials Q such that no party in the old group knows a share of H + Q and
no party in the new group knows a share of the original H.5 In [3], the par-
ties generate sharings U that share their shares, and then each party receives
a linear combination of these shares that will allow her to recover her shares
(if they were corrupted). In our protocol, the parties in the old group generate
sharings U that share their shares (just as in [3]), and they additionally generate
sharings V , some of which store random data and some of which store a batch
of all zeros; then each party in the new group receives a linear combination of
the U ’s and the V ’s such that this linear combination stores the party’s share of
H + Q for some masking polynomial Q. Thus the parties in the new group see
their shares of H + Q without seeing their shares of H, while the parties in the
old group—because the V were generated randomly—do not know any share of
Q (and hence they do not know any share of H + Q).

5 However, if there is overlap between the old and new groups of servers, such that
Pi = P ′

j for some Pi ∈ P and some P ′
j ∈ P ′, and if αi = βj , then this party will

know her share of both H and H + Q. Nevertheless, this does not cause a security
problem, as it does not cause the threshold to be violated; even in this case, only
t parties in the old group know shares of H, and only t′ parties in the new group
know shares of H + Q.
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5.3 Protocol Specification

In this section we describe the specification of our redistribution protocol. As
stated in Definition 4, a DPSS scheme consists of three protocols, Share, Redis-
tribute (which we describe in this section), and Open. For the protocols Share
and Open, we use the protocols RobustShare and Reco (respectively) from [15].
Our contribution is the construction of the redistribution protocol (Fig. 1).

The protocol RobustShare allows the parties to share O(n2) secrets with
O(n2) communication complexity using batch sharing. This is accomplished with
hyper-invertible matrices to ensure robustness. The protocol Reco opens a batch
of secrets by sending each share to whichever party is supposed to learn the
secret. That party then performs error detection/correction to interpolate the
secrets in the presence of (possibly) corrupt shares. The protocol RanDouSha
from [15] is also used as a subprotocol in our redistribution protocol. The pro-
tocol RanDouSha generates random sharings of degree d and additional sharings
of the same secrets using degree 2d polynomials with constant amortized com-
munication bandwidth. However, for our protocols we do not use the degree 2d
sharings. There are some instances in which we require a variant of RanDouSha
that generates sharings of batches of all zeros. Modifying the protocol to do this
is straightforward, as is the modification of the security proof.

The input to the protocol is a t, P, Corr, t′, P ′ and a collection of poly-
nomials H

(k,m)
a for (a, k, m) ∈ [�] × [n − 3t] × [B] that store the secrets.

1. If t′ �= t, then one of the following steps is executed:
1.1 If t′ < t and �′ = �, invoke Threshold Change1.
1.2 If t′ < t and �′ < �, invoke Threshold Change2.
1.3 If t′ > t and �′ = �, invoke Threshold Change3.
1.4 If t′ > t and �′ > �, invoke Threshold Change4.

2. Invoke Refresh Recovery.

Fig. 1. Redistribute.

As seen in Fig. 1, there are four cases for threshold change. To simplify the
treatment we only focus on case 2 (see Fig. 2), which is when the threshold is
decreasing and the batch size is decreasing, and defer the other three cases to
the full version of this paper [4].

The following subprotocol (Fig. 3) describes how refresh and recovery is per-
formed. This subprotocol will be executed at each redistribution regardless of
whether the threshold is changing.

After Refresh Recovery is completed, the parties relabel the H
(k,m)
a again so

that k varies from 1 to n′ − 3t′ instead of n − 3t. The relabeling is performed in
such a way that it preserves lexicographical order as described in the last steps
of protocols Threshold Change2 and Threshold Change4.
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polynomials R
(k,m)
a of degree ≤ d for k ∈ [n − 2t] and a ∈ [2�] (where

m ∈ [B]).
2. Define H̃

(k,m)
a for k ∈ [n] by

(
H̃(1,m)

a , . . . , H̃(n,m)
a

)T

= M
(
H(1,m)

a , . . . , H(n−2t,m)
a

)T

,

and similarly define R̃
(k,m)
a for k ∈ [n]. Each party locally computes

their shares of these polynomials and sends his share of each H̃
(j,m)
a and

R̃
(j,m)
a to party Pj .

3. Each Pi uses Berlekamp-Welch to interpolate the shares of H̃
(i,m)
a and

R̃
(i,m)
a received in the previous step.

4. Each Pi computes (shares of) the unique polynomials h̃
(i,m)
2a−1, h̃

(i,m)
2a of

degree ≤ d′ for a ∈ [�] and m ∈ [B] that satisfy the following:
4.1 h̃

(i,m)
2a−1(ζ

j) = H̃
(i,m)
a (ζj) for j ∈ [�′].

4.2 h̃
(i,m)
2a−1(ζ

�′+j) = R̃
(i,m)
2a−1(ζ

j) for j ∈ [d′ − �′ + 1].
4.3 h̃

(i,m)
2a (ζj) = H̃

(i,m)
a (ζ�′+j) for j ∈ [�′].

4.4 h̃
(i,m)
2a (ζ�′+j) = R̃

(i,m)
2a (ζj) for j ∈ [d′ − �′ + 1].

5. Each Pi sends each h̃
(i,m)
a (αj) to each Pj .

6. If we define h
(k,m)
a to be the unique polynomials of degree ≤ d′ satisfying

6.1 h
(k,m)
2a−1 (ζj) = H

(k,m)
a (ζj) for j ∈ [�′],

6.2 h
(k,m)
2a−1 (ζ�′+j) = R

(k,m)
2a−1 (ζj) for j ∈ [d′ − �′ + 1],

6.3 h
(k,m)
2a (ζj) = H

(k,m)
a (ζ�′+j) for j ∈ [�′],

6.4 h
(k,m)
2a (ζ�′+j) = R

(k,m)
2a (ζj) for j ∈ [d′ − �′ + 1],

then it is clear that
(
h̃(1,m)

a , . . . , h̃(n,m)
a

)T

= M
(
h(1,m)

a , . . . , h(n−2t,m)
a

)T

.

So each party uses Berlekamp-Welch to interpolate their shares of the
h
(k,m)
a from the shares of the h̃

(k,m)
a received in the previous step.

7. We place a lexicographical order on the polynomials H
(k,m)
a by assign-

ing to the polynomial the vector (m, k, a) and using the lexicographi-
cal order on these 3-dimensional vectors to induce an ordering on the
polynomials. We similarly place a lexicographical order on the polyno-
mials h

(k,m)
a . To simplify notation throughout the rest of the protocol,

we now relabel
{

H
(k,m)
a

}
m = 1, . . . , 4B
k = 1, . . . , n − 3t
a = 1, . . . , �′

{
h
(k,m)
a

}
m = 1, . . . , B
k = 1, . . . , n − 3t
a = 1, . . . , 2�

in
such a way that this map preserves lexicographical order. We then re-
label B 4B.

Lowering the Threshold, Batch Size Decreases
Since we assume that the number of parties decreases by no more than

a factor of 2, we know that �′ = �/2.
1. The parties invoke RanDouSha to generate masking polynomials H

(k,m)
a

of degree ≤ d for k ∈ [n − 3t + 1, n − 2t] and a ∈ [�], as well as random

Fig. 2. Threshold Change2.
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1. Double Sharing Batched Secrets
1.1 The parties generate sharings of �tB random sharings by invok-

ing RanDouSha. We will denote these random secrets by H
(k,m)
a ,

where a and m range over the same values as before, but k ∈
[n − 3t + 1, n − 2t].

1.2 Each party batch-shares all of his shares of each
H

(k,m)
a using RobustShare. That is, Pi chooses polyno-

mials U (i,1,m), . . . , U (i,(n−2t),m) of degree ≤ d′ such that
U (i,k,m)(ζj) = H

(k,m)
j (αi) for j ∈ [�] and U (i,k,m)(ζ�′+j) is

random for j ∈ [d′ − �′ + 1] and shares them via RobustShare.
2. Verifying Correctness

2.1 Define H̃
(k,m)
a and Ũ

(k,m)
a for k ∈ [n] by

(
H̃(1,m)

a , . . . , H̃(n,m)
a

)T

= M
(
H(1,m)

a , . . . , H(n−2t,m)
a

)T

and
(
Ũ (1,m)

a , . . . , Ũ (n,m)
a

)T

= M
(
U (1,m)

a , . . . , U (n−2t,m)
a

)T

.

Each party in P locally computes their shares of these polynomials.
2.2 Each party in P sends all their shares of H̃

(k,m)
a and Ũ (i,k,m) to

party Pk for each a, i, and m.
2.3 Each Pk uses Berlekamp-Welch on the shares of each Ũ (i,k,m) to

interpolate Ũ (i,k,m)(ζj) for each j ∈ [�′].
2.4 Each Pk uses Berlekamp-Welch on the shares of each H̃

(k,m)
a . to

interpolate H̃(i,k,m)(αi) for each i ∈ [n].
2.5 Each Pk checks if the shares of H̃

(k,m)
a are consistent with the

interpolation of the polynomial Ũ (i,k,m). That is, Pk checks if
Ũ (i,k,m)(ζj) = H̃

(k,m)
j (αi) for each j ∈ [�′]. If some Ũ (i,k,m) does

not pass this check, then Pk sends (Pk, accuse, Pi) to each party
in P ′.

2.6 Each P ′
j ∈ P ′ uses the accusations sent in the previous step to

determine a set Corr′
j of parties in P that might be corrupt. More

specifically, P ′
j reads through the list of accusations, and adds par-

ties to Corr′
j according to the following rule: If neither of the parties

in the current accusation are in Corr′
j , then add both of them to

Corr′
j ; otherwise, ignore the accusation.

3. Share Transfer

Fig. 3. Refresh Recovery.
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3.1 Each P ′
j ∈ P ′ selects a set Gj of parties in P − Corrj such that

|Gj | = n − 2t. Then P ′
j sends this set to each member of Gj .

3.2 For each P ′
j ∈ P ′, let {z

(j)
1 , . . . , z

(j)
n−2t} denote the set of indices

of parties in Gj . Let λj,i denote the Lagrange coefficients for in-
terpolating P ′

j ’s share of a secret from the shares of parties in Gj

(i.e. for a polynomial f of degree ≤ d′, f(βj) = λj,1f(α
z
(j)
1

)+ · · ·+
λj,n−2tf(α

z
(j)
n−2t

)).

3.3 The parties in P execute RanDouSha to generate degree d′ poly-
nomials V (j,k,m) for (j, k, m) ∈ [�′ + 1, d′ + 1] × [n − 3t] × [B]. The
parties in P also use RanDouSha to generate degree d′ polynomials
V (j,k,m) for (j, k,m) ∈ [�′]× [n− 3t]× [B] that are random subject
to the constraint that V (j,k,m)(ζw) = 0 for each w ∈ [�′].

3.4 Define degree d′ polynomials Q
(k,m)
a for (a, k, m) ∈ [�′]×[n−3t]×[B]

by Q
(k,m)
a (ζw) = 0 for w ∈ [�′] and Q

(k,m)
a (ζw) = V (w,k,m)(ζa) for

w ∈ [�′ + 1, d′ + 1]. Let μj,i denote the Lagrange coefficients for
interpolating P ′

j ’s share of a secret from the points at ζi for i ∈
[d′ +1] (i.e. for a polynomial f of degree ≤ d′, f(βj) = μj,1f(ζ1)+
· · · + μj,d′+1f(ζd′+1).)

3.5 For each k ∈ [n − 3t], each m ∈ [B], and each j ∈ [n′], each party
in Gj sends his share of

λj,1U
(z

(j)
1 ,k,m) + · · · + λj,n−2tU

(z
(j)
n−2t,k,m)

+μj,1V
(1,k,m) + · · · + μj,d′+1V

(d′+1,k,m)

to P ′
j .

3.6 Each P ′
j uses Berlekamp-Welch to interpolate the polynomials re-

ceived in the previous step for each k ∈ [n − 3t] and each m ∈ [B].
Since for each a ∈ [�′],

λj,1U
(z

(j)
1 ,k,m)(ζa) + · · · + λj,n−2tU

(z
(j)
n−2t,k,m)(ζa)

+ μj,1V
(1,k,m)(ζa) + · · · + μj,d′+1V

(d′+1,k,m)(ζa)

= λj,1H
(k,m)
a (α

z
(j)
1

) + · · · + λj,n−2tH
(k,m)
a (α

z
(j)
n−2t

)

+ μj,1Q
(k,m)
a (ζ1) + · · · + μj,d′+1Q

(k,m)
a (ζd′+1)

= H(k,m)
a (βj) + Q(k,m)

a (βj).

P ′
j has his share of each batch of refreshed data.

Fig. 3. (continued)
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6 Party Virtualization

As stated in Sect. 1.2, we do not require “party virtualization” as defined in [30].
However for the statistical version of our protocol, we require the use of a party
virtualization technique similar to that in [14] (note that these are different tech-
niques as noted before in Sect. 1.2). The technique, initially introduced in [8],
replaces an individual party with a committee of parties that emulates the
actions of an individual party. This is done such that the number of corrupt
committees is lower than the number of corrupt parties. This allows us to raise
the threshold in the statistical case from the initial threshold of t < n/16 to
t < (1/2− ε)n for arbitrary ε > 0. In [2], the authors show how to perform party
virtualization such that there is a constant number of communication rounds.
We refer the reader to [2,14] for details.

Changing the threshold when party virtualization is used is fairly straightfor-
ward. The only requirement is that the threshold of the original (non-virtualized)
protocol still satisfies t < n/16 when the threshold changes. During redistribu-
tion, the parties in the new group will be arranged into committees as in the old
group, and shares will be transferred from the virtual parties in the old group to
the virtual parties in the new group as specified in [2].

7 Dynamic Proactive Multiparty Computation

Our DPSS scheme can be used to construct a dynamic proactive secure multi-
party computation (DPMPC) protocol. A secure multiparty computation (MPC)
protocol allows a set of parties to compute a function of their private inputs
remaining secure against an adversary who may corrupt some of the parties.
A DPMPC protocol is an MPC protocol secure against a mobile adversary in
which the set of parties performing the computation and the corruption thresh-
old may change during the course of the protocol.6

In [3], the authors show how to proactivize the MPC scheme of [14] by exe-
cuting a refresh and recovery protocol between each layer of circuit computation.
To construct our DPMPC scheme, we execute our Redistribute protocol between
each circuit layer as in [3].
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6 Although the set of parties may change throughout the course of the protocol, the
inputs of the original set of parties are used to compute the circuit.
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5. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008)

6. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS
National Computer Conference, vol. 48, pp. 313–317 (1979)

7. Boldyreva, A.: Threshold Signatures, multisignatures and blind signatures based
on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) Public
Key Cryptography — PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg
(2002)

8. Bracha, G.: An O(log n) expected rounds randomized byzantine generals protocol.
J. ACM 34(4), 910–920 (1987)

9. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: ACM Conference on Computer
and Communications Security, pp. 88–97 (2002)

10. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security
for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 98–115. Springer, Heidelberg (1999)

11. Canetti, R., Herzberg, A.: Maintaining security in the presence of transient faults.
In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 425–438. Springer,
Heidelberg (1994)

12. Castro, M., Liskov, B.: Proactive recovery in a byzantine-fault-tolerant system. In:
OSDI, pp. 273–288 (2000)

13. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst. 20(4), 398–461 (2002)

14. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010)

15. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable multi-
party computation with nearly optimal work and resilience. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008)

16. Damg̊ard, I.B., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007)

17. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical Report ISSE TR-97-01, George Mason University, July
1997

http://eprint.iacr.org/
http://eprint.iacr.org/


Communication-Optimal Proactive Secret Sharing for Dynamic Groups 41

18. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal-resilience proac-
tive public-key cryptosystems. In: Proceedings of the 38th Annual Symposium on
Foundations of Computer Science, FOCS 1997, pp. 384, Washington, DC, USA.
IEEE Computer Society (1997)

19. Frankel, Y., Gemmell, P.S., MacKenzie, P.D., Yung, M.: Proactive RSA. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg
(1997)

20. Frankel, Y., MacKenzie, P.D., Yung, M.: Adaptive security for the additive-sharing
based proactive RSA. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 240–263.
Springer, Heidelberg (2001)

21. Franklin, M., Yung, M.: Communication complexity of secure computation
(extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Theory of Computing, STOC 1992, pp. 699–710, New York, NY, USA.
ACM (1992)

22. Franklin, M.K., Galil, Z., Yung, M.: Eavesdropping games: a graph-theoretic app-
roach to privacy in distributed systems. In: FOCS, pp. 670–679 (1993)

23. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995)

24. Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, p. 499. Springer, Heidelberg (2002)

25. Jarecki, S., Olsen, J.: Proactive RSA with non-interactive signing. In: Tsudik, G.
(ed.) FC 2008. LNCS, vol. 5143, pp. 215–230. Springer, Heidelberg (2008)

26. Jarecki, S., Saxena, N.: Further simplifications in proactive RSA signatures. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 510–528. Springer, Heidelberg
(2005)

27. McMillan, R.: $1.2m hack shows why you should never store bitcoins on the internet
(2013)

28. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks. In: Proceedings
of the Tenth Annual ACM Symposium on Principles of Distributed Computing,
pp. 51–59. ACM Press (1991)

29. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998)

30. Schultz, D.: Mobile proactive secret sharing. Ph.D. thesis, Massachusetts Institute
of Technology (2007)

31. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
32. Silver-Greenberg, J., Goldstein, M., Perlroth, N.: JPMorgan Chase hacking

affects 76 million households (2014). http://dealbook.nytimes.com/2014/10/02/
jpmorgan-discovers-further-cyber-security-issues/

33. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive
system. In: IEEE Security in Storage Workshop, pp. 94–106 (2002)

34. Zhou, L., Schneider, F.B., van Renesse, R.: Apss: proactive secret sharing in asyn-
chronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005)

http://dealbook.nytimes.com/2014/10/02/jpmorgan-discovers-further-cyber-security-issues/
http://dealbook.nytimes.com/2014/10/02/jpmorgan-discovers-further-cyber-security-issues/


Round-Optimal Password-Based Group Key
Exchange Protocols in the Standard Model

Jing Xu1(B), Xue-Xian Hu1,2, and Zhen-Feng Zhang1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{xujing,huxuexian,zfzhang}@tca.iscas.ac.cn
2 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Information Engineering University, Zhengzhou 450002, China

Abstract. Password-based group key exchange protocols allow group
users who share only a short, low entropy password to agree on a cryp-
tographically strong session key. One fundamental complexity measure
of such protocols is its round complexity. In this paper, we present the
first one-round password-based group key exchange protocol in the com-
mon random string model. Furthermore, we propose a completely new
approach to remove the need for the common random string and then
construct a two-round password-based group key exchange protocol that
does not require any setup assumption. This is - to the best of our knowl-
edge - the first password-based group key exchange protocol without
trusted setup. Using indistinguishability obfuscation as main tool, both
protocols are provably secure in the standard model.
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1 Introduction

Password-based authenticated key exchange (PAKE) protocols [1] allow users
who share only a short, low-entropy password to agree on a cryptographically
strong session key. PAKE protocols are fascinating from a theoretical perspec-
tive, as they can be viewed as a means of “bootstrapping” a common crypto-
graphic key from the (essentially) minimal setup assumption of a short, shared
secret. PAKE protocols are also important in practice, since passwords are per-
haps the most common and widely-used means of authentication. In this paper,
we consider PAKE protocols in the group setting where the number of users
involved in the computation of a common session key can be large.
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The difficulty in designing password-based protocols is to prevent off-line
dictionary attacks whereby an eavesdropping adversary exhaustively enumer-
ates passwords, attempting to match the correct password to the eavesdropped
session. However, the adversary can always correctly determine the correct pass-
word via an on-line dictionary attack in which the adversary tries to impersonate
one of the parties using each possible password. Although an on-line dictionary
attack is not avoidable, the damage it may cause can be mitigated by other
means such as limiting the number of failed login attempts. Roughly, a secure
password-based protocol guarantees that an exhaustive on-line dictionary attack
is the “best” possible strategy for an adversary.

1.1 Related Work

Group Key Exchange Protocols. Bresson et al. [2] introduced a formal
security model for group key exchange protocols and proposed the first prov-
ably secure protocol for this setting. Their protocol use a ring structure for
the communication, in which each user has to wait for the message from his
predecessor before producing his own. Unfortunately, the nature of their com-
munication structure makes their protocols quite impractical for large groups
due to the number of rounds of communication linear in the number of group
users. Later, Burmester and Desmedt [3,4] proposed a more efficient and prac-
tical group key exchange protocol, in which the number of rounds of commu-
nication is constant. Their protocol has been formally analyzed by Katz and
Yung [5], who also proposed the first constant round and fully scalable authen-
ticated group key exchange protocol which is provably secure in the standard
model. Recently, Boneh and Zhandry [6] constructed the first multiparty non-
interactive key exchange protocol requiring no trusted setup, and gave the formal
security proof in the static and semi-static models.

Password-Based Group Key Exchange Protocols. Adding password
authentication services to a group key exchange protocol is not trivial since
redundancy in the flows of the protocol can open the door to password dictionary
attacks. Bresson et al. [7] proposed the first solution to the group Diffie-Hellman
key exchange problem in the password-based scenario. However, their protocol
has a total number of rounds which is linear in the number of group users and
their security analysis requires ideal models, which is impractical for large groups.
Later, two different password-based versions [8,9] of Burmester-Desmedt proto-
col were proposed, and unfortunately, both of them are not secure [10]. Also,
Abdalla et al. [10] demonstrated the first password-based group key exchange
protocol in a constant number of rounds. Their protocol is provably secure in
the random oracle and ideal cipher models.

To date, there are only a few general approaches for constructing password-
based group key exchange protocols in the standard model (i.e., without random
oracles). Abdalla and Pointcheval [11] constructed the first such protocol with
a proof of security in the standard model. Their protocol combines smooth pro-
jective hash function with the construction of Burmester and Desmedt [3,4] and
includes only 5 rounds communication, but requires a common reference string
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model. Later, Abdalla et al. [12] presented a compiler, that transforms any prov-
ably secure (password-based) two-party key exchange protocol into a provably
secure (password-based) group key exchange protocol with two more rounds of
communication. Their compiler uses non-interactive and non-malleable commit-
ment schemes as main technical tools, also requires a common reference string
model.

1.2 Technical Contributions

Round complexity is a central measure of efficiency for any interactive protocol.
In this paper, our main goal is to further improve bounds on the round complexity
of password-based group key exchange protocol.

Towards this goal, we propose the first one-round password-based group
key exchange protocol which is provably secure in the standard model. Our
main tool is indistinguishability obfuscation, for which a candidate construction
was recently proposed by Garg et al. [14]. The essential idea is the following: the
public parameter consists an obfuscated program for a pseudorandom function
PRF which requires knowledge of the password pw to operate, so that each user
in the group can independently evaluate the obfuscated program to obtain the
output session key. To prevent the off-line dictionary attack, we require the ran-
dom value ri used for generating the ciphertext ci also as input of the obfuscated
program.

Our second contribution is two-round password-based group key exchange
protocol without any setup. The existing constructions require a trusted setup to
publish public parameters, which means whoever generates the parameters can
obtain all group users’ passwords and compute the agreed session key. However,
this may be less appealing than the “plain” model where there is no additional
setup. Motivated by this observation, we propose a completely new approach to
password-based group key exchange protocol with no trusted setup. The result-
ing scheme is the first secure password-based group key exchange protocol which
does not rely on a random oracle or a setup, only requires two rounds of com-
munication. Our central challenge is how to create a way to let each group user
run setup for himself securely. In fact, at a first glance, it seems that letting each
user publish an obfuscated program might fully resolve this problem. However,
such an approach fails because a potentially malicious program can be replaced
by an adversary. Specifically, an adversary may publish a malicious program
that simply outputs the input password. To prevent such attacks, we extend the
Burmester-Desmedt protocol framework [3,4] to the password setting, where
the Diffie-Hellman key exchanges are replaced by indistinguishability obfusca-
tion, and let each user generate two obfuscated programs. The first obfuscated
program is used to obtain other users’ random value, and the second program
is used to generate the shared key with the user’s neighbors, where the output
of the first program is only as the input of the second program. Moreover, each
user’s partial message broadcasted for computing the session key is generated
by his own program and cannot be replaced. Thus, even if the adversary replace
some programs, any password information will not be disclosed.
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1.3 Outline of the Paper

The rest of this paper is organized as follows. Section 2 recalls the security model
usually used for password-based group key exchange protocol, and Sect. 3 recalls
the definition of different cryptographic primitives essential for our study. We
then propose two round-optimal constructions for password-based group key
exchange protocol in Sects. 4 and 5, respectively. Sections 6 concludes.

2 Password-Based Group Key Exchange

In this section, we briefly recall the formal security model for password-based
group key exchange protocols as presented in [10] (which is based on the model
by Bresson [13]).

In a password-based group key exchange protocol, we assume for simplicity a
fixed, polynomial-size set U = {U1, . . . , Ul} of potential users. Each user U ∈ U
may belong to several subgroup G ⊆ U , each of which has a unique password
pwG associated to it. The password pwG is known to all the users Ui ∈ G wishing
to establish a common session key.

Let U 〈i〉 denote the i-th instance of a participant U and b be a bit chosen
uniformly at random. During the execution of the protocol, an adversary A
could interact with protocol participants via several oracle queries, which model
adversary’s possible attacks in the real execution. All possible oracle queries are
listed in the following:

– Execute(U 〈i1〉
1 , . . . , U

〈in〉
n ): This query models passive attacks in which

the attacker eavesdrops on honest executions among the user instances
U

〈i1〉
1 , . . . , U

〈in〉
n . It returns the messages that were exchanged during an honest

execution of the protocol.
– Send(U 〈i〉,m): This oracle query is used to simulate active attacks, in which

the adversary may tamper with the message being sent over the public chan-
nel. It returns the message that the user instance U 〈i〉 would generate upon
receipt of message m.

– Reveal(U 〈i〉): This query models the possibility that an adversary gets session
keys. It returns to the adversary the session key of the user instance U 〈i〉.

– Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart a
real session key from a random one. It returns the session key for instance
U 〈i〉 if b = 1 or a random number of the same size if b = 0. This query is
called only once.

Besides the above oracle queries, some terminologies are defined as follows.

– Partnering: Let the session identifier sidi of a user instance U 〈i〉 be a function
of all the messages sent and received by U 〈i〉 as specified by the protocol. Let
the partner identifier pidi of a user instance U 〈i〉 be the set of all participants
with whom U 〈i〉 wishes to establish a common session key. Two instances U

〈i1〉
1

and U
〈i2〉
2 are said to be partnered if and only if pidi1

1 = pidi2
2 and sidi1

1 = sidi2
2 .
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– Freshness: We say an instance U 〈i〉 is fresh if the following conditions hold:
(1) U 〈i〉 has accepted the protocol and generated a valid session key; (2) No
Reveal queries have been made to U 〈i〉 or to any of its partners.

Correctness. The correctness of password-based group key exchange protocol
requires that, whenever two instances U

〈i1〉
1 and U

〈i2〉
2 are partnered and have

accepted, both instances should hold the same non-null session key.

Security. For any adversary A, let Succ(A) be the event that A makes a single
Test query directed to some fresh instance U 〈i〉 at the end of a protocol P and
correctly guesses the bit b used in the Test query. Let D be the user’s password
dictionary (i.e., the set of all possible candidate passwords). The advantage of
A in violating the semantic security of the protocol P is defined as:

AdvP,D(A) = |2Pr[Succ(A)] − 1|.

Definition 1 (Security). A password-based group key exchange protocol P is
said to be secure if for every dictionary D and every (non-uniform) polynomial-
time adversary A,

AdvP,D(A) < O(qs)/|D| + negl(λ),

where qs is the number of Send oracle queries made by the adversary to different
protocol instances and λ is a security parameter.

3 Preliminaries

In this section we start by briefly recalling the definition of different crypto-
graphic primitives essential for our study. Let x ← S denote a uniformly random
element drawn from the set S.

3.1 Indistinguishability Obfuscation

We will start by recalling the notion of indistinguishability obfuscation (iO)
recently realized in [14] using candidate multilinear maps [15].

Definition 2 (Indistinguishability Obfuscation). An indistinguishability
obfuscator iO for a circuit class Cλ is a PPT uniform algorithm satisfying the
following conditions:

– iO(λ,C) preserves the functionality of C. That is, for any C ∈ Cλ, if we
compute C ′ =iO(λ,C), then C ′(x) = C(x) for all inputs x.

– For any λ and any two circuits C0, C1 ∈ Cλ with the same functionality, the
circuits iO(λ,C0) and iO(λ,C1) are indistinguishable. More precisely, for all
pairs of PPT adversaries (Samp, D) there exists a negligible function α such
that, if

Pr[∀x,C0(x) = C1(x) : (C0, C1, τ) ← Samp(λ)] > 1 − α(λ)

then
|Pr[D(τ, iO(λ,C0)) = 1] − Pr[D(τ, iO(λ,C1)) = 1]| < α(λ)
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In this paper, we will make use of such indistinguishability obfuscators for
all polynomial-size circuits:

Definition 3 (Indistinguishability Obfuscation for P/poly). A uniform
PPT machine iO is called an indistinguishability obfuscator for P/poly if the
following holds: Let Cλ be the class of circuits of size at most λ. Then iO is an
indistinguishability obfuscator for the class {Cλ}.

3.2 Constrained Pseudorandom Functions

A pseudorandom function (PRF) [16] is a function PRF: K × X → Y where
PRF(k, ·)is indistinguishable from a random function for a randomly chosen
key k. Following Boneh and Waters [17], we recall the definition of constrained
pseudorandom function.

Definition 4 (Constrained Pseudorandom Function). A PRF F: K×X →
Y is said to be constrained with respect to a set system S ⊆ 2X if there is an
additional key space KC and two additional algorithms:

• F.constrain(k, S): On input a PRF key k ∈ K and the description of a set
S∈ S (so that S ⊆ X ), the algorithm outputs a constrained key kS ∈ KC .

• F.eval(kS , x): On input kS ∈ KC and x ∈ X , the algorithm outputs

F.eval(kS , x) =
{

F (k, x) if x ∈ S
⊥ otherwise

For ease of notation, we write F (kS , x) to represent F.eval(kS , x).

Security. Intuitively, we require that even after obtaining several constrained
keys, no polynomial time adversary can distinguish a truly random string from
the PRF evaluation at a point not queried. This intuition can be formalized by
the following security game between a challenger and an adversary A.

Let F: K×X → Y be a constrained PRF with respect to a set system S ⊆ 2X .
The security game consists of three phases:

Setup Phase. The challenger chooses a random key K ← K and a random bit
b ← {0, 1}.

Query Phase. In this phase, A is allowed to ask for the following queries:
• Evaluation Query: On input x ∈ X , it returns F (K,x).
• Key Query: On input S ∈ S, it returns F.constrain(K,S).
• Challenge Query: A sends x ∈ X as a challenge query. If b = 0, the chal-

lenger outputs F (K,x). Else, the challenger outputs a random element
y ← Y.

Guess Phase. A outputs a guess b′ of b.

Let E ⊆ X be the set of evaluation queries, C ⊆ S be the set of constrained
key queries and Z ⊆ X the set of challenge queries. A wins if b = b′ and
E

⋂
Z = φ and C

⋂
Z = φ. The advantage of A is defined to be AdvF

A(λ) =
|Pr[Awins] − 1/2|.
Definition 5. The PRF F is a secure constrained PRF with respect to S if for
all probabilistic polynomial time adversaries A, AdvF

A(λ) is negligible in λ.



48 J. Xu et al.

3.3 CCA Secure Encryption

Definition 6 (Public-Key Encryption). A public-key encryption scheme Σ
consist of three algorithms:

• Gen: (randomized) key generation algorithm. It outputs a pair (pk, sk) con-
sisting of a public key and a secret key, respectively.

• Enc: (randomized) encryption algorithm. It outputs a ciphertext c =
Encpk(m) for any message m and a valid public key pk.

• Dec: deterministic decryption algorithm. It outputs m = Decsk(c) or ⊥ =
Decsk(c) for a ciphertext c and a secret key sk.

In order to make the randomness used by Enc explicit, we write Encpk(m; r)
to highlight the fact that random coins r are used to encrypt the message m.

Perfect Correctness. We say that the encryption scheme has perfect correct-
ness if for overwhelming fraction of the randomness used by the key generation
algorithm, for all messages we have Pr[Decsk(Encpk(m)) = m] = 1.

CCA Security [18]. The CCA security of the Σ = (Gen; Enc; Dec) is defined
via the following security game between a challenger and an adversary A:

1. The challenger generates (pk; sk) ← Gen(1λ) and b ← {0, 1}, and gives pk to
A.

2. The adversary A asks decryption queries c, which are answered with the
message Decsk(c).

3. The adversary A inputs (m0,m1) with |m0| = |m1| to the challenger, and
receives a challenge ciphertext c∗ = Encpk(mb).

4. The adversary A asks further decryption queries c �= c∗, which are answered
with the message Decsk(c).

5. The adversary A outputs a bit b′, and wins the game if b′ = b.

We say that a PKE scheme Σ is CCA secure if for all (non-uniform) probabilistic
polynomial time adversaries A, |Pr[b′ = b] − 1/2| is negligible.

4 One-Round Password-Based Group Key Exchange
Protocol

In this section we present our construction of a one-round password-based group
key exchange protocol. The idea is the following: each user broadcasts a cipher-
text ci of the password pw using random ri. In the setup phase, a key K is chosen
for a constrained pseudorandom function PRF. The shared session key will be
the function PRF evaluated at the concatenation of the ciphertexts ci and pw.
To allow each user to compute the session key, the setup will publish an obfus-
cated program for PRF which requires knowledge of the password pw to operate.
However, the adversary may obtain the obfuscated program for PRF and then
mount an off-line dictionary attack, that is, the adversary guesses password pw∗
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and inputs it to the obfuscated program. By observing whether the program
outputs ⊥, the adversary can find the correct password. Therefore, besides the
password pw, the random ri is also required as input of the obfuscated program.
In this way, all users can compute the session key, but anyone else without the
password, will therefore be unable to compute the session key.

A formal description appears in Fig. 1. The correctness is trivial by inspec-
tion. For security, we have the following theorem.

Protocol I

Consider an execution of the protocol among users U1, · · · , Un wishing to establish a
common session key and let pw be their joint password chosen uniformly at random
from a dictionary Dict of size N. Let Σ = (Gen; Enc; Dec) be a public-key encryption
scheme and iO be a program indistinguishability obfuscator.

Setup: Run the key generation algorithm Gen on input 1k, where k ∈ N is a security
parameter, to obtain a pair (pk, sk) of public and secret keys (i.e., (pk, sk)
Gen(1k)). Choose a random key K to obtain an instance of a pseudorandom
function PRF. Build the program PPGKE in Figure 2, and then output pk and
PiO = iO (PPGKE) as the public parameters.

Round 1: Each user Ui proceeds as:
1. Choose ri randomly, encrypt the password pw using ri with respect to the

public key pk, and generate the ciphertext ci = Encpk(pw; ri).
2. Broadcast ci.

Key Generation: Each user Ui runs PiO on (c1, c2, · · · , cn, pw, i, ri) to obtain the
session key SK or ⊥.

Fig. 1. An honest execution of the password-based group key exchange protocol

Theorem 1. If Σ is a CCA-secure public-key encryption scheme, PRF a secure
constrained PRF, and iO a secure indistinguishability obfuscator, then the pro-
tocol in Fig. 1 is a secure password-based group key exchange protocol.

Proof. Fix a PPT adversary A attacking the password-based group key
exchange protocol. We use a hybrid argument to bound the advantage of A.
Let Hyb0 represent the initial experiment, in which A interacts with the real
protocol as defined in Sect. 2. We define a sequence of experiments Hyb1, . . .,
Hyb5, and denote the advantage of adversary A in experiment Hybi as:

Advi(A) def= 2 · Pr[A succeeds in Hybi] − 1.

We bound the difference between the adversary’s advantage in successive exper-
iments, and then bound the adversary’s advantage in the final experiment.
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Inputs: c1, c2, · · · , cn, password pw, i, ri
Constants: PRF key K, the public key pk

1. If ci �= Encpk(pw; ri), output ⊥
2. Otherwise, output PRF(K, c1, c2, · · · , cn, pw)

Fig. 2. The program PPGKE

Finally, combining all the above results gives the desired bound on Adv0(A),
the adversary’s advantage when attacking the real protocol.

Experiment Hyb1. In this experiment, whenever a session key is needed to be
computed by an honest simulated user instance U 〈i〉, we directly compute it as
sk

〈i〉
U = PRF (K, c1, · · · , cn, pwi) instead of by calling the obfuscated program

PiO(c1, · · · , cn, pwi, i, ri).

Lemma 1. Adv0(A) = Adv1(A).

Proof. Notice that, for an honest simulated instance, the verification procedure
ci = Encpk(pw; ri) in program PPGKE will always holds. Therefore, this verifica-
tion step could be omitted without changing the adversary’s view and advantage.

Experiment Hyb2. For each honest simulated user instance U
〈s〉
i , which is

involved in either an Execute or a Send query, we compute ci = Encpk(pw0; ri)
instead of ci = Encpk(pwi; ri), where pw0 represents some dummy password not
in the dictionary Dict but in the plaintext space of the encryption scheme Σ.

Lemma 2. |Adv1(A) − Adv2(A)| < negl(λ).

Proof. First note that, with respect to the honest simulated users, the veri-
fication procedure in program PPGKE has been removed in the last experi-
ment. Denote by qes = qexe + qsend. We define Hyb(η)

1 (0 ≤ η ≤ n · qes)
to be a sequence of hybrid variants of experiment Hyb1 such that, for every
η = n · ξ + γ, 0 ≤ ξ < qes, 0 ≤ γ ≤ n, the first ξ Execute or Send queries
are answered according to experiment Hyb2, the last qes − ξ − 1 queries are
replied the same as in experiment Hyb1; when the (ξ +1)-th Execute or Send
oracle is asked, the first γ ciphertexts of (c1, c2, · · · , cn) are computed according
to experiment Hyb2 and the rest n − γ ciphertexts are treated the same as in
experiment Hyb1. As one can easily verify, the hybrids Hyb(0)

1 and Hyb(n·qes)
1

are equivalent to the experiments Hyb1 and Hyb2, respectively.
In such case, if there is an adversary A whose advantage gap between Hyb1

and Hyb2 are non-negligible in security parameter, there would exist an η such
that the adversary’s advantage gap between Hyb(η−1)

1 and Hyb(η)
1 are non-

negligible. Then, we would be able to build an adversary B violating the CPA
security of the encryption scheme Σ with non-negligible advantage from the
adversary A as follows.
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Upon receiving the public key pk of the encryptions scheme Σ from his
challenger, the adversary B initializes the public parameters for the group key
exchange protocol. It selects a random K ∈ K, chooses password pwi for every
users Ui ∈ U, and picks a bit b ∈ {0, 1} for answering the Test oracle. Then,
for η = n · ξ + γ, it simulates the Execute,Send,Reveal and Test oracles
exactly as in hybrid Hyb(η)

1 except for the γ-th ciphertext of (c1, c2, · · · , cn) in
the (ξ + 1)-th Execute or Send oracle. In this case, the adversary B gives pw
and pw0 to its challenger to obtain a challenging ciphertext c∗

i that is either
Encpk(pw) or Encpk(pw0), and it uses this ciphertext in place of ci to answer
the (ξ + 1)-th Execute query. At last, B checks whether A succeeds or not. If A
succeeds in this hybrid game, then B outputs 1. Otherwise, it outputs 0.

The distinguishing advantage of B is exactly equal to the adversary A’s
advantage gap between Hyb(η−1)

1 and Hyb(η)
1 . Then, the lemma follows by

notice that the encryption scheme Σ is a CPA secure one.

Experiment Hyb3. In this experiment, we first let the simulator record the
corresponding decryption key sk when generating the public key pk. Then, we
define the following event:

PwdGuess : During the experiment, an honest user instance U 〈i〉 with password
pwi is activated by some input message (c1, · · · , ci−1,⊥, ci+1, · · · , cn), such that
there exists some index j ∈ [n] and j �= i satisfying Decsk(cj) = pwi.
Whenever the event PwdGuess happens, the adversary is declared successful and
the experiment ends; Otherwise, the experiment is simulated in the same way
as in the last experiment.

Lemma 3. Adv2(A) ≤ Adv3(A).

Proof. Even when the event PwdGuess happens in experiment Hyb2, the adver-
sary would not necessarily succeed in this case. As a result, the modification
made in experiment Hyb3 introduces a new way for the adversary to succeed.

Experiment Hyb4. Replace the PRF (·) in PPGKE by an constrained pseudo-
random function PRFC(·), arriving at the program P ′

PGKE given in Fig. 3. The
constrained set C is defined as C = Mn × Dict \ {(c1, c2, · · · , cn, pw) : pw ∈
Dict,∀i ∈ [n], ci /∈ Encpk(pw), and ∃j ∈ [n], cj ∈ Encpk(pw0)}.

Lemma 4. |Adv3(A) − Adv4(A)| < negl(λ).

Proof. Because the dummy password pw0 in experiment Hyb2 is derived from
the plaintext space randomly, then with overwhelming probability (in fact, big-
ger than (1 − n/|Dict| · 2λ)), the input to the pseudorandom function PRF
in program PPGKE will belong to the set C defined as above. Therefore, with
overwhelming probability, the modified program P ′

PGKE has the same function-
ality with the original program PPGKE . The security of the indistinguishable
obfuscator iO implies that the adversary’s advantage gap between the experi-
ment Hyb4 and Hyb3 is no more than the probability that P ′

PGKE differs from
PPGKE , thus is negligible. The lemma’s result follows.
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Inputs: c1, c2, · · · , cn, password pw, i, ri
Constants: Constrained PRF key KC , the public key pk

1. If ci �= Encpk(pw; ri), output ⊥
2. Otherwise, output PRFC(KC , c1, c2, · · · , cn, pw)

Fig. 3. The program P ′
PGKE

Experiment Hyb5. Recall that only the situation when event PwdGuess does
not happen (i.e., (c1, c2, · · · , cn, pwi) /∈ C) is considered since Hyb3. Then, when
a session key is needed to be computed by an honest user instance, we evaluate
it as sk

〈i〉
U ←R {0, 1}λ instead of sk

〈i〉
U = PRF (K, c1, c2, · · · , cn, pwi).

Lemma 5. |Adv4(A) − Adv5(A)| < negl(λ).

Proof. We reduce the problem of distinguishing the experiments Hyb4 and
Hyb5 to the security of constrained PRF presented above. Assume that A is a
protocol adversary that is defined as in Hyb4. We construct a PRF adversary B
against the security of the constrained pseudorandom function PRF as follows.
When the adversary B receives the constrained key kC of PRF with respected
to the constrained set C, it simulates the protocol execution for A as in Hyb4.
Note that the program P ′

PGKE is used in this experiment and all the queries
asked by A could be answered with overwhelming probability by utilizing it.
However, when a honest simulated user instance needs to generate a session key,
B asks its own challenge query, getting back either a value computed from the
function PRF or a value selected uniformly at random, and used it as the session
key. Finally, B checks whether A succeeds or not. If A succeeds, then B outputs
1. Otherwise, it outputs 0.

It follows that the advantage of B is exactly equal to the adversary A’s
advantage gap between Hyb4 and Hyb5.

Bounding the Advantage in Hyb5. Consider the different ways for the adver-
sary to succeed in Hyb5:

1. The Event PwdGuess happens;
2. The adversary successfully guesses the bit used by the Test oracle.

Since all oracle instances are simulated using dummy passwords, the adver-
sary’s view is independent of the passwords that are chosen for each group of
users. Then we have Pr[PwdGuess]≤ Q(λ)/Dλ, where Q(λ) denotes the num-
ber of Send oracle queries and Dλ denotes the dictionary size. Conditioned on
PwdGuess not occurring, the adversary can succeed only in case 2. But since all
session keys defined throughout the experiment are chosen uniformly and inde-
pendently at random, the probability of success in this case is exactly 1/2. Then,
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we have

Pr[Success] ≤ Pr[PwdGuess] + Pr[Success|PwdGuess] · (1 − Pr[PwdGuess])

=
1
2

+
1
2

· Pr[PwdGuess]

≤ 1
2

+
Q(λ)
2 · Dλ

and so Adv5(A) ≤ Q(λ)
Dλ

. Taken together, Lemmas 1–5 imply that Adv0(A) ≤
Q(λ)
Dλ

+ negl(λ) as desired. �

5 Two-Round Password-Based Group Key Exchange
Protocol with No Setup

In this section, we show how to remove the trusted setup and common reference
string (CRS) from the password-based group key exchange protocol in the previ-
ous section. Intuitively, letting each user publish an obfuscated program and run
setup for himself might fully resolve this problem. However, unlike the protocol
I in the previous section, the obfuscated programs generated by group users are
susceptible to a “replace” attack - i.e., the adversary may replace the program
with a malicious program that simply outputs the input password. Then, the
message broadcasted by an honest user may disclose the information about pass-
word. With this message, the adversary can mount an off-line dictionary attack
and obtain the password, thus breaking the security of protocol. We believe that
such attacks are the principle reason that the existing constructions require a
trusted setup to publish public parameters.

To overcome the above difficulties, we present a new methodology for con-
structing password-based group key exchange protocol with no setup. The basic
idea of our construction follows the Burmester-Desmedt [3,4] construction where
the Diffie-Hellman key exchanges are replaced by indistinguishability obfusca-
tion. As in the Burmester-Desmedt protocol, our protocol assumes a ring struc-
ture for the users so that we can refer to the predecessor and successor of a user.
Each user in the group will run setup for himself and his neighbors (predecessor
and successor), and generate two obfuscated programs.

– The first obfuscated program P iO−dec is used to obtain other users’ random
value s. This program takes as input “ciphertext” c and user password pw,
and outputs the corresponding “plaintext” s.

– The second obfuscated program P iO is used to generate the shared key with
the user’s neighbors. This program takes as input two random value si and
si+1 generated by the user Ui and its neighbor Ui+1 respectively, and outputs
the shared Ki. However, to make the key Ki shared only between Ui and
its neighbor Ui+1 (i.e., other users cannot obtain the key Ki), an obfuscated
program P iO for PRF will be required the knowledge of a seed r to operate.
More precisely, each user generates a seed ri and computes si = PRG(ri),
where PRG is a pseudorandom generator.
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Protocol II

Consider an execution of the protocol among users U1, · · · , Un wishing to establish a
common session key and let pw be their joint password chosen uniformly at random
from a dictionary Dict of size N. Let F1 and F2 be two pseudorandom functions
(PRF), PRG1 and PRG2 be two pseudorandom generators, and iO be a program
indistinguishability obfuscator.

Round 1: Each user Ui proceeds as:
1. Choose rLi and rRi randomly, compute sLi = PRG1(r

L
i ) and sRi = PRG1(r

R
i ).

2. Choose a PRF key Ki−enc for PRF F1 and a PRF key Ki for PRF F2.
3. Compute cLi = sLi + F1(Ki−enc, pw, Ui, Ui−1) and cRi = sRi +

F1(Ki−enc, pw, Ui+1, Ui).
4. Build the program P dec

i in Figure 5, and the program Pi in Figure 6.
5. Broadcast cLi , cRi , P iO−dec

i = iO (P dec
i ) and P iO

i = iO (Pi).
Round 2: Each user Ui proceeds as:

1. Run P iO−dec
i+1 on (cLi+1, pw, Ui+1, Ui) to obtain sLi+1.

2. Run P iO−dec
i−1 on (cRi−1, pw, Ui, Ui−1) to obtain sRi−1.

3. Run P iO
i on (sLi+1, s

R
i , rRi , Ui+1, Ui) to obtain Ki.

4. Run P iO
i−1 on (sLi , sRi−1, r

L
i , Ui, Ui−1) to obtain Ki−1.

5. Compute Xi = Ki/Ki−1 and broadcast Xi.
Key Generation: Each user Ui computes the MSK = Kn

i ·
∏n−1

j=1 Xn−j
i+j and the

session key SK = PRG2(MSK).

Fig. 4. An honest execution of No-Setup password-based group key exchange protocol

In our protocol, each group user Ui executes two correlated instances to obtain
Ki−1 and Ki, one with his predecessor and one with his successor so each user can
authenticate his neighbors, and then computes and broadcasts Xi = Ki/Ki−1.
After this round, each user is capable of computing the group session key SK.
For the message Xi = Ki/Ki−1 broadcasted by Ui in the second round, Ki is
generated by Ui’s own program Pi, which cannot be replaced. Moreover, the
output of the first program P iO−dec is only as the input of the second program
P iO. Thus, even if the adversary replace P iO−dec and P iO into malicious pro-
grams, from the messages broadcasted, he cannot obtain any information about
the password or the session key.

A formal description appears in Fig. 4. In an honest execution of the protocol,
it is easy to verify that all honest users in the protocol will terminate by accepting
and computing the same MSK =

∏n
j=1 Kj and the same session key SK. There-

fore, the correctness of the protocol follows directly. For the security, we have the
following theorem.

Theorem 2. If PRG is a secure pseudorandom generator, PRF a secure con-
strained PRF, and iO a secure indistinguishability obfuscator, then the protocol
in Fig. 4 is a secure password-based group key exchange protocol with no setup.
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Inputs: c, password pw, U1, U2

Constants: PRF F1 key Ki−enc

Outputs: c − F1(Ki−enc, pw, U1, U2)

Fig. 5. The program P dec
i

Inputs: s1, s2, r, U1, U2

Constants: PRF F2 key Ki

1. If PRG(r) = s1 or PRG(r) = s2, output F2(Ki, s1, s2, U1, U2)
2. Otherwise, output ⊥

Fig. 6. The program Pi

Proof. Fix a PPT adversary A attacking the password-based group key
exchange protocol. We construct a sequence of experiments Hyb0, . . . ,Hyb13,
with the original experiment corresponding to Hyb0. Let Advi(A) denote the
advantage of A in experiment Hybi. To prove the desired bound on Adv(A) =
Adv0(A), we bound the effect of each change in the experiment one the advan-
tage of A, and then show that Adv13(A) ≤ Q(λ)

D(λ) (where, recall, Q(λ) denotes
the number of on-line attacks made by A, and D(λ) denotes the dictionary size).

Experiment Hyb1. Here we change the way Execute queries are answered.
Specifically, for i = 1, . . . , n, we will choose random sL

i , sR
i ∈ {0, 1}2λ instead of

generating them from PRG. Let the set Ŝ = {sL
i , sR

i |i = 1, . . . , n}. The security
of PRG yields the Lemma 6.

Lemma 6. | Adv0(A) − Adv1(A) |≤ negl(λ).

Experiment Hyb2. In this experiment, We constrain the PRF F2 so that it
can only be evaluated at points (s1, s2, U1, U2) where s1 /∈ Ŝ or s2 /∈ Ŝ. Then
we replace F2 with FC

2 in the program Pi, arriving at the program P ′
i given in

Fig. 7. In respond to a query Execute, output P iO
i = iO (P ′

i ).

Lemma 7. | Adv1(A) − Adv2(A) |≤ negl(λ).

Proof. Note that with overwhelming probability, none of s ∈ S in Experiment
Hyb1 has a pre-image under PRG. Therefore, with overwhelming probability,
there is no input to P iO

i that will cause PRF F2 to be evaluated on points of the
form (s1, s2, U1, U2) where s1 ∈ Ŝ and s2 ∈ Ŝ. We can conclude that the programs
Pi and P ′

i are functionally equivalent. Then based on the indistinguishability
obfuscation property, it is easy to see that the hybrids Hyb1 and Hyb2 are
computationally indistinguishable. Thus, security of iO yields the lemma.
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Inputs: s1, s2, r, U1, U2

Constants: Constrained PRF F2 key KC
i

1. If PRG(r) = s1 or PRG(r) = s2, output FC
2 (KC

i , s1, s2, U1, U2)
2. Otherwise, output ⊥

Fig. 7. The program P ′
i

Experiment Hyb3. In this experiment, we change once again the simulation
of the Execute queries so that the value Ki for i = 1, . . . , n are chosen as a
random string of the appropriate length.

Lemma 8. | Adv2(A) − Adv3(A) |≤ negl(λ).

Proof. This follows from the security of PRF as a constrained PRF (as in
Definition 4). We construct a PRF adversary B that breaks the security of PRF
as a constrained PRF as follows: adversary B simulates the entire experiment
for A. In response to Execute(U 〈i1〉

1 , . . . , U
〈in〉
n ) query, B computes cL

i , cR
i with

correct password pw exactly as in experiment Hyb2. B also asks its PRF F2

oracle and thus always reveals the correct key. At the end of the experiment,
B makes a real-or-random challenge query for the constrained function PRFC

as defined above. One can easily see that, B is given a real PRF or a random
value, then its simulation is performed exactly as in experiment Hyb2 or exper-
iment Hyb3, respectively. Thus, the distinguishing advantage of B is exactly
| Adv2(A) − Adv3(A) |.
Experiment Hyb4. In this experiment, we change once again the simulation
of the Execute queries so that the value MSK is chosen as a random string of
the appropriate length.

Lemma 9. Adv3(A) = Adv4(A).

Proof. Note that in the simulation of Execute oracle in experiment Hyb3, the
values Ki for i = 1, . . . , n are chosen at random. Then, from the transcript
T = {X1, . . . , Xn} that the adversary receives as output for an Execute query,
the values Ki are constrained by the following n equations.

X1 = K1/Kn

...
Xn = Kn/Kn−1

Of these equations, only n − 1 are linearly independent. Furthermore, we have

MSK =
n∏

i=1

Ki.
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Since the last equation is linearly independent of the previous ones, MSK that
each user computes in an Execute query is independent of the transcript T that
the adversary sees. Thus, no computationally unbounded adversary can tell the
experiment Hyb3 apart from Hyb4, i.e. Adv3(A) = Adv4(A).

Experiment Hyb5. In this experiment, we change once more the simulation of
the Execute queries so that the session key SK is chosen uniformly at random.
The security of PRG guarantees that its output is statistically close to be uniform
when given a random value as input, which yields the Lemma10.

Lemma 10. | Adv4(A) − Adv5(A) |≤ negl(λ).

Experiment Hyb6. In this experiment, we change last time the sim-
ulation of the Execute queries. Specifically, in response to a query
Execute(U 〈i1〉

1 , . . . , U
〈in〉
n ) we now compute cL

i = sL
i + F1(pw0, Ui, Ui−1) and

cR
i = sR

i +F1(pw0, Ui+1, Ui) for i = 1, . . . , n, where pw0 represents some dummy
password not in the dictionary Dict. We note that in the simulation of Exe-
cute oracle in experiment Hyb1, the values sL

i , sR
i for i = 1, . . . , n are chosen at

random, and the function F1 is pseudorandom. So the Lemma 11 holds.

Lemma 11. | Adv5(A) − Adv6(A) |≤ negl(λ).

Experiment Hyb7. In this experiment we begin to modify the Send oracle.
Let Send0(Π

j
Ui

, U1, · · · , Un) denote a “prompt” message that causes the user
instance Πj

Ui
to initiate the protocol in a group G = {U1, · · · , Un} that contains

user Ui; let Send1(Π
j
Ui

, {(cL
1 , cR

1 , P iO−dec
1 , P iO

1 ), . . . , (cL
n , cR

n , P iO−dec
n , P iO

n )})
denote sending the message {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n , cR
n , P iO−dec

n , P iO
n )}

to user instance Πj
Ui

; let Send2(Π
j
Ui

, {X1, . . . , Xn}) denote sending the message
{X1, . . . , Xn} to user instance Πj

Ui
.

In experiment Hyb7 we modify the way Send0 query is handled. In
response to a query Send0(Π

j
Ui

, U1, · · · , Un), Πj
Ui

chooses random sL
i , sR

i ∈
{0, 1}2λ instead of generating them from PRG and computes the cL

i = sL
i +

F1(pw0, Ui, Ui−1) and cR
i = sR

i + F1(pw0, Ui+1, Ui), where pw0 represents some
dummy password not in the dictionary Dict.

Lemma 12. | Adv6(A) − Adv7(A) |≤ negl(λ).

Proof. The proof is similar to those of Lemmas 6 and 11, and follows easily from
the security of PRG and PRF.

Experiment Hyb8. In this experiment, we change again the simulation of the
Send0 query. We constrain the PRF F1 so that it can only be evaluated at points
(pw,U1, U2) where pw is contained in the dictionary Dict. Then we replace F1

with FC
1 in the program P dec

i , arriving at the program P̂ dec
i given in Fig. 8. In

respond to a query Send0, output P iO−dec
i = iO (P̂ dec

i ).

Lemma 13. | Adv7(A) − Adv8(A) |≤ negl(λ).
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Inputs: c, password pw, U1, U2

Constants: Constrained PRF F1 key KC
i−enc

Outputs: c − FC
1 (KC

i−enc, pw, U1, U2)

Fig. 8. The program P̂ dec
i

Proof. Since the group users share a password chosen uniformly at random from
the dictionary Dict, we can conclude that the programs P dec

i and P̂ dec
i are func-

tionally equivalent. Then based on the indistinguishability obfuscation property,
it is easy to see that the hybrids Hyb7 and Hyb8 are computationally indistin-
guishable. Thus, security of iO yields the lemma.

Experiment Hyb9. In this experiment, we change the simulation of the
Send1 query. In response to a query Send1, if {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . ,

(cL
n , cR

n , P iO−dec
n , P iO

n )} was output by a previous query of the form Send0, the
values Ki and Ki−1 are chosen uniformly at random. As the lemma below shows,
the difference in the advantage between Hyb8 and Hyb9 is negligible. The proof
of Lemma 14 is omitted here since it follows easily from the security of PRF F1

as a constrained PRF, where the outputs of Send0 are always using dummy
password.

Lemma 14. | Adv8(A) − Adv9(A) |≤ negl(λ).

Experiment Hyb10. In this experiment, we change again the simulation of the
Send1 query. In response to a query Send1, if {(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n ,
cR
n , P iO−dec

n , P iO
n )} was generated by the adversary using correct password pw,

the experiment ends.

Lemma 15. Adv9(A) ≤ Adv10(A).

Proof. The only situation in which Hyb10 proceeds differently from Hyb9 occurs
when the adversary correctly guess the password. All this does is introduce a
new way for the adversary to succeed, so Adv9(A) ≤ Adv10(A).

Experiment Hyb11. In this experiment, we change once more the
simulation of the Send1 query. In response to a query Send1, if
{(cL

1 , cR
1 , P iO−dec

1 , P iO
1 ), . . . , (cL

n , cR
n , P iO−dec

n , P iO
n )} was generated by the adver-

sary using incorrect password, the values Ki is chosen uniformly at random.

Lemma 16. | Adv10(A) − Adv11(A) |≤ negl(λ).

Proof. Note that, for user instance Πj
Ui

, the program P iO
i can not be altered

by the adversary. Moreover, since sR
i as one of inputs of P iO

i is generated, the
adversary can not get it or change it. Then the proof follows easily from the
security of PRF F2 as a constrained PRF. We construct a PRF adversary B
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that breaks the security of PRF as a constrained PRF as follows: adversary B
simulates the entire experiment for A. In response to Send query, B responds
with correct password pw exactly as in experiment Hyb10. B also asks its PRF
F2 oracle and thus always reveals the correct key. At the end of the experiment,
B makes a real-or-random challenge query for the constrained function PRFC

as defined above. One can easily see that, B is given a real PRF or a random
value, then its simulation is performed exactly as in experiment Hyb10 or exper-
iment Hyb11, respectively. Thus, the distinguishing advantage of B is exactly
| Adv10(A) − Adv11(A) |.
Experiment Hyb12. In this experiment, we change once more the simulation
of the Send2 query. In response to a query Send2(Π

j
Ui

, {X1, . . . , Xn}), the value
MSK is chosen uniformly at random.

Lemma 17. Adv11(A) = Adv12(A).

Proof. The proof of Lemma 17 uses arguments similar to those in the proof of
Lemma 9, omitted.

Experiment Hyb13. In this experiment, we change again the simulation of the
Send2 query so that the session key SK is chosen uniformly at random. The
security of PRG guarantees that its output is statistically close to be uniform
when given a random value as input, which yields the Lemma18.

Lemma 18. | Adv12(A) − Adv13(A) |≤ negl(λ).

Bounding the Advantage in Hyb13. We now conclude the experiment Hyb13.
First, the session keys of all accepting instances are chosen at random. Second, all
oracle instances are simulated using dummy passwords, so the adversary’s view
of the protocol is independent of the passwords that are chosen for each group of
users. Finally, the probability that an adversary guesses the correct password is at
most Q(λ)

Dλ
. Similar to the proof of Theorem1, we have Adv13(A) ≤ Q(λ)

Dλ
. Taken

together, Lemmas 6–18 imply that Adv0(A) ≤ Q(λ)
Dλ

+ negl(λ) as desired. �

6 Conclusion

In this paper, we proposed two round-optimal constructions for password-based
group key exchange protocol. In particular we obtain a one-round protocol in the
common reference string model and a two-round protocol in the “plain” model
where there is no additional setup. Both protocols are provably secure in the
standard model. It remains an interesting open problem to further reduce the
computational costs of group users, whilst maintaining its optimal communica-
tion rounds.
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Abstract. We show how to construct a completely generic UC-secure
oblivious transfer scheme from a collision-resistant chameleon hash
scheme (CH) and a CCA encryption scheme accepting a smooth pro-
jective hash function (SPHF).

Our work is based on the work of Abdalla et al. at Asiacrypt 2013,
where the authors formalize the notion of SPHF-friendly commitments,
i.e. accepting an SPHF on the language of valid commitments (to allow
implicit decommitment), and show how to construct from them a UC-
secure oblivious transfer in a generic way. But Abdalla et al. only gave
a DDH-based construction of SPHF-friendly commitment schemes, fur-
thermore highly relying on pairings. In this work, we show how to gener-
ically construct an SPHF-friendly commitment scheme from a collision-
resistant CH scheme and an SPHF-friendly CCA encryption scheme.
This allows us to propose an instanciation of our schemes based on the
DDH, as efficient as that of Abdalla et al., but without requiring any
pairing. Interestingly, our generic framework also allows us to propose
an instantiation based on the learning with errors (LWE) assumption.
For the record, we finally propose a last instanciation based on the deci-
sional composite residuosity (DCR) assumption.

Keywords: Commitments · Smooth Projective Hash Functions · CCA
encryption · Oblivious Transfer · UC framework

1 Introduction

Oblivious Transfer (OT) was introduced in 1981 by Rabin [Rab81] as a way to
allow a receiver to get exactly one out of k messages sent by another party, the
sender. In these schemes, the receiver should be oblivious to the other values,
and the sender should be oblivious to which value was received. This primitive
has been widely used and studied in the community, and recently, the authors
of [ABB+13] propose a generic way to obtain a UC-secure oblivious transfer
scheme from an SPHF-friendly commitment scheme, and an instantiation based
on DDH. In this paper, our goal is to strengthen their result to obtain a truly
generic way to obtain a UC-secure oblivious transfer scheme, so we follow their
path of construction from commitment schemes.
c© Springer International Publishing Switzerland 2015
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Commitment schemes have become a very useful tool used in cryptographic
protocols. These two-party primitives (between a committer and a receiver) are
divided into two phases. In a first commit phase, the committer gives the receiver
an analogue of a sealed envelope containing a value m, while in the second
opening phase, the committer reveals m in such a way that the receiver can
verify it was indeed m that was contained in the envelope. It is required that
a committer cannot change the committed value (i.e., he should not be able to
open to a value different from the one he committed to), this is called the binding
property. It is also required that the receiver cannot learn anything about m
before the opening phase, this is called the hiding property. El Gamal [ElG84]
or Cramer-Shoup [CS02] encryptions are famous examples of perfectly binding
commitments, and Pedersen encryption [Ped91] is the most known example of
perfectly hiding commitments.

Inmany applications, for example password-based authenticated key-exchange
in which the committed value is a password, one wants the decommitment to be
implicit, which means that the committer does not really open its commitment,
but rather convinces the receiver that it actually committed to the value it pre-
tended to. In [ACP09], the authors achieved this property thanks to the notion
of Smooth Projective Hash Functions [CS02,GL03], which has been widely used
since then (see [KV11,BBC+13b,ABB+13] for instance). These hash functions
are defined such as their value can be computed in two different ways if the
input belongs to a particular subset (the language), either using a private hash-
ing key or a public projection key along with a private witness ensuring that
the input belongs to the language. The hash value obtained is indistinguishable
from random in case the input does not belong to the language (property of
smoothness) and in case the input does belong to the language but no witness
is known (property of pseudo-randomness).

An additional difficulty arises when one wants to prove the protocols in the
universal composability framework proposed in [Can01]. In a nutshell, security in
the UC framework is captured by an ideal functionality (in an ideal world) and a
protocol is proven secure if, given any adversary to the protocol in the real world,
one can construct a simulator of this adversary such that no environment can
distinguish between the execution in the ideal world (between dummy players,
the ideal functionality and the simulator of the adversary) and the execution in
the real world (between the real players executing the real protocol and interact-
ing between themselves and the adversary) in a non-negligible way. Skipping the
details, when the protocol makes use of commitments, this usually forces those
commitments to be both extractable (meaning that a simulator can recover the
value m committed to thanks to a trapdoor) and equivocable (meaning that a
simulator can open a commitment to a value m′ different from the value m it
committed to thanks to a trapdoor), which is quite a difficult goal to achieve.

The now classical way [CF01,ACP09,ABB+13] to achieve both extractability
and equivocability is to combine an equivocable CPA encryption scheme (such as
Pedersen [Ped91]) and an extractable CCA encryption scheme (such as Cramer-
Shoup [CS02]) and to link them with an SPHF in order to obtain an implicit
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decommitment. What we show in this paper is that we can broaden the class of
primitives that can be used for the equivocable part, by using chameleon hashes
(introduced in [KR00]), which can be seen as conceptually easier building blocks
to understand and to construct.

Related Work. The first UC-secure commitment schemes were given by [CF01]
and [DN02] and the former were the first to formalize the methodology described
in the previous section (combining an equivocable primitive and an extractable
primitive). Building on their idea, the authors of [ACP09] add the notion of
smooth projective hash function to obtain implicit decommitment and obtain
the first UC-secure password-authenticated key-exchange in the standard model
as an application. Many works have been done in the same field since then,
for instance [Lin11,FLM11,BCPV13] for the UC-commitment schemes and
[KV11,BBC+13b] for the UC PAKE schemes, in which the relations between
commitments and SPHF have proven being very useful. This relation was for-
malized in [ABB+13] by the notion of SPHF-friendly commitments, expliciting
the properties to be fulfilled by the commitment in order to accept an SPHF
(and thus to be very useful for all kinds of applications). The authors also prove
that their new notion of SPHF-friendly commitments is strictly stronger than
the notion of UC commitments and give an example of such a commitment
scheme based on Haralambiev commitment [Har11, Sect. 4.1.4] and Cramer-
Shoup encryption, in a pairing-friendly setting. They also propose a generic
way to construct UC one-round PAKE and oblivious transfer scheme from this
primitive.

Many oblivious transfer schemes have been proposed since [Rab81], including
some in the UC framework [NP01,CLOS02]. Recently, some instantiations have
tried to reach round-optimality [HK07], or low communication costs [PVW08].
As already explained, the authors of [ABB+13] propose a generic way to obtain a
UC-secure oblivious transfer scheme from an SPHF-friendly commitment scheme,
and an instantiation based on DDH. Choi et al. [CKWZ13] also propose a generic
method and an efficient instantiation secure against adaptive corruptions in the
CRS model with erasures, based on DDH, but it is only 1-out-of-2 and it does
not scale to 1-out-of-k OT, for k > 2.

Contributions.1 Our first contribution is to give a generic construction
of SPHF-friendly commitments, which have proven since [ABB+13] to be
an extremely useful primitive, from two simple blocks: a collision-resistant
chameleon hash (CH) function which is verifiable (either publicly or for the
receiver only) and an SPHF-friendly CCA encryption scheme. The extra require-
ment on the CH function is simple to achieve as soon as only classical algebraic
operations are applied to the randomness, and SPHF-friendly encryption is now
well-known since [CS02], with several instances (contrary to SPHF-friendly com-
mitments, which is a difficult task). We then give three instantiations of this
SPHF-friendly scheme, respectively based on DDH, LWE and DCR.
1 This is an extended abstract. The full paper [BC15] is available at the Cryptology

Eprint Archive, http://eprint.iacr.org.

http://eprint.iacr.org
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Our construction thus allows us to provide, as a second and main contri-
bution, a generic way to obtain a UC-secure OT scheme from the same build-
ing blocks (CH and CCA encryption) and three concrete instantiations from
DDH, LWE and DCR. While the construction in [ABB+13] is an ad hoc solution
with pairings, ours is generic and does not specifically induce pairings. Further-
more, our 3 instantiations come straightforward from our generic framework
(and [ABB+13] can be derived from it).

Concerning complexity comparisons, the most studied assumptions in the
literature are variants of DDH. Our version of 1-out-of-t oblivious transfer is
apparently almost equivalent to that given in [ABB+13] in raw number of ele-
ments because we need a communication complexity of 9m+6 elements in G and
a scalar, compared to 8m + 42 in G1, m in G2 and a scalar (with t = 2m), but
since we do not need a pairing-friendly setting, none of our elements have to be
bigger, hence the comparison is in favor of our new proposal (by an equivalent
of m/2 − 1 elements). (Those numbers do not take into account in both cases
the last message that transmits the database, adding an additional m elements
in both cases).

To compare with existing protocols in the case of 1-out-of-2 under SXDH,
[ABB+13] needs 12 elements in G1, and 1 in G2 during 3 rounds (some elements
previously in G2 can be transferred into G1 in this case, and one can be skipped),
[CKWZ13] requires 26 group elements and 7 scalars in 4 rounds ; and using
[GWZ09] to achieve a constant-size CRS, [PVW08] requires 8 rounds and 51
elements. Using plain DDH, we need 15 group elements (but because [ABB+13]
requires one in G2 we have strictly the same communication cost with a better
scaling and no pairing computation) hence under classical instantiation both
schemes require to transmit roughly 3200 bits of data.

Communication cost comparisons of various Elliptic Curve based OT schemes

Paper Assumption # Group elements # Rounds

Static Security

[PVW08] + [GWZ09] SXDH 51 8

[CKWZ13] SXDH 26 + 7s 4

Adaptive security

[ABB+13] SXDH 12 G1 + 1 G2 3

This paper DDH 15 3

Considering classical instantiations on Barreto-Naehrig Curves [BN05], ele-
ments on a DDH curve are at least twice smaller than the big ones on a SXDH
one, making our scheme have a better scaling for 1-out-of-m OT. With recent
attacks exploiting the existence of a pairing, managing to maintain the efficiency
2 It should be noted that their original computation was off by one scalar, probably

half the projection key was missing.
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while removing the need for a pairing structure is a strong asset of elliptic curve
based cryptography. For constructions based on generic hypothesis, the construc-
tion of [PVW08] leads to a non constant size CRS (in the number of user), while
ours achieve constant (and small) CRS size.

2 Definitions

In this section we recall classical definitions and tools that are going to be useful
in the rest of the paper.

Commitments. Formal definitions and results from [ABB+13] are given in the
full version but we give here an informal overview to help the unfamiliar reader
with the following. A non-interactive labelled commitment scheme C is defined
by three algorithms:

– SetupCom(1K) takes as input the security parameter K and outputs the global
parameters, passed through the CRS ρ to all other algorithms;

– Com�(x) takes as input a label � and a message x, and outputs a pair (C, δ),
where C is the commitment of x for the label �, and δ is the correspond-
ing opening data (a.k.a. decommitment information). This is a probabilistic
algorithm.

– VerCom�(C, x, δ) takes as input a commitment C, a label �, a message x, and
the opening data δ and outputs 1 (true) if δ is a valid opening data for C, x
and �. It always outputs 0 (false) on x = ⊥.

The basic properties required for commitments are correctness (for all cor-
rectly generated CRS ρ, all commitments and opening data honestly generated
pass the verification VerCom test), the hiding property (the commitment does
not leak any information about the committed value) and the binding property
(no adversary can open a commitment in two different ways).

A commitment scheme is said equivocable if it has a second setup
SetupComT(1K) that additionally outputs a trapdoor τ , and two algorithms

– SimCom�(τ) that takes as input the trapdoor τ and a label � and outputs a
pair (C, eqk), where C is a commitment and eqk an equivocation key;

– OpenCom�(eqk, C, x) that takes as input a commitment C, a label �, a message
x, an equivocation key eqk, and outputs an opening data δ for C and � on x.

such as the following properties are satisfied: trapdoor correctness (all simulated
commitments can be opened on any message), setup indistinguishability (one
cannot distinguish the CRS ρ generated by SetupCom from the one generated
by SetupComT) and simulation indistinguishability (one cannot distinguish a
real commitment (generated by Com) from a fake commitment (generated by
SCom), even with oracle access to fake commitments), denoting by SCom the
algorithm that takes as input the trapdoor τ , a label � and a message x and
which outputs (C, δ) $← SCom�(τ, x), computed as (C, eqk) $← SimCom�(τ) and
δ ← OpenCom�(eqk, C, x).

A commitment scheme C is said extractable if it has a second setup
SetupComT(1K) that additionally outputs a trapdoor τ , and a new algorithm
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– ExtCom�(τ, C) which takes as input the trapdoor τ , a commitment C, and
a label �, and outputs the committed message x, or ⊥ if the commitment is
invalid.

such as the following properties are satisfied: trapdoor correctness (all commit-
ments honestly generated can be correctly extracted: for all �, x, if (C, δ) $←
Com�(x) then ExtCom�(C, τ) = x), setup indistinguishability (as above) and
binding extractability (one cannot fool the extractor, i.e., produce a commit-
ment and a valid opening data to an input x while the commitment does not
extract to x).

We recall in Sect. 3 the difficulties implied by a commitment being both
equivocable and extractable and give a construction of such a commitment.

Smooth Projective Hash Function. Smooth projective hash functions
(SPHF) were introduced by Cramer and Shoup in [CS02] for constructing
encryption schemes. A projective hashing family is a family of hash functions
that can be evaluated in two ways: using the (secret) hashing key, one can
compute the function on every point in its domain, whereas using the (pub-
lic) projected key one can only compute the function on a special subset of
its domain. Such a family is deemed smooth if the value of the hash func-
tion on any point outside the special subset is independent of the projected
key. The notion of SPHF has already found applications in various contexts in
cryptography (e.g. [GL03,Kal05,ACP09]). A Smooth Projective Hash Function
over a language L ⊂ X, onto a set G, is defined by five algorithms (Setup,
HashKG,ProjKG,Hash,ProjHash):

– Setup(1K) where K is the security parameter, generates the global parameters
param of the scheme, and the description of an NP language L;

– HashKG(L, param), outputs a hashing key hk for the language L;
– ProjKG(hk, (L, param),W ), derives the projection key hp from the hashing

key hk.
– Hash(hk, (L, param),W ), outputs a hash value v ∈ G, thanks to the hashing

key hk and W .
– ProjHash(hp, (L, param),W,w), outputs the hash value v′ ∈ G, thanks to the

projection key hp and the witness w that W ∈ L.

In the following, we consider L as a hard-partitioned subset of X, i.e. it is
computationally hard to distinguish a random element in L from a random
element in X \ L.

A Smooth Projective Hash Function SPHF should satisfy the following
properties:

– Correctness: Let W ∈ L and w a witness of this membership. Then,
for all hashing keys hk and associated projection keys hp we have
Hash(hk, (L, param),W ) = ProjHash(hp, (L, param),W,w).

– Smoothness: For all W ∈ X \ L the following distributions are statistically
indistinguishable:
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Δ0 =

⎧
⎨

⎩
(L, param,W, hp, v)

param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ),
v = Hash(hk, (L, param),W )

⎫
⎬

⎭

Δ1 =
{

(L, param,W, hp, v)
param = Setup(1K), hk = HashKG(L, param),
hp = ProjKG(hk, (L, param),W ), v $← G

}

.

Labelled Encryption Scheme. A labelled public-key encryption scheme E is
defined by four algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters
param of the scheme;

– KeyGen(param) generates a pair of keys, the public encryption key pk and the
private decryption key sk;

– Encrypt�(pk,m; r) produces a ciphertext c on the input message m ∈ M under
the label � and encryption key pk, using the random coins r;

– Decrypt�(sk, c) outputs the plaintext m encrypted in c under the label �, or ⊥
for an invalid ciphertext.

An encryption scheme E should satisfy the following properties

– Correctness: for all key pair (pk, sk), any label �, all random coins r and all
messages m, Decrypt�(sk,Encrypt�(pk,m; r)) = m.

Expind-cca-bA (K)

param
$← Setup(1K)

(pk, sk)
$← KeyGen(param)

(�∗, m0, m1, state) ← AODecrypt·(·)(FIND : pk)
c∗ ← Encrypt�

∗
(pk, mb)

b′ ← AODecrypt·(·)(state, GUESS : c∗)
If ((�∗, c∗) ∈ CT ) Return 0
Else Return b′

– Indistinguishability under
chosen-ciphertext attacks :
this security notion IND-
CCA can be formalized by
the following experiments
Expind-cca-bA (K), where the
adversary A transfers some
internal state state betw-
een the various calls FIND
and GUESS, and makes use
of the oracle ODecrypt:

• ODecrypt�(c): This oracle outputs the decryption of c under the label �
and the challenge decryption key sk. The input queries (�, c) are added
to the list CT .

These experiments implicitly define the advantages Advind-ccaE (A,K) and
Advind-ccaE (t). One sometimes uses the notation Advind-ccaE (qd, t) to bound the num-
ber of decryption queries.

In the following we also want two additional properties. First we want an
additional functionality, we want to be able to supersede the decryption, by
an implicit decommitment. So we require the encryption to admit an efficient
implicit decommitment. We will call an SPHF-friendly encryption, an encryption
where there exists an SPHF for the Language of valid ciphertexts of a message
m using as sole witness the randomness used in the encryption.
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We then are going to want to strengthen the idea of ind-cca encryption. In the
sense that we are going to encrypt vector of messages, and when the challenges
vectors shares some component we want to provide the randomness used specif-
ically for those components to the adversary. (Intuitively this would be done
to allow an honest computation of the SPHF on this part). In [ABB+13], they
call such property VIND-PO-CCA for Partial Opening, and show that Cramer-
Shoup encryption obeys such property. We recall this security notion in the
full version for the sake of completeness. We denote by nEncrypt�(pk,m; r) and
nDecrypt�(sk, c) the corresponding algorithms for encryption or decryption of
vectors of n bits.

Chameleon Hash. A Chameleon Hash Function is traditionally defined by
three algorithms CH = (KeyGen,CH,Coll):

– KeyGen(K): Outputs the chameleon hash key ck and the trapdoor tk;
– CH(ck,m; r): Picks a random r, and outputs the chameleon hash a.
– Coll(ck,m, r,m′, tk): Takes as input the trapdoor tk, a start message and ran-

domness pair (m, r) and a target message m′ and outputs a target randomness
r′ such that CH(ck,m; r) = CH(ck,m′; r′).

The standard security notion for CH is collision resistance, which means it
is infeasible to find (m1, r1), (m2, r2) such that CH(ck,m1, r1) = CH(ck,m2, r2)
and m1 �= m2 given only the Chameleon hash key ck. Formally, CH is (t, ε)−coll
if for the adversary A running in time at most t we have:

Pr
[
(ck, tk) $← KeyGen(K); ((m1, r1), (m2, r2))

$← A(ck)
∧ CH(ck,m1; r1) = CH(ck,m2; r2) ∧ m1 �= m2

]

≤ ε.

However, any user in possession of the trapdoor tk is able to find a collision
using Coll. Additionally, Chameleon Hash functions have the uniformity prop-
erty, which means the hash value leaks nothing about the message input. For-
mally, for all pair of messages m1 and m2 and the randomly chosen r, the prob-
ability distributions of the random variables CH(ck,m1, r) and CH(ck,m2, r) are
computationally indistinguishable.

We need here the hash value to be verifiable, so that we add two VKeyGen
and Valid algorithms (executed by the receiver) and we modify the existing
algorithms as follows:

– VKeyGen(ck): Outputs the chameleon designated verification key vk and the
trapdoor vtk. This trapdoor can be empty or public if the chameleon hash is
publicly verifiable.

– CH(ck, vk,m; r): Picks a random r, and outputs the chameleon hash a as well
as the witness d, i.e. the corresponding data needed to verify a.

– Valid(ck, vk,m, a, d, vtk): Allows to check that the sender knows how to open
a Chameleon Hash a to a specific value m for the witness d. The verification
can be public if vtk is empty or public, or specific to the receiver otherwise.
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– Coll(ck, vk,m, r,m′, tk): Takes as input the public keys, the trapdoor tk, a start
message m and randomness r and a target message m′ and outputs a target
randomness r′ such that if CH(ck, vk,m; r) = (a, d), then CH(ck, vk,m′; r′) =
(a, d′).

Once again, we expect the chameleon hash to be collision resistant on the
first part of the output, which means it is infeasible to find (m1, r1), (m2, r2)
such that CH(ck, vk,m1, r1) = (a, d1) and CH(ck,m2, r2) = (a, d2) and m1 �= m2

given only the Chameleon public keys ck and vk.
We expect the verification to be sound, which means that, given a

tuple (m,a, d) satisfying Valid(ck, vk,m, a, d, vtk), there always exists at least
one tuple (r, d′) such that CH(ck, vk,m; r) = (a, d′).

Protocols in the UC Framework. The goal of the UC framework is to ensure
that UC-secure protocols will continue to behave in the ideal way even if executed
in a concurrent way in arbitrary environments. It is a simulation-based model,
relying on the indistinguishability between the real world and the ideal world. In
the ideal world, the security is provided by an ideal functionality F , capturing
all the properties required for the protocol and all the means of the adversary. In
order to prove that a protocol Π emulates F , one has to construct, for any poly-
nomial adversary A (which controls the communication between the players),
a simulator S such that no polynomial environment Z (the distinguisher) can
distinguish between the real world (with the real players interacting with them-
selves and A and executing the protocol π) and the ideal world (with dummy
players interacting with S and F) with a significant advantage. The adversary
can be either adaptive, i.e. allowed to corrupt users whenever it likes to, or sta-
tic, i.e. required to choose which users to corrupt prior to the execution of the
session sid of the protocol. After corrupting a player, A has complete access to
the internal state and private values of the player, takes its entire control, and
plays on its behalf.

UC-Secure Oblivious Transfer. The ideal functionality of an Oblivious
Transfer (OT) protocol is depicted in Fig. 1. It is inspired from [CKWZ13,
ABB+13].

3 Generic Construction of UC-Secure Oblivious Transfer

In this section, we show how to construct in a generic way a UC-secure oblivi-
ous transfer from any collision-resistant chameleon hash and CCA-2 encryption
scheme.

In [ABB+13], the authors give a way to construct such a UC-secure oblivious
transfer protocol from an SPHF-friendly commitment, but they only give an
instantiation of such an SPHF-friendly commitment in a DDH-based setting,
using Haralambiev commitment scheme [Har11] and Cramer-Shoup encryption
scheme [CS02].

Our goal is thus to strengthen the generic part of the construction, by showing
how to construct, in a generic way, a UC-secure SPHF-friendly commitment
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Fig. 1. Ideal Functionality for 1-out-of-k Oblivious Transfer F (1,k)-OT

scheme in any setting, from a collision-resistant chameleon hash and a CCA-
2 encryption scheme.

3.1 From Commitment to Oblivious Transfer

Introduction. In an oblivious transfer scheme, we consider the interaction
between a server, possessing a database called DB containing t = 2m lines,
and a user, willing to request the line j of the database in an oblivious way.
Informally, this implies that the user will gain no information about the other
lines of the database, and also that the server will obtain no information about
the specific line the user wants to obtain.

In the protocol described in [ABB+13], from a high point of view3, the user
sends to the server a commitment of the number j of the line it is willing to
obtain. The server then computes a pair of keys for a smooth projective hash
function (SPHF) adapted to the commitment. It keeps secret the hash key and
sends the projection key to the user, along with the hash value of all the lines
of the database. Thanks to the properties of the SPHF, the user will then be
able to recover the particular line it wants, using the public projection key and
the secret random coins it used to create its committed value in the first place.
The properties of the SPHF also ensure that the server has no idea about the
line the user is requiring, and that the user cannot obtain any information from
the hash values of the other lines of DB, which are exactly the requirements of
a secure OT.
3 Note that we omit here for the sake of simplicity the creation of a secure channel

between the user and the server (this is only needed in the adaptive version of the
protocol).
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The authors of this protocol prove its security in the UC framework, which
implies the use of a commitment with strong security properties. Indeed, the
simulator of a user needs to be able to change its mind about the line required,
hence an equivocable commitment; and the simulator of a server also needs to be
able to extract the line required by the user, hence an extractable commitment.
Unfortunately, combining both equivocability and extractability on the same
commitment scheme, especially if we require this commitment scheme to admit
an SPHF, is a difficult task and requires more security properties, as we recall
in the following.

Properties for Commitments. We informally recall these specific properties,
defined in [ABB+13] and formally stated in the full version. We call a commit-
ment scheme E2 (for extractable and equivocable and the necessary properties) if
the indistinguishable setup algorithm outputs a common trapdoor that allows
both equivocability and extractability, and the two following properties are sat-
isfied: strong simulation indistinguishability (one cannot distinguish a real com-
mitment (generated by Com) from a fake commitment (generated by SCom), even
with oracle access to the extraction oracle (ExtCom) and to fake commitments
(using SCom)) and strong binding extractability (one cannot fool the extractor,
i.e., produce a commitment and a valid opening data (not given by SCom) to
an input x while the commitment does not extract to x, even with oracle access
to the extraction oracle (ExtCom) and to fake commitments (using SCom)).

A commitment is said to be robust if one cannot produce a commitment
and a label that extracts to x′ (possibly x′ = ⊥) such that there exists a valid
opening data to a different input x, even with oracle access to the extraction
oracle (ExtCom) and to fake commitments (using SCom).

Finally, a commitment is said to be SPHF-friendly if it is an E2 commitment
that admits an SPHF on the languages Lx = {(�, C)| ∃δ, VerCom�(C, x, δ) = 1},
and that is both strongly-simulation-indistinguishable and robust.

3.2 Generic Construction of SPHF-Friendly Commitment

Introduction. We start by a high-level description of the (Cramer-Shoup-
based) commitment given in [ABB+13] in the pairing-friendly setting
(G1, g1, h1,G2, g2,GT , p, e). They set T = g2

t, t being a value chosen at random
in Zp. We omit the labels for the sake of simplicity. First, they cut the message M
to be committed into bits, denoted here as M = (Mi)i ∈ {0, 1}m. They then
compute a TC4 Haralambiev [Har11] equivocable commitment of each bit Mi:
a = (ai)i with ai = g2

ri,Mi TMi with ri,Mi
chosen at random in Zp and ri,Mi

= 0.
The opening values (for decommitment) are the values di,j = g1

ri,j . They then
compute a multi-Cramer-Shoup encryption b = (bi,j)i,j of d = (di,j)i,j with
randomness s = (si,j)i,j . The commitment is (a, b), the opening information
being s. To open the commitment, the receiver checks the validity of the cipher-
texts bi,Mi

, extracts each value di,Mi
from bi,Mi

and si,Mi
and finally checks

whether the equality e(g1, ai/TMi) = e(di,Mi
, g2) holds.
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The equivocability of the commitment is ensured by the knowledge of t,
enabling the sender to set ri,Mi

= ri,Mi
±t rather than ri,Mi

= 0. The extractabil-
ity is ensured by the knowledge of the decryption keys of the Cramer-Shoup
encryption.

Our first goal, in this concrete instantiation, is to get rid of the pairing
setting, and in particular of the pairing verification, in order to be able to propose
constructions in other settings. To this aim, we change the TC4 commitment
of Mi for a verifiable chameleon hash of Mi. Making this change enables us to
get a generic version of this commitment, requiring only “compatible” chameleon
hash (playing the role of the TC4 scheme above) and CCA encryption schemes
(playing the role of the Cramer-Shoup above). The chameleon hash can either be
publicly verifiable (which gives us a non-interactive commitment), or verifiable by
the receiver, which requires a pre-flow, in which the server generates a verification
key and its trapdoor and sends the verification key to the sender.

Building Blocks. We assume the existence of compatible CCA-
encryption (Setup,KeyGen,Encrypt,Decrypt) and chameleon hash (KeyGen,
VKeyGen,CH,Coll,Valid), in the sense that is feasible to compute a CCA-
encryption of the opening value of the chameleon hash. For example, a Pedersen
Chameleon Hash is not compatible with Cramer Shoup encryption, as we would
need to encrypt the randomness as a scalar, while the decryption algorithm only
allows us to recover group elements.

In order for our commitment to accept an SPHF, we require the CCA-
encryption to accept an SPHF on the language of valid ciphertexts. The precise
language needed will depend on the way the chameleon hash is verified, but
will be easily constructed by combining several simple languages as described
in [BBC+13a].

We require the chameleon hash to be verifiable by the receiver. For the sake of
concision, we describe here the case where the chameleon hash is only verifiable
by the server. In this case, we need a pre-flow, in which the server is assumed to
execute the algorithm VKeyGen to generate a verification key and its trapdoor
and send the verification key to the sender. This makes the commitment not
completely non-interactive anymore but it should be noted that if the global
protocol is not one-round, these values can be sent by the receiver during the
first round of the protocol. In the case where the chameleon hash is publicly
verifiable, one simply has to consider the keys vk and vtk empty, and ignore the
pre-flow.

Construction. We now describe the different algorithms of our chameleon-
hashed targeted commitment protocol CHCS from player P to Q (see Sect. 2 for
the notations of the algorithms).

– Setup and simulated setup algorithms: SetupComT(1K) (the algorithm
for setup with trapdoors) generates the various parameters param, for the set-
ting of the SPHF-friendly labelled CCA-encryption scheme and the chameleon
hash scheme. It then generates the corresponding keys and trapdoors: (ck, tk)
for the chameleon hash scheme and (ek, dk) for the encryption scheme.



Generic Construction of UC-Secure Oblivious Transfer 77

For SetupCom(1K) (the algorithm for setup without trapdoors), the setting
and the keys are generated the same way, but forgetting the way the keys
were constructed (such as the scalars, in a DDH-based setting), thus without
any trapdoor.
The algorithms both output the CRS ρ = (ek, ck, param). In the first case, τ
denotes the trapdoors (dk, tk).

– Pre-flow (verification key generation algorithm): player Q executes
VKeyGen(ck) to generate the chameleon designated verification key vk and
the trapdoor vtk and sends vk to the sender P .

– Targeted commitment algorithm: Com�(M ;Q) from player P to player
Q, for M = (Mi)i ∈ {0, 1}m and a label �, works as follows:

• For i ∈ [[1,m]], it chooses ri,Mi
at random and computes

CH(ck, vk,Mi; ri,Mi
) to obtain the hash value ai and the corresponding

opening value di,Mi
. It samples at random the values ri,1−Mi

and di,1−Mi
.

We denote as a = (a1, . . . , am) the tuple of commitments and d =
(di,j)i,j .

• For i ∈ [[1,m]] and j = 0, 1, it gets b = (bi,j)i,j = 2mEncrypt�
′
pk(d; s),

where s is taken at random and �′ = (�,a).
The commitment is C = (a, b), and the opening information is the m-tuple
δ = (s1,M1 , . . . , sm,Mm

).
– Verification algorithm: VerCom�(vtk, C,M , δ) first checks the validity of

the ciphertexts bi,Mi
with randomness si,Mi

, then extracts di,Mi
from bi,Mi

and si,Mi
, and finally checks the chameleon hash ai with opening value di,Mi

,
for i ∈ [[1,m]], via the algorithm Valid(ck, vk,Mi, ai, di,Mi

, vtk).
– Simulated targeted commitment algorithm: SimCom�(τ ;Q) from the

simulator to player Q, takes as input the equivocation trapdoor, namely tk,
from τ = (dk, tk), and outputs the commitment C = (a, b) and equivocation
key eqk = s, where

• For i ∈ [[1,m]], it chooses ri,0 at random, computes (ai, di,0) =
CH(ck, vk, 0; ri,0), and uses the equivocation trapdoor tk to compute ri,1

used to open the chameleon hash to 1 such that CH(ck, vk, 1; ri,1) is equal
to (ai, di,1). This leads to a and d, making di,j the opening value for ai,j

for all i ∈ [[1,m]] and j = 0, 1.
• b is built as above: b = (bi,j)i,j = 2mEncrypt�

′
pk(d; s), where eqk = s is

taken at random and �′ = (�,a).
– Equivocation algorithm: OpenCom�(eqk, C,M) simply uses part of the

equivocation key eqk (computed by the SimCom algorithm) to obtain the
opening information δ = (s1,M1 , . . . , sm,Mm

) in order to open to M = (Mi)i.
– Extraction algorithm: ExtCom�(τ, vtk, C) takes as input the extraction

trapdoor, namely the decryption key dk, from τ = (dk, tk), the verification
trapdoor vtk and a commitment C = (a, b). For i ∈ [[1,m]] and j = 0, 1,
it first extracts the value di,j from the ciphertext bi,j , using the decryption
key dk. Then, for i ∈ [[1,m]], it checks the chameleon hash ai with opening
values di,0 and di,1 with the help of the algorithm Valid(ck, vk, j, ai, di,j , vtk)
for j = 0, 1. If only one opening value di,j satisfies the verification equality of
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the chameleon hash, then j = Mi. If this condition holds for each i ∈ [[1,m]],
then the extraction algorithm outputs (Mi)i. Otherwise (either if b could not
be correctly decrypted, or there was an ambiguity while checking a, with at
least one chameleon hash ai with two possible opening values di,0 and di,1),
it outputs ⊥.

Security Result. Given a publicly verifiable collision-resistant chameleon hash
and a secure CCA-encryption accepting an SPHF on the language of valid cipher-
texts, the above construction provides a commitment scheme which is SPHF-
friendly.

Proof. According to the results recalled at the beginning of this section, page
10, we first need to prove that this E2 commitment is strongly-simulation-
indistinguishable and robust. Due to lack of space, the proof of this result is
postponed to the full version.

One then additionally needs to construct an SPHF on the languages
LM = {(�, C)| ∃δ such that VerCom�(vtk, C,M, δ) = 1}. Recall that the CCA-
encryption admits an SPHF on the languages Lenc

M = {(�, C)| ∃r such that
Encrypt�(pk,M ; r)) = C}, directly giving us the required SPHF since
the algorithm VerCom, on input C = (a, b), first checks the CCA-
encryptions bi,Mi

and then verifies the chameleon hashes ai for all i.
More precisely, the required language is as follows: LM = {(�, C)|∀i ∈
{1, . . . , m} ∃ri,Mi

, si,Mi
, di,Mi

such that mEncrypt∗,�(pk, (di,Mi
)i; (si,Mi

)i) =
(bi,Mi

)i and that CH(ck, vk,Mi; ri,Mi
) = (ai, di,Mi

)}, on which one can easily
construct an SPHF by disjunction using the method described in [ACP09,
BBC+13a]4.

3.3 Generic Construction of UC-Secure Oblivious Transfer

Introduction. We denote by DB the database of the server containing t = 2m

lines, and j the line requested by the user in an oblivious way. We assume the exis-
tence of a Pseudo-Random Generator (PRG) F with input size equal to the plain-
text size, and output size equal to the size of the messages in the database and
a IND-CPA encryption scheme E = (Setupcpa,KeyGencpa,Encryptcpa,Decryptcpa)
with plaintext size at least equal to the security parameter. We also assume the
existence of compatible CCA-encryption and chameleon hash with the proper-
ties described in the former section, and we generically obtain from them the
SPHF-friendly commitment scheme given above.

Protocol. We exactly follow the construction given in [ABB+13], giving the
protocol presented on Fig. 2. The only difference is that we take advantage of
the pre-flow to ask the server to generate the CH verification keys (vk, vtk). For
the sake of simplicity, we only give the version for adaptive security, in which
4 The notation mEncrypt∗,�(pk, (di,Mi)i; (si,Mi)i) simply means that we compute
2mEncrypt�(pk, (di,j)i,j ; (si,j)i,j) and take the m components corresponding to j =
Mi for every i.
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the server generates pk and c to create a somewhat secure channel (they would
not be used in the static version).

Fig. 2. UC-Secure 1-out-of-t OT from an SPHF-Friendly Commitment (for Adaptive
Security

Security Result. The oblivious transfer scheme described in Fig. 2 is UC-secure
in the presence of adaptive adversaries, assuming reliable erasures and authenti-
cated channels, as soon as the commitment scheme is constructed from a secure
publicly-verifiable chameleon hash and a secure CCA encryption scheme admit-
ting an SPHF on the language of valid ciphertexts, as described in the former
section.

The proof remains the same; It is given in the full version for completeness.
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4 Instantiation Based on Cramer-Shoup Encryption
(DDH)

Let us now show how to build SPHF-friendly commitment schemes from vari-
ous assumptions. While it may seem to be a tremendously far-fetched idea for
a construction, we are going to show throughout the following sections that
in fact such schemes can be easily built on any of the main modern fields of
cryptographic hypotheses.

We start with the construction based on DDH: Since it is easier to understand,
it will help to underline the key points. This commitment revisits the one used in
[ABB+13] but we remove the pairing used in it thanks to the methods described
in the previous section, by generating vtk on the fly. For the chameleon hash, we
are going to use a CDH-based Pedersen encryption scheme. However as such CH
is not designated verifier, we are going to transform it in an Haralambiev way
[Har11, Sect. 4.1.4]. For the CCA encryption we will rely on an extended version
of Cramer-Shoup encryption.

4.1 Building Blocks

CDH-based Chameleon Hash5

– KeyGen(K): Outputs the chameleon hash key ck = (g, h) and the trapdoor
tk = α, where gα = h;

– VKeyGen(ck): Generates vk = f and vtk = logg(f)
– CH(ck, vk,m; r): Picks a random r ∈ Zp, and outputs the chameleon hash

a = hrgm. Sets d = fr.
– Coll(m, r,m′, tk): outputs r′ = r + (m − m′)/α.
– Valid(ck, vk,m, a, d, vtk): The user outputs d, so that one can check if a =

hm · d1/vtk.

The trivial way to check this CH requires a pairing instead of knowing
vtk. Note that this trivial verification indeed leads to the protocol described
in [ABB+13]. Instead, we let the verifier (the server in latter use) picks a new f
and its discrete logarithm.

2m-labelled multi twisted Cramer-Shoup Encryption Scheme. We first
recall the Cramer-Shoup encryption scheme, which is IND-CCA under the DDH
assumption.

– KeyGen(K): Assuming two independent generators g and h, for random scalars
x1, x2, y1, y2, z

$← Zp, we set sk = (x1, x2, y1, y2, z) to be the private decryption
key and ek = (g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h1 = gz

1 ,H) to be the public
encryption key, where H is a random collision-resistant hash function from H.

5 As there is no pairing in our construction, we do not really need the linear based
version of both schemes, but similar variants can be imagined based on the linear
assumption or even on any matrix assumption [EHK+13].
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– If M ∈ G, the Cramer-Shoup encryption is defined as CS�(pk,M ; r) = (u =
gr
1, v = gr

2, e = hr · M,w = (cdθ)r), where θ = H(�, u, v, e).
– Such a ciphertext is decrypted by M = e/uz, after having checked the validity

of the ciphertext: w ?= ux1+θy1vx2+θy2 .

The above scheme can be extended naturally to encrypt vectors of group
elements D = (D1, . . . , D2m) ∈ G

2m, by having 2m tuples of random scalars in
the secret key, and a global value θ for the encryption. The authors of [ABB+13]
proved that this scheme is VIND-PO-CCA under the DDH assumption.

4.2 Diffie-Hellman Based Commitment Scheme

We simply apply the construction described in Sect. 3 to obtain the commitment
scheme from these blocks.

– SetupComT(1K) generates a multiplicative group param = (p,G, g);
ek = (g1, g2, c, d, h1,H) and the decryption key dk corresponding to the various
discrete log in basis g, ck = (g, h), tk the respective discrete logarithm.
For SetupCom(1K), the CRS is generated the same way, but forgetting the
scalars, and thus without any trapdoor.
The algorithms both output ρ = (ek, ck, param).

– Pre-flow: During the preflow, the server Q runs VKeyGen(ck) and outputs
vk = f and keeps its discrete logarithm vtk.

– Com�(M ;Q) from player P to player Q, for M = (Mi)i ∈ {0, 1}m and a
label �, works as follows:

• For i ∈ [[1,m]], it chooses a random ri,Mi
∈ Zp, a random ri,1−Mi

,
and computes ai = gMihri,Mi and sets di,j = fri,j for j = 0, 1,
which makes di,Mi

part of the opening value for ai to Mi. Let us write
a = (a1, . . . , am), the tuple of commitments.

• For i ∈ [[1,m]] and j = 0, 1, it gets b = (bi,j)i,j = 2mEncrypt�
′
(pk,d; s),

where s is from the random string and �′ = (�,a).
The commitment is C = (a, b), and the opening information is the m-tuple
δ = (sM1 , . . . , sMm

).
– VerCom�(C,M , δ) checks the validity of the ciphertexts bi,Mi

with sMi
,

extracts di,Mi
from bi,Mi

and si,Mi
, and checks whether (ai/gMi)vtk = di,Mi

.
– SimCom�(τ) takes as input the equivocation trapdoor, namely tk, and outputs

C = (a, b) and eqk = s, where
• For i ∈ [[1,m]], it chooses a random ri,0, sets ai = gri,0 , and uses the

equivocation trapdoor to computes the randomness ri,1 = ri,0 − 1/tk.
This leads to a and d;

• b is built as above: b = (bi,j)i,j = 2mEncrypt�
′
(pk,d; s), with random

scalars eqk = (s∗,i,j)i,j .
– OpenCom�(eqk, C,M) simply uses eqk to set the opening value δ = (sM1 , . . . ,

sMm
) in order to open to M = (Mi)i.
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– ExtCom�(τ, C) takes as input the extraction trapdoor, namely the decryption
key dk and the chameleon verification trapdoor vtk. Given b, it can decrypt
all the bi,j into di,j and checks consistency with (ai/gj)vtk ?= di,j or not.
If, for each i, exactly one j = Mi satisfies the equality, then the extraction
algorithm outputs (Mi)i, otherwise (no correct decryption or ambiguity with
several possibilities) it outputs ⊥.

4.3 The SPHF Associated with the Commitment Scheme

For the sake of simplicity, we first give an explicit writing of the said SPHF when
the strings are of length one.

This SPHF is defined on Cramer-Shoup encryption (see for instance
[BBC+13b]), except that it is done on an encryption of “an encryption of M , such
that the projected hash value of this encryption is the value sent in the commit-
ment of M”, rather than simply on an encryption of M . But the internal language
is easily verifiable, making this SPHF having the good properties simply applying
the methodology described in [BBC+13b].

– Com�(b;Q): A commitment to a bit mi, can now be written as C =
hrmi gmi , b1,0 = (hs0

1 gr0 , gs0
1 , gs0

2 , (cdβ)s0), b1,1 = (hs1
1 gr1 , gs1

1 , gs1
2 , (cdβ)s1).

where β = H(hrbgmi , (hsj

1 grj , g
sj

1 , g
sj

2 )j∈[[0,1]]) and the session id.
– VerCom�(C, b, δ):

• ProjKG(C, b;Q): To implicitly check if the commitment is a valid commit-
ment to b, one simply has to compute projection keys hp = hλfμ, hpmi

=
hμ

1g
μmi
1 g

νmi
2 (cdβ)θmi , where all new Greek letters are random scalars.

And the hash value Hmi
= (C/gmi)λ · bhkmi

mi .)
• ProjHash(C, b, hpmi

;P ): The prover will compute H ′
mi

= hp
smi
mi hprmi .

If everything was done honestly, those two values are equal, otherwise they
are seemingly random. To see why this is smooth, considering the number of free
variables in the system of equations generated by the public view of the projec-
tion key hp guarantees that not enough information leaks about the hashing keys
in order to weaken the smoothness.

In the real protocol where the string is cut into bits, one simply has to do an
AND of all those languages, where H =

∏
Hi,mi

, and where one uses a vector
of projections keys hpi,mi

. To optimize the construction on bit strings, one can
simply use the polynomial trick from [BBC+13a], where they provide hp1, a
random scalar ε and assume that hpi = hp

ε(i−i)
1 , a classical inversion argument

on the matrices of discrete logarithm of the given exponents will show that the
SPHF remains smooth.

Efficiency consideration shows that the pre-flow requires 2 group elements (1
for pk, 1 for vk), for each bit we need 9 elements (1 for ai and 2*4 for bi,{0,1}, we
also have the additional encryption for the verification linked to the pre-flow (so
2 elements). We now need to give two elements for the hp, and in case of more
that one bit, a random scalar ε. Overall this leads to 9m+6 group elements and
a scalar.
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5 Instantiation Based on Dual Regev Encryption (LWE)

Lattices present an interesting challenge, since because of the noise many prop-
erties are harder to achieve. However, our construction requires only two simple
blocks to work.

Chameleon Hash. We present here a Chameleon Hash constructed from the
SIS assumption, following the chameleon hash given in [CHKP10] but using
the Micciancio-Peikert trapdoor generation [MP12]. We here only present the
scheme, since the security proof comes directly following the proof of Lemma 4.1
in [CHKP10].

Let k = �log q� = O(logK) and m = O(Kk). Let D = D
Zm̄×Kk,ω(

√
logK)

be the Gaussian distribution over Z
m̄×Kk with parameter ω(

√
logK) and let

s = O(
√
Kk) be a Gaussian parameter. Let the randomness space be defined as

R := D
Zm,s·ω(

√
logK). Then, the Chameleon Hash is defined as follows:

– KeyGen(K): choose a random matrix A0
$← Z

K×�
q . Sample (A1,R1)

$←
GenTrapD(1K, 1m, q). Define ck := (A0,A1) and tk := R1.

– VKeyGen(ck): Outputs vk = ⊥, vtk = ⊥
– CH(ck, vk,m; r): choose a vector r from the Gaussian distribution

D
Zm,s·ω(

√
logK), r ← D

Zm,s·ω(
√

logK). Compute the chameleon hash value
c = A0m + A1r. Return the chameleon hash c and the opening informa-
tion r. (which we will later commit using the CCA2 scheme)

– Coll(tk, (m0, r0),m1): compute u = (A0m0 +A1r0)−A0m1 and sample r1 ∈
Z

m according to DΛ⊥
u (A1),s·ω(

√
logK), r1

$← SampleD(R1,A1,u, s).
– Verify(ck, vtk,m, c, r): accept if ‖r‖ ≤ s ·ω(

√
logK) ·√m and c = A0m+A1r;

otherwise, reject.

It should be noted, that the trapdoor allows to recover not only a collision,
but also a preimage if need be.

Naive 2m-labelled multi LWE-based Encryption Scheme. Katz and
Vaikuntanathan proposed in [KV09] a labelled CCA-Encryption with an approx-
imate SPHF. In order to achieve the 2m-labelled, one simply has to use the same
label in all the encryptions, and then add a one-time signature, built for example
by using the previous chameleon hash.

Oblivious Transfer using an Approximate SPHF. The approximate SPHF
presented in [KV09] is sufficient for our application with a small modification to
our generic framework. Indeed, instead of obtaining two identical values for Hash
and ProjHash, the correctness only guarantees that for a well-formed ciphertext,
those two values have a small Hamming distance, hence xoring the two values
together leads to a string with low Hamming weight. Assuming the line in the
database is first encoded using an Error Correcting Code, and then masked by
the server using the Hash value, the user can then use his projective hash value
to recover a word near a valid encoding for the required entry, and then decoding
using the Error Correcting Code as the remaining nose is small, he will recover
the valid string. On invalid lines, the noise is seemingly random, hence beyond
the decoding limit of any possible code.
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6 Instantiation Based on Paillier Encryption (Composite
Residuosity)

The solution is pretty straightforward on how to instantiate the previous scheme
while relying on a DCR assumption. This simply requires the generic transfor-
mation from any native DDH scheme into a DCR based one presented in [HO09].

It is interesting to note that this boils down to using the Paillier-based CCA
encryption presented in [CS02], in addition to a DCR-based Chameleon Hash
encryption. (Operations are done modulo N2 except if indicated otherwise)

For lack of space, we only present here the two needed building blocks and
postpone the description of the commitment scheme and the associated smooth
projective hash function to the full version.

DCR-based Chameleon Hash. We simply use a direct transposition of the
Chameleon Hash described in Sect. 4 in a group of order ZN2 . While this may
be improved, the description remain simple.

2m-labelled multi DCR-based Encryption Scheme. We use the variant of
the CCA-2 encryption introduced in [CS02]. The encryption key ek is now a
tuple (g, s, s̃), where g = N +1, s = gk0 and s̃i = gki where k

$← [[0, �N2/2�]]β+2,
and the encryption process becomes:

Encrypt(pk,M ;w): pick w
$← [[0, N/2]] and compute γ = H(�′, gw,Msw, s̃w

1 ), and
b = (gw,Msw, s̃w

1

∏β+1
j=2 s

wγj

j ).
Once again, knowing the respective discrete logarithms in the encryption

keys allows to decrypt the ciphertext.
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Abstract. We formalize the security notions of non-malleability under
selective opening attacks (NM-SO security) in two approaches: the
indistinguishability-based approach and the simulation-based approach.
We explore the relations between NM-SO security notions and the known
selective opening security notions, and the relations between NM-SO
security notions and the standard non-malleability notions.
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1 Introduction

Non-malleability. The basic goal of public-key encryption (PKE) schemes is
to guarantee the privacy of messages. The universally accepted formalization for
this is semantic security proposed in [9], which requires that it be infeasible to
learn any useful information of the message from the ciphertext. However, some
cryptographic applications in a complex setting suggest that non-malleability
is necessary. Non-malleability (NM), introduced by Dolev, Dwork and Naor [8]
in 1991, requires that given a challenge ciphertext, it be infeasible to gener-
ate ciphertexts whose decryptions are related to the decryption of the challenge
ciphertext. Nowadays, two main kinds of formalizations (indistinguishability-
based [5] and simulation-based [8]) of non-malleability are widely accepted,
especially the first one. (Actually, there is another formalization of non-
malleability, comparison-based non-malleability [1,5]). Similar to semantic secu-
rity, the formal security definitions of indistinguishability-based non-malleability
(IND-NM) and simulation-based non-malleability (SIM-NM) consider all the
three kinds of standard attacks: chosen-plaintext attacks (CPA), non-adaptive
chosen-ciphertext attacks (CCA1) [16] and adaptive chosen-ciphertext attacks
(CCA2) [8,18]. The combination of SIM-NM, IND-NM and CPA, CCA1, CCA2
gives six specific security notions (e.g., IND-NM-CPA security). The relations
among these six security notions were figured out in [5,17].
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-28166-7 5
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Selective Opening Security (Under Sender Corruptions). In Eurocrypt
2009, Bellare et al. [4] introduced the notion of selective opening security (SOA
security) under sender corruptions. Roughly speaking, selective opening attack
(for sender corruptions) is as follows: n senders encrypt their own messages with
the public key of a single receiver. The adversary can corrupt some of these
senders, by opening their ciphertexts, i.e., obtaining their messages and the ran-
dom coins which were used during the encryption. The goal of SOA security is
to guarantee the privacy of the unopened messages. In [4], Bellare et al. pre-
sented two SOA security notions, the indistinguishability-based one (IND-SO)
and the simulation-based one (SIM-SO). Later, Hemenway et al. [12] introduced
the notions of IND-SO-CCA1/CCA2 security and SIM-SO-CCA1/CCA2 secu-
rity. Over the years, several PKE schemes were proposed and proved to possess
SOA security [10–13]. The relations between IND-SO-CPA security and SIM-
SO-CPA security were clarified by Böhl et al. [3]. Bellare et al. [2] separated
IND-CPA (even IND-CCA2) and SIM-SO-CPA security. Recently, Hofheinz and
Rupp [15] showed a separation between IND-CCA2 and IND-SO-CCA2 security,
and a “partial” equivalence between IND-CPA and IND-SO-CPA security.

To the best of our knowledge, how to formalize non-malleability under
selective opening attacks remains elusive. Very recently, Hofheinz and Rupp
referred to “NM-SO-CPA security” in [15]. But they did not present any formal
definition.
Our Contributions. This paper focuses on security notions and their relations.
We first formalize the notion of simulation-based non-malleability under selec-
tive opening attacks (SIM-NM-SO), and the notion of indistinguishability-based
non-malleability under selective opening attacks (IND-NM-SO). We figure out
the relations among SIM-NM-SO-CPA(/CCA1/CCA2) security, IND-NM-SO-
CPA(/CCA1/CCA2) security, SIM/IND-SO-CPA(/CCA1/CCA2) security and
non-malleability security SIM/IND-NM-CPA(/CCA1/CCA2). Specifically, our
results are as follows (see Fig. 1). Below, we use SEC1 ⇒ SEC2 to indicate that
SEC1 implies SEC2, and SEC1 � SEC2 to indicate the existence of some PKE
scheme achieving SEC1 but not SEC2, for any two security notions SEC1 and
SEC2.

1. NM-SO versus SO :
(a) Simulation-based (Sect. 4):

i. “SIM-NM-SO-ATK ⇒
�

SIM-SO-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}.

ii. For those PKE schemes having an invertible decryption algorithm
(Definition 8), if the range of its decryption algorithm is recognizable,
“SIM-SO-CCA2 ⇔ SIM-NM-SO-CCA2”.

(b) Indistinguishability-based (Sect. 5):
i. “IND-NM-SO-CPA �

�
IND-SO-CCA1”.

ii. “IND-NM-SO-CCA1/CPA ⇒
�

IND-SO-CCA1/CPA”, but “IND-
NM-SO-CCA2 ⇔ IND-SO-CCA2”.

2. NM-SO versus NM :
(a) Simulation-based (Sect. 6):
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i. “SIM-NM-SO-ATK ⇒
�

SIM-NM-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}. In fact, we have a stronger result: “SIM-NM-
CCA2 � SIM-NM-SO-CPA”, which suggests “SIM-NM-ATK′

�

SIM-NM-SO-ATK′′”, for any ATK′,ATK′′ ∈ {CPA,CCA1,CCA2}.
(b) Indistinguishability-based (Sect. 7):

i. “IND-NM-SO-ATK ⇒ IND-NM-ATK”, for any ATK ∈ {CPA,
CCA1,CCA2}.

ii. “IND-NM-CCA2 � IND-NM-SO-CCA2”, and “IND-NM-SO-CPA
� IND-NM-CCA1”.

3. SIM-NM-SO versus IND-NM-SO (Sect. 8):
“IND-NM-SO-ATK � SIM-NM-SO-ATK”, for any ATK ∈ {CCA1,CCA2}.
In fact, we have a stronger result: “IND-NM-SO-CCA2 � SIM-NM-SO-
CCA1”.

Based on the relations that we obtained, (in Sect. 9) we conclude that some
known PKE schemes have already obtained SIM-NM-SO-CCA2 or IND-NM-
SO-CCA2 security. More specifically, the NC-CCA2 secure encryption scheme
proposed by Fehr et al. [10] is SIM-NM-SO-CCA2 secure; Any IND-SO-CCA2
secure encryption scheme (e.g., [11,12]) is IND-NM-SO-CCA2 secure.

SIM-SO-CPA SIM-SO-CCA1 SIM-SO-CCA2 SIM-NM-CPA SIM-NM-CCA1 SIM-NM-CCA2

SIM-NM-SO-CPA SIM-NM-SO-CCA1 SIM-NM-SO-CCA2 SIM-NM-SO-CPA SIM-NM-SO-CCA1 SIM-NM-SO-CCA2

IND-NM-SO-CPA IND-NM-SO-CCA1 IND-NM-SO-CCA2 IND-NM-SO-CPA IND-NM-SO-CCA1 IND-NM-SO-CCA2

IND-SO-CPA IND-SO-CCA1 IND-SO-CCA2 IND-NM-CPA IND-NM-CCA1 IND-NM-CCA2

\[15]
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Fig. 1. Relations among SO-NM securities, SO securities and NM securities.

Techniques for the Implications. For two main non-trivial implication
results, we provide their high-level descriptions of the reasonings here.

– For our contribution 1. (a).ii., the key point is how to construct a SIM-NM-SO-
CCA2 simulator SNS from a SIM-SO-CCA2 simulator S. Given S’s output
outS , if it is a valid message, SNS can simply generate a ciphertext by encrypt-
ing it, such that the decryption of SNS ’s output equals outS . The barrier is
that when outS is not a valid message, this method doesn’t work. To overcome
this issue, we apply the idea from [17], assuming that there is an algorithm F
recovering ciphertexts from decrypted messages. Under this assumption, SNS

can use F to recover a ciphertext from outS , if outS falls into the range of
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decrypted messages. However, this method fails if outS does not belong to the
range of the decryption algorithm Dec. This problem can be solved by assum-
ing that the range of the decryption algorithm Dec is recognizable. With the
recognizable property of Dec, SIM-SO-CCA2 security ensures that S’s out-
put outS is almost always in the range of Dec as long as the SIM-SO-CCA2
adversary’s final output is in the range.

– For our contribution 2. (a).i., the key point is constructing a SIM-NM-ATK
simulator SN from a SIM-NM-SO-ATK simulator SNS . Note that SNS has the
ability, which SN doesn’t, to ask an opening query. To overcome this issue, we
consider a special “half-uniform” message distribution, which consists of two
independent distributions and the second is a uniform one. Correspondingly,
the challenge message vector generated from this specific distribution also
consists of two parts. If SNS outputs a “half-uniform” distribution and asks
to open the uniform part, SN can always answer it on its own by returning
a uniformly chosen message vector. However, SN still cannot deal with a
misbehaved SNS which outputs other distributions or it does not open the
uniform part. To solve this problem, we construct a behaved SIM-NM-SO-
ATK adversary ANS , which always outputs a half-uniform distribution and
asks to open the uniform part, and then SIM-NM-SO-ATK security guarantees
SNS is behaved, except with negligible probability.

Observations for the Separations. Some of our separation results can be
seen as extensions of [1,17]. Most of these separations are based on the follow-
ing observations. Let’s look at the SIM-based notions first. A SIM-NM security
notion requires that the decryptions of both of the adversary’s and the simu-
lator’s outputs be indistinguishable. Note that a non-NM security notion only
requires that their outputs be indistinguishable. We can provide a uniformly dis-
tributed string, which leads to a special ciphertext (e.g., decrypted to sk), to the
adversary through the decryption oracle. It is hard for any SIM-NM simulator
to generate such a ciphertext, since it has no access to the decryption oracle.
This feature can be used to separate some SIM-based NM and non-NM security
notions (in a SOA or non-SOA setting). For the IND-based notions, note that
even under CPA attacks, an IND-NM adversary can make a one-time parallel
decryption query after receiving the challenge ciphertext. This feature can be
used to separate some IND-based NM and non-NM security notions (in a SOA
or non-SOA setting).
Open Question. The primary open question is to figure out the rela-
tions between SIM-NM-SO and IND-NM-SO security notions. The barriers we
encounter are as follows. For NM security notions, there is always a parallel
decryption process after the adversary receiving the challenge ciphertext. This
fact makes the relation between these two notions (even under CPA attacks)
similar to that between SIM-SO-CCA2 and IND-SO-CCA2 security. Besides
that, we also need to deal with the aforementioned issue, i.e., the SIM-NM-SO
simulator’s output always contains a ciphertext vector.
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2 Preliminaries

Notations. Throughout this paper, we use κ as the security parameter, and ε as
the empty string. For n ∈ N

+, let [n] denote the set {1, 2, · · · , n}. For a finite set
S, let s ← S denote the process of sampling an element s uniformly at random
from S. For a probabilistic algorithm A, let RA denote the randomness space of
A. We let y ← A(x;R) denote the process of running A on input x and inner
randomness R ∈ RA, and outputting y. We write y ← A(x) for y ← A(x;R)
with uniformly chosen R ∈ RA. If A’s running time is polynomial in κ, we say
that A is a probabilistic polynomial-time (PPT) algorithm. For two sequences
of random variables X = {Xκ}κ∈N and Y = {Yκ}κ∈N, if for any PPT algorithm
D, |Pr[D(Xκ, 1κ) = 1]−Pr[D(Yκ, 1κ) = 1]| is negligible in κ, we say that X and
Y are computationally indistinguishable (denoted by X

c≈ Y ).
We use boldface letters for vectors. For a vector m (resp. a finite set S), we

let |m| (resp. |S|) denote the length of the vector (resp. the size of the set). For a
set I = {i1, i2, · · · , i|I|} ⊆ [|m|], let m[I] = (m[i1],m[i2], · · · ,m[i|I|]). We write
m ∈ m to denote m ∈ {m[i]|i ∈ [|m|]}, extending the set membership notation
to vectors.

Decryption Oracles. For simplicity, we will use the notations O1(·) and O2(·)
in all the security notions throughout the paper. In a chosen-plaintext attack
(CPA), both the oracles O1(·) and O2(·) always return ε. In a non-adaptive
chosen-ciphertext attack (CCA1), O1(·) = Dec(sk, ·), and O2(·) still returns ε
whatever it is queried. In an adaptive chosen-ciphertext attack (CCA2), both
O1(·) and O2(·) are Dec(sk, ·), with the only exception that O2(·) returns ε when
queried on a ciphertext appeared in the challenge ciphertext vector.

Non-malleability for Encryption. The first definition of non-malleability
for encryption was proposed by Dolev, Dwork and Naor [8] in 1991.
Their definition is simulation-based. Several years later, comparison-based
and indistinguishability-based definitions of non-malleability were pro-
posed [1,5], and their relations were explored in [5,17]. We recall the
simulation/indistinguishability-based definitions in [17] as follows.

Definition 1 (SIM-NM Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is SIM-NM-ATK secure, if for any stateful PPT adversary A =
(A1, A2), there is a stateful PPT simulator S = (S1, S2), such that

ExpSIM-NM-ATK-Real
PKE,A (κ)

c≈ ExpSIM-NM-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-NM-ATK-Real
PKE,A (κ) and

ExpSIM-NM-ATK-Ideal
PKE,S (κ) are defined in Table 1.

Definition 2 (IND-NM Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is IND-NM-ATK secure, if for any stateful PPT adversary
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A = (A1, A2, A3), its advantage AdvIND-NM-ATK
PKE,A (κ) is negligible, where

ATK ∈ {CPA, CCA1, CCA2}. Here

AdvIND-NM-ATK
PKE,A (κ) := |Pr[ExpIND-NM-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-NM-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-NM-ATK-b
PKE,A (κ) (b ∈ {0, 1}) is defined in Table 1, and

we require that in the experiment, |m0| = |m1|, and |m0[i]| = |m1[i]| for any
i ∈ [|m0|].

Remark 1. Note that in Definitions 1 and 2, the ciphertexts contained in y
may be invalid (i.e., ⊥ ∈ x). According to [17], these two definitions are stronger
than the versions which require that y must be valid ciphertexts.

Selective Opening Security for Encryption. Selective opening security
notions were presented by Bellare et al. [4] in Eurocrypt 2009. We follow [3,4,12]
for the definitions.

Definition 3 (SIM-SO Security [3]). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is SIM-SO-ATK secure, if for any stateful PPT adversary A =
(A1, A2, A3), there is a stateful PPT simulator S = (S1, S2, S3), such that

ExpSIM-SO-ATK-Real
PKE,A (κ)

c≈ ExpSIM-SO-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-SO-ATK-Real
PKE,A (κ) and

ExpSIM-SO-ATK-Ideal
PKE,S (κ) are defined in Table 1.

Table 1. SIM-NM, SIM-SO, IND-NM and IND-SO experiments
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For indistinguishability-based selective opening (IND-SO) security notion,
we restrict message distributions to be efficiently re-samplable. In [3], this kind
of security notion is called “weak” IND-SO security.

Definition 4 (Efficiently Re-samplable). A message distribution M is effi-
ciently re-samplable, if there is a PPT algorithm ResampM, such that for any
m sampled from M and any subset I ⊆ [|m|], ResampM(I,m[I]) samples from
M|I,m[I], i.e., m′ ← ResampM(I,m[I]) is sampled from the distribution M,
conditioned on m′[I] = m[I].

Definition 5 (IND-SO Security). A public-key encryption scheme PKE =
(Gen,Enc,Dec) is IND-SO-ATK secure, if for any stateful PPT adversary
A = (A1, A2, A3), its advantage AdvIND-SO-ATK

PKE,A (κ) is negligible, where ATK ∈
{CPA, CCA1, CCA2}. Here

AdvIND-SO-ATK
PKE,A (κ) := |Pr [ExpIND-SO-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-SO-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-SO-ATK-b
PKE,A (κ) (b ∈ {0, 1}) is defined in Table 1.

3 Non-malleability Under Selective Opening Attack

In this section, we formalize non-malleability under selective opening attacks
for PKE. We consider simulation-based and indistinguishability-based formal-
izations of this security, which we call SIM-NM-SO security and IND-NM-SO
security, respectively.

Simulation-Based Selective Opening Non-malleability. The simulation-
based notion of non-malleability under selective opening attacks combines SIM-
NM security and SIM-SO security. Informally, a SIM-NM-SO-ATK adversary is
a SIM-NM-ATK adversary being allowed to make an additional selective opening
query. Similarly, the related simulator is also allowed to make an opening query.
The formal definition is as follows.

Definition 6 (SIM-NM-SO Security). A public-key encryption scheme
PKE = (Gen,Enc,Dec) is SIM-NM-SO-ATK secure, if for any stateful PPT
adversary A = (A1, A2, A3), there is a stateful PPT simulator S = (S1, S2, S3),
such that

ExpSIM-NM-SO-ATK-Real
PKE,A (κ)

c≈ ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ),

where ATK ∈ {CPA, CCA1, CCA2}, experiments ExpSIM-NM-SO-ATK-Real
PKE,A (κ)

and ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ) are defined as follows:
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ExpSIM-NM-SO-ATK-Real
PKE,A (κ):

(pk, sk) ← Gen(1κ)

(M, s1) ← A
O1(·)
1 (pk)

m ← M
r ← (REnc)

|m|

c ← Enc(pk,m; r)

(I, s2) ← A
O2(·)
2 (c, s1)

(y, σ) ← A
O2(·)
3 (m[I], r[I], s2)

For i ∈ [|y|],
If y[i] ∈ c, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return (M,m, I,x, σ)

ExpSIM-NM-SO-ATK-Ideal
PKE,S (κ):

(pk, sk) ← Gen(1κ)
(M, s1) ← S1(pk)
m ← M
(I, s2) ← S2(s1)
(y, σ) ← S3(m[I], s2)
For i ∈ [|y|],

If y[i] = COPY, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return (M,m, I,x, σ)

Indistinguishability-Based Selective Opening Non-malleability. The
indistinguishability-based notion of non-malleability under selective opening
attacks is also a combination of IND-NM security and IND-SO security. However,
there are some subtleties in this combination. First, as the notion of IND-SO
security, we require that every message distribution outputted by the adversary
should be efficiently re-samplable. Second, in this combination, an adversary
should be allowed to make two special oracle queries, a selective opening query
and a parallel decryption query. In the following formal definition, we allow the
adversary to decide the order of these two oracle queries. More specifically, the
adversary can make these two queries at any time after receiving the vector of
challenge ciphertexts, but only once for each oracle. Note that we require the
adversary has to make these two oracle queries, since the “challenge bit” b is
given through the opening oracle Openb,M,m0,r(·). The formal definition is as
follows.

Definition 7 (IND-NM-SO Security). A public-key encryption scheme
PKE = (Gen,Enc,Dec) is IND-NM-SO-ATK secure, if for any stateful PPT
adversary A = (A1, A2), its advantage AdvIND-NM-SO-ATK

PKE,A (κ) is negligible, where
ATK ∈ {CPA, CCA1, CCA2}. Here

AdvIND-NM-SO-ATK
PKE,A (κ) := |Pr[ExpIND-NM-SO-ATK-1

PKE,A (κ) = 1]

− Pr[ExpIND-NM-SO-ATK-0
PKE,A (κ) = 1]|,

where experiment ExpIND-NM-SO-ATK-b
PKE,A (κ) (b ∈ {0, 1}) and the related oracles are

defined as follows. In experiment ExpIND-NM-SO-ATK-b
PKE,A (κ), we require that adver-

sary A2 access to both oracles Openb,M,m0,r(·) and Psk,c(·) just once respectively.



Non-malleability Under SOA: Implication and Separation 95

ExpIND-NM-SO-ATK-b
PKE,A (κ):

(pk, sk) ← Gen(1κ)

(M,ResampM, s1) ← A
O1(·)
1 (pk)

m0 ← M
r ← (REnc)

|m0|

c ← Enc(pk,m0; r)

b′ ← A
Openb,M,m0,r(·),Psk,c(·),O2(·)
2 (c, s1)

return b′

Oracle Openb,M,m0,r(I):
m1 ← ResampM(I,m0[I])
return (mb, r[I])

Oracle Psk,c(y):
For i ∈ [|y|],

If y[i] ∈ c, then x[i] := COPY
else, x[i] := Dec(sk,y[i])

return x

Remark 2. In [3,10], the notions of traditional selective opening security were
generalized to a new version, where the adversary is allowed to make multiple
opening queries adaptively. SIM-NM-SO security and IND-NM-SO security can
also be naturally generalized to the similar notions. In this paper, for simplic-
ity, when we talk about selective opening attack (i.e., SIM/IND-SO security or
SIM/IND-NM-SO security), we just consider the adversaries making one round
of opening query. However, all the results investigated in this paper can be
extended to the generalized notions.

4 Relations Between SIM-NM-SO Securities and SIM-SO
Securities

In this section, we explore the relations between SIM-NM-SO securities and
SIM-SO securities.

SIM-NM-SO-ATK ⇒ SIM-SO-ATK. We provide a high-level description of
the reasoning here.

Given any SIM-SO-ATK adversary A = (A1, A2, A3) for an encryption
scheme PKE, we construct a SIM-NM-SO-ATK adversary A′ (in Table 2).
If ExpSIM-NM-SO-ATK-Real

PKE,A′ (κ) := (M,m, I,x, σ), then ExpSIM-SO-ATK-Real
PKE,A (κ)

= (M,m, I, σ). SIM-NM-SO-ATK security guarantees that there is a
simulator S′ with respect to A′, such that ExpSIM-NM-SO-ATK-Ideal

PKE,S′ (κ)
c≈

ExpSIM-NM-SO-ATK-Real
PKE,A′ (κ), i.e., (MS′ ,mS′ , IS′ ,xS′ , σS′)

c≈ (M,m, I,x, σ).

Hence, (MS′ ,mS′ , IS′ , σS′)
c≈ (M,m, I, σ). Based on S′, we can construct

a SIM-SO-ATK simulator S (in Table 2), such that ExpSIM-SO-ATK-Ideal
PKE,S (κ) :=

(MS′ ,mS′ , IS′ , σS′). Hence, we have the following theorem.

Theorem 1 (SIM-NM-SO-ATK ⇒ SIM-SO-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, SIM-NM-SO-ATK security implies SIM-SO-ATK
security.

SIM-SO-ATK � SIM-NM-SO-ATK. Now we show that SIM-SO security is
strictly weaker than SIM-NM-SO-ATK security. Formally, we have the following
theorem.
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Table 2. Constructions of adversary A′ = (A′
1, A

′
2, A

′
3) and simulator S = (S1, S2, S3)

Theorem 2 (SIM-SO-ATK � SIM-NM-SO-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, there is a SIM-SO-ATK secure PKE scheme, which is
not SIM-NM-SO-ATK secure.

We prove this theorem with two counterexamples.
In the case of ATK = CPA, we consider the Goldwasser-Micali probabilistic

encryption scheme (the GM scheme) [9]. In [4], Bellare et al. pointed out that the
GM scheme is SIM-SO-CPA secure. We claim that the GM scheme is not SIM-
NM-SO-CPA secure because of its homomorphic property. Roughly speaking,
let the challenge ciphertext vector c be generated from a random message vector
m. We can construct an adversary A who encrypts bit 0 to obtain a ciphertext
y′, and then outputsy := (y′ · c[i])i∈[n] 	= c. Obviously, the decryption of y is
x := (0⊕m[i])i∈[n] = m. However, no PPT simulator S can output a ciphertext
vector y satisfying x = m, since m was uniformly chosen and no information
about m is leaked to S except the opened messages.

In the case of ATK ∈ {CCA1, CCA2}, we show a counterexample as follows.
The main idea of our counterexample is similar to that in [17]. Let PKE =
(Gen,Enc,Dec) be an encryption scheme. We construct a new scheme P̃KE =
(G̃en, Ẽnc, D̃ec) in Table 3.

Table 3. ˜PKE = (˜Gen,˜Enc,˜Dec)
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To prove that P̃KE is not SIM-NM-SO-CCA1/CCA2 secure, consider the
adversary A: A obtains θ by querying the decryption oracle on input (c, 0, 1κ),
and outputs a ciphertext whose decryption is ⊥. Notice that any PPT sim-
ulator S has no information about the uniformly chosen θ, since it cannot
access to the decryption oracle. So the probability that the simulator outputs a
ciphertext whose decryption is ⊥ is negligible. Consider the distinguisher D: On
input (M,m, I,x, σ), return 1 if and only if ⊥ ∈ x. Then D can distinguish
Exp

SIM-NM-SO-CCA1/CCA2-Real
˜PKE,A

(κ) and Exp
SIM-NM-SO-CCA1/CCA2-Ideal
˜PKE,S

(κ). Hence,

P̃KE is not SIM-NM-SO-CCA1/CCA2 secure. Now, what remains is to prove
the SIM-SO-CCA1/CCA2 security of P̃KE, which is guaranteed by PKE’s SIM-
SO-CCA1/CCA2 security. Due to space limitations, the formal proof will be
given in the full version of this paper.

Remark 3. The aforementioned analysis actually shows that P̃KE is not SIM-
NM-SO-CCA1 secure, even if PKE is SIM-SO-CCA2 secure. So we have a
stronger conclusion: “SIM-SO-CCA2 � SIM-NM-SO-CCA1”, and a similar
analysis gives “SIM-SO-CCA2 � SIM-NM-CCA1”.

A Note on SIM-NM-SO-CCA2. In [17], Pass et al. specified a special condi-
tion (i.e., the message space and the range of the decryption algorithm are iden-
tical), under which IND-NM-CCA1/CCA2 security and SIM-NM-CCA1/CCA2
security are equivalent. Interestingly, we find that under this condition, if the
range of the decryption algorithm is recognizable (i.e., roughly speaking, there is
a polynomial-time algorithm, which can determine whether an element is in the
range of the decryption algorithm), then SIM-SO-CCA2 security implies SIM-
NM-SO-CCA2 security (i.e., these two security notions are equivalent). Below we
recall the special condition proposed in [17], which we name “invertible decryp-
tion”.

Definition 8 (Invertible Decryption). Let PKE = (Gen,Enc,Dec) be a PKE
scheme. Dec is invertible if there exists a PPT algorithm F, such that for any
ciphertext c, Dec(sk,F(pk,Dec(sk, c))) = Dec(sk, c), where (pk, sk) ← Gen(1κ).

Theorem 3. If a SIM-SO-CCA2 secure PKE scheme has an invertible decryp-
tion algorithm, and the range of the decryption algorithm is recognizable in poly-
nomial time, then the scheme is also SIM-NM-SO-CCA2 secure.

Proof. Let PKE = (Gen,Enc,Dec) be a SIM-SO-CCA2 secure encryption scheme,
such that it has an inverting algorithm F, and the range of Dec is recognizable.
Now we prove PKE is SIM-NM-SO-CCA2 secure.

For any PPT adversary A = (A1, A2, A3) attacking PKE in the sense of SIM-
NM-SO-CCA2, we construct a PPT adversary A′ = (A′

1, A
′
2, A

′
3) attacking PKE

in the sense of SIM-SO-CCA2 as follows.
Receiving a public key pk, A′

1 runs A1 on the input of pk. For any decryption
query c′ asked by A1, A′

1 sends c′ to its own decryption oracle, and then returns
the answer to A1. At some point, A1 returns a message distribution M. Then,
A′

1 outputs M to the challenger.



98 Z. Huang et al.

On the other side, the challenger samples m ← M and r ← (REnc)|m|, and
generates c∗ ← Enc(pk,m; r).

Receiving c∗ from the challenger, A′
2 runs A2 on the input of c∗. For any

decryption query c′ asked by A2, A′
2 answers it with its own decryption oracle

as before (of course, both A2 and A′
2 are not allowed to query c′ ∈ c∗). At some

point, A2 returns a subset I ⊂ [|c∗|]. Then, A′
2 outputs I to the challenger.

Receiving m[I] and r[I], A′
3 runs A3 on the input of m[I] and r[I]. For any

decryption query c′ asked by A3, A′
3 answers it as before. At last, A3 returns

its final output (y, σ). Then, A′
3 generates x (where |x| = |y|) as follows: For

i = 1, 2, · · · , |y|, if y[i] /∈ c∗, submit y[i] to A′’s decryption oracle and denote
the decryption by x[i]; if y[i] ∈ c∗, set that x[i] := COPY. Finally, A′

3 outputs
outA′ := (x, σ).

Notice that A′ perfectly simulates experiment ExpSIM-NM-SO-ATK-Real
PKE,A (κ) for

A. Hence,

ExpSIM-SO-CCA2-Real
PKE,A′ (κ) = (M,m, I, outA′) = (M,m, I,x, σ)

= ExpSIM-NM-SO-CCA2-Real
PKE,A (κ). (1)

Since PKE is SIM-SO-CCA2 secure, there is a PPT simulator S′ =
(S′

1, S
′
2, S

′
3) such that

ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)

c≈ ExpSIM-SO-CCA2-Real
PKE,A′ (κ). (2)

Now, based on S′, we construct a simulator S = (S1, S2, S3) in the sense of
SIM-NM-SO-CCA2.

Receiving a public key pk, S1 runs S′
1 on the input of 1κ. Then S1 outputs

the MS′ returned by S′
1.

On the other side, the challenger samples mS′ ← MS′ , without returning
anything to S.

Later, S′
2 outputs a subset IS′ . S2 outputs IS′ to the challenger.

Upon receiving mS′ [IS′ ], S3 runs S′
3 on the input of mS′ [IS′ ], obtaining S′

3’s
final output outS′ . After parsing outS′ = (xS′ , σS′), S3 checks whether there
is some i0 ∈ [|xS′ |] such that xS′ [i0] 	= COPY and meanwhile xS′ [i0] is not in
the range of Dec. It is feasible to check that in polynomial time since the range
of Dec is recognizable. If there is such an i0, then S3 aborts by outputting a
random string. Otherwise, S3 generates yS (where |yS | = |xS′ |) as follows: For
i = 1, 2, · · · , |yS |, if xS′ [i] = COPY, then set yS [i] = COPY; otherwise, generate
yS [i] ← F(pk,xS′ [i]). Finally, S3 outputs (yS , σS′).

Let bad denote the event that S aborts. If bad does not occur, then for
any j ∈ [|xS′ |] such that xS′ [j] 	= COPY, there is some ciphertext ĉj (not
has to be valid), such that Dec(sk, ĉj) = xS′ [j]. We have Dec(sk,yS [j]) =
Dec(sk,F(pk,Dec(sk, ĉj))) = Dec(sk, ĉj) = xS′ [j]. In this case,

ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ) = (MS′ ,mS′ , IS′ ,xS′ , σS′)

= (MS′ ,mS′ , IS′ , outS′)
= ExpSIM-SO-CCA2-Ideal

PKE,S′ (κ).
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So for any PPT algorithm D,

|Pr[D(ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ)) = 1]

− Pr[D(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1]| ≤ Pr[bad].

Notice that if Pr[bad] is negligible, then we have

ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ)

c≈ ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ). (3)

Combining Eqs. (1), (2) and (3) gives

ExpSIM-NM-SO-CCA2-Real
PKE,A (κ)

c≈ ExpSIM-NM-SO-CCA2-Ideal
PKE,S (κ).

Hence, what remains is to prove that Pr[bad] is negligible. We consider the
following distinguisher D′:

Algorithm D′(M,m, I, out):
Parse out = (x, σ)
For i ∈ [|x|],

If x[i] �= COPY and x[i] is not in the range of Dec, then return 1
Return 0

It is obvious that Pr[D′(ExpSIM-SO-CCA2-Real
PKE,A′ (κ)) = 1] = 0, and that

Pr[D′(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1] = Pr[bad]. In other words,

Pr[bad] = |Pr[D′(ExpSIM-SO-CCA2-Real
PKE,A′ (κ)) = 1]

− Pr[D′(ExpSIM-SO-CCA2-Ideal
PKE,S′ (κ)) = 1]|.

Hence, Eq. (2) guarantees that Pr[bad] is negligible. �

5 Relations Between IND-NM-SO Securities and IND-SO
Securities

In this section, we explore the relations between IND-NM-SO securities and
IND-SO securities. First of all, for any ATK ∈ {CPA, CCA1, CCA2}, an IND-
NM-SO-ATK adversary is more powerful than an IND-SO-ATK adversary in
that it can make an additional query to oracle Psk(·). Intuitively, IND-NM-SO-
ATK security implies IND-SO-ATK security. Further more, any IND-SO-CCA2
adversary A is able to access to the decryption oracle after receiving the challenge
ciphertext vector. So providing A the ability to make a parallel decryption query
yields no additional power. The above analysis results in the following theorem.

Theorem 4 (IND-NM-SO-ATK⇒IND-SO-ATK, IND-NM-SO-CCA2
⇔ IND-SO-CCA2). For any ATK ∈ {CPA, CCA1, CCA2}, IND-NM-SO-
ATK security implies IND-SO-ATK security. Further more, if ATK = CCA2,
these two securities are equivalent.
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IND-NM-SO-CPA �

�
IND-SO-CCA1. Formally, we have the following the-

orem. This is an direct extension of the conclusion in [1]. So we just provide a
high-level description of the reasoning here.

Theorem 5 (IND-NM-SO-CPA �

�
IND-SO-CCA1). There is an IND-

SO-CCA1 secure PKE scheme, which is not IND-NM-SO-CPA secure; vice
verse.

The Direction �. Note that after receiving the challenge ciphertext, the IND-
SO-CCA1 adversary cannot access to the decryption oracle, but the IND-NM-
SO-CPA adversary still can make a parallel decryption query. Based on this
observation, any PKE scheme, achieving IND-SO-CCA1 but not IND-SO-CCA2
security, might be used as a counterexample. The following scheme PKE′ (in
Table 4), with message space {0, 1}κ, is from [1]. If the basic scheme PKE =
(Gen,Enc,Dec) is IND-SO-CCA1 secure, then we can prove that PKE′ is IND-
SO-CCA1 secure but not IND-NM-SO-CPA secure. The formal proof will be
given in the full version of this paper.

Table 4. PKE′ = (Gen′,Enc′,Dec′)

The Direction �. Note that an IND-NM-SO-CPA adversary can make just a
one-time decryption query (although it is parallel), but an IND-SO-CCA1 adver-
sary can query the decryption oracle polynomial times. Based on this observa-
tion, we provide a PKE scheme PKE′′, which is identical to the scheme P̃KE
in Sect. 4, except that during the decryption, roughly, the decryption algorithm
returns the original secret key sk instead of the special symbol ⊥, in the case of
“b = 0 and ϑ = θ”. The analysis is similar to that in Sect. 4. The IND-SO-CCA1
adversary can obtain θ by querying the decryption oracle on input (c, 0, 1κ), so it
can obtain the original sk by querying on (c, 0, θ). Hence, PKE′′ is not IND-SO-
CCA1 secure. However, the IND-NM-SO-CPA adversary cannot make any other
decryption query after the parallel decryption query. Notice that θ is uniformly
chosen, so PKE′′ can be proved IND-NM-SO-CPA secure. The formal proof will
be given in the full version of this paper.

Remark 4. Since IND-SO-CCA1 (resp. IND-NM-SO-CCA1) security implies
IND-SO-CPA (resp. IND-NM-SO-CPA) security, we have the following corollary.
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Corollary 1 (IND-SO-CPA/CCA1 � IND-NM-SO-CPA/CCA1).
IND-SO-CPA/CCA1 security is strictly weaker than IND-NM-SO-CPA/ CCA1
security.

6 Relations Between SIM-NM-SO Securities
and SIM-NM Securities

SIM-NM-SO-ATK ⇒ SIM-NM-ATK. Compared with the conclusion that
“SIM-NM-SO-ATK ⇒ SIM-SO-ATK”, this conclusion is not that obvious. That
is because, compared with the SIM-NM-SO-ATK adversary, although the SIM-
NM-ATK adversary is less powerful (i.e., not allowed to make any opening
query), the corresponding simulator also has less information (i.e., not allowed
to make any opening query) about the message vector. Formally, we have the
following theorem. Due to space limitations, its formal proof will be given in the
full version of this paper.

Theorem 6 (SIM-NM-SO-ATK ⇒ SIM-NM-ATK). For any ATK ∈
{CPA, CCA1, CCA2}, SIM-NM-SO-ATK security implies SIM-NM-ATK
security.

Remark 5. We can also prove Theorem 6 by simply constructing a “non-
opening” SIM-NM-SO-ATK adversary, which is a copy of the SIM-NM-ATK
adversary. Hence, our proof, the overview of which has been provided in the
Introduction, actually shows that even considering constrained SIM-NM-SO-
ATK adversary (i.e., “opening” adversary), Theorem 6 still holds.

SIM-NM-ATK � SIM-NM-SO-ATK. We will show that the IND-CCA2
secure Cramer-Shoup scheme [6,7] (the CS scheme) is SIM-NM-CCA2 secure.
But the CS scheme is not SIM-SO-CPA secure [2]. According to Theorem 1,
it is not SIM-NM-SO-CPA secure either. Consequently, “SIM-NM-ATK′

�

SIM-NM-SO-ATK′′”, for any ATK′,ATK′′ ∈ {CPA,CCA1,CCA2}.
To show that the CS scheme is SIM-NM-CCA2 secure, we use the following

two facts: (1) For any PKE scheme having an invertible decryption algorithm,
it is IND-NM-CCA2 secure iff it is SIM-NM-CCA2 secure [17, Theorem 6]. (2)
IND-CCA2 security is equivalent to IND-NM-CCA2 security, since the parallel
decryption query provides no additional ability to the adversary in the case of
CCA2. So what remains is to show that the CS scheme has an invertible decryp-
tion algorithm. Let (Enc,Dec) denote the corresponding encryption/decryption
algorithms. Following the notations of [7], any valid ciphertext ψ of the CS
scheme has the form ψ := (a, â, c, d) ∈ G4, the message space is G, and the
range of Dec is G

⋃
{reject}, where G is a group of prime order q (see [7]).

We construct an inverting algorithm F as follows: On input (pk,Dec(sk, ψ)),
if Dec(sk, ψ) ∈ G, then F runs Enc(pk,Dec(sk, ψ)) and returns the generated
ciphertext; If Dec(sk, ψ) = reject, then F returns an arbitrary ciphertext not
in G4.
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7 Relations Between IND-NM-SO Securities
and IND-NM Securities

Theorem 7 (IND-NM-CCA2 � IND-NM-SO-CCA2). There is an IND-
NM-CCA2 secure PKE scheme, which is not IND-NM-SO-CCA2 secure.

Theorem 8 (IND-NM-SO-ATK ⇒ IND-NM-ATK). For any ATK
∈ {CPA, CCA1, CCA2}, IND-NM-SO-ATK security implies IND-NM-ATK
security.

Notice that IND-NM-CCA2 (resp. IND-NM-SO-CCA2) security is equivalent
to IND-CCA2 (resp. IND-SO-CCA2) security, so Theorem 7 is directly from [15],
which separated IND-CCA2 security and IND-SO-CCA2 security. The conclu-
sion of Theorem 8 is not surprising at all. One subtlety here is that the ways
that message vectors are sampled in these two notions are different. Due to space
limitations, the proof of Theorem 8 will be given in the full version of this paper.

Remark 6. In Sect. 5, we have showed that scheme PKE′′ is IND-NM-SO-CPA
secure. It is easy to see that PKE′′ is not IND-NM-CCA1 secure. So we conclude
that “IND-NM-SO-CPA � IND-NM-CCA1”.

8 Relations Between SIM-NM-SO Securities
and IND-NM-SO Securities

For the relations between SIM-NM-SO securities and IND-NM-SO securities, we
have the following conclusion. Its proof is similar to that of Theorem 2 and [17,
Theorem 4], so we just provide a sketch here.

Theorem 9 (IND-NM-SO-CCA1/CCA2 � SIM-NM-SO-CCA1/
CCA2). For any ATK ∈ {CCA1,CCA2}, there is an IND-NM-SO-ATK secure
PKE scheme, which is not SIM-NM-SO-ATK secure.

Proof. (Sketch) Let PKE = (Gen,Enc,Dec) be an IND-NM-SO-CCA1/CCA2
secure encryption scheme. We construct the scheme P̃KE = (G̃en, Ẽnc, D̃ec)
described in Table 3. Note that in Sect. 4, we have shown that P̃KE is not SIM-
NM-SO-CCA1/CCA2 secure, and the reasoning there does not involve the secu-
rity of the basic scheme PKE. So here we just need to prove that P̃KE achieves
IND-NM-SO-CCA1/CCA2 security.

For any PPT adversary Ã attacking P̃KE in the sense of IND-NM-SO-
CCA1/CCA2 with non-negligible advantage, roughly speaking, we construct a
PPT adversary A attacking PKE (in the sense of IND-NM-SO-CCA1/CCA2) as
follows: Receiving the public key, A chooses θ ← {0, 1}κ, and uses this θ and
its own decryption oracle to answer Ã’s decryption queries. A outputs the same
message distribution M as Ã does, transforms any component c[i] of its own
challenge ciphertext vector into (c[i], 1, 0κ) to get a modified challenge cipher-
text vector and passes the modified one to Ã. A uses its own opening oracle to
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answer Ã’s opening query. Finally, A returns Ã’s final output. Notice that A

perfectly simulates the IND-NM-SO-CCA1/CCA2 experiment (about P̃KE) for
Ã. So A’s advantage is also non-negligible, contradicting the assumption. �

Remark 7. Note that P̃KE is not SIM-NM-SO-CCA1 secure, even if PKE is
IND-NM-SO-CCA2 secure. So we actually have a stronger conclusion: “IND-
NM-SO-CCA2 � SIM-NM-SO-CCA1”.

9 Constructions

Fortunately, there are some known selective opening secure PKE schemes achiev-
ing SIM/IND-NM-SO securities. Details are as follows.

SIM-NM-SO-CCA2 Secure Construction. The Fehr-Hofheinz-Kiltz-Wee
encryption scheme (the FHKW scheme) is SIM-SO-CCA2 secure [10,13,14]. We
claim that the decryption algorithm of the FHKW scheme is invertible, and the
range of the decryption algorithm is recognizable. Hence, according to Theorem 3,
the FHKW scheme is SIM-NM-SO-CCA2 secure. Our claim is justified as follows.

According to [10], any valid ciphertext of the FHKW scheme has the form
(X1, · · · ,XL, T ), and the message space is {0, 1}L. For any ciphertext of the
form (X1, · · · ,XL, T ), where Xi ∈ X and T ∈ XT , its decryption is an L-bit
string. Since X and XT are both efficiently recognizable, any invalid cipher-
text (X1, · · · ,XL, T ) (i.e., Xi /∈ X for some i, or T /∈ XT ) will be decrypted
to ⊥. In other words, the range of the decryption algorithm is {0, 1}L

⋃
{⊥},

which is recognizable. As to the special inverting algorithm F, we construct it
as follows: Let (Enc,Dec) denote the encryption/decryption algorithms of the
FHKW scheme. For any ciphertext c, we have that Dec(sk, c) ∈ {0, 1}L

⋃
{⊥}.

If Dec(sk, c) ∈ {0, 1}L, F runs Enc(pk,Dec(sk, c)) and returns the generated
ciphertext; If Dec(sk, c) = ⊥, F returns an arbitrary ciphertext (X1, · · · ,XL, T )
where Xi /∈ X or T /∈ XT .

IND-NM-SO-CCA2 Secure Construction. According to Theorem 4, IND-
NM-SO-CCA2 security is equivalent to IND-SO-CCA2 security. So any IND-
SO-CCA2 secure encryption scheme (e.g. the PKE scheme constructed from
all-but-many lossy trapdoor functions [11]) meets IND-NM-SO-CCA2 security.
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Abstract. In this paper, we introduce a new concept that we call fuzzy
signature, which is a signature scheme that uses a noisy string such as bio-
metric data as a private key, but does not require auxiliary data (which is
also called helper string in the context of fuzzy extractors), for generating
a signature. Our technical contributions are three-fold: (1) We first give
the formal definition of fuzzy signature, together with a formal definition
of a “setting” that specifies some necessary information for fuzzy data.
(2) We give a generic construction of a fuzzy signature scheme based on
a signature scheme with certain homomorphic properties regarding keys
and signatures, and a new tool that we call linear sketch. (3) We specify
a certain setting for fuzzy data, and then give concrete instantiations of
these building blocks for our generic construction, leading to our pro-
posed fuzzy signature scheme.

We also discuss how fuzzy signature schemes can be used to realize a
biometric-based PKI that uses biometric data itself as a cryptographic
key, which we call the public biometric infrastructure (PBI).

Keywords: Fuzzy signature · Public biometric infrastructure

1 Introduction

1.1 Background and Motivation

The public key infrastructure (PKI), which enables authentication and crypto-
graphic communication, plays a significant role as an infrastructure for infor-
mation security, and is expected to be used for personal use (e.g. national ID,
e-government service) more and more widely. In the PKI, private and public keys
are generated for each user at the time of registration, and a certificate author-
ity (CA) guarantees the link between the public key and the user’s identity by
issuing a public key certificate. The user can publish his/her digital signature
by using the private signing key. However, since the user has to manage his/her
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private key in a highly secure manner [6], it is not very convenient in some situ-
ations. For example, the user is required to possess a hardware token (e.g. smart
card, USB token) that contains his/her private key, and memorize a password
to activate the key. Such limitations reduce usability, and especially, carrying a
dedicated device can be a burden to users. This becomes more serious for elderly
people in an aging society.

A feasible approach for solving this problem fundamentally is to use biometric
data (e.g. fingerprint, iris, and finger-vein) as a cryptographic key. Namely, since
biometric data is a part of human body, it can offer a more usable way to
link the private key and the individual. Moreover, a multibiometric sensor that
simultaneously acquires multiple biometric information (e.g. iris and face [1];
fingerprint and finger-vein [15]) has been recently developed to obtain enough
entropy at one time, and we can also expect that longer strings will be produced
from various biometric data in the near future.

However, since biometric data is noisy and fluctuates each time it is captured,
it cannot be used directly as a key. Intuitively, it seems that this issue can be
immediately solved by using a fuzzy extractor [4], but this is not always the
case. More specifically, for extracting a string by a fuzzy extractor, an auxiliary
data called a helper string is necessary, and therefore, the user is still enforced
to carry a dedicated device that stores it. (We discuss the limitations of the
approaches with helper data (i.e. the fuzzy-extractor-based approaches) in more
detail in Appendix A.) Hence, it is considered that the above problem cannot be
straightforwardly solved by using the fuzzy extractor, and another cryptographic
technique by which noisy data can be used as a cryptographic private key without
relying on any auxiliary data, is necessary.

Fuzzy Signature: A Signature Scheme with a Fuzzy Private Key. In this paper,
we introduce a new concept of digital signature that we call fuzzy signature.
Consider an ordinary digital signature scheme. The signing algorithm Sign is
defined as a function that takes a signing key sk and a message m as input, and
outputs a signature σ ← Sign(sk,m)1. Thus, it is natural to consider that its
“fuzzy” version Sign should be defined as a function that takes a noisy string x
and a message m as input, and outputs σ ← Sign(x,m). In this paper, we refer
to such digital signature (i.e. digital signature that allows to use a noisy string
itself as a signing key) as fuzzy signature. It should be noted that some studies
proposed a fuzzy identity based signature (FIBS) scheme [7,20,21,23,24], which
uses a noisy string as a verification key. However, fuzzy signature is a totally
different concept since it does not allow a fuzzy verification key, but allows a
fuzzy signing key (i.e. fuzzy private key).

Figure 1 shows the architecture of fuzzy signature in the left, and that of
digital signature using a fuzzy extractor in the right. In fuzzy signature, the
key generation algorithm KGFS takes a noisy string (e.g. biometric feature) x
as input, and outputs a verification key vk.; The signing algorithm SignFS takes

1 Strictly speaking, in this paper we adopt the syntax in which Sign also takes a public
parameter as input (see Sect. 2.2). In this section, we omit it for simplicity.
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another noisy string x′ and a message m as input, and outputs a signature σ.;
The verification algorithm VerFS takes vk, m, and σ as input, and verifies whether
σ is valid or not. If x′ is close to x, σ is verified as valid (the formal definitions
of these algorithms are given in Sect. 3). We emphasize that a fuzzy signature
scheme cannot be constructed based on a fuzzy extractor, since it requires a
helper string P along with a noisy string x′ to make a signature σ on a message
m. Hence, to date, the realization of fuzzy signature has been an open problem.

Gen

Rep

Verification 
key generation

x

x'

sk

sk
Sign Verify

m m

helper string P

vk

or

Digital Signature Using the Fuzzy Extractor

KGFS
x

x'
SignFS VerFS

m m

vk

or

Fuzzy Signature (Our Proposal)

Fig. 1. Architecture of fuzzy signature (our proposal) (left), and that of digital signa-
ture using a fuzzy extractor (right) (x, x′: noisy string, sk: signing key, vk: verification
key, σ: signature, m: message, �: valid, ⊥: invalid).

1.2 Our Contributions

In this paper, we show that under the assumption that a noisy string is uniform
and has enough entropy, a secure fuzzy signature scheme can be indeed realized.
More specifically, our technical contributions are three-fold:

1. Formal Definition of Fuzzy Signature (Sect. 3): We first formalize a
fuzzy key setting that specifies some necessary information for fuzzy data
(e.g. a metric space to which fuzzy data belongs, and a distribution of fuzzy
data over it, etc.). We then give a formal definition of a fuzzy signature scheme
that is associated with a fuzzy key setting.

2. Generic Construction (Sect. 4): In order to better understand our ideas
and the security arguments for our proposed scheme clearly and in a modular
manner, we give a generic construction of a fuzzy signature from an ordinary
signature scheme with certain homomorphic properties regarding keys and
signatures (which is formally defined in Sect. 2.2), and a new technical tool
that we call linear sketch that incorporates a kind of encoding and error
correction processes. (We explain how it works and is used informally in
Sect. 1.3, and give a formal definition in Sect. 4.1.)

3. Concrete Instantiation (Sect. 5): We specify a concrete fuzzy key setting
in which fuzzy data is distributed uniformly over some metric space, and
then show how to realize the underlying signature scheme and a linear sketch
scheme that can be used in the generic construction for this fuzzy key setting.
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Our signature scheme is based on the Waters signature scheme [22], which we
modify so that it satisfies the homomorphic property required in our generic
construction. Our linear sketch scheme is based on the Chinese reminder
theorem and some form of linear coding and error correction.

In Sect. 1.3, we give an overview of how our proposed fuzzy signature scheme is
constructed.

It is expected that our fuzzy signature scheme can be used to realize a
biometric-based PKI that uses biometric data itself as a cryptographic key, which
we call the public biometric infrastructure (PBI). We discuss it in Sect. 6 in more
detail. We would like to emphasize that although so far we have mentioned bio-
metric feature as a main example of noisy data, our scheme is not restricted to
it, and can also use other noisy data such as the output of a PUF (physically
unclonable function) [12] as input, as long as it satisfies the requirement of a
fuzzy key setting.

x'

Signm

Step 2

Step 1

Step 3

Sketch

x Sketch

Fig. 2. An overview of our generic construction of a fuzzy signature scheme. The box
“Sketch” indicates one of the algorithms of a primitive that we call “linear sketch,”
which is formalized in Sect. 4.1.

1.3 Overview of Our Fuzzy Signature Scheme

Our proposed fuzzy signature scheme ΣFS is constructed based on an ordinary
signature scheme (let us call it the “underlying scheme” Σ for the explanation
here). In Fig. 2, we illustrate an overview of our construction of a fuzzy signature
scheme. Our basic strategy is as follows: In the signing algorithm SignFS(x′,m)
(where x′ is a noisy string and m is a message to be signed), we do not extract
a signing key sk (for the underlying scheme Σ) directly from x′ (which is the
idea of the fuzzy-extractor-based approach), but use a randomly generated key
pair (ṽk, s̃k) of Σ, generate a signature σ̃ using s̃k, and also create a “sketch” c̃
(via the algorithm denoted by “Sketch” in Fig. 2), which is a kind of “one-time
pad” ciphertext of the signing key s̃k using x′ as a “one-time pad key”2, and let
2 The procedure “Sketch” is actually not the one-time pad encryption, but more like

a (one-way) “encoding,” because we do not need to decrypt c̃ to recover ˜sk. This is
the main reason why we call c̃ “sketch” (something that contains the information of
˜sk), not “ciphertext”.
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a signature σ consist of (ṽk, σ̃, c̃). This enables us to generate a fresh signature
σ̃ without being worried about the fuzziness of x′. Here, however, since σ̃ is a
valid signature only under ṽk, in order to generate a signature next time, we
need to somehow carry the “encrypted” signing key c̃. To avoid it, in the key
generation algorithm KGFS(x) (where x is also a noisy string measured at the
key generation), we also generate a “sketch” c of another fresh signing key sk
using x as the “one-time pad key”, and put it as a part of a verification key of
our fuzzy signature scheme. Hence, a verification key V K in our fuzzy signature
scheme ΣFS consists of a verification key vk (corresponding to the signing key
sk generated at the key generation) of the underlying scheme Σ, and the sketch
c generated from sk and x. Here, by using some kind of error correction method
with which we can remove “noise” from c and c̃, and comparing them, we can
calculate the “difference” Δsk between sk and s̃k, similarly to what we can do
for one-time pad ciphertexts.3 Thus, if the underlying scheme Σ has the property
that “given two verification keys (vk, ṽk) and a (candidate) difference Δsk, one
can verify that the difference between the secret keys sk and s̃k (corresponding to
vk and ṽk, respectively) is indeed Δsk”, we can verify the signature σ = (ṽk, σ̃, c̃)
of ΣFS under the verification key V K = (vk, c) by first checking the validity of
σ̃ under ṽk (Step 1), then recovering Δsk from c and c̃ (Step 2), and finally
checking whether the difference between vk and ṽk indeed corresponds to Δsk
(Step 3). The explanation so far is exactly what we do in our generic construction
in Sect. 4.

To concretely realize the above strategy, we propose a variant of the Waters
signature scheme [22] (which we call modified Waters signature (MWS)) that sat-
isfies all our requirements. We also formalize the methods for “one-time padding
secret keys (sk and s̃k) by noisy strings” and “reconstructing the difference
between two secret keys”, as a tool that we call linear sketch, and show how to
realize a linear sketch scheme that can be used together with the MWS scheme
to realize our fuzzy signature scheme ΣFS.

2 Preliminaries

In this section, we review the basic notation and the definitions of primitives.

Basic Notation. N, Z, and R denote the sets of all natural numbers, all integers,
and all real numbers, respectively. If n ∈ N, then we define [n] := {1, . . . , n}. If
a, b ∈ N, then “GCD(a, b)” denotes the greatest common divisor of a and b, and
if a ∈ R, then “�a�” denotes the maximum integer which does not exceed a.

3 Recall that the original one-time pad encryption c = m ⊕ K (where c, m, and K
are a ciphertext, a message, and a key, respectively) has “linearity” in the sense
that given two ciphertexts c1 = m ⊕ K1 and c2 = m ⊕ K2 of the same message m
under different keys K1 and K2, we can calculate the difference ΔK = K1 ⊕ K2 by
computing c1 ⊕ c2.
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If S is a finite set, then “|S|” denotes its size, and “x ←R S” denotes that
x is chosen uniformly at random from S. If Φ is a distribution (over some set),
then x ←R Φ denotes that x is chosen according to the distribution Φ. “x ← y”
denotes that y is (deterministically) assigned to x. If x and y are bit-strings,
then |x| denotes the bit-length of x, and “(x||y)” denotes the concatenation of
x and y. “(P)PTA” denotes a (probabilistic) polynomial time algorithm.

If A is a probabilistic algorithm, then “y ←R A(x)” denote that A computes
y by taking x as input and using an internal randomness that is chosen uniformly
at random, and if we need to specify the randomness, we denote by “y ← A(x; r)”
(in which case the computation of A is deterministic that takes x and r as input).
If furthermore O is a (possibly probabilistic) algorithm or a function, then “AO”
denotes that A has oracle access to O. Throughout the paper, “k” denotes a
security parameter. A function f(·) : N → [0, 1] is said to be negligible if for all
positive polynomials p(·) and all sufficiently large k, we have f(k) < 1/p(k).

2.1 Bilinear Groups and Computational Problems

We say that BG = (p,G,GT , g, e) constitutes (symmetric) bilinear groups if p is
a prime, G and GT are cyclic groups with order p, g is a generator of G, and
e : G × G → GT is an efficiently (in |p|) computable mapping satisfying the
following two properties: (Bilinearity :) For all g′ ∈ G and a, b ∈ Zp, it holds that
e(g′a, g′b) = e(g′, g′)ab, and (Non-degeneracy :) for all generators g′ of G, e(g′, g′)
is not the identity element of GT .

For convenience, we denote by BGGen an algorithm (referred to as a bilinear
group generator) that, on input 1k, outputs a description of bilinear groups BG.

Definition 1. We say that the computational Diffie-Hellman (CDH) assump-
tion holds with respect to BGGen if for all PPTAs A, AdvCDHBGGen,A(k) := Pr[BG ←
BGGen(1k); a, b ←R Zp : A(BG, ga, gb) = gab] is negligible.

2.2 Signature

Syntax and Correctness. We model a signature scheme Σ as a quadruple of the
PPTAs (Setup,KG,Sign,Ver) that are defined as follows: The setup algorithm
Setup takes 1k as input, and outputs a public parameter pp.; The key genera-
tion algorithm KG takes pp as input, and output a verification/signing key pair
(vk, sk).; The signing algorithm Sign takes pp, sk, and a message m as input,
and outputs a signature σ.; The verification algorithm Ver takes pp, vk, m, and
σ as input, and outputs either � or ⊥. Here, “�” (resp. “⊥”) indicates that σ
is a valid (resp. invalid) signature of the message m under the key vk.

We require for all k ∈ N, all pp output by Setup(1k), all (vk, sk) output by
KG(pp), and all messages m, we have Ver(pp, vk,m,Sign(pp, sk,m)) = �.

EUF-CMA Security. Here, we recall the definition of existential unforgeability
against chosen message attacks (EUF-CMA security).
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For a signature scheme Σ = (Setup,KG,Sign,Ver) and an adversary A, con-
sider the following EUF-CMA experiment ExptEUF-CMAΣ,A (k):

ExptEUF-CMAΣ,A (k) : [ pp ←R Setup(1k); (vk, sk) ←R KG(pp);

Q ← ∅; (m′, σ′) ←R AOSign(·)(pp, vk);
If m′ /∈ Q ∧ Ver(pp, vk,m′, σ′) = � then return 1 else return 0 ],

where OSign is the signing oracle which takes a message m as input, updates Q
by Q ← Q ∪ {m}, and returns a signature σ ←R Sign(pp, sk,m).

Definition 2. We say that a signature scheme Σ is EUF-CMA secure if for all
PPTA adversaries A, AdvEUF-CMAΣ,A (k) := Pr[ExptEUF-CMAΣ,A (k) = 1] is negligible.

Homomorphic Properties of Keys and Signatures. For our fuzzy signature scheme,
we will utilize a signature scheme that has certain homomorphic properties regard-
ing keys and signatures, and thus we formalize the properties here.

Definition 3. Let Σ = (Setup,KG,Sign,Ver) be a signature scheme. We say
that Σ is homomorphic if it satisfies the following properties:

– For all parameters pp output by Setup, the signing key space constitutes a
cyclic abelian group (Kpp,+), and the key generation algorithm KG can be
described by using the deterministic PTA KG′ as follows:

KG(pp) : [sk ←R Kpp; vk ← KG′(pp, sk); Return (vk, sk).]. (1)

– There exists a deterministic PTA Mvk that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), and a “shift” Δsk ∈ Kpp

as input, and outputs the “shifted” verification key vk′.
We require that for all pp output by Setup and all sk,Δsk ∈ Kpp, it holds that

KG′(pp, sk + Δsk) = Mvk(pp,KG′(pp, sk),Δsk). (2)

– There exists a deterministic PTA Msig that takes a public parameter pp (output
by Setup), a verification key vk (output by KG(pp)), a message m, a signature
σ, and a “shift” Δsk ∈ Kpp as input, and outputs a “shifted” signature σ′.
We require that for all pp output by Setup, all messages m, all sk,Δsk ∈ Kpp,
the following two distributions are identical:

{σ′ ←R Sign(pp, sk + Δsk,m) : σ′}, and
{σ ←R Sign(pp, sk,m); σ′ ← Msig(pp,KG′(pp, sk),m, σ,Δsk) : σ′}. (3)

Furthermore, we require that for all pp output by Setup, all sk,Δsk ∈ Kpp,
and all (m,σ) satisfying vk = KG′(pp, sk) and Ver(pp, vk,m, σ) = �, it holds
that

Ver(pp,Mvk(pp, vk,Δsk),m,Msig(pp, vk,m, σ,Δsk)) = �. (4)
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On “Weak” Distributions of Signing Keys. Let Σ = (Setup,KG,Sign,Ver) be
a signature scheme with the homomorphic property (as per Definition 3) with
secret key space Kpp for a public parameter pp, and thus there exists the algo-
rithm KG′ such that KG can be written as in Eq. (1). Let u : N → N be any

function. For an EUF-CMA adversary A attacking Σ, let Ãdv
EUF-CMA

Σ,A (k) be the
advantange of A in the experiment that is the same as ExptEUF-CMAΣ,A (k), except
that a secret key sk is chosen by sk ←R K̃pp (instead of sk ←R Kpp) where K̃pp

denotes an arbitrary (non-empty) subset of Kpp satisfying |Kpp|/|K̃pp| ≤ u(k).
We will use the following fact, which is obtained as a corollary of the lemma

shown by Dodis and Yu [5, Lemma 1].

Lemma 1. (Corollary of [5, Lemma 1]) Under the above setting, for any

PPTA adversary A, it holds that Ãdv
EUF-CMA

Σ,A (k) ≤ u(k) · AdvEUF-CMAΣ,A (k).

Waters Signature Scheme. Our fuzzy signature scheme is based on the Waters
signature scheme [22], and thus we recall it here. (We consider the version where
the setup and the key generation (for each user) is separated.)

Let � = �(k) be a positive polynomial, and let BGGen be a bilinear group
generator (as defined in Sect. 2.1). Then, the Waters signature scheme ΣWat for
�-bit messages are constructed as in Fig. 3. ΣWat is known to be EUF-CMA secure
if the CDH assumption holds with respect to BGGen [22].

SetupWat(1
k) :

BG := (p,G,GT , g, e) BGGen(1k)
h, u , u1, . . . , u R G

pp (BG, h, u , (ui)i∈[ ])
Return pp.

KGWat(pp) :
sk R Zp

vk gsk

Return (vk, sk).

SignWat(pp, sk, m) :

Parse m as (m1 . . . m ) ∈ {0, 1} .
r R Zp

σ1 hsk · (u i∈[ ] u
mi
i )r; σ2 gr

Return σ (σ1, σ2).

VerWat(pp, vk, m, σ) :
(σ1, σ2) σ

Parse m as (m1 . . . m ) ∈ {0, 1} .
If e(σ2, u · i∈[ ] u

mi
i ) · e(vk, h) = e(σ1, g)

then return else return ⊥.

Fig. 3. The Waters signature scheme ΣWat [22].

3 Definitions for Fuzzy Signature

In this section, we introduce the definitions of Fuzzy Signature (FS).
As mentioned in Sect. 1, to define FS, we need to define some “setting” that

models a space to which a fuzzy data (used as a signing key of FS) belongs, a
distribution from which fuzzy data is sampled, etc. We therefore first formalize
it as a fuzzy key setting in Sect. 3.1, and then define FS that is associated with
a fuzzy key setting in Sect. 3.2.
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3.1 Formalization of Fuzzy Key Setting

Consider a typical biometric authentication scheme, in which a “fuzzy” biometric
feature x ∈ X (where X is some metric space) is measured and extracted from a
user at the registration phase.; At the authentication phase, a biometric feature
x′ is measured and extracted from a (possibly different) user, and this user is
considered the user who generated the biometric data x and thus authentic if x
and x′ are sufficiently “close” according to some metric.

We abstract out this typical setting for “identifying fuzzy objects” as a “fuzzy
key setting”, and formalize it here. Roughly, a fuzzy key setting specifies (1) the
metric space to which fuzzy data (such as biometric data) belongs (X in the
above example), (2) the distribution of fuzzy data sampled at the “registration
phase” (x in the above example), and (3) the error distribution that models
“fuzziness” of the fuzzy data (the relationship between x and x′ in the above
example).

We adopt what we call the “universal error model”, which assumes that for
all objects U that produce fuzzy data that we are interested in, if U produces
a data x at the first measurement (say, at the registration phase), if the same
object is measured next time, then the measured data x′ follows the distribution
{e ←R Φ;x′ ← x + e : x′}. That is, the error distribution Φ is independent
of individual U . (We also assume that the metric space constitutes an abelian
group so that addition is well-defined.)

Formally, a fuzzy key setting F consists of ((d,X), t,X , Φ, ε), each of which
is defined as follows:

(d,X): This is a metric space, where X is a space to which a possible fuzzy
data x belongs, and d : X2 → R is the corresponding distance function. We
furthermore assume that X constitutes an abelian group.

t: (∈ R) This is the threshold value, determined by a security parameter k. Based
on t, the false acceptance rate (FAR) and the false rejection rate (FRR) are
determined. We require that the FAR := Pr[x, x′ ←R X : d(x, x′) < t] is
negligible in k.

X : This is a distribution of fuzzy data over X.
Φ: This is an error distribution (see the above explanation).
ε: (∈ [0, 1]) This is an error parameter that represents FRR. We require that for

all x ∈ X, FRR := Pr[e ←R Φ : d(x, x + e) ≥ t] ≤ ε.

3.2 Fuzzy Signature

A fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
consists of the four algorithms (SetupFS,KGFS,SignFS,VerFS):

SetupFS: This is the setup algorithm that takes the description of the fuzzy key
setting F and 1k as input (where k determines the threshold value t of F),
and outputs a public parameter pp.

KGFS: This is the key generation algorithm that takes pp and a fuzzy data x ∈ X
as input, and outputs a verification key vk.
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SignFS: This is the signing algorithm that takes pp, a fuzzy data x′ ∈ X, and a
message m as input, and outputs a signature σ.

VerFS: This is the (deterministic) verification algorithm that takes pp, vk, m,
and σ as input, and outputs either � (“accept”) or ⊥ (“reject”).

Correctness. We require a natural correctness requirement: For all k ∈ N, all pp
output by SetupFS(F , 1k), all x, x′ ∈ X such that d(x, x′) < t, and all messages
m, it holds that VerFS(pp,KGFS(pp, x),m,SignFS(pp, x′,m)) = �.

EUF-CMA Security. For a fuzzy signature scheme, we consider EUF-CMA security in a
similar manner to that for an ordinary signature scheme, reflecting the universal
error model of a fuzzy key setting.

For a fuzzy signature scheme ΣFS for a fuzzy key setting F = ((d,X), t,X , Φ, ε)
and an adversary A, consider the following experiment ExptEUF-CMAΣFS,F,A(k):

ExptEUF-CMAΣFS,F,A(k) : [ pp ←R SetupFS(F , 1k); x ←R X ; vk ← KGFS(pp, x);

Q ← ∅; (m′, σ′) ←R AOSignFS
(·)(pp, vk) :

If m′ /∈ Q ∧ VerFS(pp, vk,m′, σ′) = � then return 1 else return 0 ],

where OSignFS is the signing oracle that takes a message m as input, and operates
as follows: It updates Q by Q ← Q∪{m}, samples e ←R Φ, computes a signature
σ ←R SignFS(pp, x + e,m), and returns σ.

Definition 4. We say that a fuzzy signature scheme ΣFS is EUF-CMA secure if for
all PPTA adversaries A, AdvEUF-CMAΣFS,F,A(k) := Pr[ExptEUF-CMAΣFS,F,A(k) = 1] is negligible.

4 Generic Construction

In this section, we show a generic construction for a fuzzy signature scheme. This
construction is based on a new tool that we call linear sketch and a signature
scheme with the homomorphic property (as per Definition 3). We introduce a
linear sketch scheme in Sect. 4.1, and then in Sect. 4.2, we show the generic
construction.

4.1 Linear Sketch

Definition 5. Let F = ((d,X), t,X , Φ, ε) be a fuzzy key setting. We say that a
pair of deterministic PTAs S = (Sketch,DiffRec) is a linear sketch scheme for
F , if it satisfies the following three properties:

Syntax and Correctness: Sketch is the “sketching” algorithm that takes the
description Λ of an abelian group (K,+), an element s ∈ K, and a fuzzy
data x ∈ X as input, and outputs a “sketch” c.; DiffRec is the “difference
reconstruction” algorithm that takes Λ and two values c, c′ (supposedly output
by Sketch) as input, and outputs the “difference” Δs ∈ K.
It is required that for all x, x′ ∈ X such that d(x, x′) < t, and for all s,Δs ∈
K, it holds that

DiffRec(Λ,Sketch(Λ, s, x),Sketch(Λ, s + Δs, x′)) = Δs. (5)
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Linearity: There exists a deterministic PTA Mc satisfying the following: For
all x, e ∈ X such that d(x, x + e) < t, and for all s,Δs ∈ K, it holds that

Sketch(Λ, s + Δs, x + e) = Mc(Λ,Sketch(Λ, s, x),Δs, e). (6)

Simulatability: There exists a PPTA Sim such that for all s ∈ K, the following
two distributions are statistically indistinguishable (in the security parameter
k that is associated with t in F):

{x ←R X ; c ← Sketch(Λ, s, x) : c} and {c ←R Sim(Λ) : c}. (7)

4.2 Generic Construction

Let F = ((d,X), t,X , Φ, ε) be a fuzzy key setting, and let Σ = (Setup,KG,Sign,
Ver) be a signature scheme. We assume that Σ has the homomorphic prop-
erty (Definition 3), namely, its secret key space (given pp) is a cyclic abelian
group (Kpp,+), and has the additional algorithms KG′, Mvk, and Msig. Let
S = (Sketch,DiffRec) be a linear sketch scheme for F . Using Σ and S, we
construct a fuzzy signature scheme ΣFS = (SetupFS,KGFS,SignFS,VerFS) for the
fuzzy key setting F as in Fig. 4.

Fig. 4. A generic construction of a fuzzy signature scheme ΣFS for a fuzzy key setting
F based on a signature scheme Σ with the homomorphic property and a linear sketch
scheme S for F .

The security of the fuzzy signature scheme ΣFS is guaranteed as follows.

Theorem 1. If Σ is EUF-CMA secure and S is a linear sketch scheme, then the
fuzzy signature scheme ΣFS is EUF-CMA secure.

Proof Sketch of Theorem 1. The formal proof of Theorem1 is given in the full
version due to the lack of space, and here we give an overview of the proof.

Let A be any PPTA adversary that attacks the EUF-CMA security of the fuzzy
signature scheme ΣFS. Note that in the original EUF-CMA experiment
ExptEUF-CMAΣFS,F,A(k), the verification key V K is generated as follows:

[x ←R X ; sk ←R Kpps
; vk ← KG′(pps, sk); c ← Sketch(Λ, sk, x); V K ← (vk, c)].
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Then, consider a “simulated process” for generating V K, which is the same as
above except that the step with the underline is replaced with “c ←R Sim(Λ)”.
Then, by the simulatability of the linear sketch scheme S, the distribution of
V K generated in the original process and that of the simulated process are
statistically indistinguishable.

Furthermore, note also that the signing oracle OSignFS(m) in the original
EUF-CMA experiment ExptEUF-CMAΣFS,F,A generates a signature σ as follows:

[e ←R Φ; s̃k ←R Kpps
; ṽk ← KG′(pps, s̃k); σ̃ ←R Sign(pps, s̃k,m);

c̃ ← Sketch(Λ, s̃k, x + e); σ ← (ṽk, σ̃, c̃)].

By the homomorphic property of the underlying signature scheme Σ, and the
linearity property of the linear sketch scheme S, the following process generates
a signature σ whose distribution is exactly the same as σ generated as above.

[e ←R Φ;Δsk ←R Kpps
; s̃k ← sk + Δsk; ṽk ← Mvk(pps, vk,Δsk);

σ̂ ←R Sign(pps, sk,m); σ̃ ← Msig(pps, vk,m, σ̂,Δsk);

c̃ ← Mc(Λ, c,Δsk, e); σ ← (ṽk, σ̃, c̃)]. (8)

Now, notice that an EUF-CMA adversary B for the underlying signature scheme
Σ, who is given (pps, vk) and has access to the signing oracle OSign(·) := Sign(pps,
sk, ·), can perform the simulated process for generating V K (as explained above)
and also simulate the process in Eq. (8) for A. Furthermore, in the full proof,
we show that if A outputs a successful forgery pair (m′, σ′ = (ṽk

′
, σ̃′, c̃′)) such

that VerFS(pp, V K,m′, σ′) = �, then we can “extract” a successful forgery pair
(m′, σ̂′) such that Ver(pps, vk,m′, σ̂′) = � by using the algorithms DiffRec and
Msig. (Roughly speaking, we can calculate the difference Δsk′ that corresponds

to the difference between vk and ṽk
′
from c and c̃′ via DiffRec, and use Δsk′ to

calculate σ̂′ via Msig.) This enables us to turn A into an adversary (reduction
algorithm) B attacking the EUF-CMA security of Σ. ��

5 Instantiation

In this section, we first specify a concrete fuzzy key setting F for which our
proposed fuzzy signature scheme is constructed in Sect. 5.1. Next, in Sect. 5.2,
we provide some mathematical preliminaries used for our concrete linear sketch
scheme and signature scheme. Armed with them, in Sects. 5.3 and 5.4, we show
the concrete linear sketch scheme S for F and the signature scheme ΣMWS,
respectively, that can be used in our generic construction given in Sect. 4, which
results in our proposed fuzzy signature scheme.

Our proposed fuzzy signature scheme for the fuzzy setting F (introduced in
Sect. 5.1) is obtained straightforwardly from our generic construction in which S
and ΣMWS shown in this section are used. Though somewhat redundant, for the
reader’s convenience, we give a full description of the scheme in Appendix B.
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On the Treatment of Real Numbers. Below, we use real numbers to represent
and process fuzzy data. We assume that a suitable representation with sufficient
accuracy is chosen to encode the real numbers whenever they need to be treated
by the algorithms considered below. (If an algorithm takes a real number as
input, its running time is according to the encoded version of input.)

5.1 Fuzzy Key Setting

Here, we specify a concrete fuzzy key setting F = ((d,X), t,X , Φ, ε) for which
our FS scheme is constructed.

Metric space (d,X): We define the space X by X := [0, 1)n ⊂ R
n, where n is

a parameter specified by the context (e.g. an object from which we measure
fuzzy data). We use the L∞-norm as the distance function d : X × X → R.
Namely, for x = (x1, . . . , xn) ∈ X and x′ = (x′

1, . . . , x
′
n) ∈ X, we define

d(x,x′) := ‖x − x′‖∞ := maxi∈[n] |xi − x′
i|. Note that X forms an abelian

group with respect to coordinate-wise addition (modulo 1).
Threshold t: For a security parameter k, we define the threshold t ∈ R so that

k = �−n log2(2t)�. (9)

Looking ahead, this guarantees that the algorithm “WGen” that we introduce
in the next subsection, is a PTA in k. We do not show that FAR is negligible
here, because it is indirectly implied by the EUF-CMA security of our proposed
fuzzy signature scheme.

Distribution X : The uniform distribution over [0, 1)n. (Regarding how to relax
this requirement, see the discussion in Sect. 6.)

Error distribution Φ and Error parameter ε: Φ is any efficiently samplable
(according to k) distribution over X such that FRR ≤ ε for all x ∈ X.

5.2 Mathematical Preliminaries

Group Isomorphism Based on Chinese Remainder Theorem. Let n ∈ N. Let
w1, . . . , wn ∈ N be positive integers with the same bit length (i.e. �log2 w1� =
· · · = �log2 wn�), such that

∀i ∈ [n] : wi ≤ 1/(2t), and ∀i �= j ∈ [n] : GCD(wi, wj) = 1, (10)

and W =
∏

i∈[n] wi = Θ(2k), where k is defined as in Eq. (9).
We assume that there exists a deterministic algorithm WGen that on input

(t, n) outputs w = (w1, . . . , wn) satisfying the above.
For vectors v = (v1, . . . , vn) ∈ Z

n and w = (w1, . . . wn) ∈ Z
n, we define

v mod w := (v1 mod w1, . . . , vn mod wn). (11)

For vectors v1,v2 ∈ Z
n, we define the equivalence relation “∼” by v1 ∼ v2

def⇔
v1 mod w = v2 mod w, and let Z

n
w := Z

n/ ∼ be the quotient set of Zn by ∼.
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(Note that (Zn
w,+) constitutes an abelian group, where the addition is modulo

w as defined in Eq. (11).)
Consider the following system of equations: given v,w ∈ Z

n, find V such that
V mod wi = vi (i ∈ [n]). According to the Chinese remainder theorem (CRT),
the solutoin V is determined uniquely modulo W . Thus, for a fixed w ∈ Z

n, we
can define a mapping CRTw : Zn

w → ZW such that CRTw(v) = V ∈ ZW . We
denote by CRT−1

w the “inverse” procedure of CRTw.
Note that CRTw satisfies the following homomorphism: For all v1,v2 ∈ Z

n
w,

it holds that CRTw(v1 + v2) = CRTw(v1) + CRTw(v2) mod W . Since CRTw is
bijective between Z

n
w and ZW , CRTw is an isomorphism.

Coding and Error Correction. Let w = (w1, . . . , wn) ∈ N
n be the n-dimensional

vector satisfying the requirements in Eq. (10). Similarly to Z
n
w, we define R

n
w :=

R
n/ ∼ be the quotient set of real vector space R

n by the equivalence relation
∼, where for a real number y ∈ R, we define r = y mod wi by the number such
that ∃n ∈ Z : y = nwi + r and 0 ≤ r < wi.

Let Ew : Rn → R
n
w be the following function:

Ew(x) := (w1x1, . . . , wnxn) ∈ R
n
w. (12)

Note that Ew(x + e) = Ew(x) + Ew(e) (mod w) holds. Therefore, Ew can be
viewed as a kind of linear coding.

Let Cw : Rn
w → Z

n
w be the following function:

Cw((y1, . . . , yn)) := (�y1 + 0.5�, . . . , �yn + 0, 5�). (13)

We note that the round-off operation �yi + 0.5� in Cw can be regarded as a
kind of error correction. Specifically, by the conditions in Eq. (10), the following
properties are satisfied: For any x,x′ ∈ X, if ‖x − x′‖∞ < t, then we have

‖Ew(x) − Ew(x′)‖∞ < t · max
i∈[n]

{wi} ≤ 0.5.

Therefore, for such x,x′, it always holds that

Cw

(
Ew(x) − Ew(x′)

)
= 0. (14)

Additionally, for any x ∈ R
n and s ∈ Z

n
w, the following holds:

Cw(x + s) = Cw(x) + s (mod w). (15)

5.3 Linear Sketch

Let F = ((d,X), t,X , Φ, ε) be the fuzzy key setting defined in Sect. 5.1, and
let w = (w1, . . . , wn) = WGen(t, n), where n is the dimension of X, and let
W =

∏
i∈[n] wi. We consider the linear sketch scheme S = (Sketch,DiffRec) for

F and the additive group (ZW ,+) (=: Λ), as described in Fig. 5 (left).
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Fig. 5. The linear sketch scheme S = (Sketch, DiffRec) for the fuzzy key setting F
(left), and the auxiliary algorithms Mc and Sim for showing the linearity property and
the simulatability property, respectively (right).

We remark that although a sketch c = Sketch(Λ, s,x) leaks some information
of x (in particular, it leaks wixi mod 1 for every i ∈ [n]) even if s ∈ ZW is
chosen uniformly at random, it does not affect the EUF-CMA security of our fuzzy
signature scheme.

Lemma 2. The linear sketch scheme S in Fig. 5 (left) satisfies Definition 5.

Proof of Lemma 2. Correctness follows from the properties of the functions
CRTw, Ew, and Cw. Specifically, let x,x′ ∈ X be such that d(x,x′) = ‖x −
x′‖∞ < t. Let s,Δs ∈ ZW , and let s = CRT−1

w (s) and Δs = CRT−1
w (Δs). Fur-

thermore, let c = Sketch(Λ, s,x) = (s + Ew(x)) mod w and c′ = Sketch(Λ, s +
Δs,x′) = (s + Δs + Ew(x′)) mod w. Then, we have

Cw(c − c′) = Cw

(
s + Ew(x) − (s + Δs + Ew(x′))

)

(∗)
= Δs + Cw

(
Ew(x) − Ew(x′)

)
(†)
= Δs,

where (*) is due to Eq. (15) (we omit to write “mod w”), and (†) is due to Eq. (14)
and ‖x − x′‖∞ < t. Thus, DiffRec(Λ,Sketch(Λ, s,x),Sketch(Λ, s + Δs,x′)) =
CRTw(Cw(c − c′)) = CRTw(Δs) = Δs, satisfying Eq. (5).

Regarding linearity, we consider the algorithm Mc as described in Fig. 5
(upper-right). To see that Mc satisfies linearity, let x, e ∈ R

n
w and s,Δs ∈ ZW ,

and let s = CRT−1
w (s) and Δs = CRT−1

w (Δs). Then, note that Sketch(Λ, s,x) =
(s+Ew(x)) mod w and CRT−1

w (s+Δs) = (s+Δs) mod w. Thus, it holds that

Mc(Λ,Sketch(Λ, s,x),Δs, e) =
(
s + Ew(x) + Δs + Ew(e)

)
mod w

=
(
s + Δs + Ew(x + e)

)
mod w = Sketch(Λ, s + Δs,x + e),

satisfying Eq. (6).
Regarding simulatability, note that by our requirement that X is the uni-

form distribution over [0, 1)n, if x ←R X , then the output of Sketch(Λ, s,x)
is uniformly distributed over R

n
w, no matter what s ∈ ZW is. Therefore, the

probabilistic algorithm Sim(Λ) described in Fig. 5 (bottom-right) that outputs a
uniformly distributed value c over Rn

w satisfies the simulatability. This completes
the proof of Lemma 2. ��
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5.4 Modified Waters Signature Scheme

Here, we show a variant of the Waters signature [22], which we call the modified
Waters signature (MWS) scheme ΣMWS.

Specific Bilinear Group Generator BGGenMWS. In the MWS scheme, we use a
(slightly) non-standard way for specifying bilinear groups, namely, the order p
of (symmetric) bilinear groups is generated based on an integer W =

∏
i∈[n] wi,

where w = (w1, . . . , wn) ∈ Z
n satisfies the conditions in Eq. (10), so that p is the

smallest prime satisfying W |p − 1. More concretely, we consider the following
algorithm PGen for choosing p from W : On input W ∈ N, for i = 1, 2, . . . check
if p = iW + 1 is a prime and return p if this is the case. Otherwise, increment
i ← i + 1 and go to the next iteration.

According to the prime number theorem, the density of primes among the
natural numbers that are less than N is roughly 1/ ln N , and thus, for i’s that
are exponentially smaller than W , the probability that iW + 1 is a prime can
be roughly estimated as 1/ ln W . Therefore, by using the above algorithm PGen,
one can find a prime p satisfying W |p − 1 by performing the primality testing
for O(ln W ) = O(k) times on average (recall that W = Θ(2k)). Furthermore, if
PGen(W ) outputs p, then it is guaranteed that p/W = O(k). (This fact is used
for security).

Let BGGenMWS denote an algorithm that, given 1k, runs w ← WGen(t, n)
where t and n are the parameters from the fuzzy data setting F corresponding
the security parameter k, computes W ←

∏
i∈[n] wi, p ← PGen(W ), and outputs

a description of bilinear groups BG = (p,G,GT , g, e), where G and GT are cyclic
groups with order p and e : G × G → GT is a bilinear map.

Construction. Using BGGenMWS and the algorithms in the original Waters sig-
nature scheme ΣWat (see Fig. 3), the MWS scheme ΣMWS = (SetupMWS,KGMWS,
SignMWS,VerMWS) is constructed as in Fig. 6 (left). Note that the component
ppWat in a public parameter pp (generated by SetupMWS) is distributed identi-
cally to that generated in the original Waters scheme ΣWat in which the bilin-
ear group generator BGGenMWS is used. Therefore, ΣMWS can be viewed as the
original Waters scheme ΣWat, except that (1) we specify how to generate the
parameter of bilinear groups by BGGenMWS, and (2) we use a secret key sk′ (for
the Waters scheme) of the form sk′ = zsk mod p, thereby we change the signing
key space from Zp to ZW .

In the following, we show that ΣMWS satisfies EUF-CMA security (based on the
CDH assumption with respect to BGGenMWS) and the homomorphic property
(Definition 3), and thus can be used as the underlying signature scheme for
our generic construction of a fuzzy signature scheme. (One might suspect the
plausibility of the CDH assumption with respect to BGGenMWS due to our specific
choice of p. We discuss it in Appendix C.)

Lemma 3. If the CDH assumption holds with respect to BGGenMWS, then the
MWS scheme ΣMWS is EUF-CMA secure.
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Fig. 6. The modified Waters signature (MWS) scheme ΣMWS (left), and the auxiliary
algorithms (KG′, Mvk, Msig) for showing the homomorphic property (right).

Proof of Lemma 3. Let pp = (ppWat, z) be a public parameter output by
SetupMWS, let D

(1)
pp = {sk ←R ZW ; sk′ ← zsk mod p : sk′} and D

(2)
pp = {sk′ ←R

Zp : sk′}. Note that the support of D
(1)
pp is a strict subset of that of D

(2)
pp .

Now, let A be any PPTA that attacks the EUF-CMA security of the MWS
scheme. Let Expt1 be the original EUF-CMA experiment, i.e. ExptEUF-CMAΣMWS,A(k), and
let Expt2 be the experiment that is defined in the same manner as Expt1, except
that sk′ is sampled according to the distribution D

(2)
pp . For both i ∈ {1, 2},

let Advi be the advantage of A (i.e. the probability of A outputting a successful
forgery) in Expti. Then, by Lemma 1, we have Adv1 ≤ (p/W )·Adv2 = O(k)·Adv2.
Furthermore, it is straightforward to see that succeeding in forging in Expt2 is
as difficult as succeeding in breaking the EUF-CMA security of the original Waters
scheme ΣWat (in which the bilinear group generator BGGenMWS is used), and
thus Adv2 is negligible if ΣWat is EUF-CMA secure.

Finally, due to Waters [22], if the CDH assumption holds with respect to
BGGenMWS, then the Waters scheme ΣWat (in which BGGenMWS is used,) is
EUF-CMA secure. Combining all the explanations proves the lemma. ��

Lemma 4. The MWS scheme ΣMWS is homomorphic (as per Definition 3).

Proof of Lemma 4. Consider the algorithms (KG′,Mvk,Msig) that are described
in Fig. 6 (right). It is easy to see that using KG′, KGMWS can be rewritten with
the process in Eq. (1), where the secret key space is ZW .

Moreover, it should also be easy to see that Mvk satisfies the requirement
in Eq. (2). Indeed, let pp = (ppWat, z) be a public parameter, and let sk,Δsk ∈
ZW . Then, it holds that Mvk(pp,KG′(pp, sk),Δsk) = (gzsk

)zΔsk

= gzsk+Δsk

=
KG′(pp, sk + Δsk), satisfying Eq. (2).

Finally, we observe that Msig satisfies the requirements in Eqs. (3) and (4).
Let pp = (ppWat, z) and sk,Δsk ∈ ZW as above, and m = (m1‖ . . . ‖m�) ∈ {0, 1}�
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be a message to be signed. Let (σ1, σ2) be a signature on the message m that is
generated by SignMWS(pp, sk,m; r), where r ∈ Zp is a randomness. By definition,
σ1 and σ2 are of the form σ1 = hzsk · (u′ ∏

i∈[�] u
mi
i )r and σ2 = gr, respectively.

Thus, if σ′ = (σ′
1, σ

′
2) is output by Msig(pp, vk,m, σ,Δsk), then it holds that

σ′
1 = σzΔsk

1 = hzsk+Δsk · (u′ ∏
i∈[�] u

mi
i )r·zΔsk

, and σ′
2 = σzΔsk

2 = gr·zΔsk

. This
implies σ′ = (σ′

1, σ
′
2) = SignMWS(pp, sk + Δsk,m; r · zΔsk). Note that for any

Δsk ∈ ZW , if r ←R Zp, then ((r · zΔsk) mod p) is uniformly distributed in Zp.
This implies that the distributions considered in Eq. (3) are identical. Further-
more, by the property of the MWS scheme (which is inherited from the original
Waters scheme), any signature σ′ = (σ′

1, σ
′
2) satisfying VerMWS(pp, vk,m, σ′) = �

must satisfy the property that there exists r′ ∈ Zp such that SignMWS(pp, sk,m;
r′) = σ′. Putting everything together implies that for any sk,Δsk ∈ ZW , any
message m ∈ {0, 1}�, any signature σ such that VerMWS(pp, vk,m, σ) = �, if
vk = KG′(pp, sk), vk′ = Mvk(pp, vk,Δsk), and σ′ = Msig(pp, vk,m, σ,Δsk), then
it holds that VerMWS(pp, vk′,m, σ′) = �. Therefore, the requirement regarding
Eq. (4) is satisfied as well. This completes the proof of Lemma 4. ��

6 Towards Public Biometric Infrastructure

As one of the promising applications of our fuzzy signature scheme ΣFS, we
discuss how it can be used to realize a biometric-based PKI that we call the
public biometric infrastructure (PBI).

The PBI is a biometric-based PKI that allows to use biometric data itself
as a private key. Since it does not require a helper string to extract a private
key, it does not require users to carry a dedicated device that stores it. Like
the PKI, it provides the following functionalities: (1) registration, (2) digital
signature, (3) authentication, and (4) cryptographic communication. At the time
of registration, a user presents his/her biometric data x, from which the public
key pk is generated. A certificate authority (CA) issues a public key certificate
to ensure the link between pk and the user’s identify (in the same way as the
PKI). It must be sufficiently hard to restore x or estimate any “acceptable”
biometric feature (i.e. biometric feature x̃ that is sufficiently close to x) from
pk. This requirement is often referred to as irreversibility [8,19]. Note that the
irreversibility is clearly included in the unforgeability, since the adversary who
obtains x or x̃ can forge a signature σ for any message m. Since our fuzzy
signature scheme ΣFS is EUF-CMA secure, it also satisfies the irreversibility.

It is well-known that a digital signature scheme can be used to realize authen-
tication and cryptographic communication, as standardized in [9]. Firstly, a
challenge-response authentication protocol can be constructed based on a dig-
ital signature scheme (refer to [18] for details). Secondly, an authenticated key
exchange (AKE) protocol can also be constructed based on a digital signature
scheme and Diffie-Hellman Key Exchange protocol. In the same way, we can con-
struct an authentication protocol and a cryptographic communication protocol
in the PBI using our fuzzy signature scheme ΣFS.
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Remaining Challenges and Future Work. In Sect. 5, we showed an EUF-CMA secure
FS scheme ΣFS. However, we proved this under the assumption that a noisy
string is uniform and has enough entropy. Thus, when using a biometric feature
as a noisy string in ΣFS, its EUF-CMA security is, for now, guaranteed only in the
case where a biometric feature is uniform and has enough entropy.

A well-known approach to measure the biometric entropy is Daugman’s dis-
crimination entropy [2]. He considered a distribution of a Hamming distance
m between two iriscodes (well-known iris features [3]) that are extracted from
two different irises, and showed that it can be quite well approximated using
the binomial distribution B(n, p), where n = 249 and p = 0.5. He referred to
the parameter n (= 249) as a discrimination entropy. The probability that two
different iriscodes exactly match can be approximated to be 2−249. However, it
does not mean that a fuzzy signature scheme using the iriscode x is as secure
as an ordinary signature scheme with a 249-bit private key, since the adversary
does not have to estimate the original iriscode x, but only has to estimate an
iriscode x̃ that is sufficiently close to x.

If a single biometric feature does not have enough entropy, we can use a
multibiometric fusion scheme [16] that combines multiple sources of biometric
information (e.g. fingerprint, face, and iris; left iris and right iris) to increase
entropy. A multibiometric sensor that simultaneously acquires multiple biomet-
rics (e.g. iris and face [1]; fingerprint and finger-vein [15]) has also been widely
developed in recent years. Thus, we consider that using multiple biometrics is
one possible direction to increase entropy without affecting usability.

Also, a biometric feature is non-uniform in general. The relation between the
security in the uniform key setting (ideal model) and the one in the non-uniform
key setting (real model) has been studied in several works in cryptography, e.g. [5].
As future work, we plan to prove the security of our fuzzy signature scheme in the
non-uniform case, by applying (or extending) the techniques from them.

Acknowledgement. The authors would like to thank the anonymous reviewers of
ACNS 2015 for their invaluable comments and suggestions.

A More on the Limitations of Fuzzy-Extractor-Based
Approaches

The right of Fig. 1 shows an example of a digital signature system using the fuzzy
extractor. Assume that the client generates a signature on a message, and the
server verifies it. At the time of registration, a signing key sk and a helper string
P are generated from a noisy string (e.g. biometric feature) x, and a verification
key vk corresponding to sk is generated and stored in a server-side DB. At the
time of signing, the client generates a signature σ on a message m using P and
another noisy string x′, and sends σ to the server. The server verifies whether
σ is a valid signature on m under vk. If x′ is close to x, it outputs “�” (valid).
Otherwise, it outputs “⊥” (invalid). The important point here is that the helper
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string P has to be stored in some place so that the client can retrieve it at the
time of signing.

There are three possible models for storing the helper string: Store-on-Token
(SOT), Store-on-Client (SOC), and Store-on-Server (SOS). In the SOT, the
helper string is stored in a hardware token (e.g. smart card, USB token). Since
this model requires each user to possess a token, it reduces usability. In the SOC,
the helper string is stored in a client device. Although this model can be applied
to the applications where each user has his/her own client device, it cannot be
employed if the client device is shared by general public (e.g. bank ATM, POS,
and kiosk terminal). In the SOS, the helper string is stored in a server-side DB,
and the client queries for the helper string to the server at the time of signing.
However, it cannot be used in an offline environment (i.e. a user generates a
signature, which is sent to the server later, offline).

To sum up, the SOT reduces usability, and the SOC/SOS limit the client
environment. Although a digital signature scheme using biometrics is proposed
in [10,11] and an extended version of the PKI based on biometrics is discussed
in [17], all of them require additional data like the helper string and suffer from
this kind of problem.

B Full Description of the Proposed Fuzzy
Signature Scheme

Let � = �(k) be a positive polynomial that denotes the length of messages. Let
F = ((d,X), t,X , Φ, ε) be the fuzzy key setting defined in Sect. 5.1, where t
(and n) are determined according to the security patameter k. Let BGGenMWS

be the bilinear group generator defined in Sect. 5.4. Then, our proposed fuzzy
signature scheme ΣFS = (SetupFS,KGFS,SignFS,VerFS) for the fuzzy key setting
F is constructed as in Fig. 7.

It should be straightforward to see that ΣFS is a straightforward combination
of the linear sketch scheme S for F shown in Sect. 5.3 and the MWS scheme
ΣMWS shown in Sect. 5.4.

C On the Plausibility of the CDH Assumption
with Respect to BGGenMWS

For the security of the MWS scheme ΣMWS constructed in Sect. 5.4, we need to
assume that the CDH assumption holds with respect to BGGenMWS. One might
suspect the plausibility of this assumption because of our specific choice of the
order p. However, to the best of our knowledge, there is no effective attack on
the discrete logarithm assumption in the groups G and GT , let alone the CDH
assumption.

Actually, the discrete logarithm problem for the multiplicative group (Z∗
p, ·)

is easy because W |p − 1 and W =
∏

i∈[n] wi, and thus we can apply the Pohlig-
Hellman algorithm [13] to reduce an instance of the discrete logarithm problem
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Fig. 7. The full description of the proposed fuzzy signature scheme ΣFS.

in Z
∗
p to instances of the discrete logarithm problems in Zwi

. However, it does not
mean that the Pohlig-Hellman algorithm is applicable to the discrete logarithm
problem in G or GT , whose order is a prime.

Note that a verification/signing key pair (vk, sk) of the MWS scheme ΣMWS

is of the following form (vk, sk) = (gzsk

, sk), where sk ←R ZW , and z and W
are in a public parameter pp. In fact, due to the existence of the bilinear map
e : G×G → GT , a variant of Pollard’ ρ-algorithm [14] is applicable, and one can
recover sk from vk (and pp) with O(

√
W ) steps. However, this is exponential

time in a security parameter k. (Recall that W = Θ(2k).) This also does not
contradict the EUF-CMA security of the MWS scheme shown in Lemma 3.
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Abstract. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE),
a user’s decryption key is associated with attributes which in general
are not related to the user’s identity, and the same set of attributes
could be shared between multiple users. From the decryption key, if the
user created a decryption blackbox for sale, this malicious user could be
difficult to identify from the blackbox. Hence in practice, a useful CP-
ABE scheme should have some tracing mechanism to identify this ‘trai-
tor’ from the blackbox. In addition, being able to revoke compromised
keys is also an important step towards practicality, and for scalability,
the scheme should support an exponentially large number of attributes.
However, none of the existing traceable CP-ABE schemes simultaneously
supports revocation and large attribute universe. In this paper, we con-
struct the first practical CP-ABE which possesses these three important
properties: (1) blackbox traceability, (2) revocation, and (3) support-
ing large universe. This new scheme achieves the fully collusion-resistant
blackbox traceability, and when compared with the latest fully collusion-
resistant blackbox traceable CP-ABE schemes, this new scheme achieves
the same efficiency level, enjoying the sub-linear overhead of O(

√
N),

where N is the number of users in the system, and attains the same secu-
rity level, namely, the fully collusion-resistant traceability against policy-
specific decryption blackbox, which is proven in the standard model with
selective adversaries. The scheme supports large attribute universe, and
attributes do not need to be pre-specified during the system setup. In
addition, the scheme supports revocation while keeping the appealing
capability of conventional CP-ABE, i.e. it is highly expressive and can
take any monotonic access structures as ciphertext policies.

Keywords: Attribute-based encryption · Ciphertext-policy · Traitor
tracing · Revocation · Large attribute universe

1 Introduction

In some emerging applications such as user-side encrypted cloud storage, users
may store encrypted data on a public untrusted cloud and let other users who
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 127–146, 2015.
DOI: 10.1007/978-3-319-28166-7 7
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have eligible credentials decrypt and access the data. The decryption credentials
could be based on the users’ roles and do not have to be their identities. For
example, a user Alice wants to encrypt some documents, upload to the cloud,
and let all PhD students and alumni in the Department of Mathematics down-
load and decrypt. Attribute-Based Encryption (ABE), introduced by Sahai and
Waters [25], provides a solution to this type of applications. In a Ciphertext-
Policy ABE (CP-ABE) [2,10] scheme1, each user possesses a set of attributes
and a decryption key, the encrypting party can encrypt the documents using
an access policy (e.g. a Boolean formula) on attributes, and a user can decrypt
if and only if the user’s attributes satisfy the policy. Hence in this example,
Alice can encrypt the documents under “(Mathematics AND (PhD Student OR
Alumni))”, which is an access policy defined over descriptive attributes, so that
only those receivers whose attributes satisfy this policy can decrypt.

Among the recently proposed CP-ABE schemes [2,6,9,11,14,15,21,26], one
of the latest works is due to Lewko and Waters [15]. Their scheme achieves high
expressivity (i.e. can take any monotonic access structures as ciphertext poli-
cies), and is provably secure against adaptive adversaries in the standard model.
The scheme is also efficient and removes the one-use restriction that other com-
parable schemes have [14,21]. As of the current Public Key Infrastructure which
mandates the capabilities of key generation, revocation, and certified binding
between identities and public keys, before the CP-ABE being able to deploy in
practice, we should provision a practical CP-ABE scheme with three important
features: (1) traceability, (2) revocation, and (3) large universe. Very recently, a
handful of research works have been done on each one of these while the fun-
damental open problem remains is the existence of an efficient scheme which
supports these three features at once.

Traceability / Traitor Tracing. Access policies in CP-ABE do not have to
contain any receivers’ identities, and more commonly, a CP-ABE policy is role-
based and attributes are shared between multiple users. In practice, a malicious
user, with attributes shared with multiple other users, might leak a decryption
blackbox/device, which is made of the user’s decryption key, for the purpose of
financial gain or some other forms of incentives, as the malicious user has little
risk of being identified out of all the users who can build a decryption blackbox
with identical decryption capability. Being able to identify this malicious user is
crucial towards the practicality of a CP-ABE system.

Given a well-formed decryption key, if the tracing algorithm of a CP-ABE
scheme can identify the malicious user who created the key, the scheme is
called Whitebox Traceable CP-ABE [17]. Given a decryption blackbox, while
the decryption key and even the decryption algorithm could be hidden inside
the blackbox, if the tracing algorithm can still find out the traitor whose key has
been used in constructing the blackbox, the scheme is called Blackbox Trace-
able CP-ABE [16]. In this stronger notion, there are two types of blackboxes:
key-like decryption blackbox and policy-specific decryption blackbox. A key-like
1 Due to page limitation, here we focus on CP-ABE, while skipping discussions about

Key-Policy ABE.
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decryption blackbox has an attribute set associated and can decrypt encrypted
messages with policies being satisfied by the attribute set. A policy-specific
decryption blackbox has a policy associated and can decrypt encrypted mes-
sages with the same policy. Liu et al. [18] formally proved that if a CP-ABE
scheme is traceable against policy-specific decryption blackbox then it is also
traceable against key-like decryption blackbox, and proved that the CP-ABE
scheme in [16] is fully collusion-resistant traceable against policy-specific decryp-
tion blackbox in the standard model with selective adversaries. The scheme in
[16] is highly expressive, and as a fully collusion-resistant blackbox traceable
CP-ABE scheme, it achieves the most efficient level to date, i.e. the overhead for
the fully collusion-resistant traceability is in O(

√
N), where N is the number of

users in the system. Note that fully collusion-resistant traceability means that
the number of colluding users in constructing a decryption blackbox is not lim-
ited and can be arbitrary. Another recent blackbox traceable CP-ABE scheme
is due to Deng et al. [7], but the scheme is only t-collusion-resistant traceable,
where the number of colluding users is limited, i.e., less than a parameter t, and
the scheme’s security is proven in the random oracle model.

Revocation. For any encryption systems that involve many users, private keys
might get compromised, users might leave or be removed from the systems.
When any of these happens, the corresponding user keys should be revoked. In
the literature, several revocation mechanisms have been proposed in the context
of CP-ABE. In [24]2, Sahai et al. proposed an indirect revocation mechanism,
which requires an authority to periodically broadcast a key update information
so that only the non-revoked users can update their keys and continue to decrypt
messages. In [1], Attrapadung and Imai proposed a direct revocation mechanism,
which allows a revocation list to be specified directly during encryption so that
the resulting ciphertext cannot be decrypted by any decryption key which is in
the revocation list even though the associated attribute set of the key satisfies the
ciphertext policy. The direct revocation mechanism does not need any periodic
key updates that an indirect revocation mechanism requires. It does not affect
any non-revoked users either. In direct revocation, a system-wide revocation list
could be made public and revocation could be taken into effect promptly as
the revocation list could be updated immediately once a key is revoked. In this
paper, we focus on achieving direct revocation in CP-ABE.

Large Attribute Universe. In most CP-ABE schemes, the size of the attribute
universe is polynomially bounded in the security parameter, and the attributes
have to be fixed during the system setup. In a large universe CP-ABE, the
attribute universe can be exponentially large, any string can be used as an
attribute, and attributes do not need to be pre-specified during setup. Although
“somewhat” large universe CP-ABE schemes have been proposed or discussed
previously [1,14,22,26], as explained by Rouselakis and Waters [23], limitations

2 Note that in this paper we focus on the conventional revocation, which is to prevent
a compromised or revoked user from decrypting newly encrypted messages. In [24],
revoking access on previously encrypted data is also considered.
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exist. The first “truly” large universe CP-ABE construction, in which there is
no restriction on ciphertext policies or attributes associated with the decryption
keys, was proposed in [23].

1.1 Our Results

We propose the first practical CP-ABE scheme that simultaneously supports
(1) traceability against policy-specific decryption blackbox, (2) (direct) revo-
cation and (3) “truly” large attribute universe. The scheme’s traceability is
fully collusion-resistant, that is, the number of colluding users in constructing
a decryption blackbox is not limited and can be arbitrary. Furthermore, the
traceability is public, that is, anyone can run the tracing algorithm. The scheme
is also highly expressive that allows any monotonic access structures to be the
ciphertext policies.

The scheme is proven selectively secure and traceable in the standard model.
This is comparable to the policy-specific blackbox traceability of the fully
collusion-resistant traceable CP-ABE [18] and also to the security of the “truly”
large universe CP-ABE [23]. The selective security is indeed a weakness when
compared with the full security of [15,16], but as discussed in [23], selective
security is still a meaningful notion and can be a reasonable trade off for perfor-
mance in some circumstances. Furthermore, in light of the proof method of [15]
that achieves full security through selective techniques, we can see that devel-
oping selectively secure schemes could be an important stepping stone towards
building fully secure ones.

Table 1 compares this new scheme with the representative results in con-
ventional CP-ABE [15], blackbox traceable CP-ABE [16], and large universe
CP-ABE [23], all of which are provably secure in the standard model and highly
expressive. The scheme’s overhead is in O(

√
N), where N is the number of users

in a system, and for fully collusion-resistant blackbox traceable CP-ABE, this
is the most efficient one to date. Furthermore, when compared with the existing
fully collusion-resistant blackbox traceable CP-ABE scheme in [16], at the cost
of

√
N additional elements in private key, our construction achieves revocation

and “truly” large universe. For achieving better performance, this new scheme
is constructed on prime order groups, rather than composite order groups, as it
has been showed (e.g. in [8,13]) that constructions on composite order groups
will result in significant loss of efficiency.

Paper Outline. In Sect. 2, we propose a definition for CP-ABE supporting policy-
specific blackbox traceability, direct revocation and large attribute universe. As
of [16], the definition is ‘functional’, namely each decryption key is uniquely
indexed by k ∈ {1, . . . , N} (N is the number of users in the system) and given
a policy-specific decryption blackbox, the tracing algorithm Trace can return
the index k of a decryption key which has been used for building the decryp-
tion blackbox. On direct revocation, in our definition, the Encrypt algorithm
takes a revocation list R ⊆ {1, . . . , N} as an additional input so that a message
encrypted under the (revocation list, access policy) pair (R,A) would only allow



Practical CP-ABE: Traitor Tracing, Revocation, and Large Universe 131

Table 1. Features and efficiency comparison

a Blackbox Revocation Large Public Ciphertext Private Pairings in
b traceability universe key size size key size decryption

[15]c × × × 14 + 6|U| 7 + 6l 6 + 6|S| 9 + 6|I|
[23] × × √

6 2 + 3l 2 + 2|S| 1 + 3|I|
[16,18]d

√ × × 3 + 4
√
N + |U| 17

√
N + 2l 4 + |S| 10 + 2|I|

this work
√ √ √

5 + 5
√
N 16

√
N + 3l 2 + 2|S| +

√
N 9 + 3|I|

a All the four schemes are provably secure in the standard model and highly expressive.
b Let N be the number of users in the system, |U| the size of the attribute universe, l the number of rows

of the LSSS matrix for an access policy, |S| the size of the attribute set of a decryption key, and |I| the

number of attributes for a decryption key to satisfy a ciphertext policy.
c The efficiency evaluation here is based on the prime order construction in the full version.
d The construction in [16,18] is on composite order groups where the group order is the product of three

large primes, and the efficiency evaluation is based on the composite order groups.

users whose (index, attribute set) pair (k, S) satisfies (k /∈ R) ∧ (S satisfies A)
to decrypt.

On the construction, we refer to the ‘functional’ CP-ABE in Sect. 2 as Revo-
cable CP-ABE (R-CP-ABE), then extend the R-CP-ABE to a primitive called
Augmented R-CP-ABE (AugR-CP-ABE), which will lastly be transformed to
a policy-specific blackbox traceable R-CP-ABE. More specifically, in Sect. 3, we
define the encryption algorithm of AugR-CP-ABE as EncryptA(PP,M,R,A, k̄)
which takes one more parameter k̄ ∈ {1, . . . , N +1} than the original one in R-
CP-ABE. This also changes the decryption criteria in AugR-CP-ABE in such a
way that an encrypted message can be recovered using a decryption key SKk,S ,
which is identified by index k ∈ {1, . . . , N} and associated with an attribute
set S, only if (k /∈ R) ∧ (S satisfies A) ∧ (k ≥ k̄). On the security, we for-
malize and show that a message-hiding and index-hiding AugR-CP-ABE can be
transformed to a secure R-CP-ABE with policy-specific blackbox traceability.

In Sect. 4, we propose a large universe AugR-CP-ABE construction, and
prove its message-hiding and index-hiding properties in the standard model.
Combining it with the results in Sect. 3, we obtain a large universe R-CP-ABE
construction, which is efficient (with overhead size in O(

√
N)), highly expressive,

and provably secure and traceable in the standard model.
To construct the AugR-CP-ABE, we borrow ideas from the CP-ABE con-

structions in [16,23] and Trace & Revoke scheme in [8]. However, the combina-
tion is not trivial and may result in inefficient or insecure systems. In particular,
besides achieving the important features for practicality, such as traitor tracing,
revocation, large universe, high expressivity and efficiency, we achieve provable
security and traceability in the standard model. As we will discuss later in Sect. 4,
proving the blackbox traceability while supporting the large attribute universe
is one of the most challenging tasks in this work. As we can see, the proof tech-
niques for blackbox traceability in [16] are no longer applicable for large universe,
while that for large universe in [23] are only for confidentiality rather than for
blackbox traceability.
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2 Revocable CP-ABE and Blackbox Traceability

In this section, we define Revocable CP-ABE (or R-CP-ABE for short) and its
security, which are based on conventional (non-traceable, non-revocable) CP-
ABE (e.g. [15,23]). Similar to the traceable CP-ABE in [16], in our ‘functional’
definition, we explicitly assign and identify users using unique indices. Then we
formalize traceability against policy-specific decryption blackbox on R-CP-ABE.

2.1 Revocable CP-ABE

Given a positive integer n, let [n] be the set {1, 2, . . . , n}. A Revocable CP-ABE
(R-CP-ABE) scheme consists of four algorithms:

Setup(λ,N) → (PP,MSK). The algorithm takes as input a security parameter λ
and the number of users in the system N , runs in polynomial time in λ, and
outputs a public parameter PP and a master secret key MSK. We assume
that PP contains the description of the attribute universe U3.

KeyGen(PP,MSK, S) → SKk,S . The algorithm takes as input PP, MSK, and an
attribute set S, and outputs a secret key SKk,S corresponding to S. The
secret key is assigned and identified by a unique index k ∈ [N ].

Encrypt(PP,M,R,A) → CTR,A. The algorithm takes as input PP, a message
M , a revocation list R ⊆ [N ], and an access policy A over U , and outputs a
ciphertext CTR,A. (R,A) is included in CTR,A.

Decrypt(PP, CTR,A,SKk,S) → M or ⊥. The algorithm takes as input PP, a cipher-
text CTR,A, and a secret key SKk,S . If (k ∈ [N ]\R) AND (S satisfies A), the
algorithm outputs a message M , otherwise it outputs ⊥ indicating the failure
of decryption.

Correctness. For any attribute set S ⊆ U , index k ∈ [N ], revocation list
R ⊆ [N ], access policy A, and message M , suppose (PP,MSK) ← Setup(λ,N),
SKk,S ← KeyGen(PP,MSK, S), CTR,A ← Encrypt(PP,M,R,A). If (k ∈ [N ]\R)∧
(S satisfies A) then Decrypt(PP, CTR,A,SKk,S) = M .

Security. The security of the R-CP-ABE is defined using the following message-
hiding game, which is a typical semantic security game and is similar to that for
conventional CP-ABE [15,23] security.

GameMH. The message-hiding game is defined between a challenger and an adver-
sary A as follows:

Setup. The challenger runs Setup(λ,N) and gives the public parameter
PP to A.

3 For large universe and also in our work, the attribute universe depends only on
the size of the underlying group G, which depends on λ and the group generation
algorithm.
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Phase 1. For i = 1 to Q1, A adaptively submits (index, attribute set) pair
(ki, Ski

) to ask for secret key for attribute set Ski
. For each (ki, Ski

) pair,
the challenger responds with a secret key SKki,Ski

, which corresponds to
attribute set Ski

and has index ki.
Challenge. A submits two equal-length messages M0,M1 and a (revocation list,

access policy) pair (R∗,A∗). The challenger flips a random coin b ∈ {0, 1},
and sends CTR∗,A∗ ← Encrypt(PP,Mb, R

∗,A∗) to A.
Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, attribute set)

pair (ki, Ski
) to ask for secret key for attribute set Ski

. For each (ki, Ski
)

pair, the challenger responds with a secret key SKki,Ski
, which corresponds

to attribute set Ski
and has index ki.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried
{(ki, Ski

)}Q
i=1 can satisfy (ki ∈ [N ]\R∗) AND (Ski

satisfies A
∗). The advantage

of A is defined as MHAdvA = |Pr[b′ = b] − 1
2 |.

Definition 1. An N -user R-CP-ABE scheme is secure if for all probabilistic
polynomial time (PPT) adversaries A, MHAdvA is negligible in λ.

We say that an N -user R-CP-ABE scheme is selectively secure if we add an Init
stage before Setup where the adversary commits to the access policy A

∗.

Remark: (1) Although the KeyGen algorithm is responsible for determining/assigning
the index of each user’s secret key, to capture the security that an adversary can
adaptively choose secret keys to corrupt, the above model allows A to specify the
index when querying for a key, i.e., for i = 1 to Q, A submits pairs of (ki, Ski

) for
secret keys with attribute sets corresponding to Ski

, and the challenger will assign
ki to be the index of the corresponding secret key, where Q ≤ N , ki ∈ [N ], and
ki �= kj ∀1 ≤ i �= j ≤ Q (this is to guarantee that each user/key can be uniquely
identified by an index). (2) For ki �= kj we do not require Ski

�= Skj
, i.e., different

users/keys may have the same attribute set.

Remark: (1) The R-CP-ABE defined above extends the conventional definition
for non-revocable CP-ABE [15,16,23], where the revocation list R is always
empty. (2) When the revocation list R needs an update due to, for example, some
secret keys being compromised or some users leaving the system, the updated
R needs to be disseminated to encrypting parties. In practice, this can be done
in a similar way to the certificate revocation list distribution in the existing
Public Key Infrastructure, namely an authority may update R, and publish it
together with the authority’s signature generated on it. (3) From the view of
the public, R is just a set of numbers (in [N ]). These numbers (or indices) do
not have to provide any information on the corresponding users, in fact, besides
the authority who runs KeyGen, each user only knows his/her own index. Also,
encrypting parties do not need to know the indices of any users in order to
encrypt but only the access policies. Although associating a revocation list with
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a ciphertext might make the resulting CP-ABE look less purely attribute-based,
it does not undermine the capability of CP-ABE, that is, enabling fine-grained
access control on encrypted messages.

2.2 Blackbox Traceability

A policy-specific decryption blackbox D is described by a (revocation list, access
policy) pair (RD,AD) and a non-negligible probability value ε (i.e. ε = 1/f(λ)
for some polynomial f), and this blackbox D can decrypt ciphertexts gener-
ated under (RD,AD) with probability at least ε. Such a blackbox can reflect
most practical scenarios, which include the key-like decryption blackbox for sale
and decryption blackbox “found in the wild”, which are discussed in [16,18]. In
particular, once a blackbox is found being able to decrypt ciphertexts (regard-
less of how this is found, for example, an explicit description of the blackbox’s
decryption ability is given, or the law enforcement agency finds some clue), we
can regard it as a policy-specific decryption blackbox with the corresponding
(revocation list, access policy) pair (which is associated to the ciphertext).

We now define the tracing algorithm and traceability against policy-specific
decryption blackbox.

TraceD(PP, RD,AD, ε) → KT ⊆ [N ]. Trace is an oracle algorithm that interacts
with a policy-specific decryption blackbox D. By given the public parameter PP, a
revocation list RD, an access policy AD, and a probability value ε, the algorithm
runs in time polynomial in λ and 1/ε, and outputs an index set KT ⊆ [N ] which
identifies the set of malicious users. Note that ε has to be polynomially related
to λ, i.e. ε = 1/f(λ) for some polynomial f .

Traceability. The following tracing game captures the notion of fully collusion-
resistant traceability against policy-specific decryption blackbox. In the game,
the adversary targets to build a decryption blackbox D that can decrypt cipher-
texts under some (revocation list, access policy) pair (RD,AD).

GameTR. The tracing game is defined between a challenger and an adversary A
as follows:

Setup. The challenger runs Setup(λ,N) and gives the public parameter PP to A.
Key Query. For i = 1 to Q, A adaptively submits (index, attribute set) pair

(ki, Ski
) to ask for secret key for attribute set Ski

. For each (ki, Ski
) pair,

the challenger responds with a secret key SKki,Ski
, which corresponds to

attribute set Ski
and has index ki.

Decryption Blackbox Generation. A outputs a decryption blackbox D
associated with a (revocation list, access policy) pair (RD,AD) and a non-
negligible probability value ε.

Tracing. The challenger runs TraceD(PP, RD,AD, ε) to obtain an index set
KT ⊆ [N ].

Let KD = {ki|1 ≤ i ≤ Q} be the index set of secret keys corrupted by the
adversary. We say that A wins the game if the following two conditions hold:
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1. Pr[D(Encrypt(PP,M,RD,AD)) = M ] ≥ ε, where the probability is taken over
the random choices of message M and the random coins of D. A decryption
blackbox satisfying this condition is said to be a useful policy-specific decryp-
tion blackbox.

2. KT = ∅, or KT �⊆ KD, or ((kt ∈ RD) OR (Skt
does not satisfy AD) ∀kt ∈ KT ).

We denote by TRAdvA the probability that A wins.

Remark: For a useful policy-specific decryption blackbox D, the traced KT must
satisfy (KT �= ∅)∧(KT ⊆ KD)∧(∃kt ∈ KT s.t. (kt ∈ [N ]\RD) AND (Skt

satisfies
AD)) for traceability. (1) (KT �= ∅)∧ (KT ⊆ KD) captures the preliminary trace-
ability that the tracing algorithm can extract at least one malicious user and
the coalition of malicious users cannot frame any innocent user. (2) (∃kt ∈
KT s.t. (kt ∈ [N ] \ RD) AND (Skt

satisfies AD)) captures the strong trace-
ability that the tracing algorithm can extract at least one malicious user whose
secret key enables D to have the decryption ability corresponding to (RD,AD),
i.e. whose index is not in RD and whose attribute set satisfies AD. We refer to
[12,16] on why strong traceability is desirable.

Note that, as of [4,5,8,12,16], we are modeling a stateless (resettable) decryp-
tion blackbox – such a blackbox is just an oracle and maintains no state between
activations. Also note that we are modeling public traceability, namely, the Trace
algorithm does not need any secrets and anyone can perform the tracing.

Definition 2. An N -user R-CP-ABE scheme is traceable against policy-specific
decryption blackbox if for all PPT adversaries A, TRAdvA is negligible in λ.

We say that an N -user R-CP-ABE is selectively traceable against policy-specific
decryption blackbox if we add an Init stage before Setup where the adversary
commits to the access policy AD.

In the traceable CP-ABE of [16], given a decryption blackbox, it is guaranteed
that at least one secret key in the blackbox will be traced. But in the traceable
R-CP-ABE above, it is possible to trace all the active secret keys in the blackbox.
In particular, given a decryption blackbox D described by (RD,AD) and non-
negligible probability ε, we can run Trace to obtain an index set KT so that
(KT �= ∅)∧(KT ⊆ KD)∧(∃kt ∈ KT s.t. (kt ∈ [N ]\RD) AND (Skt

satisfies AD)).
Then, we can set a new revocation list R′

D = RD ∪ {kt ∈ KT | (kt ∈ [N ] \
RD) AND (Skt

satisfies AD)} and test whether D can decrypt ciphertexts under
(R′

D,AD). If D can still decrypt the ciphertexts with non-negligible probability
ε′, we can run Trace on (R′

D,AD, ε′) and obtain a new index set K
′
T , where

(K′
T �= ∅)∧(K′

T ⊆ KD)∧(∃kt ∈ K
′
T s.t. (kt ∈ [N ]\R′

D) AND (Skt
satisfies AD)).

By repeating this process, iteratively expanding the revocation list, until D can
no longer decrypt the corresponding ciphertexts, we have finished finding out all
the active malicious users of D.

3 Augmented R-CP-ABE

As outlined in Sect. 1.1, we now define Augmented R-CP-ABE (AugR-CP-ABE)
from the R-CP-ABE above, and formalize its security notions, then show that a
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secure AugR-CP-ABE can be transformed to a secure R-CP-ABE with blackbox
traceability. In Sect. 4, we propose a concrete construction of AugR-CP-ABE.

3.1 Definitions

An AugR-CP-ABE scheme has four algorithms: SetupA, KeyGenA, EncryptA, and
DecryptA. The setup and key generation algorithms are the same as that of R-
CP-ABE. For the encryption algorithm, it takes one more parameter k̄ ∈ [N +1]
as input, and is defined as follows.

EncryptA(PP,M,R,A, k̄) → CTR,A. The algorithm takes as input PP, a message
M , a revocation list R ⊆ [N ], an access policy A, and an index k̄ ∈ [N + 1],
and outputs a ciphertext CTR,A. (R,A) is included in CTR,A, but the
value of k̄ is not.

The decryption algorithm is also defined in the same way as that of R-CP-ABE.
However, the correctness definition is changed to the following.

Correctness. For any attribute set S ⊆ U , index k ∈ [N ], revocation list
R ⊆ [N ], access policy A over U , encryption index k̄ ∈ [N + 1], and mes-
sage M , suppose (PP,MSK) ← SetupA(λ,N), SKk,S ← KeyGenA(PP,MSK, S),
CTR,A ← EncryptA(PP,M,R,A, k̄). If (k ∈ [N ] \ R) ∧ (S satisfies A) ∧ (k ≥ k̄)
then DecryptA(PP, CTR,A,SKk,S) = M .

Note that during decryption, as long as (k ∈ [N ] \ R) ∧ (S satisfies A), the
decryption algorithm outputs a message, but only when k ≥ k̄, the output
message is equal to the correct message, that is, if and only if (k ∈ [N ] \ R) ∧
(S satisfies A)∧(k ≥ k̄), can SKk,S correctly decrypt a ciphertext under (R,A, k̄).
If we always set k̄ = 1, the functions of AugR-CP-ABE are identical to that of R-
CP-ABE. In fact, the idea behind transforming an AugR-CP-ABE to a traceable
R-CP-ABE, that we will show shortly, is to construct an AugR-CP-ABE with
index-hiding property, and then always sets k̄ = 1 in normal encryption, while
using k̄ ∈ [N + 1] to generate ciphertexts for tracing.

Security. We define the security of AugR-CP-ABE in two games. The first
game is a message-hiding game and says that a ciphertext created using
index N + 1 is unreadable by anyone. The second game is an index-hiding
game and captures the intuition that a ciphertext created using index k̄ reveals
no non-trivial information about k̄.

GameAMH. The message-hiding game GameAMH is similar to GameMH except that
the Challenge phase is

Challenge. A submits two equal-length messages M0,M1 and a (revocation list,
access policy) pair (R∗,A∗). The challenger flips a random coin b ∈ {0, 1},
and sends CTR∗,A∗ ← EncryptA(PP,Mb, R

∗,A∗, N + 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHAAdvA = |Pr[b′ =
b] − 1

2 |.
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Definition 3. An N -user Augmented R-CP-ABE scheme is message-hiding if
for all PPT adversaries A the advantage MHAAdvA is negligible in λ.

GameAIH. In the index-hiding game, we require that, for any (revocation list,
access policy) pair (R∗,A∗), an adversary cannot distinguish between a cipher-
text under (R∗,A∗, k̄) and (R∗,A∗, k̄ + 1) without a secret key SKk̄,Sk̄

such that
(k̄ ∈ [N ]\R∗)∧(Sk̄ satisfies A

∗). The game takes as input a parameter k̄ ∈ [N ]
which is given to both the challenger and the adversary. The game is similar to
GameMH except that the Challenge phase is

Challenge. A submits a message M and a (revocation list, access policy) pair
(R∗,A∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ←
EncryptA(PP,M,R∗,A∗, k̄ + b) to A.

A wins the game if b′ = b under the restriction that none of the queried pairs
{(ki, Ski

)}Q
i=1 can satisfy (ki = k̄) ∧ (ki ∈ [N ] \ R∗) ∧ (Ski

satisfies A
∗). The

advantage of A is defined as IHAAdvA[k̄] = |Pr[b′ = b] − 1
2 |.

Definition 4. An N -user Augmented R-CP-ABE scheme is index-hiding if for
all PPT adversaries A the advantages IHAAdvA[k̄] for k̄ = 1, . . . , N are negligible
in λ.

We say that an Augmented R-CP-ABE scheme is selectively index-hiding if we
add an Init stage before Setup where the adversary commits to the challenge
access policy A

∗.

3.2 The Reduction of Traceable R-CP-ABE to Augmented
R-CP-ABE

Let ΣA = (SetupA,KeyGenA, EncryptA,DecryptA) be an AugR-CP-ABE, define
Encrypt(PP,M,R,A) = EncryptA(PP, M,R,A, 1), then Σ = (SetupA,KeyGenA,
Encrypt,DecryptA) is a R-CP-ABE derived from ΣA. In the following, we show
that if ΣA is message-hiding and index-hiding, then Σ is secure (w.r.t. Defi-
nition 1). Furthermore, we propose a tracing algorithm Trace for Σ and show
that if ΣA is message-hiding and index-hiding, then Σ (equipped with Trace) is
traceable (w.r.t. Definition 2).

Theorem 1. If ΣA is message-hiding and index-hiding (resp. selectively index-
hiding), then Σ is secure (resp. selectively secure).

Proof. Due to page limitation, the proof details are omitted here and can be
found in the full version [19].

We now propose a tracing algorithm Trace, which uses a general tracing
method previously used in [3–5,8,16,20], and show that equipped with Trace, Σ
is traceable (w.r.t. Def. 2).

TraceD(PP, RD,AD, ε) → KT ⊆ [N ]: Given a policy-specific decryption blackbox
D associated with a (revocation list, access policy) pair (RD,AD) and probability
ε > 0, the tracing algorithm works as follows:
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1. For k = 1 to N + 1, do the following:
(a) Repeat the following 8λ(N/ε)2 times:

i Sample M from the message space at random.
ii Let CTRD,AD ← EncryptA(PP,M,RD,AD, k).
iii Query oracle D on input CTRD,AD , and compare the output of D with

M .
(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.

2. Let KT be the set of all k ∈ [N ] for which p̂k − p̂k+1 ≥ ε/(4N). Output KT .

Theorem 2. If ΣA is message-hiding and index-hiding (resp. selectively index-
hiding), then Σ is traceable (resp. selectively traceable).

Proof. Due to page limitation, the proof details are omitted here and can be
found in the full version [19].

4 An Efficient Augmented R-CP-ABE

We propose an AugR-CP-ABE scheme which is highly expressive and efficient
with sub-linear overhead in the number of users in the system. It is also large
universe, where attributes do not need to be enumerated during setup, and the
public parameter size is independent of the attribute universe size. We prove
that this AugR-CP-ABE scheme is message-hiding and selectively index-hiding
in the standard model.

Combining this AugR-CP-ABE with the results in Sect. 3.2, we obtain a
large universe R-CP-ABE which is selectively secure and traceable, and for a
fully collusion-resistant blackbox traceable CP-ABE, the resulting R-CP-ABE
achieves the most efficient level to date, with sub-linear overhead.

To obtain this practical CP-ABE scheme supporting traitor tracing, revoca-
tion and large universe, we borrow ideas from the Blackbox Traceable CP-ABE of
[16], the Trace and Revoke scheme of [8] and the Large Universe CP-ABE of [23],
but the work is not trivial as a straightforward combination of the ideas would
result in a scheme which is inefficient, insecure, or is not able to achieve strong
traceability. Specifically, by incorporating the ideas from [8,23] into the Aug-
mented CP-ABE of [16], we can obtain a large universe AugR-CP-ABE which
is message-hiding, but proving the index-hiding property is a challenging task.
The proof techniques for index-hiding in [16] only work if the attribute universe
size is polynomial in the security parameter and the parameters of attributes
have to be enumerated during setup. They are not applicable to large universe.
The proof techniques in [23] are applicable to large universe, but work only for
message-hiding, while not applicable to index-hiding. To prove index-hiding in
the large universe setting, we introduce a new assumption that the index-hiding
of our large universe AugR-CP-ABE can be based on. In particular, in the under-
lying q-1 assumption of [23] on bilinear groups (p,G,GT , e), the challenge term
T ∈ GT is e(g, g)caq+1

or a random element, and such a term in the target
group could be used to prove the message-hiding as the message space is GT .
To prove the index-hiding, which is based on the ciphertext components in the
source group G, we need the challenge term to be in the source group G so that
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the simulator can embed the challenge term into these ciphertext components.
Inspired by the Source Group q-Parallel BDHE Assumption in [15], which is
a close relative to the (target group) Decisional Parallel BDHE Assumption in
[26], we modify the q-1 assumption to its source group version where the chal-
lenge term is gcaq+1

or a random element in G. Based on this new assumption
and with a new crucial proof idea, we prove the index-hiding property for our
large universe AugR-CP-ABE. We prove that this new assumption holds in the
generic group model.

4.1 Preliminaries

Linear Secret-Sharing Schemes (LSSS). An LSSS is a share-generating
matrix A whose rows labeled by attributes via a function ρ. An attribute set S
satisfies the LSSS access matrix (A, ρ) if the rows labeled by the attributes in S
have the linear reconstruction property, namely, there exist constants {ωi} such
that, for any valid shares {λi} of a secret s, we have

∑
i ωiλi = s. The formal

definitions of access structures and LSSS can be found in the full version [19].

Bilinear Groups. Let G be a group generator, which takes a security parameter
λ and outputs (p,G,GT , e) where p is a prime, G and GT are cyclic groups of
order p, and e : G×G → GT is a map such that: (1) (Bilinear) ∀g, h ∈ G, a, b ∈
Zp, e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G such that e(g, g) has
order p in GT . We refer to G as the source group and GT as the target group.
We assume that group operations in G and GT as well as the bilinear map e are
efficiently computable, and the description of G and GT includes a generator of
G and GT respectively.

Complexity Assumptions. Besides the Decision 3-Party Diffie-Hellman
s Assumption (D3DH) and the Decisional Linear Assumption (DLIN) that are
used in [8] to achieve traceability in broadcast encryption, the index-hiding prop-
erty of our AugR-CP-ABE construction will rely on a new assumption, which
is similar to the Source Group q-Parallel BDHE Assumption [15] and is closely
related to the q-1 assumption in [23]. We refer to it as the Extended Source
Group q-Parallel BDHE Assumption. Here we only review this new assumption,
and refer to the full version [19] for the details of the D3DH and DLIN.

The Extended Source Group q-Parallel BDHE Assumption Given a
group generator G and a positive integer q, define the following distribution:

(p,G,GT , e) R←− G(λ), g
R←− G, a, c, d, b1, . . . , bq

R←− Zp,

D =
(
(p,G,GT , e), g, gcd, gd, gdaq

,

gai

, gbj , gaibj , gai/b2j , gcdbj ∀i, j ∈ [q],

gai/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

gaibj′ /b2j ∀i ∈ [2q], j, j′ ∈ [q] s.t. j′ �= j,

gcdaibj′/bj , gcdaibj′/b2j ∀i ∈ [q], j, j′ ∈ [q] s.t. j �= j′ )
,

T0 = gcaq+1
, T1

R←− G.
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The advantage of an algorithm A in breaking the Extended SourceGroup q-Parallel
BDHE Assumption is Advq

G,A(λ) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]|.

Definition 5. G satisfies the Extended Source Group q-Parallel BDHE Assump-
tion if Advq

G,A(λ) is a negligible function of λ for any PPT algorithm A.

This new assumption is closely related to the q-1 assumption in [23], except
that the challenge term gcaq+1

remains in the source group, all the input terms
(in D) replace c with cd, and additional input terms gd and gdaq

are given to
the adversary. The relation between this assumption and the q-1 assumption
is analogous to that between the Source Group q-Parallel BDHE Assumption
[15] and the Decisional Parallel BDHE Assumption [26], i.e. the challenge term
changes from a term in the target group (i.e. e(g, g)caq+1

) to a term in the source
group (i.e. gcaq+1

), and the input terms are modified accordingly (i.e. replacing
c with cd, and adding gd). The main difference is that in this new assumption,
there is an additional input term gdaq

. Note that giving the term gdaq

does
not pose any problem in the generic group model. Intuitively, there are two
ways that the adversary may make use of the term gdaq

: (1) pairing gdaq

with
the challenge term: since the pairing result of any two input terms would not
be e(g, g)cda2q+1

, the adversary cannot break this new assumption in this way;
(2) pairing the challenge term with another input term whose exponent contains
d: however, the result could be a random element or one of { e(g, g)c2daq+1

,
e(g, g)cdaq+1

, e(g, g)c2dbjaq+1
, e(g, g)c2daq+1+ibj′ /bj , e(g, g)c2daq+1+ibj′/b2j }, and as

there is no input term which can be paired with gdaq

to obtain any of these
terms, the adversary cannot break this new assumption by this way either. In
the full version [19] we prove that this assumption holds in the generic group
model. It is worth mentioning that Liu et al. [18] modified the Source Group q-
Parallel BDHE Assumption [15] by adding gdaq

to and removing gaq+2
, . . . , ga2q

from the input terms.

Notations. Suppose that the number of users N in the system equals to m2 for
some m. In practice, if N is not a square, we can add some “dummy” users until
it pads to the next square. We arrange the users in an m×m matrix and uniquely
assign a tuple (i, j), where i, j ∈ [m], to each user. A user at position (i, j) of the
matrix has index k = (i − 1) ∗ m + j. For simplicity, we directly use (i, j) as the
index where (i, j) ≥ (̄i, j̄) means that ((i > ī)∨(i = ī∧j ≥ j̄)). Let [m,m] be the
set {(i, j)|i, j ∈ [m]}. The use of pairwise notation (i, j) is purely a notational
convenience, as k = (i−1)∗m+j defines a bijection between {(i, j)|i, j ∈ [m]} and
[N ]. For a given vector v = (v1, . . . , vd), by gv we mean the vector (gv1 , . . . , gvd).
Furthermore, for gv = (gv1 , . . . , gvd) and gw = (gw1 , . . . , gwd), by gv · gw we
mean the vector (gv1+w1 , . . . , gvd+wd), i.e. gv · gw = gv+w, and by ed(gv, gw) we
mean

∏d
k=1 e(gvk , gwk), i.e. ed(gv, gw) = e(g, g)(v·w), where (v · w) is the inner

product of v and w. Given a prime p, one can randomly choose rx, ry, rz ∈ Zp,
and set χ1 = (rx, 0, rz), χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry).
Let span{χ1,χ2} = {ν1χ1 + ν2χ2|ν1, ν2 ∈ Zp} be the subspace spanned by
χ1 and χ2. We can see that χ3 is orthogonal to the subspace span{χ1,χ2}
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and Z
3
p = span{χ1,χ2,χ3} = {ν1χ1 + ν2χ2 + ν3χ3|ν1, ν2, ν3 ∈ Zp}. For any

v ∈ span{χ1,χ2}, (χ3 · v) = 0, and for random v ∈ Z
3
p, (χ3 · v) �= 0 happens

with overwhelming probability.

4.2 Augmented R-CP-ABE Construction

Now we propose a large universe Augmented R-CP-ABE, where the attribute
universe is U = Zp.

SetupA(λ,N = m2) → (PP,MSK). The algorithm calls the group generator
G(λ) to get (p,G,GT , e), and sets the attribute universe to U = Zp. It then
randomly picks g, h, f, f1, . . . , fm, G,H ∈ G, {αi, ri, zi ∈ Zp}i∈[m], {cj ∈
Zp}j∈[m], and outputs the public parameter PP and master secret key MSK

PP =
(

(p,G,GT , e), g, h, f, f1, . . . , fm, G, H,

{Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m], {Hj = gcj }j∈[m]

)
,

MSK =
(
α1, . . . , αm, r1, . . . , rm, c1, . . . , cm

)
.

A counter ctr = 0 is implicitly included in MSK.
KeyGenA(PP,MSK, S ⊆ Zp) → SK(i,j),S . The algorithm first sets ctr = ctr + 1

and computes the corresponding index in the form of (i, j) where 1 ≤ i, j ≤ m
and (i−1)∗m+ j = ctr. Then it picks random exponents σi,j ∈ Zp, {δi,j,x ∈
Zp}∀x∈S , and outputs a secret key SK(i,j),S =

(
(i, j), S, Ki,j ,K

′
i,j ,K

′′
i,j ,

{K̄i,j,j′}j′∈[m]\{j}, {Ki,j,x,K ′
i,j,x}x∈S

)
where

Ki,j = gαigricj (ffj)σi,j , K ′
i,j = gσi,j , K ′′

i,j = Z
σi,j

i ,

{K̄i,j,j′ = f
σi,j

j′ }j′∈[m]\{j}, {Ki,j,x = gδi,j,x , K ′
i,j,x = (Hxh)δi,j,xG−σi,j }x∈S .

EncryptA(PP,M,R,A = (A, ρ), (̄i, j̄)) → CTR,(A,ρ). R ⊆ [m,m] is a revoca-
tion list. A = (A, ρ) is an LSSS matrix where A is an l × n matrix and
ρ maps each row Ak of A to an attribute ρ(k) ∈ U = Zp. The encryp-
tion is for recipients whose (index, attribute set) pairs ((i, j), S(i,j)) sat-
isfy ((i, j) ∈ [m,m] \ R) ∧

(
S(i,j) satisfies (A, ρ)

)
∧ ((i, j) ≥ (̄i, j̄)). Let R̄ =

[m,m] \ R and for i ∈ [m], R̄i = {j′|(i, j′) ∈ R̄}, that is, R̄ is the non-
revoked index list, and R̄i is the set of non-revoked column index on the
i-th row. The algorithm randomly chooses κ, τ, s1, . . . , sm, t1, . . . , tm ∈ Zp,
vc,w1, . . . ,wm ∈ Z

3
p, ξ1, . . . , ξl ∈ Zp, and u = (π, u2, . . . , un) ∈ Z

n
p . In

addition, it randomly chooses rx, ry, rz ∈ Zp, and sets χ1 = (rx, 0, rz),
χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it randomly
chooses vi ∈ Z

3
p ∀i ∈ {1, . . . , ī}, vi ∈ span{χ1,χ2} ∀i ∈ {̄i+1, . . . , m}, and

computes a ciphertext 〈R, (A, ρ), (Ri,R
′
i, Qi, Q

′
i, Q′′

i , Ti)m
i=1, (Cj ,C

′
j)

m
j=1,

(Pk, P ′
k, P ′′

k )l
k=1〉 as follows:
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1. For each row i ∈ [m]:
– if i < ī: randomly chooses ŝi ∈ Zp, and sets

Ri = gvi , R′
i = gκvi ,

Qi = gsi , Q′
i = (f

∏

j′∈R̄i

fj′)siZti
i fπ, Q′′

i = gti , Ti = E ŝi
i .

– if i ≥ ī: sets

Ri = Gsivi
i , R′

i = Gκsivi
i , Qi = gτsi(vi·vc),

Q′
i = (f

∏

j′∈R̄i

fj′)τsi(vi·vc)Zti
i fπ, Q′′

i = gti , Ti = M · E
τsi(vi·vc)
i .

2. For each column j ∈ [m]:
– if j < j̄: randomly chooses μj ∈ Zp, and sets

Cj = H
τ(vc+μjχ3)
j · gκwj ,C ′

j = gwj .

– if j ≥ j̄: sets Cj = Hτvc
j · gκwj ,C ′

j = gwj .
3. For each k ∈ [l]: sets Pk = fAk·uGξk , P ′

k = (Hρ(k)h)−ξk , P ′′
k = gξk .

DecryptA(PP, CTR,(A,ρ),SK(i,j),S) → M or ⊥. If (i, j) ∈ R or S does not satisfy
(A, ρ), the algorithm outputs ⊥, otherwise:
1. Since S satisfies (A, ρ), the algorithm can efficiently compute constants

{ωk ∈ Zp} such that
∑

ρ(k)∈S ωkAk = (1, 0, . . . , 0), then compute

DP =
∏

ρ(k)∈S

(
e(K ′

i,j , Pk) · e(Ki,j,ρ(k), P
′
k) · e(K ′

i,j,ρ(k), P
′′
k )

)ωk

=
∏

ρ(k)∈S

(
e(gσi,j , fAk·u)

)ωk = e(gσi,j , f)
∑

ρ(k)∈S ωk(Ak·u) = e(gσi,j , f)π.

Note that if S does not satisfy (A, ρ), no such constants {ωk} would exist.
2. Since (i, j) ∈ R̄(= [m,m] \ R) implies j ∈ R̄i, the algorithm can compute

K̄i,j = Ki,j · (
∏

j′∈R̄i\{j}

K̄i,j,j′) = gαigricj (ffj)σi,j · (
∏

j′∈R̄i\{j}

f
σi,j

j′ )

= gαigricj · (f
∏

j′∈R̄i

fj′)σi,j .

Note that if (i, j) ∈ R (implying j /∈ R̄i), the algorithm cannot produce
such a K̄i,j . The algorithm then computes

DI =
e(K̄i,j , Qi) · e(K ′′

i,j , Q
′′
i )

e(K ′
i,j , Q

′
i)

·
e3(R′

i,C
′
j)

e3(Ri,Cj)
.

3. Computes M = Ti/(DP · DI) as the output message. Suppose that the
ciphertext is generated from message M ′ and encryption index (̄i, j̄), it
can be verified that only when (i > ī) or (i = ī∧ j ≥ j̄), M = M ′. This is
because for i > ī, we have (vi ·χ3) = 0 (since vi ∈ span{χ1,χ2}), and for
i = ī, we have that (vi · χ3) �= 0 happens with overwhelming probability
(since vi is randomly chosen from Z

3
p). The correctness details can be

found in the full version [19].
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4.3 Augmented R-CP-ABE Security

The following theorem states that the AugR-CP-ABE proposed above is message-
hiding. Then in Theorem4, we state that the AugR-CP-ABE is also selectively
index-hiding.

Theorem 3. No PPT adversary can win GameAMH with non-negligible
advantage.

Proof. The argument for message-hiding in GameAMH is straightforward since an
encryption to index N + 1 (i.e. (m + 1, 1)) contains no information about the
message. The simulator simply runs SetupA and KeyGenA and encrypts Mb under
the challenge (revocation list, access policy) pair (R∗,A∗) and index (m + 1, 1).
Since for all i = 1 to m, Ti = E ŝi

i contains no information about the message,
the bit b is perfectly hidden and MHAAdvA = 0.

Theorem 4. Suppose that the D3DH, the DLIN and the Extended Source Group
q-Parallel BDHE Assumption hold. Then no PPT adversary can selectively win
GameAIH with non-negligible advantage, provided that the challenge LSSS matrix’s
size l × n satisfies l, n ≤ q.

Proof. It follows Lemmas 1 and 2 below.

Lemma 1. If the D3DH and the Extended Source Group q-Parallel BDHE
Assumption hold, then for j̄ < m, no PPT adversary can selectively distin-
guish between an encryption to (̄i, j̄) and (̄i, j̄ +1) in GameAIH with non-negligible
advantage, provided that the challenge LSSS matrix’s size l×n satisfies l, n ≤ q.

Proof. In GameAIH with index (̄i, j̄), let (R∗, (A∗, ρ∗)) be the challenge (revocation
list, access policy) pair, the restriction is that the adversary A does not query a
secret key for (index, attribute set) pair ((i, j), S(i,j)) such that ((i, j) = (̄i, j̄)) ∧
((i, j) ∈ [m,m] \ R∗) ∧

(
S(i,j) satisfies (A∗, ρ∗)

)
. Under this restriction, there

are two ways for A to take:

Case I: In Phase 1 and Phase 2, A does not query a secret key with index (̄i, j̄).
Case II: In Phase 1 or Phase 2, A queries a secret key with index (̄i, j̄). Let S(̄i,j̄)

be the corresponding attribute set. Case II has the following sub-cases:

1. (̄i, j̄) /∈ [m,m] \ R∗, S(̄i,j̄) satisfies (A∗, ρ∗).
2. (̄i, j̄) /∈ [m,m] \ R∗, S(̄i,j̄) does not satisfy (A∗, ρ∗).
3. (̄i, j̄) ∈ [m,m] \ R∗, S(̄i,j̄) does not satisfy (A∗, ρ∗).

If A is in Case I, Case II.1 or Case II.2, it follows the restrictions in the index-
hiding game for Augmented Broadcast Encryption (AugBE) in [8], where the
adversary does not query the key with index (̄i, j̄) or (̄i, j̄) is not in the receiver
list [m,m]\R∗. Case II.3 captures the index-hiding requirement of Augmented
R-CP-ABE in that even if a user has a key with index (̄i, j̄) and (̄i, j̄) /∈ R∗,
the user cannot distinguish between an encryption to (R∗, (A∗, ρ∗), (̄i, j̄)) and
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(R∗, (A∗, ρ∗), (̄i, j̄ + 1)) if S(̄i,j̄) does not satisfy (A∗, ρ∗). This is the most chal-
lenging part of proving the index-hiding when we attempt to securely intertwine
the tracing techniques of broadcast encryption (e.g. [8]) into the large universe
CP-ABE (e.g. [23]). Compared to the proof of [16], the challenge here is to prove
the index-hiding in the large universe setting, as discussed previously.

To prove this lemma, we flip a random coin c ∈ {0, 1} as our guess on
which case that A is in. In particular, if c = 0, we guess that A is in Case I,
Case II.1 or Case II.2, and make a reduction that uses A to solve a D3DH
problem instance, using a proof technique similar to that of [8]. Actually, in this
proof, we reduce from our AugR-CP-ABE to the AugBE in [8]. If c = 1, we
guess that A is in Case I, Case II.2 or Case II.3, and use A to solve an
Extended Source Group q-Parallel BDHE problem instance, which is where the
main novelty resides among all the proofs in this work. The proof details are
provided in the full version [19].

Lemma 2. If the D3DH, the DLIN and the Extended Source Group q-Parallel
BDHE Assumption hold, then for 1 ≤ ī ≤ m, no PPT adversary can selectively
distinguish between an encryption to (̄i,m) and (̄i + 1, 1) in GameAIH with non-
negligible advantage, provided that the challenge LSSS matrix’s size l×n satisfies
l, n ≤ q.

Proof. Similar to the proof of Lemma 6.3 in [8], to prove this lemma we define
the following hybrid experiment: H1: encrypt to (̄i, j̄ = m); H2: encrypt to
(̄i, j̄ = m + 1); and H3: encrypt to (̄i + 1, 1). This lemma follows Claims 1 and 2
below.

Claim 1. If the D3DH and the Extended Source Group q-Parallel BDHE
Assumption hold, then no PPT adversary can selectively distinguish between
experiment H1 and H2 with non-negligible advantage, provided that the chal-
lenge LSSS matrix’s size l × n satisfies l, n ≤ q.

Proof. The proof is identical to that for Lemma1.

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distin-
guish between experiment H2 and H3 with non-negligible advantage.

Proof. Note that (̄i,m + 1) /∈ [m,m] implies that for any revocation list R∗ ⊆
[m,m], we have (̄i,m + 1) /∈ R̄∗(= [m,m] \ R∗), i.e., the adversaries for distin-
guishing H2 and H3 will not be in Case II.3. Thus, similar to that of case c = 0
in the proof of Lemma 1, in this proof we reduce from our AugR-CP-ABE to the
AugBE in [8]. In the proof of index-hiding for an AugBE scheme ΣAugBE in [8,
Lemma 6.3], two hybrid experiments were defined and proven indistinguishable
via a sequence of hybrid sub-experiments.

– HAugBE
2 : Encrypt to (̄i,m + 1), (i.e. H2 in [8])

– HAugBE
3 : Encrypt to (̄i + 1, 1), (i.e. H5 in [8])
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By following [8, Lemma 6.3], if the D3DH and the DLIN hold, no PPT adver-
sary can distinguish between HAugBE

2 and HAugBE
3 for ΣAugBE with non-negligible

advantage. Suppose there is a PPT adversary A that can distinguish between
H2 and H3 for our AugR-CP-ABE scheme with non-negligible advantage. We
can build a reduction, which is similar to that of case c = 0 in the proof of
Lemma 1, to use A to distinguish between HAugBE

2 and HAugBE
3 for ΣAugBE with

non-negligible advantage.

5 Conclusion

In this paper, we proposed the first practical CP-ABE that simultaneously sup-
ports (1) traitor tracing, (2) revocation and (3) large universe. The scheme is
highly expressive in supporting any monotonic access structures. Besides achiev-
ing fully collusion-resistant blackbox traceability and direct revocation, it is
also efficient with the overhead in O(

√
N) only. Furthermore, it supports large

attribute universe and does not need to fix the values of attributes during the
system setup. The scheme was proven selectively secure and traceable in the
standard model.
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Abstract. An order query takes as input a set of elements from a list
(ordered sequence) L, and asks for this set to be ordered using the
total order induced by L. We introduce two formal models for answer-
ing order queries on a list in a verifiable and private manner. Our first
model, called zero-knowledge list (ZKL), generalizes the standard two-
party model of membership queries on a set to order queries on a list
in zero-knowledge. We present a construction of ZKL based on zero-
knowledge sets and a homomorphic integer commitment. Our second
model, privacy-preserving authenticated list (PPAL), extends authenti-
cated data structures by adding a zero-knowledge privacy requirement.
This is a three-party model, where a list is outsourced by a trusted
owner to an untrusted cloud server, which answers order queries issued by
clients and returns proofs of the answers. PPAL supports data integrity
against a malicious server and privacy protection against a malicious
client. Though PPAL can be implemented using our ZKL construction,
this construction is not as efficient as desired in cloud applications. We
present an efficient PPAL construction based on our novel technique of
blinded bilinear accumulators and bilinear maps. Both our models are
provably secure in the Random Oracle model and are zero-knowledge
(e.g., hiding even the size of the list). We also show that the ZKL and
PPAL frameworks can be extended to support fundamental statistical
queries efficiently and in zero-knowledge.

1 Introduction

Releasing verifiable partial information while maintaining privacy is a require-
ment in many practical scenarios where the data being dealt with is sensitive. A
basic case is releasing a subset of a set and proving its authenticity in a privacy-
preserving way (referred to as zero-knowledge property) [10,12,26,29]. However,
in many other cases, the information is stored in data structures to support richer
type of queries. In this paper, we consider order queries on two or more elements
of a list, where the answer to the query returns the elements rearranged accord-
ing to their order in the list. Order queries lie at the heart of many practical
applications where the order between queried elements is revealed and proved
but the rank of the queried elements in the list and information about other
elements in the list should be protected.
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 149–171, 2015.
DOI: 10.1007/978-3-319-28166-7 8
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In an auction with a single winner (e.g., online ad auction for a single ad spot)
every participant submits her secret bid to the auction organizer. After the top
bidder is announced, a participant wishes to verify that her bid was inferior. The
organizer would then provide a proof without revealing the amount of the top bid,
the rank of the participant’s bid, or any information about other bids.

Lenders often require an individual or a couple to prove eligibility for a loan
by providing a bank statement and a pay stub. Such documents contain sensitive
information beyond what the lender is looking for: whether the bank account bal-
ance and salary are above given thresholds. A desirable alternative would be to
provide a proof from the bank and employer that these thresholds are met without
revealing exact figures and even hiding who of the two spouses earns more.

The above examples can be generalized using order queries on an ordered set,
aka list, that return the order of the queried elements as well as a proof of this
order but without revealing anything more than the answer itself. We address
this problem by introducing two different models: zero knowledge lists (ZKL)
and privacy-preserving authenticated lists (PPAL).

ZKL considers two party model and extends zero knowledge sets [12,29] to
lists. In ZKL a prover commits to a list and a verifier queries the prover to learn
the order of a subset of list elements. The verifier should be able to verify the
answer but learn no information about the rest of the list, e.g., the size of the list,
the order of other elements of the list or the rank of the queried element(s). Here
both the prover and the verifier can act as malicious adversaries. While the prover
may want to give answers inconsistent with the initial list he committed to, the
verifier may try to learn information beyond the query answer or arbitrarily
deviate from the protocol.

PPAL considers three parties: the owner of the list, the server who answers list
queries on behalf of the owner, and the client who queries the server. The privacy
guarantee of PPAL is the same as in ZKL. For authenticity, PPAL assumes that
the owner is trusted while the server and the client could be malicious. This trust
model allows for a much more efficient construction than ZKL, as we will see later
in the paper. PPAL has direct applications to outsourced services where the server
is modeling the cloud service that the owner uses to interact with her clients.

We note that PPAL can be viewed as a privacy-preserving extension of
authenticated data structures (ADS) (see, e.g., [19,20,28,36]), which also oper-
ate in a three party model: the server stores the owner’s data and proves to the
client the answer to a query. However, privacy properties have not been studied
in this model and as a consequence, known ADS constructions leak information
about the rest of the data through their proofs of authenticity. For example, the
classic Merkle hash tree [28] on a set of n elements proves membership of an
element via a proof of size log n, thus leaking information about the size of the
set. Also, if the elements are stored at the leaves in sorted order, the proof of
membership of an element reveals its rank.

In this paper, we define the security properties for ZKL and PPAL and
provide efficient constructions for them. The privacy property against the verifier
in ZKL and the client in PPAL is zero knowledge. That is, the answers and
the proofs are indistinguishable from those that are generated by a simulator
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that knows nothing except the previous and current queries and answers and,
hence, cannot possibly leak any information beyond that. While we show that
PPAL can be implemented using our ZKL construction, we also provide a direct
PPAL construction that is considerably more efficient thanks to the trust that
clients put in the list owner. Let n be the size of the list and m be the size of
the query, i.e., the number of list elements whose order is sought. Our PPAL
construction uses proofs of O(m) size and allows the client to verify a proof in
O(m) time. The owner executes the setup in O(n) time and space. The server uses
O(n) space to store the list and related authentication information, and takes
O(min(m log n, n)) time to answer a query and generate a proof. In contrast, in
the ZKL construction, the time and storage requirements have an overhead that
linearly depends on the security parameter. Note that ZKL also supports (non-)
membership queries. The client in PPAL and the verifier in ZKL require only one
round of communication for each query. Our ZKL construction is based on zero
knowledge sets and homomorphic integer commitments. Our PPAL construction
uses a novel technique of blinding of accumulators along with bilinear aggregate
signatures. Both are secure in the random oracle model.

2 Problem Statement, Models, Related Work,
and Contributions

In this section, we state our problem, outline our models, review related work,
and summarize our contributions. Formal definitions and constructions are in
the rest of the paper. Detailed proofs and construction that are omitted due to
space restrictions are available in the full version [17].

2.1 Problem Statement and Models

Let L be a totally ordered list of distinct elements. An order query on L is
defined as follows: given a set of elements of L, return these elements rearranged
according to their order in L and a proof of this order. Both models we intro-
duce, PPAL and ZKL, support this query. ZKL, in addition to order queries,
supports provable membership and non-membership queries. Beside providing
authenticity, the proofs are required not to leak any information beyond the
answer.

ZKL: This model has two parties: prover and verifier. The prover initially com-
putes a commitment to a list L and reveals the commitment to the verifier. Later
the verifier asks membership and order queries on L and the prover responds
with a proof. Both the prover and the verifier can be malicious:

– The prover may try to give answers inconsistent with the initial commitment.
– The verifier may try to learn from the proofs additional information about

L beyond what he has inferred from the answers. E.g., if the verifier has
performed two order queries with answers x < y and x < z, he may want to
find out whether y < z or z < y.
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The security properties of ZKL, completeness, soundness and zero-knowledge,
guarantee security against malicious prover and verifier. Completeness mandates
that honestly generated proofs always satisfy the verification test. Soundness
states that the prover should not be able to come up with a query, and cor-
responding inconsistent (with the initial commitment) answers and convincing
proofs. Finally, zero-knowledge means that each proof reveals the answer and
nothing else. In other words, there must exist a simulator, that given only ora-
cle access to L, can simulate proofs for membership and order queries that are
indistinguishable from real proofs.

PPAL: This model has three parties: owner, server and client. The owner gen-
erates list L and outsources it to the server. The owner also sends (possibly
different) digest information with respect to L to the server and the client.
Given an order query from the client, the server, using the server digest, builds
and returns to the client the answer and its proof, which is verified by the client
using the client digest. Both the server and the client can be malicious:

– The server may try to forge proofs for incorrect answers to (order) queries,
e.g., prove an incorrect ordering of a pair of elements of L.

– The client, similar to the verifier in ZKL, may try to learn from the proofs
additional information about list L beyond what he has inferred from the
answers.

Note that in typical cloud database applications, the client is allowed to have
only a restricted view of the data structure and the server enforces an access
control policy that prevents the client from getting answers to unauthorized
queries. This motivates the curious, possibly malicious, behavior from the client
where he tries to ask ill-formed queries or queries violating the access control
policy. However, we assume that the server enforces client’s legitimate behavior
by refusing to answer illegal queries. Hence, the security model for PPAL is
defined as follows.

The properties of PPAL, Completeness, Soundness and Zero-Knowledge,
guarantee security against malicious server and client. They are close to the
ones of ZKL except for soundness. For PPAL it enforces that the client does
not accept proofs forged by the server for incorrect answers w.r.t. owner’s list.
PPAL’s owner and server together can be thought of as a single party in ZKL,
the prover. Hence, ZKL soundness protects against the prover who tries to give
answers inconsistent with her own initial commitment. In the PPAL model, the
owner and the server are separate parties where the owner is trusted and sound-
ness protects against a malicious server only.

To understand the strength of the zero-knowledge property, let us illustrate to
what extent the proofs are non-revealing. This property guarantees that a client,
who adaptively queries a static list, does not learn anything about ranks of the
queried elements, the distance between them or even the size of L. The client is
not able to infer any relative order information that is not inferable by the rule
of transitivity from the previously queried orders. It is worth noting that in the
context of leakage-free redactable signature schemes, privacy property has been
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defined using game-based definitions in transparency [6,34] and privacy [11,23].
However, our definition of simulatability of the query responses, or the zero-
knowledge property, is a simpler and more intuitive way to capture the property
of leakage-freeness.

Efficiency: We characterize the ideal efficiency goals of our models as follows,
where L is a list of n items and m is the query size. The space for storing list
L and the auxiliary information for generating proofs should be O(n). As in
related work, a multiplicative factor for element size of O(poly(k)), where k is
the security parameter, is not shown in O(·). The setup to preprocess list L
should take O(n) time. The proof of the answer to a query should have O(m)
size. Processing a query to generate the answer and its proof should take O(m)
time. Verifying the proof of an answer should take O(m) time.

Applications of Order Queries to Order Statistics: Our PPAL order queries can
be used as a building block to answer efficiently and in zero knowledge (i.e.,
the returned proofs should be simulatable) many interesting statistical queries
about a list L with n elements. Let a pair order proof denote the proof of the
order of two elements from L. Then a PPAL client can send the server a subset
S of m list elements and request the server to return the maximum, minimum,
or the median element of S w.r.t. the order of the elements in the list. This can
be done by providing m pair order proofs. Order queries also can be extended
to return the top t elements of S by means of t(m− t) pair order proofs, or only
m− 1 pair order proofs if the order between the top t elements can be revealed,
where t < m. Finally, given an element a in L, the server can return the elements
of S that are above (or below) the threshold value a by means of m pair order
proofs. It is important to note that neither of these queries reveal anything more
than the answer itself. Moreover, the size of the proof returned for each query
is proportional to the query size and is optimal for the threshold query where
the proof size is proportional to the answer size. We note that these statistical
queries are also supported by ZKL.

2.2 Related Work

First, we discuss work on data structures that answer queries in zero knowl-
edge. Our ZKL is the first extension of this work to lists and order queries.
We then mention signature schemes that can be used to instantiate outsourced
data structures that require privacy and integrity to be maintained. However,
such instantiations are not efficient since they are based on different models of
usage and underlying data. Finally, we outline leakage-free redactable signature
schemes for ordered lists and other structured data. These signature schemes
are not as efficient as our construction and their definitions are game-based as
opposed to our intuitive zero-knowledge definition. Finally we discuss follow-up
work on PPAL.
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Zero Knowledge Data Structures: Zero-knowledge dictionary and range queries
have received considerable attention in literature [10,12,26,29,32]. Our proposed
ZKL model is the first generalization of this line of work that supports order
queries.

The model of zero knowledge set (ZKS) was introduced by Micali et al. [29]
where a prover commits to a finite set S in such a way that, later on, she
will be able to efficiently (and non-interactively) prove statements of the form
x ∈ S or x /∈ S without leaking any information about S beyond what has
been queried for, not even the size of S. The prover should not be able to
prove contradictory statements about an element. Chase et al. [12] abstracted
the above solution and described it in terms of a mercurial commitment, which
was later generalized to q-trapdoor mercurial commitments in [10,26] and a
closely related notion of vector commitments was proposed in [9]. Kate et al. [22]
suggested a weaker primitive called nearly-zero knowledge set where the set size
is not private. Ostrovsky et al. [32] generalized (non-)membership queries to
orthogonal range queries on multidimensional dataset and considered adding
privacy to their protocol. However, the use of NP-reductions and probabilistically
checkable proofs makes their generic construction expensive.

We note that a recent work on DNSSEC zone enumeration by Goldberg
et al. [18] uses a model related to our PPAL model and is independently devel-
oped. The framework supports only set (non-)membership queries and answers
them in f -zero knowledge. This property ensures that the information leaked to
the verifier is in terms of a function f on the set, e.g., f is the set size in [18].

Signature Schemes: A three party model where the owner digitally signs a data
document and outsources it to the server and the server discloses to the client
only part of the signed document along with a legitimately derived signature on
it (without the owner’s involvement), can be instantiated with a collection of
signature schemes, namely, content extraction, quotable, arithmetic, redactable,
homomorphic, sanitizable and transitive signatures [7,21,30,31,35,38]. Addition-
ally, if the signatures reveal no information about the parent document, then this
approach can be used to add privacy. However the generic instantiation, with
signature schemes that do not specifically address structured data, is inefficient
for most practical purposes.

Ahn et al. [1] present a unified framework for computing on authenticated
data where a third party can derive a signature on an object x′ from a signature
on a parent object x as long as P (x, x′) = 1 for some predicate P that captures
the authenticatable relationship between x and x′. Additionally, a derived signa-
ture reveals no extra information about the parent x. This line of work was later
refined in [2,37]. The authors in [1] propose a computationally expensive scheme
based on the RSA accumulator and predicates for specific data structures are not
considered. A related notion of malleable signature scheme was proposed in [13],
where given a signature σ on a message x, it is possible to efficiently derive a
signature σ′ on a message x′ such that x′ = T (x) for an allowable transformation
T without access to the secret key. The privacy definition of [13] (simulation con-
text hiding) is stronger than that of [1] as it allows for adversarially-generated
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keys and signatures. However, the owner is a trusted party in our PPAL setting
and therefore the stronger notion of simulation context hiding is not relevant in
this framework. Moreover, in our PPAL model, given a quote from a document
and a proof of the quote, the client should be able to verify that the quote is
indeed in the document, this is inverse of the notion of unlinkability in [13].

Leakage-Free Signature Schemes for Structural Data: A leakage-free redactable
signature scheme (LRSS) allows a third party to remove, or redact, parts of a
signed document without signer’s involvement. The verifier only sees the remain-
ing redacted document and is able to verify that it is valid and authentic.
Leakage-freeness property ensures that the redacted document and its signa-
ture do not reveal anything about the content or position of the removed parts.
We discuss LRSSs that specifically look at structural data and ordered lists.
In Table 1 we show that PPAL outperforms known LRSS constructions. Another
significant difference of our work is the definition of privacy. The zero-knowledge
property is more intuitive and simple in capturing the leakage-freeness property
compared to the game based definitions in the LRSS literature [6,34].

Kundu and Bertino [24] introduced the idea of structural signatures for
ordered trees (subsuming ordered lists) that support public redaction of sub-
trees by third-parties. This work was later extended to undirected graphs and
DAGs [25]. The notion was later formalized as LRSS for ordered trees in [6]
and subsequently several attacks on [24] were also proposed in [6,33]. The basic
idea of the LRSS scheme presented in [6] is to sign all possible ordered pairs of
elements of an ordered list. So both the computation cost and the storage space
are quadratic in the number of elements of the list.

Building on the work of [6,34] proposed a LRSS for lists that has quadratic
time and space complexity. Poehls et al. [33] presented a LRSS scheme for a list
that has linear time and space complexity but assumes an associative non-abelian
hash function, whose existence has not been formally proved. Kundu et al. [23],
presented a construction that uses quadratic space at the server. Chang et al. [11]
presented a leakage-free redactable signature scheme for a string (which can be
viewed as a list) that hides the location of the redacted or deleted portions of the
string at the expense of quadratic verification cost. None of the constructions
of [11,23,24] satisfy our definition of zero-knowledge.

Follow-up Work: Finally we note that in recent work [16], Ghosh et al. have gen-
eralized the models introduced in this paper to general abstract data types that
support both query and update operations. Also, they have presented efficient
constructions for dynamic lists and partially-ordered sets of bounded dimension.

2.3 Contributions and Organization of the Paper

Our contributions are novel models and efficient constructions. After reviewing
preliminary concepts and cryptographic primitives, in Sect. 3, we introduce the
zero-knowledge list (ZKL) model. We describe our ZKL construction, its security
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and efficiency in Sect. 4. In Sect. 5, we introduce the privacy-preserving authen-
ticated list (PPAL) model. An efficient PPAL construction based on bilinear
maps, its performance and security properties are given in Sect. 6. In Table 1, we
compare our ZKL and PPAL construction with previous work in terms of per-
formance and assumptions. We specifically indicate which constructions satisfy
the zero-knowledge property. Our PPAL construction outperforms all previous
work based on widely accepted assumptions [6,34] (the construction of [33] is
based on a non-standard assumption).

3 Preliminaries

3.1 Data Type

We consider a linearly ordered list L as a data structure that the owner wishes
to store with the server. A list is an ordered set of elements L = {x1, x2, . . . , xn},
where each xi ∈ {0, 1}∗,∀x1, x2 ∈ L, x1 �= x2 and either x1 < x2 or x2 < x1.
Hence, < is a strict order on elements of L that is irreflexive, asymmetric and
transitive.

We denote the set of elements of the list L as Elements(L). A sublist of L, δ,
is defined as: δ = {x | x ∈ Elements(L)}. Note that the order of elements in δ
may not follow the order of L. We denote with πL(δ) the permutation of the
elements of δ under the order of L. L(xi) denotes the membership of element xi

in L, i.e., L(xi) = true if xi ∈ L and L(xi) = false if xi /∈ L. For all xi such that
L(xi) = true, rank(L, xi) denotes the rank of element xi in the list, L.

3.2 Cryptographic Primitives

We now describe the cryptographic primitives that are used in our construction
and cryptographic assumptions that underlie the security of our method. In par-
ticular, our zero knowledge list construction relies on homomorphic integer com-
mitments, zero knowledge protocol to prove a number is non-negative and zero
knowledge sets, while the construction for privacy preserving lists relies on bilin-
ear aggregate signatures and n-Bilinear Diffie Hellman Inversion assumption.

Homomorphic Integer Commitment Scheme: We use a homomorphic integer
commitment scheme HomIntCom that is statistically hiding and computationally
binding [5,14]. The latter implies the existence of a trapdoor and, hence, can be
used to “equivocate” a commitment (i.e., open the commitment to any message
using the trapdoor). We denote a commitment to x as C(x; r) where r is the
randomness used for the commitment. For simplicity, we sometimes drop r from
the notation and use C(x) to denote the commitment to x. The homomorphism
of the scheme is defined as C(x + y) = C(x) × C(y).
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Proving an Integer is Non-negative in Zero-Knowledge: We use the following
(interactive) protocol between a prover and a verifier: the prover sends a com-
mitment c to an integer x ≥ 0 to the verifier and proves in zero-knowledge that
the committed integer is non-negative, without opening c. We denote this pro-
tocol as P ↔ V(x, r : c = C(x; r) ∧ x ≥ 0). As a concrete construction we use
the protocol of [27] which is a Σ protocol, i.e., honest verifier zero knowledge
and can be made non-interactive zero-knowledge (NIZK) in the random oracle
model using Fiat-Shamir heuristic [15].

Zero Knowledge Set Scheme: Let D be a set of key value pairs. If (x, v) is a key,
value pair of D, then we write D(x) = v to denote v is the value corresponding to
the key x. For the keys that are not present in D, x /∈ D, we write D(x) = ⊥. A
Zero Knowledge Set scheme (ZKS) [29] consists of three probabilistic polynomial
time algorithms, ZKS = (ZKSSetup,ZKSProver = (ZKSP1, ZKSP2), ZKSVerifier),
and queries are of the form “is key x in D?”. The ZKSSetup algorithm takes the
security parameter as input and produces a public key for the scheme that both
the prover (ZKSProver) and the verifier (ZKSVerifier) take as input. The prover,
Prover, is a tuple of two algorithms: ZKSP1 takes the security parameter, the
public key, and the set D and produces a short digest commitment com for
D. ZKSP2 takes a query x and produces the value v = D(x), and the corre-
sponding proof of (non-)membership, proofx. The verifier, ZKSVerifier, takes the
security parameter, the public key, com, a query x, an answer D(x), and proofx
and returns a bit b, where b = ACCEPT/REJECT. For our construction of zero
knowledge lists we pick a ZKS construction of [12] that is based on mercurial
commitments.

Bilinear Aggregate Signature Scheme: Our PPAL scheme relies on bilinear aggre-
gate signature scheme of Boneh et al. [4]. Given signatures σ1, . . . , σn on distinct
messages M1, . . . ,Mn from n distinct users u1, . . . , un, it is possible to aggregate
these signatures into a single short signature σ such that it (and the n messages)
convince the verifier that the n users indeed signed the n original messages (i.e.,
user i signed message Mi). We use the special case where a single user signs n
distinct messages M1, . . . ,Mn. The security requirement of an aggregate signa-
ture scheme guarantees that the aggregate signature σ is valid if and only if the
aggregator used all σi’s to construct it.

3.3 Hardness Assumption

Let p be a large k-bit prime where k ∈ N is a security parameter. Let n ∈ N

be polynomial in k, n = poly(k). Let e : G × G → G1 be a bilinear map where
G and G1 are groups of prime order p and g be a random generator of G. We
denote a probabilistic polynomial time (PPT) adversary A as an adversary who
is running in time poly(k). We use Aalg(input,...) to show that an adversary A has
an oracle access to an instantiation of an algorithm alg with first argument set
to input and . . . denoting that A can give arbitrary input for the rest of the
arguments.
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Definition 1 (n-Bilinear Diffie Hellman Inversion (n-BDHI) [3]). Let s
be a random element of Z

∗
p and n be a positive integer. Then, for every PPT

adversary A there exists a negligible function ν(.) such that:

Pr[s $←− Z
∗
p; y ← A(〈g, gs, gs2 , . . . , gsn〉) : y = e(g, g)

1
s ] ≤ ν(k).

4 Zero Knowledge List (ZKL)

We generalize the idea of consistent set membership queries [12,29] to support
membership and order queries in zero-knowledge on a list with no repeated ele-
ments. More specifically, given a totally ordered list of unique elements L =
{y1, y2, . . . , yn}, we want to support non-interactively and in zero-knowledge,
(proofs reveal nothing beyond the query answer, not even the size of the list)
queries of the following form:

– Is yi ∈ L or yi /∈ L, i.e., L(yi) = true or L(yi) = false?
– For two elements yi, yj ∈ L, what is their relative order, i.e., yi < yj or yj < yi

in L?

We adopt the same adversarial model as in [12,29,32]. There are two parties:
the prover and the verifier. The prover initially commits to a list of elements
and makes the commitment public. We now formally describe the model and the
security properties.

4.1 Model

A Zero Knowledge List scheme (ZKL) consists of three probabilistic polynomial
time algorithms: (Setup,Prover = (P1,P2),Verifier). The queries are of the form
(δ, flag) where δ = {z1, . . . , zm}, zi ∈ {0, 1}∗, is a collection of elements, flag = 0
denotes a (non-)membership query and flag = 1 denotes an order query. In the
following sections, we will use state to represent a variable that saves the current
state of the algorithm (when it finishes execution).

PK ← Setup(1k) The Setup algorithm takes the security parameter as input and
produces a public key PK for the scheme. The prover and the verifier both
take as input the string PK that can be a random string (in which case, the
protocol is in the common random string model) or have a specific structure
(in which case the protocol is in the trusted parameters model).

(com, state) ← P1(1k,PK,L) P1 takes the security parameter, the public key PK
and the list L, and produces a short digest commitment com for the list.

(member, proofM , order, proofO) ← P2(PK, state, δ, flag) where δ = {z1, . . . , zm}
and flag denotes the type of query. P2 produces the membership information
of the queried elements, member = {L(z1), . . . ,L(zm)} and the proof of
membership (and non-membership), proofM . proofO is set depending on flag:
flag = 0: P2 sets order and proofO to ⊥ and returns (member, proofM ,⊥,⊥).
flag = 1: Let δ̃ = {zi | i ∈ [1,m] ∧ L(zi) = true}. P2 produces the correct

list order among the elements of δ̃, order = πL(δ̃), and the proof of the
order, proofO.
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b ← Verifier(1k,PK, com, δ, flag,member, proofM , order, proofO) Verifier takes the
security parameter, the public key PK, the commitment com and a query
(δ, flag) and member, proofM , order, proofO and returns a bit b, where b =
ACCEPT/REJECT.

Example: Let us illustrate the above functionality with a small example. Let
L = {A,B,C} and (δ, flag) = ({B,D,A}, 1) be the query. Given this query P2

returns member = {L(B), L(D), L(A)} = {true, false, true}, the corresponding
proofs of membership and non-membership in proofM , order = {A,B} and the
corresponding proof of order between A and B in proofO.

4.2 Security Properties

Recall that the security properties of ZKL, Completeness, Soundness and Zero-
Knowledge, guarantee security against malicious prover and verifier. Complete-
ness mandates that honestly generated proofs always satisfy the verification test.
Soundness states that the prover should not be able to come up with a query, and
corresponding inconsistent (with the initial commitment) answers and convinc-
ing proofs. Finally, zero-knowledge ensures that each proof reveals the answer
and nothing else.

Definition 2 (Completeness). For every list L, every query δ and every flag,

Pr[PK ← Setup(1k);

(com, state) ← P1(1k,PK,L);
(member, proofM , order, proofO) ← P2(PK, state, δ, flag) :

Verifier(1k,PK, com, δ, flag,member, proofM , order, proofO) = ACCEPT] = 1

Definition 3 (Soundness). For every PPT malicious prover algorithm, Adv,
for every query δ and for every flag there exists a negligible function ν(.) such
that:

Pr[PK ← Setup(1k);

(com,member1, proof1M , order1, proof1O,member2,

proof2M , order2, proof2O) ← Adv(1k,PK) :

Verifier(1k,PK, com, δ, flag,member1, proof1M , order1, proof1O) = ACCEPT∧
Verifier(1k,PK, com, δ, flag,member2, proof2M , order2, proof2O) = ACCEPT∧
((member1 �= member2) ∨ (order1 �= order2))] ≤ ν(k)

Definition 4 (Zero-Knowledge). There exists a PPT simulator Sim =
(Sim1,Sim2,Sim3) such that for every PPT malicious verifier Adv =
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(Adv1,Adv2), there exists a negligible function ν(.) such that:

|Pr[PK ← Setup(1k); (L, stateA) ← Adv1(1k,PK);

(com, stateP ) ← P1(1k,PK,L) :

Adv
P2(PK,stateP ,·)
2 (com, stateA) = 1]−

Pr[(PK, stateS) ← Sim1(1k); (L, stateA) ← Adv1(1k,PK);

(com, stateS) ← Sim2(1k, stateS) :

Adv
SimL

3 (1k,stateS)
2 (com, stateA) = 1]| ≤ ν(k),

where Sim3 has oracle access to L, that is, given a query (δ, flag), Sim3 can query
the list L to learn only the membership/non-membership of elements in δ and,
if flag = 1, learn the list order of the elements of δ in L.

4.3 ZKL Construction

The construction uses zero knowledge set scheme, homomorphic integer com-
mitment scheme, zero-knowledge protocol to prove non-negativity of an inte-
ger and a collision resistant hash function H : {0, 1}∗ → {0, 1}l, if the ele-
ments of the list L are larger that l bits. In particular, given an input list
L the prover P1 creates a set D where for every element yj ∈ L it adds a
(key,value) pair (H(yj), C(j)). H(yj) is a hash of yj and C(j) is a homomorphic
integer commitment of rank(L, yj) (assuming rank(L, yj) = j, wlog). P1 sets
up a zero knowledge set on D using ZKSP1 from a zero-knowledge set scheme
ZKS = (ZKSSetup,ZKSProver = (ZKSP1,ZKSP2),ZKSVerifier) [12]. The output
of ZKSP1 is a commitment to D, com, that P1 sends to the verifier.

P2 operates as follows. Membership and non-membership queries of the form
(δ, 0) are replied in the same fashion as in zero knowledge set, by invoking ZKSP2

on the hash of every element of sublist δ. Recall that as a response to a member-
ship query for a key, ZKSP2 returns the value corresponding to this key. In our
case, the queried key is H(yj) and the value returned by ZKSP2,D(H(yj)), is the
commitment C(j) where j is the rank of element yj in the list L, if yj ∈ L. If
yj /∈ L, the value returned is ⊥. Hence, the verifier receives the commitments to
ranks for queried member elements. These commitments are never opened but
are used as part of order proofs.

For a given order query (δ, 1), for every adjacent pair of elements in the
returned order, order, P2 gives a proof of order. Recall that order contains
the member elements of δ, arranged according to their order in the list L. P2

proves the order between two elements yi and yj as follows. Let rank(L, yi) =
i, rank(L, yj) = j, and C(i), C(j) be the corresponding commitments and, wlog,
let i < j. As noted above, C(i) and C(j) are already returned by P2 as part of
the membership proof. Additionally, P2 returns a commitment to 1, C(1), and
its opening information ρ. Note that, the verifier can compute C(1) himself, but
then the prover needs C(1) computed by the verifier, to be able to generate proof
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for non-negativity of C(j − i− 1). To avoid this interaction, we make the prover
send C(1) and its opening.

The verification of the query answer proceeds as follows. Verifier computes
C(j − i− 1) := C(j)/(C(i)C(1)) using the homomorphic property of the integer
commitment scheme. P2 uses the zero knowledge protocol P ↔ V(x, r : c =
C(x; r) ∧ x ≥ 0) to convince Verifier that C(j − i − 1) is a commitment to value
≥ 0. Note that we use the non-interactive general zero-knowledge version of the
protocol as discussed in Sect. 3. Hence, the query phase proceeds in a single
round.

We note that we require Verifier to verify that j − i − 1 ≥ 0 and not j − i ≥
0 since otherwise a cheating prover Adv can do the following: store the same
arbitrary non-negative integer as a rank for every element in the list, hence,
C(j − i) and C(i − j) are commitments to 0, and Adv can always succeed in
proving an arbitrary order. However, an honest prover can always prove the
non-negativity of C(j − i − 1) as |j − i| ≥ 1 for any rank i, j of the list.

Also, we note that the commitments to ranks can be replaced by commit-
ments to a strictly monotonic sequence as long as there is a 1:1 correspondence
with the rank sequence. In this case, the distance between two elements will also
be positive and, hence, the above protocol still holds.

Theorem 1. The zero-knowledge list (ZKL) construction of Sect. 4.3 is a non-
interactive two-party protocol that satisfies the security properties of completeness
(Definition 2), soundness (Definition 3) and zero-knowledge (Definition 4) in the
random oracle model (inherited from NIZK). The construction has the following
performance, where n is the list size, m is the query size, each element of the
list is a k-bit (if not, we can use a hash function to reduce every element to a
k-bit string, as shown in the construction).

– The prover executes the commitment phase in O(nk) time and space, where
the multiplicative factor k is inherited from the height of the tree.

– In the query phase, the prover computes the proof of the answer in O(mk)
time.

– The verifier verifies the proof in O(mk) time and space.

The soundness of the ZKL scheme follows from the soundness of the ZKS scheme,
the binding property of the commitment scheme, and the correctness of protocol
P ↔ V(x, r : c = C(x; r) ∧ x ≥ 0) (see Sect. 3.2). For the zero-knowledge prop-
erty, we write a simulator that uses the ZKS simulator and the trapdoor of the
commitment scheme to equivocate commitments. The formal proof of Theorem 1
is omitted due to space restrictions and is presented in [17].

5 Privacy Preserving Authenticated List (PPAL)

In the previous section we presented a model and a construction for a new prim-
itive called zero knowledge lists. As we noticed earlier, ZKL model gives the
desired functionality to verify order queries on lists. However, the corresponding
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construction does not provide the efficiency one may desire in cloud computing
setting where the verifier (client) has limited memory resources as we discuss in
Sect. 5.3. In this section we address this setting and define a model for privacy
preserving authenticated lists, PPAL, that is executed between three parties.
This model, arguably, fits cloud scenario better and, as we will see, our con-
struction is also more efficient.

5.1 Model

PPAL is a tuple of three probabilistic polynomial time algorithms
(Setup,Query,Verify) executed between the owner of the data list L, the server
who stores L and answers queries from the client and the client who issues queries
on the elements of the list and verifies corresponding answers. We note that this
model assumes that the query is on the member elements of the list, i.e., for
any query, δ, Elements(δ) ⊆ Elements(L). In other words, this model does not
support proofs of non-membership, similar to other data structures that support
only positive membership proofs, e.g., [6,8,9,11,23,24,33].

(digestC , digestS) ← Setup(1k,L) This algorithm takes the security parameter
and the source list L as input and produces two digests digestC and digestS
for the list. This algorithm is run by the owner. digestC is sent to the client
and digestS is sent to the server.

(order, proof) ← Query(digestS ,L, δ) This algorithm takes the server digest gen-
erated by the owner, digestS , the source list, L, and a queried sublist, δ, as
input, where a sublist of a list L is defined as: Elements(δ) ⊆ Elements(L).
The algorithm produces the list order of the elements of L, order = πL(δ),
and a proof, proof, of the answer. This algorithm is run by the server. Wlog,
we assume |δ| > 1. In the trivial case of |δ| = 1, the server returns an empty
proof, i.e., (order = δ, proof = ⊥).

b ← Verify(digestC , δ, order, proof) This algorithm takes digestC , a queried sublist
δ, order and proof and returns a bit b, where b = ACCEPT iff Elements(δ) ⊆
Elements(L) and order = πL(δ). Otherwise, b = REJECT. This algorithm is
run by the client.

5.2 Security Properties

A PPAL has three important security properties. Recall that the properties
of PPAL, Completeness, Soundness and Zero-Knowledge, guarantee security
against malicious server and client. They are close to the ones of ZKL except for
soundness. For PPAL it enforces that the client does not accept proofs forged
by the server for incorrect answers w.r.t. owner’s list. We describe each security
definition formally below.

The first property is Completeness. This property ensures that for any list L
and for any sublist δ of L, if digestC , digestS , order, proof are generated honestly,
i.e., the owner and the server honestly execute the protocol, then the client will
be always convinced about the correct list order of δ.
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Definition 5 (Completeness). For all lists L and all sublists δ of L

Pr[(digestC , digestS) ← Setup(1k,L); (order, proof) ← Query(digestS ,L, δ) :
Verify(digestC , δ, order, proof) = ACCEPT ∧ order = πL(δ)] = 1

The second security property is Soundness. This property ensures that once
an honest owner generates a pair (digestC , digestS) for a list L, even a malicious
server will not be able to convince the client of an incorrect order of elements
belonging to the list L. This property ensures integrity of the scheme.

Definition 6 (Soundness). For all PPT malicious query algorithms Adv, for
all lists L and all query sublists δ of L, there exists a negligible function ν(.) such
that:

Pr[(digestC , digestS) ← Setup(1k,L); (order, proof) ← Adv(digestS ,L) :
Verify(digestC , δ, order, proof) = ACCEPT ∧ order �= πL(δ)] ≤ ν(k)

The last property is Zero-Knowledge. This property captures that even a mali-
cious client cannot learn anything about the list (and its size) beyond what the
client has queried for. Informally, this property involves showing that there exists
a simulator such that even for adversarially chosen list L, no adversarial client
(verifier) can tell if it is talking to a honest owner and honest server who know L
and answer w.r.t. L, or to the simulator that only has oracle access to the list L.

Definition 7 (Zero-Knowledge). There exists a PPT simulator Sim =
(Sim1,Sim2) such that for all PPT malicious verifiers Adv = (Adv1,Adv2), there
exists a negligible function ν(.) such that:

|Pr[(L, stateA) ← Adv1(1k);(digestC , digestS) ← Setup(1k,L) :

Adv
Query(digestS ,L,.)
2 (digestC , stateA) = 1]−

Pr[(L, stateA) ← Adv1(1k);(digestC , stateS) ← Sim1(1k) :

Adv
SimL

2 (1k,stateS)
2 (digestC , stateA) = 1]| ≤ ν(k)

Here Sim2 has oracle access to L, that is given a sublist δ of L, Sim2 can query
the list L to learn only the correct list order of the sublist δ and cannot look
at L.

5.3 Construction of PPAL via ZKL

We show how a PPAL can be instantiated via a ZKL in Theorems 2 and 3 and
then discuss that the resulting construction does not yield the desired efficiency.

Theorem 2. Given a non-interactive ZKL scheme ZKL = (Setup,Prover =
(P1,P2),Verifier), which supports queries of the form (δ, flag) on a list L, we
can instantiate a PPAL scheme for the list L, PPAL = (Setup,Query,Verify),
which supports queries of the form δ, where δ is a sublist of L, as follows:
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PPAL.Setup(1k,L): Invoke PK ← ZKL.Setup(1k) and (com, state) ← ZKL.
P1(1k,PK,L). Return (digestC = (PK, com), digestS = (PK, com, state)).

PPAL.Query(digestS ,L, δ): Invoke (member, proofM , order, proofO) ← ZKL.
P2(PK, state, δ, 1). Return (order, proof = (proofM , proofO)).

PPAL.Verify(digestC , δ, order, proofM , proofO): Set member = {1, 1, . . . , 1}
such that |member| = |δ| = |order|. Return bit b where b ←
ZKL.Verifier(1k,PK, com, δ, 1, member, proofM , order, proofO).

Theorem 3. A PPAL scheme instantiated using a ZKL scheme, ZKL =
(Setup,Prover = (P1,P2), Verifier) has the following performance:

– The owner’s runtime and space are proportional to the runtime and space of
ZKL.Setup and ZKL.P1, respectively.

– The server’s runtime and space are proportional to the runtime and space of
ZKL.P2.

– The client’s runtime and space are proportional to the runtime and space of
ZKL.Verifier.

The correctness of Theorems 2 and 3 follow from the definition of PPAL and
ZKL models. In a PPAL instantiated with the ZKL construction of Sect. 4, the
owner runs in time and space O(kn) and the server requires space O(kn), where
n is the list size and each element of the list is k-bits long. To answer a query of
size m, the server runs in time O(km) and the verification time of the client is
O(km).

As we see, this generic construction is not very efficient due to the multi-
plicative factor O(k) and heavy cryptographic primitives. In Sect. 6, we present
a direct PPAL construction which is a factor of O(k) more efficient in space and
computation requirements as compared to an adaptation of our ZKL construc-
tion from Sect. 4.

6 PPAL Construction

We start by presenting the intuition behind our construction of a privacy pre-
serving authenticated list (PPAL). Next, we give more details on the algorithms
and analyze the security and efficiency of the construction.

Intuition: Every element of the list is associated with a member witness where
a member witness is a blinded component of the bilinear accumulator public
key. This allows us to encode the rank of the element in the member witness and
then “blind” rank information with randomness. Every pair of (element, member
witness) is signed by the owner and the signatures are aggregated using bilinear
aggregate signature scheme [4], to compute the list digest signature. Signatures
and digest are sent to the server, who can use them to prove authenticity when
answering client queries. The owner also sends the list digest signature and the
public key of the bilinear aggregate signature scheme to the client. The advantage
of using an aggregate signature is for the server to be able to compute a valid
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digest signature for any sublist of the source list by exploiting the homomorphic
nature of aggregate signatures, that is without owner’s involvement. Moreover,
the client can verify the individual signatures in a single invocation to aggregate
signature verification.

The owner also sends to the server linear (in the list size) number of random
elements used in the encoding of member witnesses. These random elements
allow the server to compute the order witnesses on queried elements, without
the owner’s involvement. The order witness encodes the distance between two
elements, i.e., the difference between element ranks, without revealing anything
about it. Together with member witnesses, the client can later use bilinear map
to verify the order of the elements.

Construction: Our construction for PPAL is presented in Fig. 1. We denote mem-
ber witness for xi ∈ L as txi∈L. For two elements xi, xj ∈ L, such that xi < xj in
L, txi<xj

is an order witness for the order between xi and xj . The construction
works as follows.

In the Setup phase, the owner generates secret key (v, s) and public key gv,
where v is used for signatures. The owner picks a distinct random element ri from
the group Z

∗
p for each element xi in the list L, i ∈ [1, n]. The element ri is used

to compute the member witness txi∈L. Later in the protocol, together with rj ,
it is also used by the server to compute the order witness txi<xj

. The owner also
computes individual signatures, σi’s, for each element and aggregates them into
a digest signature σL for the list. It returns the signatures and member witnesses
for every element of L in ΣL and the set of random numbers picked for each index
to be used in order witnesses in ΩL. The owner sends digestC = (gv, σL) to the
client and digestS = (gv, σL, 〈g, gs, gs

2
, . . . , gs

n〉,ΣL,ΩL) and L to the server.
Given a query δ, the server returns a response list order that contains ele-

ments of δ in the order they appear in L. The server uses information in ΣL to
compute the digest signature for the sublist, σorder, and its membership verifica-
tion unit λL′ which are part of the Σorder component of the proof. To compute
the Ωorder component of the proof, the server uses corresponding blinding val-
ues in ΩL and elements gs

d

where d’s correspond to distances between ranks of
queried elements.

The client first checks that all the returned elements are signed by the owner
using Σorder and then verifies the order of the returned elements using Ωorder.
Hence, the client uses bilinear map for two purposes: first for member verifi-
cation and then to verify the order. The query phase has a single round of
communication between client and server.

We now describe the preprocessing step at the server that reduces the query
time for a query of size m on a list of size n from O(n) to O(min{m log n, n}).
Let ψi = H(txi∈L||xi) for xi ∈ L. The server computes and stores a balanced
binary tree over n leaves, where the ith leaf corresponds to xi and stores ψi.
Each internal node of the tree stores the product of the values at its children.
When answering a query of size m, the server can compute λL′ by using partial
products that correspond to intervals between elements in the query. There are
m + 1 such partial products. Since each partial product can be computed using
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Fig. 1. Privacy-preserving authenticated list (PPAL) construction
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O(log n) precomputed products in the tree, it takes O(m log n) time to compute
the product of m + 1 of them. The server takes O(n) for preprocessing and the
query time is reduced to O(min{m log n, n}).

We summarize the properties and efficiency of our PPAL construction in
Theorem 4.

Theorem 4. The privacy-preserving authenticated list (PPAL) construction of
Fig. 1 satisfies the security properties of completeness (Definition 5), soundness
(Definition 6) and zero-knowledge (Definition 7) in the random oracle model
(inherited from [4]) and under the n-BDHI assumption (Definition 1). Also, the
construction has the following performance, where n denotes the list size and m
denotes the query size.

– The owner and the server use O(n) space.
– The owner performs the setup phase in O(n) time and goes offline.
– The server performs the preprocessing phase in O(n) time.
– Query phase is a single-round protocol between the server and the client.
– The server computes the answer to a query and its proof in O(min{m log n, n})

time.
– The client verifies the proof in O(m) time and space.

The formal proof is omitted due to space restrictions and is available in [17]. Here
we highlight the proof of soundness and zero knowledge. To prove soundness, we
assume that there exists a malicious server Adv, which forges the order on a
non-trivial sublist δ = {x1, . . . , xm}, where m ≥ 2, for a list L. Then there exists
at least one inversion pair (xi, xj) whose order is flipped in Adv’s forgery. Wlog
assume that u < v where u = rank(L, xi) and v = rank(L, xj). Then Adv must

have forged the witness txj<xi
= (gs

(u−v)
)
r1r

−1
2 that passes the verification, where

r1, r2 ∈ Z
∗
p are the blinded components of elements xi and xj , respectively. We

show that by invoking Adv and using its forged witness txj<xi
, we can construct

a PPT adversary that successfully breaks the n-BDHI hardness assumption [3]

by outputting e

(

txj<xi
, (gs

v−u−1
)r1

−1r2

)

= e(g, g)
1
s , where gs

v−u−1
is part of

the input to the n-BDHI problem.
For the zero knowledge property, we write a simulator that can produce

witnesses identically distributed to real witnesses by giving it only oracle access
to the list, and using the fact that our PPAL construction uses witnesses blinded
in their exponents.
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Abstract. Enabling private database queries is an important and chal-
lenging research problem with many real-world applications. The goal
is such that the client obtains the results of its queries without learn-
ing anything else about the database, while the outsourced server learns
nothing about the queries or data, including access patterns. The secure-
computation-over-ORAM architecture offers a promising approach to
this problem, permitting sub-linear time processing of the queries (after
pre-processing) without compromising security.

In this work we examine the feasibility of this approach, focus-
ing specifically on secure-computation protocols based on somewhat-
homomorphic encryption (SWHE). We devised and implemented secure
two-party protocols in the semi-honest model for the path-ORAM pro-
tocol of Stefanov et al. This provides access by index or keyword, which
we extend (via pre-processing) to limited conjunction queries and range
queries. The SWHE schemes we consider allow easy batching or “SIMD”
operations, and also let us vary the plaintext space in use. These capa-
bilities let us devise many sub-protocols that are interesting in their own
right, for tasks such as encrypted comparisons, blinded permutations,
and the really expensive ORAM eviction step.

We implemented our protocols on top of the HElib homomorphic
encryption library. Our basic single-threaded implementation takes about
30min to process a query on a database with 222 records and 120-bit long
keywords, providing a cause for optimism about the viability of this direc-
tion, and we expect a better optimized implementation to be much faster.

Keywords: Comparison protocols · Homomorphic encryption ·
ORAM · PIR · Private queries · Secure computation

1 Introduction

The recent explosive growth of data outsourcing raises the issue of privacy guar-
antees for the outsourced data. While encryption can protect the content of the
outsourced data, it remains a challenging problem to access the data privately.
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Since it is often possible to deduce important information from the access pat-
tern alone (see e.g., [17] for some examples), it is important to even hide the
access pattern from the server.

Solutions for hiding the access pattern include the oblivious RAM (ORAM)
of Goldreich and Ostrovsky [12] and private information retrieval (PIR) of Chor
et al. [4]. Recent years saw a surge in the level of interest and volume of new
work in this area, addressing better efficiency, increased functionality, new threat
models, and more. Roughly speaking, solutions can be categorized as either PIR-
like protocols that inherently work in linear time in the size of the database,
or ORAM-based solutions that have linear-time pre-processing but sub-linear
access time (at the price of keeping some secret storage at the client). The
current work is of the latter type.

The problem of private queries becomes even harder in situations where the
client is not the data-owner and we need to ensure that the client also does not
learn too much. Below we sometimes refer to this setting as symmetric private
queries (borrowing the terminology from symmetric-PIR). For example, consider
an organization that wants to maintain its internal access-control policy for the
data that it outsourced to the cloud. In this case it is not enough to require
that the cloud provider does not learn anything about the data. We must also
ensure that an individual client from the organization who queries the database
only gets the data that it asked for (and was authorized to obtain1), and the
access protocol does not inadvertently leak anything else about the data. Similar
concerns arise for a government organization setting up an encrypted server with
need-based access for its clients2.

1.1 Previous and Concurrent Work

A promising direction for addressing (symmetric) private-query is the secure-
computation-over-ORAM architecture of Ostrovsky and Shoup [22] and Gordon
et al. [13]. Here the client and server use secure two-party protocols to simulate
the actions of an underlying ORAM protocol. This way we can keep the sub-
linear access time of the underlying ORAM, while ensuring that the parties do
not learn anything beyond the output of the original protocol, i.e., the server
learns nothing and the client only learns the answer to its query.

In [13,22], this architecture was proposed as a solution for generic multi-party
computation in RAM complexity, i.e., without having to transform the original
insecure RAM computation into a binary circuit. The first implementation of a
system along this line was due to Gordon et al. [13], using Yao-circuit-type two
party protocols over the tree-ORAM of Shi et al. [25]. Gentry et al. later proposed
a few optimizations for the underlying ORAM scheme [8], and also suggested to
utilize low-degree homomorphic encryption for the two-party protocols over this
ORAM, but did not implement any of these protocols.
1 This report only covers the implementation of the private query protocols themselves,

we briefly comment on the related authorization issue in Appendix B of the full
version [9].

2 Such was the requirement of a recent IARPA SPAR program [16].
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Very recently, Liu et al. [21] developed an automated compiler for secure
two-party computation, using the Gordon et al. architecture of Yao-based pro-
tocols over tree-ORAM (with many optimizations). Also, Keller and Scholl [19]
extended the secure-computation-over-ORAM architecture to handle any num-
ber n ≥ 2 of parties. They use the SPDZ framework [7] (with protocols based
on algebraic-black-box approach with preprocessing) and use both tree-ORAM
and path-ORAM as the underlying ORAM schemes. (Path-ORAM was recently
proposed by Stefanov et al. [26] and is a variant of tree-ORAM with better
asymptotic efficiency. As we will see later, our work utilizes Path-ORAM. The
work of Keller and Scholl is concurrent to ours.)

Along a different direction, many recent works have aimed at achieving
extremely high speed by somewhat compromising privacy, leaking a small
amount of information about the access pattern. Some notable examples of work
along this direction is the CryptDB system of Popa et al. [24], and recent works
on searchable symmetric encryption due to Pappas et al. [23] Cash et al. [3], and
Jarecki et al. [18].

1.2 This Work

In this work we designed and implemented a system for symmetric private queries
in the semi-honest adversary model, supporting private database access by either
index or keyword. We focus on exploring the feasibility of the direction advocated
by Gentry et al. [8], of using secure-computation protocols based on low-degree
homomorphic encryption over the tree-ORAM scheme. Specifically, we used for
the underlying ORAM a slight modification of the Path-ORAM protocol of
Stefanov et al. [26], and implemented our two-party computation protocols based
on the HElib homomorphic-encryption library [15].

Our results show cause for optimism regarding the feasibility of this direc-
tion: Our single-threaded implementation can query a moderate-size database
with 222 records on a 120-bit keyword in just over 30 min. This indicates that
SWHE-based protocols are not as slow as commonly believed. Moreover there
is a wide range of further optimizations that can be applied (both algorithmic
and implementation-level), and we expect a better optimized system to be one
to three orders of magnitude faster (see discussion in Sect. 5). In this report
we describe all the sub-protocols that went into our implementation, and also
describe some extensions of the basic system to support range queries, autho-
rization, and even provide limited support for conjunctions via pre-processing.

Our work is similar in many ways to the concurrent work of Keller and
Scholl [19]. In particular they also developed secure-computation-over-ORAM
protocols for arrays (access-by-index) and dictionaries (access-by-keyword).
Some important differences between our work and [19] include the following:

– Keller and Scholl target generic multiparty secure computation rather than data
outsourcing. In particular in their system all the parties need to keep state as
large as all of the data (since they use secret-sharing to share the entire state).



Private Database Access with HE-over-ORAM Architecture 175

Also the current work includes extensions that are more specific for data out-
sourcing such as range queries, conjunctive queries, and authorization.

– The protocols in [19] are all in the “algebraic black-box model” (using the
SPDZ framework) while ours use SWHE as the basic tool. As we discuss below,
introducing new SWHE-based secure protocols is one of the contributions of
the current work.

We also note that our performance numbers cannot be directly compared to those
from [19], since they only report the online numbers and not the “expensive”
offline computations that are done by the SPDZ framework.

SWHE-Based Secure Computation. Beyond the specific application of private
queries, another contribution of the current work is in developing several new
SWHE-based secure computation protocols that are interesting on their own.
In particular, the SWHE schemes we consider allow ciphertext packing and
agility in the choice of the underlying plaintext space, which leads to surprisingly
efficient sub-protocols for important tasks.

Encrypted Equal-to-Zero and Comparisons. Comparing encrypted num-
bers is a common low-level task in many cryptographic protocols, and significant
effort was invested in optimizing it, see e.g., [5,20,27,28]. In our context, we need
the result to be encrypted, i.e. we want the end result to be an encryption of the
answer bit, zero or one.

In the simplest setting, we would like to transform an encryption of an n-bit
value x into an encryption of a bit b such that b = 0 if x = 0 and b = 1 if
x �= 0. Computing b homomorphically from x without any interaction requires
homomorphic degree roughly 2n, or we can use a single communication round
to get an encryption of the individual bits of x, and then can use degree-n
homomorphism to compute the answer. But we can actually do much better. In
Sect. 3.1 we describe a protocol that uses only additive homomorphism, works in
log∗ n communicating rounds, and requires O(n) homomorphic addition oper-
ations. Moreover using batching techniques, this protocol can be implemented
with only O(log n) additions and shifts. The end result has complexity Õ(n+ k)
(with k the security parameter), which is asymptotically more efficient than
previous protocols in the literature.

Our protocol relies on the flexibility of contemporary lattice-based encryp-
tion schemes that enable additive homomorphism relative to arbitrary moduli.
The core of our new equal-to-zero protocol is a one-message sub-protocol that
transforms the encryption of the n-bit x into an encryption of a log n-bit y such
that y = 0 if and only if x = 0. This size-reduction protocol uses the fact that
an n-bit value is equal to zero if and only if the sum of its bits is zero, when
using homomorphism modulo m > n. Applying the size-reduction protocol log∗ n
times reduces the problem to a constant-size instance, which we can solve using
any of the existing techniques.

We also describe in Sect. 3.2 a protocol for comparing encrypted numbers,
where on inputs x, y we obtain an encryption of a bit b such that b = 1 if y > x
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and b = 0 otherwise. This protocol uses n parallel executions of the equal-to-
zero protocol on log n-bit values, and some local computation using additive
homomorphism. Hence, it too takes log∗ n rounds, and using ciphertext-packing
can be made to run in complexity quasi-linear in n + k (with k the security
parameter).

The basic comparison protocol from Sect. 3.2 requires that we have encryp-
tions of the separate bits of the numbers that we compare, but in our application
one of these numbers comes from long-term storage and storing its encrypted bits
would entail a somewhat large plaintext-to-ciphertext expansion ratio. Hence,
we also describe in Sect. 3.2 another optimization that allows us to encrypt this
number as a single integer (or a sequence of integer digits), so long as the inte-
ger(s) are stored in reverse bit order (this is not to be confused with big-endian
format, as we actually do integer operations on this reversed integer).

Blinded Permutation. This protocol, described in Sect. 3.3, allows two par-
ties to shuffle obliviously an array. The input to this protocol is an encrypted
array a and an encrypted permutation p, and the output is the encryption of
the permuted array, namely a′ such that a′[p[i]] = a[i]. The main idea of this
protocol is that the server can “blind” the permutation p by permuting it ran-
domly with another random permutation q that it knows, then send it to the
client for decryption. The client decrypts and gets q ◦ p, uses it to permute the
array a and returns it to server, who now permutes by q−1 to get the final result.
(Of course, more blinding is needed also to hide a from the client.)

Homomorphic Path-ORAM Eviction. While the homomorphic ORAM
eviction protocol which is central to secure-computation-over-ORAM may not be
considered interesting in its own right, the linear time protocol we design using
the batching feature of SWHE (as opposed to a quadratic-time naive approach)
displays the rich capabilities of SWHE based approach to secure computation.
This particular protocol may be considered the highlight of this work, and we
describe it in detail in Sect. 4.2.

Security. The security property of all these protocols (in the semi-honest model)
asserts that neither party learns anything during the execution of these protocols.
That is, the view of each party consists only of ciphertexts under the other
party’s key and of random plaintext elements that are encrypted under its own
key. (Hence the entire view can be simulated without knowledge of the encrypted
values.)

Different Flavor of Protocols. Our equal-to-zero and comparison protocols
are in some ways quite different than existing protocols in the literature: almost
all HE-based protocols in the literature can be described in the arithmetic black-
box model [6]. In that model there is an algebraic ring which is shared among
parties, and sub-protocols for operations in the ring as used as the basis for
everything else. (Usually the overriding complexity measure is the number of
invocations of the ring operations.)

Our equal-to-zero protocol is different: while only using additive homomor-
phism, it does not fit in the algebraic black-box model since it relies on an
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interplay between different algebraic rings to get better efficiency. This app-
roach, coupled with the ability to compute locally low-degree functions (not just
linear), makes SWHE a very useful tool for designing efficient protocols.

Building secure-computation protocols based on SWHE is a new research
direction, whereas protocols based on Yao circuits or additive-HE schemes have
been investigated and optimized for over two decades. This work helps lay the
groundwork for SWHE-based protocols, which are sure to find more uses.

Our Implementation. We implemented our private query solution with all its
sub-protocols over the HElib software library [15]. We built our implementation
to handle a moderate-size database of a few million entries. Specifically, our
choice of parameters for this implementation can handle a database of up to 224

records, with keywords of up to 120 bits.3

We tested it on the equivalent of a 222-record database with 120-bit keywords,
running on a five-year-old IBM BladeCenter HS22/7870, with two Intel X5570
(4-core) processors, running at 2.93 GHz. However, one consequence of using
HElib is that our implementation is inherently single-threaded (since HElib is
not thread-safe), so we only utilized one of the eight cores available on that
machine. Processing a single access-by-keyword request took over 32 min, of
which just under three minutes were devoted to obtaining the information itself,
and the rest for maintenance operations (i.e., updating the ORAM trees and run-
ning the eviction protocol). As we said above, we expect that a better-optimized
implementation would be able to do much better (even if we don’t count the 8×
speedup that one could get from just using all eight cores). We describe some
possible optimizations in Appendix E of the full version [9].

2 Background

2.1 The Path-ORAM Protocol

In the basic path-ORAM protocol [26], the server keeps an N -element database in
a complete binary tree of height h = log N , where each node in the tree contains
a bucket large enough to store a small constant number Z of data elements. In
addition there is also a moderate-size stash of S entries to keep elements that
do not fit elsewhere (we think of the stash as being kept at the root of the tree).
The content of all the buckets is encrypted under the client’s key, in particular
the server does not know how many elements are actually stored in each bucket.

Each database element with logical address v ∈ [N ] is associated with a
random leaf Lv, and the client keeps an N -entry table of the mapping v �→ Lv.
(I.e., entry v in the table contains the leaf number Lv.)

Denote by dv the data corresponding to logical address v. The protocol main-
tains the invariant that the triple (Lv, v, dv) is stored in one of the buckets on
the path from the root to the leaf Lv. Access to logical address v consists of two
3 Both of these restrictions eventually stem from working with packed ciphertexts over

the 6361’st cyclotomic field, which have 120 plaintext slots.
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subroutines, one for doing the actual access and another one to clean up after
the access.

Access. To access the data in logical address v, the client looks up Lv in its table
and asks the server for the entire path from the root to leaf Lv. Upon receiving
all the buckets in this path, the client decrypts them, finds a triple of the form
(Lv, v, dv) in one of the buckets, and this value dv is the requested data.

The client either leaves the data unchanged (if the operation is a read) or
overwrites it with a new value (if it is a write). We denote the resulting data
by d′

v. In either case, it chooses a new random leaf L′
v ∈ [N ] and updates its

table with the new L′
v value. The client then removes the triple (Lv, v, dv) from

the bucket where it was found, and puts the triple (L′
v, v, d′

v) in the root bucket.
Finally it re-encrypts all the buckets and send them back to the server, who
replaces all the buckets on the path to Lv by the new encrypted buckets. Since
the new triple is placed at the root, this operation maintains the tree invariant
of the scheme.

Eviction. To prevent the root bucket from overflowing, the client and server
run a “maintenance” subroutine whose goal is to evict triples from their current
buckets and push them lower down the tree: The client and server agree on some
“eviction path” (in [26] this is the same as the read path), and each entry in
that path ei = (Li, vi, di) is pushed as far down that path as it can go toward its
target leaf Li. The stash is used to avoid over-filling the buckets (with conflicts
resolved greedily).

It is easy to see that as long as the stash does not overflow, the view of
the server is computationally independent of the access pattern (assuming the
security of the encryption scheme). Stefanov et al. proved in [25] that when
using the read path for eviction and setting S = O(log N), the probability of
the stash overflowing is negligible. In our implementation we instead use the
deterministic eviction strategy that was proposed by Gentry et al. in [8]. We ran
experiments and found that this deterministic strategy allows us to use smaller
buckets, namely only Z = 2 as opposed to Z = 4 which is needed when evicting
along the read-path.

Putting it Together. In the complete construction, the ORAM also stores the
mapping v �→ Lv. Specifically, the server keeps � = �log(N)	 complete binary
trees as above, with the level-i tree having 2�−i leaves. In the largest tree (i = 0),
each entry corresponds to one logical address v ∈ {0, . . . , N −1}, and it contains
the user data for that logical address. For the next tree (i = 1), each entry
corresponds to two consecutive logical addresses, and it contains the two leaf-
numbers in the largest tree that are currently assigned to those logical addresses.
More generally, each entry in the tree at level i + 1 corresponds to the union of
two level-i intervals (which is altogether a size-2i+1 interval of logical addresses),
and that entry contains two leaf-numbers of the level-i tree, namely the leaves
that are currently assigned to the entries of those two level-i intervals. With each
entry in every tree we store also the first logical address of the interval of that
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entry, as well as the leaf that is currently assigned to that entry (in the current
tree). Thus each entry is of the form

level 0 :
(
L∗, v,user-data

)

level > 0 :
(
L∗, v, L1, L2

)

where L∗ is the leaf currently assigned to that entry, [v, v + 2i) is its interval,
and (L1, L2) are the leafs in the next tree that are currently assigned to the two
sub-intervals [v, v + 2i−1), [v + 2i−1, v + 2i). Of course, all of the buckets in all
of the trees are encrypted under a key known to the client.

The “tree at the last level �”, which has a single node, is kept by the client.
That tree has just a single entry, corresponding to the interval [0, 2�), and con-
taining two leaf-numbers of the tree at level � − 1 that are currently assigned to
the entries of the sub-intervals [0, 2�−1), [2�−1, 2�).

ORAM Access Query. To access the logical address v, the client looks in its
level-� “tree” and determines the level-(� − 1) sub-interval containing v, namely
j such that (j − 1)2�−1 ≤ v < j2�−1. The client sets v�−1 = (j − 1)2�−1 and
L(�−1) = L

(�−1)
j , chooses at random a new leaf L̂(�−1) and replaces L

(�−1)
j by

this new value in the list. Then the client proceeds iteratively for i = �− 1 down
to 0:

1. Request from the server all the buckets on the path from the root of the
level-i tree down to the leaf L(i). Decrypt them and find in them an entry of
the form (L(i), vi, data).

2. If i > 0 do the following:
(a) Parse data = (L(i−1)

1 , L
(i−1)
2 ), choose a new random leaf in the next tree,

L̂(i−1).
(b) Determine the level-(i − 1) sub-interval containing v, namely j = 1 if

v < vi +2i−1 and j = 2 otherwise. If j = 1 then set vi−1 = vi +2i−1 and
otherwise vi−1 = vi, and also set L(i−1) = L

(i−1)
j .

(c) Replace L
(i−1)
j by L̂(i−1) inside data, denoting the result by data′.

Else (i = 0), if this is a write operation then set data′ to be the new value.
Otherwise (read), set data′ = data.

3. Remove the entry (L(i), vi, data) from the bucket where it was found, and
place in the root bucket the entry (L̂(i), vi, data

′). Re-encrypt all the buckets
and send to the server.

Finally, the client and server run the Eviction subroutine for each of the trees
i = 0, 1, . . . , � − 1. If this was a read operation then the return value is the data
value from the last level i = 0.

Access by Keyword. Gentry et al. described in [8] how to extend this protocol
to access elements by keyword rather than by index, when the database itself is
sorted by that keyword: In an entry corresponding to an interval [v, v + 2i) we



180 C. Gentry et al.

keep not only the two leaf values L1, L2 for the next tree, but also the keyword
value K of the database record at the middle of this interval (i.e., at index
v + 2i−1). The access procedure is then modified so that in Step 2b above we
choose the sub-interval by comparing the keyword K∗ that we seek to the value
K that is stored with the current entry, setting j = 1 if K∗ < K and j = 2
otherwise.

Note that even if the keyword K∗ that we search for is not in the ORAM,
we will still return some data at the end of the access protocol, Namely the data
corresponding to the smallest keyword K ′ ≥ K∗ in the ORAM. Jumping ahead,
in our private-query protocol we handle this matter by multiplying the data with
the indicator bit χ(K = K∗).

2.2 Somewhat Homomorphic Encryption (SWHE)

Our implementation of the private database search protocol relies on the HElib
library for implementing homomorphic encryption [14,15]. One of the features
of this library that we utilize is the ability to choose freely the plaintext space.
In particular, we often mix homomorphic operations modulo different moduli
(e.g., 2,16,128) in the same protocol. We denote homomorphic addition and
multiplication by � and �, respectively.

Another feature of HElib that we rely on is the ability to “pack” many
plaintext elements in a single ciphertext and apply to them operations in a
SIMD manner. We refer to the different plaintext values in a single ciphertext
as the “plaintext slots” of that ciphertext. (For the specific parameters that we
chose for our implementation we get 120 plaintext slots per ciphertext.) Our
protocols use in particular the HElib procedures for computing total sums and
partial sums of the plaintext slots, and the efficient implementation of permuting
the slots as described in [14]. We also use the ability to homomorphically extract
the bits in the binary representation of the plaintext elements when the plaintext
space is a power of two, as described in [11] and [1, Appendix B].

3 Main Building Blocks

Below we describe the main low-level protocols that we use in our implementa-
tion, for things like comparing numbers, permuting arrays, etc. These protocols
could be useful in many other settings as well.

In all the protocols below we use encryption schemes that support at
least additive homomorphism with function privacy (in the honest-but-curious
model). Below we assume for simplicity that they all operate over plaintext space
R = Zm for some integer m.4 We assume that we can instantiate the cryptosys-
tem relative to an arbitrary plaintext space R = Zm, and we use several different
instances with different plaintext spaces. As mentioned in Sect. 2, contemporary
4 Essentially the same protocols apply also to more complex plaintext spaces, such as

vectors over rings and polynomial rings.
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lattice-based cryptosystems indeed support additive homomorphism (and more)
with a free choice of the plaintext space.

In terms of security, all the sub-protocols below have the property that the
view of each player consists only of ciphertexts relative to keys of the other player,
and ciphertext under its own keys that encrypt uniformly random plaintext
elements (independent of the input and output of the protocol). Although we
do not argue here the security of the sub-protocols in isolation, we use that
property when proving that the high-level protocol that uses them is secure
(in the honest-but-curious model).

3.1 Equal-to-Zero Protocol

The server has an input ciphertext c = HEC(x), encrypting some x ∈ R under
the client key. The goal of the protocol is for the server to obtain an encryption
of a single bit b under the client key, such that b = 0 if x = 0, and b = 1
otherwise. Let n be the number of bits that it takes to represent an element
in R, so |R| ≤ 2n.

The protocol consists of multiple rounds, where in each round we transform
an equal-to-zero instance with plaintext space of some size S into another equal-
to-zero instance with plaintext space of size O(log S). After log∗ n such rounds
we arrive at an instance relative to a small constant plaintext-space, and then use
standard protocols (e.g., a secure computation of the AND function) to compute
the final bit encryption. The plaintext-space reduction protocol consists of only
a single message flow (i.e., half a round) and it is described next.

Plaintext-Space Reduction. We begin by turning the encryption of x into
encryption of (roughly) the bits of x. Namely, the server proceeds as follows:

S1. Choose a random a ∈ R and use homomorphism to compute c′ ← c � a =
HEC(x + a).

S2. Denote the bit representation of a by an−1 . . . a1a0. Encrypt the bits ai

under the server’s key, but relative to plaintext space Zn+1, getting ci =
HES(ai) for i = 0, . . . , n − 1.

The server sends to the client both c′ and all the ci’s. The client then proceeds
as follows:

C3. Decrypt c′ to obtain the value x′ = x + a ∈ R, and let x′
n−1 . . . x′

0 be the
bit representation of this value. Note that x′ = a iff x = 0.

C4. Use the homomorphism to XOR the bit x′
i into a new ciphertext c′

i for all i,
by setting c′

i = ci if x′
i = 0 and c′

i = 1 � ci if x′
i = 1.

Let yi = ai ⊕ x′
i be the value encrypted in the ciphertext c′

i, and observe
that the yi’s are all zero if and only if x = 0.

C5. Use homomorphism to sum up all the c′
i’s, thus getting a ciphertext c′′ ←

�ic
′
i = HES(

∑
i yi).
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The crux of the protocol is that since the scheme HES is homomorphic relative
to the plaintext space Zn+1, and since c′′ is the sum of n bits, then it encrypts
zero if and only if all the yi’s are zeros, namely if and only if x = 0. Thus we
reduced the original ciphertext c (which was relative to the plaintext space R of
size up to 2n), to a ciphertext c′′ relative to the plaintext space Zn+1, so that
c′′ encrypts a zero if and only if the original c encrypts a zero.

Equal-to-Zero. Our equal-to-zero protocol repeats the above plaintext-space
reduction protocol for log∗ n rounds, switching the client and server roles for
each round, until we arrive at a plaintext space of constant size (which can be
made as small as Z3, but no smaller).

In the last step of the protocol, however, we replace the step C5 by a secure
encrypted-AND protocol. (If the cryptosystem supports multiplicative homo-
morphism then we can use it directly. Otherwise, we can use any standard
secure-computation protocol, e.g., based on OT.) In our implementation we stop
at plaintext space Z8, and then use multiplicative homomorphism to complete
the protocol.

Once we have an encryption of the target bit relative to some small plain-
text space, we can convert it to an encryption relative to the original plaintext
space R (or any other desirable plaintext space), e.g., by a one-round protocol
of blind/encrypt/re-encrypt/unblind.

We note that the original scheme (that determines the input and output to
the protocol) need not even support full additive homomorphism: it is enough
for it to be blindable, and indeed in our implementation we sometime apply
this protocol to AES in counter mode. The intermediate schemes with smaller
plaintext space, however, must be (at least) additively homomorphic, and for
those we use lattice-based encryption schemes.

We also note that we can use essentially the same protocol to compute an
encrypted bit b which is zero if the lowest � bits of x are zero and one otherwise
(for any value of � ≤ n known to the client). The only difference is that in the
first invocation of the plaintext reduction sub-protocol the client only computes
the c′

i’s for i = 0, . . . �−1 in step C4 (rather than all of them). We use this variant
in our sub-protocol for computing the encrypted permutation during eviction,
see Sect. 4.2.

3.2 Comparison Protocol

This protocol builds on the equal-to-zero protocol from above. For our basic
protocol, we have the client holding an n-bit number y in the clear, and also
holding the bit-wise encryption of another number x under the server’s key. The
goal of the protocol is for the client to obtain an encryption of a single bit b
under the client key, such that b = 0 if x ≥ y and b = 1 if y > x. Later in this
subsection we discuss some optimizations that we use when transforming our
actual setting that we have in our implementation to the one needed for this
protocol.
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Input. The client holds a plaintext element y ∈ Z2n and n ciphertexts ci =
HES(xi) under the server key that encrypt the bits of the integer x =
∑n−1

i=0 xi2i, relative to plaintext space Zn+1.
C1. The client XORs the bits of y into the ci’s, setting c′

i = ci if yi = 0 and
c′
i = 1 � ci if yi = 1. Denote by bi = yi ⊕ xi the bits that are encrypted

in the c′
i’s.

At this point we note that if x = y then all the bi’s are zero, and if x �= y
then some of the bi’s are ones. Moreover, the largest index i∗ for which
bi = 1 corresponds to the top bit where x, y differ.

C2. The client uses additive homomorphism to compute the partial sums, i.e.
for all i its sets c′′

i ← �i′≥ic
′
i = HES(si), where si =

∑b
j=i bi.

Note that if x = y then all the si’s are zero, and if the top bit in which
x, y disagree has index i∗ then we have si = 0 for all i > i∗ and si �= 0
for all i ≤ i∗ (since each of the latter si’s is a sum of ≤ n bits, not all of
them zero).

EQ.3. The client and server apply the equal-to-zero protocol from Sect. 3.1 to
each of the ciphertexts c′′

i . At the conclusion of these protocols the client
holds ĉi, i = 0, . . . , n−1, where ĉi = HES(0) for i > i∗ and ĉi = HES(1)
for i ≤ i∗.

C4. Subtracting ĉi+1 from ĉi for all i < n yield ciphertexts c̃i, all of which
encrypt the bit 0 except c̃i∗ = HEC(1). (If x = y then all the c̃i’s encrypt
zeros.)

C5. The client multiplies c∗
i = yi � c̃i.

Clearly we still have c∗
i = HES(0) for i �= i∗, but for i = i∗ we now have

c∗
i∗ = HES(1) if yi∗ = 1 and c∗

i = EncS(0) if yi∗ = 0. Recalling that i∗ is
the top bit where x, y disagree (if any), we have that y > x if and only if
yi∗ = 1. Hence all the c∗

i ’s are encryption of 0’s if c ≥ y, and one of them
is an encryption of 1 if y > x.

C6. Summing up the c∗
i ’s yields c∗ = HES(b) where b = 1 if y > x and b = 0

if x ≥ y, as needed.

Encrypting Integers in Reverse Bit-Order. In our implementation, we use
the encrypted comparison protocol to compare the keyword held by the client
to the pivots that are stored encrypted on disk as part of the path-ORAM
structure. This means that at the beginning of the protocol the server has the
value x (pivot) encrypted under the client key, and the client has the value y
(keyword) in the clear.

If the pivot value x is encrypted bitwise in the ORAM structure then trans-
forming it to the starting state needed for the protocol above would be a straight-
forward one-flow blind-decrypt-unblind protocol. However, to save on bandwidth
in other parts of the protocol we would prefer to encrypt the pivot as either a
single integer or a sequence of integer digits, which makes it harder to extract
the bits. To handle this issue without resorting to higher-degree homomorphism
we note that if we encrypt the integer x in reverse bit order then a much simpler
comparison protocol can be obtained. Due to space limitations, this protocol is
described only in the full version (see [9]).
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3.3 Blinded Permutations

As input to this protocol, the server has an encryption under the client key of a
size-� array a and another size-� array p containing a permutation of the index
set {1, 2, . . . , �} (over some plaintext space Zm with m ≥ �). The output of the
server is an encrypted array a′ which is obtained by permuting a according to p.
Namely, a′[p[i]] = a[i] for all i.

The basic idea of the protocol is the following: The server blinds the encrypted
permutation p by permuting it with a new random permutation q; the net effect
of this is that when the client receives this (packed) ciphertext and decrypts
it, then it comprises of the permutation p ◦ q−1. The server also blinds the
array a with a random vector r. It further encrypts r under its own HE key to
obtain R. Next, it permutes both the blinded a and R using q, and sends these
two ciphertexts along with the blinded permutation. As mentioned earlier, the
client obtains p◦ q−1, and applies this permutation to the other two ciphertexts,
(homomorphically) blinds them both using a same fresh random array, and sends
them back to the client. The client now only needs to decrypt the permuted
blinding array r, and subtract it (homomorphically) from the permuted (and
still encrypted) a.

The protocol is described in Fig. 1 in the full version [9].

4 Protocols for Private Queries

Below we describe at a high level the main protocols in our implementation.
More detailed description is available in the full version [9]. At a high-level,
every database access proceeds tree by tree, and processing each tree is done in
two phases. First the server reads the root-leaf “read-path” from the tree and the
client and server engage in a Read-and-Update protocol. Then the server reads
a (potentially different) root-leaf “evict path” from the tree, and the client and
server engage in an Eviction protocol.

We logically use additive two-out-of-two secret sharing to share the ORAM
state between the client and server, but rely on an optimization that allows the
client to hold just a single AES key instead of a long share. Namely, the ORAM
trees themselves are stored at the server, encrypted using AES-CTR under the
client’s key.

4.1 ORAM Read and Update

The read-phase protocols are used to read a path from one tree in the encrypted
ORAM structure, extract from it the information that we need in order to read
the next tree, and update the read path. At the beginning of the read phase, the
server is holding a single root-leaf path, with each entry encrypted separately
using AES-CTR under the client’s key. In addition the server is also holding an
AES-CTR encryption of a tag t∗, identifying the entry to extract from this path,
and the client is holding in the clear the keyword that it is looking for (which
should be compared to the pivot in that entry).

This phase consists of four parts:
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Extract. Extract a single entry from the path containing the information that
we seek. More details on this step are given in Appendix D.1 of the full
version [9].

Compare. Compare the pivot in the extracted entry against the keyword that
we are searching for. Compute a single encrypted bit that contains the
result of that comparison. This is done using the comparison protocol from
Sect. 3.2. The low-level details are described in Appendix D.2 of the full
version [9].

Oblivious-Transfer. Extract one of the two data-items in the entry, depending
on the value of the encrypted bit, getting in the clear the path to read in
the next tree, and also an encryption of the identifier tag to seek in that
path. This is a fairly standard 1-of-2 OT protocol, details are provided in
Appendix D.3 of the full version [9].

Update. Update the path in the current tree, marking the entry that was
extracted as “empty”, and copying its content to an available empty slot
in the root bucket. Also update the leaf value for that entry to a new ran-
dom leaf. This protocol is fairly standard on a high level, but uses some
HE-specific optimizations to speed up low-level operations, see details in
Appendix D.4 of the full version [9].

When processing the largest tree (that contains the data itself), then in the
OT step we also execute an equality protocol to check that the keyword matches
the one that we search for, and multiply the returned data by the resulting bit,
thus zero-ing it out if the keyword does not exist in the database.

4.2 ORAM Eviction

Eviction consists of first computing (an encryption of) the permutation to apply
to the entries along the eviction path, and then applying it using the protocol
from Sect. 3.3. At the beginning of the eviction phase, the client and server
agree on the eviction path, and the server has the content of all the buckets
along that path, which are all encrypted under the client AES key. Each entry of
every bucket contains a target-leaf field, we begin the protocol with one round
of blind/decrypt/re-encrypt/unblind that converts these AES ciphertexts to HE
ciphertexts and also packs them in the slots of a single HE ciphertext.

For a height-h tree with Z-size buckets and S-size stash, we therefore have
hZ + S plaintext elements packed in one HE ciphertext, each of them an h-bit
string. In our implementation we use Z = 2, h ≤ 22 and S = 24, and use 120-
slot ciphertexts, so a single ciphertext can hold (more than) 2hZ + S target-leaf
fields. We will need the extra hZ slots to hold “dummy entries” in the protocol
below. The eviction phase consists of several sub-protocols, as described below.

Sub-protocol 1: Position Bits. Denote the target leaf of the i’th entry in the path
by l[i], and denote the leaf at the bottom of the eviction path by l∗. For every
level j = 1 . . . h in the tree (with j = 0 the root and j = h the leaves), we first
want to compute ciphertexts Cj [i] under the client key that encrypt one if l[i]
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and l∗ agree on the first (lowest) j bits, and zero otherwise. This means that
entry i wants to get evicted at least as far down as level j. These bits should be
encrypted w.r.t. plaintext space Zm for m ≥ 2hZ +S, in our implementation we
use m = 128.

To compute the Cj [i]’s, we use additive homomorphism to subtract l∗ from
the l[i]’s, getting encryption of δ[i] = l[i] − l∗, and then apply our equal-to-zero
protocol from Sect. 3.1 h times to each δ[i], each time computing whether the
bottom j bits of δ[i] are zero (for j = 0 . . . h − 1). Note that if the δ[i]’s are
all packed in a single ciphertext then we just need to perform h executions of
the protocol, one per j, and we get packed ciphertexts Cj [0 . . . 119]. Also we
can perform most of the first plaintext-reduction step in the equal-to-zero sub-
protocol only once (rather than for every j separately).

Position Indexes. Once we have the encrypted bits Cj [i], we can sum them up to
get an encryption of the level to which this entry wants to be evicted. Denote
this index by v[i]. Although the protocol below does not use the encryption
of v[i], it is nonetheless convenient to use the v[i]’s to explain the working of
this protocol. Roughly, in this protocol we would want to sort the entries by
their position index.

Sub-protocol 2: Adding Dummy Ciphertexts. Next we add encryption of some
dummy entries, to ensure that for any level below the root j > 0 we have at
least (h − j + 1)Z entries with position indexed v[i] ≥ j. The reason is that we
must ensure that once the entries are sorted by their position index, no entry is
sent further down the path below the level that that it wants to get to. Hence if
we have less than (h − j + 1)Z entries that want to get to level j or below, we
need to fill these levels with dummy entries so that entries that want to go to
higher levels will not get sorted into the lower ones.

We begin by computing encrypted counts Ej of how many entries want to be
evicted to levels j and below, simply by summing Ej = �iCj [i] (each Ej can be
computed in log (2hZ + S) steps by appropriate shifts and additions). Similarly
the number of entries that want to go exactly to level j is E′

j = Ej � Ej+1. Let
ej denote the number encrypted in the ciphertext Ej , and e′

j denote the number
encrypted in the ciphertext E′

j .
Next we use the Ej ’s to compute for each level j how many dummy entries

(between 0 and Z) are needed at that level. I.e., for all j = 1 . . . h and k = 1 . . . Z
we compute an encryption of the bit σj,k which is one if we need to add k or
more dummies to level j and zero otherwise. It can be verified that the condition
we need is

σj,k = 0 iff ∃j′ ≥ j s.t.
( j′
∑

t=j

e′
t

)
> (j′ − j)Z + k. (1)

That is, if there are more than (j′ − j)Z + k entries that want to be evicted to
levels between j and j′ (for some j′), then we need to add less than k dummies
to level j.

Unfortunately we cannot use the comparison protocol from Sect. 3.2 to com-
pute the bits σj,k from the E′

i’s, since the e′
i’s are sum of bits, so they are integers
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which are not encoded in reverse bit order. However, the e′
i’s are relatively small

(at most 2hZ + S = 112) hence even the naive protocol is reasonably efficient.
Specifically for each j′ we subtract (�j′

t=jE
′
t) � ((j′ − j)Z + k), over plaintext

space Z128, and then use homomorphic bit extraction to get the MSB of the
result, which is the indicator bit χ(

∑
t e′

t ≤ (j′ − j)Z + k). Computing the AND
of these indicator bits gives us the bit σj,k that we seek. We can actually pack
these comparisons and run them in a SIMD manner, so that the protocol runs
in linear time instead of quadratic time. Specifically, for each value of j′ we can
compute a ciphertext such that in the j-th slot is the encryption of the value
∑j′

t=j e′
t. We note that this sub-protocol is the most time-consuming part of the

entire ORAM-access procedure. In our implementation it accounts for roughly
35% of the total running time. However, a naive protocol which pushes entries
as far down as possible (limited by Cj [i]), iteratively and starting from level h
upto 0, would have quadratic complexity. Thus, our sub-protocol is already a
major improvement.

Once we have the σj,k’s, we prepare encryption of Zh dummy entries, where
the position index of the (j, k) entry is set as σj,k · j. This means that we get
exactly the right number of dummies with position index v[i] = j, and the rest
of the dummies have position index v[i] = 0. More specifically, we compute the
encrypted bits Cj [i] for these dummies: if we put the (j, k) dummy in some
index i, then for any j′ = 1 . . . h, the bit encrypted in Cj′ [i] is zero if j′ > j, and
it is σj,k if j′ ≤ j.

Sub-protocol 3: Sorting by Position Indexes. All that is left now is to sort by
position indexes. Note that because we added the dummies, then an entry that
wants to go to level j will not be moved to a deeper level j′ > j in the sorted
order, because there are at least (h−j)Z entries that want to go to levels below j.

We update the counts Ej and E′
j , counting the Cj [i]’s of the dummies too.

Also we compute C ′
j [i] = Cj [i] � Cj+1[i] for all i, j, which is 1 if entry i wants

to go exactly to level j. Then for every entry i we compute its position in the
sorted order as

P [i] = �j

(
C ′

j [i] �
((

�i′<i C ′
j [i

′]
)

� Ej+1

) )
.

That is, if entry i wants to be at level j, then before it in the order will come
all the entries that want to go to j′ > j (there are ej+1 such entries) and all the
entries that want to go to level j and have index smaller than i in the current
array.

Sub-protocol 4: Applying the Permutation. Now that we have an encryption
of the permutation that we need to apply to the entries, we use our blinded
permutation protocol from Sect. 3.3 to effect this permutation. This means that
we pack all the data of the entries in a HE ciphertext, then apply the protocol
from Sect. 3.3 to this ciphertext, and then convert these ciphertexts back to AES-
encrypted ciphertext. In our implementation we need two HE ciphertexts to pack
all the data from all the entries in the path so we apply the blinded-permutation
protocol twice.
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Note that, since we initially put the dummy entries at the end of the packed
ciphertext, the last Zh entries after sorting must be dummies, so we can just
ignore them when converting back to AES encryption.

5 Implementation

We implemented our protocols over the HElib implementation [15] of the BGV
scheme [2], which is currently the only publicly available implementation of
SWHE that supports most of the functionality that we need.

For our target setting, we used a database with 222 records with 120-bit
keywords and only a few bytes worth of data. As explained in Appendix B of
the full version [9], we can handle large records by using a two-tier system,
using a database as above just to get the index of the target record and then
use standard ORAM without the secure-computation layer to get the records
themselves.

In retrospect, the size of the records and keywords does not have much impact
on the performance, indeed over 95 % of the time is spent on sub-protocols which
are not affected by the record/keyword sizes, and the ones that are affected only
have complexity linear in that size. (For example, extrapolating from our timing
results we could have handled keywords of size over 6000 bits with a moderate
change of the implementation and without changing any of the parameters, and
it would have added perhaps two minutes to the query time.)

Parameters and Design Choices. Since the analysis of the parameters for the
bucket size in the path-ORAM constructions is not tight, for the implementation
of our system we ran experiments to find the number of entries needed in the
root (the parameter S from Sect. 2.1) and intermediate nodes (the parameter Z).
We tested two eviction strategies, the one from [26] that uses the read path also
as eviction path, and the one from [8] that deterministically covers all the paths
in reverse-bit order. For each of these two strategies we tried several different
sizes for the non-root nodes, and for each of those we run the ORAM for 224

accesses and recorded the largest size that the stash at the root ever grows to.
Our experiments show that for the eviction strategy from [26] we need Z = 4

entries in the non-root nodes before the stash size stabilizes, whereas Z = 2
entries were enough for the deterministic strategy from [8]. Moreover for the
latter strategy with Z = 2, the stash never grew beyond S = 5 entries, so
we expect that setting S = 24 gives a reasonable security margin. This means
that the entire root-to-leaf path in our largest tree needs to hold hZ + S =
22 ·2+24 = 68 entries. However, our sub-protocol 2 from Sect. 4.2 for computing
permutations requires that we add Z more dummy entries per non-root node,
thus for that sub-protocol we need to handle 2hZ + S = 112 entries.

At this point, our design choices were dictated by the interfaces that are avail-
able (or not) in HElib. HElib is built to provide an effective use of ciphertext-
packing techniques [10], and in particular it provides the ability to view the
multiple plaintext elements encrypted in a single ciphertext as an array and
arbitrarily permute that array.
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The largest circuit depth that we need to handle in our protocols is
�log 112	 = 7 (in Sub-protocol 2 from Sect. 4.2), and the heuristic estimate
provided by HElib indicates that for this depth we have a lower-bound of
φ(m) ≥ 6157 on the m-th cyclotomic ring that we need to use (for security
parameter λ = 80). Adding the constraint that the number of plaintext slots
(which is the order of the quotient group Z∗

m/(2)) must be at least 112, we chose
to work with m = 6361, for which φ(m) = 6360, we have |Z∗

m/(2)| = 120 slots,
and each slot can hold an element of the field GF (253).

Finally, a modulo-2 ciphertext space would have let us pack at most 6360
plaintext bits per ciphertext, but to fit all the relevant information of an entire
root-to-leaf path in the deepest tree into a single ciphertext, we needed to use
plaintext space somewhat larger than that. Hence we chose to encrypt some of
the data relative to plaintext space modulo 24 = 16, which lets us pack four
times more bits in each ciphertext. We also make use of a modulo-128 plaintext
space for some of our sub-protocols.

Performance. With these parameters, a native homomorphic multiplication in
HElib takes roughly 50ms, and permuting the 120-slot arrays takes just under
one second. Our implementation of the entire protocol with these parameters
runs in about 32 min per access (1904 s). Table 1 summarizes the breakout of
this time into the different sub-protocols from Sect. 4. In that table, Extract,
Compare, OT, and Update are the four sub-protocols of the read phase, and
Evict1-4 are the four sub-protocol of the eviction phase.

Table 1. Running times of different sub-protocols in our implementation.

Extract Compare OT Update Total read

38 s 92 s 41 s 70 s =241 s

Evict1 Evict2 Evict3 Evict4 Total evict

91 s 757 s 487 s 331 s =1663 s

As seen in Table 1, the most expensive are Sub-protocols 2 and 3 in the
eviction phase. In particular, computing the bits σj,k from the e′

j ’s as in Eq. (1)
takes 669 s (35 % of the total).

We note that only the first three sub-protocols in the read phase are on
the critical path for obtaining the information, all other sub-protocols can be
executed “off line” after the information was obtained. Hence our current imple-
mentation features a latency of about three minutes per query, but throughput
limitation of 32 min per query.

In terms of the time to process the separate trees, the read-and-update phase
takes roughly 11 s per tree, regardless of the height of that tree (since this imple-
mentation manipulates a single packed ciphertext for any tree up to height 24).
The current implementation of the eviction phase takes about 5h + 18 seconds
to process a height-h tree, so the first tree takes 25 s, and the last (height-22)



190 C. Gentry et al.

tree takes 130 s. Overall, the running time of this implementation on a size-2h

database (h ≤ 24) would be

Time(2h) ≈ 2.5h2 + 31.5h seconds,

of which only about 8h seconds are on the critical path. As we mentioned above,
the keyword size does not make a big difference in our implementation: shorter
keywords will not save us any time, and longer keywords will not cost us much
(but would require some change in the implementation).

We view these numbers as encouraging; they indicate that SWHE-based pro-
tocols are not as slow as commonly believed. Moreover, this is only a first-step
implementation and there is much room for improvement. In the full version [9]
we list a few promising avenues.
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Abstract. Let us consider a situation where a client (Alice) frequently
buys a certain kind of product from a shop (Bob) (e.g., an online music
service sells individual songs at the same price, and a client buys songs
multiple times in a month). In this situation, Alice and Bob would like
to aggregate the total transactions and pay once per month because
individual payments are troublesome. Though optimistic fair exchange
(OFE) has been considered in order to swap electronic items simul-
taneously, known OFE protocols cannot provide such aggregate func-
tion efficiently because various costs are bounded by the number of
transactions in the period. In order to run this aggregation procedure
efficiently, we introduce a new kind of OFE called Accumulable OFE
(AOFE) that allows clients to efficiently accumulate payments in each
period. In AOFE, any memory costs, computational costs, and commu-
nication complexity of the payment round must be constant in terms of
the number of transactions. Since a client usually has just a low power
and poor memory device, these efficiency are desirable in practice. Cur-
rently known approaches (e.g., based on verifiably encrypted signature
scheme) are not very successful for constructing AOFE. Thus, we con-
sider a new approach based on a new cryptographic primitive called ver-
ifiably encrypted homomorphic signature scheme (VEHS). In this paper,
we propose a generic construction of AOFE from VEHS, and also present
a concrete VEHS scheme over a composite-order bilinear group by using
the dual-form signature techniques. This VEHS scheme is also of inde-
pendent interest. Since we can prove the security of VEHS without ran-
dom oracles, our AOFE protocol is also secure without random oracles.
Finally, we implemented our AOFE protocol, and it is efficient enough for
practical use.
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1 Introduction

In a real trade, a buyer and a seller can exchange goods and money simulta-
neously in a physical way. Conversely, it is difficult to swap electronic items
simultaneously because exchange is usually done through an asynchronous net-
work such as the Internet. Then, a client, Alice, must send her e-cash before
receiving an item from a shop, Bob. If Bob is malicious, Bob can abscond with
the e-cash without sending the item. Thus, to prevent such a malicious Bob, the
fairness is considered as one of the most important requirements for electronic
commerce.

Protocols that provide the fair exchange of electronic items are called fair
exchange (FE) protocols. FE protocols are roughly classified into two types:
those with or without a trusted third party (TTP). An FE protocol without
TTP, for example, a gradual release protocol [1–3], is far from practical in terms
of communication complexity because the secret must be divided and sent grad-
ually. FE with TTP can be achieved efficiently, but in-line [4,5] or on-line [6,7]
TTP protocols are also not practical in a sense because TTP must be involved
in all sessions in order to relay transactions between parties. Optimistic FE
(OFE) [8–14] is the best of both worlds. Most OFE protocols have the following
form; first, Alice sends a partial signature, which is a kind of a contract; that is,
a valid partial signature itself is not evidence of payment. Next, Bob sends an
item or a signature. Finally, Alice sends a full signature, which is like a check;
that is, Bob can cash a valid full signature. When Bob does not receive the full
signature from Alice after he sends the item, Bob can obtain the full signature
from a TTP, called an adjudicator. The adjudicator has the power to convert
the valid partial signature into a valid full signature. That is, the adjudicator
does not need to participate in a session as long as the protocol is executed as
usual.

1.1 Motivation

Let us consider a situation where Alice frequently buys a certain kind of product
from Bob. For example, an online music service sells individual songs at the same
price, and a client buys songs multiple times in a month. Another example is
an online game; that is, exchanging in-game currency or virtual goods for real
money. In these situations, it would be much desirable to allow Alice and Bob
to aggregate the total transactions and pay once per month than individual
payments if possible.

For the above application, Alice and Bob can perform OFE; both would
repeatedly run k ≤ n sessions to exchange k partial signatures and k items, and
Alice finally sends k full signatures in parallel at the end of a period, where k
denotes the number of transactions between Alice and Bob and n be the max-
imum number of transactions. Although the ordinary OFE could be successful
(for fairness) in several applications including the above, we point out that the
OFE would be suffered from its linear complexity in k; that is, it is not well
scalable in terms of k. More precisely,
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– In terms of memory (RAM) for full signatures: Alice needs to keep k full
signatures if she finally sends k full signatures at the end of the period; Of
course, Alice can use an external storage unit to store intermediate state
information (e.g., messages, signatures, and public keys) for each transaction,
but she must send all k full signatures to Bob at the end of the period;
that is, the required RAM size depends on k. In particular, clients may only
have a device with an insufficient RAM, so that small memory requirement is
desirable.
For Bob, since he is required to receive and verify all full signatures at the
end of the period, the required RAM size also depends on k.

– In terms of computation for verification: Since k full signatures are sent by
Alice, Bob needs to perform verification algorithm k times individually at the
end of the period. Furthermore, Bob (shop) has many clients besides Alice,
and so he will be very busy to verify all full signatures given by several clients
at the end of the period.

– In terms of communication for sending signatures: At the end of the period,
Alice and Bob exchange all k full signatures. The network bandwidth of Bob
will be stringent at the end of the period since all clients send all their full
signatures at the almost same time.

The more frequent the transactions become (i.e., k and n become larger), the
more these costs cause the protocol to be impractical. Thus, it is desirable to
reduce these costs by accumulating full signatures, and we need an OFE protocol
to achieve it. Here, we call this special OFE accumulable OFE (AOFE).

Küpçü and Lysyanskaya [15] introduced an OFE protocol (called useful OFE)
as a partial solution. In their protocol, exchange of k items is solved by k times
repetition of cheap computations, and heavy computations are executed only
once within a period. However, if the resolution by the adjudicator is done at
the end of the period, Alice and Bob must send all unresolved signatures; and
thus, the memory problem remains.

1.2 This Work

We propose the first AOFE protocol. The main building block is a new primitive
called verifiably encrypted homomorphic signature scheme (VEHS). This paper
pioneers a new application of a homomorphic signature scheme (HS), that differs
from known applications involving network coding [16] and public computation
on authenticated data [17]. Our AOFE protocol is categorized as setup-free1 and
stand-alone,2 which are desirable properties [18].

Verifiably Encrypted Signatures. A typical construction of OFE is based on
a verifiably encrypted signature (VES) scheme such as [19–23]. The structure of
1 We say an OFE protocol is setup-free if the client does not need to contact the

adjudicator except when receiving and verifying the public key certificate of the
adjudicator.

2 We say an OFE protocol is stand-alone if the full signature is an ordinary signature.
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a VES scheme is such that a signer generates an encrypted signature ω, a verifier
can check the validity of ω but not decrypt it, and the adjudicator can decrypt
ω and output an ordinary signature σ.3 Thus, it is compatible with OFE when
replacing the signer with the client, the verifier with the shop, the encrypted
signature with the partial signature, and the ordinary signature with the full
signature. Dodis et al. [12] showed a generic construction of OFE from a VES
scheme.4 We basically follow this paradigm. However, if we simply apply this
paradigm, it seems not easy to achieve AOFE because ordinary VES schemes
do not support a mechanism to accumulate k full signatures. We solve the prob-
lem by using a special type of VES which has an accumulation functionality of
signatures.

Why Homomorphic Signatures? In order to construct a VES scheme with
such an accumulation functionality, a naive idea is to use aggregate signature
(AS) or multi-signature (MS). Originally, these signatures do not match the
situation of AOFE (i.e., accumulating full signatures of a signer) because AS
and MS are used to accumulate signatures of different signers. Thus, we need a
special AS or MS that works correctly and is still secure even if all signatures
are generated by the same signer. Though some sequential AS schemes [20,
21,25,26] can match this purpose, however, it is not clear whether such the
sequential aggregating property can be implemented over encrypted signatures.
Since Bellare et al. [27] showed that the BGLS AS [20] can be used without any
restriction when the signer’s public key is appended to each signed message, and
the aggregating property is preserved for encrypted signatures in the BGLS AS.
Also, history-free AS [28] can preserve the aggregating property due to history-
freeness. However, the BGLS AS and all known constructions of history-free
AS rely on random oracle (RO) heuristics, and therefore we may also require
a RO even if we can construct a VES based on such schemes. Although RO
model schemes have better performance in many cryptographic areas, there are
evidences to show the riskiness of schemes with security proofs only in the RO
model [29]. Though, Hohenberger et al. [30] propose a technique to remove ROs
with multi-linear maps and the technique could be used for the above ASs, there
is no known practical construction of multi-linear maps. From the above reasons,
we do not select AS or MS schemes to create (verifiably) encrypted signatures
according to the VES setting.
3 As an example, let us consider the Waters signature scheme [24] with public key

x = gα and secret key hα and the corresponding VES scheme [21]. Let σ = (σ1, σ2) =
(hα · H(m)r, gr) for random r be an ordinary signature. Let apk = y = gβ be the
adjudicator’s public key. Then, we define ω = (ω1, ω2, ω3) = (σ1 · yt, σ2, g

t) for
random t. The verfication of an encrypted signature checks if e(ω1, g) = e(h, x) ·
e(H(m), ω2) · e(y, ω3) or not.

4 Correctly speaking, they constructed OFE from EUF-CMA secure signature, IND-
CCA secure public-key encryption, and simulation-sound non-interactive zero-
knowledge proof system, which yield a VES scheme.
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We consider HS as a candidate for accumulating signatures. HS allows one to
compute linear combinations of given signatures with only public information.
The key observation here is that it is possible to accumulate homomorphic sig-
natures by linearly combining them, where messages are of special form so that
one can recover each message from a linear combination of them. Also, Alice
can accumulate signatures during the period so that she needs only small RAM
to compute an accumulated signature. Moreover, we can achieve homomorphic
property over encrypted signatures thanks to a homomorphic encryption such
as the ElGamal encryption. Therefore, HS could be a good candidate to attain
scalability for VES (and OFE also) in terms of the number of transactions k.

Our Contribution. In this paper, we propose a generic method to construct
an AOFE protocol based on a VEHS scheme, and also propose a concrete VEHS
scheme based on composite-order bilinear groups by using the dual-form signa-
ture technique [31,32]. By applying our AOFE protocol, we can achieve that any
computational costs of parties and communication complexity of the payment
round are constant in terms of k. Moreover, the required RAM space is also
constant in terms of k. We describe some technical details of this work.

Security Model of AOFE. We extend the model of OFE in the multi-user set-
ting [12] by introducing algorithms for accumulation of signatures and partial
signatures, Acc and PAcc, respectively. We consider three security requirements
for clients, shops, and the adjudicator, respectively. The security against clients
means that a client cannot produce valid partial signatures such that the veri-
fication of the full signature (derived from partial signatures) is not valid. The
security against shops means that a shop cannot produce a valid full signature
that the adjudicator does not give all ordinary signatures to the shop. The secu-
rity against the adjudicator means that the adjudicator cannot produce a valid
full signature for which the client has not given all partial signatures to the
adjudicator.

Security Model of VEHS. Formulating a reasonable security model for VEHS is
not a trivial matter, and there exists a subtle issue which is not captured by just
simply combining security models of VES and HS. Secure VEHS must satisfy
unforgeability and opacity : Unforgeability guarantees that no adversary can pro-
duce a valid encrypted signature which is not generated by the signer. Opacity
guarantees that no adversary can produce a valid ordinary signature which is
not generated by the adjudicator or the signer. Note that both unforgeability
and opacity must be relaxed in the VEHS setting because linear combinations
of valid signatures are not regarded as a forgery as they are in the HS setting.
Such a complicated situation does not occur with VES and HS. See Sect. 3 for
details.

Construction of VEHS. Several types of HS have been studied in the pioneering
works [33,34], for example, pairing-based constructions [16,17,35–38], lattice-
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based constructions [39,40], an RSA-based construction [41], a multi-source set-
ting [42], and a homomorphic message authentication code [43]. In this paper,
we use the composite-order pairing groups for the following technical reason; in
the security proof, we must construct a simulator (which solves a hard problem)
from an adversary of VEHS. As mentioned above, opacity captures the case
where the adversary might forge an ordinary signature of a linear combination
of the messages of which the adversary already obtains the encrypted signatures
and ordinary signatures. If we use known HS schemes in the prime-order pairing
groups, the simulator must guess which messages the adversary uses to forge.
However, there are exponentially many combinations of messages; thus, the sim-
ulator cannot work. (We will discuss this point in detail in the full version.)
On the other hand, if we use HS schemes in the composite-order pairing groups
such as the ALP12 signature [17], the simulator does not need to guess messages
thanks to the dual-form signature technique [31,32]. This technique allows the
simulator to proceed with the simulation while keeping the signing key as long
as possible. Fortunately, we can avoid the guessing problem by exploiting this
simulation.

According to the classical design principle of VES on the pairing groups,
we extend the ALP12 signature to the VES setting; that is, an encrypted sig-
nature ω is obtained by encrypting an ordinary signature σ with the ElGamal
encryption. We prove that our VEHS scheme is secure in the proposed model
under assumptions in [17,44] without ROs. Though the original security proof
of the ALP12 signature does not consider opacity, we show that the special sit-
uation of opacity is also solved by applying the dual-form signature technique.
We finally note that encrypted signatures can also be accumulated thanks to the
homomorphism of the ElGamal encryption.

AOFE from VEHS. The design is more complicated than constructing OFE
from VES. There are two challenging problems; one is how to encode messages,
and the other is how to handle sessions.

For simplicity, we begin with a slightly restricted setting that a single kind
of items is sold with a single rate in a period (e.g., the on-line music store which
sells singles). This setting helps to understand the essential design principle of
our construction. After that, we show an extension to the general setting (i.e.,
items and rates are variable).

For the first problem, we use a vector-representation of the transaction flag
as a message. For example, unit vectors (1, 0, . . . , 0) and (0, 1, 0, . . . , 0) ∈ Z

n
N are

signed for the first and second transactions in a period, respectively, and the
accumulated signature corresponds to (1, 1, 0, . . . , 0), where n is the maximum
number of transactions in a period and N is an integer. Such an encoded vector
is called a properly augmented vector [37,45]. Bob can cash the accumulated
signature as the full signature according to the Hamming weight of the cor-
responding message: For example, Alice’s signature on (1, 1, 0, . . . , 0) indicates
that Alice buys two items in the period.) This prevents reuse of a valid signature
because reuses can be detected by checking if the message vector contains values
other than 0 and 1. Attacks except for reuse attacks are prevented thanks to
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the unforgeability and opacity of the underlying VEHS. Note that such a mes-
sage representation does not contain information of items because the amount of
money of the item is fixed, and such information is contained in a file identifier.

For the second problem, we use a file identifier τ which is contained in the
models of HS and VEHS inherently. τ is used to control the range of linear
combination operations that are allowed. If τ is the same for two signatures,
signatures can be accumulated. Otherwise, signatures cannot be accumulated.
In our AOFE protocol, τ contains identities of a client and a shop (e.g., Alice and
Bob), the name and amount of money of an item, and a period of time. Hence,
accumulation is possible only for transactions between Alice and Bob for the
item in the period, and is prevented for other cases. This ensures security in the
multi-user setting, as in [12]. Since a shop does transactions with multiple clients
in the same period, security in the multi-user setting is a realistic situation. Note
that it is known that security in the single-user setting does not imply security in
the multi-user setting [12]. Additionally, we consider more general settings such
as when Alice can choose an item from multiple items with a specific amount of
money for each transaction, and show a concrete construction.

Our VEHS scheme has O(n) size of public parameters where n is the maxi-
mum number of transactions in a period. Hence, Alice and Bob need O(n) size
of storages to store public parameters. As mentioned in Sect. 1.1, Alice uses her
RAM space by taking necessary information out from the storage. In our instan-
tiation, computation of Alice in each transaction and the end of a period only
needs a constant number of contents of public parameters (i.e., each signing needs
one of {hi}i∈[n]). For example, a message (1, 1, . . . , 0) ∈ Z

n
N will be mapped to a

single group element h1h2. Thus, our instantiation certainly solves the memory
problem. We show an implementation result of our AOFE protocol based on
our VEHS scheme in the full version. Though schemes in the composite-order
pairing groups usually require a high computational cost, our implementation
result shows that our VEHS scheme is efficient enough for practical use.

We also give a way to extend the restricted setting to more general setting
such that Alice can choose an item from multiple items with distinct amount
of money for each transaction. To deal with distinct values we add a message
mi (for the i-th transaction) representing an amount of money and name of
an item to the message vector. We extend the properly augmented vector to
(0, . . . , 1, . . . , 0, 0, . . . ,mi, . . . , 0) where the last half elements are added for con-
taining mi. The first half elements guarantee secure accumulation as our con-
struction with the restricted setting. In the general setting, file identifier τ just
contains identities of a client and a shop (e.g., Alice and Bob), and a period of
time because the name and the amount of money may change for each period.

Organization. We define AOFE and VEHS in Sects. 2 and 3, respectively.
We construct AOFE from VEHS in Sect. 4. We finally construct VEHS in the
composite-order pairing groups in Sect. 5.
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2 Definitions of Accumulable Optimistic Fair Exchange

In this section, we define the syntax of AOFE and its security requirements.
An AOFE protocol involves four kinds of parties, clients, shops, an adjudi-

cator, and a trusted party. (We here divide a TTP into an adjudicator and a
trusted party that generates only a public parameter.) Roughly, an AOFE pro-
tocol is executed as follows: A trusted party generates a public parameter which
will be used in every participants in the protocol. Clients and the adjudicator
generate their/its key pairs. A client and a shop run the protocol as follows: First,
for i-th session of a period, the client generates a partial signature ω(i) and an
ordinary signature σ(i) on a message mi and sends (ω(i),mi) to the shop. The
client can also accumulate messages and ordinary signatures to an accumulated
message and an accumulated ordinary signature in order to reduce the memory
cost. Then, the shop verifies ω(i) and sends an item corresponding to mi to the
client. The shop can also accumulate messages and partial signatures to an accu-
mulated message and an accumulated partial signature in order to reduce the
memory cost. In the end of the period, the client sends the accumulated ordinary
signature as the full signature to the shop. The shop verifies the full signature,
and he can cash a check if the full signature is correct. Otherwise, the shop asks
the resolution to the adjudicator by sending the accumulated message and the
accumulated partial signature. The adjudicator verifies them and produces the
full signature from the accumulated partial signature.

We note that we formulate a model of AOFE by extending the model of OFE
in the multi-user setting [12].

First, we define the syntax of AOFE.

Definition 2.1 (Syntax of AOFE)

OFE.Setup(1κ): This probabilistic algorithm is run by the trusted third party.
It takes security parameter 1κ as input and outputs public parameters pp.
Hereafter, we omit the public parameter pp from the arity of algorithms.

OFE.AdjGen(1κ): This probabilistic algorithm takes as input security parameter
1κ and outputs a pair of keys for an adjudicator (apk, ask).

OFE.Gen(1κ): This probabilistic algorithm takes as input security parameter 1κ,
and outputs a verification/signing key pair (vkj , skj) for a user j.

OFE.Sign(skj , apk,m, aux): This probabilistic algorithm takes as input signing
key skj, apk,5 message m to be signed and some session information aux,6

and outputs an ordinary signature σ.
OFE.Vrfy(vkj , apk,m, σ, aux): This deterministic algorithm takes as input vkj,

apk, m, σ and aux, and outputs 1 if σ is valid, and 0 otherwise.
PSign(skj , apk,m, aux): This probabilistic algorithm takes as input skj, apk, m

and aux, and outputs a partial signature ω.
PVrfy(vkj , apk,m, ω, aux): This deterministic algorithm takes as input vkj, apk,

m, ω and aux, and outputs 1 if ω is valid, and 0 otherwise.
5 apk is not always used. However, since the definition of OFE.Sign in OFE [12] contains
apk, we adopt the same formulation.

6 For example, session information contain the current period, and identities of parties.
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Acc(vkj , apk, {mi, σ
(i)}�

i=1, aux): This probabilistic algorithm takes as input vkj,
apk, {mi, σ

(i)} and aux, where σ(i) is an ordinary signature on mi under vkj

and apk, and outputs an ordinary signature σ on
∑�

i=1 mi under vkj and
apk.

PAcc(vkj , apk, {mi, ω
(i)}�

i=1, aux): This probabilistic algorithm takes as input vk,
apk, {mi, ω

(i)} and aux, where ω(i) is a partial signature on mi under vkj

and apk, and outputs a partial signature ω on
∑�

i=1 mi under vkj and apk.
Res(ask, apk, vkj ,m, ω, aux): This (possibly) probabilistic algorithm takes as input

ask, apk, vkj, m, ω and aux, and outputs an ordinary signature σ on m under
vkj if PVrfy(vkj , apk,m, ω, aux) = 1.

Correctness of AOFE must guarantee that an accumulated signature from
valid partial signatures is always acceptable as well as correctness of ordinary
OFE.

Definition 2.2 (Correctness). We say that AOFE satisfies correctness if the
following conditions are satisfied: For all κ ∈ N, all pp ← OFE.Setup(1κ), all
(apk, ask) ← OFE.AdjGen(1κ), all (vkj , skj) ← OFE.Gen(1κ), all � ∈ N, all
m,mi ∈ M for i = 1, . . . , �, and all aux ∈ {0, 1}∗,

1. OFE.Vrfy
(
vkj , apk,m,OFE.Sign(skj , apk,m, aux), aux

)
= 1,

2. OFE.Vrfy
(
vkj , apk,

∑�
i=1 mi,Acc(vkj , apk, {mi,OFE.Sign(skj , apk,mi,

aux)}�
i=1, aux), aux

)
= 1,

3. PVrfy
(
vkj , apk,m,PSign(skj , apk,m, aux), aux

)
= 1,

4. PVrfy
(
vkj ,apk,

∑�
i=1 mi,PAcc(vkj , apk, {mi,PSign(skj , apk,mi, aux)}�

i=1, aux),
aux

)
= 1,

5. OFE.Vrfy
(
vkj ,apk,m,Res(ask, apk, vkj ,m,PSign(skj , apk,m, aux), aux), aux

)
=1,

6. and OFE.Vrfy
(
vkj ,apk,

∑�
i=1 mi,Res(ask,apk, vkj ,

∑�
i=1 mi,PAcc(vkj ,apk, {mi,

PSign(skj , apk,mi, aux)}�
i=1, aux), aux), aux

)
= 1.

The ambiguity property guarantees that the resolved signature from a par-
tial signature is indistinguishable from the real signature corresponding to the
partial signature. In practice, the ambiguity property is necessary to hide if the
transaction has some trouble between a client and a shop. We note that the
client who causes a trouble in a transaction with a shop should still keep to par-
ticipate with a transaction with other shops as in the real world and the shop
will hope to avoid that the bank knows if the ordinary signature is obtained from
the adjudicator, on cashing a check.

Definition 2.3 (Ambiguity [46]). We say that AOFE satisfies ambiguity if
any resolved signature Res(ask, apk, vkj ,m, PSign(skj , apk,m, aux), aux) (resp.
Res(ask, apk, vkj ,

∑�
i=1 mi,PAcc(vkj , apk, {mi, PSign(skj ,apk,mi, aux)}�

i=1, aux),
aux)) is computationally indistinguishable from the real signature OFE.Sign(skj ,
apk,m, aux) (resp. Acc(vkj , apk, {mi,OFE.Sign(skj , apk,mi, aux)}�

i=1, aux)).

Next, we consider the security model for AOFE. The model contains three
requirements: security against clients, security against shops, and security
against the adjudicator.



Accumulable Optimistic Fair Exchange 201

The security against clients means that a client cannot produce valid partial
signatures from which the verification of the full signature derived is not valid.

Definition 2.4 (Security against Clients). We say that an AOFE scheme
satisfies security against clients if no PPT adversary E has a non-negligible
advantage (as a function of κ) in the following game:

1. Adversary E is given pp and apk, where pp ← OFE.Setup(1κ) and (apk, ask) ←
OFE.AdjGen(1κ).

2. E is allowed to issue queries to the following oracle:
Resolution oracle: This oracle receives verification key vkj, message m,

partial signature ω and aux. It verifies PVrfy(vkj , apk,m, ω, aux) = 1,
and returns ordinary signature σ ← Res(ask, apk, vkj ,m, ω, aux) to the
adversary.

3. Finally, E outputs ({m∗
i , ω

(i)∗}�
i=1, vkE, aux

∗). We say that E wins if for i = 1
to �, PVrfy(vkE, apk, m∗

i , ω
(i)∗, aux∗) = 1, σ(i)∗ ← Res(ask, apk, vkE,m∗

i , ω
(i)∗,

aux∗) and OFE.Vrfy(vkE, apk,
∑�

i=1 m∗
i , Acc(vkE, apk, {m∗

i , σ
(i)∗}�

i=1, aux
∗),

aux∗) = 0.

The advantage of E is defined as AdvOFE.Client
E (κ) := Pr[E wins].

E can select arbitrary verification key vkE for a client to attack. Thus, this def-
inition is for the multi-user setting as [12], and captures the situation that E
generates vkE without obeying OFE.Gen (i.e., there exists no corresponding sign-
ing key skE).

The security against shops means that no shop can produce a valid full
signature unless the shop obtains all ordinary signatures corresponding to the
full signature.

Definition 2.5 (Security against Shops). We say that an AOFE scheme sat-
isfies security against shops if no PPT adversary E has a non-negligible advan-
tage (as a function of κ) in the following game:

1. Adversary E is given pp, apk and vkA, where pp ← OFE.Setup(1κ), (apk,
ask) ← OFE.AdjGen(1κ) and (vkA, skA) ← OFE.Gen(1κ) for the target client
A. Tables Tpsig and Tres are initialized as ∅.

2. E is allowed to issue queries to the following oracles:
Partial signing oracle: This oracle receives message m and aux. It returns

partial signature ω ← PSign(skA, apk,m, aux) to the adversary, and
stores ((m, aux), ω) in table Tpsig .

Resolution oracle: This oracle receives verification key vkj, message m,
partial signature ω and aux. It verifies PVrfy(vkj , apk,m, ω, aux) = 1,
returns ordinary signature σ ← Res(ask, apk, vkj ,m, ω, aux) to the adver-
sary, and stores ((vkj ,m, ω, aux), σ) in table Tres .

3. Finally, E outputs (m∗, σ∗, aux∗). We say that E wins if OFE.Vrfy(vkA, apk,
m∗, σ∗, aux∗) = 1, and either of the following holds:
– aux∗ �= aux for any entry ((·, aux), ·) ∈ Tpsig and ((·, ·, ·, aux), ·) ∈ Tres .
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– m∗ �=
∑�

i=1 m∗
i for all sets {((m∗

i , aux
∗), ·)}�

i=1 ⊆ Tpsig .
– m∗ �=

∑�
i=1 m∗

i for all sets {((vkA,m∗
i , ·, aux∗), ·)}�

i=1 ⊆ Tres .

The advantage of E is defined as AdvOFE.Shop
E (κ) := Pr[E wins].

As in the definition of OFE [12], the target client A is chosen at the beginning of
the game. E can pose the target message for arbitrary verification key vkj except
vkA to the resolution oracle. Thus, this definition is for the multi-user setting
as [12]. That means, E can arbitrarily interact with all clients and establish
sessions with them except the target session. Note that E does not need the
ordinary signing oracle because it can be simulated by the combination of the
partial signing oracle and the resolution oracle.

The security against the adjudicator means that no adjudicator can produce
a valid full signature unless the adjudicator can generate its public key malignly
and obtain all partial signatures corresponding to the full signature.

Definition 2.6 (Security against Adjudicator). We say that an AOFE
scheme satisfies security against the adjudicator if no PPT adversary E has
a non-negligible advantage (as a function of κ) in the following game:

1. Adversary E is given pp, and vkA, where pp ← OFE.Setup(1κ) and (vkA,
skA) ← OFE.Gen(1κ) for the target client A. E outputs apk∗. A table Tpsig is
initialized as ∅.

2. E is allowed to issue queries to the following oracle:
Partial signing oracle: This oracle receives message m and aux. It returns

partial signature ω ← PSign(skA, apk∗,m, aux) to the adversary, and
stores ((m, aux), ω) in table Tpsig .

3. Finally, E outputs (m∗, σ∗, aux∗). We say that E wins if OFE.Vrfy(vkA, apk∗,
m∗, σ∗, aux∗) = 1, and either of the following holds:
– aux∗ �= aux for any entry ((·, aux), ·) ∈ Tpsig .
– m∗ �=

∑�
i=1 m∗

i for all sets {((m∗
i , aux

∗), ·)}�
i=1 ⊆ Tpsig .

The advantage of E is defined as AdvOFE.Adj
E (κ) := Pr[E wins].

As in the definition of OFE [12], the target client A is chosen at the beginning
of the game. Note that E does not need the resolution oracle because E can have
ask∗ corresponding to apk∗.

We additionally note that if the trusted party, who generates pp ← OFE.Setup
(1κ), colluded with an adjudicator, the adjudicator could forge a signature.
Indeed, our AOFE scheme built upon a VEHS scheme in Sect. 5 is vulnerable to
this attack.7

In this paper, we focus on the basic security properties as in [12]. However,
additional properties such as abuse-freeness [47], non-repudiation [48], and timely
termination [9] can be also considered by the same way as previous works.

7 Consider the malicious adjudicator knowing the discrete logarithm of hi, logg1
(hi).
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3 Definitions of Verifiably Encrypted Homomorphic
Signature

In this section, we explain the syntax of VEHS and its security definitions. A
VEHS scheme VEHS consists of the following ten algorithms. Let the underlying
message space M be represented as M := Rn for some integer n and ring R, and
let T be a file-identifier space.

Definition 3.1 (Syntax of VEHS). We here describe the syntax of VEHS.

Setup(1κ, 1n): This probabilistic algorithm is run by the trusted third party. It
takes security parameter 1κ and the length of vectors to be signed 1n as input
and outputs public parameters pp. Hereafter, we omit the public parameter
pp from the arity of algorithms.

AdjGen(1κ): This probabilistic algorithm takes as input security parameter 1κ

and outputs a pair of keys for an adjudicator (apk, ask).
Gen(1κ): This probabilistic algorithm takes as input security parameter 1κ, and

outputs a verification/signing key pair for a signer (vk, sk).
Sign(sk, τ,v): This probabilistic algorithm takes as input a signing key sk, a file

identifier τ ∈ T, and a vector v ∈ Z
n
p to be signed, and outputs a signature σ.

Vrfy(vk, τ,v, σ): This deterministic algorithm takes as input vk, τ , v, and σ,
and outputs 1 if σ is valid, and 0 otherwise.

Create(sk, apk, τ,v): This probabilistic algorithm takes as input sk, apk, τ , and
v, and outputs a VES ω.

VesVrfy(apk, vk, τ,v, ω): This deterministic algorithm takes as input apk, vk, τ ,
v, and ω, and outputs 1 if ω is valid, and 0 otherwise.

Derive(vk, τ, {γi,vi, σ
(i)}�

i=1): This probabilistic algorithm takes as input vk, τ ,
and {γi,vi, σ(i)}, where γi is a weight and σ(i) is a signature on vi with τ

under vk, and outputs a signature σ on
∑�

i=1 γivi with τ under vk.
VesDerive(vk, apk, τ, {γi,vi, ω

(i)}�
i=1): This probabilistic algorithm takes as input

vk, τ , and {γi,vi, ω
(i)}, where γi is a weight and ω(i) is a VES on vi with τ

under vk and apk, and outputs a VES ω on
∑�

i=1 γivi with τ under vk and
apk.

Adj(ask, apk, vk, ω, τ,v): This (possibly) probabilistic algorithm takes as input
(ask, apk, vk, ω, τ , v), and outputs an ordinary signature σ on v with τ
under vk if VesVrfy(apk, vk, ω, τ,v) = 1.

Let us define correctness of VEHS.

Definition 3.2 (Correctness). We say a VEHS scheme VEHS is correct if the
following conditions are satisfied: For all κ, n ∈ N, all (apk, ask) ← AdjGen(1κ),
all (vk, sk) ← Gen(1κ), all τ ∈ T and v ∈ M, and all � ∈ N, we require the
following conditions:

1. Vrfy
(
vk, τ,v,Sign(sk, τ,v)

)
= 1.

2. Vrfy
(
vk, τ,

∑�
i=1 γivi,Derive(vk, τ, {γi,vi, σ

(i)}�
i=1)

)
= 1 if all Vrfy(vk, τ,vi,

σ(i)) = 1.
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3. VesVrfy
(
apk, vk, τ,v,Create(sk, apk, τ,v)

)
= 1.

4. VesVrfy
(
apk, vk, τ,

∑�
i=1 γivi,VesDerive(vk, apk, τ, {γi,vi, ω

(i)}�
i=1)

)
= 1

if all VesVrfy(apk, vk, τ,vi, ω
(i)) = 1.

We can define additional property resolution independence of VEHS as that
in the context of VES [49]. Roughly speaking, resolution independence implies
that an ordinal signature and resolved signature have the same distribution.
Since we omit the detail of proofs, we defer the definition of resolution indepen-
dence to the full version.

We next extend extractability of VES [22] to that of VEHS. Roughly speaking,
extractability implies that a signature extracted from a valid VES via the Adj
algorithm is always valid. Again, we omit the formal defintion of extractability
due to page limit.

We define the two security notions unforgeability and opacity. We consult the
security definitions of [17] (Definition 12: unforgeability of a linearly homomor-
phic signature scheme) and [23] (Definition 4: unforgeability and opacity of a
VES scheme). Since VEHS inherits both properties of homomorphic signatures
and VESs, we need to keep in mind the security requirements in both contexts.

Before giving definitions, we briefly review unforgeability and opacity of a
VES scheme. In the unforgeability game defined in [23], an adversary A is allowed
to obtain VESs from the creation oracle which returns a VES for a queried
message, and is also allowed to access the adjudication oracle which extracts
and returns a signature for a queried message/VES pair. We strengthen the
adversary by allowing it to be a malicious adjudicator. By this strengthening,
unforgeability guarantees that even malicious adjudicator cannot produce a valid
VES ω∗ which is not generated by the creation oracle. Opacity is also defined
under the same design principle, where no adversary can produce a valid ordinary
signature σ∗ which is not generated by the adjudication oracle.

In both definitions, we need to modify the winning condition of A in the VEHS
context because of the homomorphic property. Therefore, we adopt the winning
condition of the unforgeability game of [17]. In their unforgeability game, we say
that A wins if A can produce a valid signature on a message, where the message
does not belong to the subspace spanned by all queried messages, or they have
a different file identifier from those previously obtained.

Definition 3.3 (Unforgeability). A VEHS scheme VEHS is said to be
unforgeable if no PPT adversary A has a non-negligible advantage (as a function
of κ and n) in the following game:

1. C runs pp ← Setup(1κ), initializes a table Tves ← ∅, and gives pp to the
adversary. A chooses apk∗, and sends it to the challenger C. C runs (vk, sk) ←
Gen(1κ), and sends vk to A.

2. A is allowed to issue queries to the following oracle:
Creation oracle: This oracle receives a file identifier τ ∈ T and an n-

dimensional vector v ∈ Rn. It computes ω ← Create(sk, apk∗, τ,v), stores
((τ,v), ω) in the table Tves , and returns ω to the adversary.
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3. Finally, A outputs a file identifier τ∗, a vector v∗, and a signature σ∗. We
say that A wins if (τ∗,v∗) ∈ M and Vrfy(vk, τ∗,v∗, σ∗) = 1 hold, and either
of the following holds:
Class I: τ∗ �= τ for any entry ((τ, ·), ·) ∈ Tves and v∗ �= 0.
Class II: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves , and v∗ �∈

span(v1, . . . ,vk), where v1, . . . ,vk are vectors which appeared in Tves
such that ((τ∗,vj), ·) ∈ Tves for all j ∈ [k].

The advantage of A is defined as AdvForgeA (κ, n) := Pr[A wins].

Definition 3.4 (Opacity). A VEHS scheme VEHS is said to be opaque if no
PPT adversary A has a non-negligible advantage (as a function of κ and n) in
the following game:

1. C runs pp ← Setup(1κ), initializes two tables Tves , Tsig ← ∅, and gives pp to
the adversary. C runs (apk, ask) ← AdjGen(1κ) and (vk, sk) ← Gen(1κ), and
sends apk and vk to A.

2. A is allowed to issue queries to the following two oracles:
Creation oracle: This oracle is the same as that of the unforgeability game.
Adjudication oracle: This oracle receives a file identifier τ ∈ T, an n-

dimensional vector y ∈ Rn, and a VES ω. If VesVrfy(vk, apk, τ,y, ω) →
0, then it returns ⊥. Otherwise, it computes σ ← Adj(ask, apk, vk, ω, τ,y),
stores ((τ,y), σ) in the table Tsig , and returns σ to the adversary.

3. Finally, A outputs an identifier τ∗, a vector y∗, and a signature σ∗. We say
that A wins if (τ∗,y∗) ∈ M, y∗ �= 0, and Vrfy(vk, τ∗,y∗, σ∗) = 1 hold, and
either of the following holds:
Class I: τ∗ �= τ for any entry ((τ, ·), ·) ∈ Tves ∪ Tsig .
Class II: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves ∪ Tsig , and

y∗ �∈ span(v1, . . . ,vk), where v1, . . . ,vk are vectors which appeared in
Tves with τ∗; that is, ((τ∗,vj), ·) ∈ Tves for all j ∈ [k].

Class III: There exists τ such that τ∗ = τ and ((τ, ·), ·) ∈ Tves ∪ Tsig ,
y∗ ∈ span(v1, . . . ,vk), and y∗ �∈ span(y1, . . . ,yl), where v1, . . . ,vk are
vectors which appeared in Tves such that ((τ∗,vj), ·) ∈ Tves for all j ∈
[k] and y1, . . . ,yl are vectors which appeared in Tsig with τ∗, that is,
((τ∗,yj), ·) ∈ Tsig for all j ∈ [l].

The advantage of A is defined as AdvOpac
A (κ, n) := Pr[A wins].

4 Constructions of Accumulable Optimistic Fair
Exchange

4.1 Simple Construction and Its Limitation

First, we consider a simple solution toward our goal, and explain its limitations.
Let Alice be a client and Bob be a shop. We suppose that Alice and Bob do
transactions k times in a period. The simple construction is based on the con-
ventional VES with simple message aggregation (whereas AOFE is based on the
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VES aggregation). That is, in the i-th transaction, Alice computes a VES on a
message m1|| · · · ||mi, say ω(i), and sends (mi, ω

(i)) to Bob as a contract. Then,
at the finish, Alice sends a full signature on the message m1|| · · · ||mk, which is
used as the check for all transactions in this period. The adjudicator verifies a
transcript, decrypts a VES ω(k), and returns σ(k), Alice’s full signature on the
message m1|| · · · ||mk, to Bob.

The weak point of this solution is that it does not support history-free accu-
mulation. This property is desirable for a network with out-of-order delivery:
Even Alice sends (m1, ω

(1)) and (m2, ω
(2)), Bob may receive (m2, ω

(2)) at first,
and later he receives (m1, ω

(1)). Then, Bob cannot verify the validity of the VES
(m2, ω

(2)), because he does not know m1. Therefore, Bob cannot return goods
and Alice will be annoyed. That is, the simple construction requires that Bob
sequentially verifies encrypted signatures.

As another example, if Alice sends (mi, ω
(i)), where ω(i) is a VES on mi,

then this problem seems to be solved. However, such a construction is inefficient
as we already discussed in the introduction.

Therefore, the approach based on ordinary VES does not fully satisfy our
definition of security; and thus, we must consider another approach (i.e., an
approach based on VEHS).

4.2 Generic Construction of AOFE from VEHS

Here, we show our generic construction of AOFE (OFE.Setup,OFE.AdjGen,
OFE.Gen, OFE.Sign,OFE.Vrfy,PSign,PVrfy,Acc,PAcc,Res) from VEHS (Setup,
AdjGen, Gen, Sign, Vrfy, Create, VesVrfy, Derive, VesDerive, Adj) in the restricted
setting (i.e., the name and the cost of an item is fixed in a period). Compared to
the simple construction, our generic construction satisfies the ambiguity prop-
erty, and allows Bob to verify VESs in parallel (or regardless of the order).

Recall that a file identifier τ can be an arbitrary string in VEHS due to our
security definitions for VEHS in Sect. 3. We use it to designate identities of a
client and a shop, the name and amount of money of an item, and a certain
period, e.g., τ := H(Alice||Bob||Music||$10||May), where H is a collision resis-
tance hash function. τ is set as session information aux. We suppose that Alice
and Bob do transactions k times in a period, where transactions occur at most
n times, i.e., k ≤ n. Let M = Rn be a message space of VEHS with ring R and
integer n. Let vi ∈ Rn be a unit vector whose i-th element is 1 and the other
elements are 0, that is, vi = (0, . . . , 0, 1, 0, . . . , 0). In the i-th phase, a message
is defined as a properly augmented vector vi

Setup Phase

1. OFE.Setup(1κ): pp←Setup(1κ, 1n) is provided to all users and the adjudicator.
2. OFE.AdjGen(1κ): The adjudicator generates (apk, ask) ← AdjGen(1κ).
3. OFE.Gen(1κ): User i generates (vki, ski) ← Gen(1κ).8

8 Because key generation algorithms for a signer and the adjudicator are independent
in VEHS, our AOFE protocol is setup-free.
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Transaction Phase (For i = 1 to k). Alice’s key is (vkA, skA). Identities of Alice
and Bob, the name and amount of money of the item, and the period of the
transaction are specified by τ . Initially, Alice sets v = (0, . . . , 0) and σ = ⊥, and
Bob sets v = (0, . . . , 0) and ω = ⊥.

1. OFE.Sign(skA, apk,vi, τ): Alice generates signature σ(i) ← Sign(skA, τ,vi) as
the ordinary signature.

2. Acc(vkA, apk, {(v, σ), (vi, σ
(i))}, τ): If i = 1, then Alice sets v := v1 and σ :=

σ(1). Otherwise, Alice updates v ← v + vi, and σ ← Derive(vkA, τ, {(1,v, σ),
(1,vi, σ

(i))}).9

3. PSign(skA, apk,vi, τ): Alice generates VES ω(i) ← Create(skA, apk, τ,vi) as
the partial signature. Alice sends (ω(i),vi) to Bob as a contract.

4. PVrfy(vkA, apk,vi, ω
(i), τ): Bob verifies that vi is a unit vector (

i−1
︷ ︸︸ ︷
0, . . . , 0, 1,

0, . . . , 0), and VesVrfy(apk, vkA, τ,vi, ω
(i)) = 1. If so, Bob sends the item to

Alice.
5. PAcc(vkA, apk, {(v, ω), (vi, ω

(i))}, τ): If i = 1, then Bob sets v := v1 and
ω := ω(1). Otherwise, Bob updates v ← v+vi, and ω ← VesDerive(vkA, apk, τ,
{(1,v, ω), (1,vi, ω

(i))}).10

Check Phase (The end of the period)

1. Alice sends σ as the full signature as a check.11

2. OFE.Vrfy(vkA, apk,v, σ, τ): Bob verifies that v has the form (

k
︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0),

and Vrfy(vkA, τ,v, σ) = 1. If so, Bob can cash a check with σ.
3. Res(ask, apk, vkA,v, ω, τ): If OFE.Vrfy(vkA, apk,v, σ, τ) = 0 or Bob has not

received the full signature by the end of the period, Bob sends (v, ω) to the

adjudicator. The adjudicator verifies that both v has the form (

k
︷ ︸︸ ︷
1, . . . , 1, 0,

. . . , 0), and VesVrfy(apk, vkA, τ,v, ω) = 1. Then, the adjudicator runs σ ←
Adj(ask, apk, vkA, ω, τ,v), and sends σ to Bob.

Correctness and ambiguity of our AOFE protocol are trivially derived from
correctness and resolution independence of VEHS; and thus, we omit to prove it.

Note that Bob seems to be able to choose the weight values, and can get
a weighted signature from the adjudicator that might not be agreed by Alice.
However, this problem does not occur by syntax of messages: the adjudicator
verifies the validity of the received sum of VESs by checking the form of v in the
step 3 of the Check phase. The adjudicator refuses the malformed weight even
if Bob chooses the invalid ones: for example, the adjudicator rejects a message
9 Then, Alice needs to store just one message and one ordinary signature in her mem-

ory during a transaction period.
10 Then, Bob also needs to store just one message and one partial signature in his

memory during a transaction period.
11 Since the full signature is also an ordinary signature, our protocol is stand-alone.
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v = (2, 1, 1, 0, . . . , 0). Moreover, unforgeability of VEHS guarantees that Bob
cannot forge any partial signature of a message vector that the i-th value is 1
when the i-th transaction between Alice and Bob does not occur.

4.3 Security

Due to page limits, we defer the proofs of Theorems 4.1, 4.2, and 4.3 to the full
version. We only comment intuition.

Theorem 4.1 (Security against Clients). Our AOFE protocol is secure
against clients if the underlying VEHS scheme is extractable.

Since the client cannot forge a valid encrypted signature such that the corre-
sponding ordinary signature is not valid because of extractability of the under-
lying VEHS, this property is guaranteed.

Theorem 4.2 (Security against Shops). Our AOFE protocol is secure
against shops if the underlying VEHS scheme is opaque and resolution inde-
pendent.

Since the shop cannot forge a valid full signature without knowing one of corre-
sponding ordinary signatures because of opacity of the underlying VEHS, this
property is guaranteed. Also, we need resolution independence to simulate the
resolution oracle.

Theorem 4.3 (Security against Adjudicator). OurAOFEprotocol is secure
against the adjudicator if the underlying VEHS scheme is unforgeable.

Since the adjudicator cannot forge both a valid encrypted signature and the cor-
responding valid ordinary signature without knowing the signing key of the client
because of unforgeability of the underlying VEHS, this property is guaranteed.

4.4 Extension to General Setting

The above AOFE protocol only supports the case in which the name and cost
of an item in a period are fixed. This protocol covers a situation where Alice
frequently buys a certain kind of product from Bob at a flat rate (e.g., an online
music service sells individual songs at the same price, and a client buys songs
multiple times in a month). Here, we consider the general setting where each
item has a distinct amount of money, and Alice can choose an arbitrary item in
each transaction. We provide a key idea to extend our basic AOFE protocol into
general setting, and the details of the extended AOFE protocol and its security
analysis appear in the full version of this paper.

On choosing an item, Alice must include the name and cost of the item in the
message field instead of in the file identifier. That is, we add a message mi (e.g.,
H(Music||$10)) to the message vector vi as (vi||mivi) = (0, . . . , 0, 1, 0, . . . , 0,
mi, 0, . . . , 0) ∈ R2n, and the file identifier just designates the identities of a client
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and a shop, and a period (e.g., τ := H(Alice||Bob||May)), where H is a collision
resistance hash function. Thus, at the end of the period, the accumulated message
vector v is (1, . . . , 1, 0, . . . , 0,m1, . . . , mk, 0, . . . , 0). As the restricted setting, if
Bob tries to choose the weight values, and to get a weighted signature from the
adjudicator that might not be agreed by Alice, it is prevented by checking the
form of the first k elements of v. Thus, the security of the construction in the
general setting can be proved in the same way as the restricted setting.

5 Construction of Verifiably Encrypted Homomorphic
Signature

We first give the definition of bilinear groups. We then propose our VEHS
scheme.

5.1 Bilinear Groups with Composite Order

For a set X and an element x ∈ X, x ←$ X denotes x is chosen uniformly at
random from X.

Let us recall the property of composite-order pairing groups. Let (G,GT ) be a
bilinear group of composite order N = p1p2p3, let e : G×G → GT be a bilinear
map, and let G be a group generator, where G with the security parameter κ
outputs (G,GT , e,N = p1p2p3). For i, j ∈ {1, 2, 3}, let Gi denote the subgroup
of G of the order pi, and Gi,j (i �= j) denote the subgroup G of the order pipj . We
note that “orthogonality” of subgroups is as follows. For all gi ∈ Gi and hj ∈ Gj

where i, j ∈ {1, 2, 3} and i �= j, e(gi, hj) = 1T holds. Here, 1T is the unit of GT .
This property is applied in our verification algorithms such that elements of G3

contained in signatures/VESs are canceled out by pairing computations.
In the proposed scheme, we require that algorithms except for Setup randomly

choose an element from the subgroups of G without knowing the corresponding
orders. To do so, generators of subgroups (g ∈ G1 and Xp3 ∈ G3 in the scheme)
are included in pp. That is, algorithms just choose a random value r ∈ ZN , and
compute its exponentiation, e.g., u := gr and R3 = Xr

p3
, and so on. We simply

denote these procedures as u ←$ G1 and R3 ←$ G3, respectively.

Assumptions. We will employ the following assumptions in the literature in
order to prove the security. Due to the space limit, we informally introduce the
assumptions. For strict definitions, see the papers [17,44] or the full version of
this paper. We note that they are hard in the generic group model.

Assumption LW1’ [44]: Let g ←$ G1, X3 ←$ G3, Tb ←$ G1,2, and T1−b ←$

G1 for b ←$ {0, 1}. Given (g,X3, T0, T1), it is infeasible to decide b.12
Assumption LW2 [44]: Let g,X1 ←$ G1, X2, Y2 ←$ G2, Y3, Z3 ←$ G3, and

T ←$ G. Given (g,X1X2, Z3, Y2Y3) and T , it is infeasible to decide if T ←$ G

or T ←$ G1,3.
12 In the original assumption LW1 [44], given g ←$ G1, X3 ←$ G3, and T ∈ G, it is

infeasible to decide if T ←$ G1 or T ←$ G1,2.
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Assumption ALP3 [17]: Let g, f, gξ,X1 ←$ G1 where ξ ←$ ZN , X2, Y2, Z2 ←$

G2, and X3, Y3, Z3 ←$ G3. Given (g, f, gξ,X1X2,X3, Y2Y3) and T , it is infea-
sible to decide if T = fξZ3 or fξZ2Z3.

Assumption ALP4 [17]: Let g ←$ G1, X2, Y2, Z2 ←$ G2, X3 ←$ G3, and
a, b, c ←$ ZN . Given (g, ga, gb, gabX2,X3, g

cY2, Z2), it is infeasible to com-
pute e(g, g)abc.

5.2 VEHS in Composite-Order Pairing Groups

Our scheme is based on the Attrapadung-Libert-Peters linearly-homomorphic
signature scheme [17], the ALP12 scheme in short, which is based on the Lewko-
Waters signature scheme [44] in the composite-order pairing groups, and the
ElGamal encryption scheme [50]. Thanks to the pairing, we can verify a VES,
i.e., an encrypted signature.

One might wonder why we employ the composite-order setting because we
already have VES schemes and HS schemes in the prime-order setting. The
reason is that there are technical hurdles we cannot solve by our best efforts,
although we can simply construct VEHSs from HS schemes in the prime-order
setting and the ElGamal encryption scheme. Let σ = (σ1, σrest) be an ordinary
signature. Let apk = y = gβ be the adjudicator’s public key. Then, we let a VES
ω = (ω1, ω2, ω3) as ω1 ← σ1 ·yt, ω2 ← σrest, and ω3 ← gt. The main hurdle is the
security proof on class-III opacity in Definition 3.4. Roughly speaking, we have
to solve the problem in an assumption by using the adversary’s power to strip
yt off ω1. With VES schemes, one can guess which VES will be stripped out
and thus embed the problem into ω. We fail to adopt this technique in the HS
setting: it is hard to guess which vector vi on τ∗ the adversary will use to forge
y∗. Fortunately, we can prove class-III opacity in the composite-order setting by
using the dual-form signature technique as we discuss in the introduction.

Our VEHS Scheme

– Setup(1κ, 1n): Choose bilinear groups (G,GT ) of order N = p1p2p3 such that
(G, GT , e,N) ←$ G. Choose g, u, v, h1, . . . , hn ←$ G1 and Xp3 ←$ G3. pp =
(G,GT , e,N, g,Xp3 , u, v, {hi}i∈[n]). Here, we let Hhom(v) :=

∏
i∈[n] h

vi
i , where

v = (v1, . . . , vn) ∈ Z
n
N . Note that

∏
i∈[�] Hhom(vi)γi = Hhom(

∑
i∈[�] γivi)

holds. We omit the public parameter pp from inputs of following algorithms.
– AdjGen(1κ): Choose β ←$ ZN and compute y ← gβ . Output (apk, ask) =

(y, β).
– Gen(1κ): Choose α ←$ ZN and compute gα. Output vk = gα and sk = α.
– Sign(sk, τ,v): Return ⊥ if v = 0. Choose r ←$ ZN and R3, R

′
3 ←$ G3.

Compute σ1 ← Hhom(v)α ·(uτv)r ·R3 and σ2 ← gr ·R′
3. Output σ = (σ1, σ2).13

– Vrfy(vk, τ,v, σ): Parse σ = (σ1, σ2). Return 1 iff e(σ1, g) = e(Hhom(v), gα) ·
e(uτv, σ2) holds. Otherwise, return 0.

13 As a remark, a client Alice needs to compute Hhom for a vector v =
(0, 0, . . . , 0, 1, 0, . . . , 0) in the AOFE protocol based on our VEHS scheme. There-
fore, no n-dependent computation is required for Alice in our AOFE protocol.
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– Create(sk, apk, τ,v): Run σ := (σ1, σ2) ← Sign(sk, τ,v). Choose t ←$ ZN and
R′′

3 ←$ G3, compute ω1 ← σ1 · yt, ω2 ← σ2, and ω3 ← gt · R′′
3 . Output

ω = (ω1, ω2, ω3).
– VesVrfy(apk, vk, τ,v, ω): Parse ω = (ω1, ω2, ω3). Return 1 iff e(ω1, g) = e(Hhom

(v), gα) · e(uτv, ω2) · e(y, ω3) holds. Otherwise, return 0.
– Derive(vk, τ, {γi,vi, σ

(i)}�
i=1): Parse σ(i) = (σi,1, σi,2). Choose r̃ ←$ ZN and

R̃3, R̃
′
3 ←$ G3. Compute σ1 ←

(∏
i∈[�]σ

γi

i,1

)
·(uτv)r̃·R̃3 and σ2 ←

(∏
i∈[�]σ

γi

i,2

)
·

gr̃ · R̃′
3. Output σ = (σ1, σ2).

– VesDerive(vk, apk, τ, {γi,vi, ω
(i)}�

i=1): Parse ω(i) = (ωi,1, ωi,2, ωi,3). Choose r̃,

t̃ ←$ ZN and R̃3, R̃
′
3, R̃

′′
3 ← G3. Compute ω1 ←

(∏
i∈[�]ω

γi

i,1

)
· (uτv)r̃ · yt̃ · R̃3,

ω2 ←
(∏

i∈[�]ω
γi

i,2

)
· gr̃ · R̃′

3, and ω3 ←
(∏

i∈[�]ω
γi

i,3

)
· gt̃ · R̃′′

3 . Output ω =
(ω1, ω2, ω3).

– Adj(ask, apk, vk, ω, τ,v): Parse ω = (ω1, ω2, ω3). Return ⊥ if VesVrfy(apk, vk,
τ,v, ω) → 0. Choose r̃ ←$ ZN and R̃3, R̃

′
3 ←$ G3. Compute σ1 ← (ω1/ωβ

3 ) ·
(uτv)r̃ · R̃3 and σ2 ← ω2 · gr̃ · R̃′

3. Output σ = (σ1, σ2).

Remark 5.1. We note that a HS scheme HS = (Setup,Gen,Sign,Vrfy,Derive)
is the ALP12 scheme [17, Sect. 4]. We build our VEHS scheme upon them by
introducing AdjGen, Create, VesVrfy, VesDerive, and Adj.

Security. We show correctness and security of our VEHS scheme.

Theorem 5.1 (Informal). VEHS is correct, resolution-independent, and
extractable unconditionally. VEHS is unforgeable and opaque under the assump-
tions LW1′, LW2, ALP3, and ALP4.

Due to space limit, we defer the proofs of correctness and security to the full
version.
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22. Rückert, M., Schröder, D.: Security of verifiably encrypted signatures and a con-
struction without random oracles. In: Shacham, H., Waters, B. (eds.) Pairing 2009.
LNCS, vol. 5671, pp. 17–34. Springer, Heidelberg (2009)

23. Nishimaki, R., Xagawa, K.: Verifiably Encrypted Signatures with Short Keys Based
on the Decisional Linear Problem and Obfuscation for Encrypted VES. In: Kuro-
sawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 405–422. Springer,
Heidelberg (2013)

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)



Accumulable Optimistic Fair Exchange 213

25. Lee, K., Lee, D.H., Yung, M.: Sequential aggregate signatures with short public
keys: design, analysis and implementation studies. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 423–442. Springer, Heidelberg (2013)

26. Lee, K., Lee, D.H., Yung, M.: Aggregating CL-Signatures revisited: extended func-
tionality and better efficiency. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 171–188. Springer, Heidelberg (2013)

27. Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
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Abstract. Collaborative editing cloud servers allow a group of online
users to concurrently edit a document. Every user achieves consistent
views of the document by applying others’ modifications, which are
pushed by the cloud servers. The cloud servers repeatedly transform,
order, broadcast modifications,and merge them into a joint version in a
real-time manner (typically, less than one second). However, in existing
solutions such as Google Docs and Cloud9, the servers employ oper-
ational transformation to resolve edit conflicts and achieve consistent
views for each online user, so all inputs (and the document) are processed
as plaintext by the cloud servers. In this paper, we propose LightCore,
a collaborative editing cloud service for sensitive data against honest-
but-curious cloud servers. A LightCore client applies stream cipher algo-
rithms to encrypt input characters that compose the text of the docu-
ment before the user sends them to servers, while the keys are shared
by all authorized users and unknown to the servers. The byte-by-byte
encryption feature of stream cipher enables the servers to finish all heavy
processing and provide collaborative editing cloud services as the exist-
ing solutions without the protections against curious servers. Therefore,
the lightweight load of clients is kept while the users’ sensitive data are
protected. We implement LightCore supporting two different methods to
generate keystreams, i.e., the “pure” stream cipher and the CTR mode of
block cipher. Note that the document is usually modified by collaborative
users for many times, and the sequence of text segments is not input and
encrypted in chronological order. So, different from the stateless CTR
mode of block cipher, the overall performance of high-speed but state-
ful stream cipher varies significantly with different key update rules and
use scenarios. The analysis and evaluation results on the prototype sys-
tem show that, LightCore provides secure collaborative editing services
for resource-limited clients. Finally, we suggest the suitable keystream
policy for different use scenarios according to these results.
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1 Introduction

With the progress of cloud computing, the collaborative editing service (e.g.,
Google Docs, Office Online and Cloud9) becomes a popular and convenient
choice for online users. With such a service, a group of users can cooperatively
edit documents through networks; in particular, they can concurrently modify
a same document, even write on a same line. Meanwhile, the collaborative edit-
ing cloud service provides consistent views to all clients in a timely manner;
for example, if each of two independent users concurrently inserts one character
into a same line that are displayed identically on their own screens, all users will
immediately see both these two characters appear in the expected positions.

The servers of collaborative editing cloud services carry out heavy processing
to coordinate all online users’ operations. Firstly, the cloud servers are respon-
sible for receiving operation inputs from clients, transforming operations by
operational transformation (OT) [1] to resolve conflicts, modifying the stored
documents into a joint version based on these transformed operations, and then
broadcasting modifications to all online clients. To transform operations, the
server revises the position of a modification based on all the other concurrent
operations. For example, when Alice and Bob respectively insert ‘a’ and ‘b’ in
the ith and jth positions, Bob’s operation is transformed to be executed in the
(j + 1)th if Alice’s operation is executed firstly and i < j. Secondly, during the
editing phase, the above steps are repeated continuously in a real-time manner,
to enable instant reading and writing on clients. Finally, the servers have to
maintain a history of joint versions, because users’ operations may be done on
different versions due to the uncertain network delays. In a word, this central-
ized architecture takes full advantages of the cloud servers’ powerful computing,
elasticity and scalability, and brings convenience to resource-limited clients.

In order to enable the cloud servers to coordinate the operations and resolve
possible conflicts by OT, existing online collaborative editing systems process
only plaintext (or unencrypted) inputs. Therefore, the cloud service provider is
always able to read all clients’ documents. This unfriendly feature might disclose
users’ sensitive data, for example, to a curious internal operator in the cloud
system. Although the SSL/TLS protocols are adopted to protect data in transit
against external attackers on the network, the input data are always decrypted
before being processed by the cloud servers.

In this paper, we propose LightCore, a collaborative editing cloud service for
sensitive data. In LightCore, before being sent to the cloud, all input characters
are encrypted by a stream cipher algorithm, which encrypts the plaintext byte
by byte. These characters compose the content of the document. The texts are
always transmitted, processed and stored in ciphertext. The cryptographic keys
are shared by authorized users, and the encryption algorithms are assumed to
be secure. The other operation parameters except the input texts are still sent
and processed as plaintext, so the cloud servers can employ OT to coordinate
all operations into a joint version but not understand the document.

LightCore assumes honest-but-curious cloud servers. On one hand, the hon-
est cloud servers always follow their specification to execute the requested
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operations; on the other hand, a curious server tries to read or infer the sensitive
texts in the users’ documents. Note that the honesty feature is assumed to ensure
service availability and data integrity; but not for the confidentiality of sensitive
data. A malicious cloud server that arbitrarily deviates from its protocol, might
break service availability or data integrity, but could not harm confidentiality,
because the keys are held by clients only and every input character never appears
as plaintext outside the clients.

By adopting stream cipher algorithms, LightCore keeps the lightweight load
of clients, and takes advantage of the powerful resources of cloud servers as
the existing collaborative editing cloud solutions. Because the stream cipher
algorithm encrypts only the text byte by byte and the length of each input
text is unchanged after being encrypted, the servers can conduct OT and other
processing without understanding the ciphertext. On the contrary, the block
cipher algorithms encrypt texts block by block (typically, 128 bits or 16 bytes),
so the OT processing in ciphertext by servers is extremely difficult because users
modify the text (i.e., insert or delete) in characters. That is, each character would
have to be encrypted into one block with padding, to support the user operations
in characters, which leads to an enormous waste in storage and transmission;
otherwise, the workload of resolving edit conflicts would be transferred to the
clients, which is unsuitable for resource-limited devices.

In fact, the “byte-by-byte” encryption feature can be implemented by stream
cipher, or the CTR mode of block cipher.1 In LightCore (and other collaborative
editing systems), the text of a document is composed of a sequence of text
segments with unfixed lengths. Because the document is a result of collaborative
editing by several users, these text segments are not input and encrypted in
chronological order, e.g., the sequence of {‘Collaborative’, ‘Editing’, ‘Cloud’} is
the result of {‘Collaborative Document Cloud’} after deleting ‘Document’ and
then inserting ‘Editing’ by different users. Each text segment is associated with
an attribute2 called keystream info, containing the parameters to decrypt it.
For the CTR mode of block cipher, keystream info contains a key identifier, a
random string nonceIV, an initial counter and an offset in a block; for stream
cipher, it contains a key identifier and an initial position offset of the keystream.
Note that all users share a static master key, and each data key to initialize
cipher is derived from the master key and the key identifier.

The efficiency of LightCore varies as the keystream policy changes, that is,
(a) different methods are used to generate keystreams, and (b) different key
update rules of stream cipher are used in certain use scenarios (if stream cipher
is used). In general, stream cipher has higher encryption speed and smaller delay
than block cipher [2], but with a relative heavy initialization phase before gen-
erating keystreams. Moreover, different from the stateless CTR mode, stream
cipher is stateful: given a key, to generate the jth byte of keystream, all kth

bytes (k < j) must be generated firstly. Therefore, insertion operations in

1 Other block cipher modes of operation such as OFB and CFB, also generate the
keystream in bytes, but are less efficient.

2 Other typical attributes include font, color, size, etc..



218 W. Jiang et al.

random positions (e.g., an insertion in Line 1 after another in Line 2) require
the decrypters to cache bytes of keystream to use later; and deletion operations
cause the decrypters to generate lots of obsoleted bytes of keystream. This per-
formance degradation is mitigated by updating the data keys of stream cipher
in LightCore: the user (or encrypter) generates a new data key, re-initializes
the encryptor and then generates keystreams by bytes to encrypt texts. The
key update rules are designed by balancing (a) the cost of initialization and
keystream generation, and (b) the distribution and order of the deletion and
insertion operations.

We implement LightCore based on Etherpad, an open-source collaborative
editing cloud system. The LightCore prototype supports the RC4 stream cipher
algorithm and the AES CTR mode. Two principles of stream cipher key update
rules are adopted, that is, a user (or encrypter) updates the key of stream cipher,
if (a) the generated bytes of the keystream come to a predetermined length,
or (b) the user moves to another position previous to the line of the current
cursor to insert texts. Then, the evaluation and analysis on the prototype suggest
the suitable keystream policy with detailed parameters for different typical use
scenarios.

LightCore provides collaborative editing cloud services for online users, with
the following properties:

– Reasonable confidentiality against honest-but-curious cloud servers. All input
characters are encrypted at the client side before being sent to the cloud
servers, either these texts are kept in the document or deleted finally. The
content of the document is kept secret to servers, but the format information
such as length, paragraph, font and color is known, which enables the servers
to coordinate users’ operations.

– Lightweight workload on clients. The cloud servers of LightCore are respon-
sible for receiving users’ edit inputs, resolving edit conflicts, maintaining the
documents, and distributing the current freshest versions to online clients.
Compared with those of existing collaborative editing solutions, a LightCore
user only needs to additionally generate keystreams to protect input texts as
an encrypter and decrypt texts from servers as a decrypter.

– Real-time and full functionality. The byte-by-byte lightweight encryption is
fully compatible with uncrypted real-time collaborative editing services, no
editing function is impeded or disabled. Even for a new user that logins to the
system to access a very long and repeatedly-edited document, the keystream
policy facilitates the user to decrypt it in real time.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground and related work on collaborative systems and edit conflict solutions.
Section 3 describes the assumptions and threat model. The system design, includ-
ing the basic model, key management and keystream policy, is given in the
Sect. 4. Section 5 describes the implementation of LightCore, and security analy-
sis is presented in Sect. 6. In Sect. 7, we illustrates performance evaluation, and
present keystream polices suggestions. Finally, we conclude this paper and ana-
lyze our future work in Sect. 8.
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2 Background and Related Work

2.1 Real-Time Collaborative Editing Systems

Collaborative editing is the practice of groups producing works together through
individual contributions. In current collaborative editing systems, modifica-
tions (e.g., insertions, deletions, font format or color setting) marked with
their authors, are propagated from one collaborator to the other collabora-
tors in a timely manner (less than 500 ms). Applying collaborative editing in
textual documents, programmatic source code [3,4] or video has been a main-
stream.

Distributed systems techniques for ordering [5] and storing have been applied
in most real-time collaborative editing systems [6–8], including collaborative
editor softwares and browser-based collaborative editors. Most of these have
adopted decentralized settings, but some well-known systems use central cloud
resources to simplify synchronization between clients (e.g., Google Docs [9] and
Microsoft Office Online [10]). In a collaborative editing system with decentral-
ized settings, the clients take more burden on broadcasting, ordering modifi-
cations and resolving conflicts. However, in a cloud-based collaborative sys-
tems, cloud servers help to order and merge modifications, resolve conflicts,
broadcast operations and store documents. It not only saves the deployment
and maintenance cost but also reduces the burden on clients by using cloud
resources.

However, the cloud may not be completely trusted by users. In order to pro-
tect sensitive data from unauthorized disclosure, data of users are encrypted
before being sent to the cloud [11–14]. SPORC [15] encrypts modifications with
block cipher AES at the client side, but the cloud server can only order, broad-
cast and store operations, so it takes much burden for the clients to resolve
conflicts and restore the documents from series of operations when accessing
the documents. In our scheme, data are encrypted with stream cipher, and no
functionalities of cloud servers are impeded or disabled.

There are four main features in real-time collaborative editing systems:
(a) highly interactive clients are responded instantly via the network, (b) volatile
participants are free to join or leave during a session, (c) modifications are not
pre-planned by the participants, and (d) edit conflicts on the same data are
required to be well resolved to achieve the consistent views at all the clients. As
the modifications are collected and sent every less than 500 ms, the size of the
input text is relatively small (about 2 to 4 characters) in spite of the copy and
paste operations. In this case, edit conflicts happen very frequently.

2.2 Operational Transformation

The edit conflict due to concurrent operations is one of the main challenges in
collaborative editing systems. Without an efficient solution to edit conflicts, it
may result in inconsistent text in different clients when collaborators concur-
rently edit the same document. There are many methods to resolve conflicts
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such as the lock mechanism [16,17] and differ-patch [18–20]. Among these meth-
ods, operational transformation (OT) [1] adopted in our system is an efficient
technology for consistency maintenance when concurrent operations frequently
happen. OT was pioneered by C. Ellis and S. Gibbs [21] in the GROVE sys-
tem. In more than 20 years, OT has evolved to acquire new capabilities in new
applications [22–24]. In 2009, OT was adopted as a core technique behind the
collaboration features in Apache Wave and Google Docs.

In OT, modifications from clients may be defined as a series of operations. OT
ensures consistency by synchronizing shared state, even if concurrent operations
arrive at different time points. For example, a string “preotty”, called S, is shared
on the clients C1 and C2, C1 modifies S into “pretty” by deleting the character
at the 3th position and C2 modifies S into “preottily” by inserting “il” after the
5th position concurrently, the consistent result should be “prettily”. However,
without appropriate solutions, it may cause inconsistency at client C1: shift from
“pretty” as the result of deletion to “prettyil” as the result of insertion.

OT preserves consistency by transforming the position of an operation based
on the previously applied concurrent operations. By adopting OT, for each two
concurrent operations: opi and opj irrelevant of the execution sequence, the
OT function T (·) satisfies : opi ◦ T (opj , opi) ≡ opj ◦ T (opi, opj), where opi ◦
opj denotes the sequence of operations containing opi followed by opj and ≡
denotes equivalence of the two sequences of operations. In the above example,
the consistent result “prettily” can be achieved at client C1 by transforming the
operation “insert ‘il’ after the 5th position” into “insert ‘il’ after the 4th position”
based on the operation “delete the character at the 3th position”.

In a collaborative editing cloud service, the cloud servers can be responsi-
ble for receiving and caching editing operations in its queue, imposing order
on each editing operation, executing OT on concurrent operations based on
the order iteratively, broadcasting these editing operations to other clients and
applying them in its local copy to maintain a latest version of the document.
When receiving an operation oprc from the client, the cloud server execute OT
as follows:

– Notes that the operation oprc is generated from the client’s latest revision rc.

S0 → S1 → . . . Src → Src+1 → . . . → SrH

denotes the operation series stored in cloud. opc is relative to Src .
– The cloud server needs to compute new oprc

′ relative to SrH . The cloud server
firstly computes a new oprc

′ relative to Src+1 by computing T (Src+1, oprc).
Similarly the cloud server can repeat for Src+2 and so forth until oprc

′ repre-
sented relative to SrH is achieved.

Edit conflicts are also required to be resolved by OT at the client. Considering
network delay and the requirement of non-block editing at the client, the local
editing operations may not be processed by the server timely. Therefore, the
client should cache its local operations in its queue, and execute OT on the
concurrent operations based on these cached operations.
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3 Assumptions and Threat Model

LightCore functionally allows multiple collaborators to edit the shared docu-
ments and view changes from other collaborators using cloud resources. We
assume that all the authorized collaborators mutually trust each other and strive
together to complete the same task (e.g., drafting a report or programming a
system). That is, all the changes committed by the client of any collaborator are
well-intentioned, and respectable by other collaborators.

The collaborative privileges are granted and managed by a special collabo-
rator, called the initiator, who is in charge of creating the target document for
future collaborative editing, generating the shared secret passcode and distrib-
uting it among all authorized collaborators through out-of-band channels. The
passcode is used for deriving the master encryption key to protect the shared
contents and updates. We assume that the passcode is strong enough to resist
guessing attacks and brute force attacks. The master key with a random string is
used to generate the data key, which initializes cryptographic algorithms to gen-
erate keystreams. We assume that the cryptographic algorithms to encrypt data
are secure. Meanwhile, we assume that the random string will not be repeatedly
generated by the clients.

We assume that the client of each collaborator runs in a secure environment
which guarantees that

– the generation and distribution of shared secret and privilege management on
the client of the initiator are appropriately maintained;

– the secret passcode and keys that appear in the clients, are not stolen by any
attacker;

– the communication channel between the client and the cloud is enough to
transmit all necessary data in real time and protected by existing techniques
such as SSL/TLS.

In LightCore, the cloud server is responsible for storing and maintaining
the latest content, executing operations (delete, insert, etc.) on the content,
resolving operational conflicts, and broadcasting the updates among multiple
clients. The cloud server is considered to be honest-but-curious. In case of
risking its reputation, the honest cloud server will timely and correctly dis-
seminate modifications committed by all the authorized clients without mali-
ciously attempting to add, drop, alter, or delay operation requests. However,
motivated by economic benefits or curiosity, the cloud provider or its inter-
nal employees may spy or probe into the shared content, determine the doc-
ument type (e.g., a letter) by observing the format and layout, and discover
the pivot part of the documents by analyzing the frequency and quantity of
access.

Additionally, we assume that the cloud servers will protect the content
from unauthorized users access and other traditional network attacks (such as
DoS attacks), and keep the availability of share documents, for example, by
redundancy.
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4 System Design

This section describes the system design of LightCore. We firstly give the basic
model, including the specifications of clients and servers, and the encryption
scheme. Then, the key management of LightCore is presented, and we analyze
two different ways to generate keystreams.

4.1 Basic Model

Similar to existing collaborative editing systems, LightCore involves a group of
collaborative users and a cloud server. Each client communicates with the server
over the Internet, to send its operations and receive modifications from others in
real time. For each document, the server maintains a history of versions. That
is, it keeps receiving operations from users, and these modifications make the
document shift from a version to another one. When applying modifications on
a version, the server may need OT to transform some operations. The server
also keeps sending the current freshest version to users, that is, all transformed
operations since the last version is sent. Because a user is still editing on the
stale version when the freshest one is being sent, the OT processing may also be
required to update its view at the client side. The above procedure is shown in
Fig. 1.

Fig. 1. System model
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In LightCore, we design the crypto module for protecting the documents at
the client side. The input characters of insertion operation (not deletion opera-
tion without inputs) are encrypted with keystreams byte by byte, but the posi-
tion of each operation is sent in plaintext. When receiving the operation from
one client, the cloud server may transform the operation by OT and apply it in
the latest version based on the position. That is, no functionalities of the cloud
server are impeded or disabled in ciphertext. After receiving the operation from
other users through the cloud servers, the input characters of the operation will
be firstly decrypted, so that it can be presented at the screen in plaintext.

Client. At the client side, users are authenticated by the cloud before entering
the system. The collaborative privileges are granted and managed by the initia-
tor, who is in charge of creating the target document. Therefore, only autho-
rized users can download or edit the document. Meanwhile, the master key to
generate keystreams, which are to encrypt the text of the document, is only
delivered to the authorized users by the initiator. Without the master key, both
the cloud server and attackers from the network cannot read or understand the
document.

There are two main phases at the client side to edit a document in Light-
Core: the pre-edit phase and the editing phase. In this pre-edit phase, the client
requests a document to maintain a local copy, and the server will respond with
the current freshest version of the document to the client. Before generating
the local copy, the user is required to input a passcode, and the document is
decrypted with the master key derived from the passcode. This decryption time
depends on the length of the document, different from that of decrypting the
small text of each operation (Op) in the editing phase. Then, the local copy is
used for user’s edit operations, so that edit operations will not be interrupted by
network delay or congestion. In the editing phase, the client encrypts its input
characters of each operation before sending it to the cloud server. Meanwhile,
the operation is cached in a queue (Ops) so that its concurrent operations can
be transformed by OT, when it is not successfully received and processed by the
server. In the system, every operation is associated with a revision number of
the document, which denotes the version that the operation is generated from.
When receiving an operation of other clients from the cloud server, the input
characters of the operation are firstly decrypted. Then, the client may execute
OT on the operation based on the revision number, and applies the modification
in its local copy.

Server. First of all, to follow users’ requirements and the specification, access
control is enforced by the cloud server. The server maintains a history of versions
for each document. In the pre-edit phase, the server sends the freshest encrypted
document to the client, and holds an ordered list of modification records for the
document (Ops). Every modification record contains an operation, its revision
number and its author information. In the editing phase, the server keeps receiv-
ing operations from the clients, transforming them by executing OT functions
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based on the modification records, ordering each operation by imposing a global
revision number on it and broadcasting these updated operations with new revi-
sion numbers to other collaborative clients. Meanwhile, the cloud server merges
these operations into a freshest version of the document in ciphertext, and adds
them to the modification records.

Encrypted Operations. We preserve confidentiality for users’ data by adopt-
ing symmetric cryptographic algorithms with the “byte-by-byte” encryption fea-
ture at the client side. In our system, each modification at the client is called an
operation. There are two types of edit operations: insertion and deletion. The
other operations including copy and paste can also be represented by these two
types of operations. An insertion is comprised of the position of the insertion in
the document and the inserted text. And a deletion is comprised of the position
of the deletion and the length of deleted text. Each inserted text segment of the
operation is associated with an attribute called keystream info, containing the
parameters to encrypt and decrypt it. The other operations related to setting
font or color are also supported by taking font or color value as attributes.

By applying the byte-by-byte encryption algorithms, the length of each input
text is kept unchanged after being encrypted. The cloud server can conduct
OT and other processing without understanding the ciphertext. Compared with
block cipher, applying stream cipher (including the CTR mode of block cipher)
in the system has the following advantages:

– It is impervious for the cloud server to help to resolve conflicts. To satisfy
real-time view presentation, the operations are submitted every 500 ms, so
the input text of the operation is generally very small (about 2 to 4 charac-
ters). Applying block cipher to encrypt characters block by block makes it
difficult for the server to conduct OT functions because users modify the text
in characters. That is, the position of the operation related to OT would be
extremely difficult to be determined, when modifying a character in a block
with an unfixed length of padding. In this case, the OT processing overhead
of the server would be transferred to the clients.

– It is feasible for the cloud server to hold a freshest well-organized document.
Without understanding the content of the text encrypted by stream cipher,
the server can merge operations and apply operations in the latest version of
the document based on the position and unchanged length of the text. So, a
freshest well-organized document in ciphertext is kept at the server. However,
it is costly for the server to apply operations encrypted by block cipher in
the latest version of the document. That is, each character would have to be
encrypted into one block with fixed-length padding, to support operations in
characters, which leads to an enormous waste in storage and transmission;
otherwise, a series of operations would be processed at the client side when a
user requests the document in the pre-edit phase. Although clients can actively
submit a well-organized document to the cloud periodically, the transmission
cost may also increase the burden on clients.
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4.2 Key Management

We construct a crypto module at the client to encrypt and decrypt the text of
the document. In the crypto module, both stream cipher and the CTR mode of
block cipher are supported. Each document is assigned a master key (denoted
as mk), derived from a passcode. When users access the document, the passcode
is required to be input. The passcode may be transmitted through out-of-band
channels. We assume that the delivery of the passcode among users is secure.

The text segment of the document is encrypted with the data key (denoted as
DK), which initializes the cryptographic algorithm to generate keystreams. The
data key is generated by computing DK = H(mk, userId || keyId), where H is a
secure keyed-hash mac function (e.g., SHA-256-HMAC), mk is the master key,
userId is the identity of the collaborator, and keyId is a random key identifier.
The userId with a unique value in the system is attached to each operation as
the attribute author to distinguish different writers. The keyId generated by
the client is a parameter contained in the attribute keystream info. For the
CTR mode of block cipher, keystream info contains a key identifier, a random
string nonceIV, an initial counter and an offset in a block; the string nonceIV ||
counter is the input of the block cipher, to generate keystreams, and the counter
is increased by one after each block. For stream cipher, it contains a key identifier
and an initial position offset of the keystream; the initial position offset locates
the bytes of the keystream to decrypt the first character of the text segment.
The keyId and nonceIV generated randomly ensure that the keystreams will
not be resued. Therefore, different collaborators with different data key generate
non-overlapping keystreams, and bytes of keystreams are not reused to encrypt
data.

After encrypting the input texts, the client will send the operation with
the attributes author and keystream info. Therefore, authorized readers and
writers with the same master key can compute the data key and generate the
same keystreams, based on the attributes when decrypting the texts.

4.3 Keystream Policies

Both stream cipher and block cipher CTR mode are applied in our system. In
general, stream cipher has higher encryption speed and smaller delay than block
cipher [2], but the performance of the stateful stream cipher may be degraded
when decrypting a document generated from random insertions and deletions.
In order to achieve an efficient cryptographic scheme, we design two key update
rules for stream cipher, which take full advantage of stream cipher while match
the features of collaborative editing cloud services.

Comparison of Two Types of Cipher. In both stream cipher and the CTR
mode of block cipher, each byte of the plaintext is encrypted one at a time
with the corresponding byte of the keystream, to give a byte of the cipher-
text. During the execution of the two types of cipher, it involves initialization
phase and keystream generation phase. We test the initialization latency and
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Table 1. Comparison of stream cipher and CTR mode of block cipher

�����������Performance
Algorithms Stream Cipher Block Cipher CTR

ISSAC [25] Rabbit [26] RC4 [27] AES-CTR

Initialization latency 41.73 us 41.31 us 35.53 us 56.79 us

Keystream generation speed 24.07 MB/s 15.45 MB/s 21.86 MB/s 3.30 MB/s

keystream generation speed of ISSAC, Rabbit, RC4 and AES-CTR by JavaScript
on browsers. The results in Table 1 illustrate that the speed of these stream
cipher algorithms is much faster than AES, but all of them are with a relatively
heavy initialization phase before generating keystreams. For example, the time
of executing 1000 times of initialization of RC4 is approximately equal to that of
generating 0.38 MB bytes of a keystream. For the CTR mode of stateless block
cipher, keystream generation is only related to the counter as the input of block
cipher. Given the counter and cryptographic key, the CTR mode of block cipher
outputs the corresponding bytes of the keystream.

It generally requires only one initialization (round key schedule) for the CTR
mode of block cipher, for multiple block encryption or decryption. Unlike the
CTR mode of block cipher, stream cipher is stateful: given a key, to gener-
ate the jth byte of keystream, all kth bytes (k < j) must be generated firstly.
Therefore, when decrypting documents by stream cipher, insertion operations
in random positions (e.g., an insertion in Line 1 after another in Line 2) require
the decrypters to cache bytes of keystreams to use later; and deletion operations
cause the decrypters to generate lots of obsoleted bytes of keystreams. Examples
of the impact from random insertions and deletions are shown in Fig. 2.

When decrypting a document generated from random insertions, it may
require repeatedly initializing the stream cipher and generating obsoleted bytes
of keystreams, for the resource-limited clients without enough cache. If all col-
laborative clients input characters in sequential positions of the document, the
position of the inserted texts in a document will be consistent with the position
of the used bytes in the keystream. In this case, decrypting the document only
requires one initialization and the sequentially generated keystream will be in full
use. However, the text segments of the document are not input and encrypted in
chronological order due to random insertions. In this case, it may cause incon-
sistent positions of the text segments and their used bytes of keystreams. For
example: a character c1 is inserted in the position previous to the character c2
encrypted with the ith byte of the keystream; as the keystream cannot be reused
for security consideration, c1 is encrypted with the jth byte where i < j; to
decrypt c1, the bytes from 0th to jth should be firstly generated; if the ith byte
is not cached, the client shall re-initialize the stream cipher to generate bytes
from 0th to ith when decrypting c2; therefore, the bytes from 0th to ith called
obsoleted bytes are repeatedly generated; otherwise, bytes from 0th to ith shall
be preserved until they are reused. In fact, it is difficult to determine whether
and when the generated bytes of the keystream will be reused. In this case, the
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Fig. 2. Examples of random insertions and deletions

size of cached bytes may be larger than that of the document. It is not advisable
to cache so large bytes of keystreams when the document is of large size.

Random deletions also cause the decrypter to generate lots of obsoleted bytes
with stream cipher. For example, a text segment T =< c1, c2, ..., cn > is firstly
inserted by a client, and characters < c2, ..., cn−1 > are deleted by another
client; if all the characters of T are encrypted with the bytes of the keystream
initialized by the same key, the bytes of the keystream related to < c2, ..., cn−1 >
are required to be generated to decrypt cn. In this example, n−2 obsoleted bytes
of the keystream are generated. However, if cn is encrypted with the bytes of
another keystream, which is initialized by a updated key, the n − 2 obsoleted
bytes would not be generated. In this case, only one additional initialization
with the new data key is required. Note that, it is efficient only when the time
to generate the continuous deleted bytes of the keystream is longer than that of
the additional initialization. If the size of deleted characters is small, it may less
efficient for frequently initializing the stream cipher.

Key Update Rules for Stream Cipher. If a stable performance is expected,
adopting the stateless CTR mode of block cipher is suggested. However, to take
full advantage of fast stream cipher in LightCore, we design two key update
rules to mitigate the performance degradation for stream cipher: the user (or
encrypter) generates a new data key, re-initializes the stream cipher algorithm
and then generates keystreams by bytes to encrypt texts. The key update rules
are designed by balancing (a) the cost of initialization and keystream generation,
and (b) the distribution and order of the insertion and deletion operations.

One key update rule for random insertions is to keep the consistency between
the positions of the used bytes in the keystream with the positions of inserted
characters in the document. In LightCore, we update the data key to initialize
the stream cipher when the user moves to another position previous to the line
of the current cursor to insert texts. Therefore, we can ensure that the positions
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of the bytes in the keystream to encrypt a text T segment are smaller than those
of the bytes to encrypt the text in the positions previous to T.

The second key update rule for random deletions is to limit the length of
the keystream under each data key. The client updates the key when the gen-
erated or used bytes of the keystream come to a predetermined length. The
value of the predetermined length should balance the cost of initialization and
keystream generation. If the value is too small, it may frequently initialize the
stream cipher so that the time-consuming initialization may bring much over-
head. If the value is too large, lots of deletions may also cause much overhead
for generating obsoleted bytes of keystreams related to the deleted characters.
By evaluating the performance of stream cipher with the key update rules of
different predetermined length, a suitable predetermined length can be set in
different use scenarios, which will be illustrated in Sect. 7.

5 Implementation

We built the LightCore prototype on top of Etherpad, a Google open-source real-
time collaborative system. The client-side code implemented by JavaScript can
be executed on different browsers (IE, Chrome, Firefox, Safari, etc.). The cloud
server of the system is implemented on Node.js, a platform built on Chrome’s
JavaScript runtime. Based on the implementation of Etherpad, there are some
issues to be addressed as follows, when we implement the prototype system.

5.1 Client Improvement

In the pre-edit phase, the decrypter shall decrypt the whole document from the
beginning to the end. If stream cipher is used and the data keys are updated, the
decrypter may find multiple data keys are used alternatively; for example, a text
segment encrypted with the data key DK1, may be cut into two text segments
by inserting another text segment encrypted with another data key DK2; then it
results in an alternatively-used data key list DK1, DK2, DK1. Therefore, in the
pre-edit phase, the decrypter shall keep the statuses of multiple stream ciphers
initialized with different data keys; otherwise, it may need to initialize a same
data key and generate a same keystream for more than one time. To balance the
memory requirement and the efficiency, in the prototype, the client maintains the
status of two stream ciphers initialized with different data key for each author
of the document. One is called the current decryptor, and the other is to back
up the current one called the backup decryptor. When decrypting a text segment
encrypted by a new decryptor, the clients back up the current decryptor and
update the current decryptor by re-initializing it with a new data key. If a text
segment is required to be decrypted by the backup decryptor, the clients will
exchange the current decryptor with the backup one. The generated bytes of the
keystream by each decryptor are cached, until a predetermined length (1 KB in
the prototype system) is reached or the decryptor is updated.
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In the editing phase, the input characters of each insertion is encrypted before
being sent to the cloud; so, the user (as a decrypter) receives and decrypts texts
as the same order that the encrypter encrypt the texts. The client maintains the
status of only one decryptor for each client to decrypt the operations from other
clients. The bytes of the keystream are sequentially generated to be used, but
the generated keystream is not cached since they will not be reused.

Attributes Update. In order to decrypt the text correctly, the attribute
keystream info, including the position information of used bytes of the
keystream, is attached to each insertion operation. The position information
is expressed by the offset of the byte in the keystream related to the first
character of the insertion. However, random insertions will change the value of
keystream info. For example: a text segment T =< c1, c2, ..., cn > is encrypted
by the bytes from kth to (k + n)th of one keystream, and the offset k is regarded
as the value of attribute keystream info A; then, a new text is inserted between
ci and ci+1 of T ; finally, T is cut into two text segments T1 =< c1, c2, .., ci >
and T2 =< ci+1, ci+2, .., cn > with the same value of A. In fact, the value of A of
T2 should be revised into k + i when decrypting the full document. Fortunately,
this attribute value is easily revised by the client in the pre-edit phase. Instead
of maintaining attributes keystream info of all the old operations, and revis-
ing them for each random insertion in the editing phase, it is efficient for the
client to calculate the correct attribute value of the latter text segment based
on the length of the previous text segments with the same keystream info,
because all the texts and the attributes are downloaded from the server during
the decryption process in the pre-edit phase.

5.2 Sever Improvement

Attributes Update. The correct value of attribute keystream info can
be also changed by random deletions. For example: a text segment T =<
c1, c2, ..., cn > is encrypted by the bytes from kth to (k + n)th of one keystream,
and the offset k is regarded as the value of attribute keystream info A; then, a
substring < ci+1, ci+2, .., cj > (i > 0, j < n) of T is deleted; finally, T is cut into
two text segments T1 =< c1, c2, .., ci > and T2 =< cj+1, cj+2, .., cn > with the
same value of A. In fact, the value of A of T2 should be updated into k+ j when
decrypting the full document. This problem is perfectly solved at the server side,
and it cannot be done at the client side.

As all the text segments with the related attributes are stored at the cloud,
and the servers apply each operation in the latest version of the document, a
small embedded code to update the value of keystream info is executed at the
cloud server, when the cloud server is processing the received operations. Instead
of revising it at the client which does not maintain the attributes of deleted texts,
it is more reasonable for the server to revise it and store the updated attributes
with the text.
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5.3 Character Set and Special Character

The client is implemented by JavaScript in Browsers that use the UTF-16 char-
acter set, so the encrypted texts may contain illegal characters. In the UTF-16
character set, each character in BMP plane-0 (including ASCII characters, East
Asian languages characters, etc.) [28] will be presented as 2 bytes, and 0xDF80
to 0xDFFF in hexadecimal is reserved. Therefore, in the LightCore client, if the
encrypted result is in the zone from 0xDF80 to 0xDFFF (i.e., an illegal char-
acters in UTF-16), it will be XORed with 0× 0080 to make it a legal UTF-16
character. In the prototype, LightCore supports ASCII characters, which are in
the zone from 0× 0000 to 0× 007F. At the same time, the above XORing may
make the decrypted character be an illegal ASCII character; for example, the
input ‘a’ (0× 0061 in hexadecimal) will result in 0× 00e1, an illegal ASCII char-
acter. So, in this case, the decrypter will XOR it with 0× 0080 again if it finds
the decrypted result is in the zone from 0× 0080 to 0× 00FF. We plan to sup-
port other languages characters in the future, and one more general technique is
to map the encrypted result in the zone from 0xDF80 to 0xDFFF, into a 4-bytes
legal UTF-16 character.

In our system, the newline character (0 × 000A in hexadecimal) is a special
character that is not encrypted. As mentioned above, the cloud servers need the
position information of user operations to finish processing. In Etherpad and
LightCore, the position is represented as (a) the line number and (b) the index
at that line. So, the unencrypted newline characters enable the servers to locate
the correct positions of user operations. This method discloses some information
to the curious servers, as well as other format attributes; see Sect. 6 for the
detailed analysis.

6 Security Analysis

In LightCore, all user data including all operations and every version of the docu-
ments are processed in the cloud. Attackers from inside or outside might attempt
to alter or delete the user data, or disrupt the cloud services. However, for the
reputation and benefits of the cloud service provider, the honest-but-curious
cloud servers are supposed to preserve integrity, availability and consistency for
the data of users. The cloud service provider will deploy adequate protections to
prevent such external attacks, including access control mechanisms to prevent
malicious operations on a document by other unauthorized users.

Preserving the confidentiality of users’ documents is the main target of Light-
Core. Firstly, in our system, only the authorized users with the shared master
key can read the texts of the documents. LightCore adopts stream cipher and
the CTR mode of block cipher to encrypt data at the client side. In the editing
phase, the input texts of each operation is encrypted before being sent to the
cloud. Therefore, the input texts is transmitted in ciphertext and documents in
the cloud are also stored in ciphertext. Secondly, the algorithms are assumed to
be secure and the keys only appears on the clients. So, these keys could only
be leaked by the collaborative users or the clients, which are also assumed to
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be trusted. Finally, data keys are generated in a random way by each user, and
LightCore uses each byte of the keystreams generated by data keys for only one
time. Any text is encrypted by the keystreams generated specially for it. So,
the curious servers cannot infer the contents by analyzing the difference of two
decrypted texts.

In order to maintain the functionalities of the cloud servers, we only encrypt
the input texts of each operation but not the position of the operation. The
position of each operation and the length of the operated text are disclosed to
the cloud servers, which may leak a certain of indirect sensitive information
(including the number of lines, the distribution of paragraphs and other struc-
ture information). We assume these data can only be access by the authorized
clients and the cloud servers, and they are not disclosed to external attackers
by adopting the SSL protocol. In this case, the related data are limited to the
cloud and the clients. Additionally, the attributes attached to the text segments,
including font, color, author identity, keystream info, might also be used to
infer the underline information of the documents. For example, a text segment
with the “bold” attribute may disclose its importance; A text segment with
“list” attribute may also leak some related information. However, some of the
attributes can be easily protected by encrypting them at the client in LightCore,
because the cloud servers are not required to process all of them (for example,
font, size, color, etc.). Therefore, encrypting these attributes will not impede
the basic functionalities of the cloud servers. To protect these attributes will be
included in our future work. Anyway, attributes author and keystream info
cannot be encrypted, because these attributes related to the basic functionali-
ties of the cloud servers.

Another threat from the cloud, is to infer sensitive data by collecting and
analyzing data access patterns from careful observations on the inputs of clients.
Even if all data are transmitted and stored in an encrypted format, traffic analy-
sis techniques can reveal sensitive information about the documents. For exam-
ple, analysis on the frequency of modifications on a certain position could reveal
certain properties of the data; the access history to multiple documents could
disclose access habits of a user and the relationship of the documents; access to
the same document even the same line from multiple users could suggest a com-
mon interest. We do not resolve the attacks resulted from such traffic analysis
and access pattern analysis. However, in a high interactive collaborative editing
system, modifications are submitted and sent about every 500 ms, which gen-
erates a large amount of information flow in the editing phase. Therefore, it is
very costly for curious cloud servers to collect and analyze traffic information
and access patterns, which do not directly leak sensitive information.

7 Performance Evaluation

The basic requirement of LightCore is that the highly interactive client can view
the modifications of other clients in real time. During the editing process, each
operation is processed by the sending client, the cloud server and the receiving
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clients. The whole process shall be very short and the latency of transmission
shall be low. Therefore, the added cryptographic computation shall make no
difference on real time. The feature of quick joining to edit is also expected to be
satisfied. Therefore, the time of decrypting the document should be short when
new clients join. In this section, we present the results of the experiments, to
show that a high performance of LightCore is achieved, and we also suggest the
suitable keystream policies for different use scenarios.

We installed the cloud server on a Ubuntu system machine with 3.4 GHZ
Inter(R) Core(TM) i7-2600 and 4 GB of RAM. We evaluated the performance
of the crypto module on FireFox Browser of version 34.0.5. The algorithms of
stream cipher or block cipher (CTR mode) are configurable in LightCore. In our
experiments, we test the performance of the crypto module at the client that
implements the stream cipher RC4 or the CTR mode of block cipher AES.

Table 2. Performance of Concurrent modifications from 20 Clients

Queuing time Applying Transmission Decryption Total time

time time time (RC4)

Original System 0.04 ms 5.91 ms 22.58 ms – 1209ms

LightCore 0.04 ms 5.91 ms 22.58 ms 0.38 ms 1236ms

7.1 Real Time

We evaluate the performance at the client of both the original collaborative
system without crypto module and LightCore with crypto module. At the client
side, the input texts of each insertion are encrypted before being sent to the cloud
servers. When receiving the operation, the client will firstly decrypt it, transform
it based on the operations in the local queue and apply it in its local copy. In
order to evaluate the time of these main procedures, we make an experiment that
20 collaborators from different clients quickly input texts in the same document
concurrently. The time of transforming an operation (called the queuing time),
the time of applying an operation in its local copy (called the applying time)
and the transmission time of each operation are given in Table 2. In fact, the
main difference lies in the added encryption/decryption process, and the other
processes are not affected. The decryption time less than 500 ms has no influence
on real time. In order to test the concurrent capability, in the experiment, we set
a client C only responsible for receiving operations from the 20 clients. The total
time from the start time to applying 20 operations in its local copy at the client
C is also given in Table 2. We can see that the total time 1236 ms of LightCore
is only 27 ms longer than that of the original system, which has no difference on
human sensory perception.
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(a) One cryptographic key without key up-
date

(b) Multiple cryptographic keys with key update

Fig. 3. Time of decrypting documents of 1 MB generated from random insertions

7.2 Decryption Time of Pre-edit Phase

In LightCore, the cloud servers maintain the freshest well-organized document,
by modifying the stored document into a joint version based on OT. When join to
edit, the clients download the freshest document, decrypt it, and then apply
(or present) it on the editor. For resource-limited clients with the decryption
function, a short time to join (i.e., pre-edit phase) is expected. In this part,
we evaluate the performance of the decryption functionality implemented by the
CTR mode of block cipher (AES) and stream cipher (RC4). Unlike stateless block
cipher, the performance of stateful stream cipher varies in decrypting documents
generated from different insertions and deletions. For the resource-limited clients,
the size of buffer to cache bytes of keystreams is limited to less than 1 KB in
LightCore. Without enough buffer to cache bytes of keystreams to use latter,
insertion operations in random positions require re-initialization and generating
obsoleted bytes of keystreams. And deletion operations may also cause obsoleted
bytes of keystreams.

For the two types of operations, we implement two stream cipher key update
rules in LightCore, that is, the client updates the key of stream cipher, if
(a) the generated bytes of the keystream comes to a predetermined length or
(b) the user moves to another line previous to its current line to insert some texts.
We make two experiments, one is to evaluate the performance when decrypting
documents generated by random insertions and the other is to measure the per-
formance when decrypting documents generated by random deletions.

Experiment of Random Insertions. In this experiment, documents of 1 MB
are firstly generated by inserting texts in random positions of the documents. We
suppose that users generally edit the document in the field of view, so we limit
the distance of the positions between two continuous insertions less than 50 lines.
Although texts of small size may be inserted in random positions when users are
modifying the document, we suppose that users input texts continuously after
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a certain position, which is in accordance with the habit of regular editing. In
the experiment, we set that 256 characters are continuously inserted after a
certain position. We define insertions at the positions previous to the line of the
current cursor as forward insertions. As forward insertions break the consistency
of positions between texts and its used bytes of keystreams, different proportion
of forward insertions may have different influence on the performance of the
decryption function implemented by stream cipher. Therefore, we measure the
decryption time of documents generated by random insertions with different
proportion of forward insertions from 0 to 50 percents.

Firstly, the performance of decrypting a document with stream cipher with-
out key update rules is given in Fig. 3(a). The results show that the decryption
time increases with the proportions of forward insertions. When the proportion
of forward insertions comes to 15 percents, the decryption time, longer than 8 s,
may be still intolerable for users. We evaluate the performance of LightCore
implemented by stream cipher of different predetermined lengths of keystreams
from 0.5 KB to 32 KB. The results in Fig. 3(b) show that the time of decrypting
the documents with stream cipher is less than 500 ms. Although the decryption
time of adopting AES CTR maintains about 300 ms, the performance of stream
cipher of the predetermined length 16 KB or 32 KB is better than AES CTR.
The main differences lie in the different number of initialization and that of
obsoleted bytes of keystreams, which are given in Table 3 of Appendix A.

Experiment of Random Deletions. In this experiment, we generate docu-
ments of 1 MB by sequentially appending 2 MB text and subsequently delet-
ing 1 MB text in random positions. The documents are encrypted with stream
cipher of different predetermined lengths of keystreams from 0.5 KB to 32 KB
or AES CTR. We suppose that the length of each deleted text may have influ-
ence on the decryption time of stream cipher. For example, a long text segment
T =< c1, c2, ..., cn > is encrypted with the bytes in the position from 0th to nth

of one keystream, and the predetermined length of the keystream is n. If each
deleted text is longer than n, T may be deleted and this keystream has not to
be generated when decrypting the document. If each deleted text is short, the
character cn may not be deleted. In order to decrypt cn, the obsoleted bytes
from 1th to (n−1)th of this keystream are required to be generated. We test the
decryption time of documents with different length of deleted text from 32 to
8192 characters. The results in Fig. 4 show that the decryption time of stream
cipher RC4 is linearly decreasing with the length of each deletion text. Although
the decryption time of AES CTR maintains about 300 ms, the performance of
RC4 is more efficient for the predetermined length of keystreams longer than
16 KB. When the deleted text is longer than 2048 characters, the value of the
8 KB curve is approximately equal to that of 16 KB curve. When the deleted
text is longer than 4096 characters, the value at 4096 of 8 KB curve (219 ms)
and that of 16KB curve (229 ms) is smaller than that of 32 KB curve. In fact,
it will not be better for adopting stream cipher of the predetermined length of
keystreams longer than 32 KB. The main difference lies in the number of ini-
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Fig. 4. Time of decrypting documents of 1 MB generated from firstly appending 2 MB
text and then deleting 1MB in random positions

tialization and that of obsoleted bytes of keystreams, which is given in Table 4
of Appendix A. If the value of predetermined length is larger than 32 KB, the
more obsoleted bytes of keystreams bring more overhead even if the number of
initialization decreases.

Suggestions for Keystream Polices. The results of the experiments above
illustrate that the efficiency of LightCore varies as the keystream policy changes.
Therefore, users can determine different keystream polices based on their require-
ments in different use scenarios. If a stable decryption time is expected, adopting
the CTR mode of block cipher may be more suitable. If a shorter decryption time
is expected, especially for documents of large size, a faster stream cipher of dif-
ferent key update rules is suggested to be adopted. If a large size of texts are
input sequentially after the position of each forward insertion, it can achieve an
efficient performance of stream cipher by re-initializing the stream cipher with
a new data key and setting a large value of the predetermined length. However,
when a document is corrected by frequently inserting small text each time (e.g.,
2 to 10 characters), we suggest combining stream cipher with block cipher CTR
mode in LightCore, that is, (a) the clients encrypt data with stream cipher when
users are sequentially appending text at some positions; and (b) encrypt data
with block cipher CTR mode when forward insertions happen. In this case, it
will not result in heavy overhead for frequent initialization of stream cipher.
Note that block CTR mode and stream cipher can be used simultaneously in
LightCore.

Efficient key update rules should balance the overhead of initialization and
that of generating obsoleted bytes of keystreams. A small predetermined length
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of each keystream requires frequent initialization, and a larger one causes lots of
obsoleted bytes of keystreams. When a document is not modified by frequently
deleting, that is, the proportion of the total deleted text in the full document
is small, the predetermined length of keystreams can be set at a bigger value.
Otherwise, we should set an appropriate value for the predetermined length
based on the overhead of initialization and keystream generation. For example,
the value 16 KB or 32 KB of the predetermined length for RC4 can bring more
efficient performance.

8 Conclusion

We propose LightCore, a collaborative editing cloud solution for sensitive data
against honest-but-curious servers. LightCore provides real-time online editing
functions for a group of concurrent users, as existing systems (e.g., Google Docs,
Office Online and Cloud9). We adopts stream cipher or the CTR mode of block
cipher to encrypt (and decrypt) the contents of the document within clients,
while only the authorized users share the keys. Therefore, the servers cannot read
the contents, but the byte-by-byte encryption feature enables the cloud servers
to process user operations in the same way as existing collaborative editing
cloud systems. In order to optimize the decryption time in the pre-edit phase
under certain use scenarios, we analyze different keystream policies, including
the method to generate keystreams and the key update rules. Experiments on
the prototype system show that LightCore provides efficient online collaborative
editing services for resource-limited clients.

We plan to extend LightCore in the following aspects. Firstly, in the current
design and implementation, only the texts of the document are protected and
then the servers may infer a limited number of information about the document
from the formats. We will analyze the possibility of encrypting more attributes
(e.g., font, color and list) while the servers’ processing is not impeded or dis-
abled. Secondly, for a given document, the client can dynamically switch among
different keystream policies in an intelligent way, according to the editing opera-
tions that happened and the prediction. Finally, more languages characters will
be supported in LigthCore.
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A Appendix

Table 3 shows the detailed size of obsoleted bytes of keystreams to be generated
and the number of initialization, when decrypting a document of 1 MB generated
from random insertions. The first row of Table 3 denotes the rate of forward
insertions (or inserting text at the position previous to the line of the current
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Table 3. Obsoleted bytes of keystreams and initialization resulted from random
insertions

Rate 0 0.05 0.1 0.15 0.2 0.25 0.5

Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init

0.5KB 0 2048 30 2045 25 2044 25 2056 35 2068 37 2076 57 2161

1KB 0 1024 51 1095 104 1197 144 1275 207 1401 252 1481 428 1838

2KB 0 512 77 577 166 662 274 753 382 848 420 901 994 1402

4KB 0 256 73 293 190 350 316 407 491 479 628 525 1672 983

8KB 0 128 10 132 52 148 79 155 174 170 152 166 1282 399

16KB 0 64 1 65 0 64 1 64 0 64 0 64 0 64

32KB 0 32 2 34 0 32 6 3 0 33 0 33 0 32

one seed 0 1 3419 98 7159 179 12406 287 15897 387 198557 447 34881 808

cursor) from 0 to 0.5 (50 percents). The first column denotes the predetermined
length of keystreams. We give the related obsoleted bytes of keystreams in the
column titled “Obsol” and the size of obsoleted bytes is given in KB. The related
number of initialization is shown in the column titled “Init”. The number of
initialization and the size of obsoleted bytes is increasing with the rate of forward
insertions when the predetermined length is given. The results show that it
results in much initialization and lots of obsoleted bytes of the keystream, if the
key to initialize the stream cipher is not updated during the whole encryption
process (one seed). When the two principles of stream cipher key update rules
are adopted in LightCore, the stream cipher of a longer predetermined length of
keystreams may cause less initialization and more obsoleted bytes of keystreams.

Table 4. Obsoleted bytes of keystreams and initialization resulted from random
deletions

Length 128 256 512 1024 2048 4096 random

Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init Obsol Init

0.5KB 319 3094 182 2615 123 2396 79 2224 49 2121 11 2050 77 2200

1KB 572 1914 433 1762 258 1489 147 1275 72 1143 47 1087 136 1242

2KB 935 1022 677 1000 525 922 318 809 170 662 85 594 276 760

4KB 947 512 815 511 733 509 553 475 318 413 165 336 461 475

8KB 970 253 967 251 868 248 779 243 559 242 269 208 817 253

16KB 996 128 968 128 932 128 899 128 807 126 551 125 1023 128

32KB 1002 64 974 64 966 64 951 64 914 64 705 62 1024 64

Table 4 shows the detailed size of obsoleted bytes of keys streams to be gen-
erated and the number of initialization, when decrypting a document of 1 MB
generated by sequentially appending text to 2 MB and then deleting text at ran-
dom positions to 1 MB. The first row of Table 4 denotes the length of each deleted
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text. The first column denotes the predetermined length of keystreams. We give
the related obsoleted bytes of keystreams in the column titled “Obsol” and the
size of obsoleted bytes is given in KB. The related number of initialization is
shown in the column titled “Init”. The column titled “random” denotes that the
length of each deleted text is randomly determined. The number of initialization
and the size of obsoleted bytes is decreasing with the length of each deleted text
when the predetermined length is given. Given a smaller predetermined length of
keystreams (0.5 KB or 1 KB, e.g.), initialization may bring more overhead than
obsoleted bytes of keystreams. The results show that it causes less initialization
and more obsoleted bytes of keystreams when a larger predetermined length of
keystreams is given for stream cipher key update rules.
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Abstract. Named Data Networking (NDN) is an instance of
information-centric network architecture designed as a candidate replace-
ment for the current IP-based Internet. It emphasizes efficient content
distribution, achieved via in-network caching and collapsing of closely-
spaced content requests. NDN also offers strong security and explic-
itly decouples content from entities that distribute it. NDN is widely
assumed to provide better privacy than IP, mainly because NDN pack-
ets lack source and destination addresses. In this paper, we show that
this assumption does not hold in practice. In particular, we present sev-
eral algorithms that help locate consumers by taking advantage of NDN
router-side content caching. We use simulations to evaluate these algo-
rithms on a large and realistic topology, and validate the results on the
official NDN testbed. Beyond locating consumers, proposed techniques
can also be used to detect eavesdroppers.

Keywords: Name data networking · Geolocation · Privacy

1 Introduction

Despite its impressive longevity, popularity and overall success, the Internet is
starting to suffer from limitations of its original early 1980-s design. Current pro-
tocols (in particular, IP) were conceived when remote login, email and resource
sharing were the most prominent Internet use-cases. However, a significant frac-
tion of today’s Internet traffic corresponds to content distribution. Recognizing
this paradigm shift in the nature of Internet traffic, multiple large-scale research
efforts [5,19,20,22,32] have been trying – in the last 5–6 years – to address
the shortcomings of the current Internet, with the long-term goal of replacing
it with a next-generation Internet architecture. One such effort is Named Data
Networking (NDN) [15].
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NDN is an example of Content-Centric Networking (CCN), where content –
rather than a host or an interface – plays the central role in the architecture. NDN
is primarily oriented towards efficient large-scale data distribution. Rather than
contacting a host at some IP address in order to request data, an NDN consumer
directly requests desired content by name by issuing an interest packet. The
network takes care of finding and returning the nearest copy of requested content
that “satisfies” the consumer’s interest. To this end, NDN features ubiquitous
content caching, i.e., any host or router can store a copy of the content it receives
or forwards, and use it to satisfy subsequent interests. NDN also provides interest
collapsing, i.e., only the first of multiple closely spaced interests for the same
content is forwarded by each router. Unlike IP datagrams, NDN interests and
content packets do not carry source or destination addresses. One of the alleged
consequences of this feature is consumer location privacy. In this paper we show
that two fundamental NDN features (ubiquitous caching and interest collapsing)
can be used to violate consumer location privacy. Specifically, we show how
information leaked by caching and interest collapsing can be used to identify
and locate consumers.

Assuming that the adversary can associate NDN routers with their physical
location using existing methods, we focus on designing techniques that identify
the router closest to the targeted consumer. We then show that proposed tech-
niques can be used to determine consumers’ location, as well as detect “eaves-
droppers” that are surreptitiously requesting content for a particular set of users,
e.g., in audio/video conferencing applications [14,33]. We validate our results via
experiments on the official NDN testbed [21]. Finally, we propose some counter-
measure that mitigate these attacks.

We believe that this topic is both timely and important, since one of the
key design goals of NDN is security by design. This is in contrast with today’s
Internet where security and privacy problems were (and are still being) identified
and patched along the way. Therefore, assessing if and how geo-location and
eavesdroppers identification can be implemented must be done before NDN is
fully deployed. Furthermore, even though the research community has made
significant efforts in geo-locating hosts in the current Internet [9,13,16,17,23,
24,29–31], none of these techniques apply to locating consumers in NDN. (See
Sect. 3.) In fact, to the best of our knowledge, all prior techniques rely on the
ability to directly address the victim host. This is not possible in NDN since
consumers cannot be contacted directly.

Organization: We start by overviewing the NDN architecture in Sect. 2.
Related work is discussed in Sect. 3. Section 4 introduces our system and adver-
sary models. Proposed techniques are presented in Sect. 5 and evaluated in
Sect. 6. Detection of eavesdroppers is addressed in Sect. 7. Finally, geo-location
countermeasures are presented in Sect. 8. We conclude in Sect. 9.
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2 NDN Overview

NDN supports two types of packets: interest and content [4]. Notable fields in
content packets are: (1) content name, (2) payload, and (3) digital signature
computed by the producer. Names are intended to be human-readable, consisting
of one or more components with a hierarchical structure. In NDN notation, “/”
separates name components, e.g., /ndn/cnn/politics.

Consumers request desired content by name, via interests. NDN routers for-
ward interests towards the content producer responsible for the requested name,
using longest name-prefix matching for routing. If the requested content is not
encountered in caches of any intervening routers, the interest eventually arrives
to the producer. Upon receipt of the interest, the producer injects the content
into the network, thus satisfying the interest. The requested content packet is
then forwarded towards the consumer, traversing – in reverse – the path of the
preceding interest.

Each NDN router maintains three data structures: (1) Pending Interest Table
(PIT) storing interests that are not yet satisfied, (2) Forwarding Interest Base
(FIB) containing routing information, and (3) Content Store (CS) where for-
warded content is cached. When an NDN router receives an interest, it first
looks up its PIT to check whether another interest for the same name is cur-
rently pending. There are two possible outcomes:

1. The PIT look-up succeeds, i.e., PIT entry for the same name exists and:
– The incoming interface of the present interest is new, the router updates

the PIT entry by adding the new interface to arrival-interfaces set. The
interest is not forwarded further. This feature is called interest collapsing.

– The present interest’s incoming interface is already in the set of that
entry’s arrival-interfaces. In this case, the interest is simply discarded.

2. The PIT look-up fails. The router performs local cache look for the content
name referenced in the interest, and:
– The cache look-up succeeds. The content is returned on the arriving inter-

face of the interest and no further actions are taken.
– Otherwise, the router creates a new PIT entry and forwards the present

interest out on one or more interfaces, according to its FIB.

However, note that caching of content in routers is not mandatory. Although
each NDN router is expected to cache content, it is not required to do so. A
router can choose whether to cache a given content based on local criteria, such
as: size and occupancy rate of its cache, content name, as well as consumer or
producer wishes, i.e., the interest might request caching or no caching, or the
content itself might convey caching preferences.

3 Related Work

The goal of current geo-location techniques is to associate a physical location
with a particular IP address. There are many studies that investigate geo-
location in today’s Internet [9,13,16,17,23,24,30,31].
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Prior work can be divided in two classes: measurement-based and database-
driven techniques. The former involve a set of geographically distributed land-
mark hosts with known locations. Their purpose is to determine the position of
the target IP address using round-trip time (RTT) information as the basis for tri-
angulation. An algorithm estimates the location of the target IP using historical
data constructed using ground truth [13]. Multiple techniques can then be used to
improve accuracy. For example, Wong et al. [30,31] combine delay measurements
with locations of cities. [31] uses Bézier curves to represent a region containing the
target IP, while [30] leverage a three-tier approach, where every tier refines results
of the previous one. Finally, Eriksson et al. [9] propose a learning-based approach,
where population density is used to construct a Näıve Bayes estimator.

All these techniques assume that, packets sent to a particular IP address
and echoed back (e.g., via ping) are guaranteed to come from the same physical
host. Therefore, multiple RTT measurements correspond to the same target. In
contrast, requesting multiple NDN content packets created by the same producer
does not guarantee that requested content will be found at the same place.
Because of in-network caching, different content packets might be served by
distinct entities. Thus, RTT measurements obtained by the landmarks can refer
to different nodes, and cannot be immediately used to locate a single target.

Database-driven approaches determine the target IP’s location using DNS
LOC records, WhoIs lookups, Border Gateway Protocol (BGP) router tables,
and/or other public databases (e.g., ARIN [3], RIPE [25], GeoTrace [12] and
MaxMind GeoIP [11]). These resources either provide direct geographic infor-
mation, as in DNS LOC, or reveal indirect clues, such as the organization or
Autonomous System (AS) number that owns a particular IP address. For exam-
ple, techniques like GTrace [24], GeoTrack and GeoCluster [23] use these public
resources to locate the target IP, and then further refine the findings using RTT
measurements. Recent work by Liu et al. [17] utilizes location data that users
willingly disclose via location-sharing services. This technique can locate a host
with a median estimation error of 799 m – an order of magnitude better than
other approaches.

Because NDN consumers have no network-layer addresses, current geo-loca-
tion techniques are not directly applicable. However, it is possible to use current
techniques to locate content producers. Although there are no addresses that
can identify hosts in NDN, name-spaces can serve the same purpose. In fact, all
producers publishing within specific namespaces (e.g., /cnn/, or /microsoft/)
might be naturally located within the same Autonomous System (AS). Name
prefixes could thus reveal location information. Similarly, routing tables can
reveal location information for name-spaces. Although, at this stage, there are no
location databases for NDN, it is not hard to anticipate these resources becoming
available if and when NDN becomes wider deployed.

4 System and Adversary Model

In the rest of the paper we consider the scenario illustrated in Fig. 1. A con-
sumer (C) retrieves content, composed of multiple packets, from a producer (P ).
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We focus on the case where C requests non-popular content, i.e., content that
is unlikely to have been recently requested by others. Thus, it is not cached in
relevant routers. Each interest traverses multiple routers before being satisfied
by P . The adversary (Adv) controls a set of hosts (hereafter called landmarks),
connected to NDN routers. These hosts controlled by Adv have no special priv-
ileges and cannot eavesdrop on links between routers. We denote router i as Ri

and landmark j as Lj . Adv’s goal is to determine C’s location in the network,
i.e., identify the router closest to C.

Consumer (C) Producer (P) 

Adversary (Adv) 

R1 

R2 R3 
R4 

L1 

L2 L3 

Fig. 1. Scenario considered throughout the paper.

4.1 System Model

We represent network topology as a undirected graph G = 〈V,E〉, where V is
the set of vertices (routers) and E is the set of edges (links between routers).
Our experiments on the official NDN testbed (see Sect. 6) show that NDN links
are largely symmetric, i.e., bandwidth and delay are the same in either direction.
For this reason, our system model also considers all links to be symmetric.

We performed experiments on the AT&T topology from Rocketfuel [26],
depicted in Fig. 2. It contains 625 vertexes and 2101 edges. In the experiments
we assume that every router caches content packets, which is the default NDN
setting. However, because NDN does not mandate a specific caching policy, we
also discuss how to apply geolocation techniques when some (or all) routers do
not cache content packets (see Sect. 5).

4.2 Adversary Model

We assume that C requests – and Adv can exploit – a large number of data
packets, possibly corresponding to a single piece of content, e.g., a high-resolution
video. We consider two distinct classes of adversaries: outsiders and insiders.
The former cannot directly (passively) monitor packets exchanged between P
and C. We assume that an outsider knows what type of applications C and P
are using. Therefore it might infer the structure and naming of content packets.
However, if unique/secret naming is negotiated between P and C, outsiders
cannot guess content names. Insiders can observe packets exchanged by P and
C. For example, an insider could be a compromised WiFi access point to which
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Fig. 2. AT&T topology

C is directly connected, or a malicious P . Thus, countermeasures such as content
name randomization are not effective.

Our analysis makes the following assumptions:

1. Topology Information: Adv knows the topology and geographic distri-
bution of routers. Today, some AS-s already publish this information [26].
Moreover, it has been shown that it is possible to reconstruct topology even
if this information is not publicly available [7].

2. Routing Information: Adv is aware of how interests are routed. Given the
sheer number of routers and AS-s involved in today’s Internet routing, it is
unlikely that routing information can be kept secret.

3. Distance from Sources: Adv can determine the distance of a content packet
(expressed in terms of number of hops) from its closest source (e.g., a cache)
using Content Fetch Time (CFT) information, i.e., the time between sending an
interest and receiving the related content. Our experiments on the official NDN
testbed [21], reported in Sect. 6, confirm that this is indeed currently possible.

4. Naming Information: Adv can predict the name of content packets
requested by C. As mentioned earlier, insiders and outsiders have different
capabilities.
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5. Arbitrary Landmark Location: Adv can connect landmarks to arbitrary
routers in the network. For example, it can use a geographically distributed
botnet, or purchase resources from (multiple) cloud services with machines
located in different parts of the world. We allow Adv to select landmarks
adaptively (i.e., the next landmark is selected after gathering information
from all current landmarks) or non-adaptively, meaning that all landmarks
are chosen at once.

6. Upper-bound on Landmarks: Adv can compromise (or purchase) up to a
fixed subset of nodes in a given topology, in order to turn them into landmarks.

We refer to Adv with all aforementioned capabilities as routing-aware. As an
extension, we later consider a variant Adv that has no knowledge of routing
information. We call it non-routing-aware Adv.

5 Locating Consumers in NDN

To locate C, Adv requests cached content previously requested by C from multi-
ple landmarks Li. Each landmark measures CFT for each content. Since content
is cached (and therefore served) by some router on the return path between C to
P (P→C from here on), landmarks might learn some information about P→C.
Hence, Adv can use this information to infer the location of C.

If no intervening router caches content, Adv can use NDN interest collapsing
feature to locate C. For the sake of simplicity, and without loss of generality, we
describe Adv’s steps to locate a specific Ri.

Recall that, as an interest traverses routers on the path from C to P , it creates
state in the form of a PIT entry. After receiving the interest, P injects requested
content into the network. As the content travels back towards C, each router that
forwards it flushes the corresponding PIT entry for that content. However, if an
interest from a landmark reachesRi before the corresponding PIT entry is flushed,
(i.e., before the content packet requested by C arrives), the CFT measured by the
landmark will be lower than the CFT for content fetched from P . This is due to
interest collapsing: the landmark’s interest is not forwarded by Ri since an entry
for previously pending interest (for the same content) already exists in Ri’s PIT.
As shown in [2], this CFT difference can be easily identified by the landmark. In
practice, different routers will adhere to different caching strategies. Thus, while
some routers might cache all packets, others will not. Therefore, each landmark
might have to probe either PIT-s, or CS-s, or both.

Regardless of caching, Adv can only retrieve content reviously requested by
C from routers, and not from C itself. Adv’s interests are routed toward P ,
and can reach C only if C is on a path Adv→P . However, because C is a host
and not a router, it is never part of Adv→P . For this reason, we define Adv’s
goal as identifying C’s first-hop router. This allows Adv to accurately pinpoint
the C’s location, e.g., possibly within a few blocks in a densely populated city.
Moreover, compared to expected errors in current geo-location techniques (on
the order of 10km using state-of-the-art [17]), identifying an edge router instead
of an end-host introduces only negligible errors. For this reason, in the rest of
the paper, we use C to indicate the edge router closest to the actual consumer.
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Routing-Aware Adversary. Knowledge of network topology and all routing
tables allows landmarks to identify the source of content packets via CFT mea-
surements. This information reveals how far the content travels in the network to
reach the landmark. Given this distance, as well as topology and routing infor-
mation, Adv can determine which router served the content. Listing 1.1 describes
the steps Adv performs to identify C. For each Li, Adv calculates path Li→P
and measures the number of hops (i.e., hopsLi

) between Li and the cache serv-
ing the content (see lines 6–10, Listing 1.1). Then, Adv identifies the router at
position hopsLi

in the path Li→P as a router on P→C. NC represents the set
of candidate nodes for C (lines 11–15).

Intuitively, location of landmarks with respect to routers on P→C path
affects the precision of locating C. In non-adaptive selection, Adv randomly
selects all landmarks at once. In the adaptive case, landmark selection is per-
formed as follows. Let Rg be a router identified by Adv as part of the path
P→C. To find the next router on the path, Adv selects a Li that is far away
from P , such that the path from Li to P contains Rg (i.e., Li→P = Li→Rg→P ).
Thus, if Li retrieves content cached by router Ri �= Rg, then Ri must (1) be
on P→C, and (2) be n ≥ 1 hops closer to C compared to Rg. The larger n,
the fewer landmarks are required to identify C. This process is repeated until
no new landmarks are able to discover routers closer to C, or if Adv reached its
maximum number of landmarks.

Listing 1.1. GuessPath - Routing Aware Adversary.

1 Input: G; P ; landmarks L; gateway routers; edge routers
2 Output: NPath (nodes believed to be part of the path P→C);
3 NC (nodes believed to include C)
4 NPath ← P
5 NC ← ∅
6 for each available landmark Li {
7 pathLi ← calculate path Li→P , ordered from Li to P
8 hopsLi ← number of hops measured when retrieving from Li

9 NPath ← NPath∪ {element at position hopsLi in pathLi}
10 }
11 for each n, s.t. n in NPath, and n is a gateway router {
12 for each n̄, s.t. n̄ is an edge router, and n̄ is connected to n {
13 NC ← n̄
14 }
15 }

Non-Routing-Aware Adversary. The non-routing-aware adversary has no
knowledge of the content of routing tables. Without this knowledge, measuring
distances between the caches satisfying the landmarks’ interests and the land-
marks does not provide as much information as in the case of routing-aware
adversaries. In fact, given a distance, Adv can identify a set of caching routers
that contains the one serving her requests, instead of a single router. In this case
the Adv’s strategy includes three phases: Phase 1 : collecting information from
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landmarks to assign a score to each node, Phase 2 : using scores to determine
routers that are likely in the path; and Phase 3: further refining the selection.
Pseudocode for the three phases is reported in Listing 1.2.

Listing 1.2. GuessPath - Non-Routing Aware Adversary.

1
2 Input: G; P ; landmarks L; threshold; numberOfComp;
3 gateway routers; edge routers
4 Output: NPath (nodes believed to be part of the path
5 P→C); NC (nodes believed to include C)
6 NPath ← P , NC ← ∅
7 for each landmark Li {
8 Ri ← router at one hop from Li

9 }
10 PHASE 1
11 for i = 1 to size(L) {
12 hopsLi ← number of hops measured when retrieving from Li

13 hopsRi ← hopsLi − 1
14 suspectNodesLi ← all nodes nLi at distance hopsLi from Li

15 suspectPathsLi ← all possible paths to reach nodes
16 suspectNodesLi from Li

17 for each landmark Lj �= Li {
18 if ∃ spath in suspectPathsLi , s.t. Rj is in spath {
19 hopsLj ← number of hops measured when
20 retrieving from Lj

21 if ((hopsRj ) �= hopsLi − (position of Rj in spath)){
22 remove spath from suspectPathsLi

23 }
24 }
25 }
26 for each spath in suspectPathsLi {
27 n = node at position hopsLi in spath
28 Scoren = Scoren + 1/(hopsLi)

2

29 }
30 }
31 PHASE 2
32 for each n in V {
33 if (Scoren > threshold) {
34 N ′

Path ← n
35 }
36 }
37 PHASE 3
38 NPath ← getConnComp(N ′

Path, numberOfComp)
39 for each n in NPath and n is a gateway router {
40 for each n̄ is an edge router and n̄ connected to n {
41 NC ← n̄
42 }
43 }
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Phase 1 is based on two observations. First, estimation done independently
by each landmark Li (i.e., suspect nodes computed in line 13 in Listing 1.2) could
be partially incorrect. Because Li does not have access to routing information, it
might include routers that are not on P→C. However, estimates from different
landmarks can be checked against each other for consistency: nodes that are
not consistently considered as potential routers in the path from C to P will
be assigned a zero score. This consistency check (lines 16–24 in Listing 1.2) is
motivated as follows. Because each landmark Li is connected to just one router
Ri, learning the number of hops from Li to the source also implies learning
the distance from Ri to the source of the content. Moreover, because routing
information is not available to Adv, every path from Li to a “suspect” node is
a candidate (suspect) path. Let us consider the situation in Fig. 3(b) where Rj ,
one hop away from Lj , belongs to a suspect path for Li. In this case, distance
measured by Li and Lj for Rj must be the same. If two distances differ, the
suspect path for Li is considered incorrect and no score is added to the suspect
node, as shown in Fig. 3(c).

Suspect node 
for Li 

Actual source for 
the content for 
both Li and Lj 

First suspect 
path for Li 

Second suspect 
path for Li 

(a) Legend for figures 3(b) and 3(c)

Li  
(hopsL = 3) 

Ri 

 (hopsR  = 3) 
Lj  

(hopsL = 2) 

(hopsR =1) 
 

(hopsL  

Rj 

j 

j 

i 

i 

i 

(b) Consistency check

Ri 

 (hopsR  = 3) 

no score 
added score  

= 
 score + 1/9 

Rj 

j i 

i 

Li  
(hopsL = 3) 

Lj  
(hopsL = 2) 

(c) Score assignment

Fig. 3. Non-routing aware – Phase 1.

The second observation is used to add a score to the nodes selected as possible
candidates to be on the P→C path (denoted hereafter by NPath). In this case,
the closer Li is to NPath, the more specific is the information provided by Li.
For example, if we connect Li to a node in this path, Li could identify the source
without error – the content will be retrieved in zero hops, i.e., from the same
router to which Li is connected. Instead, if we connect Li at a certain distance
(denoted as hopsLi

) from a node on NPath, Li will consider any node that is
hopsLi

-hops away from itself as a possible node in NPath. As a consequence, the
greater hopsLi

, the higher is the number of candidate nodes; thus, errors are more
likely. In Listing 1.2, this observation is reflected in line 27 where 1/(hopsLi

)2 is



Violating Consumer Anonymity 253

used to assign a score to the nodes. The intuition behind this assignment has
a geometric explanation. Considering the selected node Li as the center of a
sphere and the distance hopsLi

as the radius, the area of the sphere is a good
estimator of the number of candidate nodes.

Phase 2 uses the scores provided in Phase 1 to select a number of nodes
as sources of content packets. In this case, we select the nodes that exceed a
predefined threshold as possible sources.

Phase 3 further refines node selection. We use the set of selected nodes from
Phase 2 to create a subgraph of G. Then, we compute connected components in
this new graph and we order them from the closest to the farthest from the pro-
ducer. We consider the distance from a component ConnComp[i] to the producer
as the distance, computed in graph G, from the closest node of ConnComp[i]
to the producer. Therefore, Adv assumes that the nodes from ConnComp[0] to
ConnComp[k − 1] are in the path P→C. Finally, we consider all edge nodes
connected to gateway nodes in NPath as the nodes that include C.

Landmarks are selected to minimize the difference between: (i) the score
assigned to the new landmark by the previous selection step, and (ii) the average
score.

6 Evaluation

In the current Internet, the relationship between RTT and distance measured in
hops is subject to variation of the triangle inequality. Such variations make RTT-
based distance estimation unreliable [18]. We studied this phenomenon on the
NDN tested, and we evaluate how it affects the attacks discussed in this paper.
To this end, we used Amazon Elastic Compute Cloud (EC2) [8] virtual machine
instances. Each EC2 instance was connected to the testbed at a different router,
and was used to either publish or request content. We performed exhaustive
tests, including producer/consumer combinations. Figure 4(b) summarizes our
findings. It also shows approximate physical straight-line distance between NDN
nodes. Reported CFT is obtained after subtracting the CFT between the EC2
instance acting as C and the first-hop router. Our experiments confirm that:
(1) links between routers are symmetric in terms of bandwidth and delay, except
as discussed below; (2) triangle inequality violations only add a small amount
of noise to distance estimation. CFT is symmetric for every link except for UA-
REMAP, PKU-UCLA and PKU-NEU. In the first case, asymmetry is due to
the paths UA→REMAP vs REMAP→CSU→UA. We consider asymmetry in
PKU-NEU and PKU-UCLA links to be an artifact of the current NDN testbed,
since it is deployed as an IP overlay, and not a property of NDN.

We ran multiple experiments in which we connected P and C to different
nodes. For every experiment we measure CFT connecting landmarks to all nodes
in the testbed. Our measurements reveal that 8% of landmarks provided an
incorrect distance, likely due to violation of triangle inequality. Therefore, actual
distance measurements on the testbed would be affected by “random noise” with
probability 8 %.
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PKU
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(a) Testbed topology [21]
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Fig. 4. The NDN Testbed.

6.1 Performance of Our Algorithms

To evaluate the effectiveness of our strategies, we defined three metrics, which can
be informally summarized as: (a) how effective are our strategies in identifying
nodes in the path? (b)Of the selected nodes, how far from C is the closest?
(c) How often do our strategies correctly identify C? Although (c) is arguably
the most “natural” metric, it is also the one that provides the least amount
of information, representing a simple binary outcome (identified/not identified).
Therefore, we believe that (a) and (b) complement this metric by providing
further details on how close Adv is to identifying C.

We express (a) as two quantities: true positive (i.e., nodes that have been
correctly identified) and false positives (nodes that have been erroneously flagged
as part of the path):

True positive =
#of output nodes in the path
#of total nodes in the path

False positive =
#of output nodes not in the path
#of total nodes not in the path

We compared our strategy with random guessing. This represents the best
adversarial strategy if NDN truly provides consumer anonymity, i.e., if the adver-
sary can gather no information at all about consumers. We model random guess-
ing using the urn model without replacement [10] where the number of draws q
is the number of nodes identified by our strategy in the same setting. Let N be
the number of nodes in the topology, and m the length of the path P→C. The
probability of choosing j nodes from the path is:

P(j) =

(
m
j

)(
N−m
q−j

)

(
N
q

) (1)
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We calculate true pos for our random strategy as the expected number of nodes
chosen from the path, divided by the number of nodes:

true pos =

(∑min(m,q)
j=1 j · P(j)

)

m
(2)

Analogously, false positive are calculated as the expected number of incorrectly
selected nodes (q − j) divided by the number of nodes:

f alse pos =

(∑min(m,q)
j=0 (q − j) · P(j)

)

(N − m)
(3)

With respect to (b), we select as baseline the average distance to the consumer
in the network. In particular, we calculate the average of the distance from every
node in the network to the consumer as:

avg =

(∑N
i=0 d (i)

)

N
(4)

where d(i) is the distance of node i from the consumer.
We report results for paths of length 6. This length was selected since it is

the most likely distance in several topologies (see Fig. 5.)
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Fig. 5. Probability distribution of path lengths in the AT&T (see Fig. 2) and Verio [26]
topologies.

Routing-Aware Adversary – Non-Adaptive Landmarks Selection.
Results in this configuration for AT&T are reported in Fig. 6(a). Our technique
is able to keep false positive very low due to the availability of routing informa-
tion. It is interesting to note that the algorithm is not always able to guess all
the nodes in the path, regardless of the number of landmarks used. The reason
for this is that, sometimes, a router in the path cannot satisfy any interest from
the landmarks because these interests can always be satisfied by other routers.

Figure 6(b) compares our strategy with random guessing. In this case, our
guess for C is almost always at most two hops away from C, compared to five
hops for random guessing.
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Figure 6(c) shows how often our algorithm identifies the consumer. When
our strategy is able to identify at least one node one hop away from the con-
sumer node, it always identifies the consumer node. This is the case with 200
and 350 landmarks, where our strategy identifies C in the vast majority of our
simulations.
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Fig. 6. Routing aware adversary - Non-adaptive landmarks selection.

Routing-Aware-Adversary – Adaptive Landmarks Selection. Figure 7
shows the performance of our technique in this scenario. The ability to adap-
tively select locations within the network allows Adv to easily identify C in our
topology. Figure 7(b) and (c) show that, with 100 landmarks, our algorithm is
able to identify C with over 90 % probability.
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Non-Routing-Aware Adversary – Non-Adaptive Landmarks Selection.
Figure 8 shows performance of Listing 1.2 on AT&T with respect to false positives
and false negatives. Our experiments were performed with threshold and k set
respectively to 1.5 and 2. Compared to routing aware adversary, the number
of false positives is higher. However, overall performance is still good: Fig. 8(a)
shows that false positives are below 20 %. Similarly to the routing-aware case,
we are not able to always guess the entire path P→C, as reported in Fig. 8(b).
A similar behavior is shown in Fig. 8(c).
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Fig. 8. Non-routing aware adversary - Non-adaptive landmarks selection.

Non-Routing-Aware Adversary – Adaptive Landmarks Selection. Per-
formance of this scenario are reported in Fig. 9. Figure 9(a) shows that our algo-
rithm reduces the number of false positives in the AT&T topology. This strategy
is able to significantly outperform random guessing strategy (Fig. 9(b) and (c)).

Table 1 summarizes the performance of all our strategies. We report perfor-
mance of random guessing obtained under the same conditions.

Table 1. Performance of our strategies.

Number of % of consumer guessed

landmarks Our strategy Random guessing

Non-routing aware Non-adaptive 350 99,3 % 7,4 %

Adaptive 200 100% 0,5 %

Routing aware Non-adaptive 350 93,0 % 25,4 %

Adaptive 350 77,1 % 19,3 %
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Fig. 9. Non-routing aware adversary - Adaptive landmarks selection.

7 Detecting Eavesdroppers

Although C might be the only intended recipient of a set of content packets from
P , NDN allows any host to later retrieve these packets from routers’ caches and
possibly do so without either P or C being able to directly detect this action.
This can be seen as an effective means of eavesdropping in NDN: in contrast with
“traditional” eavesdropping, this approach does not require privileged access to
the networking infrastructure and can be performed independent of the geo-
graphic location of Adv with respect to P and C.

One way to detect this type of eavesdropping is by using techniques pre-
sented in this paper. For example, P and C could “rent” a set of geographically
distributed hosts while they are exchanging content packets. These rented hosts
would implement the algorithms discussed in the paper. Eavesdroppers will then
be consistently identified as extraneous consumers (other than C), and possibly
located. We envision that such a service could be easily offered by companies
such as Amazon, Microsoft, or other geographically distributed cloud providers.

8 Discussion of How to Mitigate Geo-Location Attacks

One natural approach to prevent aforementioned attacks is to simply disable
router content caching. Besides negating one of the main benefits on NDN, effi-
cacy of this countermeasure is limited. In fact, an insider Adv that knows exact
timing of interest packets emitted by C can implement PIT-based techniques
outlined in [2]. Under normal conditions, Adv has a very small window (a few
ms to a few hundreds ms) to extract information from PIT-s on a single packet.
However, it is safe to assume that P and C exchange a large number of content
packets. This significantly simplifies the attack. Moreover, an insider Adv could
delay injecting content packets into the network upon receiving an interest. This
would force interests from C to be stored in all PITs along the path P→C for
longer, thus further simplifying the attack.
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A better approach involves using unpredictable names [1]: P and C can ini-
tially agree on a secret seed (e.g., via authenticated Diffie-Hellman key exchange)
and use it to generate pseudo-random content names. Since the seed would be
known only to the two communicating parties, no outsider can guess content
names. Adv therefore cannot request content, which is necessary to locate C.
Unfortunately, this solution requires both P and C to be actively engaged in the
secret agreement procedure. This could generate a significant (additional) load
on P , and will negating the benefit of caching and interest collapsing. Further-
more, this approach is ineffective against insider Adv who knows the seed.

Another approach is to “confuse” Adv by requesting content packets from
multiple geographic locations at the same time. Intuitively, since in this case
there are multiple consumers, geo-location algorithms would identify many of
them with roughly the same probability, offering a weak form of privacy (i.e.,
k-anonymity [27]) and deniability to C.

To the best of our knowledge, the only approach completely effective against
attacks discussed in this paper is the anonymizing network ANDaNA [6].
ANDaNA is an NDN equivalent of Tor [28]. It allows end host to join an anonymi-
zing network as “onion routers”, which anonymize consumers’ requests. Unfor-
tunately, the additional overhead and latency might be prohibitive for many
applications.

9 Conclusion

In-network content caching, a key feature of NDN, has been shown to have
unexpected privacy implications [1]. In this paper, we provided another example
of how abuse of network state can lead to loss of privacy in NDN. We designed
several techniques geared for adversaries with varying capabilities and evaluated
proposed techniques via simulations on a realistic network topology. We then
used the actual NDN testbed to validate our results.

Experiments show that plausible adversaries can locate consumers with high
probability, i.e., over 90% in many scenarios. Furthermore, even adversaries with
relatively little knowledge of the network can successfully locate consumers with
high probability, albeit, using more resources.

We then discussed several countermeasures, showing that even disabling
caches on all routers does not completely prevent this attack. Moreover, the
only effective countermeasure we are aware of (ANDaNA) imposes significant
overhead on the communicating parties. Finally, we sketched out how the pro-
posed techniques can help identify eavesdroppers in NDN, which is a rather
unexpected outcome of router state.

We believe that the impact of our results goes beyond geo-location. NDN has
been widely assumed to provide better consumer privacy than the current IP-
based Internet due to lack of source/destination addresses. However, this paper
casts serious doubt on this belief. Further, we argue that our geo-location tech-
niques apply, to some extent, not only to NDN, but to any network architecture
that supports ubiquitous caching.
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Appendix A: Testbed Measurements

Figure 10(a) and (b) show that CFT can be used to accurately estimate distance.
In Fig. 10(a), we connected P to University of California, Irvine (UCI) and C to
University of Arizona (UA), while in Fig. 10(b) we connect C to the University
of Memphis node. Landmarks were connected to all nodes in the testbed. In both
cases, 8 % of landmarks provided an incorrect distance, likely due to violation of
triangle inequality. Therefore, we added “random noise” with probability 8 % in
the experiments presented in this paper.
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Fig. 10. CFT vs. distance for content published at UCI.
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25. Réseaux IP Européens (RIPE). http://www.ripe.net/
26. Rocketfuel. http://research.cs.washington.edu/networking/rocketfuel/
27. Sweeney, L.: k-anonymity: A model for protecting privacy. Int. J. Uncertainty

Fuzziness Knowl. Based Syst. 10(5), 557–570 (2002)
28. Tor Project: Anonymity Online. https://www.torproject.org
29. Verde, N.V., Ateniese, G., Gabrielli, E., Mancini, L.V., Spognardi, A.: No nat’d

user left behind: Fingerprinting users behind NAT from netflow records alone. In:
ICDCS, pp. 218–227. IEEE Computer Society (2014)

30. Wang, Y., Burgener, D., Flores, M., Kuzmanovic, A., Huang, C.: Towards street-
level client-independent ip geolocation. In: USENIX NSDI, pp. 365–379. USENIX
Association (2011)

http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html
https://code.renci.org/gf/project/choicenet/
http://aws.amazon.com/ec2
https://www.maxmind.com/
http://www.nabber.org/projects/geotrace/
http://mobilityfirst.winlab.rutgers.edu
http://named-data.org
http://named-data.net/ndn-testbed/
http://nebula.cis.upenn.edu
http://www.ripe.net/
http://research.cs.washington.edu/networking/rocketfuel/
https://www.torproject.org


262 A. Compagno et al.

31. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A comprehensive framework for the
geolocalization of internet hosts. In: USENIX NSDI, pp. 313–326. USENIX Asso-
ciation (2007)

32. XIA - eXpressive Internet Architecture. http://www.cs.cmu.edu/∼xia/
33. Zhu, Z., Burke, J., Zhang, L., Gasti, P., Lu, Y., Jacobson, V.: A new approach to

securing audio conference tools. In: AINTEC, pp. 120–123. ACM (2011)

http://www.cs.cmu.edu/~xia/


Post-Quantum Forward-Secure Onion Routing

(Future Anonymity in Today’s Budget)

Satrajit Ghosh1(B) and Aniket Kate2

1 Indian Statistical Institute (ISI), Kolkata, India
satneo@gmail.com

2 CISPA, Saarland University, Saarbrücken, Germany
aniket@mmci.uni-saarland.de

Abstract. The onion routing (OR) network Tor provides anonymity
to its users by routing their encrypted traffic through three proxies (or
nodes). The key cryptographic challenge, here, is to establish symmetric
session keys using a secure key exchange between the anonymous user
and the selected nodes. The Tor network currently employs a one-way
authenticated key exchange (1W-AKE) protocol ntor for this purpose.
Nevertheless, ntor as well as other known 1W-AKE protocols rely solely
on some classical Diffie-Hellman (DH) type assumptions for their (for-
ward) security, and privacy of today’s anonymous communication cannot
be ensured once quantum computers arrive.

In this paper, we demonstrate utility of lattice-based cryptography
towards solving this problem for onion routing. In particular, we present
a novel hybrid 1W-AKE protocol (HybridOR) that is secure under the
lattice-based ring learning with error (ring-LWE) assumption or the gap
DH assumption. Due to its hybrid design, HybridOR is not only resilient
against quantum attacks but also allows the OR nodes to use the cur-
rent DH public keys and subsequently requires no modification to the
current Tor public key infrastructure. Moreover, thanks to the recent
progress in lattice-based cryptography in the form of efficient ring-based
constructions, our protocol is also computationally more efficient than
the currently employed 1W-AKE protocol ntor, and it only introduces
manageable communication overhead to the Tor protocol.

Keywords: Tor · Onion routing · Forward anonymity · Learning with
errors · Compatibility

1 Introduction

Lattice-based cryptographic constructions have drawn an overwhelming amount
of research attention in the last decade [7,35,37,40,44]. Their strong provable
worst case security guarantee, apparent resistance to quantum attacks, high
asymptotic efficiency and flexibility towards realizing powerful primitives (e.g.,
fully homomorphic encryption [21]) have been the vital reasons behind their pop-
ularity. Although the powerful primitives such as fully homomorphic encryption
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 263–286, 2015.
DOI: 10.1007/978-3-319-28166-7 13



264 S. Ghosh and A. Kate

are still very far from being ideal for practical use, several recent efforts have
demonstrated that performance of lattice-based constructions for basic encryp-
tion and authentication primitives is comparable with (and sometimes even bet-
ter than) performance of corresponding primitives in the classical RSA or DLog
settings [26,33,35]. As a result, some work has started to appear towards devel-
oping lattice-based version of real-world cryptographic protocols [6,41,49]. In
this work, we explore the utility of plausibly quantum-secure yet highly efficient
lattice-based cryptography to anonymous communication networks (ACNs).

Over the last three decades, several ACNs have been proposed and few imple-
mented [11,12,16,24,42,45]. Among these, with its more than two million users
and six thousand onion routing (OR) proxies spread all across the world, the
OR network Tor [16,48] has turned out to be a huge success. Today, along with
anonymous web browsing and service hosting, Tor is also extensively used for
censorship-resistant communication [14].

A typical realization of an OR network (such as Tor) consists of an overlay
network of proxies (or nodes) that routes their users’ traffic to their Internet-
based destinations. A user chooses an ordered sequence of OR nodes (i.e., a
path) through the OR network using a path selection strategy, and constructs
a cryptographic circuit using a public-key infrastructure (PKI) such that every
node in the path shares a symmetric session key with the anonymous user. While
employing the circuit to send a message anonymously to a destination, the user
forms an onion by wrapping the message in multiple layers of symmetric encryp-
tion such that upon receiving the onion every node can decrypt (or remove) one
of the layers and then forward it to the next node in the circuit.

From the cryptographic point of view, the key challenge with an OR protocol
is to securely agree upon the required session keys so that a user can individually
authenticate the nodes in her circuits while maintaining her anonymity (except
from the first node). Since its inception, Tor employed an interactive forward-
secret key-exchange protocol called the Tor authentication protocol (TAP) to
agree upon those session keys in a telescoping (or multi-pass) construction [16].
Due to its atypical use of CPA-secure RSA encryption, TAP was considered
weaker in terms of performance as well as security [23]. Recently, Goldberg,
Stebila and Ustaoglu [25] formalized the OR key agreement security by introduc-
ing the concept of one-way authenticated key exchange (1W-AKE), and designed
a provably secure 1W-AKE protocol called ntor. With its significantly better
computation and communication efficiency, ntor has since replaced TAP in the
real-world Tor implementation [15].

Security of ntor and other 1W-AKE protocols [3,10,28–30] requires some
variant of Diffie–Hellman (DH) assumption in the classical discrete logarithm
(DLog) setting. As the DLog problem and all of its weaker DH variants can be
solved in polynomial time (in the security parameter) using quantum computers,
the security of these 1W-AKE constructions and subsequently the confidentially
and anonymity of the OR communications will be broken in the post-quantum
world. Importantly, the current 1W-AKE protocols are also not forward-secure
against the quantum attacks; the confidentially and anonymity of even today’s
OR communications can be violated once quantum computers arrive.
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Although this raises concern regarding the privacy of today’s anonymous
communication in the future, making drastic modifications to the current OR
infrastructure by replacing the current 1W-AKE construction with a lattice-
based construction may be injudicious; e.g., in Tor, this will require completely
changing the public key infrastructure (PKI). As a result, it presents an inter-
esting challenge to define a lattice-based 1W-AKE protocol that offers forward
security in the post-quantum world without significantly affecting the current
cryptographic infrastructure and performance.

Our Contribution. In this paper, we resolve this challenge by presenting a
novel hybrid 1W-AKE protocol (HybridOR) that combines lattice-based key
exchange with the standard DH key exchange. The channel security of HybridOR
relies on the (standard) ring variant of learning with error (ring-LWE) assump-
tion or the gap Diffie–Hellman (GDH) assumption, while its forward secrecy and
the security against an man-in-the-middle impersonator rely respectively on the
ring-LWE assumption and the GDH assumption. Moreover, while achieving this
enhanced security properties, HybridOR does not require any modifications to
the current Tor public keys or directory infrastructure.

We observe that HybridOR is computationally more efficient than the cur-
rently employed ntor protocol; in particular, the efficiency improvement on both
the client and the node sides is nearly 33%. Although this improved security
and efficiency comes at the cost of increased communication, both the client and
the node will have to communicate three Tor cells each, which we find to be
manageable for the Tor network today. Finally, along with apparent resistance
to quantum attacks and the worst case security guarantee, as our HybridOR pro-
tocol is a 1W-AKE, it can also be used to realize a universally composable OR
protocol [2].

2 Background

In this section, we present a brief overview of the OR protocol, the GDH assump-
tion in the DLog setting, and describe the lattice-based learning with errors
problem.

2.1 Onion Routing

In the original OR protocol [42] circuits were constructed in a non-interactive
manner. In particular, a user created an onion where each layer contained a
symmetric session key for an OR node and the IP address of the successor OR
node in the circuit, all encrypted with the original node’s public key such that
each node can decrypt a layer, determine the symmetric session key and forward
the rest of the onion along to the next OR node. Unless public keys are rotated
frequently, this approach cannot guarantee forward security for the anonymous
communication; thus, in the second generation OR network [16] (i.e., Tor), cir-
cuits are constructed incrementally and interactively, where symmetric session
keys are established using a forward-secure authenticated Diffie–Hellman (DH)
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key exchange involving the OR node’s public key. In the second generation Tor
protocol, circuits are constructed using the Tor authentication protocol (TAP)
involving a CPA-secure RSA encryption and a DH key exchange. Currently, the
third generation Tor network employs the provably secure (against the GDH
assumption [38]) and significantly more efficient ntor protocol [25].

In related efforts, Backes et al. [2] observe that, with minor modifications,
universally composable (UC) security [8] is possible for the existing Tor pro-
tocol, if the employed key agreement protocol is a one-way authenticated key
exchange [25].

One-Way Authenticated Key Exchange—1W-AKE. Goldberg et al. intro-
duce a security definition of (one-way anonymous) one-way authenticated key
exchanges (1W-AKE) to facilitate design of provably secure session key agreement
protocols for onion routing [25]. (See Sect. 3 for a complete 1W-AKE definition.)

They also fixed a key agreement protocol proposed in [39] to obtain a provably
secure construction called the ntor protocol, which has replaced the TAP protocol
in the current Tor network. In ntor, the client sends a fresh ephemeral key gx to
the node. The node computes and sends a fresh ephemeral key gy to the client
and calculates the session key as H((gx)y, (gx)b), where b is the long term secret
key of the node.

Recently, Backes, Kate, and Mohammadi [3] introduced a 1W-AKE protocol
Ace that improves upon the computational efficiency of ntor. In Ace the client
sends two fresh ephemeral keys gx1 and gx2 to the node. The node sends one
fresh ephemeral key gy to the client. The client and node compute the shared
secret as gx1b+x2y = (gb)x1(gy)x2 = (gx1)b(gx2)y. The source of efficiency in Ace
comes from the fact that one can do two exponentiations at the same time using
a multi-exponentiation trick. (See Fig. 3 in Appendix A for a pictorial illustration
of ntor and Ace.)

In contrast to the above interactive 1W-AKE protocol, a single-pass construc-
tion using a non-interactive key exchange is possible as well. However, achieving
forward secrecy without regularly rotating the PKI keys for all Tor nodes is not
possible [30], and periodic public key rotation should be avoided for scalability
reasons. There have been attempts to solve this problem in the identity-based
cryptography setting [30] or the certificate-less cryptography setting [10]. Nev-
ertheless, as discussed in [2], key authorities required in these constructions can
be difficult to implement in practice.

2.2 Gap Diffie-Hellman—GDH

Let G be a multiplicative group with large prime order p and g ∈ G be the
generator of the group. Given a triple (g, ga, gb) for a, b ∈r Z

∗
p, the gap version

of Diffie-Hellman (GDH) problem is to find the element gab with the help of a
Decision Diffie-Hellman (DDH) oracle [38]. The DDH oracle Oddh takes input as
(G, g, ga, gb, z) for some z ∈ G and tells whether z = gab or not, that is whether
the tuple is a DH tuple or not. For the security parameter λ, solving GDH
problem in G is assumed to be a hard problem. More formally,
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Definition 1 (GDH Assumption). For all algorithm A, the advantage of
solving GDH in the group G is defined as,

Advgdh
A = Pr[AOddh

(p, g, ga, gb) = gab, (a, b) ∈r Z
∗
p
2].

The GDH assumption states that Advgdh
A is a negligible function of the security

parameter λ for all PPT algorithms A.

2.3 Learning with Errors—LWE

Learning with errors (LWE) is a problem of distinguishing noisy random linear
equations from truly random ones, for a small amount of noise. It has been
shown to be as hard as some worst case lattice problems [44], and its different
variants have been employed in designing lattice-based cryptosystems [34,36,43,
44]. The main drawback of schemes based on LWE [44] is that they are based
on matrix operations, which are quite inefficient and result in large key sizes.
To overcome these problems, in last few years, special lattices with additional
algebraic structures are used to construct cryptographic protocols.

LWE for Polynomial Ring. To reduce computation, communication and stor-
age complexity, Lyubashevsky [35] propose an algebraic variant of LWE, ring-
LWE, the problem is defined over a polynomial ring.

Let Zq be the set of integers from �−q/2� to �q/2�, and let Z[x] be the set
of polynomials with coefficients in Z. Consider f(x) = xn + 1 ∈ Z[x], where the
degree of the polynomial n ≥ 1 is a power of 2, which makes f(x) irreducible over
the Z. Let R = Z[x]/〈f(x)〉 be the ring of integer polynomials modulo f(x) such
that elements of R can be represented by integer polynomials of degree less than
n. Let q ≡ 1 mod 2n be a sufficiently large public prime modulus (bounded by
a polynomial in n), and let Rq = Zq[x]/〈f(x)〉 be the ring of integer polynomials
modulo both f(x) and q. The ring Rq contains all the polynomials of degree less
than n with coefficient in Zq, along with two operations, polynomial addition
and multiplication modulo f(x).

Let χ be the error distribution over R, which is concentrated on small ele-
ments of R. See [35] for details of the error distribution for the security and the
correctness of the system. We denote Ds,χ as the ring-LWE distribution over
R2

q , obtained by choosing uniformly random a ← Rq and e ← χ, and outputs
(a, a · r + e) for some r ← Rq.

Decision ring-LWE Problem. The decision version of ring-LWE is to dis-
tinguish between two distributions, Ds,χ, for uniformly random s ← Rq and a
uniformly random distribution in Rq ×Rq (denoted by URq×Rq

), given a poly(n)
number of independent samples. More formally,

Definition 2 (Decision ring-LWE Assumption). The decision ring-LWE
problem for n, q, χ is to distinguish the output of ODs,χ oracle from the output
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of an oracle URq×Rq
that returns uniform random samples from Rq × Rq. If A

is an algorithm, the advantage of A is defined as

Advdrlwe
A = |Pr[AODs,χ

(·)] − Pr[AOURq×Rq (·)]|.

The decision ring-LWE assumption states that for given values of n, q, and χ,
for every PPT adversary A, Advdrlwe

A is negligible in the security parameter λ.

The hardness results for the LWE problem are described in [35,40,44].
Brakerski et al. [7] show the classical hardness of the LWE problem. Ding et
al. [13] mention that for any t ∈ Z

+, such that gcd(t, q) = 1, the LWE assump-
tion still holds if we choose b = 〈a, r〉 + te. We use t = 2 for our construction.

It is important to note that ring-LWE samples are pseudorandom even when
the secret r is chosen from the error distribution [1,37]. Ducas et al. [17] show
that the ring-LWE problem is hard in any ring Z[x]/〈Φm〉, for any cyclotomic
polynomial Φm(x).

Robust Extractors. One of the important problems with the lattice-based key
exchange protocols is the error correction (or reconciliation) of the shared secret.
In literature, there are different methods [13,20] to agree on a shared secret from
noisy shared secret values. For our construction we adopt the method due to
Ding et al. [13] and recall the corresponding concept of robust extractors and
the signal functions below.

Definition 3 (Robust Extractors). An algorithm f(·) is a robust extractor
on Zq with error tolerance δ with respect to a hint function h(·) if:

– f(·) takes an input x ∈ Zq and a signal α ∈ {0, 1}, and outputs k = f(x, α) ∈
{0, 1}.

– h(·) takes an input y ∈ Zq and outputs a signal value α = h(y) ∈ {0, 1}.
– f(x, α) = f(y, α), for any x, y ∈ Zq, such that (x− y) is even and |x− y| ≤ δ,

where α = h(y).

We use the robust extractor as described in [13]. For q > 2 define α0 : Zq →
{0, 1} and α1 : Zq → {0, 1} as follows:

α0(x) =

{
0, if x ∈ [−� q

4�, � q
4�];

1, otherwise.
α1(x) =

{
0, if x ∈ [−� q

4� + 1, � q
4� + 1];

1, otherwise.

The hint algorithm h(·) generates the signal α for some y ∈ Zq by tossing
a random coin b ← {0, 1} and computing α = h(y) = αb(y). Finally the robust
extractor computes the common value as:

f(x, α) = (x + α · q − 1
2

mod q) mod 2,

where x ∈ Zq, |x−y| ≤ δ and x−y is even. In [13], the authors prove that f(·) is
a randomness extractor with respect to h(·) for an odd integer q > 8 with error



Post-Quantum Forward-Secure Onion Routing 269

tolerance δ = q
4 −2. Also if x is uniformly random in Zq, then f(x, α) is uniform

in {0, 1}, where α = h(x).
It is easy to extend this notion for ring settings. Any element in Rq can be

represented by a degree n−1 polynomial. For example any a ∈ Rq can be written
in the form a0 + a1x + · · · + an−1x

n−1. In that case the extractor can extract n
bits from an element of Rq. We extend αR

0 (a), αR
1 (a) : Rq → R2 as follows:

αR
0 (a) =

n−1∑

i=0

α0(ai)xi; αR
1 (a) =

n−1∑

i=0

α1(ai)xi.

The algorithm hR(·) can be defined in the same manner as hR(a) = αR
b (a), for

b ← {0, 1}. Similarly define the extractor in the ring settings fR(a, α) : Rq → R2

as:
fR(a, α) = (a + α · q − 1

2
mod q) mod 2.

Authenticated Key Exchange in the Lattice Setting. Fujioka et al. [19]
provide the first CK+ secure [9,19,31] authenticated key exchange (AKE) pro-
tocol from a key-encapsulation mechanism (KEM) based on ring-LWE problem
in the standard model. However due to the huge communication cost (≈ 139625
bytes) their lattice-based AKE is not suitable for real-world applications. In [20],
Fujioka et al. propose a generic construction for AKE from OW-CCA KEMs in
random oracle model. When instantiated with ring-LWE settings, their AKE
protocol gives a much more efficient solution to the problem. Still, commu-
nication cost for [20] reaches about 10075 bytes. Peikert [41] proposes a new
low-bandwidth error correction technique for ring-LWE based key exchange,
and provides practical lattice based protocols for key transport and AKE.
Ding et al. [13] propose another method for error correction and design a pas-
sively secure DH-like key exchange scheme based on both the LWE and the
ring-LWE problem. Zhang et al. [49] extend the above AKE protocol to ideal
lattice settings, and their lattice-based AKE protocol gives weak perfect forward
secrecy in the Bellare-Rogaway model [4]. Recently Bos et al. [6] demonstrate the
practicality of using ring-LWE based key exchange protocols in real life systems.
They employ lattice-based key exchange in TLS protocol. Their implementa-
tion reveals that the performance price for switching from pre-quantum-safe to
post-quantum-safe key exchange is not too high and can already be considered
practical, which further motivates our efforts towards defining a 1W-AKE pro-
tocol in the lattice setting.

3 1W-AKE Security Definition

Goldberg et al. [25] define the security requirements for a one-way authenticated
key exchange (1W-AKE) protocol, which are refined in [3]. In this section we
recall the security requirements for a 1W-AKE protocol between an anonymous
client and an authenticated node.
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A 1W-AKE protocol is a tuple of ppt algorithms (SetUp, Init,Resp,CompKey),
where SetUp generates the system parameters and the static long-term keys for
the node. The client calls Init to initiate the 1W-AKE protocol and the node
uses Resp to respond to an Init. Finally, the client uses CompKey to verify the
key-confirmation message and compute the key. We assume that a PKI is given,
that means for a node N all parties {P1, . . . , Pm} can obtain a certified public
key pkN .

Along with protocol correctness, a secure 1W-AKE protocol should respect
the following properties:

1W-AKE Security. An attacker should not learn anything about the session
key of an uncompromised session, even if it completely compromises several
other sessions, introduces fake identities or even learn some uncompromised
session secret.

1W-anonymity. A node should not be distinguish between communicating with
two different clients.

3.1 Correctness

In a 1W-AKE protocol an anonymous client (denoted by �) tries to establish a
shared secret key with a node N . The client calls Init(N, pkN , cs), which returns

Fig. 1. W-AKE Security Challenger: Chkeb (1λ), where λ is the security parameter. If
any invocation outputs ⊥, the challenger erases all session-specific information for that
session and aborts that session. [3]
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an output message m, session id Ψ and session state st. The client sends m
to N . Init takes a queue cs as input, where cs stores already chosen keys. If
cs is empty then Init generates a fresh output message m. In response, N runs
Resp(skN , N,m, cs) and outputs (m′, (k,�,−→v ), ΨN ), where m′ is the response
message to the client, k is the session key computed by N , and −→v contains
ephemeral public keys for the session ΨN . On receiving m′, the client computes
(k′, N,−→v ′) by calling CompKey(pkN , m′, Ψ, st), where k′ is the session key com-
puted by the client and −→v ′ is the list of ephemeral public keys. An 1W-AKE
protocol is correct if for every party N :

Pr[(m, st, Ψ) ← Init(N, pkN , cs), (m′, (k,�,−→v ), ΨN ) ← Resp(skN , N,m, cs),
(k′, N,−→v ′) ← CompKey(pkN ,m′, Ψ, st) : k = k′ ∧ −→v = −→v ′)] = 1.

3.2 1W-AKE Security

The goal of the adversary in the 1W-AKE security experiment is to distinguish
the session key of an uncompromised session from a random key. It requires an
active attacker to not learn anything about the key or be able to impersonate
an honest node.

In the security game, a challenger Chke represents honest parties (P1, . . . , Pm)
and allows the attacker a fixed set of queries described in Fig. 1. The challenger
internally runs the 1W-AKE algorithm, and simulates each party. For the chal-
lenge, the adversary asks Chke for the session key of an uncompromised session
Ψ for a party P by querying testP (Ψ) (one time query). Chke sends the correct
session key or a randomly chosen session key to the attacker with equal proba-
bility. The attacker’s task is to determine whether the given key corresponds to
the real session Ψ or is random.

For triggering the initiation session, triggering the response to a key exchange,
and for completing a key exchange, the challenger allows the adversary to query
sendP (·,m). For the compromising parties, the attacker can ask the following
queries:

– reveal nextP : ask the party P to reveal the next public key that will be chosen.
– partnerP (X): ask for the secret key for a public key X.
– sk revealP (Ψ): ask for the session key of a session Ψ .
– establish certificate(N, pkN ): register new long-term public keys pkN for an

unused identity N .

The challenger maintains several variables for each party P :

– params stores public parameters for the AKE protocol.
– ake stP (Ψ) stores the key exchange state for the party P in the session Ψ . It

contains ephemeral keys that will be deleted after the completion of the key
exchange.

– result stP (Ψ) stores the resulting state for the partyP for a completed session Ψ .
This result state contains the established session key k, the identity of the peer
party, which is � if the peer is anonymous, otherwise the identity of the peer.
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A state st that typically contains two vectors −→v0,−→v1 that contain the ephemeral
and the long-term public keys used for establishing the session key of Ψ .

The attacker is a partner of a public key X if one of the following conditions
hold:

– X has not been used yet.
– X is the public key that the attacker registered using a establish

certificate(N,X) query.
– X was the response of a sendP or reveal nextP query and there is a successive

query partnerP (X).

In order to prevent the attacker from trivially winning the game, Goldberg
et al. [25] propose the freshness notion for the challenge session. A challenge
session is 1W-AKE fresh if the following conditions hold:

1. Let (k,N, st) = result stP (Ψ). For every vector −→vi in st there is at least one
element X in −→vi such that the attacker is not a partner of X.

2. If ake stP (Ψ) = (−→v ,N) for the challenge session Ψ , the adversary did not
issue sk revealN (Ψ ′), for any Ψ ′ such that ake stN (Ψ ′) = (−→v ,�).

After a successful key exchange with a party N , an anonymous client outputs
a tuple (k,N,−→v0,−→v1), where k is the session key. −→v0,−→v1 is the transcript of the
protocol. The node N outputs (k,�,−→v0,−→v1) to denote that the peer party is
anonymous.

Definition 4 (1W-AKE Security). Let λ be a security parameter and let
the number of parties m ≥ 1. A protocol π is said to be 1W-AKE secure
if, for all probabilistic polynomial time (ppt) adversaries A, the advantage
Adv1w-ake

A (π, λ,m) that A distinguishes a session of a 1W-AKE fresh session
from a randomly chosen session key is negligible in λ, where Adv1w-ake

A (π, λ,m)
is defined as:

Adv1w-ake
A (π, λ,m) = |Pr(A(trans(π), k) = 1) − Pr(A(trans(π), k′) = 1|,

where trans(π) is the transcript of the protocol, k is the real session key and k′

is the random session key.

Forward Secrecy. In key exchange forward secrecy ensures that a session key
derived from long-term keys remains secret even if the long-term keys are com-
promised in the future. A 1W-AKE secure protocol provides forward secrecy if
the long-term public keys of the participating parties appear in the output vector
of the protocol [25]. In that case the adversary can be partner with a long-term
public key, ensuring forward secrecy in the security game.

3.3 One-Way Anonymity

The purpose of one-way anonymity is that an adversary (even a node) cannot
guess which client is participating in the key exchange. The client always knows
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that it is participating in a key exchange protocol with the node, but from the
node’s point of view (or from the point of view of other nodes), the participating
client must be anonymous. The proof for the 1W-anonymity property of our
protocol is exactly the same as the proof of the 1W-anonymity of ntor [25], and
we refer the reader to [25] for the security definition and 1W-anonymity proof.

4 Our Protocol

In this section we describe the HybridOR protocol, a hybrid lattice-based onion
routing protocol. We call this protocol hybrid as the long-term part of the key
comes from a DH key exchange, whereas the ephemeral part of the key comes
from a lattice based key exchange. Hence the security of the protocol essentially
depends on the hard problems in either setting, namely the hardness of the GDH
problem from the DLog setting or the hardness of the ring-LWE problem from
the lattice-based setting.

In our HybridOR protocol, The client generates fresh ephemeral keys pC ∈ Rq

and gx ∈ G and sends them to the node. The node generates a fresh ephemeral
key pN ∈ Rq and computes k1N = pCrN + te′

N ≈ arCrN , a signal value α =
hR(k1N ). The node sends pN and α to the client. The client computes k1C =
pNrC + tr′

C ≈ arCrN . Recall that t = 2. The client and node approximately
agree on the shared secret value k1C and k1N . To achieve exact agreement on
the shared secret from the approximate shared secret, the robust extractor fR(·)
is used. The client and node compute the shared secret k1, k2, and sk as follows:

k1 = fR(k1N , α), k2 = (gx)s, sk = H1(k1) ⊕ H2(k2) (node-side)

k1 = fR(k1C , α), k2 = (gs)x, sk = H1(k1) ⊕ H2(k2) (client-side)

4.1 Construction

Figure 2 provides a detailed description of the HybridOR protocol. The node N
runs the SetUp algorithm (see Sect. 2.1) to generate the system parameters. In
HybridOR the SetUp algorithm can be seen as a combination of two separate
SetUp algorithms. One part generates the system parameters for the DH-like
key exchange (as in [3,25]) and the other part generates the parameters for the
lattice based settings (as in [13]).

The SetUp algorithm generates a group G with large prime order p, where the
GDH [38] problem is hard. Let g ∈ G be the generator of the group. The Setup
algorithm further generates the public parameters for the lattice based settings
as described in Sect. 2.3. It publishes the dimension n, the prime modulus q, the
description of the ring R and the error distribution χ in the public parameter.

The node samples a ← Rq and s ← Z
∗
p, computes gs, and publishes

(R,n, q, t, χ, a,G, g, gs) as the public parameter of the protocol. where gs is the
long term public key of the node with s as the secret key. The node also pub-
lishes Hst(·),H1(·),H2(·) and a PRF (·) in the public parameter, where Hst(·) is
a collision-resistant hash function, H1(·) is a randomness extractor and H2(·) is
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Fig. 2. A detailed description of the HybridOR protocol

a random oracle. The PRF (·) is a pseudorandom function that is used to gener-
ate the key confirmation message. Note that according to [18], we instantiate a
randomness extractor with HMAC. However, we can also use the key derivation
function HKDF [32] to instantiate H1.

To initiate a new key exchange session the anonymous client C calls the
Init algorithm. Init randomly samples rC and eC from the error distribution
χ and x from Z

∗
p. It computes the ephemeral key pair as pkC = (pC , gx) and

skC = (rC , x), where pC = arC + teC mod q. Init sets the local session identifier
as ψC = Hst(pC , gx), where Hst is a collision-resistant hash function. The session
information of the client is stored in the variable st(ψ) as st(ψC) = (HybOR,
N, rC , pC , x, gx). Init generates the outgoing message mC = (HybOR, N, pC , gx),
and sends (ψC ,mC) to the node N over the network.
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In response to the message the node runs Resp, which verifies whether pC ∈
Rq and gx ∈ G. On successful verification it randomly samples rN and eN from
the error distribution χ and computes pN = arN + teN mod q. Resp outputs the
ephemeral key pair (pN , rN ), where pN is the public part and rN remains secret
to the node. Resp further samples e′

N ← χ and computes k1N = pCrN + te′
N

mod q and α = hR(k1N ). hR(·) is a randomized algorithm used to generate
the signal value α, as described in Sect. 2.3. To ensure the correctness of the
shared secret computation, N sends α to the client [13]. The node computes the
short-term shared secret (k1) and the long-term shared secret (k2) as:

k1 = fR(k1N , α), k2 = (gx)s = gxs,

where fR(·) is the robust extractor as defined in Sect. 2.3. By short-term shared
secret we mean the shared secret computed using the client’s ephemeral key and
node’s ephemeral key. By long-term shared secret we mean the shared secret com-
puted by using the client’s ephemeral key and node’s long-term or static key.

The node computes the session key sk, the PRF key skm and the key con-
firmation message tN as:

(skm, sk) =H1(k1, pC , pN , N,HybOR) ⊕ H2(k2, gx, gs, N,HybOR)
tN =PRF (skm, N, pN , α, pC , gx,HybOR, node).

The tag tN provides only a means for the key confirmation. Resp returns the
session identifier ψN = Hst(pN , α) and a message mN = (HybOR, pN , α, tN ).
The node sends (ψN ,mN ) to the client. The node completes the session by
deleting (rN , eN , e′

N ) and outputting (sk,�, (−→v0 ,−→v1)), where −→v0 = {pC , gx} and
−→v1 = {pN , gs}. � denotes that the identity of the client is not known to the
node.

On receiving the message (ψN ,mN ) for the session ψC , the client C calls the
algorithm CompKey to compute the session key. CompKey first checks whether
the session ψC is active; if so, it retrieves the required session information, namely
rC , pC , x, gx from st(ψC). Then it checks whether pN ∈ Rq. After successful
verification CompKey computes the shared secrets k1, k2 as follows:

k1C = pNrC + teC mod q,

k1 = fR(k1C , α), k2 = (gs)x = gxs.

The client computes (skm, sk) = H1(k1, pC , pN , N,HybOR) ⊕ H2(k2, gx, gs, N,
HybOR), where sk is the session key and skm is the PRF key. It verifies the
key-confirmation message tN using the key skm. After that the client completes
the session ψC by deleting st(ψC) and outputting (sk,N, (−→v0 ,−→v1)), where −→v0 =
{pC , gx} and −→v1 = {pN , gs}. If any verification fails during the session execution,
the party erases all session-specific information and aborts the session.

In Fig. 3 in Appendix A, we compare HybridOR with the ntor and Ace pro-
tocols in the literature.

Correctness. To analyze the correctness of HybridOR, we can see HybridOR as
a combination of two key exchange protocols, namely the Diffie-Hellman key
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exchange protocol and the lattice-based protocol by Ding et al. [13]. Hence the
correctness of HybridOR directly follows from the correctness of DH key exchange
and the correctness of the lattice-based protocol [13].

For the DH part, the node computes (gx)s = gxs and the client computes
(gs)x = gxs. Further, both client and node computes H2(gxs, gx, gs, N,HybOR).
For the lattice part the node computes k1N = pCrN +te′

N ≈ arCrN and the client
computes k1C = pNrC + teC ≈ arCrN . The node also computes α = hR(k1N )
and sends it to the client. The client and node use α to make sure that the
shared secret k1 computed from k1N (for the node) and k1C (for the client) do
not produce different results in modulo operation. They use the robust extractor
fR(·) (see Sect. 2.3) and compute k1 = fR(k1N , α) = fR(k1C , α). More details
of the robust extractor can be found in [13]. After computing the shared secret
k1 the client and node both computes H1(k1, pC , pN , N,HybOR). Further, from
both parts of the shared secret they compute the session key and PRF key for the
protocol as (skm, sk) = H1(k1, pC , pN , N,HybOR) ⊕ H2(gxs, gx, gs, N,HybOR).

5 Security Analysis

5.1 Type of Adversary

To analyze the 1W-AKE security of our protocol, we consider three types of
1W-AKE adversaries. We classify the type of adversary depending on the power
of the adversary in the test session. For all other sessions the adversary can
be partner to any public values, after respecting the freshness condition of the
1W-AKE security game.

Type-I Adversary. The first type of adversary cannot be partner to any of
the public values in the test session. By proving security against this kind of
adversary we show that an active adversary without the knowledge of any
secret values used in the test session cannot learn anything about the session
key.

Type-II Adversary. The second type of adversary can be the partner with
only the ephemeral public key from a node N in the test session. By proving
the security against this kind of adversary we give the security guarantee of
the protocol against a man-in-the-middle adversary trying to impersonate
the node N to the client.

Type-III Adversary. The third type of adversary can be partner with only
the long term public key in the test session. This gives the guarantee of
forward security of the protocol; i.e., even if some information about the
long-term private key is known to the adversary, the adversary cannot learn
any information about the already created session key.

5.2 Security Against Type-I Adversary

We show that HybridOR is secure against Type-I adversary under either the GDH
or the ring-LWE assumption. The motivation of this security theorem is to show
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that even if the ring-LWE assumption or the GDH assumption (but not both)
is broken, HybridOR remains secure against Type-I adversary.

Theorem 1. The protocol HybridOR is 1W-AKE secure against a PPT Type-
I adversary under the GDH or the ring-LWE assumption, considering H1 as
randomness extractor and H2 as random oracle. More precisely, for any PPT
Type-I adversary A,

Adv1w-ake
A ≤ min(Advdrlwe

A◦B0,1
+ Advdrlwe

A◦B1,2
, AdvGDH

A◦B′),

where B0,1, B1,2 and B′ are the reduction algorithms as described in the proof.

Proof. To prove the security against a Type-I adversary, first we define a
sequence of three games G0 to G2. Let Ei be the event that the adversary
guesses bit b∗ in game Gi.

G0: This is the original 1W-AKE security game, where the reduction algo-
rithm B generates all the public values honestly in all the sessions.

G1: This game is identical to G0, except here pC is generated uniformly at
random in the test session.

G2: This game is similar to G1, except here pN is generated uniformly at ran-
dom in the test session and also the test session secret k1 is generated uniformly
at random.

As G0 is the real 1W-AKE game, we can bound Pr(E0) as

Adv1w-ake
A = |Pr(E0) − 1/2|. (1)

Lemma 1. No PPT Type-I adversary can distinguish between G0 and G1 under
the decision ring-LWE assumption, if H1 is a randomness extractor and H2 is
a random oracle.

Proof. If there exists a PPT Type-I adversary A that can distinguish between
G0 and G1, then we can construct a PPT reduction algorithm B0,1 that can effi-
ciently distinguish between tuples from a ring-LWE distribution and a uniform
distribution.

In G0, (a, pC) are samples from a ring-LWE distribution, such that pC =
arC + teC . In G1, (a, pC) are samples from a uniform distribution over Rq × Rq.
Under the decisional ring-LWE assumption these two distributions are indistin-
guishable.

Solving Decision ring-LWE. To simulate the 1W-AKE challenger for A the
reduction algorithm B0,1 guesses ψi to be the test session. In the test session
it honestly generates (G, g, gx, gs). B0,1 also takes a pair (a0, u0) from the ring-
LWE challenger and sets a = a0 and pC = u0. Now if (a0, u0) is a ring-LWE
sample, then there exists an rC , eC ∈ χ such that pC = arC + teC and in that
case the output of B0,1 is distributed exactly as in G0. Whereas if (a0, u0) is
sample from a uniform distribution over R2

q , B0,1 simulates G1 for A. Thus, if
A can distinguish G0 from G1, then A ◦ B0,1 can distinguish ring-LWE samples
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from samples from a uniform distribution over R2
q . Thus if A can distinguish G0

from G1, A ◦ B0,1 can solve the decision ring-LWE problem. Hence,

|Pr(E0) − Pr(E1)| ≤ Advdrlwe
A◦B0,1

. (2)

��
Lemma 2. No PPT Type-I adversary can distinguish between G1 and G2 under
the decision ring-LWE assumption, if H1 is a randomness extractor and H2 is
a random oracle.

Proof. If there exists a PPT Type-I adversary A that can distinguish between
G1 and G2, then we can construct an PPT reduction algorithm B1,2 that can effi-
ciently distinguish between tuples from a ring-LWE distribution and a uniform
distribution.

In G1, (a, pN ) are samples from a ring-LWE distribution, such that pN =
arN + teN . In G2, (a, pN ) are samples from a uniform distribution over Rq ×Rq.
Under the decisional ring-LWE assumption these two distributions are indistin-
guishable. In G2, k1 is also distributed as a random element from Rq. In both
the cases pC is uniformly distributed over Rq.

Solving Decision ring-LWE. To simulate the 1W-AKE challenger for A the
reduction algorithm B1,2 guesses ψi to be the test session. In the test session
it honestly generates (G, g, gu, gv). B1,2 also takes {(a0, u0), (a1, u1)} from the
ring-LWE challenger and sets a = a0, pC = a1, pN = u0 and k1 = u1. Now if
{(a0, u0), (a1, u1)} are ring-LWE samples, then there exist rN , eN , e′

N ∈ χ such
that pN = arN + teN and k1 = pCrN + te′

N . In that case the output of B1,2

is distributed exactly as in G1. Whereas if {(a0, u0), (a1, u1)} are samples from
uniform distribution over R2

q , B1,2 simulates G2 for A. Thus, if A can distinguish
G1 from G2, then A◦B1,2 can distinguish ring-LWE samples from samples from
uniform distribution over R2

q .
Thus if a PPT Type-I adversary A can distinguish between G1 and G2,

then we can construct a reduction B1,2 which can efficiently solve the ring-LWE
problem. As a result we can write,

|Pr(E1) − Pr(E2)| ≤ Advdrlwe
A◦B1,2

. (3)

��

Analysis of G2. In G2 the adversary has to guess a b∗ in the 1W-AKE game
to distinguish between the real session key sk and randomly chosen session key
sk′. As pC , pN and k1 are chosen uniformly at random from Rq, and H1(·) is a
randomness extractor, the resulting session key sk is uniformly distributed over
the key space. On the other hand, sk′ is also chosen uniformly from the key
space. As a result, the adversary has no information about b∗, and hence

Pr(E2) = 1/2. (4)

By combining Eqs. (1)–(4), we can write:

Adv1w-ake
A ≤ Advdrlwe

A◦B0,1
+ Advdrlwe

A◦B1,2
. (5)
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Lemma 3. The protocol HybridOR is 1W-AKE secure against a PPT Type-I
adversary under the GDH assumption in the random oracle model.

Proof. If there exists a PPT Type-I adversary A that can break the 1W-AKE
security of the protocol, then we can construct a PPT reduction algorithm B′

against the GDH challenger. A is allowed to make a polynomial number (poly(λ))
of session queries. B′ also simulates the random oracle H2. Let {G, g, gu, gv} be
the GDH challenge. B′ has to compute guv in order to win the game.

The algorithm B′ guesses ψi to be a test session. To simulate the ψi, C runs
the SetUp and generates (R,n, q, t, χ). It uses the group G and generator g from
the GDH challenger in the public parameters. B′ samples a ← R sets (a, gu) as
the static key pair of the server and simulates ψi session by setting:

gx = gv, (pC)i = arC + teC , (pN )i = arN + teN ,

(K1)i = (pC)irN + te′
N , (α)i = Signal((k1)i),

where, rC , rN , eC , eN , e′
N ∈r χ. B′ tosses a coin and chooses b ∈r {0, 1}. If

b = 0 then B′ computes the session key by computing H1((k1)i, (pC)i, (pN )i, N,
HybOR)⊕H2(·, gx, gu, N,HybOR), where H1(·) is a randomness extractor and B
programs H2(·) as a random oracle. B sends the session key to A. If b = 1 then
B sends a random session key to A.

But in order to compute the correct test session key and to win the game, A
has to query the random oracle H2(·) with the same input. Otherwise A cannot
distinguish a real session key from a random one, as H2(·) is modeled as a random
oracle. Whenever A makes a query H2(Z, gx, gu, N, HybOR) for some Z ∈ G,
B′ asks the DDH oracle whether (gx, gv, Z) is a valid DDH tuple. If that is the
case, then Z = guv and B′ sends the answer to the GDH challenger. Clearly
the reduction B′ is efficient. B′ has to guess the test session with probability
1/poly(λ), so if A breaks the 1W-AKE protocol with non-negligible probability
then B′ will be able to solve the GDH problem with significant probability. Hence
we can write,

Adv1w-ake
A ≤ AdvGDH

A◦B′ . (6)

Note that for all other sessions with the same server, the reduction B′ has
to simulate the protocol correctly without the knowledge of the private key u.
If not managed properly, simulation may fail due to inconsistent H2 queries. B′

uses the DDH oracle to respond consistently to the H2 queries and the sk reveal
queries for the sessions that involve gu. In particular for H2 queries that involve
gs, B′ first verifies using the DDH oracle that the shared secret are computed
honestly before responding with the session key. ��

Conclusion. By combining Eqs. (5) and (6), we prove the result.
Note that the Type-I adversary A cannot be partner to any of the public

values in the test session only. For all other sessions it can be a partner to
almost all values after respecting the freshness criterion. So in order to simulate
a 1W-AKE challenger for the adversary A, the reduction perfectly simulates all
other sessions. As a result the challenger can satisfy any kind of queries (see
Sect. 3.2) from the A during the simulation. ��
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5.3 Security Against Type-II Adversary

In this section we show that in the pre-quantum computing era (today)HybridOR is
secure against PPT Type-II adversary. Here we consider an active adversary which
can actually become a partner with the ephemeral key of the server. We show that
even in that case the adversary will not be able to win the 1W-AKE game.

Theorem 2. The protocol HybridOR is 1W-AKE secure against a PPT Type-II
adversary under the GDH assumption in the random oracle model.

The proof of Theorem 2 is shifted to the full version of the paper [22]. Notice
that this theorem directly imply that a Type-II adversary can break the 1W-
AKE security of HybridOR in a quantum world. As in the quantum world the
Type-II adversary can compute the discrete log of the long term secret gs and
it is already partner to the ephemeral secret pN in the test session. Hence the
adversary can compute the session key and wins the 1W-AKE game.

In order to make this protocol secure against Type-II adversary in a quantum
world we need replace the long term key with a quantum secure component. But
in that case we cannot use our current DH public keys and subsequently requires
modification to the current Tor public key infrastructure. So, in today’s scenario
it is sufficient to follow the HybridOR design in the current form. As we can
deploy this easily in the current Tor network.

5.4 Security Against Type-III Adversary

A more important question to ask now is whetherHybridOR provides forward secu-
rity in the post-quantum world. If not, then the privacy of today’s anonymous
communication cannot be ensured once quantum computers arrive. We prove that
HybridOR is forward secure if the ring-LWE problem is hard. The motive of this
theorem is to show that by using HybridOR in Tor we can aim at the privacy of
today’s anonymous communication even after quantum computers arrive.

Theorem 3. HybridOR is 1W-AKE secure against a PPT Type-III adversary
under the ring-LWE assumption. More precisely, for any PPT Type-III adver-
sary A,

Adv1w-ake
A ≤ Advdrlwe

A◦B0,1
+ Advdrlwe

A◦B1,2
,

where B0,1 and B1,2 are the reduction algorithms as described in the proof.

The proof intuition of Theorem3 is discussed in the full version [22].

Quantum Safe Reduction. In [47] Song pointed out that a post-quantum
secure scheme against a classical adversary does not immediately guarantee that
the scheme is also secure against a quantum adversary. Song gives conditions
under which a classical proof can be lifted to provide quantum security. One of
the condition is that the classical reduction is a straight-line reduction. That
means that the reduction runs the adversary from start to end without any
rewinding or restarting. Our reductions against Type-III adversary are straight-
line, hence they satisfy Song’s criterion for security against a quantum adversary.
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6 Performance Analysis

We analyze the performance of HybridOR, and compare it with the ntor protocol.

Parameters. To achieve computational efficiency and to reduce the size of the
public parameters, in HybridOR we use an algebraic variant of LWE called ring-
LWE [35]. Similar to other ring-LWE based protocols [6,41,49], the security and
performance of HybridOR essentially depend on the three factors: n, q, and β.
Here, n is the degree of the irreducible polynomial f(x), q is the prime modulus
and β =

√
2πσ for the standard deviation σ of the error distribution χ.

Lindner and Peikert [33] show how the parameters (n, q, β) affect the secu-
rity and performance of lattice based systems. They choose parameter set
(256, 4093, 8.35) for medium security level and claimed that to be comparable
with 128-bit AES security. Nevertheless, several implementations of lattice-based
cryptographic primitives [20,46] use n = 512 to achieve high security. To be
on the safer side, we also choose a high security level, and use parameter set
(512, 1051649, 8.00) (as used in [46]) in our implementation for Rq.

For the DLog group G, we use the elliptic curve cryptographic (ECC) set-
ting with points (compressed form) of size p = 256 bits, such as provided by
Curve25519 [5].

Computation Cost. We assume that the elements rC , eC , pC and gx are
precomputed on the client side, and the elements rN , eN , e′

N , and pN are pre-
computed on the node side, e.g. in idle cycles. In our analysis, they are received
by the code as an input. In that case, to compute the session secret {k1, k2}, the
client and the node each have to perform 1 multiplication and 1 addition in Rq

and 1 exponentiation in G.
Multiplications over Rq can be performed efficiently using an FFT-based

algorithm [35], which takes O(n log n) for a serial implementation and O(log n)
time for a parallel implementation [26]. It is important to observe that these
multiplications are more efficient than exponentiation in G (even in ECC set-
tings). As a result the total computation cost of the node (with precomputation)
is mainly dominated by exponentiation in G.

As a proof of concept, we implement our protocol in a machine with a 6-
core Intel Xeon (W3690) processor, each core running at 3.47 GHz. We use the
GMP [27] library and the Tor library to implement the protocol. The code is
compiled with -O3 optimizations using gcc 4.6.3.

For our choice of parameter set (512, 1051649, 8.00) and ECC Curve25519,
both the client and the node require ≈ 150μs to compute the shared secret.
The multiplication along with one addition in Rq only requires ≈ 50μs, and the
exponentiation in G requires ≈ 100μs.

The ntor protocol in Tor requires two exponentiations in G on both sides, and
correspondingly requires ≈ 200μs to compute the shared secret. As a result, our
unoptimized proof-of-concept HybridOR implementation is nearly 1.5 times faster
than the ntor protocol used in Tor. Note that, for ntor, using some parallelization
technique both the node and the client can reduce the computation cost to 1.33
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exponentiations (for λ = 128) [3]; however, the current Tor implementation does
not employ these.

Communication Cost. In the HybridOR protocol the client has to send an
element gx ∈ G and an element pC ∈ Rq to the node. We require 32 bytes to
represent an element on Curve25519. On the other hand, for an element in Rq,
we require at most 1/8(n lg q) bytes, which is around 1280 bytes for the chosen
parameter set (512, 1051649, 8.0). Therefore, the client communicates 1312 bytes
to the server.

On the other hand, the node has to send an element pN ∈ Rq, an n-bit signal
α, and the key confirmation message of 32 bytes to the client. That requires a
total of 1/8(n lg q+n)+32 bytes. For the chosen parameter set (512, 1051649, 8.0),
the node has to send about 1376 bytes to the client.

The current Tor implementation employs 512-byte cells; thus, for HybridOR,
the client and the node each will have to communicate three cells. In comparison,
for the currently employed ntor protocol, a single cell from the client and the
server suffices. However, it is possible to use smaller value for q without affecting
the security, which can reduce the communication overhead of the protocol.

7 Conclusion

Lattice-based cryptographic protocols are supposed to offer resilience against
attacks by quantum computers, and the recent efficient ring-based constructions
also put them in the realm of the practical use. In this paper, we demonstrated
their utility to onion routing. In particular, we have presented a novel lattice-
based 1W-AKE protocol HybridOR, which extracts its security from both the
classically secure GDH assumption and the quantum-secure ring-LWE assump-
tion. On one hand, we based its security against man-in-the-middle imperson-
ation attacks only on the GDH assumption as we do not expect an adversary
to have quantum capabilities today, and it allows us to leverage the current Tor
PKI in its current form. On the other hand, we base its forward secrecy on
the arguably quantum-secure ring-LWE assumption, which allows us to make
HybridOR more efficient compared to the currently employed ntor protocol.

We also analyzed performance of our protocol in terms of its computation and
communication cost for the 128-bit security setting. Our performance analysis
demonstrates that post-quantum 1W-AKE can already be considered practical
for use today.

Finally, we view our efficient HybridOR construction to be of independent
interest to other authenticated key exchange protocols as well as anonymous
communication scenarios over the Internet, and we plan to explore some those
scenarios in the future.
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A Comparison Between the ntor, Ace, and HybridOR
Protocols

Fig. 3. A comparative overview of the ntor, Ace, and HybridOR protocols: For readabil-
ity, we neglect the information used for the key derivation and confirmation messages.
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Abstract. Divisible E-cash has been introduced twenty years ago but
no construction is both fully secure in the standard model and efficiently
scalable. In this paper, we fill this gap by providing an anonymous divis-
ible E-cash construction with constant-time withdrawal and spending
protocols. Moreover, the deposit protocol is constant-time for the mer-
chant, whatever the spent value is. It just has to compute and store 2l

serial numbers when a value 2l is deposited, compared to 2n serial num-
bers whatever the spent amount (where 2n is the global value of the coin)
in the recent state-of-the-art paper. This makes a very huge difference
when coins are spent in several times.

Our approach follows the classical tree representation for the divisible
coin. However we manage to build the values on the nodes in such a way
that the elements necessary to recover the serial numbers are common
to all the nodes of the same level: this leads to strong unlinkability and
anonymity, the strongest security level for divisible E-cash.

1 Introduction

Compared to regular cash, electronic payment systems offer greater convenience
for end-users, but usually at the cost of a loss in terms of privacy. Introduced
in 1982 by Chaum [12], electronic cash (E-cash) is one solution to reconcile
the benefits of both solutions. As with regular cash, users of such systems can
withdraw coins from a bank and then spend them to different merchants, while
remaining anonymous, with unlinkable transactions. There is however one major
difference: if a banknote or a coin can hardly be duplicated, this is on the contrary
very easy to copy the series of bits constituting an electronic coin, as for any
electronic data. It is therefore necessary, when designing an E-cash system, to
provide a way of detecting double-spendings (i.e. two spendings using the same
coin) and then to allow identification of the underlying defrauder. The challenge
is to ensure such features without weakening the anonymity, or the efficiency, of
the resulting scheme.

1.1 Related Work

Designing an E-cash system which can handle any amount for a payment (as it
is the case for regular cash) is not a trivial task and several kinds of solutions
exist in the literature.
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 287–306, 2015.
DOI: 10.1007/978-3-319-28166-7 14
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One of them is to make use of coins of the smallest possible denomination (e.g.
one cent), but this raises the problem of storing and spending the thousands of
coins which become necessary to handle any amount. In [5], the authors partially
address this latter problem by providing a compact E-cash system where users
can withdraw wallets of N coins at once and store them efficiently. Unfortunately,
each coin must be spent one by one which is unsuitable for practical use.

Another solution is to manage several denominations but, in practice, a user
can be unable to make a payment if his wallet does not contain the kind of
denomination he needs, since giving change back is not easy. For example, a
user may have a wallet which only contains coins of $10 while having to pay
$8. Such solution does not permit the user to make such payment, while he has
enough money! This can be solved by using transferable e-cash systems, which
in particular permits money change by the merchant, but at the cost of a larger
coin [13].

The last solution to our initial problem has been proposed by Okamoto and
Ohta [20] under the name of divisible E-cash. Such a system enables users to
withdraw a coin C of a large value V , and then to spend it in several transactions,
but in such a way that the sum of the amount of these transactions vi is at most
the global amount: V ≥

∑
vi. Typically, the coin is of value V = 2n, and one

can spend it with transactions of values vi = 2�i , with �i ∈ {0, . . . , n}. This
is currently the most relevant solution to solve the above problem and we now
focus on this type of E-cash.

Since their introduction, many divisible E-cash schemes have been proposed
(e.g. [6–8,18,19]), most of them sharing the same following idea. Every coin of
global value 2n is associated with a binary tree with 2n leaves, each leaf being
associated with a unique serial number. When a user spends a value of 2�, he
reveals some information related to an unspent node s of depth n − � (and so
with 2� descendant leaves). This allows the bank to recover the 2� serial numbers
associated to the transaction. Such serial numbers, that the bank cannot link to
a withdraw, are very convenient to detect defrauders. Indeed, a double-spending
implies two transactions involving two nodes with a common subtree and so with
common descendant leaves. Therefore, there will be a collision in the list of serial
numbers stored by the bank, meaning that there is a double-spending.

Again, the main difficulty is to reconcile this double-spending technique with
users’ anonymity. The first constructions [10,19,20] only offered a weak level
of anonymity since several spendings involving the same divisible coin could be
linked one to each other. In [18], the first unlinkable system was proposed but the
transaction still revealed which part of the coin was spent. Moreover, a trusted
authority was necessary to recover defrauders’ identity.

The first truly anonymous construction was provided in [6] but is rather
inefficient. Indeed, this scheme makes use of several groups of different orders,
whose generation is very expensive. Moreover, the spending phase requires com-
plex non-interactive zero-knowledge (NIZK) proofs, which make it impractical.
An improvement was later proposed in [7], with a much more efficient spending,
but the resulting tree construction still suffers from similar downsides. In [2], the
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authors chose a different approach to construct their binary tree, using crypto-
graphic hash functions. Unfortunately, such functions are not compatible with
efficient NIZK proofs so that the authors relied on cut-and-choose protocols
to prove the validity of the trees (and so of the coins). The resulting scheme
was therefore proved secure under an unconventional security model where the
bank is only ensured that it will not loose money on average. The security of
all these constructions necessitate the use of the random oracle model (ROM)
and the constructions are most of the time incompatible with Groth-Sahai proof
methodology [16], and so the ROM cannot be avoided.

A first attempt to construct a divisible E-cash system secure in the standard
model is due to Izabachène and Libert [17], but the resulting scheme is imprac-
tical, because of no efficient double-spending detection. Indeed, each time a coin
is deposited to the bank, the latter has to compare it (by performing several
costly computations) with all already deposited coins. This is due to the lack
of serial numbers which was identified by the authors as the main cause of the
inefficiency of their scheme.

Recently, the first practical E-cash system secure in the standard model was
proposed in [8], with constant-time withdrawal and spending protocols. Unlike
the previous schemes, where a new tree was generated by the users each time
they withdrew coins, this new construction considers only one tree provided in
the public parameters. This significantly alleviates the withdrawal and spending
protocols since proving the validity of the tree is no longer necessary. However
the scheme has two drawbacks, as identified by its authors: First, the public
parameters must contain many elements allowing to recover the serial numbers
(for double-spending detection), they are thus large; Second, while the deposit
protocol is constant-time for the merchant, even for a one-cent deposit, the bank
must perform 2n pairing computations and store the results in a database. This
obviously affects the scalability of the proposed scheme.

1.2 Our Contribution

In this paper, we improve the latter solution by fixing these two drawbacks.
Although our scheme shares similarities with the one of [8], it differs on the
binary tree generation. Indeed, in [8], the elements gs associated with each node
s were randomly and independently generated. This implies that the elements
g̃s �→f , provided to the bank to recover the serial numbers of leaf f from node s,
differ according to each node s, leading to the above two issues.

Indeed, an anonymous scheme must reveal no information on the coin used in
the transaction. So the bank does not know the involved node s but only its level
|s| (since it corresponds to the amount of the transaction). It follows that the
bank does not know which elements g̃s �→f it should use to compute the underlying
serial numbers. It has no other choice than performing the computations with all
possible nodes s′ of level |s|. This ensures that the valid serial numbers will be
recovered but at the cost of many useless computations. This also increases the
risk of false double-spending detections, since additional (fake) serial numbers
will be stored.
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To prevent this problem, we design our tree differently: The nodes are now
related in such a way that the elements needed to recover the serial numbers
are common to every node at the same level. This reduces the size of the public
parameters while avoiding useless computations. Indeed, with our solution, the
bank only computes and stores 2� serial numbers when a value 2� is deposited,
compared to 2n in [8], whatever the value of the transaction (even for 1 cent).

However, these relations between nodes could also be used to break the strong
unlinkability expected from an anonymous divisible E-cash system. To address
this problem, we first require that the users encrypt some of the elements they
send to the merchant. Unfortunately, the randomness used during the encryption
is a problem to recover the deterministic serial numbers. We therefore add some
elements in the public parameters which will allow the bank to efficiently cancel
the randomness, without endangering the security of our scheme.

These modifications will slightly increase the complexity of the spending
protocol but will lead to a much more efficient deposit one. Our solution can
then be seen as a way to make the practical divisible E-cash system from [8]
highly scalable.

1.3 Organization

In Sect. 2, we recall some definitions and present the computational assumption
our protocol will rely on. Section 3 reviews the syntax of a divisible E-cash system
along with informal definitions of the security properties. Section 4 provides a
high level description of our construction, while Sect. 5 goes into the details. An
improved fair variant is proposed in Sect. 6. Because of lack of space, the security
analysis is postponed to the full version [9].

2 Preliminaries

2.1 Bilinear Groups

Bilinear groups are a set of three cyclic groups, G1, G2, and GT , of prime order
p, along with a bilinear map e : G1 × G2 → GT with the following properties:

1. for all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a·b;
2. for any g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
3. the map e is efficiently computable.

Galbraith, Paterson, and Smart [14] defined three types of pairings: in type
1, G1 = G2; in type 2, G1 �= G2 but there exists an efficient homomorphism
φ : G2 → G1, while no efficient one exists in the other direction; in type 3,
G1 �= G2 and no efficiently computable homomorphism exist between G1 and
G2, in either direction.

Our construction, as well as the one of [8], requires the use of asymmetric
pairings (i.e. of type 2 or type 3). For simplicity, we will only consider pairings
of type 3 in this work, which is not a strong restriction (see [11]) since these
pairings offer the best efficiency.
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2.2 Computational Assumption

Besides the classical SXDH and q − SDH [4] assumptions in bilinear groups, our
construction relies on a new computational assumption, we call EMXDH, since
this is an extension of the multi-cross-Diffie-Hellman assumption.

Definition 1 (SXDH Assumption). For k ∈ {1, 2}, the DDH assumption is
hard in Gk if, given (g, gx, gy, gz) ∈ G

4
k, it is hard to distinguish whether z = x ·y

or z is random. The SXDH assumption holds if DDH is hard in both G1 and G2

Definition 2 (q − SDH Assumption). Given (g, gx, gx2
, ..., gxq

) ∈ G1, it is
hard to output a pair (m, g

1
x+m ).

Definition 3 (EMXDH Assumption). Given (g, ga, gx, gt, g̃, g̃a) ∈ G
4
1 × G

2
2,

({gyi}i=n
i=1 , {gt·yi}i=n

i=1 , {gx·yi}i=n−1
i=1 , {gx·t·yi}i=n−1

i=1 , {g̃1/yi}i=n
i=1 ) ∈ G

4n−2
1 × G

n
2 , as

well as (gz1 , gz2) ∈ G1, it is hard to distinguish whether (z1, z2) = (x · yn/a, x ·
t · yn/a) or (z1, z2) is random.

We discuss the hardness of the problem related to this assumption in
AppendixA. We stress however that this assumption, as the SXDH one, would
clearly be wrong with a symmetric pairing since the test e(gz1 , ga) = e(gx, gyn

)
would allow distinguishing a random z1 from a valid one.

This assumption will underlie the anonymity of our construction. However,
as explained in Sect. 6, one can rely on a weaker assumption if a weaker level of
anonymity is enough.

2.3 Digital Signature Scheme

A digital signature scheme Σ is defined by three algorithms:

– the key generation algorithm Σ.Keygen which outputs a pair of signing and
verification keys (sk, pk) – we assume that sk always contains pk;

– the signing algorithm Σ.Sign which, on input the signing key sk and a message
m, outputs a signature σ;

– and the verification algorithm Σ.Verify which, on input m, σ and pk, outputs
1 if σ is a valid signature on m under pk, and 0 otherwise.

The standard security notion for a signature scheme is existential unforgeabil-
ity under chosen message attacks (EUF-CMA) [15] which means that it is hard,
even given access to a signing oracle, to output a valid pair (m,σ) for a message
m never asked to the oracle. In this paper we will also use two variants. The
first one is the security against selective chosen message attacks (SCMA), which
limits the oracle queries to be asked before having seen the key pk. The second
one is a strong unforgeability (SUF) where the adversary must now output a
valid pair (m,σ) which was not returned by the signing oracle (a new signature
for an already signed message is a valid forgery) but can only ask one query to
the signing oracle (OTS, for One-Time Signature).
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2.4 Groth-Sahai Proof Systems

In [16], Groth and Sahai propose a non-interactive proofs system, in the common
reference string (CRS) model, which captures most of the relations for bilinear
groups. There are two types of CRS that yields either perfect soundness or
perfect witness indistinguishability. These two types of CRS are computationally
indistinguishable (under the SXDH assumption in our setting).

To prove that some variables satisfy a set of relations, the prover first commits
to them (by using the elements from the CRS) and then computes one proof
element per relation. Efficient non-interactive witness undistinguishable proofs
are available for pairing-product equations or multi-exponentiation equations.
The former are of the type:

n∏

i=1

e(Ai, X̃i)
n∏

i=1

n∏

j=1

e(Xi, X̃j)ai,j = tT

for variables {Xi}n
i=1 ∈ G1, {X̃i}n

i=1 ∈ G2 and constant tT ∈ GT , {Ai}n
i=1 ∈ G1,

{ai,j}n
i,j=1 ∈ Zp.

The latter are of the type:

n∏

i=1

Ayi

i

n∏

j=1

X
bj

j

n∏

i=1

n∏

j=1

X
yi·ai,j

j = T

for variables {Xi}n
i=1 ∈ Gk, {yi}n

i=1 ∈ Zp and constant T ∈ Gk, {Ai}n
i=1 ∈ Gk,

{bi}n
i=1 ∈ Zp, {ai,j}n

i,j=1 ∈ Zp for k ∈ {1, 2}.
Multi-exponentiation equations also admit non-interactive zero-knowledge

(NIZK) proofs at no additional cost.

3 Divisible E-cash System

For consistency, we recall the syntax of a divisible E-cash system described in [8].
For simplicity, we borrow their notations.

Syntax. A divisible e-cash system is defined by the following algorithms, that
involve at least three entities: the bank B, a user U and a merchant M.

– Setup(1k, V ): On inputs a security parameter k and an integer V , this prob-
abilistic algorithm outputs the public parameters p.p. for divisible coins of
global value V . We assume that p.p. are implicit to the other algorithms, and
that they include k and V . They are also an implicit input to the adversary,
we will then omit them.

– BKeygen(): This probabilistic algorithm executed by the bank B outputs a key
pair (bsk, bpk). It also sets L as an empty list, that will store all deposited
coins. We assume that bsk contains bpk.
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– Keygen(): This probabilistic algorithm executed by a user U (resp. a merchant
M) outputs a key pair (usk, upk) (resp. (msk,mpk)). We assume that usk (resp.
msk) contains upk (resp. mpk).

– Withdraw(B(bsk, upk),U(usk, bpk)): This is an interactive protocol between
the bank B and a user U . At the end of this protocol, the user gets a divisible
coin C of value V or outputs ⊥ (in case of failure) while the bank stores the
transcript Tr of the protocol execution or outputs ⊥.

– Spend(U(usk, C, bpk,mpk, v),M(msk, bpk, v)): This is an interactive protocol
between a user U and a merchant M. At the end of the protocol the merchant
gets a master serial number Z of value v (the amount of the transaction they
previously agreed on) along with a proof of validity Π or outputs ⊥. U either
updates C or outputs ⊥.

– Deposit(M(msk, bpk, (v, Z,Π)),B(bsk, L,mpk)): This is an interactive pro-
tocol between a merchant M and the bank B. B checks that Π is valid on
v and Z and that (v, z,Π) has never been deposited (corresponding to the
case of a cheating merchant). B then recovers the m (for some m ≥ v) serial
numbers z1, . . . , zm corresponding to this transaction and checks whether, for
some 1 ≤ i ≤ m, zi ∈ L. If none of the serial numbers is in L, then the bank
credits M’s account of v, stores (v, Z,Π) and appends {z1, . . . , zm} to L. Else,
there is at least an index i ∈ {1, . . . , m} and a serial number z′ in L such that
z′ = zi. The bank then recovers the tuple (v′, Z ′,Π ′) corresponding to z′ and
publishes [(v, Z,Π), (v′, Z ′,Π ′)].

– Identify((v1, Z1,Π1), (v2, Z2,Π2), bpk): On inputs two different valid tran-
scripts (v1, Z1,Π1) and (v2, Z2,Π2), this deterministic algorithm outputs a
user’s public key upk if there is a collision between the serial numbers derived
from Z1 and from Z2, and ⊥ otherwise.

Security Model. Besides correctness, the authors of [8] formally defined 3
security properties that a secure divisible e-cash system must achieve. The first
one is traceability which requires that no coalition of users can spend more than
they have withdrawn without revealing one of their identities. The second one
is exculpability which requires that no user can be falsely accused of double-
spending, even by a coalition of the bank, users and merchants. Eventually, the
last property expected by such schemes is anonymity which means that no one
can learn anything about a spending except the information already available
from the environment (such as the date, the value of the spending,...).

However, they also describe two variants of anonymity that they called
unlinkability and strong unlinkability. The former requires that two spendings
from the same coin cannot be linked except by revealing which part of the coin
is spent. The latter strengthens the level of anonymity by forbidding this addi-
tional leakage of information. A divisible, strongly unlinkable, e-cash system can
be made anonymous by providing a way to identify double-spenders using only
public information and so without the help of a trusted entity.

As explained in [8], a divisible e-cash system which is just unlinkable cannot
achieve the anonymity property. In this paper, we improve on [8] by reducing
the storage and computation of the anonymous version (strongly unlinkable).
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Fig. 1. Traceability security game

Fig. 2. Exculpability security game

Fig. 3. Anonymity security game

We recall the security games in Figs. 1, 2, and 3. The adversary A can add
new users (either corrupted or honest) to the system, corrupt existing ones or ask
them to spend any value. This is modelled by queries to OAdd, OAddCorrupt,
OCorrupt and OSpend oracles. Moreover, according to each game, it may have
access to the OWithdrawB (resp. OWithdrawU ) oracle which executes the bank’s
side (resp. user’s side) of the Withdraw protocol. A divisible E-cash system is:

– traceable if Pr[ExptraA (1k, V ) = 1] is negligible for any A;
– exculpable if Pr[ExpexcuA (1k, V ) = 1] is negligible for any A;
– anonymous if Pr[Expanon−1

A (1k, V )] - Pr[Expanon−0
A (1k, V )] is negligible for

any A.
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4 Our Construction

Notation. Let Sn be the set of bitstrings of size smaller than n and Fn be the
set of bitstrings of size exactly n. For every s ∈ Sn, |s| denotes the length of s, and
we define the set Fn(s) as {f ∈ Fn : s is a prefix of f}. For any i ∈ {0, . . . , n},
we set L(i) as {bi+1...bn : bj ∈ {0, 1}}, i.e. the set of bitstrings of size n − i,
indexed by i + 1, . . . , n. Therefore, L(n) only contains the empty string, while
L(0) = Fn.

In the following, each node s of a tree of depth n (defining a coin of value 2n)
will refer to an element of Sn. The root will then be associated with the empty
string ε and a leaf with an element of Fn. For all s ∈ Sn \Fn, the left child (resp.
the right child) of s will refer to s||0 (resp. s||1).

4.1 High Level Description

The initial construction [8] works in a bilinear group (p,G1,G2,GT , e), where
g (resp. g̃) is a generator of G1 (resp. G2) and G = e(g, g̃). The core idea of
their construction is to define one single tree in the public parameters which is
common to all the coins. Each node s (resp. leaf f) of this tree is associated
with an element gs ← grs ∈ G1 (resp. χf ← Gyf ) for some random scalar rs

(resp. yf ). Each (divisible) coin is associated to a secret scalar x which implicitly
defines its serial numbers as {Gx·yf }f∈Fn

. To allow the bank to detect double-
spendings, the public parameters contain, for each s ∈ Sn and each f ∈ Fn(s),
the element g̃s �→f ← g̃yf /rs ∈ G2. Indeed, by using them and the element ts = gx

s

provided by the user during the spending, the bank is able to recover the serial
numbers {Gx·yf }f∈Fn(s) since e(ts, g̃s �→f ) = Gx·yf .

Limitations. However, this solution has two drawbacks. First, it implies public
parameters of significant size since they must contain (n+1) ·2n elements g̃s �→f .
Second, each of these elements depends on a node s, so that the bank needs
to know the spent node s∗ to select the correct g̃s∗ �→f and compute the asso-
ciated serial numbers. Unfortunately, to achieve the strong unlinkability or the
anonymity properties, a divisible E-cash must not reveal this node s∗. There-
fore, the only way for the bank to detect double-spendings is to compute, for
every node s of the same level than s∗ and for every f ∈ Fn(s), the pairings
e(ts∗ , g̃s �→f ). For a deposit of one cent, the bank must then perform 2n pair-
ings to get the 2n potential serial numbers, only one of them being valid. This
additionally increases the risk of false positive.

Our Approach. In this work, we construct our parameters in such a way that
the elements used to compute the serial numbers do no longer depend on the spe-
cific nodes, but only on the levels of the nodes in the tree (and so only on the spent
values, which are publicly known). More precisely, for each level i, we provide 2n−i

pairs of elements of G2 which will be used by the bank each time a node of this
level is deposited. Therefore, the bank will no longer need to perform useless com-
putations and so will only have to compute V serial numbers when a value V will
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be deposited. Moreover, it decreases the size of the public parameters since only
2n+2 − 2 elements (instead of (n + 1) · 2n) of G2 are necessary.

Description. Informally, we associate the root ε of our tree with an element
gε ∈ G1, and each level i, from 1 to n, with two random scalars yi,0, yi,1

$← Zp.
Given a node s associated with an element gs ∈ G1 we can compute the element
gs||0 ← g

y|s|+1,0
s associated with its left child and the element gs||1 ← g

y|s|+1,1
s

associated with its right child. Therefore, as illustrated on Fig. 4, each node
s = b1 . . . b|s| is associated with an element gs ← gyε

∏|s|
i=1 yi,bi .

To allow the bank to compute the serial numbers associated to this node,
we provide, for all i = 0, . . . , n, and for each f = bi+1 . . . bn ∈ L(i), the value
g̃i,f ← g̃

∏n
j=i+1 yj,bj . The point here is that g̃i,f is common to every node of level

i and so will be used by the bank each time a deposit of value 2n−i is made.
As illustrated on Fig. 5 (which shows the generic tree without the secret value
x), the serial numbers of a coin associated with the secret x are then implicitly
defined as {Gx·yε

∏n
i=1 yi,bi }b1...bn∈Fn

.
Unfortunately, we cannot provide ts = gx

s during a spending as in [8]. Reveal-
ing this element indeed breaks the anonymity of our new scheme. For example,
if s is a node of level n − 1, then a spending involving its left child s||0 and
a spending involving its right child s||1 should be unlinkable. However, this is
not true when we reveal gx

s||0 and gx
s||1, since one can simply check whether the

equality e(gx
s||0, g̃n−1,1) = e(gx

s||1, g̃n−1,0) holds. Indeed:

e(gx
s||0, g̃n−1,1) = e(gx

s , g̃)yn,0·yn,1 = e(gx
s||1, g̃n−1,0).

To overcome this problem, at the spending time, the user will just send an
ElGamal encryption of ts = gx

s under the public key k|s|, i.e. a pair (gr1 , ts ·kr1
|s|)

Fig. 4. Divisible coin
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Fig. 5. Computing serial numbers

for some random r1
$← Zp. This will slightly increase the number of elements

and the complexity of the proof that the user must produce during a spending,
but it will ensure the strong unlinkability of our scheme. For the same reasons,
we cannot reveal the security tag upkR ·hx

s (where R is obtained by hashing some
public information related to the transaction), which is used in [8] to identify
a double-spender. We will just provide an ElGamal encryption of it under the
same public key.

Despite the randomness used in the ciphertexts, the bank must remain able to
compute the deterministic serial numbers. We will then provide some additional
elements h̃i,f (see Sect. 4.2) in the public parameters to cancel this randomness
without endangering the anonymity of our scheme.

Security Analysis. All the differences between our solution and the one of [8]
lead to a new proof of anonymity. Indeed, in the latter, the elements gs are
chosen randomly which enables the reduction R to embed a DDH challenge in
one node s∗ without affecting the other ones, but with a few additional inputs.
Therefore, R can handle any query involving the other nodes as long as its guess
on s∗ is correct. This is no longer the case with our solution since the elements gs

are now related, hence the stronger EMXDH assumption described in Sect. 2.2.

4.2 Setup

Public Parameters. Let (p,G1,G2,GT , e) be the description of bilinear groups
of prime order p, elements g, h, u1, u2, w be generators of G1, and g̃ be a generator
of G2. We denote G = e(g, g̃). A trusted authority generates (yε, a0)

$← Z
2
p and,

for i = 1, . . . , n, (yi,0, yi,1, ai)
$← Z

3
p.
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The trusted authority computes (gε, hε) ← (gyε , hyε) and for any node s =
b1 . . . b|s|, (gs, hs) ← (gyε

∏|s|
i=1 yi,bi , hyε

∏|s|
i=1 yi,bi ). Eventually, it computes, for i =

0, . . . , n:

– ki ← gai , the ElGamal encryption key;
– (g̃i,f , h̃i,f ) ← (g̃

∏n
j=i+1 yj,bj , g̃−ai

∏n
j=i+1 yj,bj ), for every f = bi+1 . . . bn ∈ L(i).

As said in [8], the bank and a set of users can cooperatively generate such
parameters, avoiding the need of such trusted entity. The public parameters p.p.
are set as the bilinear groups (p,G1,G2,GT , e), with the generators g, h, u1, u2, w
and g̃, a collision-resistant full-domain hash function H : {0, 1}∗ → Zp, as well as
all the above elements {(gs, hs), s ∈ Sn}, {ki, i = 0, . . . , n} and {(g̃i,f , h̃i,f ), i =
0, . . . , n, f ∈ L(i)}.

One can remark that the elements (g̃i,f , h̃i,f ) will be used to cancel the ElGa-
mal encryption at level i, for any leaf f :

e(ki, g̃i,f ) = e(gai , g̃
∏n

j=i+1 yj,bj ) = (g, g̃ai

∏n
j=i+1 yj,bj ) = e(g, h̃i,f )−1.

As a consequence, it is important to note that ElGamal encryptions under ki

are not semantically secure because of these elements, but the one-wayness will
be enough for our purpose.

Although our construction is compatible with both the random oracle and
the standard models, we will only describe, for the sake of clarity, a protocol
with provable security in the standard model. We must therefore add to the
public parameters the description of a common reference string (CRS) for the
perfect soundness setting of the Groth-Sahai [16] proofs system and a one-time
signature scheme Σots (e.g. the one of [4]).

5 Our Divisible E-cash System

In this section, we provide an extended description of our new protocol. Then,
we discuss its efficiency.

5.1 The Protocol

– BKeygen(): The bank has to sign two different kinds of messages and so selects
two signature schemes denoted Σ0 and Σ1.
• The former will be used to compute signatures τs on pairs (gs, hs) for

every node s of the tree. Such signatures will allow users to prove during
a spending that they use a valid pair (gs, hs) without revealing it.

• The latter will be used by the bank during the Withdraw protocol to certify
the secret values associated with the withdrawn coin.

Both schemes has to allow signatures on elements of G2
1 while being compatible

with Groth-Sahai [16] proofs. We will therefore instantiate them with the
structure preserving signature scheme proposed in [1], since it was proven to
be optimal for type 3 pairings.
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The bank generates the pair (sk1, pk1) ← Σ1.Keygen(p.p.) and the pairs
(sk(i)0 , pk

(i)
0 ) ← Σ0.Keygen(p.p.), for each level i = 0, . . . , n of the tree, and

computes, for every node s ∈ Sn, τs ← Σ0.Sign(sk
(|s|)
0 , (gs, hs)). Eventually,

it will set bsk as sk1 and bpk as ({pk(i)0 }i, pk1, {τs}s∈Sn
). A way to reduce the

size of this public key is described in Remark 5.
– Keygen(): Each user (resp. merchant) selects a random usk ← Zp (resp. msk)

and gets upk ← gusk (resp. mpk ← gmsk). In the following we assume that upk
(resp. mpk) is public, meaning that anyone can get an authentic copy of it.

– Withdraw(B(bsk, upk),U(usk, bpk)): To withdraw a divisible coin, the user
must jointly compute with the bank a random scalar x (thus without con-
trol on it), and then get a certificate. In practice, the scalar x is computed as
x = x1 + x2 where x1 is chosen and kept secret by the user and x2 is chosen
by the bank and given to the user. It is also necessary to bind this secret value
to the user’s identity to allow identification of double-spenders.
The user then computes uusk

1 and ux1
2 , sends them along with upk to the bank,

and proves knowledge of x1 and usk (in a zero-knowledge way, such as the
Schnorr’s interactive protocol [21]). If the proof is valid, the bank chooses a
random x2, and checks that u = ux1

2 · ux2
2 was not previously used, the bank

computes σ ← Σ1.Sign(sk1, (uusk
1 , u)) and sends it to the user, together with

x2. The user computes x = x1 +x2, and sets C ← (x, σ). σ is thus a signature
on the pair (uusk

1 , ux
2), which strongly binds the user to the randomly chosen x.

– Spend(U(usk, C, bpk,mpk, 2�),M(msk, bpk, 2�)): To spend a value 2�, the user
selects an unspent node s of level n−� and two random scalars r1, r2 ← Zp and
computes R ← H(info), ts ← (gr1 , gx

s · kr1
n−�) and vs ← (gr2 , upkR · hx

s · kr2
n−�),

where info is some information related to the transaction (date, amount, mer-
chant’s public key, . . . ). Actually, ts and vs are ElGamal encryptions of gx

s ,
the identifier of the node, and of upkR · hx

s , the security tag used to identify
double-spenders. But of course, he must additionally prove that the plain-
texts in ts and vs are valid, i.e. they are related to the values certified during
a withdrawal. To do so, he will provide Groth-Sahai proof of knowledge of σ,
and proof of existence of τs to attest the validity of the pair (gs, hs).
However, Groth-Sahai [16] proofs can be re-randomized. This can be a problem
in our case, since a dishonest merchant could re-randomize a valid transcript
and to deposit it again. This would lead an honest user to be accused of
double-spending, and so would break the exculpability property.
To prevent this bad behavior, the user first generates a one-time signature key
pair (skots, pkots) ← Σots.Keygen(1k) and certifies the public key into μ ←
w

1
usk+H(pkots) . This key pair will then be used to sign the transcript (including

the proofs).
Next, the user computes Groth-Sahai commitments to usk, x, r1, r2, gs, hs,
τs, σ, μ, U1 = uusk

1 , and U2 = ux
2 , and provides a NIZK proof π that the

committed values satisfy:

ts = (gr1 , gx
s · kr1

n−�) ∧ vs = (gr2 , (gR)usk · hx
s · kr2

n−�)

U2 = ux
2 ∧ U1 = uusk

1 ∧ μ(usk+H(pkots)) = w
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along with a NIWI proof π′ that the committed values satisfy:

1 = Σ0.Verify(pk
(n−�)
0 , (gs, hs), τs) ∧ 1 = Σ1.Verify(pk1, (U1, U2), σ).

Finally, the user computes η ← Σots.Sign(skots,H(R||ts||vs||π||π′)) and sends
it to M along with pkots, ts, vs, π, π′.
The merchant then checks the validity of the proofs and of the signatures,
and accepts the transaction if everything is correct. In such a case, he stores
(2�, Z,Π) where Z ← (ts, vs) and Π ← (π, π′, pkots, η).

– Deposit(M(msk, bpk, (2�, Z,Π)),B(bsk, L,mpk)): Upon receiving the tuple
(2�, Z = (ts, vs),Π = (π, π′, pkots, η)), the bank first checks the validity of the
proofs and signatures. Then, it checks that it was not previously deposited.
To this aim, it parses ts as (ts[1], ts[2]), and for each f ∈ L(n−�), it computes
the serial numbers zf ← e(ts[2], g̃n−�,f ) · e(ts[1], h̃n−�,f ) and checks whether
zf ∈ L. If none of them is in L, which means that none was already spent,
the bank adds these elements to this list L and associates them with the
transcript (2�, Z,Π). Else, there is an element z′ ∈ L such that for some
f , zf = z′. The bank recovers the corresponding transcript (2�′

, Z ′,Π ′) and
outputs [(2�, Z,Π), (2�′

, Z ′,Π ′)].
As remarked above, e(ki, g̃i,f ) · e(g, h̃i,f ) = 1, for any level i and any leaf f ,
and so zf = e(gx

s , g̃n−�,f ), and is thus independent of r1.
As noticed in [8], the bank does not actually have to store and compare the
elements zi ∈ GT but only their fingerprints, that can be small hash values
for some collision-resistant hash function.

– Identify((2�1 , Z1,Π1), (2�2 , Z2,Π2), bpk): To recover the identity of a double-
spender from such a pair of transcripts, one first checks the validity of both
transcripts and returns ⊥ if one of them is not correct. One then parses Zi as
(tsi

, vsi
) and computes the lists Si ← {e(tsi

[2], g̃n−�i,f ) ·e(tsi
[1], h̃n−�i,f ),∀f ∈

L(n − �i)}, for i = 1, 2. One returns ⊥ if there is no collision between S1 and
S2. In case of collision, there are f1 ∈ L(n − �1) and f2 ∈ L(n − �2) such that

e(gx1
s1

, g̃n−�1,f1) = e(ts1 [2], g̃n−�1,f1) · e(ts1 [1], h̃n−�1,f1)

= e(ts2 [2], g̃n−�2,f2) · e(ts2 [1], h̃n−�2,f2) = e(gx2
s2

, g̃n−�2,f2).

But then, since the x’s values are mutually chosen by the user and the bank,
they are random, while all the other elements are fixed from the setup. This
is thus quite unlikely this equality holds for different random x and different
paths in the tree: such a collision is a double-spending of a leaf f ∈ L(0) = Fn

in the tree parametrized by x = x1 = x2.
In addition, because of the signature σ, and the soundness of the NIWI
in the transcript, the same user is necessarily associated to the two coins:
it is quite unlikely two users come up with the same x. Then, if one lets
Ti be e(vsi

[2], g̃n−�i,fi
) · e(vsi

[1], h̃n−�i,fi
), for i = 1, 2, since we also have

e(hx1
s1

, g̃n−�1,f1) = e(hx2
s2

, g̃n−�2,f2), as above, we have the simplification Ti =
e(upkRi

i · hxi
si

, g̃n−�i,fi
), and even:

T1/T2 = e(upkR1 , g̃n−�1,f1)/e(upkR2 , g̃n−�2,f2) = e(upk, g̃R1
n−�1,f1

/g̃R2
n−�2,f2

).
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In order to trace the double-spender, one has to compute, for each public key
upki, the value e(upki, g̃

R1
n−�1,f1

/g̃R2
n−�2,f2

) until one gets a match with T1/T2,
in which case the algorithm outputs upki.

Remark 4. We stress that a collision on the serial numbers (or on their finger-
prints) means that for the secret values x1, x2, and for the secret nodes s1, s2 at
public levels �1, �2, there are f1 ∈ L(n − �1) and f2 ∈ L(n − �2) verifying:

x1 · yε

n−�1∏

i=1

yi,b1,i

n∏

j=n−�1+1

yj,b1,j
= x2 · yε

n−�2∏

i=1

yi,b2,i

n∏

j=n−�2+1

yj,b2,j

Since the secret x1 and x2 are randomly chosen after the values yi,b have
been randomly fixed, the collision is quite unlikely if x1 �= x2. Similarly, because
of the random choice of the values yi,b, it is quite unlikely there exist two disctint
sequences (b1,i) �= (b2,i) such that

∏n
i=1 yi,b1,i

=
∏n

i=1 yi,b2,i
. As a consequence,

the two sequences are equal, which means that s1||f1 = s2||f2: a collision corre-
sponds to two spendings involving the same path s1||f1 in the tree parametrized
by x = x1 = x2, with overwhelming probability.

On the other hand, one can easily check that a double-spending automatically
leads to a collision.

Remark 5. The appropriate combination of the node s and the final path f into
s||f from the root to the leaf in all the serial number computations comes from
the signature τs that involves the key at the appropriate public level (since this
is related to the value of the coin). Our approach consists in generating (n + 1)
public keys pk

(i)
0 (one for each level i) and a signature τs for every node s ∈ Sn,

all in the public key bpk of the bank. Proving that (gs, hs) is valid for a spending
of 2� can then be achieved by proving knowledge of a signature τs such that
Σ0.Verify(pk

(n−�)
0 , (gs, hs), τs) = 1.

Unfortunately, this solution implies a bank public key of significant size since
it must contain (n + 1) public keys (one for each level) and 2n+1 − 1 structure
preserving signatures (one for each node).

Another way of proving the validity of the pair (gs, hs) is to notice that,
for every f ∈ L(|s|), there is a leaf � ∈ Fn such that s||f = �. Therefore,
e(gs, g̃|s|,f ) = e(g�, g̃) and e(hs, g̃|s|,f ) = e(h�, g̃). Since the element g̃|s|,f is com-
mon to every node of level |s|, it can be revealed by the user so only the validity
of the pair (g�, h�) remains to be proved. Therefore, the bank can generate only
one key pair (sk0, pk0) (instead of n + 1 such key pairs) and provide 2n signa-
tures τ� ← Σ0.Sign(sk0, (g�, h�)) for all the leaves (instead of 2n+1−1, for all the
nodes). This slightly increases the size of the proof since the user will have to
commit to (g�, h�) and prove statements on them, but this allows to significantly
reduce the size of bpk.

The security of our divisible e-cash system is stated by the following theorem,
proved in the full version [9].
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Theorem 6. In the standard model, assuming that the hash function H is
collision-resistant, our divisible e-cash system is anonymous under the SXDH
and the EMXDH assumptions, traceable if Σ0 is an EUF-SCMA secure signa-
ture scheme and Σ1 is an EUF-CMA secure signature scheme, and achieves the
exculpability property under the q − SDH assumption if Σots is a SUF-secure
one-time signature scheme.

5.2 Efficiency

We compare in Fig. 6 the efficiency of our construction (including the Remark 5)
with the one of [8], which is the most efficient scheme regarding the Withdraw
and the Spend protocols, and with the one from [7], whose Deposit protocol is
less expensive but which is only compatible with the random oracle model.

For proper comparison, we add the elements g̃s �→f (see Sect. 4.1) to the public
parameters of [8].

Fig. 6. Efficiency comparison between related works and our construction for coins of
value 2n and Spend and Deposit of value 2l (l ≤ n). The space and times complexities
are given from the user’s point of view. exp refers to an exponentiation, pair to a
pairing computation, Sign to the cost of the signature issuing protocol whose public
key is pk. NIZK{exp} denotes the cost of a NIZK proof of a multi-exponentiation
equation, NIZK{pair} the one of a pairing product equation and NIZK{Sign} the
one of a valid signature. NIZK{exp∗} refers to the cost of a proof of equality of discrete
logarithms in groups of different orders.

For a 128-bits security level, we have (see [14]) |q| = |GT | = 3072, |p| =
|G1| = 256 and |G2| = 512 by using Barreto-Naehrig curves [3]. Therefore, for
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n = 10 (allowing to divide the coin in 1024 parts), the public parameters of
[7] require 3.1 MB of storage space, those of [8] require 1.1 MB while ours only
require 525 KB.

Compared to [8], the main advantage of our solution lies in the Deposit
protocol. Indeed, in the former solution, the bank has to compute and store 2n

serial numbers zi (most of them being invalid) for each transaction, no matter
which value was spent. Considering the number of transactions that a payment
system may have to handle, this may become cumbersome. Our solution signifi-
cantly alleviates the computing and storage needs of the bank since the number
of zi that it must recover is exactly the same as the spent value. However, this
improvement implies a slight increase of the complexity of the Spend protocol
but we argue that the trade-off remains reasonable. Moreover, it is possible to
get rid of the 2 Pair in the NIZK proof, at the cost of increasing the public
parameters, by not taking into account the Remark 5.

6 Fair Divisible E-cash System

The protocol described above achieves the strongest level of anonymity where
users cannot be identified as long as they remain honest. However, it may be
necessary for legal reasons to allow some entity (e.g. the police) to identify any
spender. Our construction can be modified to add such an entity, that we will
call an opener, leading to a fair divisible E-cash system. The point is that these
modifications will decrease the complexity of our construction and weaken the
assumption underlying its anonymity.

Let us consider the Setup algorithm defined in Sect. 4.2. A trusted author-
ity was needed to generate the scalars (a0, yε, {ai, yi,0, yi,1}i=n

i=1 ) involved in the
construction of the tree. Indeed, an entity knowing them can easily break the
anonymity of the scheme (but not its exculpability or its traceability).

Let us assume that the Setup algorithm is run by the opener. Since every
transcript of a Spend protocol contains a pair ts = (gr, gx

s · kr
n−|s|) for some coin

secret x and some random scalar r, the opener can recover:

gx ← (gx
s · kr

n−|s| · (gr)−a|s|)(yε

∏|s|
i=1 yi,bi

)−1

which only depends on the coin secret x. It then only remains to link this
value with the user’s identity. One way to achieve this is to slightly modify
the Withdraw protocol by requiring that users also send gx, prove that it is well
formed and send a signature on it under upk. These elements will then be stored
by the bank in a public register that will be used by the opener to identify
spenders (the signature will ensure the exculpability property).

This new way of identifying spenders allows to alleviate our construction.
Regarding the Spend protocol, computing the pair vs (and proving statement
about it) is no longer necessary since it was only useful to identify double-
spenders. Regarding the public parameters, the elements hs can be discarded
since they were only involved in the computation of vs. Finally, the Identify
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algorithm which suffers from a linear cost in the number of users is replaced by
the constant-time computation of gx described above.

Another benefit of this fair divisible E-cash system is that its anonymity now
relies on the following assumption, which is clearly weaker than the EMXDH
assumption (see Definition 3):

Definition 7 (Weak EMXDH Assumption). Given (g, ga, gx, g̃, g̃a) ∈ G
3
1 ×

G
2
2, ({gyi}i=n

i=1 , {gx·yi}i=n−1
i=1 , {g̃1/yi}i=n

i=1 ) ∈ G
2n−1
1 ×G

n
2 , as well as gz ∈ G1, it is

hard to distinguish whether z = x · yn/a or z is random.

7 Conclusion

In this work we have proposed a new divisible E-cash system which improves the
state-of-the art paper [8] by addressing its two downsides, namely the storage and
computational costs of the deposit protocol and the size of the public parameters.
Our solution relies on a new way of constructing the binary tree which induces
several modifications compared to [8] leading to the first efficient and scalable
divisible E-cash system secure in the standard model.

Acknowledgments. This work was supported in part by the French ANR Projects
ANR-12-INSE-0014 SIMPATIC and ANR-11-INS-0013 LYRICS, and in part by the
European Research Council under the European Community’s Seventh Framework
Programme (FP7/2007–2013 Grant Agreement no. 339563 – CryptoCloud).

A Security of the EMXDH Assumption

First, let us consider the weak-EMXDH assumption defined in Sect. 6. Infor-
mally, this assumption relies on the fact that, since gz ∈ G1, we can combine
it with every element of G2 (but not G1 since we use an asymmetric bilinear
map) provided by the challenge. Therefore, the assumption holds if e(gz, g̃a) and
e(gz, g̃1/yj

), for 0 ≤ j ≤ n, are undistinguishable from random elements of GT ,
given all the inputs from the challenge.

If z = x · yn/a then e(gz, g̃a) = Gx·yn

and e(gz, g̃y−j

) = Gx·yn−j/a, for
G = e(g, g̃). While all the other combinations lead to G, Ga2

, Gx, {Gyi}i=n
i=−n,

{Gayi}i=n
i=−n, {Gxyi}i=n−1

i=−n , {Gaxyi}i=n−1
i=0 . No linear combination of the latter can

help to distinguish the former.
The elements provided in the challenge allow (see the full version [9]) to

generate the public parameters gs for each node s ∈ Sn as well as the pairs
(g̃i,f , h̃i,f ) for every 0 ≤ i ≤ n and f ∈ Fn but also to compute the element gx

s

involved in the pair ts sent during the Spend protocol. This is enough for the
fair divisible E-cash system sketched in Sect. 6. Unfortunately, the anonymous
version described in Sect. 5 also requires to provide, for each s ∈ Sn, the elements
hs = gt

s for some t ∈ Zp. Such elements are used during a spending to compute
the element hx

s = (gx
s )t involved in the pair vs necessary to identify double-

spenders without the help of an opener.
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The problem is that a reduction cannot know the value t. Therefore, it is
necessary to provide for most elements w of G1 of the challenge, the associated
ones wt, hence the EMXDH assumption.
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Abstract. Anonymous credential systems allow users to authenticate
in a secure and private fashion. To protect credentials from theft as well
as from being shared among multiple users, credentials can be bound to
physical devices such as smart cards or tablets. However, device-bound
credentials cannot be exported and backed up for the case that the
device breaks down or is stolen. Restoring the credentials one by one
and re-enabling the legitimate owner to use them may require significant
efforts from the user. We present a mechanism that allows users to store
some partial backup information of their credentials that will allow them
to restore them through a single interaction with a device registration
authority, while security and privacy are maintained. We therefore define
anonymous credentials with backup and provide a generic construction
that can be built on top of many existing credential systems.

Keywords: Anonymous credentials · Backup · Restore credentials

1 Introduction

Digital credentials are used to certify a set of attributes for a user (i.e., birth
date, sex, clearances, access rights, or qualifications), similar to traditional
paper-based credentials such as identity cards or driving licenses. However, their
electronic nature makes them easy to duplicate and share. This is particularly
problematic when users have an incentive to share their credentials, e.g., when
they give access to payed subscription services such as music or video streaming.
The problem becomes even worse when anonymous credentials are used, since
a service provider cannot determine whether two presentations (i.e., authentica-
tions) were performed using the same or different credentials.
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Service providers therefore often protect credentials by “binding” them to an
uncloneable hardware device that can perform authentications, but from which
the credentials are not easily extracted. The main idea is that physical access to
the device is required to be able to present the credential. A high-security way of
doing so is by embedding the credentials on tamperproof smart cards or secure
elements; while for lower-security use cases, storing the credentials in obfuscated
form on the user’s phone or tablet PC may suffice.

Unfortunately, both those techniques do not allow users to make backups of
their credentials in order to recover if the device breaks down, or is lost or stolen.
Instead, they will have to re-issue all the credentials and possibly also revoke the
old ones. However, a single device may store many such credentials and replac-
ing all of them is often costly and impracticable since it might require off-line
authentication steps such as appearing in person at an office, receiving a let-
ter by paper mail, or answering secondary security questions. Although efficient
backup mechanisms for credentials—and in particular, anonymous credentials—
seem essential, no such construction has been proposed so far in the literature.

Our Contributions. In this paper, we describe a scheme for efficient backup and
restoration of device-bound credentials. Rather than binding the credentials to
the device directly, we propose binding credentials to the user, while devices
are registered to users as well. To perform a correct authentication, the user
must prove that the credential is bound to the same user to which the device
is registered. Credentials can then be exported and backed up in the traditional
way, while a device registration authority prevents credential sharing and theft
by ensuring that users can only register a limited number of devices and cannot
register devices in other users’ names.

We consider very strong security features for users as well as service providers.
We assume that users store their backups on untrusted media that could fall into
the wrong hands of malicious users, or even of malicious device manufacturers.
In spite of having access to the backup and being able to register new devices to
any user, the attacker should not be able to impersonate the user. We do so by
requiring the user to keep a strong secret in an offline vault, e.g., on a piece of
paper stored in a safe place. To maintain an acceptable level of usability, however,
the vault secret is solely needed for device registration but not for everyday use.

We first give a high level description of an anonymous credential system
with backup (BPABC) in Sect. 2, where we also define the syntax of BPABC and
give an overview of the related security requirements. Besides the basic func-
tionalities and backup, our framework covers advanced issuance (i.e., attributes
can be carried over into new credentials without revealing them to the issuer),
scope-exclusive pseudonyms (i.e., pseudonyms that are linkable for a fixed scope
string, but unlinkable across scopes), revocation, and equality predicates (i.e.,
users can prove equality of hidden attributes, potentially across multiple creden-
tials). In Sect. 3 we give a high-level description of the generic construction of a
BPABC scheme together with a sketch of its security proof.
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Related Work. Anonymous credentials were originally envisioned by Chaum
[Cha81,Cha85], and subsequently a large number of schemes have been
proposed, e.g., [BL13,BCC+09,CH02,CL01,CL02,CL04,Bra99,PZ13,CMZ14,
GGM14]. Various formalizations of basic credential schemes have been pro-
posed in the literature, typically only considering a limited set of features,
e.g., Camenisch and Lysyanskaya [CL01] or Garman et al. [GGM14]. Recently,
Camenisch et al. [CKL+14] presented the so far most holistic definitional frame-
work for attribute-based credential systems, covering the same features as our
framework, except that theirs was limited to software credentials only and thus
there was no need for backup. Following their approach of a unified definitional
framework, we extend their syntax, definitions, and generic construction to addi-
tionally support device-bound credentials.

2 Device-Bound Credentials with Backup

A privacy-enhancing attribute-based credential system (PABC) consists of users
U that can request credentials on their attributes from issuers, I, and verifiers,
V, to whom users can present (i.e., prove possession of) an arbitrary set of their
credentials. Additionally, in a PABC system with backup (BPABC), device man-
ufacturers DM generate hardware tokens, and device credential issuers DI can
issue device credentials that can only be used if the device is physically present.
The idea is that software credentials certify the users’ attributes, whereas device
credentials only guarantee that a user has physical access to a valid device.
Then, upon presentation, the user shows that he possesses a valid device, and
an arbitrary set of software credentials that also belong to the same user.

When joining the system, every user computes a user secret key usk, which is
used to bind credentials to the user and allows him to derive unique pseudonyms
for different scopes, where a scope may be an arbitrary bit string. Pseudonyms
are linkable if computed twice for the same scope, but are completely unlinkable
across scopes. Furthermore, a user computes a vault user secret/public key pair
(vusk, vupk). Upon presentation, the user needs to know vupk, whereas the vault
user secret key vusk can be stored in a secure vault (e.g., it could be written on
paper and stored in a safe), and is only needed to “authenticate” the user every
time he obtains a new device or in order to restore a lost device.

Note here that any method to legitimately re-obtaining credentials (anony-
mous or not) requires some secret data to be stored outside the used hardware
tokens, e.g., on paper or an offline data stick. This is, because otherwise the
honest owner of a credential could not prove legitimate ownership of a creden-
tial once the adversary got access to his device, as the adversary would know
exactly the same information and could thus perfectly imitate the user. In tra-
ditional settings, this data may be the correct response to a security question
for a given service. For a backup mechanism to be practical, it is important that
the amount of secret data, as well as the number of modifications and look-ups
of this data are kept small. In our construction, the secret data consists of only
a single long-term signing key, independent of the number of credentials, and
needs to only be accessed when setting up a new device.
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Fig. 1. All steps of a BPABC system are user-centric, and no two actions taken by the
user can be linked unintentionally.

In Fig. 1 we describe the main steps of BPABC. Every user may possess sev-
eral devices, and store an arbitrary set of his software credentials on any of these
devices. Users can obtain software credentials from issuers as in a traditional cre-
dential system using 4 Issue, i.e., no device is required to obtain a credential. How-
ever, we assume that presenting credentials to verifiers using 5 Present always
requires possession of a device.1 Furthermore, certain credentials may be bound
to specific devices, i.e., they only can be used with this specific device, by binding
it to a device binding identifier dbid that is unique for every device.

The device manufacturer first generates a device containing a certificate of
genuineness using the algorithm 1 Produce. When buying a device, the user first
has to activate it in interaction with the manufacturer by running the protocol
2 Activate, at the end of which the device contains an initial device credential.
Now, the user has two possibilities to personalize his device. If the user wants
to register a new device, he runs 3a Register in interaction with the device cre-
dential issuer. If, on the other hand, the user wants to restore a lost device, he
runs 3b Restore with DI. In both cases, the user uses his vault secret key vusk
for this personalization; in the latter case, he further uses some backup token
that was computed prior to losing the device. Restoring a device can be seen as
a special way of registering a device: while for a plain registration, the device
receives a fresh dbid, restoring allows the user to register the new device with the
dbid of the lost device. Doing so allows the user to use all his software credentials
(including those that were bound to the lost device) with the new device. How-
ever, the security requirements of the system guarantee that no user can abuse
this restoring procedure to clone or duplicate devices, i.e., it is ensured that at
any point in time at most one device with a certain dbid is valid in the system.

We chose a multi-step approach for personalizing the device to ensure maxi-
mum security to all involved parties, and to model reality more accurately. For
instance, requiring to first activate the device with the manufacturer gives him
the chance to deny this activation, e.g., if the vendor reported the given device
to be stolen. However, as no personal information is involved in the Activate

1 Note that this is without loss of generality, as the system parameters could simply
contain a dummy issuer key for which a user can compute a dummy device credential
whenever the verifier’s policy does not require possession of a physical device.
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protocol on the user side, the manufacturer does not learn any information about
the user, but only that a given device is now activated. Splitting the activation
and personalization steps allows us to distinguish the device credential issuer
(e.g., a public authority) and the manufacturer (e.g., a smart card producer).

2.1 Syntax of Anonymous Credentials with Backup

In the following we formally specify the syntax and interfaces of an anonymous
credential system with backup (BPABC). We kept the syntax as close as possible
to that of PABC schemes without backup [CKL+14].

We denote algorithms by sans serif font, e.g., A,B. Drawing s uniformly at
random from a set S is denoted by s ←$ S. Similarly, a ←$ A denotes that a is
the output of a randomized algorithm A. For a two party protocol (A,B), we
write (outA; outB) ←$ 〈(A(inA);B(inB)〉 to denote that A obtained output outA
on input inA (accordingly for B). For sets P ⊆ S, we write Pc for the complement
of P, i.e., Pc = S\P. We write (xi)n

i=1 to denote the vector (x1, . . . , xn). Finally,
for n ∈ N, we write [n] := {1, . . . , n}.

A BPABC scheme consists of a specification of an attribute space
AS ⊆ ±{0, 1}�, algorithms SPGen, UKGen, VKGen, IKGen, DMKGen, Produce,
ITGen, ITVf, Present, Verify, Revoke, BTGen, and protocols 〈U .Issue, I.Issue〉,
〈U .Register, DI.Register〉, 〈U .Restore,DI.Restore〉, 〈U .Activate,DM.Activate〉
defined as:

SPGen →$ spar . On input 1κ, this system parameter generation algorithm gen-
erates system parameters spar.

UKGen →$ usk . On input system parameters spar, the user key generation
algorithm outputs a user secret key usk.

VKGen →$ (vusk , vupk). On input system parameters spar, the vault user key
generation algorithm outputs a vault user secret/public key pair.

IKGen →$ (isk , ipk ,RI ). On input spar, the (device) issuer key generation
algorithm outputs a public/private issuer key pair and some initial pub-
lic revocation information, RI. Formally, our construction does not require
to distinguish software and device credential issuers. However, to ease pre-
sentation, we will write (disk, dipk,RIDI) whenever an issuer is currently in
the role of a device credential issuer.

DMKGen →$ (dmsk ,dmpk). On input spar, the device manufacturer key gen-
eration algorithm outputs a public/secret manufacturer key pair.

Produce →$ cert. On input a secret manufacturer key dmsk, the device produc-
tion algorithm outputs a genuineness certificate.

〈U .Activate;DM.Activate〉 →$ ((dsk ,dbid ,dcred init), ε). In this interactive
device activation protocol, the user takes inputs (dmpk, cert), whereas the
device manufacturer takes input dmsk. At the end of the protocol, the user
obtains a device secret key dsk, a device binding identifier dbid and the initial
device credential dcredinit.

〈U .Register;DI.Register〉 →$ (dcred ,RI ′
DI). In this device registration pro-

tocol, the user takes inputs (dipk, dmpk, vusk, vupk, dsk, dbid, dcredinit, drh),
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while the device credential issuer takes inputs (disk, dmpk,RIDI , drh), where
the inputs and outputs are defined as before. Moreover, drh is the revocation
handle for the new device. As the result of this protocol, the user obtains
the device credential dcred, while the issuer receives an updated revocation
information RI′DI .

ITGen →$ (nym ,pit , sit). To issue a software credential, a user needs to gen-
erate an issuance token that defines the attributes of the credentials to be
issued, where (some of) the attributes and the secret key can be hidden from
the issuer and can be blindly “carried over” from credentials that the user
already possesses (so that the issuer is guaranteed that hidden attributes
were vouched for by another issuer).
Taking inputs

(
usk, scopeU , rh,

(
ipki,RIi, credi, (ai,j)ni

j=1, Ri

)k+1

i=1
, E,M, vupk,

dbid
)
, the issuance token generation algorithm outputs a user pseudonym

nym and a public/secret issuance token (pit, sit). The inputs are defined as
follows:
• usk is the user’s secret key;
• scopeU is the scope of the generated user pseudonym nym, where scope = ε

if no pseudonym is to be generated (in which case nym = ε);
• rh is the revocation handle for credk+1 (e.g., chosen by the issuer before);
• (ipki,RIi)k

i=1 are the issuers’ public keys and current revocation informa-
tion for (credi)k

i=1; (ipkk+1,RIk+1) correspond to the issuer of the new
credential;

• (credi)k
i=1 are credentials owned by the user and involved in this issuance

and credk+1 = ε is a placeholder for the new credential to be issued;
• Ri ⊆ [ni] is the set of attribute indices for which the value is revealed;
• for i ∈ [k], (ai,j)ni

j=1 is the list of attribute values certified in credi;
(ak+1,j)j∈Rk+1 are the attributes of credk+1 that are revealed to the issuer;

• (ak+1,j)j �∈Rk+1 are the attributes of credk+1 that remain hidden;
• ((k + 1, j), (i′, j′)) ∈ E means that the jth attribute of the new credential

will have the same value as the j′th attribute of the i′th credential;
• M ∈ {0, 1}∗ is a message to which the issuance token is to be bound;
• vupk is the user’s vault public key;
• dbid is the device’s binding identifier which can be set to ε if the new

credential should not be device bound.
ITVf →$ accept/reject. On inputs

(
nym, pit, scopeU , rh, (ipki,RIi, (ai,j)j∈Ri

)k+1
i=1 ,

E,M
)
, this issuance token verification algorithm outputs whether to accept

or to reject the issuance token. For j = 1, . . . , k all inputs are as before, but
for k + 1 they are for the new credential to be issued based on pit.

〈U .Issue; I.Issue〉 →$ (cred ,RI ′). In the interactive issuance protocol, the user
takes input sit, whereas the issuer takes inputs (isk, pit,RI), where pit has
been verified by the issuer before. At the end of the protocol, the user obtains
a credential cred as an output, while the issuer receives an updated revocation
information RI′.

Present →$ (pt ,nym ,dnym). On input
(
usk, scopeU ,

(
ipki,RIi, credi, (ai,j)ni

j=1,

Ri

)k

i=1
, E,M, dsk, scopeD,

(
dipk,RIDI , dcred

)
,BD, vupk

)
, the presentation
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algorithm outputs a presentation token pt, a user pseudonym nym, and a
device pseudonym dnym. Most of the inputs are as before, but:
• E ⊆ {(i, j) : i ∈ [k], j ∈ [ni]}, where ((i, j), (i′, j′)) ∈ E means that the

presentation token proves that ai,j = ai′,j′ without revealing the actual
attribute values. That is, E enables one to prove equality predicates;

• M is a message to which the presentation is bound. This might, e.g., be a
nonce chosen by V to prevent replay attacks, where V uses a presentation
token to impersonate a user towards another verifier;

• dsk is the user’s device secret key stored in the secure element of the device;
• scopeD is the scope of the generated device pseudonym dnym;
• dipk and RIDI are the public key and current revocation information of

the issuer of the device credential dcred;
• BD ⊆ [k] is a set of indices specifying which credentials are device-bound;
• vupk is the user’s vault public key;

Verify →$ accept/reject. The presentation verification algorithm takes
(
pt,nym,

scopeU , (ipki,RIi, (ai,j)j∈Ri
)k
i=1, E,M, dnym, scopeD, dipk,RIDI ,BD

)
defined

as before as inputs, and outputs whether to accept or to reject a presentation
token. For notational convenience, we assume that a term like (ai,j)j∈Ri

implicitly also describes the set Ri.
Revoke →$ RI ′. The revocation algorithm takes as inputs (isk,RI, rh), where isk

is the issuer’s secret key, RI is the current revocation information, and rh
is the revocation handle to be revoked. It outputs an updated revocation
information RI′.

BTGen →$ (dnym ,pbt , sbt). The backup token generation algorithm takes as
input

(
dsk, vupk, dipk,RIDI , dcred, dbid

)
, where all the values are as before.

It outputs a device pseudonym dnym and a public/secret backup token
(pbt, sbt), which will allow the user to carry over the current dbid into a
new device upon restoring. In theory, the entire backup token may be stored
in a public cloud, as no adversary would be able to use it to get a new
device credential re-issued. However, as sbt may contain personally identi-
fying information, it is recommended to store sbt privately or only in an
encrypted form.

〈U .Restore;DI.Restore〉 →$ (dcred ,RI ′
DI). In the device restoring protocol,

the user takes as input (sbt, dipk, dmpk, vusk, dsk, dcredinit, drh), whereas the
device issuer takes as input (dnym, pbt, disk, dmpk,RIDI , drh). At the end of
the protocol, the user outputs a fresh device credential dcred, while the issuer
receives an updated revocation information RI′DI .

2.2 Security Definitions (Informal)

We now next describe the security properties of an attribute-based credential
system with backup. Our definitions extend that of Camenisch et al. [CKL+14],
who gave a comprehensive formal definitional framework for traditional creden-
tial schemes. As our system involves more types of parties and offers more inter-
faces, the formal definitions are quite complex, thus we only sketch the intuition
here and refer to the full version for the formal definitions.
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Oracles. In our definitions, the adversary is granted access to three oracles: a
device manufacturer oracle Oproducer, an issuer oracle Oissuer, and a user ora-
cle Ouser, allowing the adversary to interact with honest device manufacturers,
issuers, and users, respectively. While most of the interfaces of the oracles are
natural, Ouser has additional interfaces that allow the adversary to “steal” a
device with a specific set of credentials from an honest user. Furthermore, the
adversary is given interfaces to use such a device. His available options depend
on the assumed security guarantees of the devices. We explicitly distinguish the
following three types of devices, but our definitions are flexible enough to be eas-
ily adopted for other settings as well. First, if the devices are assumed to have
secure memory and are protected by strong PINs, then the adversary essentially
cannot profit from the stolen device at all. Second, if the memory is assumed to
be secure but no strong PINs are used, then the adversary can use (i.e., backup,
present, etc.) the stolen device and the credentials on them, but he does not
learn the precise values of the user secret key or the credentials. Finally, if no
assumption on the device are made, the adversary learns all the information
stored on the device, including the user secret key and the credentials.

We believe that parameterizing our security definitions by the assumed secu-
rity of the devices is useful to realistically model a broad range of real world
scenarios, as, for instance, the security guarantees of eID cards, smart phones,
or public transport tickets might drastically differ in practice. Clearly, making
no assumptions on the devices results in the strongest definitions; however, as
the computational capacity of embedded devices is often limited, our approach
of considering additional properties is essential to obtain practical protocols.

Completeness. If all parties behave honestly, all protocols can be run successfully.
In particular, honest users interacting with an honest counterpart can always
activate, register, and restore devices, as well as obtain and present credentials.

Unforgeability. We define unforgeability as a game between an adversary and
the Oproducer, Oissuer, Ouser oracles. The adversary can produce new devices,
obtain and revoke credentials from honest issuers, instruct honest users to obtain
credentials on inputs of his choice, request presentation tokens and receive
backup tokens for given device credentials. Moreover, as mentioned above, he
can “steal” devices and receive the device credential together with the software
credentials and secret keys. At the end of the game the adversary outputs a
number of presentation tokens and pseudonyms and wins if at least one of the
presentation tokens is a forgery, or an issuance token successfully submitted to
the honest issuer oracle was a forgery. A token is a forgery if it is inconsistent
with the world the adversary interacts with using oracles Oproducer, Oissuer, and
Ouser. Informally, being consistent here means that for each token returned by
the adversary, all software credentials are bound to the same use secret key, the
pseudonym nym is sound for the given scope scopeU , values of revealed attributes
are correct, the equality relation E is satisfied, all credentials presented in the
token are either bound to the same device binding identifier dbid or to ε and
bound to the same vault public key. Moreover, presentation tokens must have
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been created using a valid device credential (issued for a genuine device using
restore or register), the device pseudonym dnym is sound for the given scope
scopeD and the device credential must be signed such that the signature is veri-
fiable with the vault public key.

Privacy. Similar to Camenisch et al. [CKL+14], we define privacy via a simu-
lation based approach. We consider a set of honest users and let the adversary
control all other parties in the system (device manufacturers, issuers, and ver-
ifiers). It should be computational infeasible for the adversary to distinguish
whether he is communicating with the real set of honest users, or with a simula-
tor, S, that only has access to the public information of the respective protocol
(e.g., revealed attributes, scopes, public keys). For this, we define a filter F
that has the same interfaces as the user oracle Ouser, but sanitizes the inputs
beforeforwarding them to the S. For instance, unlinkability of presentation is
ensured by not forwarding the credential identifiers cid (that the adversary gives
to Ouser) to S. Furthermore, the filter performs comprehensive book keeping to
exclude trivial distinguishing attacks that would result from requesting presen-
tation tokens from invalid credentials which would be answered by the S but not
by Ouser.

3 A Generic Construction and Its Security

One possible way to realize recoverable device-bound credentials would be to
choose a unique “recovery secret” a for each device-bound credential and embed
its image through a one-way function f(a) as an additional attribute in the
credential. This attribute is not revealed during presentation, but to backup
a credential cred, he stores a presentation token pt revealing f(a) on insecure
backup media, and stores a in a secure offline vault. To restore cred upon loss,
the user sends pt and a to the issuer, who checks if pt and f(a) are correct, and
then participates in an advanced issuance protocol that allows the user to blindly
carry over all attributes from cred into a new credential that will be bound to
freshly chosen recovery secret a′.2

One drawback of this construction is that a malicious device issuer getting
access to a user’s device carrying some software credentials could simply re-
issue himself a new device credential, as he would then just omit the proof of
knowledge for a. The device issuer could then use the user’s software credentials
with the new device, and the user would have no option to revoke the malicious
device credential as it would contain a fresh revocation handle.

This problem could be mitigated by encrypting credentials before loading
them onto the device. The decryption key could be stored inside the secure ele-
ment of the device, and the credentials would only be decrypted in this secure
environment. So a malicious device issuer finding a user’s device would not learn
2 Alternatively, one could also use the same a for all device-bound credentials, and

then only prove in zero-knowledge that one knows the trapdoor a to the attribute
f(a).
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the user’s software credentials and thus could not impersonate him. However,
reality shows that virtually any tamperproof device can be broken by a suffi-
ciently powerful adversary. In this case a user could again be impersonated.

One solution to this problem is to let the verifier not only check that the user
owns a valid device credential, but also that the user “accepted” this credential.
On a very high level, this can be done by letting the user sign his device creden-
tial, and embed the verification key of this signature into all his credentials as an
attribute. Then, at presentation, the user shows that he owns a device credential
and a signature thereon, and that the public verification key is also contained in
all the other credentials. As a malicious device issuer may never learn the sign-
ing key of this user (as it is stored in a secure vault), he may not impersonate
the user with a fresh device credential any more, as this would require forging a
signature on this credential.

A bit more precisely, each user computes a signature key pair (vusk, vupk)
and stores vusk in a bank vault as his vault user secret key, and only needs
to access vusk when (re-)obtaining device credentials. After buying and acti-
vating a device, the user requests a device credential dcred, that certifies the
validity of the device and a unique device binding identifier dbid. The device
credential dcred is bound to vupk. All software credentials also get bound to
vupk, and optionally to dbid if the credential is to be bound to a specific device;
if no dbid is given, the credential can be used with any device. Upon loss of
a device, the user now only needs to get dcred re-issued, but all the software
credentials can be left unchanged. To ensure that only the legitimate user can
re-obtain and later prove possession of a device credential, we let the user sign
the (unique) revocation handle rh of dcred using vusk. Upon presentation, the
user now not only shows that he possesses a device credential, but also that he
knows a signature under vupk on rh. This signature protects against malicious
credential issuers, which cannot create such proof of signature knowledge on a
non-revoked token rh. Unfortunately, binding the credentials to vupk by adding
it as an attribute does not work here generically, as this would require that the
attribute space of the credential scheme subsumes the key (message) space of
the signature scheme. Furthermore, standard signatures would require the veri-
fier to learn the signature verification key vupk, which must not be revealed to
maintain unlinkability. Therefore, upon device registration, the user commits to
vupk and lets the issuer additionally sign this commitment. Using commuting
signatures [Fuc11] additionally allows us to perform the required proofs with
only publishing a commitment to vupk, but not vupk itself, therefore achieving
the required privacy goals.

What is left, is to bind this signature to the specific credential. To do so, the
issuer, instead of only signing the vault public key, signs a combination of vupk
and the revocation handle, rh, for the credential issued. Thus, once the creden-
tial gets revoked, the signature of the issuer becomes useless. Since revocation
handles do not necessarily belong to the message (key) space of commuting sig-
natures, we sign the value φ(rh) instead of signing the actual revocation handle
rh, for some appropriate mapping function φ. Finally, we also use a proof system
that allows to verify that commitments to rh and φ(rh) are consistent.
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3.1 Building Blocks

In the following, we briefly recap the non-standard building blocks required for
the generic construction presented in this section.

Privacy-Enhancing Attribute-Based Credentials. Because of space limitations
and to avoid redundancy, we refrain from giving formal definitions for PABC
systems, but refer to Camenisch et al. [CKL+14].

Informally, anonymous credentials (without backup) have the same inter-
faces as introduced in Sect. 2.1, except for all the backup-related parts. That
is, they consist of the following algorithms and protocols: SPGen,UKGen,
IKGen, ITGen, ITVf, 〈U .Issue; I.Issue〉,Present,Verify,Revoke. The input/output
behavior and the required security properties are again similar to Sects. 2.1 and
2.2, respectively.

Commuting Signatures and Verifiable Encryption. On a high level, commut-
ing signatures combine digital signatures, encryption, and proof systems, such
that one can commit to (any subset of) signature verification key, message,
and signature, and still be able to prove that the three values are a valid
key/message/signature tuple. In the following we give a slightly simplified ver-
sion of the interfaces introduced by Fuchsbauer [Fuc11].

SPGenCS. On input global system parameters sparg, this system parameter gen-
eration algorithms outputs signature parameters sparCS. These system para-
meters are input to all algorithms in the following, but we will sometimes
omit this for notational convenience.

KeyGenCS. On input sparCS, this key generation algorithm outputs a signature
key pair (sk, pk).

ComCS. On input a message m in the signature or the key space, this commitment
algorithm outputs a commitment csM and opening information ocsM.

ComM. On input a message m from the message space, this commitment algo-
rithm extends ComCS by, among others, proofs of consistency. Note that the
key space is consistent with the message space and therefore one can also
use this algorithm to commit to verification keys.

DComCS. On input a commitment csM and opening ocsM, this decommitment
algorithm outputs the committed message m.

CombComCS. On input two commitment/opening pairs (cs1, ocs1), (cs2, ocs2) to
m1,m2 in the message or key space, this commitment combining algorithm
outputs a commitment/opening pair (cs3, ocs3) of type ComM to m1 ⊗ m2.

VerCombComCS. On input three commitments csi, i = 1, 2, 3, this combined
commitment verification algorithm outputs 1, if and only if cs3 is the output
of CombComCS on input cs1, cs2.

SigComCS. On input a secret key sk and a commitment csM, this commit-
ment signing algorithm outputs a signature σ, a commitment/opening pair
(csσ, ocsσ) to σ, and a proof πσ of the validity of the signature.
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Fig. 2. RandSign((pk, cspk, ocspk), (csM, ocsM), (σ, csσ, ocsσ, πσ))

VerifyCS. On input a public key pk, a message m, a signature σ (or commitments
to (some of) these values), and a proof π, this verification algorithm outputs
accept if and only if π is a valid proof that σ is a signature on m for the
public key pk.

AdPrC. On input pk, csM, (csσ, ocsσ), and π such that VerifyCS(pk, csM, σ, π) =
accept (where σ is obtained using DComCS), this committing proof adaption
algorithm outputs a proof π′ such that VerifyCS(pk, csM, csσ, π′) = accept;
to decommit in a proof, AdPrDC works the other way round (i.e., adapts π
such that it verifies for σ and not for csσ).

AdPrCM. On input pk, (csM, ocsM), csσ, and π such that VerifyCS(pk,m, csσ,
π) = accept, this committing proof adaption algorithm outputs π′ such that
VerifyCS(pk, csM, csσ, π′) = accept; again, AdPrDCM works the other way
round,

AdPrCK. On input (cspk, ocspk), csM, csσ, and π such that VerifyCS(pk, csM, csσ,
π) = accept, the committing proof adaption algorithm outputs π′ such that
VerifyCS(cspk, csM, csσ, π′) = accept; AdPrDCK(cspk, csM, csσ, π) works the
other way round.

We require that (ComCS,DComCS) is a secure extractable commitment
scheme. We also require strong unforgeability (under chosen message attack),
i.e., the adversary cannot output a new pair message/signature (m,σ). Moreover,
all the proofs must be simulatable using an appropriate trapdoor, for details we
refer to Fuchsbauer [Fuc11].

In addition to the above algorithms, Fig. 2 specifies the algorithm RandSign
that we will use in our construction. The procedure takes as input a commuting
signature for which the signature is given as commitment and adapts it to a com-
muting signature for which the signature, the message and optionally the public
key are given as commitments (the commitment to signature is re-randomized),
such that the inputs csσ and πσ cannot be linked to cs′

σ and π′
σ.

3.2 The Construction

In the following we show how to build a BPABC system from a PABC system
and a commuting signature scheme (ComM, . . . ). In the construction, let HAS :
{0, 1}∗ → AS and HMS : {0, 1}∗ → MS be collision-resistant hash functions,
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where AS is the attribute space of the PABC system, and MS is the message
space of presentation tokens used in the PABC system. Let (Comc, . . . ) be a
standard commitment scheme. Furthermore, let φ be a homomorphism from the
message space of Comc to the message space of ComM, that additionally has the
property that φ(m1) ⊗ φ(m2) = φ(m1 ⊕ m2), where m1,m2,m1 ⊕ m2 are in the
message space of Comc. Finally, let (Proveφ,Verifyφ) be a zero-knowledge proof
system for statements:

ZKP [(α) : c1 = ComM(φ(α)) ∧ c2 = Comc(α)] .

Below we give a simplified generic construction of our BPABC scheme, based on
the PABC credential scheme [CKL+14] and commuting signatures. The complete
construction is given in the full version and actually does not build upon PABC’s,
but rather extends the generic PABC-construction, as we require access to the
commitment values produced and consumed by the building blocks of the PABC
scheme. In the description below, we assume, for the sake of simplicity, that
we can extract the commitments from PABC presentation and issuance tokens,
which allows us to focus on the extensions needed to obtain the BPABC.

Setup and Key Generation

SPGen: The system parameters spar consist of the parameters sparPABC of the
PABC system, sparCS of the commuting signature scheme, and two attributes
{initial, activated} ∈ AS. These parameters in particular specify all required
domains, e.g., of revocation handles, etc.

UKGen: As in PABC, i.e., compute the user key as usk ←$ UKGen(sparPABC).

VKGen: Compute the vault keys as (vusk, vupk) ←$ KeyGenCS(sparCS), e.g., being
keys for the commuting signature scheme.

IKGen: The issuer key consists of an issuer’s key for the PABC system and a key
for the commuting signature scheme. For device credential issuers the key also
comprises two scopes and list to keep track of used pseudonyms:

– Compute (iskPABC, ipkPABC,RIPABC) ←$ IKGenPABC(sparPABC).
– Compute (iskCS, ipkCS) ←$ KeyGenCS(sparCS).
– Set ipk = (ipkPABC, ipkCS), isk = (iskPABC, iskCS, ipk), and RI = RIPABC.
– For device credential issuers further generate two scopes scopebup, scopereg

←$ SCP (for backup pseudonyms and for registration pseudonyms) and an
empty list Ldnym to store used pseudonyms.
Set dipk = (ipk, scopebup, scopereg), disk = isk, and RIDI = (RI,Ldnym).

DMKGen: The device manufacturer’s key consists of an issuer’s key for the PABC
system, a scope for activation pseudonyms and an empty list Lcert to store used
pseudonyms:

– Compute (dmskPABC, dmpkPABC,RIPABC) ←$ IKGenPABC(sparPABC).
– Generate empty list Lcert and scopeact ←$ SCP.
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– Set dmpk = (dmpkPABC,RIPABC,Lcert, scopeact), and the secret key to dmsk =
(dmskPABC, dmpkPABC).

Produce: Generate an initial device secret key dskcert and issue a device credential
under dmsk.

– Compute device secret key dskcert ←$ UKGenPABC(sparPABC).
– Choose a random revocation handle drh.
– Issue (locally) a PABC credential credcert for the attribute initial, device key
dskcert and revocation handle drh under the device manufacturer’s issuance
key dmskPABC.

– Set cert = (credcert, dskcert).

Device Activation and Registration

Activate: To activate a device, the user runs a protocol with the device manu-
facturer where U derives a new device secret key dsk as dsk = dsk′ ⊕ dskcert for
a randomly chosen dsk′. The user also obtains a credential on dsk from DM.
Thereby, DM can verify that dsk is correctly derived from a previously certified
dskcert but does not learn the new device key. A simplified version of the acti-
vation protocol is depicted in Fig. 3. For the sake of simplicity, we therein omit
the openings from the in- and outputs of the commitment algorithms.

Register: To register a device with a device credential issuer DI, the user (assisted
by his device) runs a protocol with DI. Therein, U shows that he has an acti-
vation credential dcredinit from DM on some (secret) device key dsk and iden-
tifier dbid. The device credential issuer then blindly carries over dsk, dbid into a

Fig. 3. Device activation
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Fig. 4. Device registration

new credential that also includes a revocation handle drh. In addition, DI also
signs a commitment on a combination of drh and the user’s vault public key
vupk, and the user signs a commitment of φ(drh), both using the commuting sig-
nature scheme. The registration information then consists of the credential and
both signatures. The simplified registration protocol is given in Fig. 4. For sim-
plicity, we again omit the openings from the in- and outputs of the commitment
algorithms.

Credential Issuance and Presentation

ITGen: This algorithm produces an issuance token for input (usk, scopeU , rh, (ipki,
RIi, credi, (ai,j)ni

j=1, Ri)k+1
i=1 , E,M, vupk, dbidD ) and combines an PABC issuance

token with a commuting signature as follows:

1. Compute PABC issuance token. First, the input to ITGenPABC needs to be
prepared such that is also captures the device-binding property, i.e., the rela-
tion E gets extended to express which credentials are device-bound, and that
they are all bound to the same device. More precisely, given k credentials
credi = (cred′

i, dbidi, rhi, (σI,i, csσ,i, ocsσ,i, πσ,i)), one first verifies whether all
device-bound credentials with dbidi �= ε contain the same device identifier
dbid∗. We denote BD for the set of all device-bound credentials. If at least
one credential is device-bound, then the new credential should be also device-
bound as well, i.e., verify that dbidD = dbid∗ and set dbidk+1 = dbidD. Abort
with output ⊥ if any of the checks fails. Update the relation expression to
E′ = E ∪ {((i, ni + 1), (j, nj + 1)) : i, j ∈ BD ∪ {k + 1}} and use E′ to obtain
the PABC issuance token. That is, we run ITGenPABC(usk, scopeU , rh, (ipki,RIi,
cred′

i, ((ai,j)ni
j=1, dbidi), Ri)k+1

i=1 , E′,M) receiving (nym′, pit′, sit′).
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2. Adapt and randomize the Issuer’s signatures σI,i. The second part is based on
the commuting signatures the user has obtained for all credentials credi. The
issuer’s signatures σI,i = (σi, csσ,i, ocsσ,i, πσ,i) originally signed φ(rhi)⊗vupk.
We now adapt them to be signatures on fresh commitments of the same mes-
sages: we first compute CS commitments csrh,i (with openings ocsrh,i) for the
individual revocation handles φ(rhi) of all credentials. Then, we compute a
CS commitment csvupk (with opening ocsvupk) for the user’s vault public key
vupk and combine csvupk with each csrh,i via CombComCS to obtain commit-
ments csM,i for messages φ(rhi)⊗vupk. We then adopt and re-randomize the
issuer’s signatures using RandSign, which adapts the committed signatures to
be signatures on the freshly computed commitments csM,i. We denote the
randomized and adapted signatures as (cs′

σ,i, π
′
σ,i).

3. Combine both parts. Finally, we have to bind the PABC and the commuting
signature part together. This is done by proving that the revocation handles
committed in csrh,i are the same revocation handles to which the PABC-
issuance token commits as (crh,i, orh,i) (which we extract from pit′). For
each rhi we therefore compute πφ

rh,i ←$ Proveφ((crh,i, orh,i), (csrh,i, ocsrh,i)).
We set pit = (pit′,BD, csvupk, (csM,i, csrh,i, π

φ
rh,i, cs

′
σ,i, π

′
σ,i)

k
i=1), sit = (sit′,

dbidD, csvupk, ocsvupk) and nym = nym′.

ITVf: Verify the PABC issuance token pit′, proofs πφ
rh,i, that (cs′

σ,i, π
′
σ,i) are valid

issuer signatures on csM,i, and that VerCombComCS(csrhi
, csvupk, csM,i) = 1 for

i = 1, . . . , k. Output reject if any of the check fails, and accept otherwise.

Issue: Issuance of a software credential (possibly bound to a device if dbidD �= ε)
consists of a PABC issuance protocol, and a commuting signature generated by
the issuer as depicted in Fig. 5.

Present: A presentation token for (usk, scopeU , (ipki,RIi, credi, (ai,j)ni
j=1, Ri)k

i=1,
E,M, dsk, scopeD, (dipk,RIDI , dcred),BD, vupk) consists of two PABC presenta-
tion tokens (one for the software credentials, and one for the device credential)
and randomized commuting signatures:

1. Compute PABC presentation token pt′ for the software credentials. Parse
each credential as credi = (cred′

i, dbidi, rhi, σI,i). Adapt the relation E to
include the device-binding relations, i.e., use the indices in set BD to com-
pute E′ = E ∪{((i, ni +1), (j, nj +1)) : i, j ∈ BD}. Compute (nym, pt′) for all
software credentials cred1, . . . , credk by running PresentPABC(usk, scopeU , (ipki,
RIi, cred′

i, ((ai,j)ni
j=1, dbidi), Ri)k

i=1, E
′,M).

2. Compute PABC presentation token pt′′ for the device credential. If dcred �=
ε, parse dcred = (dcred′, drh, σDI , σU ), and compute presentation token
(dnym, pt′′) as PresentPABC(dsk, scopeD, (ipkDI ,RIDI , dcred′, (dbidD)), ∅,M).
If dcred = ε abort with output ⊥.

3. Bind pt′ and pt′′ together. Extract (cdbid,D, odbid,D) from pt′′ and, for some
i ∈ BD, (cdbid,i, odbid,i) from pt′. Prove that both commit to the same value
in πdbid.
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Fig. 5. Credential issuance

4. Adapt and randomize the Issuer’s signatures σI,i and σDI . Similarly as in the
ITGen algorithm we adapt the issuer’s signatures σI,i = (σi, csσ,i, ocsσ,i, πσ,i)
on φ(rhi)⊗vupk to be signatures on fresh commitments of the same messages.
To this end, we first compute CS commitments csrh,i (with openings ocsrh,i)
for the individual revocation handles φ(rhi) for all i = 1, . . . , k,D. Then,
we compute a CS commitment csvupk (with opening ocsvupk) for the user’s
vault public key vupk and combine csvupk with each csrh,i via CombComCS to
obtain commitments csM,i for messages φ(rhi)⊗vupk. We then adopt and re-
randomize the issuer’s signatures using RandSign, which adapts the commit-
ted signatures to be signatures on the freshly computed commitments csM,i.
We denote the randomized and adapted signatures for all i = 1, . . . , k,D as
(cs′

σ,i, π
′
σ,i), where (cs′

σ,D, π′
σ,D) stands for the adapted signature of the device

credential issuer.
5. Adapt and randomize the User’s signature σU (contained in dcred). In a sim-

ilar vein, we adapt the user’s signature σU = (σ, csσ,U , ocsσ,U , πσ,U ) on the
revocation handle of the device credential φ(drh) using procedure RandSign.
However, here we also adapt the proof using a commitment to vupk. Note
that this ensures that the final signature proof is not only for a committed
signature on a committed message, but that also the public key is given as
a commitment. This is required here, as the user’s public key would serve
as a unique identifier otherwise. We denote the randomized user signature
on message csrh,D and under key csvupk (computed in the step above) as
(cs′

σ,U , π′
σ,U ).

6. Bind the PABC part and CS part together. This is again similar to the ITGen
algorithm: we bind both parts together by extracting the commitments for all
revocation handles from the PABC tokens and proving that they contain the
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same values as the CS commitments used in the commuting signatures part.
That is, for all i = 1, . . . , k we extract (crh,i, orh,i) from pt′ and (crh,D, orh,D)
from pt′′ and compute πφ

rh,i ←$ Proveφ((crh,i, orh,i), (csrh,i, ocsrh,i)).
Finally, we compose the presentation token as pt = ((pt′, pt′′, πdbid, csvupk,
(csM,i, csrh,i, π

φ
rh,i, cs

′
σ,i, π

′
σ,i)

k,D
i=1, cs

′
σ,U , π′

σ,U ),nym, dnym).

Verify: Verify both presentation tokens (nym, pt′), (dnym, pt′′), proofs πdbid, πφ
rh,i

and that all csM,i are valid combinations of commitments csrh,i and csvupk (for
i = 1, . . . , k,D). Moreover, verify the credential issuer’s signatures under csM,i

and the user’s signature under csrh,D and for key csvupk. Output reject if any of
the checks fails, and accept otherwise.

Revoke: On input (isk,RI, rh) parse isk as (iskPABC, iskCS, ipk) and run the PABC
revocation algorithm RevokePABC(iskPABC,RIPABC, rh).

Backup and Restore

BTGen: Upon input (dsk, vupk, dipk,RIDI , dcred, dbidD) parse dcred = (dcred′,
drh, σDI , σU ) and compute the presentation token (dnym, pt) ← PresentPABC
(dsk, scopebup, (ipkDI ,RIDI , dcred′, (dbidD)), ∅,M) for the device credential.
Extract the commitment and opening (cdbid, odbid) to the device identifier dbidD
and commitment and opening (cdrh, odrh) to the device revocation handle. Set
the public part to pbt = (pt, drh, odrh), sbt = (dbid, cdbid, odbid) and output
(dnym, pbt, sbt).

Restore: The restore procedure is initiated by the user when he obtained his new
(and activated) device including a new device key dsk′ and activation credential
dcred′

init. The user then runs the restore protocol with the device credential
issuer DI where he obtains a new device credential cred′ that contains the device
identifier dbid from the backup token. The simplified protocol is given in Fig. 6.

Theorem 1 (Informal). The BPABC-system constructed above is unforgeable
for all types of devices, if the underlying PABC- and the CS-schemes are unforge-
able and Proveφ is extractable and sound. It is further private for devices with
secure memory without PINs, if the PABC-scheme is private, Proveφ is zero-
knowledge, and the CS scheme can be simulated given commitments to messages
or/and verification keys.

3.3 Intuition Underlying the Security Proofs

Due to space limitations, we only give the intuition of our security proofs.

Privacy. Our generic construction can be shown to be private, if one assumes
secure memory without strong PINs, cf. Sect. 2.2. Note that without assuming
secure memory, the adversary could in particular learn the user’s secret key
from which it could (deterministically) derive pseudonyms for arbitrary scopes,
and could thus easily link arbitrary presentations to the user; achieving privacy
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Fig. 6. Restore protocol

with insecure memory would therefore require to update usk upon re-issuance if
scope-exclusive pseudonyms are required.

To prove the above statement we essentially need to show that the commuting
signature part, the PABC scheme and the Proveφ prove system can be simulated.
As our privacy definitions extend those given by Camenisch et al. [CKL+14], it
can be shown that the parts related to the classic PABC system used in our
construction can be simulated using their simulator. Simulating the Proveφ sys-
tem that is used to bind revocation handles in PABC and CS commitments can
be done by the zero-knowledge property of the used proof system. Finally we
have to show that commuting signatures can be simulated. First note that in
all used commuting signatures, the messages and the signatures are given as
commitments. Moreover, the verification keys for those commuting signatures
are either the publicly known keys of issuers or the users vault public key given
also as commitment. Therefore, we can use the results from [Fuc11], that there
exists a simulator, that given commitments to messages and verification keys
can compute commitments to signatures and valid proofs of correctness.

Unforgeability. Our generic construction satisfies the unforgeability property for
all types of devices. This means that there exists no forgery among the issuance
and presentation tokens returned by the adversary in the unforgeability game.

First note that credentials in our generic construction are classic PABC sys-
tem credentials with an additional commuting signature under φ(rh)⊗vupk. From
the unforgeability property of the PABC system, it follows that all presentation
or issuance tokens returned by the adversary satisfy that all software credentials
are bound to the same user secret key, the pseudonym nym is sound for the
given scopeU , the revealed attribute values are correct, the equality relation E
for blinded attributes is satisfied, the committed device binding identifier are the
same in all presented credentials (this is also ensured by the E relation) except
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the ones that are given opening information to ε, and the device pseudonym
dnym is sound for the given scopeU . Moreover, from the binding property of the
CS commitments scheme and the soundness property of the proof system Proveφ

we have that the adversary cannot return presentation or issuance tokens that
present credentials bound to different vault public keys. The initial credential
and scope specific pseudonyms for static scopes ensure that the adversary can-
not create tokens for devices that are restored from a backup token twice and
restored or register without activation. Finally, the unforgeability of commuting
signatures and the soundness property of Proveφ ensure that the adversary can-
not create presentation tokens for software credentials with a device the device
credential of which was revoked.

3.4 Instantiation

Due to space restrictions, we omit a full instantiation of our generic construction
here. Similar to Camenisch et al. [CKL+14], it can be instantiated using Pedersen
commitments [Ped91,DF02], CL-signatures [CL02], a variant of the Nakanishi
et al. revocation scheme [NFHF09], and the pseudonym scheme used in the IBM
identity mixer [IBM10]. The new parts of the construction based on commuting
signatures can be instantiated using the scheme proposed by Fuchsbauer [Fuc11],
and the proof system Proveφ can be obtained using standard techniques.
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Abstract. Obtaining differential patterns over many rounds of a crypto-
graphic primitive often requires working on local differential trail analy-
sis. In the case of boomerang and rectangle attacks, merging two short
differential trails into one long differential pattern is required. It was pre-
viously shown by Murphy that caution should be exercised as there is
increased chance of running into contradictions in the middle rounds of
the primitive.

In this paper, we propose the use of a SAT-based constraint solver
URSA as aid in analysis of differential trails and find that previous rec-
tangle/boomerang attacks on XTEA, SHACAL-1 and SM3 primitives
are based on incompatible trails. Given the C specification of the cryp-
tographic primitive, verifying differential trail portions requires minimal
work on the side of the cryptanalyst.

1 Introduction

Differential cryptanalysis [6,53] is a technique used to break cryptographic prim-
itives such as block ciphers or hash functions. It rests on the existence of high-
probability differential trails. A differential trail for an iterative cryptographic
primitive can be seen as a sequence of constraints modeling the relations between
inner states of primitive executions [25,29]. Differential trails are built either
manually [52,53,55], or, with the help of automated tools [9,30,38]. To esti-
mate the overall probability of a given differential trail, certain independence
assumptions between the constraints need to be introduced.

The validity of such independence assumptions may not always be justified
as the constraints may interact and such interactions may severely influence
the overall probability calculation. This is especially the case when differential
analysis is used to model quartets of primitive executions as opposed to pairs.
For example, in the context of boomerang or rectangle attacks, two short high-
probability differential trails are connected in one differential pattern over many
rounds of the primitive [4,49].

In 2011, Murphy provided examples of boomerang differential trails that
impose dependent constraints on the AES and DES S-boxes [42]. When the
dependencies are taken into account, the probability of the overall probabilistic
pattern drops to 0. Subsequently, several previously used boomerang trails for
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 331–349, 2015.
DOI: 10.1007/978-3-319-28166-7 16
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primitives based on the Addition, Rotation and Xor (ARX) [46] operations were
found to be incompatible, i.e., have the probability equal to 0. For example, this
was the case for boomerang differential attacks against BLAKE [8] and Skein
[10], which invalidated the corresponding attacks [30]. The discussion related to
Murphy’s initial doubts [42] was continued by Kim et al. in [26]. It was argued
that the only reliable way to estimate the boomerang/rectangle attack probabil-
ity is to attempt to perform the attack itself. Since this is often impossible due
to the high computational complexity requirements, estimating the probabilities
or their lower bounds via independence assumptions often remains the only way
to assess the attack success rate (see, e.g., [3]).

In general, the compatibility or incompatibility of a set of differential con-
straints can be established as follows. Given a set of constraints, one can simply
attempt to find particular inputs for the cryptographic primitive that will con-
form to such a constraint set in the given round/step span, using techniques
such as such as message modification [53]. The main drawback of this approach
is that it requires custom implementations and potentially tedious work, e.g.,
when attempting to prove that some particular boomerang trails are incompati-
ble. Another way to establish (in)compatibility is to apply differential constraint
reasoning, where one abstracts away from particular inner state bit-values and
deduces consequences from the current differential knowledge base. In case of
ARX primitives, one-bit and also multi-bit constraints have been proposed for
such reasoning [9,30,36]. In 2012, a tool for reasoning on arbitrary ARX prim-
itives using multi-bit constraints has been proposed by Leurent [30]. Although
very powerful, ARXtools also has some limits when it comes to constraint com-
patibility verification. Namely, the primitive specification may be somewhat cum-
bersome and also the analysis of primitives with non-ARX components is not
possible.

In 2012, a SAT-based constraint solver URSA (Uniform Reduction to SAT)
was proposed [20]. It simplifies using SAT solvers in tasks such as cryptanalysis
problems. Namely, instead of encoding a problem directly in terms of proposi-
tional formulae, the user has to specify the problem in a custom, C-like speci-
fication language. In many situations, this means that the C implementation of
cryptographic algorithms can be directly used by the URSA system.

Previous work in logical cryptanalysis includes direct translation of crypto-
primtives into SAT formulas. This was done for, e.g., DES, MD4/5, Trivium,
AES, Keccak and GLUON-64. [13,21,23,35,40,44]. One of the tools used in
this area is CryptoMiniSat [48]. More powerful theories (than predicate logic)
and solvers were also tested in cryptanalysis, including a constraint solver STP
[14]. A non-direct application of SAT/SMT in cryptanalysis includes establishing
probability upper bounds for differential trails in the case of Salsa20 stream
cipher and NORX scheme for authenticated encryption scheme [22,41]. Closely
related to our work are [39,45], while [45] was developed parallel to our work.

Our Contribution: We show that URSA system in conjunction with SAT
solvers can be used for detecting contradictions in differential and rectangle
differential trails. As the tool allows almost direct translation from the crypto
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primitive C-code to the URSA language, verifying trail portions requires lit-
tle setup time. We analyze best previous rectangle attacks on the XTEA and
SHACAL-1 block ciphers [12,31,50] and locate contradictions in these trails. In
addition, we detect contradictions in previous boomerang distinguishers [3] for
the SM3 hash function. This shows that the probability estimations for these
attacks are invalid and that it remains unknown whether the attacks will work
or not. Next, we provide examples of unaligned rectangle trails in the context
of XTEA block cipher (end of Sect. 3.1). The existence of such trails has been
mentioned previously in [4] and it is interesting to note an actual example of
such trails. Finally, we point out a type of contradiction that occurs in primitives
with linear key/message expansions which, to the best of our knowledge, was not
discussed in previous literature.

This paper is organized as follows. In Sect. 2 we review the rectangle attack,
reasoning on bit-constraints, the URSA system, and also present the notation
used throughout the paper. The incompatibilities found in the rectangle trails for
XTEA and SHACAL-1 are discussed in Sects. 3.1 and 3.2. Finally, the analysis
of boomerang trails used in the SM3 distinguisher is given in Sect. 3.3. The
conclusion is provided in Sect. 4.

2 Background and Notation

In this section, a brief description of the rectangle attacks on block ciphers and
boomerang distinguishers on hash functions is provided, followed by an intro-
duction to 1-bit conditions and reasoning about differential trails. Finally, an
overview of the URSA system is provided along with the notation used through-
out the paper.

2.1 The Rectangle Attack

In 1999, Wagner introduced a chosen-ciphertext cryptanalytic technique against
block ciphers and named it the boomerang attack [49]. The technique exploits
non-random behavior of carefully crafted encryption quartets. It works well
against ciphers for which there exist short differentials with very high proba-
bility. The amplified boomerang attack [24], also known as the rectangle attack
[4], is a chosen-plaintext variant of the boomerang attack.

Below, a rectangle attack against a cryptographic function such as a block
cipher is summarized. Denote the generic permutation in question by E and it’s
input by x. The quartet structure that the adversary is interested in is shown in
Fig. 1. The function is decomposed as E = E1 ◦E0 and two differential trails are
assumed to exist: δ

E0−−→ Δ and γ
E1−−→ Γ with probabilities p and q, respectively.

Here, δ and γ are the input differences for E0 and E1, respectively and Δ and
Γ are the output differences. If the differentials propagate as specified in Fig. 1,
the quartet is called a right quartet.

The main idea in the rectangle attack is to compute pairs of the form
(E(xA), E(xA⊕δ)) for many randomly chosen xA inputs and to count how many
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Fig. 1. The rectangle attack

pairs of such of pairs will constitute right quartets. The probabilistic analysis of
such an event is as follows. Out of N encrypted pairs with input difference δ,
about p·N will conform to the δ

E0−−→ Δ trail. Now, out of p·N such pairs, one can
have about (p·N)2

2 candidate quartets. The probability that E0(xA)⊕E0(xC) = γ
within a randomly chosen candidate quartet is 2−n, where n is the E0 out-
put bit-length. This event always coincides with E0(xB) ⊕ E0(xD) = γ since
E0(xB)⊕E0(xD) = E0(xA)⊕δ⊕E0(xC)⊕δ = δ⊕δ⊕γ = γ and thus the probabil-
ity of both E0(xA)⊕E0(xC) = E0(xB)⊕E0(xD) = γ is in fact 2−n. As a result,
the expect number of quartets satisfying E(xA)⊕E(xC) = E(xA)⊕E(xC) = Γ

is (p·N)2

2 · 2−n · q2 = N2 · 2−n−1 · p2 · q2.
The expected number of right quartets is augmented further by allowing the

two differential trails to vary, i.e., by considering δ
E0−−→ Δ′ and γ′ E1−−→ Γ for all

possible valid pair choices for (Δ′, γ′), that is

N2 · 2−n−1 ·
∑

(Δ′,γ′)

p2δ→Δ′ · q2γ′→Γ (1)

On the other hand, for a random permutation, the expected number of right
quartets is N2

2 · 2−2n = N2 · 2−2n−1. Comparing this estimate to (1) yields
that if

∑
(Δ′,γ′) p2δ→Δ′ · q2γ′→Γ >> 2−n, E can be distinguished from a random

permutation.
In the literature [4,32–34], the estimate (1) is further simplified as

N2 · 2−n−1 ·
∑

Δ′
p2δ→Δ′ ·

∑

γ′
q2γ′→Γ

which is a sound estimate if one assumes the pairwise independence of all E0

and E1 trails.
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As for the boomerang distinguisher for hash functions, the goal is to find a
quartet (x0, x1, x2, x3) for function f such that

x0 ⊕ x1 ⊕ x2 ⊕ x3 = 0
f(x0) ⊕ f(x1) ⊕ f(x2) ⊕ f(x3) = 0

(2)

which is called a zero-sum or equivalently, a second-order collision. This is done
by a technique similar to the above described distinguisher, taking into account
the message freedom that is available in the context of compression functions.
For a more detailed introduction to boomerang distinguishers on hash functions,
the reader is referred to [7].

2.2 Reasoning on 1-Bit Constraints

Searching for differential trails is facilitated by a constraints language intro-
duced in [9]. Instead of working with bit-values, reasoning is performed on
bit-constraints. The symbols used for expressing bit-constraints are provided in
Table 1. For example, when we write -x-u, we mean a set of 4-bit pairs

-x-u = {T, T ′ ∈ F 4
2 |T3 = T ′

3, T2 �= T ′
2, T1 = T ′

1, T0 = 0, T ′
0 = 1}

where Ti denotes i-th bit in word T .
Next, small examples of (a) a differential trail (b) a boomerang trail and

(c) a boomerang trail incompatibility are provided. As for the differential trail,
consider the following constraint specification over one 4-bit modular addition

---- + ---x = ---x (3)

The trail models a pair of additions xA+yA = zA and xB +yB = zB and specifies
that xA = xB and also that yA and yB, as well as zA and zB are different only
on the least significant bit. It can be observed that the necessary condition for
the trail to realize is lsb(xA) = lsb(xB) = 0.

As for the boomerang trail, in that context, one works with quartets instead
of pairs. Consider a quartet of modular additions xω + yω = zω, for ω ∈
{A,B,C,D}. To specify a boomerang trail, two differential trails are required,
labeled as the top trail and the bottom trail. This terminology comes from the
fact that the two trails are specified on the bottom and the top round portions

Table 1. Symbols used to express 1-bit conditions [9]
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of the cryptographic primitive, respectively. For the purpose of this example, let
(3) be the bottom trail and let the top trail be specified by

---- + ---x = --xx (4)

The bottom trail is imposed on xω + yω = zω for ω ∈ {A,B} and ω ∈ {C,D},
whereas the top trail is imposed on ω ∈ {A,C} and ω ∈ {B,D}. As shown below,
taking the four sets of constraints on xω + yω = zω for ω ∈ {A,B,C,D} yields
a contradiction, i.e., the boomerang trail incompatibility. The incompatibility
of (3) and (4) follows from the fact that the necessary condition to have (4)
is that the rightmost bit of x is 1, i.e., that lsb(xA) = lsb(xC) = 1 (and also
lsb(xB) = lsb(xD) = 1). However, as shown above, the necessary condition for
(3) is that lsb(xA) = lsb(xB) = 0 and thus no quartet of additions satisfies both
trails.

2.3 The URSA System

The system was proposed in 2012 [20] and represents a high-level front-end to
efficient SAT solvers. It translates constraint sets specified in a C-like language
into SAT formulas, after which a SAT solver of user’s preference is executed on
the derived equations. The following example of URSA usage was provided in
[20]. Let xn+1 = (1664525xn + 1013904223) mod 232 for n ≥ 0. To find x0 given
x100 = 3998113695, URSA is executed on the following code

nx=nseed;
for (ni=1; ni<=100; ni++)

nx = nx*1664525+1013904223;
bc = (nx == 3998113695);
assert(bc);

which produces logical equations that can be solved by a SAT solver of user’s
preference.

2.4 Notation

The following notation is used throughout the paper:
xb: The bth bit of a word x. For example x0 is the least significant bit of x.
A,B,C,D: four branches of primitive executions, following Fig. 1.
Δri

j [A,B]: bit-constraint (a symbol from Table 1) at bit-position i in word
rj constraining branches A and B.

⊕, +: bit-wise XOR and addition mod 232, respectively
<<, >>: left and right shift, defined on 32-bit values.
<<<, >>>: left and right rotation, defined on 32-bit values.
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3 Detecting Rectangle/Boomerang Trail Contradictions

In this section, we detect contradictions in the trails used in attacks on XTEA
[31], SHACAL-1 [12,50] block ciphers and the SM3 [3] hash function. The first
two attacks are rectangle related-key key recovery attacks and the latter attack
is a distinguishing attack against a reduced-round SM3 compression function.

The general approach is to represent the primitive and the corresponding
step constraints in the URSA language, run a SAT solver over the sequence of
steps where a contradiction is suspected, i.e., typically around the middle steps
where the rectangle trail switch [4,24,49] occurs. If the SAT solver reports no
solutions, the next step is to locate where the contradiction is located, i.e., to
find the minimal or close to minimal constraint set that yields a contradiction.
This was done using a manual trial-and-error approach, i.e., by removing con-
straints as long as the system does not have solutions. Finally, the proof for the
contradiction is built based on the reduced constraint set.

3.1 On the Incompatibility of XTEA Trails [31]

The key-recovery attack on 36-reduced-round XTEA [31] is a related-key attack
since it requires differences in the key bits (as well as in plaintexts). It works with
quartets of encryptions and falls into the category of rectangle attacks. Below, a
brief specification of the cipher is provided. For a more detailed description, the
reader is referred to [31,54].

XTEA takes as input a 64-bit plaintext and a 128-bit key. The encryption
and decryption functions consist of 64 Feistel-network rounds. Two equivalent
representations of one encryption round are schematically presented in Fig. 2,
where on the right-hand side a shift-register based representation is provided.
Feistel networks have been previously studied in the form of shift registers in
the context of the DES block cipher [15], where the cipher was presented as a
Non-Linear Feedback Shift Register with input. We use the shift-register based
representations since such representations are elegant when it comes to working
with differential trails [9,38].

Li Ri

Li+1 Ri+1

+ +

Wi << 4

>> 5

...

...

+ +

<< 4

>> 5

Wi

ri−1

ri

ri+1

Fig. 2. Two equivalent representations of the XTEA round function
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The 128-bit key is represented by four 32-bit words as K = (K0,K1,K2,K3)
and then, for i = 1, . . . 64 expanded to 64 32-bit words, as specified by

Wi =

{
� i
2	 × δ + K(� i

2 �×δ)&3 if i is odd
� i
2	 × δ + K(� i

2 �×δ>>11)&3 if i is even (5)

Here, δ = �(
√

5−1)×231)	 = 0x9e3779b9. The subscripts to K in the expression
above simply define an expansion of K0, . . . K3 words over the XTEA rounds.
The expression � i

2	 × δ specifies round constants.
The round function is specified next (see right-hand picture in Fig. 2). Denote

the 64-bit plaintext in the form of two 32-bit words (A0, A1). Then, the encryp-
tion is done by calculating

ri+1 = ri−1 + (L(ri) + ri) ⊕ Wi (6)

for i = 1, . . . 64, where L(x) = (x << 4) ⊕ (x >> 5). The ciphertext is taken to be
(r63, r64).

In [31], a related-key rectangle attack aiming to break 36 rounds of XTEA
(rounds 16–51) and not requiring any weak-key assumptions is provided. The
starting point for each rectangle attack is a family of top and bottom differential
trails [4]. In [31], a family of trails is provided for E0 (rounds 16–37) and one
constant trail with probability 1 is provided for the bottom family (rounds 37–
45). Then, each of the E0 trails are connected to the fixed E1 trail.

We used the URSA system to verify that the bottom trail cannot be con-
nected to any of the trails in the top trail family. A particular high-probability
representative pair of top-bottom trails (Table 3 in [31]) is shown in Table 2. The
step numbers are given in the first and the last column, along with the active
message words. Only the steps around the middle of the primitive are shown.
Steps 35–37, where the contradiction can be localized, are marked in gray.

The bit-constraints provided by the top and the bottom trail in Table 2 are
not fully propagated. Based only on the constraints given in the bottom trail
in steps 36 and 37 and (6) for i = 36, one can conclude that Δri

35[A,C] =
Δri

35[B,D] =‘-’ for i = 0, . . . , 25 and Δr2635[A,C] = Δr2635[B,D] =‘x’. Taking

Table 2. One of the XTEA rectangle trails [31]



Analysis of Boomerang Differential Trails 339

Table 3. A detailed view of (contradictory) steps 35–37

into account these propagations, a detailed view of the relevant trail portion [31]
is provided in Table 3.

In the proof below, let Ci
ω denote a carry bit at position 0 ≤ i ≤ 31 on

branch ω ∈ {A,B,C,D} in r35 +(r36 +L(r36))⊕W36. We recall that in a 32-bit
modular addition z = x + y, for 0 ≤ i ≤ 30

zi+1 = xi+1 ⊕ yi+1 ⊕ ci, where ci = maj(xi, yi, ci−1) (7)

while c−1 = 0.

Observation 1. Constraints specified in Table 3 are contradictory.

Proof: The argument about the contradiction is split in two cases:

(i) Let the bit s26(r36) for both Δ[A,B] and Δ[C,D] be inactive. In Table 3,
this bit constraint is shown in the Δs(r36) row (bit 26 from right-to-left in
the Δ[A,B] = Δ[C,D] column). This part of the proof replaces the ‘?’ at
this position by a ‘-’. As a consequence, Δs27(r36) =‘-’ in the Δ[A,B] =
Δ[C,D] column of Table 3, since r36, L(r36) and W36 are inactive past bit-
position 26.
It can be observed that C25

A = C25
B = C25

C = C25
D and this carry value

will be denoted by C. Namely, C25
A = C25

C and C25
B = C25

D since Δsi(r36) =
Δri

35 =‘-’ for 0 ≤ i ≤ 25 in the Δ[A,C] = Δ[B,D] column. Furthermore, in
the Δ[A,B] = Δ[C,D] column, Δs26(r36) =‘-’ due to the assumption and
Δr2635 = Δr2637 =‘x’. Thus, there is no carry disturbance from bit-position
i ≤ 25 and C25

A = C25
B .

We show that both in the case C = 0 and the case C = 1, a contradiction is
reached. According to the assumption of this part of the proof, the bit-value
s26(r36) is equal to some fixed b ∈ {0, 1} in both A and B branches. If C = 0,
then b = 0 is a necessary condition, since if b = 1, the Δr2737 constraint would
be ‘x’ and this is not the case. However, since the Δs26(r36) is specified
as ‘x’ for Δ[A,C] and Δ[B,D], the necessary condition b = 0 cannot be
fulfilled in Δ[C,D] and therefore this path cannot behave according to the
Δ[A,B] = Δ[C,D] column of Table 3. In the case C = 1, a necessary condi-
tion b = 1 is derived and the contradiction argument proceeds analogously.

(ii) Let the negation of the assumption used in (i) hold. In other words, let
s26(r36) be active in Δ[A,B] or, let the same bit be active in Δ[C,D]. This
disjunction implies that both bits are active simultaneously, since s26(r36)
is active in both Δ[A,C] and Δ[B,D]. Next, we have that s25(r36) is active
in both Δ[A,B] and Δ[C,D], since otherwise there would not be a carry
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difference coming from bit position 25 and causing the two active bits to
sum to an active bit in r2637. Finally, it follows that bits r2737 in Δ[A,B] and
Δ[C,D] are also active. This is true since C26

A �= C26
B and C26

C �= C26
D . The

first of the two equalities is true since both input bits and the output bit
at position 26 are active when r37 is calculated. Independently, the second
inequality is valid for the same reason on Δ[C,D].
The ‘x’ constraints on bit positions 25 and 26 in Δs(r36) have the same
sign (both ‘u’ or both ‘n’), since they are caused by the carry propagation
from bit position i ≤ 24 in the r36 and L(r36) summation. This is true
both in Δ[A,B] and Δ[C,D]. On the other hand, this cannot hold, since the
constraint at bit position 26 in Δs(r36) at [A,C] corrupts this sign and thus
we have a contradiction. �

As already mentioned, we verified that the other top-bottom trail variants [31]
are incompatible. It should be noted that all of the trails are induced by a dif-
ference at the most significant bit (MSB) positions in the key words. Previously,
it was speculated [47] that if the top and the bottom trails start from the same
bit position, contradictions are more likely to occur as the trails are likely to
involve the same bit-positions. Our analysis confirms this intuition.

In this regard, one can also ask whether there exist any pair of compatible
trails such that both top and the bottom trail are due to MSB disturbances
in the round span discussed in [31] (31–37). Using URSA, this question can be
answered by simply removing all of the trail constraints from the constraint
representation and leave only those that enforce the top and the bottom trail
expanded key disturbances. It should be noted that the task given to the SAT
solver in this case is more difficult, since the solver has to effectively search
for valid compatible differential trails. Increasing the number of rounds in the
middle may result in impractical SAT solver execution times.

The following discussion is relevant at this point. To provide a lower bound
for the probability of the distinguishing property used in the attack, most of
the trails used in the previous literature on rectangle or boomerang attacks are
aligned in the sense that the trails enforced on the opposite faces of the quartet
structure share the same active bit positions. This allows having only two trails
to model all four faces in the quartet of primitive execution. However, previously,
unaligned trails have also been attributed to add to the overall attack probability
[4]. In such a case, the primitive follows four different trails and results in the
desired output difference.

We verified whether there exist both aligned and unaligned solutions to the
round span discussed in [31]. The SAT solving phase for an aligned solution
above took less than 30 min running as one process on 8-core 2.67 Ghz Intel i7
CPU before returning a negative answer. In other words, there exists no trails
starting from the MSB positions in the 31–37 round span. However, interestingly
enough, if the alignment constraints are removed, the solution does exist. The
solution returned by the SAT solver follows four different (unaligned) trails and,
as such, is different from the trails studied in the majority of previous literature
(for rectangle attacks on block ciphers, see, e.g., [11,32,50] and as for boomerang
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distinguishers on hash functions see, e.g., [7,8]). As we are not aware of previous
examples of unaligned trails in the literature, the extracted trails are presented in
Table 7 in the Appendix, along with the corresponding plaintext and key values
in Table 8.

The analysis above shows that contradictions that occur because both top
and bottom trails start from the most significant bit may be resolved if one
allows unaligned trails. This is relevant in the context of building compression
function distinguishers, since having boomerang trails induced by MSB distur-
bances reduces the complexity of the final phase of the second order collision
search [7,47].

3.2 On the Incompatibility of SHACAL-1 Trails [12,50]

In 2001, Handschuh and Naccache [16,17] proposed the SHACAL-1 block
cipher and submitted it to the NESSIE (New European Schemes for Signa-
tures, Integrity and Encryption) project [1]. SHACAL-1 is in fact the internal
block cipher used within the SHA-1 hash function [43]. When applied in the
Davies-Meyer mode, SHACAL-1 represents the SHA-1 compression function.
Reduced-step SHACAL-1 was scrutinized both in the single-key and the related-
key cryptanalytic models [5,18,27,33]. As for the full-round SHACAL-1, it was
shown to be susceptible to a rectangle related-key attack with complexity better
than exhaustive search in [12] in 2006.

However, Wang et al. [50] found multiple problems in previous attacks on
SHACAL-1. In particular, it was observed that the previous attacks [5,18,27,33]
do not work due to flaws in the provided differential trails. The trails turn out
to be contradictory when regarded as single trails, i.e., independently of the
quartet/rectangle context. Problems in these attacks are mostly related to the
sign of active bits. In case only XOR differences are considered, these types of
problems remain unnoticed [50].

Apart from finding flaws in previous attacks, [50] finds that the related-key
rectangle attack [12] remains valid although it works against only a subset of
the key space (2496 out of 2512 keys). In addition, [50] proposed a new related-
key rectangle attack that works for 2504 out of 2512 keys. To the best of our
knowledge, these are the best attacks against SHACAL-1.

In this section, we show that the two attacks above are in fact also flawed.
Although the trails are non-contradictory when regarded independently, once
connected as specified by the rectangle setting, incompatible constraints are
placed on the inner state bits. Moreover, below, we point out a particular type of
contradiction that is likely to occur in rectangle attacks on ciphers with linear key
schedule with good diffusion such as SHACAL-1. To the best of our knowledge,
this type of rectangle/boomerang attack contradiction has not been discussed in
the previous literature.

Below, a specification of the SHACAL-1 encryption function based on recur-
rence relations is provided. To encrypt, the 160-bit plaintext and the 512-bit
key are copied to (r0, r−1, r−2, r−3, r−4) and (W0,W1, . . . W15), respectively.
The block cipher key is expanded according to the SHA-1 message expansion
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Fig. 3. Two equivalent representations of the SHA-1 state update step

Wi = (Wi−3 ⊕ Wi−8 ⊕ Wi−14 ⊕ Wi−16) <<< 1

for i = 16, . . . 79. Next, 80 iterations of the function schematically represented
in Fig. 3 are applied. Explicitly, for i = 0, . . . 79, we have

ri+1 = ri−4 <<< ρi
30 + Ki + fi(ri−1, ri−2 <<< ρi

30, ri−3 <<< ρi
30) + Wi + ri <<< ρi

5

where Ki are the round constants, ρi
30 = 30 and ρi

5 = 5 for 4 ≤ i ≤ 79 and for
0 ≤ i ≤ 3, the rotational constants are properly adjusted. The bit-wise logical
functions are defined as:

f(x, y, z) =

⎧

⎨

⎩

IF (x, y, z) = (x ∧ y) ∨ (¬x ∧ z) 0 ≤ i ≤ 19
XOR(x, y, z) = x ⊕ y ⊕ z 20 ≤ i ≤ 39 or 60 ≤ i ≤ 79
MAJ(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 40 ≤ i ≤ 59

The SHACAL-1 ciphertext is defined to be (r80, r79, r78, r77, r76).
In Table 4, contradictory portions of the SHACAL-1 trails are given

(extracted from Tables 7 and 8 in [50]).

Table 4. Incompatible SHACAL-1 trails [50]

Observation 2. Constraints specified in Table 4 are contradictory.

Proof: As shown by gray bits in the third column of Table 4, only one input bit
to f33 for [A,C] is active. Since f33 is in fact the XOR function, the output f33
bit at this position is active as well. The ΔW 1

33[A,C] =‘x’ constraint cancels
out this active bit since no bits are active in Δr34[A,C]. This is possible only
if the corresponding f33 output bit and ΔW 1

33[A,C] have opposite signs. The
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same should hold for [B,D] and this yields a contradiction since ΔW 1
33[A,B] =

ΔW 1
33[C,D] =‘x’. �
As for the rectangle trails used in [12], we analyze the constraints in steps

57–63 in detail and show that these steps contain a contradiction. It should be
noted that the top trail and the bottom trail for this attack cover steps 0–34 and
34–69, respectively. The contradictions are likely to occur in the region where
both top and the bottom trails are specified, i.e., where the bottom and the
top trails meet [30,42,47]. However, in this case, due to the message expansion
linearity, the contradiction occurs in the late steps of the bottom trail as well.

In Table 5, trails for steps 57–63 are presented (Tables 2 and 3 in [12]). As
can be observed, the Δ[A,B] = Δ[C,D] column contains only ‘?’ constraints
since the top trail in late steps 57–63 is unspecified, as expected in the rec-
tangle attack setting. However, since the message expansion in SHACAL-1 is
linear, the ΔW [A,B] = ΔW [C,D] is fully specified by the message expan-
sion. The observation below shows that the linearly expanded constraints in
the ΔW [A,B] = ΔW [C,D] column do not allow the Δ[A,C] = Δ[B,D] column
to be satisfied.

Table 5. Incompatible SHACAL-1 trails [12]

Observation 3. Constraints specified in Table 5 are contradictory.

Proof: According to Table 5, ΔW 2
61[A,C] =‘x’. The sign of this constraint

is equal to that of Δr262[A,C] =‘x’, since all other input bits in the step 62
modular addition are inactive. The sign of Δr262 [A,C] =‘x’ is opposite to the
sign of ΔW 7

62[A,C] since these two constraints cancel out in step 63. Therefore,
the sign of ΔW 7

62[A,C] is opposite to the sign of ΔW 2
61[A,C]. The same holds for

the [B,D] face of the quartet. This yields a contradiction since ΔW 2
61[A,B] =

W 2
61[C,D] =‘x’ and ΔW 7

62[A,B] = W 7
62[C,D] =‘-’. �

It follows that constraints in steps even outside the switch region should be
carefully verified for primitives with linear message expansions, such as SHA-1,
SHACAL-1 and SM3.

3.3 On the Incompatibility of SM3 Trails [2,3]

The SM3 hash function [19] is a cryptographic hashing standard in China
adopted for use within the Trusted Computing framework in 2007 by the Chinese
National Cryptographic Administration Bureau. It was designed by Xiaoyun
Wang et al. and its design resembles the design of SHA-2 but includes addi-
tional fortifying features such as feeding two message-derived words into each
step, as opposed to only one in the case of SHA-2.
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SM3 is a Merkle-Damg̊ard construction that processes 512-bit input message
blocks and returns a 256-bit hash value. Since the attacks that we analyze below
are attacks on the compression function, the specification of compression function
is provided below. For more details, the reader is referred to [19].

Let the P0 and P1 functions, both operating on 32-bit words, be defined by:

P0(X) = X ⊕ (X <<< 9) ⊕ (X <<< 17)
P1(X) = X ⊕ (X <<< 15) ⊕ (X <<< 23).

The message block to be hashed is first represented as 16 32-bit words
M0, . . . , M15. Then, it is expanded to 68 32-bit words by letting Wi = Mi for
0 ≤ i < 16 and

Wi = P1(Wj−16 ⊕ Wj−9 ⊕ (Wj−3 <<< 15)) ⊕ (Wj−13 <<< 7) ⊕ Wj−6 (8)

for 16 ≤ i < 68. We provide the specification of the step function using recurrence
relations, similarly to the one used in [37]. The pre-fixed IV [19] is copied to
(l0, l−1, l−2, l−3, r0, r−1, r−2, r−3) and the chaining values are computed over 64
steps as follows:

li+1 = FFi(li, li−1, lt−2 <<< ρ9) + li−3 <<< ρ9 + Wi ⊕ Wi+4 + SS1i ⊕ (li <<< 12)
ri+1 = P0(GGi(ri, ri−1, ri−2 <<< ρ19) + ri−3 <<< ρ19 + Wi + SS1i)

where SS1i = (li <<< 12 + ri + Ti) <<< 7. The functions FFi and GGi are
defined by

FFi(X,Y,Z) =
{

X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y ) ∨ (Y ∧ Z) ∨ (X ∧ Z) 16 ≤ i < 64

GGi(X,Y,Z) =
{

X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15
(X ∧ Y ) ∨ (¬X ∧ Z) 16 ≤ i < 64

The round constants are Ti = 0x79cc4519 <<< i for i ∈ {0, . . . , 15} and Ti =
0x7a879d8a <<< i, for i ∈ {16, . . . , 63}. As for the rotation constants, ρi

9 = 9 and
ρi
19 = 19 for 2 ≤ i ≤ 63 and for 0 ≤ i < 2, the rotational constants are properly

adjusted.
Previous analysis of the reduced-step SM3 hash function includes preimage

attacks [51,56], collision attacks [37] and boomerang distinguishing attacks [2,3,
28]. In [2], an example of a boomerang quartet is provided for the 35-step reduced
SM3 and attacks against 36, 37 and 38 step-reduced SM3 with complexities 273.4,
294 and 2192 are provided.

Below, we show that the 37 and 38-step distinguishers [3] are based on incom-
patible differentials. In Table 6, the incompatible portion of the trails is presented
(based on Tables 6 and 7 in [3]). The fact that the message expansion in SM3
is linear allows extracting all the message bit-constraints. In the top part of the
table, the message constraints both for W ′

i = Wi⊕Wi+4 and Wi for i = 15, . . . 19
are provided and in the bottom part the chaining values constraints are given.
The bits relevant for the analysis are shaded in gray.
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Fig. 4. The SM3 state update step

Observation 4. Constraints specified in Table 6 are contradictory.

Proof: Recall that

l19 = FF18(l18, l17, l16 <<< 9) + l15 <<< 9 + W ′
18 + SS118 ⊕ (l18 <<< 12) (9)

where SS118 = (l18 <<< 12 + r18 + T18) <<< 7. Since according to Table 6,
ΔW ′

18[A,C], Δl18[A,C], Δr18[A,C] and Δl15[A,C] contain no active bits and the
same is true for Δl19[A,C], we have that ΔFF18(l18, l17, l16 <<< 9)[A,C] cannot
have any active bits either. The same statement holds for ΔFF18(l18, l17, l16 <<
< 9)[B,D].

Consider the FF18 input bits for bit-position 10 in the modular addition (9).
The FF18 input bit-constraints participating at this position are shaded in gray
in Table 6. As can be observed, one of the input bits is active and, as established
above, the function output bit is inactive. Since FF18 is the majority logical
function MAJ, it follows that l1018 = l116 in both branches A and C. Again, the
same statement holds for branches B and D. However, this is impossible since
Δl1018[A,B] = l1018[C,D] =‘x’ and this is the only active input bit to FF18 at
branches [A,B] and [C,D]. This shows that the constraints are incompatible. �

It is interesting to note that adding more freedom to the constraint set by
removing the Δl15[A,C] and Δl15[B,D] constraints does not remove the contra-
diction.

Table 6. Incompatible SM3 boomerang trails [3]
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4 Conclusion

The analysis provided in this paper shows that constructing rectangle or
boomerang attacks should always be accompanied by formal verification of trails,
since otherwise, there is little assurance that the trails are in fact compatible.
Formal verification of trails should be performed whenever it is not possible to
execute the attack in practice. An easy to use approach that helps trail verifica-
tion was proposed.

Based on our analysis, the previous rectangle and boomerang attacks reach-
ing the highest number of rounds against XTEA, SHACAL-1 and SM3 are shown
to be based on incompatible differential trails. In addition, it was noted that
contradictions in boomerang trails may appear not only in the middle of the
primitive, but also in the bottom and the top rounds if the primitive has linear
message expansion (as illustrated by one of the contradictions for SHACAL-
1). Finally, in the context of the XTEA block cipher, we provided examples
of unaligned boomerang trails that contribute to the overall rectangle attack
probability and are relevant in the area of boomerang distinguishers on hash
functions.

A Appendix

See Tables 7 and 8.

Table 7. XTEA boomerang trails with unaligned constraints (marked in gray)

Table 8. XTEA unaligned quartet example
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Abstract. Time–memory trade-off (TMTO) cryptanalysis is a powerful
technique for practically breaking a variety of security systems in reality.
There are mainly four general TMTO cryptanalysis methods, namely
Hellman table cryptanalysis, rainbow table cryptanalysis, thin rainbow
table cryptanalysis and thick rainbow table cryptanalysis, plus a few
supplementary techniques that can be combined with a general method
to produce possibly distinct TMTOs, like distinguished points. In this
paper, we present a unified TMTO cryptanalysis, which we call unified
rainbow table cryptanalysis, basing it on a unified rainbow table, then
we describe its general combination with distinguished points, and finally
we apply unified rainbow table cryptanalysis to the A5/1 stream cipher
being used in the Global System for Mobile Communications (GSM). On
a general-purpose graphics processing unit (GPGPU) computer with 3
NVIDIA GeForce GTX690 cards that cost about 15,000 United States
dollars in total, we made a unified rainbow table of 984GB in about
55 days, and implemented a unified rainbow table attack that had an
online attack time of 9 s with a success probability of 34 % (or 56 %)
when using 4 (respectively, 8) known keystreams (of 114 bits long each).
If two such tables of 984GB were generated, the attack would have an
online attack time of 9 s with a success probability of 81 % when using 8
known keystreams. The practical results show again that nowadays A5/1
is rather insecure in reality and GSM should no longer use it.

Keywords: Time–memory trade-off · Hellman table cryptanalysis ·
Rainbow table cryptanalysis · Stream cipher · A5/1 · GPGPU

1 Introduction

Generally, there are two elementary cryptanalysis techniques that can be applica-
ble to any cryptosystem from a theoretical perspective, namely exhaustive key
search and the dictionary attack, which require a negligible number of data but
represent two extreme cases in terms of time and memory complexities: exhaus-
tive key search requires a negligible memory, but has a time complexity of the
c© Springer International Publishing Switzerland 2015
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same order as the key size of the concerned cryptosystem, while the dictionary
attack has a negligible time complexity, but requires a memory of the same order
as the key size of the concerned cryptosystem. As the two elementary cryptanaly-
sis techniques have a time or memory complexity of the same order as the key
size of the concerned cryptosystem, it is usually impossible to apply them in
reality to break a real-world cryptosystem during its lifetime, since the key size
of a cryptosystem is usually set to be larger than that required for the designed
lifetime of the cryptosystem.

In 1980, Hellman [24] introduced a cryptanalytic time–memory trade-off
(TMTO), known as Hellman table cryptanalysis; it requires a memory less
than that for the dictionary attack to store some precomputation tables, called
Hellman tables, and has an online attack time smaller than that for exhaustive
key search. If the required memory is small enough to be realistic, Hellman table
cryptanalysis may allow an attacker to break a cryptosystem within a reasonable
time. In 2003, Oechslin [31] described a refinement of Hellman table cryptanaly-
sis, called rainbow table cryptanalysis, which is based on a rainbow table that
has a different structure with a Hellman table; in a straightforward way, rain-
bow table cryptanalysis can be twice as fast as Hellman table cryptanalysis under
the same precomputation complexity. By combining rainbow table cryptanaly-
sis with Hellman table cryptanalysis, in 2006 Barkan, Biham and Shamir [10]
gave two variants of rainbow table cryptanalysis, called thin and thick rainbow
table cryptanalyses, that are based on thin and thick rainbow tables respectively.
Except the four general TMTO cryptanalysis methods, there are several compli-
cated variants [17,21] with merely theoretical interest, plus a few supplementary
techniques that aim to improve a general TMTO method from certain aspect(s)
but usually at the sacrifice of other aspects more or less, for example, distin-
guished points [18] and checkpoints [6]. A general TMTO method can be used
alone, however, a supplementary technique has to be used together with a general
TMTO method. When applied to particular areas, TMTO has been extended to
time–memory–data trade-off (TMDTO) [14], time–memory–processor trade-off
[3], time–memory–key trade-off [11,13], etc.

The A5/1 stream cipher was designed in 1987 for use in the Global System for
Mobile Communications (GSM) to provide data confidentiality in Europe and the
U.S.A. It was reported that by 2011, about 4 billion GSM users relied on A5/1
to protect their communications [1]. Since A5/1 was reverse-engineered partially
in 1994 and completely in 1999 [4,16], many cryptanalytic results have been pub-
lished on it, including guess-and-determine attacks [12,19,22], correlation attacks
[8,20,27] and TMTO attacks [9,15,19,30]. From a realistic viewpoint, almost all
these attacks are somewhat academic in the sense of their impact on the real-world
security of GSM, for they either require a large data complexity, ranging usually
from 1,500 to 70,000 known keystreams, or have a long attack time, typically from
several minutes to hours. The only exception is Nohl’s recent attack [30] using
thick rainbow table cryptanalysis with distinguished points (i.e., fuzzy-rainbow
table cryptanalysis [10]), which uses 8 known keystreams and has an online attack
time of about 10 s on a general-purpose graphics processing unit (GPGPU) and a



352 J. Lu et al.

success probability of 87 %, plus 30 precomputation tables with a total of about 1.7
Terabytes, (Note that there were predecessors to this work with an inferior perfor-
mance, say much larger precomputational workload). Nohl described mainly the
details related to the structure of the precomputation tables, but did not disclose
the online attack details (maybe because of his company’s need for confidentiality).
After an investigation, we find that Nohl’s online attack on A5/1 is actually not
so straightforward as a general TMTO attack from a theoretical viewpoint, and
it seems that a crucial technique associated with the attack’s precomputational
workload and success probability is not disclosed.

In this paper, we make a few theoretical contributions to TMTO cryptanaly-
sis and a practical contribution to the cryptanalysis of the GSM A5/1 stream
cipher. First, inspired by thin and thick rainbow table cryptanalyses, we present
a unified TMTO cryptanalysis, which we call unified rainbow table cryptanalysis,
that is built on a unified rainbow table. Then, we discuss its general combination
with distinguished points, as well as the resulting TMDTOs. On one hand the
unified rainbow table itself represents a novel type of rainbow tables, and on the
other hand it can be regarded as a unified model for rainbow-type tables, from
which Hellman table, rainbow table, thin rainbow table and thick rainbow table
can be easily obtained as special cases. Unified rainbow table cryptanalysis offers
a trivially more comprehensive TMTO curve than the above four general meth-
ods, and its combination with distinguished points can offer a better TMDTO
curve than any other general method except fuzzy-rainbow table cryptanalysis,
but nevertheless it does not provide a better TMTO (or TMDTO) curve than the
best previously known, thus it is merely of theoretical significance as a unified
TMTO cryptanalysis. In particular, from its success probability formula, we can
have success probability formulas for rainbow table, thin rainbow table and thick
rainbow table cryptanalyses, which take into account some possible redundancy
among different columns and the distinctions among different function variants.
At last, we apply unified rainbow table cryptanalysis to A5/1, by working out a
crucial theoretical technique. On a GPGPU computer with 3 NVIDIA GeForce
GTX690 cards that cost about 15,000 United States dollars in total, we gener-
ated a unified rainbow table of 984 GB in about 55 days, and finally implemented
a unified rainbow table attack that had an online attack time of 9 s with a success
probability of 34 % (or 56 %) when using 4 (respectively, 8) known keystreams
(of 114 bits long each). If two such tables of 984 GB were generated, the attack
would have an online attack time of 9 s with a success probability of 81 % when
using 8 known keystreams. Our attack on A5/1 is the first rainbow-type TMTO
attack on A5/1 that reveals crucial theoretical techniques and implementation
details, and the practical experimental results sufficiently show again that A5/1
is rather weak in terms of its realistic security.

The remainder of the paper is organised as follows. In the next section, we
give the abbreviations and notation used throughout this paper and describe
the A5/1 stream cipher. We present our unified rainbow table cryptanalysis in
Sect. 3, describe its combination with distinguished points in Sect. 4, and dis-
cuss the resulting TMDTOs in Sect. 5. In Sect. 6, we describe our application of
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unified rainbow table cryptanalysis to A5/1 and give our experimental results.
Section 7 concludes this paper. Because of page constraints, we leave many other
theoretical and implementation materials in the full version of this paper.

2 Preliminaries

In this section we describe the abbreviations and notation and the A5/1 cipher.

2.1 Abbreviations and Notation

The bits of a value are numbered from left to right, starting with 1. In the
description below and throughout this paper, we assume f : {1, 2, . . . , N} →
{1, 2, . . . , N} is a one-way function, where N is a positive integer. We use the
following abbreviations and notation.

CPU Central Processing Unit
(GP)GPU (General-Purpose) Graphics Processing Unit
GSM the Global System for Mobile Communications
LFSR Linear Feedback Shift Register
TM(D)TO Time–Memory(–Data) Trade-Off
XOR/⊕ bitwise logical exclusive OR
XNOR the inverse of bitwise logical exclusive OR (XOR)
◦ functional composition. When composing functions X and Y, Y◦

X denotes the function obtained by first applying X and then

applying Y. Sometimes we simply write Xi to denote

i timesX
︷ ︸︸ ︷
X ◦ · · · ◦ X,

where i is a non-negative integer
e the base of the natural logarithm, (e = 2.71828 . . .)
�X� the largest integer that is less than or equal to X
O(X) a value that is of the same order as a value X
X[i1, . . . , ij ] the j-bit string of bits (i1, . . . , ij) of a bit string X

2.2 The A5/1 Stream Cipher

A5/1 is a synchronous stream cipher, specifically a binary additive stream cipher.
Its core part is a keystream generator, which is depicted in Fig. 1. The keystream
generator is built on three Fibonacci linear feedback shift registers [5] (LFSRs) of
19, 22 and 23 bits long, which we denote by R1, R2, R3, respectively. As an LFSR
with a primitive feedback polynomial can generate a maximum-length binary
sequence, the three LFSRs have been set to have a primitive feedback polynomial
each: The taps for R1 are at the 19th, 18th, 17th and 14th bits; the taps for R2
are at the 22th and 21th bits; and the taps for R3 are at the 23th, 22th, 21th
and 8th bits. The three LFSRs are mutually clocked in a stop/go fashion under
a majority function Maj of three bits from the three LFSRs, respectively. The
majority function Maj takes as input the 9-th bit of R1, the 11-th bit of R2 and



354 J. Lu et al.
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Fig. 1. The A5/1 keystream generator

the 11-th bit of R3, that is, R1[9], R2[11], R3[11], and outputs the majority of the
three input bits, more formally, it is defined to be Maj(R1[9], R2[11], R3[11]) =
(R1[9] × R2[11]) ⊕ (R1[9] × R3[11]) ⊕ (R2[11] × R3[11]).

In a clocking cycle, for each LFSR, if the input bit to the Maj function is
equal to the output of the Maj function, then the LFSR is clocked, outputting the
rightmost bit as the output bit, and the feedback value is given by its feedback
polynomial and is fed into the leftmost bit of the LFSR; otherwise, the LFSR
remains invariant, but still outputs the rightmost bit as the output bit. Then,
the keystream generator outputs the XOR of the output bits of the three LFSRs.
The Maj function guarantees that at least two of the three LFSRs are clocked
every clocking cycle.

A GSM conversation is represented as a series of frames of 114 bits long
each, and it is classified into two categories: downlink (base station to mobile)
conversation and uplink (mobile to base station) conversation; the number of
frames can be at most 22 bits long, that is from 0 to 222 −1. GSM sends a frame
of conversation every 4.615 ms, and thus a GSM conversation can usually be
at most several hours unceasingly. For a conversation, GSM generates a 64-bit
secret session key K from a master key, and uses the A5/1 stream cipher to
encrypt every frame, with the frame number IV starting with a particular value
generated by the system and being increased sequentially (0 < IV < 222).

When encrypting a frame of conversation, the A5/1 stream cipher first gen-
erates a 228-bit pseudorandom keystream through the keystream generator. The
keystream generator takes as input the 64-bit secret session key K and the 22-
bit publicly known frame number IV , and generates a 228-bit pseudorandom
keystream in the following steps:

1. Initialization phase that involves: (a) setting the 64 bits of the three LFSRs
to zero; (b) key setup that loads the 64-bit key into the LFSRs, with the Maj
function ineffective; and (c) IV setup that loads the 22-bit IV into the LFSRs,
with the Maj function ineffective.

2. 100 clockings on the three LFSRs with the Maj function effective and without
outputting the output of the keystream generator.

3. 228 clockings on the three LFSRs with the Maj function effective and out-
putting the output of the keystream generator.
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A 228-bit pseudorandom keystream is generated after Step 3. The first 114
bits of a 228-bit keystream are used for downlink conversation and the last 114
bits are used for uplink conversation. The A5/1 stream cipher encrypts a frame
of conversation by XORing it with a 114-bit keystream, and produces a frame
of ciphertext. Decryption is identical to encryption.

We refer to the internal state of the three LFSRs immediately after Step 1
(i.e., at the end of the initialization phase) as the initial state of a keystream.

3 The Unified Rainbow Table Cryptanalysis

In this section we present unified rainbow table cryptanalysis. Like the dictionary
attack and the four general TMTO methods, unified rainbow table cryptanalysis
also consists of two phases: offline precomputation phase to build one or more
tables, and online attack phase to search the correct solution. We start with
generating a unified rainbow table.

3.1 A Unified Rainbow Table

We define five parameters m, s, v, r, t, and each parameter is a positive integer.

– m: the number of starting points in a unified rainbow table.
– s: the number of the f variants used, namely f1, f2, . . . , fs, each constructed

usually by a functional composition of the f function with a simple operation
(called a color sometimes [10]), say an XOR with a unique number [32] or a
rotation of a unique number of bits [24].

– v: the number of the fi variant in each sector of the adjacent columns
(fi, fi, . . . , fi) with the same fi variant.

– r: the number of the sector (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v.
– t: the total number of appearances of the f variants, that is equal to rsv.

The attacker builds a unified rainbow table of size m × t by applying the
following procedure:

1. Choose m starting points uniformly at random from the domain {1, 2, . . . , N},
and we denote them by SP1, SP2, . . ., SPm.

2. For 1 ≤ i ≤ m:
(a) Let xi,0 = SPi.
(b) For q = 1, 2, . . . , r:

For j = 1, 2, . . . , s:
For l = 1, 2, . . . , v:

– Compute xi,(q−1)·sv+(j−1)·v+l = fj(xi,(q−1)·sv+(j−1)·v+l−1).
– If (q = r) and (j = s) and (l = v), the value xi,rsv is termed

the endpoint corresponding to SPi; and we denote it by EPi,
that is EPi = xi,rsv.
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3. Store the m pairs (SPi,EPi) into a table sorted by the values of the endpoints,
(and discard the intermediate values xi,1, xi,2, . . . , xi,rsv−1). The resulting
table is called a unified rainbow table. This completes the construction of
a unified rainbow table.

In short, the series of f variants used to generate a chain is [(fs)v ◦· · ·◦(f2)v ◦
(f1)v]r, or more intuitively

1
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

2
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

. . .

r
︷ ︸︸ ︷

f1 . . . f1
︸ ︷︷ ︸

v times

f2 . . . f2
︸ ︷︷ ︸

v times

. . . fs . . . fs
︸ ︷︷ ︸

v times

.

The unified rainbow table requires a memory of m units, and has a time
complexity of m × r × s × v = mt computations of the f function, where we
assume a computation of a variant fj of the f function is approximately equal
to a computation of the f function in terms of computational complexity, as in
previous work [10,24,31].

3.2 Online Attack Procedure

Given an inversion target y = f(x), below we will describe an online attack pro-
cedure based on a unified rainbow table of Sect. 3.1. The online attack procedure
is devised according to the structure of the unified rainbow table, so that certain
previously computed values can be reused to save time.

The attacker tries to find the correct solution x by checking the unified rain-
bow table column by column in the following procedure. Recall that t = rsv.

1. For j = s, s − 1, . . . , 1:
(a) Apply the simple operation concatenated with f for constructing fj to

the given output y, and we denote the resulting value by ŷ0.
(b) For l = 1, 2, . . . , v:

i. Sety0 = ŷ0 ifj = s; otherwise, compute y0 =

from (fj+1)
v until (fs)

v

︷ ︸︸ ︷
(fs)v ◦ · · · ◦ (fj+1)v (ŷ0).

ii. For q = 1, 2, . . . , r:
A. Check whether yq−1 is an endpoint in the unified rainbow table. If

yq−1 does not match any endpoint, we execute the next sub-step.
However, if yq−1 atches an endpoint, EPi say, then re-generate
xi,(r−q)·sv+jv−l from the corresponding starting point SPi as
(f1)v−l ◦ [(fs)v ◦ · · · ◦ (f2)v ◦ (f1)v]r−q(SPi) if j = 1, or (fj)v−l ◦
(fj−1)v ◦ · · · ◦ (f2)v ◦ (f1)v ◦ [(fs)v ◦ · · · ◦ (f2)v ◦ (f1)v]r−q(SPi) if
j �= 1. Finally, xi,(r−q)·sv+jv−l is likely to be the correct solution
x, (Note that xi,(r−q)·sv+jv−l may be a false alarm, and under
this situation we need do extra work to test whether the recov-
ered xi,(r−q)·sv+jv−l is a false solution). If xi,(r−q)·sv+jv−l is the
correct solution, terminate the procedure.

B. If q �= r, compute yq = (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v(yq−1).
iii. If l �= v, compute ŷ0 = fj(ŷ0).

2. The attack fails if the correct solution is not found after the above steps.
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3.3 Online Time Complexity

Before further proceeding, we emphasize two points that are throughout this
paper. As in previously published TMTO or TMDTO methods [7,10,13,14,24,
31]: first, we consider the online time complexity of the unified rainbow table
attack as well as other TMTO attack methods in the worst scenario where the
correct solution to the inversion target is found from the very first column of
a precomputation table and no false alarm is taken into account; second, we
consider the memory complexity in the unit of the number of starting-endpoint
pairs, rather than the optimised memory complexity with certain sophisticated
techniques like endpoint truncation [10,15]. Anyway, a recently emerging direc-
tion is to study the expected online time complexities and the optimised memory
complexity, as done in [6,25,26]; we leave such studies as future work.

From the equations yq = (fs)v ◦ · · · ◦ (f2)v ◦ (f1)v(yq−1) and ŷ0 = fj(ŷ0) in
Steps 1(b)(ii)(B) and 1(b)(iii), we can see that some previously computed values
(i.e. yq−1 and ŷ0) are re-used during the next iteration, which enables us to save
online attack time.

A detailed analysis reveals that the unified rainbow table attack has a total
time complexity of approximately

∑s−1
j=1

∑v
l=1[(s−j)·v]+

∑s
j=1

∑v
l=1

∑r−1
q=1 sv+

∑s
j=1

∑v−1
l=1 1 = t2

r − t2

2r2 − t2

2sr2 + t
r − s computations of the f function and

∑s
j=1

∑v
l=1

∑r
q=1 1 = vrs = t table look-ups.

3.4 Success Probability

The success probability of the unified rainbow table attack is determined by the
coverage rate of the unified rainbow table, that is defined to be the proportion
of the number of distinct values for both starting points and intermediate values
associated with the generation of the table to the size N of the domain.

As in previous work, we assume that the f function as well as its variants
fi’s is a random function. Besides, in order to obtain an as accurate as possible
formula, we need to consider the difference between two different function vari-
ants fi and fj , which depends on how these function variants are constructed
from the f function. If the function composed with f to construct a function
variant is like an XOR operation with a unique integer, then we definitely have
fi(x) �= fj(x) for any x when 1 ≤ j �= i ≤ s; however, if it is like a rotation of
a unique number of bits, we may have fi(x) = fj(x) for an x, and if there are
many such x’s then the function variants are unwanted. Thus, below we assume
the first case for constructing the function variants. As a result, we obtain the
following approximate formula on the expected success probability of the unified
rainbow table attack.

Theorem 1. If f, as well as its variants f1, f2, . . . , fs constructed each by
composing f with a simple function such that fi(x) �= fj(x) for any x when
1 ≤ j �= i ≤ s, is modeled as a random function mapping the set {1, 2, . . . , N}
into itself, and the correct solution to the inversion target is chosen uniformly
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from the same set, then a unified rainbow table attack based on one unified rain-
bow table with parameters m, s, v, t has a success probability of approximately
∑t−1

k=0 mk

N , where m, s, v, t are defined in Sect. 3.1 and mk is computed as follows:

m0 = m̂0 = m0 = N · (1 − e
− m

N ); mk+1 = N · (1 − e
− mk

N );

α = �k + 1

s · v
�, β = �k + 1 − α · s · v

v
�, δ = k + 1 − α · s · v − β · v = (k + 1) mod v,

m̂k+1 =

⎧

⎨

⎩

mk+1 · (1 −
∑α−1

i=0
∑v−1

j=0 m̂i·s·v+β·v+j

N
), if δ = 0;

N · (1 − e− m̂k
N ) · (1 −

∑α−1
i=0

∑v−1
j=0 m̂i·s·v+β·v+j+

∑δ−1
j=0 m̂α·s·v+β·v+j

N
), if δ �= 0.

mk+1 = N · (1 − e
− m̂k

N ) · (1 −
∑k

j=0 mj

N
).

3.5 TMTO Curve

Above we have described a unified rainbow table attack based on a unified
rainbow table as well as its success probability. However, because of possible
duplication of values associated with a precomputation table, the gain on its
coverage rate is not as much as before when the number of starting points goes
beyond a threshold value specified by a matrix stopping rule [14] theoretically.
Alternatively, an attack may need more than one precomputation tables to reach
a large success probability. This results in the following TMTO curve of unified
rainbow table cryptanalysis.

Theorem 2. Suppose P represents computational complexity for (offline) pre-
computation, T represents online time complexity, M represents memory com-
plexity (for offline precomputation, since the memory complexity of online attack
is negligible generally), s and r are those parameters used for unified rain-
bow table cryptanalysis. Then, unified rainbow table cryptanalysis approximately
meets a time–memory trade-off T · M3 = N3

s·r − N3

2s·r2 − N3

2s2·r2 + M ·N2

s·r − M2 · N ,
where P = N , M ≤ N and 1 ≤ s · r ≤ N

M , plus N2

s·M2 table look-ups.

Furthermore, a simple analysis reveals the following result:

Corollary 1. Hellman table, rainbow table, thin rainbow table, thick rainbow
table and unified rainbow table cryptanalyses (can) have a TMTO curve T ·
M2 = O(N2). Generally, rainbow table cryptanalysis has the best TMTO curve
2T · M2 ≈ N2 among the five general TMTO methods.

4 Unified Rainbow Table Cryptanalysis
with Distinguished Points

When attacking a practical cryptosystem in reality, a huge precomputation table
is usually required and stored in a hard disk, which makes a table look-up much



Time–Memory Trade-Off Attack on the GSM A5/1 Stream Cipher 359

more costly than a computation of the f function in terms of time, thus the sup-
plementary technique of distinguished points is often used to speed up an online
attack. Considering this, we briefly discuss a combination of unified rainbow
table cryptanalysis with distinguished points in this section.

4.1 A Combination

Unified rainbow table cryptanalysis can be combined with distinguished points
in the following way, where DP represents a distinguished point and two values
represented by DP may be different, (1 ≤ i ≤ m, here m is the number of
starting points).

SPi

r times
︷ ︸︸ ︷
f1···f1−→ DP · · · f1···f1−→ DP︸ ︷︷ ︸

vDPs

f2···f2−→ DP · · · f2···f2−→ DP︸ ︷︷ ︸
vDPs

· · · fs···fs−→ DP · · · fs···fs−→ DP︸ ︷︷ ︸
vDPs

=EPi.

Its online attack procedure is similar to the one for unified rainbow table
cryptanalysis given in Sect. 3.2, in that we treat the series of functions fj ◦ · · · fj
for generating a distinguished point at here as a single function fj in the attack
procedure from Sect. 3.2. Suppose q is the expected average length of each sector
with the same fj variant, (i.e. the chain length is expected to be t = r · s · v · q),
then we can similarly obtain that such unified rainbow table cryptanalysis with
distinguished points has an online time complexity of

∑s
j=1[q + (j − 1) · q · v +

(r− 1) · q · s · v] · v = tsv + t
r − tsv

2r − tv
2r computations of the f function, plus rsv

table look-ups.

4.2 TMTO Curve

Below is the TMTO curve of the combination described in Sect. 4.1.

Theorem 3. Suppose P represents computational complexity for precomputa-
tion, T represents online time complexity, M represents memory complexity,
plus those parameters v, s, r used for unified rainbow table cryptanalysis with
distinguished points. Then, unified rainbow table cryptanalysis with distinguished
points approximately meets a time–memory trade-off T · M2 = (v − v

2r − v
2rs +

1
rs ) ·N2, where P = N , M ≤ N and 1 ≤ r · s · v ≤ N

M , plus r·v·N
M table look-ups.

5 Time–Memory–Data Trade-Off Curves

In this section, we briefly discuss the time–memory–data trade-off (TMDTO)
curves when unified rainbow table cryptanalysis and its combination with dis-
tinguished points are applied in certain situations where multiple data can be
helpful, for example, cryptanalysis of some stream ciphers. We have the following
result.
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Theorem 4. Suppose P represents computational complexity for precomputa-
tion, T represents online time complexity, M represents memory complexity,
D(≥ 2) represents the number of available data, v, s, r are those parameters used
in unified rainbow table cryptanalysis without/with distinguished points. Then,
unified rainbow table cryptanalysis approximately meets a time–memory–data
trade-off T · M2 · D = N2

r − N2

2r2 − M ·D2·N
2r2 + M ·D·N

r − M · N , with P = N
D ,

M · D2 ≤ N , T ≥ D3

r − D3

r2 + D2

r − D and 1 ≤ r ≤ D, plus N
M table look-ups;

and unified rainbow table cryptanalysis with distinguished points approximately
meets a time–memory–data trade-off 2T ·M2 ·D2 = (2v− v

r ) ·N2− (v−2)·M ·D2·N
2r ,

with P = N
D , M · D2 ≤ N , T ≥ (v + 1

r − v
r ) · D2 and 1 ≤ r · v ≤ D, plus r·v·N

M ·D
table look-ups.

At last, a detailed analysis gives the following result:

Corollary 2. Hellman table, thin rainbow table and unified rainbow table crypt-
analyses (can) have a TMDTO curve T ·M2 ·D2 = O(N2), while rainbow table
and thick rainbow table cryptanalyses have a TMDTO curve T ·M2 ·D = O(N2).
Generally, among all the aforementioned TMDTO methods, fuzzy-rainbow table
cryptanalysis is the best TMDTO method, and unified rainbow table cryptanalysis
with distinguished points is the second best TMDTO method.

6 Application to the GSM A5/1 Stream Cipher

In this section, we apply the TMDTO version of unified rainbow table crypt-
analysis with distinguishing points to the A5/1 stream cipher, since its design
allows us to conduct a TMDTO attack. We first describe the f function with
respect to A5/1 and the structure of a unified rainbow table, then describe
two crucial theoretical techniques and some implementation issues, and finally
describe an experimental attack and its results on A5/1.

6.1 The f Function with Respect to A5/1

Since our goal is to recover a secret session key, clearly we should choose a
suitable f function from the A5/1 keystream generator, so that we can have an
efficient attack. A detailed analysis on A5/1 reveals the following result:

Proposition 1. The state (of the three LFSRs) immediately after the key setup
of the A5/1 keystream generator is a system of 64 linear functions of the 64 bits
of the secret session key. The 64 secret key bits can be easily obtained by solving
the system of 64 linear functions of the 64 secret key bits. Given the 64-bit state
immediately after the IV setup of the A5/1 keystream generator, we can recover
the state immediately before the IV setup (i.e., the state immediately after the
key setup) with a time complexity of 22 clockings.

Finally, after a further investigation we define the f function as follows.
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Proposition 2. With respect to A5/1, the f function starts with the initial state
(that is immediately after the IV setup), and ends with the first 64 keystream
bits. It takes the initial state as input, and outputs a 64-bit sequence. The 64-bit
sequence is then input to the next f function as an initial state, and so on.

6.2 The Structure of a Unified Rainbow Table

We targeted to build a reasonably large unified rainbow table with distinguished
points. We set m = 237, t = 216, r = 22, s = 26, v = 1, q = 28; see Sect. 4.1 for
the meaning of the parameters.

The starting points are of 64 bits long; every time we generate a 64-bit
random from a particular sub-space as a starting point; and the used sub-spaces
guarantee that the generated starting points are distinct one another. A variant
fi of the f function is a functional composition of f and an XOR operation with
an integer i, (i ∈ [0, s − 1], i.e., i = 0, 1, . . . , 63), that is, fi = f ⊕ i; the XOR
operation works on the rightmost 6 bits of an output of f, which correspond
to positions 1–6 of the first LFSR (i.e. R1) of the keystream generator. The
distinguished points used here have zeros in eight bit positions 41–48 of a 64-
bit value, which correspond to positions 17–19 of R1 and positions 1–5 of R2.
Thus, on average it takes q = 28 computations to have a distinguished point.
By the definitions of the f function and distinguished points, the endpoints are
distinguished points that have zeros in the above-mentioned eight bits, and thus
only 56 bits are effective for each endpoint. That is, a starting-endpoint pair
takes a memory of 120 bits.

We do not use any other supplementary technique for the table, such as
sequential starting points [24], index tables [15], endpoint truncation [15], or
checkpoints [6].

6.3 Two Crucial Theoretical Techniques

We used two crucial theoretical techniques in our online attack on A5/1; the first
one aims to reduce an attack’s data complexity by using the sliding property [19]
of the A5/1 keystream generator, and the second one aims to increase an attack’s
success probability by using the state convergence property [19,30] of the A5/1
keystream generator. In other words, the two techniques allow us to reach a
certain success probability with much smaller precomputational workload. Since
the first technique has been described and used in previous work like [19], below
we only describe the second technique, which can be similarly applied to any
stream cipher with a similar property. Note that Dj. Golić [19] also mentioned
the state convergence property of A5/1, however, he used the property in a
direct way — simply reducing the concerned searching space from the ideal 264

to the convergent 263.32 (upper bound), which (is not sufficient and should be
followed by) is quite different from the technique we describe below. It seems
that Nohl [30] used the state convergence property in some way comparable to
the second technique described below, but he did not describe or even mention it
(maybe because of his company’s need for confidentiality), thus we are not sure
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Fig. 2. The second technique compared with a general procedure

whether the second technique was used in [30]. To the best of our knowledge,
the straightforward way that Dj. Golić used is the popular way to use the state
convergence property, and none has explicitly described the second technique
before.

The second technique relies on the fact that usually a few initial states of
A5/1 will converge to the same internal state after the 100 clockings without
output, known as the state convergence problem of A5/1 [19]. A theoretical
analysis from [19] reveals that there are only 263.32 possible states after the first
clocking, and experimental results [15,30] show that only about 15 % of the 264

states is possible after the 100 clockings without output; and our experiments
show that on average about 23.5 ≈ 11 initial states can be obtained from a state
just after the 100 clockings without output. Below we describe an approach to
make use of this state convergence property, which is illustrated in Fig. 2.

Suppose y = f(x) is our inversion target. Let’s consider the case with the
first keystream segment, that is a preimage is also an initial state. When we find
a preimage x∗ to y from our (unified) rainbow table, we compute the internal
state immediately after 100 (or 164, that is immediately after generating the first
64-bit keystream segment) clockings from x∗, and then we reverse this internal
state at Clock 100 (respectively 164) to obtain all possible initial state(s) that
can produce this internal state at Clock 100 (respectively 164), and finally we
recover the corresponding session key for every obtained initial state and check
whether one of them is the correct session key. (By contrast, a general procedure
after finding a preimage x∗ to y is to reverse x∗ through the key and IV setups
to check whether it could lead to the correct session key)

As mentioned earlier, on average about 11 initial states can be obtained
from a state immediately after the 100 clockings without output; for some initial
states, there are a large number of other initial states that converge to the same
internal state at Clock 100, while for others there are a small number of other
initial states that converge to the same internal state at Clock 100. For session
keys such that there are a large number of other initial states that converge to
the same internal state after 100 (or 164) clocks, there is a larger success rate to
find it, because there is a larger probability that one of the many initial states
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converging to the same internal state is covered in the (unified) rainbow table,
and as long as one of the convergent initial states is found with our rainbow
table, then we can definitely recover the correct initial state and then find the
correct session key; for session keys such that there are a small number of other
initial states that converge to the same internal state after 100 (or 164) clocks,
there is a smaller success rate to find it, for there is a smaller probability to cover
one of the few convergent initial states in our table. This explains the existence
of preferred session keys and non-preferred session keys for our attack.

The second technique also indicates why we did not define the f function
to be from the state after the 100 clocks (without output) to the first 64-bit
keystream segment. In this case, roughly 85 % of the points covered in a rainbow
table would not have a corresponding initial state and thus is wasteful, and we
cannot use the above technique to increase success probability.

The approach holds similarly for the cases with other keystream segments,
where a preimage x∗ to y obtained from our rainbow table is not an initial state,
and we first compute forward to get the internal state immediately after 100 or
164 clockings, and then reverse this internal state to obtain all possible initial
states that converge to the same internal state at Clock 100 or 164.

Note that we can compute the internal state after more than 100 (or 164)
clockings from x∗, and then we reverse this state to obtain all the possible initial
state(s). This could increase success probability slightly further, although our
experiment shows that the gain is not much.

Thus, given a (unified) rainbow table, the second technique enables us to
achieve a success probability of about 11 times as much as that for a naive
attack (at the expense of negligible extra work). In other words, it enables us to
reduce the precomputational workload by about 90 % to have a certain success
probability. Notice that this technique is also owing partially to the fact that it
is easy to reverse an internal state to the initial state position.

6.4 Implementation Issues

Below we briefly describe some implementation issues associated with our attack.

6.4.1 Implementations on A5/1
An efficient implementation of A5/1 is essential to our work, for it could save a lot
of time during both precomputational and online phases. We have implemented
three versions of A5/1 in C language:

1. A basic version that generates a keystream bit by bit under a session key;
2. A bit-slicing version that generates 64 keystreams in parallel under 64 differ-

ent session keys; and
3. A multiple-bit version that generates a keystream block by block under a

session key, by using several small precomputation tables, here a block consists
of i bits generated simultaneously (i ∈ [2, 8]). (We did not consider i > 8, for
the corresponding precomputation tables would take a large memory)
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We have checked the performance of the three versions on a HP Z600 work-
station with Intel Xeon Processor E5630 (2.53 GHz, 12 MB cache) and Ubuntu
12.04 operating system under the following three cases:

* Case A — the session key is fixed and, each time a large number of keystreams
with only the first 64 bits are generated (106 in our test).

* Case B — each time the session key is updated and only the first 64 keystream
bits are generated.

* Case C — only the part of the f function is considered.

For the three cases, the basic version has a throughput of approximately 202,
636 and 406 cycles/byte, respectively; the bit-slicing version has a throughput of
approximately 29, 130 and 57 cycles/byte, respectively; and among the multiple-
bit versions the four-bit version has a best throughput of approximately 89, 195
and 154 cycles/byte, respectively. We use the bit-slicing version (with further
optimisation for using distinguished points) during offline precomputation phase,
and use the four-bit version during online attack phase.

6.4.2 Computing a (Unified) Rainbow Table with GPGPU
We used the TMDTO version of unified rainbow table cryptanalysis with dis-
tinguishing points in our attack, and used a GPGPU workstation in both the
offline precomputation and online attack phases.

The workstation used for our attack consists of a host system based on one
dual XEON CPU (2 CPUs of Intel Xeon Processor E5-2620, 2 GHz, 15 MB
cache and 32 GB ECC RAM each), one Quadro 600 GPU for display, 3 NVIDIA
GeForce GTX690 graphics cards (which are actually 6 GTX680 cards roughly)
for parallel computation, and 10 solid state disks (SSDs) of 480G SATA3 each.
The total price was about 15,000 United States dollars. A GTX690 contains 8
graphic processing clusters (GPCs) and 16 streaming multiprocessors (SMXs);
a streaming multiprocessor contains 192 streaming processors (SPs). In total,
a GTX690 has 3072 cores with processor clock of 915MHz, and the on-chip
memory is 2 × 2 GB GDDR5 with 2 × 256 bit width.

In the offline precomputation phase, the startpoints were processed by the 6
GTX680s in parallel; and 6 CPU threads were needed to control the 6 GPUs,
respectively. The startpoints and endpoints were all located in host memory,
and all of them can be accessed and modified by GPUs via direct memory
access (DMA). Startpoints were randomly generated with no collisions, which
were made by dividing the whole 264 space into many small sections of equal
length and then selecting a random number in each small section, (thus avoiding
collisions). An additional thread was used to store the starting-endpoint pairs
into a table. Whenever an endpoint was generated by a GPU, the additional
thread put it into the input/output (I/O) buffer, and a fast I/O was achieved
by writing out the buffer at one time. The additional thread was in parallel with
the 6 threads controlling the 6 GPUs.

In the online attack phase, only one GPU (i.e. GTX680) was used, (which
makes the attack feasible on laptops). Distinguishing points were computed on
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the GPUs, in a procedure similar to the offline phase; and the only difference was
that the intermediate distinguishing points before reaching the endpoint were
also recorded. We look up the 256 distinguishing points generated typically in an
online chain by the optimized binary search, which took less than 1 s normally.
Since GPU can modify the host memory via DMA, the host can check the
generated distinguishing points in real time before the whole task on computing
distinguishing points in GPU is finished. It is advisable to use an additional
thread to check the calculated distinguishing point and perform table lookup of
these distinguishing points. Therefore, table lookups are actually parallel with
online computations on distinguishing points. Since a table lookup takes a shorter
time than a computation on distinguishing points, virtually it does not need
any time. The total online attack time is approximately the sum of the online
computation time of distinguishing points and the online regeneration time of
false alarms.

6.4.3 Configuration on SSDs
We used SSDs instead of general hard disks (HDDs), because SSD access is
faster than CPU RAM access. Redundant Array of Independent Disks (RAID)
is a data storage virtualization technology that combines multiple disk drive
components into a logical unit for the purposes of data redundancy and per-
formance improvement. The most common RAID configurations are RAID 0
(striping), RAID 1 and variants (mirroring), RAID 5 (distributed parity) and
RAID 6 (dual parity). We have tested and compared RAID0 and RAID5. The
stripe size is defaulted to be 128 KB, and the 10 SSDs of about 480 GB each
used in our attack are viewed as a single virtual huge disk to users by being
connected to an Intel SSD controller RS2WG160 which can control up to 16
SSDs. A RAID 0 splits data evenly across two or more disks (striped) without
parity information for speed. RAID 0 is not resistant to any error or failure
in disk, since it does not provide data redundancy. In most situations RAID 0
yielded the highest read and write performance, and its read and write speeds
were tested to be approximately 3.2 GB/s and 1.8 GB/s, respectively.

6.4.4 Table Sorting for Fast Lookup
A unified rainbow table is sorted by the endpoints. In practice, there is a con-
straint on the maximum size of a file, so a dramatically large table has to be
divided into a number of reasonably large parts to store. In our attack, we divide
a unified rainbow table into 512 parts by dividing the space of the endpoints into
512 intervals equally, with each part of the table corresponding to a unique inter-
val. During offline precomputation phase, after generating a starting-endpoint
pair we simply store it into the part corresponding to the interval that the end-
point locates in; and during online attack phase, we can readily identify which
part of the table the endpoint of an online chain is from, without searching it
over all the parts of the table; then, binary search is performed in the identified
part of the table.
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6.4.5 Software Speedup of Table Access
A straightforward binary search (i.e. lookup) on an endpoint in the unified rain-
bow table with the 512 parts described in Sect. 6.4.4 takes 0.0073 s on SSD on
average, (and 0.1400 s on HDD, thus the speedup is 0.1400

0.0073 ≈ 19 times). Gen-
erally, given an A5/1 keystream in our attack, for an online chain we need to
compute r×s×v = 256 distinguishing points and thus need to search 256 times
in the unified rainbow table. Thus, the table lookups on all the 51 segments
of a 114-bit keystream generally take 0.0073 × 256 × 51 ≈ 96 s on SSD (and
0.1400 × 256 × 51 ≈ 1828 s on HDD), regardless of the online computational
time on f and its variants. We optimised the straightforward binary search with
several software techniques on disk access: (1) Cached binary search with multi-
threading, which is 96

31.1 ≈ 3.09 times of the standard binary search; (2) Endpoint
indexing, which achieves a speedup of 31.1

4.0 ≈ 7.78 times on the cached binary
search; and (3) Multithreading with thread pool, which achieves a speedup of
4.0
0.43 ≈ 9.31 times on the indexed and cached binary search. Taking all the three
techniques into consideration, the final speedup is 3.09×7.78×9.31 ≈ 223 times
compared to the straightforward binary search, that is, the table lookup time
on all the 51 segments of a 114-bit keystream is reduced from the original 96 s
to 96

223 ≈ 0.43 s finally for our unified rainbow table. Our table lookup speed (on
our SSD) is now 256×51

0.43 ≈ 30, 363 searches per second, which is higher than the
table lookup speed of 20, 000 searches per second (i.e. 100, 000 searches in 5 s)
reported in Nohl’s work.

6.4.6 Design Criteria on Compute Unified Device Architecture
(CUDA)

NVIDIA’s Compute Unified Device Architecture (CUDA) [28] is a programming
model that integrates host code and GPU code in the same C/C++ source files.
CUDA provides convenient lightweight programming abstractions of the actual
parallelism implemented by the hardware architecture. Our attack used several
key criteria introduced in [2,23,29] for optimising GPU, namely thread packing,
arithmetic intensity and resource usage, warp divergence, the communication
between host and device, the on-chip memory for storing lookup tables, and
GPU error rate estimation.

6.5 Experimental Results

With the f function and parameters defined in Sect. 6.1, we first generated a
unified rainbow table of about 1.6 TB on the workstation under the computing
framework described in Sect. 6.4, which took about 54 days and involved about
252.68 computations of the f function. The table became 984 GB (≈ 0.96 TB)
after we sorted and removed starting-endpoint pairs with already existing end-
points, which took less than one day. That is, it took a total of about 55 days
to make the 984 GB table on our GPGPU. The 984 GB table covered a total of
about 251.94 initial states (with possible duplication).
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Then, we implemented and optimised a unified rainbow table attack based on
the 984 GB table and downlink keystreams (of 114 bits long each). Based on four
thousand tests, on average the attack had an online attack time of 9 s (of which:
5 s for computing online chains with one GPU, in parallel with table look-ups;
and 4 s on false alarms with this GPU) with a success probability of 34 % when
using 4 keystreams (204 segments); or an online attack time of 9 s with a success
probability of 56 % when using 8 keystreams (408 segments), where two GPUs
were used in parallel (i.e. one GTX690), and each of the two GPUs dealt with 4
keystreams for online chains (in parallel with table lookups) with 5 s and spent
4 s on false alarms.

At last, we targeted to generate three more tables of 984 GB with three
different sets of the f variants, but at the moment the three other precomputation
tables only had a size of 0.140 TB, 0.093 TB and 0.093 TB, respectively, (after
sorting and removing degenerate starting-endpoint pairs). Using the four tables
with a total size of 0.96+0.140+0.093+0.093 ≈ 1.29 TB, we got an experimental
attack that used 4 keystreams (204 segments) and had an online attack time of
9 s (of which: 5 s for computing online chains with one GPU, in parallel with
table look-ups of about 2 s; and 4 s on false alarms) with a success probability of
43 %. The attacks indicate that unified rainbow table cryptanalysis has a good
performance as well.

Note that more cryptanalytic results can be extrapolated from the above
experimental results, for example: If one more table of 984 GB was generated
(i.e., a total of 1.92 TB), we could expect an attack that had an online attack
time of 5+4 = 9 s with a success probability 1−(1−34%)2 ≈ 56% when using 4
keystreams, where two of the six GPUs were used in parallel (i.e. one GTX690),
and each of the two GPUs dealt with a table for online chains (in parallel with
table lookups) and false alarms; or an online attack time of 5 + 4 = 9 s with a
success probability 1 − (1 − 56%)2 ≈ 81% when using 8 keystreams, where two
GTX690s (i.e. four GPUs) were used in parallel, and each of the two GTX690s
dealt with a table for online chains (in parallel with table lookups) and false
alarms.

7 Conclusions

In this paper, we have presented a unified TMTO cryptanalysis, called unified
rainbow table cryptanalysis, have described its general combination with distin-
guished points, and have discussed their TMTO as well as TMDTO curves under
the worst scenario. Finally, we applied unified rainbow table cryptanalysis to the
A5/1 stream cipher, by working out a crucial technique that made the precom-
putational workload feasible to have an acceptable success probability. We made
a unified rainbow table of 984 GB in about 55 days on a GPGPU computer with
3 NVIDIA GeForce GTX690 cards at a total cost of about 15,000 United States
dollars, and implemented a unified rainbow table attack on A5/1, that had an
online attack time of 9 s with a success probability of 34 % (or 56 %) when using
4 (respectively 8) keystreams.
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Unified rainbow table cryptanalysis is of theoretical significance as a unified
TMTO cryptanalysis framework, although it offers a trivially more comprehen-
sive TMTO curve than the previously published four general TMTO methods
and can offer the second best TMDTO curve when combined with distinguished
points. From its success probability formula, we can have success probability
formulas for rainbow table, thin rainbow table and thick rainbow table crypt-
analyses, which take into account some possible redundancy among different
columns and the distinctions among different function variants. The presented
unified rainbow table attack on A5/1 is the first rainbow-type TMTO attack on
A5/1 that reveals crucial techniques and implementation details, and is of prac-
tical significance, for the practical experimental results show again that A5/1 is
rather insecure in reality.
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Abstract. There is a growing need to develop lightweight crypto-
graphic primitives suitable for resource-constrained devices permeating
in increasing numbers into the fabric of life. Such devices are exemplified
none more so than by batteryless radio frequency identification (RFID)
tags in applications ranging from automatic identification and moni-
toring to anti-counterfeiting. Pandaka is a lightweight cipher together
with a protocol proposed in INFOCOM 2014 for extremely resource
limited RFID tags. It is designed to reduce the hardware cost (area
of silicon) required for implementing the cipher by shifting the com-
putationally intensive task of cryptographically secure random number
generation to the reader. In this paper we evaluate Pandaka and demon-
strate that the communication protocol contains flaws which completely
undermine the security of the cipher and make Pandaka susceptible to
de-synchronisation. Furthermore, we show that, even without the proto-
col flaws, we can use a guess and determine method to mount an attack
on the cipher for the more challenging scenario of a known-plaintext
attack with an expected complexity of only 255. We conclude that Pan-
daka needs to be amended and highlight simple measures to prevent the
above attacks.

1 Introduction

Lightweight cryptography has received extensive coverage in recent years due to
the growth in low cost pervasive computing technologies such as Radio Frequency
Identification (RFID) propelled by significant progress in low power microelec-
tronics and lower manufacturing costs. Batteryless RFID tags are extremely
cheap, typically less than 50 cents, and enable remote and precise identification
of objects or people using wireless communication between readers connected to
back-end servers and tags attached to the objects or people [17]. The growing
ubiquity of RFID systems and their deployment in sensitive and in high-value
environments, such as their use in national passports, continue to stimulate
research into the security of these low cost computing devices. However, the lim-
ited resources available at the tags, as a consequence of the desire to drive tag
costs down [30], present new challenges to the provision of security mechanisms
for RFID systems [9,10].

Multiple lightweight ciphers have been proposed for such resource limited
environments in the recent literature [4,11–13,18,20,22,23,31,32], since exiting
c© Springer International Publishing Switzerland 2015
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standard cryptographic primitives, such as AES (Advanced Encryption Stan-
dard), are much too area and power intensive to be practicable for implementa-
tion on low cost batteryless RFID tags [10,19,29]. However, since these ciphers
are designed at the limits imposed by technology such as the number of gate
equivalents (GEs) and available harvested power on batteryless tags, they are
incapable of incorporating considerable security margins built into standard
cryptographic mechanisms. Therefore, it is unsurprising that attacks that suc-
cessfully break lightweight ciphers are frequently reported [2,7].

Recently, Chen et al. [8] suggested Pandaka—a stream cipher together with
a communication protocol that exploit the resource imbalance between the tags
and the back-end server, based on the concept of secure server-aided compu-
tations [1,21], to develop a lightweight cryptographic mechanism. Essentially,
Pandaka shifts the bulk of the cryptographic operations to the reader, thereby
reducing the implementation footprint at the tag.

At its core, Pandaka is a stream cipher that combines a secret state with
a random seed generated by the reader to create a pseudo-random derived key
which is subsequently XORed with a message block to encrypt it. The random
seed, indicators in the Pandaka nomenclature, is also used for perturbing the
state prior to the next round of encryption. For block integrity, Pandaka uses the
16 bit Cyclic Redundancy Check (CRC) generator, already available on a typical
RFID tag [15]. The cipher has two suggested configurations, a 16 bit version,
Pandaka(16,6), that has 96 bits of state, and a 32 bit version, Pandaka(32,6),
with 192 bits of state.

We analyse the Pandaka cipher and protocol and make the following contri-
butions:

– Describe a known-indicators attack on Pandaka, which exposes a weakness in
the linear relationship between the state and the derived key (Sect. 3).

– Present an effective known-plaintext only attack on Pandaka, demonstrating
that the security of the cipher depends on the size of the indicators rather
than on the size of the reported internal state (Sect. 4).

– Highlight two weaknesses in the protocol’s integrity mechanism: information
disclosure; and a potential for de-synchronisation even in the absence of an
active attacker. In the case of the Pandaka(16,6) configuration, the former
completely reveals the plaintext in each block (Sect. 5).

– Analyse the weaknesses of the cipher and suggest directions for addressing
them (Sect. 6).

2 Pandaka

Pandaka is a stream cipher that uses a shared secret between a tag and a reader,
which we refer to as the base keys, and a random seed called indicators to
generate a pseudorandom derived key. Subsequently, the derived key is XORed
with the plaintext to produce the ciphertext. After generating the derived key,
Pandaka updates the base keys based on the contents of the indicators. This
update creates new base-key material for the encryption of the next block.
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Following Chen et al. [8], we use Pandaka(L,N) to denote an instance of
Pandaka with a block size of L bits and N base keys. Each base key has a length
of L bits, hence the size of the state of Pandaka(L,N) is L × N . The length of
the indicators is N + 2.

The rest of this section describes the derived-key generation and the base-key
update (or in other words state update) procedure. We also describe the protocol
Pandaka uses for transferring the indicators from the reader at the heart of the
base-key update procedure.

2.1 Derived-Key Generation

Pandaka uses N bits of the N + 2 indicator bits to select base keys. Each of
these base-key selection bits corresponds to one of the base keys. As illustrated in
Fig. 1, Pandaka computes the bitwise XOR of the base keys whose corresponding
bits in the indicators are set to generate the derived key.

BN-1(0)BN-1(1)BN-1(2)BN-1(3)...BN-1(L-2)BN-1(L-1)

B0(L-1) B0(L-2) ... B0(3) B0(2) B0(1) B0(0)

B1(0)B1(1)B1(2)B1(3)...B1(L-2)B1(L-1)

.....................

1

1

0

...

B0(0)B0(1)B0(2)B0(3)...B0(L-2)B0(L-1)

BN-1(0)BN-1(1)BN-1(2)BN-1(3)...BN-1(L-2)BN-1(L-1)

D(0)D(1)D(2)D(3)...D(L-2)D(L-1)

Base keys

Indicators

Derived keys
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t t
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t t tt
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tt t t

t t tt t t

t tt tt

Fig. 1. Generating the derived key

More formally, let Bt
k(i) denote bit i mod L of the value of the kth base

key, where k = {0, 1, ..., N − 1}, used for the tth encryption and let It(k) denote
the kth bit of the indicator used for the tth encryption. The derived key for the
encryption Dt(i) is calculated using

Dt(i) = Bt
0(i) · It(0) ⊕ Bt

1(i) · It(1) ⊕ . . . ⊕ Bt
N−1(i) · It(N − 1) (1)

where ⊕ and · are the XOR and the AND operations. We recall that these are
also the addition and multiplication operations in GF (2).

2.2 Base-Key Update Procedure

In order to avoid using the same base keys for multiple encryptions, Pandaka
perturbs the base keys after generating the derived key. The base-key update
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procedure only modifies the base keys used for the current encryption, i.e. those
selected by the N base-key selection bits of the indicators. Subsequently, each
of the selected base keys is rotated one bit to the left.

Following a rotation operation, Pandaka flips a select set of base key bits.
The decision on which bits to flip is based on the values of the additional two
bits, i.e. bits N and N + 1, of the indicators. If the value of these two bits is
00, no bits in the base keys are flipped, otherwise, for bit patterns 01, 10 and
11, Pandaka flips the base key bits whose position i modulo 3 is 0, 1, and 2,
respectively.

Thus,

Bt+1
k (i) =

{
Bt

k(i) if It(k) = 0
Bt

k(i − 1) ⊕ FL(i, It) if It(k) = 1 (2)

where FL is the flip function defined as:

FL(i, I) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if I(N) = 1, I(N + 1) = 0 and i mod 3 = 0
1 if I(N) = 0, I(N + 1) = 1 and i mod 3 = 1
1 if I(N) = 1, I(N + 1) = 1 and i mod 3 = 2
0 otherwise

(3)

2.3 Communication Protocol

The indicators used for encryption and decryption are generated by the reader.
We assume that these are generated by a cryptographically secure random num-
ber generator. These indicators need to be communicated securely to the tag.
The Pandaka protocol relies on a pre-agreed initial secret key between a tag
and a reader to initiate communication. The Pandaka protocol is designed such
that after each communication round the tag and the reader both share a secret
derived key they can use to continue the communication.

The protocol uses three data block formats. F1 blocks are used for transferring
data from the reader to the tag. F2 and F3 blocks are used for transferring
data from the tag to the reader. The protocol also includes protection against
communication error.

F1 Blocks. The F1 blocks consist of two sections. The N+2 least significant bits
(LSBs) of the block contain the indicators used for encrypting and decrypting
the next block. The other L − N − 2 bits are for data. To send a message, the
reader splits it into groups of L − N − 2 bits, and sends each of these groups in
the data section of an F1 block.

F2 Blocks. The reader sends F2 blocks to provide the tag with indicators for
the blocks the tag sends. Each F2 block contains

⌊
L

N+2

⌋
sets of indicators. Of

these,
⌊

L
N+2

⌋
− 1 are used for encrypting F3 blocks sent from the tag to the

reader, and the last set of indicators is used for encrypting the next F2 or F1

block sent by the reader. If (N + 2)� |L, then L mod (N + 2) most significant
bits (MSBs) of the F2 block are set to zero.
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F3 Blocks. Data is sent from the tag to the reader in F3 blocks. Each block
contains L data bits encrypted using indicators previously sent to the tag in an
F2 block. The Pandaka protocol does not specify how the reader and the tag
agree on the number of F3 blocks needed for a tag message.

Message Integrity. To ensure message integrity, each block is transmitted with
a 16-bit cyclic redundancy check (CRC) code, using the specification outlined
in the air interface protocol used by RFID tags, as specified in [15]. The CRC
code is calculated on the block before the block is encrypted. On receipt, the
block is decrypted and the CRC code is calculated again and matched against
the transmitted code to help detect bit errors.

3 Known-Indicators Attack

First we analyse the cipher under a known-plaintext attack scenario where the
corresponding indicators for a number of consecutive F1 messages are also known.
This is a simple extension of the common known-plaintext threat model to Pan-
daka. We show how an adversary can successfully use this information to recover
the base keys of the tag. Successfully obtaining the base keys will allow an
attacker to completely decipher all future communications. This attack exploits
the weakness that the cipher relies completely on linear operations to generate
the derived key.

We use P t(i) to denote the ith bit of the tth decrypted message and Ct(i)
to denote the ith bit of the corresponding encrypted message. We note that
the derived key, Dt, used for encrypting the message can be calculated using
Dt = P t ⊕ Ct where ⊕ is a bitwise XOR operation.

For each base key we compute two values: (i) Qt
k — the number of times that

the kth base key has been used for generating the derived key; and (ii) F t
k(i) —

the flips applied to the ith bit of base key k since the first messages, i.e. when
t = 0. More formally,

Q0
k = 0

Qt+1
k = Qt

k + It(k)
(4)

and
F 0

k (i) = 0

F t+1
k (i) =

{
F t

k(i)) if It(k) = 0
F t

k(i − 1) ⊕ FL(i, It) if It(k) = 1
(5)

We note that Bt
k(i) = B0

k(i − Qt
k) ⊕ F t

k(i − Qt
k). Hence,

P t(i) ⊕ Ct(i) = Dt(i) =
N−1⊕

k=0

(B0
k(i − Qt

k) ⊕ F t
k(i − Qt

k)) · It(l) (6)

or equivalently,
N−1⊕

k=0

B0
k(i − Qt

k) · It(l) = P t(i) ⊕ Ct(i) ⊕
N−1⊕

k=0

Fkt(i − Qt
k) · It(l) (7)
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Recall that in F1 blocks, for 0 ≤ i < N +2 we have P t(i) = It+1(i). Hence, given
plaintext, ciphertext and indicators of T consecutive F1 blocks, an attacker can
construct TL − N − 2 linear equations in B0

k(i) over GF (2). Solving this linear
system reveals the values of the base keys.

The resultant linear system has a very distinctive and sparse structure which
can be exploited to rapidly evaluate a solution to the system of equations.
Figure 2 shows the matrix representation of a system of equations created for a
choice of six sets of indicators for Pandaka(16,6), where shaded blocks indicate
the value 1 and clear blocks indicate the value 0. The base-key selection bits of
these indicators are 110100, 110010, 011100, 110100, 100100 and 001000.

Fig. 2. Structure of a linear system

As Fig. 2 demonstrates, the matrix is divided into N groups of L columns,
each group corresponding to a base key. The rows are also divided into groups
of L, each group corresponding to a set of indicators. An L × L block is empty
if the corresponding indicator bit is 0, otherwise, the block contains a possibly
rotated L × L identity matrix. The magnitude of the rotation is determined
by the number of instances the corresponding base key has been selected by
previous indicators.

For T ≤ N , the number of equations in the system is less than the size of
the base-key bits NL, hence at least N + 1 blocks are required to solve the
system. However, having N + 1 blocks does not guarantee a solution, to solve
the system its rank must be equal to NL. In other words, the system should
have NL independent equations.
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Fig. 3. Distribution of the number of blocks required for a known-indicators attack

The number of blocks required depends on the values of the base key selection
bits in the indicators in each block. Figure 3 shows the distribution of the number
of blocks required over 1,000,000 random instances of the attack. On average
Pandaka(16,6) and Pandaka(32,6) require 7.76 and 8.12 blocks, respectively, with
a worst-case scenario of 27 blocks.

4 Known-Plaintext Attack

The attack we describe in the previous section assumes the attacker knows the
indicators. However, since the indicators are assumed to be randomly chosen,
such an assumption may be unrealistic. Furthermore a known-indicators attack
is not included in the threat models considered by Chen et al. [8].

In this section, we remove the notion of known indicators and instead consider
the more challenging known-plaintext attack. We describe a known-plaintext
attack which allows an adversary to completely recover the base keys using the
plaintext (excluding the indicators) and the corresponding ciphertext of only a
handful of consecutive F1 blocks. By breaking the base keys, such an attacker
can successfully decrypt further message blocks exchanged between the tag and
the reader.

Herewe use a guess anddetermine [3,16,27] approachwherewe guess the values
of the indicators of some of the blocks and subsequently apply the procedure from
the known-indicators attack in Sect. 3 to determine the values of the base keys.

The attack uses the recursive algorithm shown in Algorithm 1. It scans all
possible values of the indicator sets, starting with I0. For each value, the attack
builds a system of linear equations using the technique discussed in Sect. 3 and,
based on the properties of the linear system, decides on one of three options to
proceed. If the linear system is inconsistent, it is clear that the current guess is
wrong and the attack moves to the next guess. If the system is consistent, there
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input : I: guessed indicators for the first T rounds
P : plaintexts of the first n rounds
C: ciphertexts of the first n rounds

output: Initial base-keys and indicators for the first round, if found

if T > 0 then
Use Equation 7 with I, P , and C to create a system of TL−N − 2 linear
equations ;
if the system is not consistent then

return false;
if the rank of the system is NL then

Solve the linear system;
if the solution matches all n known rounds then

Output solution;
return true;

else
return false;

end

end

end
foreach possible indicators value i do

I ′ = add i to I;
Recursively call this algorithm with I ′, P and N ;
if result found then

return true;

end
return false

Algorithm 1. Known-Plaintext Attack

are two possibilities: (i) the rank of the system is NL, in which case we can solve
the system, find the initial value of the base keys and verify the solution; or (ii)
the rank of the system is less than NL where we do not have a solution and
need to recursively guess the next set of indicators.

We use Gauss elimination with implicit row pivoting to test for consistency
and to calculate the rank of the linear system. We note that the (T −1)L−N −2
first equations in the system do not depend on the value of the indicators of the
T th round. Consequently, we do not need to apply the Gauss elimination process
to the entire matrix for each guess. Instead, we can pre-compute the result of
the elimination on the first (T − 1)L − N − 2 equations once. We can then use
the pre-computed value to complete the elimination process on the L rows that
are affected through the recursive process of guessing the indicators.

It is important to note that the value of the flipped bits (see Eq. 3) of the
selected base keys does not affect the structure of the system of equations. That
is, bit flips only affect the right-hand side of Eq. 7. Therefore, we can reuse the
results of one Gauss elimination to all four indicator values that share the base-
key selection bits and only differ in the value of the two flip bits. (I.e. indicator
bits that define the four possible bit flips given in Eq. 3.)
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Furthermore, we can optimise the guess and determine approach by halting
the guessing of indicators when the rank of the system is greater than NL − N
and instead adding an adequate number of equations of the form B0

k(i) = xj to
obtain a full-ranked system and evaluate its solution. The number of equations
we add is smaller than the number of base-key selection bits in an indicator;
hence, this approach reduces the number of cases we need to evaluate.

In order to calculate the expected number of guesses to completely recover
the base keys of Pandaka(16,6) and Pandaka(32,6) we first examine the structure
of the linear system of equations created by the guesses of the first four rounds.
At this stage, the linear system has 4L − N − 2 equations, or 56 equations for
Pandaka(16,6) and 120 for Pandaka(32,6). The rank of the system is not neces-
sarily the same as the number of equations. Table 1 summarises the distribution
of ranks over all possible combinations of indicators for the first four rounds.

As discussed above, the values of the base-key selection bits in the indicators
determine the structure of the linear system. Using the same sequence of base-
key selection bits in Pandaka(16,6) and Pandaka(32,6) produces similar systems
of equations. Consequently, the distribution of the ranks of the linear system of
equations indicated by the probability in Table 1 are the same in both versions
of Pandaka where the only difference is the numeric value of the ranks.

Table 1. Rank distribution after four rounds of guesses

Pandaka(16,6) Pandaka(32,6) Probability

16 32 .000004

24 56 .0002

32 64 .0016

40 88 .0440

47 95 .0008

48 96 .0532

55 119 .0149

56 120 .8852

We now estimate the number of guesses required for completely scanning all
possible values of the indicators given the indicator bits of the first four rounds.
Summing the estimate over all possible combinations of the first four indicators
gives an estimate of the size of the search space for the attack. There are 252
possible indicator values (there are 256 possible 8 bits combinations, of which
the four with no base-key selection are illegal). Consequently, there are 2524

possible combinations of four indicators.
We first look at the case where the indicators result in a system with a max-

imal rank, i.e. 56 for Pandaka(16,6) and 120 for Pandaka(32,6) and estimate
the number of indicator guesses required to completely scan all of the com-
binations of indicator bits that result in a consistent non-full ranked system.
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For that, we generate 1,000 random instances of Pandaka and evaluate the num-
ber of guesses required for solving each. For Pandaka(16,6), we require an average
of 9.21 million guesses, with a 99 % confidence interval of 0.20 million. For Pan-
daka(32,6), the average is 9.23 million and the 99 % confidence interval is 0.18
million. We note that, due to the overlap of the confidence intervals, the esti-
mates for Pandaka(16,6) and for Pandaka(32,6) are statistically indistinguish-
able. Hence, we conclude that the number of cases required does not depend on
the block length L.

We argue that using the higher estimate above (9.23 million) for the case of
a system with a lower rank is an overestimate of the number of guesses required
for covering the whole search space. In a nutshell, when the rank of the system
is lower, more iterations are required for solving the system and thus increasing
the number of guesses, in contrast, when the rank of the system is lower, the
probability of the attack ignoring the case due to linear-system inconsistencies
is higher. We argue that the latter grows faster than the former, so that the
expected number of guesses is lower than for a case of a fully-ranked system.

More specifically, we postulate that for each L dependent equations in the
system we need to guess another round of indicators to get a system of degree
NL. For simplicity we assume that because we have N +2 indicator bits, adding
another round increases the number of guesses by a factor of 2N+2, or 256 for
the two Pandaka configurations.

We validate this assumption by counting the number of guesses required for
solving consistent systems of rank 3L−N − 2, i.e. systems in which L equations
are dependent. The results are 2,039 million and 2,085 million for Pandaka(16,6)
and Pandaka(32,6), respectively. These numbers are about 225 times larger than
our estimate of the number of guesses required for solving the case of fully-ranked
systems. Hence the assumption we used, increasing the guesses by a factor of
256, is an overestimate of the number of guesses required.

Chen et al. [8] demonstrates that each bit of the derived key is equally likely
to be 0 or 1. Consequently, each dependent equation in the linear system we
produce has a 1/2 probability of resulting in an inconsistency. Thus, for a given
guess of four indicators, if the difference between the rank of the system and the
number of equations is r, the probability of the attack proceeding beyond these
four indicators is 2−r. Thus, the expected factor is in the order of 2

(N+2)r
L ·2−r =

2
(N+2−L)r

L and because N+2 < L using the estimate of the fully-ranked system is
an overestimate of the number of guesses required for non-fully-ranked systems.

Thus, we have 2524 possible combinations of indicators for the first four
rounds, and an estimate of 9.23 million guesses required for each combination.
(9.23 million guesses is the higher estimate we have for a fully ranked system and,
Hence, the estimated size of the search space is bounded by 2524 ·9.23·106 ≈ 255.
It is important to highlight that the same attack complexity applies to both
Pandaka(16,6) and Pandaka(32,6). More significantly, the complexity we have
evaluated is significantly lower than that postulated by Chen et al. [8] where
they claim an attacker will need to guess all the values of the base keys, or 296

and 2192 for Pandaka(16,6) and Pandaka(32,6), respectively.
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For each of these 255 guesses, the attacker needs to evaluate a linear sys-
tem. As discussed above, parts of the system can be pre-computed, reducing
the complexity of the evaluation. Furthermore, because we compute a system
over GF (2), we can use bitwise operations to calculate multiple field operations
in parallel. Both these optimisations reduce the times required for solving the
system.

An attacker can also pre-compute the reverse matrices a large number
of combinations of indicator bits. By using these pre-computed matrices, the
attacker avoids the computationally-intensive Gauss elimination, trading stor-
age for speed.

The amount of plaintext required depends on the number of blocks required
for solving the system. In Sect. 3 we see that up to 27 blocks may be required,
with a typical number of 7 (Pandaka(16,6)) or 8 (Pandaka(32,6)) blocks. (See
Fig. 3.) Additionally, because we are trying a large number of guesses, we need
further plaintext bits to have a sufficiently high confidence that we have found
the right key. Each additional bit halves the probability of accepting a wrong
guess. Hence, with 255 guesses and 55 additional bits, we have a probability of
1/e of accepting a wrong guess. With 74 additional bits the probability drops
to below one attack in a million. Hence, for the typical case, we require 130 and
266 bits of plaintext for Pandaka(16,6) and Pandaka(32,6), respectively. For the
worst case we require 290 and 722 bits.

5 Targeting the Protocol Flaws

Analysis of the communication protocol in Pandaka reveals a key design flaw
related to the integrity check employed using CRCs [28]. The CRC code used
for checking the integrity of messages reveals excessive amounts of information
on the contents of the encrypted message.

CRC is a standard method of ensuring message integrity in network commu-
nication. RFID tags already include the circuity for calculating the proposed 16
bit CRC [15] and the CRC is used to identify bit erroneous communications as a
result of bit errors. Pandaka reuses this circuity to ensure its messages’ integrity,
avoiding the cost of a dedicated circuity for evaluating the CRC.

5.1 Ciphertext-Only Attack

While the 16 bit CRC offers a high probability of error detection, for example it
detects any single error burst less than 16 bits, it is designed to protect against
unintentional errors and is not cryptographically secure. As described earlier,
Pandaka calculates the CRC on the message before the encryption and transmits
it together with the encrypted message. Thus, the CRC in Pandaka reveals 16
bits of information on the plaintext. For Pandaka(16,6), the 16 bit version of
the protocol, the CRC effectively discloses the whole plaintext, negating the
protection of the encryption. Therefore the current description of Pandaka(16,6)
is completely broken.
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For Pandaka(32,6), the CRC could be used to elevate a known-plaintext
attack to a known-indicators attack. (See Sect. 3.) It is also possible that the
CRC could be used as a source of information of the plaintext and subsequently
facilitating a ciphertext only attack on Pandaka(32,6). One possibility for imple-
menting the attack is to guess the 8 indicators bit in F1 blocks. From this infor-
mation and from the CRC, the attacker can create a set of 24 linear equations
and subsequently use the attack in Sect. 4 to break the cipher. This attack has
the potential of reducing the complexity of a ciphertext-only attack on Pan-
daka(32,6) from 2192 to approximately 272.

5.2 Active Attacks

Not being cryptographically secure also means that the CRC does not protect
against malicious modifications of messages. The CRC code is linear, that is,
given two messages A and B, CRC (A ⊕ B) = CRC (A) ⊕ CRC (B). Thus, an
active attacker can modify transmitted messages by flipping bits in the encrypted
message and then calculate the correct CRC for the modified message even
without knowing the contents of the message. However, it should be noted that
such an attacker is beyond the threat model considered by Chen et al. [8].

The weakness of the CRC also results in a vulnerability to de-synchronisation
attacks. With a 16 bit CRC, there is a probability of 2−16 of an arbitrary mes-
sage having the correct CRC. If an attacker generates enough random messages,
one of them is likely to have the correct CRC. When a tag receives such a mes-
sage, it is accepted and Pandaka updates the cipher base keys. At this stage,
the base keys at the tag diverge from those at the reader, preventing any further
communication between the two. The de-synchronisation attack, Like the mes-
sage modification vulnerability described above, is outside the threat model of
Chen et al. [8].

6 Discussion

Pandaka aims to reduce the complexity of the tag by shifting the random number
generation logic to the reader. While the idea is appealing and is worth further
investigation, the implementation fails to meet the desired security level. In
this section we review the main weaknesses of the implementation and suggest
measures for addressing them.

Confusing Randomness with Security. For a stream cipher to be secure its
random number generator must have good statistical properties. The converse,
however, does not hold. A “good” random number generator that passes many
standard tests for randomness is not necessarily cryptographically secure.

We recommend that, in addition to statistical tests, Pandaka is subjected to
known and successful cryptanalysis techniques employed with stream and block
ciphers such as linear cryptanalysis [24–26], differential cryptanalysis [5,6], and
guess and determine [3,16,27].
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Linearity. Linear systems are easy to reverse because they can be efficiently
solved. More significantly, sparse systems of equations can be stored using less
memory and solved extremely rapidly. Consequently, cipher designs aim to avoid
linearity by including non-linear state update functions. Pandaka, however, only
uses linear operations to update the state of the cipher.

The introduction of non-linear state update functions, both for generating the
derived key and for perturbing the base-keys while increasing diffusion, would
significantly increase the security of the cipher and provide protection against
our attacks.

Limited Base-Key Perturbation. The purpose of the base-keys (or state)
update is to provide new key material for following rounds. Pandaka uses a simple
base-key update algorithm whose implementation only requires a small number
of gates. However, the key material is hardly mixed, in fact mixing between
base keys are non-existent. In Pandaka, key material of a base key is only used
within the base key and the update (bit flip and rotation) of a given base key bit
depends only on the state of a single indicator bit and all base keys are updated
using the same algorithm.

Unfortunately, despite the simplicity in the hardware implementation, the
algorithm is extremely easy to analyse and break. By combining the values of
multiple key bits from multiple base keys to determine each updated base-key
bit will increase the security of the procedure.

Synchronisation. Pandaka is a synchronous cipher with no mechanism for
re-synchronisation of the sender (e.g. tag) and receiver (e.g. reader) in the event
of lost messages. While the problem of bit errors have been addressed with the
CRC, the cipher will easily self de-synchronise during: i) packet loss that often
occurs in RFID communication networks due to packet collisions resulting from
basing the air interface protocol of RFID system on the Slotted ALOHA proto-
col for facilitating simultaneous communications with multiple other tags [15]; ii)
packet corruption and packet loss due to interferences from other readers com-
municating nearby that interfere and increase the noise in the communication
channel between a reader and a tag referred to as the reader collision problem
[14]; and iii) more rarely, a CRC collision (bit errors producing a message block
with an identical CRC to the original value calculated by the sender)[28].

Thus Pandaka is vulnerable to self de-synchronisation even without the pres-
ence of an active attacker simply from corrupt messages and packet loss due
to the wireless propagation environment and the nature of the communication
protocol between RFID readers and tags.

7 Conclusions

Pandaka is designed for resource limited RFID tags. In order to reduce the hard-
ware (area) cost of implementing the cipher in silicon chips Pandaka has used
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short shift registers and linear operations. The computationally intensive task of
generating random numbers is allocated to the more resourceful RFID readers
and overcomes the need to implement such a generator on the tag. Therefore
Pandaka manages to significantly reduce the cost of implementing the cipher on
a tag. Together with three message types and reader generated random numbers,
Pandaka develops a state update mechanism that requires minimal hardware at
the tag.

In this article we discuss several practical breaks of the Pandaka lightweight
stream cipher. In particular, we show that in the more challenging known-
plaintext scenario, using a guess and determine attack approach, Pandaka can be
broken with an attack complexity of 255 guesses using a known plaintext length
of approximately 170 bits for Pandaka(16,6) and approximately 270 bits for Pan-
daka(32,6). Furthermore, we show that the information leak in the protocol by
way of the CRC completely removes any protection provided by Pandaka(16,6)
and dramatically reduces the attack complexity of a ciphertext-only attack on
Pandaka(32,6).

We conclude our analysis by pointing out some of the most severe weaknesses
of the cipher. The most obvious weakness is that the CRC value computed to
improve message integrity exposes information on unencrypted blocks. Then,
secondly, the lack of non-linearity in the design of the state update function.
Although we suggest avenues for improving the cipher, any new design may be
vulnerable to different attacks from those we have analysed and therefore a full
analysis of the cipher would need to be performed in order to assess the strengths
of any potential changes.
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Abstract. The enforcement of access control policies using crypto-
graphic primitives has been studied for over 30 years. When symmetric
cryptographic primitives are used, each protected resource is encrypted
and only authorized users are given the decryption key. Hence, users
may require many keys. In most schemes in the literature, keys are
derived from a single key explicitly assigned to the user and publicly
available information. Recent work has challenged this design by devel-
oping schemes that do not require public information, the trade-off being
that a user may require more than one key. However, these new schemes,
which require a chain partition of the partially ordered set on which the
access control policy is based, generally require more keys than necessary.
Moreover, no algorithm is known for determining the best chain partition
to use. In this paper we define the notion of a tree-based cryptographic
enforcement scheme, which, like chain-based schemes, requires no public
information but simultaneously has lower storage requirements. We for-
mally establish that the strong security properties of recent chain-based
schemes are preserved by tree-based schemes, and provide an efficient
construction for deriving a tree-based enforcement scheme from a given
policy that minimizes the number of keys required.

1 Introduction

Access control is a fundamental security service in modern computing systems.
Informally, an access control system filters attempts by users to interact with
protected resources, only allowing those interactions that are authorized by a
policy, which is configured by the resource owner(s). Implementations of access
control in software are vulnerable to compromise of the machine hosting the
software. Moreover, such enforcement mechanisms do not work when protected
resources are stored by an untrusted or semi-trusted third party, as is increasingly
common.

In some situations, therefore, we may wish to use cryptographic techniques to
enforce some form of access control. Such an approach is useful when data objects
have the followingcharacteristics: readoften,bymanyusers;writtenonce, or rarely,
by the owner of the data; and transmitted over unprotected networks. In such cir-
cumstances, protected data (objects) are encrypted and authorized users are given
c© Springer International Publishing Switzerland 2015
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the appropriate cryptographic keys. When cryptographic enforcement is used, the
problem we must address is the efficient and accurate distribution of encryption
keys to authorized users.

In recent years, there has been a considerable amount of interest in key
encrypting or key assignment schemes. In such schemes, a user is given a secret
value – typically a single key – which enables the user to derive some collec-
tion of encryption keys which decrypt the objects for which she is authorized.
Key derivation is performed using the secret value and some information made
publicly available by the scheme administrator. These schemes are particularly
suitable for policies that can be represented in terms of information flow.

Ideally, such a scheme should minimize the amount of public information
and the time required to derive a key. Unsurprisingly, it is not possible to realize
both objectives simultaneously, so trade-offs have been sought. Most schemes in
the literature assume that each user is supplied with a single key from which
other keys are derived with the help of some information published by the scheme
administrator (see [10] for a survey of such schemes). In 2010, Crampton et al. [9]
introduced a new type of scheme in which users may receive several keys. The
significant advantage of this scheme is that no public information is required.
Moreover, the simplicity of the underlying structure of the scheme makes it
possible to prove the scheme possesses very strong security properties [12].

An information flow policy is defined by a partially ordered set X and a
function mapping users and resources to elements in X. Most key assignment
schemes are derived directly from X. The innovation introduced by Crampton
et al. was to consider a partition of X into chains (or total orders). It is par-
ticularly easy to work with chains, but the partition breaks some of the “con-
nectivity” of the partial ordering. These breaks are “repaired” by issuing more
than one key to some users. However, one question that remains open is how
best to choose the chain partition of a partially ordered set: there may be many
such partitions and different choices may lead to chain partition schemes with
different characteristics.

In this paper, we show that it is possible to work with trees, rather than
chains, without reintroducing the need for public information, resulting in
much more space-efficient key assignment. We define a tree-based, cryptographic
enforcement scheme and provide a rigorous construction for such schemes from
a given partially ordered set. We identify a number of different parameters that
may be important in the context of a tree-based enforcement scheme. In par-
ticular, we consider the total number of keys that may be required in such a
scheme and prove that a tree-based enforcement scheme with a minimal num-
ber of keys can be constructed in time O(|X|2). We show that a tree-based
enforcement scheme for a given X will typically require fewer keys than a chain-
based scheme. Moreover, we present an efficient algorithm for computing the
best choice of tree from the information flow policy, in contrast to chain-based
methods (which assume that a chain partition is given).

Our approach is based on constructing a weighted directed acyclic graph from
X and then constructing a minimum weight spanning out-tree from the graph.
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We establish a number of results about this out-tree that are likely to provide
the foundation for further study of tree-based enforcement schemes.

In the next section, we introduce notation, relevant background material and
relatedwork.Then, in Sect. 3,wedefine a tree-based enforcement scheme, provide a
method for constructing such schemes for a given informationflowpolicy, andprove
that all the resulting schemes have the property of strong key indistinguishability.
In Sect. 4, we address the problem of finding a tree-based enforcement scheme that
minimizes the total number of keys required to enforce a given policy, culminat-
ing in a polynomial-time algorithm for computing such a scheme. We conclude the
paper with a summary of our contributions and some suggestions for future work.
Those proofs that are useful in understanding our constructions are given in the
body of the paper. The remainder, including the security proof for our construction
(which extends an earlier proof by Freire et al. [12]), are in the appendix.

2 Background and Related Work

In this paper, we consider the cryptographic enforcement of access control poli-
cies. In particular, we focus on the enforcement of information flow policies using
symmetric cryptographic primitives.1

2.1 Definitions and Notation

A directed graph (or digraph) G = (V (G), E(G)) is defined by a vertex set
V (G) and an arc set E(G) ⊆ V (G) × V (G). An arc in E(G) is written
in the form xy, where x, y ∈ V (G). A directed path is a sequence of arcs
v1v2, v2v3, . . . , vp−2vp−1, vp−1vp, which we may also write as the sequence of
vertices v1v2 . . . vp through which the path passes. We write x �G y if there
exists a directed path from x to y in G. For all x ∈ V (G), we define x �G x.

The in-degree of a vertex v ∈ V (G) is defined to be the number of arcs of the
form uv in E(G). Given an undirected rooted tree, we may orient each edge in
such a way that the root has in-degree 0 and all other vertices have in-degree 1;
the resulting (acyclic) digraph is called an out-tree. Thus if a directed path exists
between a pair of two vertices in an out-tree then it is unique. H is a spanning
subgraph of a graph G if V (H) = V (G). A spanning out-tree is a spanning
subgraph that is an out-tree.

A partially ordered set or poset is a pair (X,�), where � is a binary, reflexive,
anti-symmetric, transitive relation. Given a poset (X,�), we write x < y if x � y
and x �= y; and we may write x � y if y � x. We write x � y and say y covers
x if x < y and there does not exist z ∈ X such that x < z < y. We say x is
incomparable to y, denoted x � y, if x �� y and y �� x. We say Y ⊆ X is an
antichain if for all x, y ∈ Y , either x = y or x � y: Y is a maximum antichain if
|Y | � |Z| for every other antichain Z ⊆ X; the width of X is the cardinality of
a maximum antichain.
1 There exists a large body of work on the enforcement of attribute-based policies using

asymmetric cryptographic primitives, notably attribute-based encryption [6,13].
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Given a poset (X,�), we define the graph H = (X,E0), where xy ∈ E0 if
and only if x � y. H is called the Hasse diagram of (X,�) and is a directed
acyclic graph. A Hasse diagram of a simple poset is shown in Fig. 1 (on p. 393).
We may also define the graph H∗ = (X,E∗

0 ), where xy ∈ E∗
0 if and only if x > y.

The graph H∗ is obtained by taking the transitive closure of H.
An information flow policy is defined by a partially ordered set of security

labels (X,�), a set of users U , a set of (protected) objects O, and a security
function λ : U ∪ O → X. We say u ∈ U is authorized to read o ∈ O if λ(u) �
λ(o) [5].

2.2 Basic Methods of Cryptographic Enforcement

A natural way to enforce an information flow policy is to define a cryptographic
key κ(x) for each x ∈ X, encrypt object o with κ(λ(o)) and give u (or enable u
to derive) all keys κ(x) such that x � λ(u). More specifically, let G = (X,E(G))
be an acyclic directed graph such that E0 ⊆ E(G) ⊆ E∗

0 . Then the transitive
closure of G is equal to H∗ and x �H y if and only if x �G y. By publishing key
derivation information for each arc in E(G), it is possible to derive κ(y) from
κ(x) if x �G y. Thus, the total amount of key derivation information required
is proportional to |E(G)|, while the number of key derivations will depend on
the lengths of the directed paths in G. We provide a more formal account of the
functionality required of a cryptographic enforcement scheme in Sect. 2.4.

Typically, key derivation information is generated using an appropriate sym-
metric cryptographic algorithm [1]: for arc xy ∈ E(G), the inputs to the cryp-
tographic algorithm will include κ(x) and κ(y). We write Enc(m,κ) to denote
the encryption of message m with key κ. There are three very well known ways
to implement cryptographic enforcement of information flow policies [10]:

Basic – give u the set of keys {κ(x) : x � λ(u)};
Iterative – give u a single key κ(λ(u)) and publish {Enc(κ(x), κ(y)) : x � y};
Direct – give u a single key κ(λ(u)) and publish {Enc(κ(x), κ(y)) : x < y}.

We may evaluate different implementations by considering a number of para-
meters. Let k(x) be the number of keys required by a user associated with x.
Then we write k to denote the maximum value of k(x) taken over all x and
K to denote

∑
x∈X k(x). We write p to denote the number of items of public

information,2 and d to denote the number of key derivation operations a user
may be required to perform to derive a key. Let n denote the cardinality of X.
Then the characteristics of the three schemes described above are summarized
in Table 1.

Naturally, there is a trade-off between the amount of public information we
need to compute and store centrally, and the number of key derivation operations
that are required. The direct scheme, for example, minimizes the cost of key
derivation at the expense of an increase in public information. Consider the
2 It is assumed that the structure of the poset (X, �) is known to all participants of

a cryptographic enforcement scheme.
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Table 1. How the parameters of various key assignment schemes vary

Scheme Keys for u K k p d

Basic {κ(x) : x � λ(u)} n + |E∗
0 | O(n) 0 0

Iterative {κ(λ(u))} n 1 |E0| O(n)

Direct {κ(λ(u))} n 1 |E∗
0 | 1
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(a) Hasse diagram
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(b) A chain partition

Fig. 1. The Hasse diagram of a simple poset (X, �) and a chain partition

example in Fig. 1: the Hasse diagram of the poset has 8 vertices and 10 arcs, and
the width of the poset is 2; the graph of the transitive closure has 23 arcs.

More complex schemes have been devised to reduce the number of derivation
operations by increasing |E(G)| [2,8,11]. In particular, Atallah et al. introduced
a scheme for policies where X is a total order, in which the number of derivation
operations was no greater than 2 and |E(G)| = O(|X| log |X|) [2]. Crampton
extended these ideas to arbitary interval-based access control policies [8].

2.3 Chain Partition Techniques

We may consider other ways of enforcing an information flow policy. Crampton
et al. observed that one possibility is to decompose a partially ordered set (X,�)
into disjoint chains and then use one-way functions to derive keys [9]. In this case,
the arc set E(G) ⊆ E0 and the transitive closure of G (the graph representing
the chain partition) is not necessarily equal to H∗ (as illustrated in Fig. 1b, in
which deleted arcs are shown as gray dashed lines).

The advantage of such a scheme is that no public information is required.
We simply select a key for the top element in each chain and then use a (public)
one-way function F to iteratively compute the keys for the remaining elements
in each chain. In particular, if x � y in a chain, then κ(x) = F (κ(y)).3 Thus a
3 This method is not appropriate for arbitrary posets because we may have y � x and

y � z [10].
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user can simply derive keys by repeated applications of the one-way function.
The trade-off in this case is that the user may need as many as w keys, one for
each of w chains. In Fig. 1b, for example, a user assigned to vertex d will require
κ(d) and κ(c). In short, it may be advantageous to eliminate public information,
in which case each user may require multiple keys to support key derivation.

2.4 Formalization and Constructions

Recent work has formalized the security properties required of a cryptographic
enforcement scheme (CES) for information flow policies [1,3,12]. Atallah et al.
introduced the concepts of key recovery and key indistinguishability [1]. The
former, informally, is the requirement that a coalition of users V ⊆ U (the
“adversary”) can derive κ(x) only if there exists v ∈ V such that λ(v) � x.
In other words, compromising users cannot lead to non-derivable keys being
compromised. This is, essentially, the weakest security requirement that one
might require of a CES. The schemes described in Sect. 2.2 have this property
(provided the encryption scheme has reasonable properties).

However, in the interests of integrating a CES with other cryptographic tools,
the stronger notion of indistinguishability was introduced. This property requires
that the adversary cannot distinguish between κ(x) and a random string (of
the same length). The schemes discussed in Sect. 2.2 do not have this property
(see [1], for example).

Informally, treating encryption keys as “just another encrypted data object”
cannot be the basis for a robust cryptographic enforcement scheme. Specifically,
the derivation of keys has to be separated from the decryption of data objects.
We achieve this by introducing a secret value σ(x) for each x ∈ X from which
κ(x) may be derived. More formally, a CES for (X,�) comprises the SetUp and
Derive algorithms, the first being used to generate keys and the data used to
derive keys, and the second to derive keys. Let K denote an arbitrary key space
(typically K = {0, 1}l for some l ∈ N).

– SetUp takes as input a security parameter ρ and a poset (X,�) associated
with an information flow policy. It outputs, for each element x ∈ X, a pair
(σ(x), κ(x)): σ(x) is used to derive keys κ(y) ∈ K, where y � x; and κ(x) is
used to encrypt data objects associated with security label x. The SetUp algo-
rithm also outputs a set of public information Pub, which is used to support
key derivation.4

– Derive takes as input (X,�), Pub, start and end points x, y ∈ X and σ(x).
It outputs κ(y) ∈ K if and only if y � x. (In particular, κ(x) can be derived
from σ(x).)

Atallah et al. described a CES in which two keys τ(x) and κ(x) are derived
from σ(x) using a pseudorandom function and (τ(y), κ(y)) is directly derivable
from τ(x) only if y � x. (Thus, κ(y) is iteratively derivable from σ(x) if x � y.)

4 In some schemes, it may be the case that κ(y) = σ(y) for all y ∈ X; and in some
schemes, it may be that the set of public information is empty.
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The main innovation here is to separate the derivation and encryption functions
of κ(x), meaning that knowledge of the object decryption key κ(x) does not help
in deriving κ(y). (Of course, exposure of τ(x) will allow for the derivation of τ(y)
and hence κ(y).)

Freire et al. introduce a security property called strong key indistinguisha-
bility [12], which we define formally in Fig. 4 and Definition 5 (on p. 401). The
adversary selects a vertex x to attack and may then learn {σ(y) : y �� x} (as in
the security model for key indistinguishability) and {κ(y) : y �= x}; the adver-
sary’s task is to distinguish κ(x) from random. They then define a CES for total
orders that has the property of strong key indistinguishability, in which a key
κ(x) is derived from σ(x) using a pseudorandom function and σ(y) is directly
derivable from σ(x) only if y � x. Finally, they demonstrate how this CES can
be extended to arbitrary posets using the chain partition construction described
in Sect. 2.3.

3 Tree-Based Enforcement Schemes

In this work, we are interested in enforcing an information flow policy, defined in
terms of the Hasse diagram of a partially ordered set (X,�), using cryptographic
primitives. We may enforce the policy in any way we see fit. We may, for example,
increase the number of arcs (by including some subset of the transitive arcs),
thereby decreasing the lengths of the directed paths in the graph and the number
of key derivations that are required. Thus there is a trade-off between (increasing)
the number of arcs and (decreasing) the amount of storage required for public
information. In particular, we could include all transitive arcs, so that all paths
are of length 1 (as in the direct scheme). Alternatively, we may increase the
number of keys given to each user and reduce the derivation time (keeping the
number of arcs constant). This corresponds to allowing the user to start from
multiple points in the graph.

In practice, there may be constraints that will dictate what kind of crypto-
graphic enforcement schemes will be appropriate. There may be constraints, for
example, on the computational power and/or storage of the end-user devices; or
it may not be possible to provide an on-line server to store public information.
As noted in Table 1, there are four parameters that are likely to be of interest: k,
K, p, and d. We may wish to minimize or impose an upper bound on one or more
of these parameters. Certain choices have been well studied, particularly those
for which k = 1 (when each user is given exactly one key and E0 ⊆ E(G) ⊆ E∗

0 ).
Alternatively, we can eliminate public information (by ensuring that every node
has at most one in-arc), at the expense of an increase in the number of keys
assigned to each vertex. It is these types of schemes that we consider in the
remainder of this paper. In particular, we consider the problem of minimizing
K, the total number of keys required.

In the special case that the Hasse diagram H = (X,E0) is a spanning out-
tree, we may use simpler cryptographic primitives to enforce an information
flow policy. Specifically, we know there is a unique directed path from x to y
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whenever y < x. Hence, for all x, y ∈ X such that y � x, we define κ(y) to be
F (κ(x) ‖ y), where F is an appropriate one-way function [16] and ‖ denotes
string concatenation. In other words, keys are determined by the vertices, rather
than the arcs, through which a directed path passes. In this case, we require
no public information (apart from a description of the poset), because keys are
derived only from a (secret) key and a (public) vertex label.

In general, of course, H is not an out-tree. We may assume without loss of
generality, however, that our poset has a maximum element. If (X,�) has more
than one maximal element then we add a new element to X which is defined
to be greater than all elements in X. (In this case, no user or object would be
assigned to such an element.) Thus, we may assume that H∗ has only one vertex
of in-degree zero and so has a spanning out-tree [4, Prop. 1.7.1].

3.1 Constructing an Enforcement Scheme

In this paper, then, we investigate ways of constructing a spanning out-tree from
H∗ = (G,E∗

0 ) (in order to eliminate the need for public information) by selecting
an arc set that is a subset of E∗

0 . However, we have to “repair” the Hasse diagram
by allocating some users more than one key (because some of the paths will have
been “broken” by the deletion of arcs). Thus it is interesting to consider how to
select the arcs for deletion in such a way that the increase in the number of keys
is minimized (either on a per-vertex basis or in total).

Figure 2 illustrates three out-trees derived from the poset in Fig. 1a. Remov-
ing arcs to create an out-tree inevitably means that certain paths are broken.
The out-tree in Fig. 2a, for example, means that a user associated with vertex h
only requires a single key and derivation requires no more than one hop. How-
ever, every other vertex (except a) requires additional keys in order to bridge
the gaps. The above observations motivate the following definition.
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Fig. 2. Spanning out-trees derived from the poset in Fig. 1 by arc deletion
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Definition 1. Given an information flow policy (X,�), E(T ) ⊆ X×X defines a
derivation out-tree T = (X,E(T )) if (i) T is a spanning out-tree; (ii) xy ∈ E(T )
implies y < x.

Lemma 1. Let D = (V,E) be an acyclic digraph with only one vertex r of
in-degree zero. Then by selecting one in-bound arc for each vertex x �= r we
obtain a spanning out-tree of D. Furthermore, any spanning out-tree of D can
be constructed in this way.

Proof. First, let us prove that T is a spanning out-tree. Clearly, T has no directed
cycle and every vertex of x �= r has in-degree 1. It remains to show that T is
connected and contains r. Consider a vertex y1 �= r and a longest directed path
of T terminating at y1: P = ytyt−1 . . . y1. Since T has no directed cycle all
vertices of P are distinct and since P is longest, yt = r. Thus, every vertex of T
is reachable from r showing that T is connected and contains r.

Now let T be a spanning out-tree. Note that for every vertex x �= r there
is exactly one arc to x. Thus, T can be constructed by the procedure of the
lemma. �	

If T = (X,E) is a derivation out-tree and x ≯ u, then x ��T u. However, we
may have u < x but x ��T u. Thus, the problem with a derivation out-tree, in
the context of cryptographic enforcement schemes, is that some authorized labels
will no longer be reachable. Accordingly, we extend the notion of a derivation
out-tree to a tree-based enforcement scheme.

Definition 2. Given an information flow policy (X,�), a tree-based enforce-
ment scheme is a pair (T, φ), where T is a derivation out-tree and φ : X → 2X

is a key allocation function such that:

– x ∈ φ(x);
– if u � x then there exists z ∈ φ(x) such that z �T u;
– if u �� x then for all z ∈ φ(x), z ��T u.

In a tree-based enforcement scheme (T, φ), directed paths in T are used to
derive secrets (and hence keys): E(T ) determines the paths and φ determines the
starting points of those paths (and hence the set of secrets that should be given
to each user). In particular, φ(x) \ {x} is a set of vertices that were reachable
from x in H∗ that are no longer reachable in T . Thus, informally, φ(x) identifies
a set of starting places in T from which all (and only those) nodes that were
accessible in (X,�) from x remain accessible in T , and |φ(x)| − 1 is the number
of additional secrets that will be required by a user with security label x.

Given a poset (X,�) with maximum element r and a derivation out-tree
T = (X,E), define φE : X → 2X , where

φE(x) =

{
{x} if x = r,

{z ∈ X : ∃y ∈ X such that yz ∈ E, x � z, x �� y} otherwise.

We now establish that φE is the “best” tree-based enforcement scheme. First,
we show that (T, φE) is indeed a tree-based enforcement scheme. We then show
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that for a given tree T = (X,E), any tree-based enforcement scheme (T, φ), and
any x ∈ X, φ(x) ⊇ φE(x).

Lemma 2. For any poset (X,�) and any derivation out-tree T = (X,E),
(T, φE) is a tree-based enforcement scheme.

Proof. We first show that x ∈ φE(x). This is trivially the case for x = r. If x is
not the root vertex, there exists y ∈ X such that yx ∈ E (since T is a derivation
out-tree). Moreover, x � x and x �� y (since yx ∈ E implies x < y). Hence, by
definition, x ∈ φE(x).

Now consider the case u < x. Since T is a derivation out-tree, there exists
a path z�z�−1 . . . z0 in T , with r = z�, u = z0 and � > 0. If zi = x for some i
then we are done (since x ∈ φE(x)). Hence, we may assume that zi �= x for all i.
However, there exists a smallest integer m < � such that x � zm and x �� zm+1.
(If no such integer existed, we would have to conclude r > x.) By definition,
zm ∈ φE(x) and also zm �T u.

Finally, consider the case u �� x and suppose (in order to obtain a contradic-
tion) there exists z ∈ φE(x) such that z �T u. Then u � z (by definition of a
derivation out-tree and �T ) and z � x (by definition of φE(x)). By transitivity,
u � x, the desired contradiction. �	

Lemma 3. For any tree-based enforcement scheme (T = (X,E), φ) and every
vertex x ∈ X, φ(x) ⊇ φE(x).

Proof. Clearly φ(r) ⊇ φE(r), by definition. Given x �= r, suppose (in order to
obtain a contradiction) that z ∈ φE(x) and z �∈ φ(x). Then, by definition of
φE , there exists y ∈ X such that yz ∈ E, x � z and x �� y. Now, since z � x
and (T, φ) is an enforcement scheme, there exists t ∈ φ(x) such that t �T z.
Hence t �T y (since T is a tree and yz ∈ E). Therefore, y � t and t � x, since
(T, φ) is an enforcement scheme and t �T t. By transitivity, x � y (the desired
contradiction). �	

Thus, for a given tree T , (T, φE) is the enforcement scheme that minimizes,
for each x ∈ X, the number of secrets required by a user assigned to x. Hence,
for a given derivation out-tree T = (X,E), it is reasonable to assume that we
will always use the enforcement scheme (T, φE). Accordingly, we define

K(T ) =
∑

x∈X

|φE(x)| .

That is K(T ) represents the total number of secrets required by a tree-based
enforcement scheme based on the derivation out-tree T . Note also that |φE(x)|
denotes the number of secrets required by a user assigned to security label x.
Henceforth, given a derivation out-tree T = (X,E), we will assume we will use
the enforcement scheme (T, φE). Accordingly, we will write φ in preference to φE .

Let T = (X,E) be a derivation out-tree. Then, for y, z ∈ X such that yz ∈ E,
define

γ(yz) = {x ∈ X : x � z, x �� y} .
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As we will see in Lemma 4 and Sect. 4, there is a strong connection between φ
and γ, which we can use to compute a tree-based enforcement scheme efficiently.

Lemma 4. Let (X,�) be an information flow policy and let T = (X,E) be a
derivation out-tree. Then φ can be computed in time O(|X|2).

Proof. By definition, φ(x) = {z ∈ X : ∃y ∈ X such that yz ∈ E, x � z, x �� y},
for any x not equal to r in X. Moreover, there is a single arc in E of the form yz,
for any z ∈ X, since T is a derivation out-tree. Thus, an algorithm to compute φ
comprises an outer loop which iterates through the elements of X and an inner
loop that iterates through the elements of E, where each iteration of the inner
loop for arc yz tests whether x � z and x �� y. We can compute the adjacency
matrix of H∗ in time O(|X|2), which we can use to test whether x � z (and
x �� y) in constant time. Moreover, |E| = |X| − 1 (since every vertex except the
root has in-degree 1). Thus our algorithm runs in time O(|X|2). �	

3.2 Generating Keys

We now describe how to instantiate a tree-based enforcement scheme for (X,�),
given a derivation out-tree T = (X,E), using a pseudorandom function (PRF).
The scheme is a natural extension of the one used by Freire et al. for total
orders [12].5 Let ρ be a security parameter and F : {0, 1}ρ × {0, 1}∗ → {0, 1}ρ

be a PRF (as formally introduced in Sect. 3.3).

SetUp: The inputs to the algorithm are ρ and a derivation out-tree T = (X,E)
for (X,�), with root vertex r.
Select secret value s(r) uniformly at random from {0, 1}ρ. Set

κ(r) def= F (s(r), r) (1)

and, recursively, if y is a child of vertex x (in T ), set

s(y) def= F (s(x), y) (2)

κ(y) def= F (s(y), y) (3)

Thus, for xy ∈ E, s(y) is derived from s(x) and the label of y, while κ(y) is
derived from s(y) and the label of y.
Finally, define σ(x) = {s(y) : y ∈ φ(x)}.

Derive: Given y, x and σ(x), with y � x, there (uniquely) exists z ∈ φ(x) such
that z �T y.
If z = y, then (since s(z) ∈ σ(x)), compute κ(z) = F (s(z), z). If z �= y,
then for each intermediate vertex ti on the path t1 . . . tm between t1 = z and
tm = y, compute s(ti) = F (s(ti−1), ti). Finally, compute κ(y) = F (s(y), y).

Our method for generating secrets is illustrated in Fig. 3.
5 In the special case of a total order, we obtain the scheme of Freire et al., modulo

some differences in the choice of the second input to the PRF.
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s(a) = F (s(c), a)

s(b) = F (s(d), b) s(c) = F (s(d), c)

s(d) = F (s(g), d) s(e) = F (s(g), e)

s(f) = F (s(h), f) s(g) = F (s(h), g)

s(h)

Fig. 3. The secrets generated for the spanning-out-tree in Fig. 2c

3.3 Security Analysis

We start by specifying what we understand by a PRF. Our definition is not the
most general possible and is tailored to the requirements of our construction
(as described in Sect. 3.2); specifically, we assume that the keyspace and range
of the PRF are the same set.

Definition 3. A pseudorandom function (Fρ)ρ∈N is a family of efficient func-
tions Fρ : K × {0, 1}∗ → K, where we understand ρ as a security parameter and
K = {0, 1}ρ as the keyspace.

We will usually write Fρ,K(x) to denote Fρ(K,x) for any K ∈ K. To further
simplify the notation, we will omit ρ when no confusion can arise. We write
DO ⇒ 1 to denote a configuration where D is a probabilistic poly-time Turing
machine that has oracle access to a function O and outputs a bit with value 1.

Definition 4. Given a pseudorandom function F , we define the advantage of a
distinguisher D to be

AdvF
D(ρ) =

∣
∣
∣Pr[K ←R K;DFK(·) ⇒ 1] − Pr[ϕ ←R 〈{0, 1}∗ → K〉;Dϕ(·) ⇒ 1]

∣
∣
∣ ,

where 〈{0, 1}∗ → K〉 denotes the universe of all functions mapping {0, 1}∗ to K.
We say F is indistinguishable from a random function if the advantage of any
efficient distinguisher D is negligible.

We next make precise the level of security that we target. We refer to [1,12] for
recent discussions and comparisons of security models that are specific enough
to allow the analysis of CESs using the formalisms of provable security. We
reproduce here the strongest model from [12]; that is, the one formalising the
highest level of security, which is based on the security experiment Exptkist,bX,x,A(1ρ)
defined in Fig. 4. We write σ̄ and κ̄ to denote, respectively, vectors that list the
values σ(x) and κ(x) for all x ∈ X.
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Fig. 4. Security experiment for strong key indistinguishability

Definition 5. Let (X,�) be an arbitrary poset. A CES for (X,�) is strongly
key indistinguishable with respect to static adversaries if, for all x ∈ X, the
advantage of all efficient adversaries A that interact in experiment ExptkistX,x,A is
negligible, where we define

Advkist
X,x,A(ρ) =

∣
∣
∣Pr

[
Exptkist,1X,x,A(1ρ) ⇒ 1

]
− Pr

[
Exptkist,0X,x,A(1ρ) ⇒ 1

]∣
∣
∣

and set CorruptX,x = {σ(v) : v ∈ X,x �� v} and KeysX,x = {κ(v) : v ∈ X\{x}}.

Observe that in this definition, and in contrast to other models discussed in
[1,12], the adversary obtains, in principle, all secrets embedded in the system
(that is, all σ(x) and κ(x) values), excluding only those that would allow distin-
guishing the target key by trivial means (e.g., by invoking the Derive algorithm).6

The final step of our analysis is to prove that our tree-based enforcement
scheme from Sect. 3.2 is strongly key indistinguishable. Observe that this implies
that our scheme is secure in all the models considered in [1,12]. More formally,
we have the following result.

Theorem 1. Our tree-based enforcement scheme is strongly key indistinguish-
able in the sense of Definition 5. More precisely, for any poset (X,�), x ∈ X,
and efficient adversary A, there exists a constant 0 � c � |X| and efficient
distinguishers D0

1, . . . ,D0
c , D1

1, . . . ,D1
c against the underlying PRF such that

Advkist
X,x,A � AdvF

D0
1

+ · · · + AdvF
D0

c
+ AdvF

D1
1

+ · · · + AdvF
D1

c
.

4 Minimizing K in a Tree-Based Enforcement Scheme

So far, we have shown that it is possible to construct a tree-based enforcement
scheme for an information flow policy (X,�) that is strongly key indistinguish-
able. As we observed before, we will usually require our tree-based enforcement
scheme to have some particular properties, such as minimizing the total number
6 A variant of Definition 5 would consider dynamic adversaries: such an adversary is

able to choose the challenge label x during the experiment, rather than having it
fixed as one of the experiment’s parameters. However, it has been shown that static
and dynamic definitions of key indistinguishability are polynomially equivalent [12].
To simplify the exposition, therefore, we restrict our attention to the static case.
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of keys or ensuring that all derivation paths are no longer than some threshold
value. Hence, we require an algorithm to compute a derivation out-tree that
satisfies the desired requirements, since, by Lemma 4, we can then compute the
associated key allocation function φ in polynomial time.

In this section, we consider two questions: how to minimize K, the total
number of keys allocated to vertices (by the key allocation function φ); and
how to minimize K̂, the total number of keys distributed to users. The second
question is interesting because, in practice, we might want to reduce the exposure
of keys by ensuring that very few keys are associated with vertices to which many
users are assigned. We solve both questions, demonstrating that it is surprisingly
efficient to compute the required tree-based enforcement schemes in polynomial
time. This is possible because of the connection between φ and γ, which leads to
Theorem 2. We then state and prove Theorem 3, the main result of this section.

Our basic approach is to define a weight for each arc in E∗
0 and construct

a minimum weight spanning out-tree. Accordingly, given an information flow
policy ((X,�), λ, U,O), where λ : U ∪ O → X, let U(x) = {u ∈ U : λ(u) = x},
and let H = (X,E0) be the Hasse diagram of X. Then we define the weight
function ω : E∗

0 → N, where

ω(yz) def=
∑

x∈γ(yz)

|U(x)| .

Theorem 2. Let (T = (X,E), φ) be any tree-based enforcement scheme for
(X,�). Then ∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

e∈E

ω(e).

Proof. By definition, we have, for every x �= r,

|φ(x)| = |{yz ∈ E : x ∈ γ(yz)}|

and so
|U(x)| · |φ(x)| = |U(x)| · |{yz ∈ E : x ∈ γ(yz)}| .

Hence ∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

x∈X

x�=r

|U(x)| · |yz ∈ E : x ∈ γ(yz)|

and, since r �∈ γ(yz) for any yz ∈ E, we have
∑

x∈X

x�=r

|U(x)| · |φ(x)| =
∑

yz∈E

∑

x∈γ(yz)

|U(x)| =
∑

yz∈E

ω(yz).

�	

Theorem 3. Given an information flow policy ((X,�), U,O, λ), we can com-
pute a tree-based enforcement scheme (T, φ) such that K̂ is minimized in time
O(|E∗

0 | + |X|2).
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Proof. For brevity, we write E for E(T ). By Theorem 2,

K̂ = |U(r)| +
∑

e∈E

ω(e).

An algorithm to compute the weight function ω iterates through the arcs in E∗
0

and, for a given arc yz, iterates through all x in X testing whether x � z and
x �� y. In other words, we swap the inner and outer loops in the algorithm used
in the proof of Lemma 4. Thus, we can compute ω in time O(|X|2).

Since |U(r)| is fixed, we minimize K̂ by computing a derivation out-tree that
minimizes

∑
e∈E ω(e). By Lemma 1, we can achieve this by selecting, for each

non-root vertex x ∈ X, the minimum weight arc to x, where the weights are given
by ω. We need only consider each arc (in E∗

0 ) once, which takes time O(|E∗
0 |).

The resulting set of arcs forms a spanning out-tree of minimum weight and the
number of additional keys required is

∑
e∈E ω(e). We can derive the associated

key allocation function in time O(|X|2), by Lemma 4; the result follows. �	

Corollary 1. Given an information flow policy ((X,�), U,O, λ), we can compute
a tree-based enforcement scheme such that K is minimized in time O(|E∗

0 |+ |X|2).

Corollary 2. We can find, in time O(|E∗
0 |+ |X|3/2 |E∗

0 |1/2), a minimum weight
spanning out-tree that has the minimum number of leaves among such trees.

It is useful to find a minimum weight spanning out-tree with a minimum
number of leaves because the number of leaves will impose an upper bound on
|φ(x)|. Note, however, that |φ(x)| may be greater than the width of X (and it is
not difficult to construct such an example). This is because the set of arcs in the
graph that is input to MinLeaf – the algorithm used to construct the spanning
out-tree – will, in general, be a strict subset of E∗

0 . Thus, the size of the maximal
independent set in the graph that is input to MinLeaf can exceed the width
of the poset (which is the equal to the size of the maximal independent set in
G = (X,E∗

0 )).
We now prove some further properties of γ. This enables us to reduce the

running time of our algorithm because we show it is sufficient to consider only
arcs in E0 (rather than E∗

0 ) when constructing the minimum weight spanning
out-tree.

Lemma 5. Let (X,�) be a partially ordered set. Then for all x, y, z ∈ X such
that z < y < x,

γ(xy) ∩ γ(yz) = ∅ and γ(xz) ⊇ γ(yz) ∪ γ(xy)

Corollary 3. Let (X,�) be a partially ordered set with Hasse diagram H =
(X,E0). Then, for any path x1x2 . . . xp in H∗, p > 2, we have

ω(x1xp) �
p−1∑

i=1

ω(xixi+1).
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Corollary 4. Let (X,�) be a partially ordered set with Hasse diagram H =
(X,E0). Then there exists a minimum weight spanning out-tree T = (X,E) with
E ⊆ E0.

Corollary 5. We can compute a tree-based enforcement scheme for information
flow policy (X,�) in time O(|E0| + |X|2).
Remark 1. In practice, we expect that |U(x)| > 0, although our proofs do not
make this assumption. If we do make this assumption, it is possible to strengthen
the statement in Corollary 4 and assert that a minimum weight spanning out-tree
can only contain arcs from the Hasse diagram.

Figure 5 illustrates the construction of the minimum weight spanning out-
tree for the poset in Fig. 1 (assuming there is a single user for each vertex).
The weight on arc ec is 3, for example, because γ(ec) = {c, d, f}. (The effect of
retaining arc ec would be that κ(c) would be required for each of c, d and f .
Equivalently, c ∈ φ(d) and c ∈ φ(f) if we were to choose ec to belong to our
derivation out-tree.) To construct a minimum weight spanning out-tree, we must
select arcs ca and dc (and we select one or other of fd and gd). One possible
scheme, when gd is retained rather than fd is illustrated in Fig. 5b; the scheme
requires a total of 11 keys, being the sum of the weights on the retained arcs
plus an extra one for the root vertex.

a

b c

d e

f g

h

3 2

1 2 3

2 2 1

1 1

(a) Weights on arcs
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f g

h

(b) Derivation out-tree

Fig. 5. The minimum weight derivation tree for Fig. 1

Remark 2. Our construction will almost always require fewer keys than a scheme
based on chain partitions. This follows by noting that any vertex x, such that
x > y, x > z and {y, z} is an antichain, necessarily requires (at least) two keys
in a chain partition scheme, but this is not necessarily true of our construction
(since the derivation tree may include many antichains). Consider the chain
partition in Fig. 1b and the derivation tree in Fig. 5b. The former would require
13 keys, while the latter only 11.
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5 Conclusion

In this paper, we have introduced a new form of cryptographic scheme for the
enforcement of information flow policies. Our scheme has the advantage that no
public information is required for the derivation of decryption keys. Moreover,
our tree-based scheme requires fewer keys (when X is not a total order), com-
pared to existing chain-based approaches, to enforce a given policy. Nevertheless,
our scheme retains the strong security properties that have recently been estab-
lished for chain-based schemes [12]. From a practical perspective, we provide an
efficient algorithm for computing an optimal derivation tree, in the sense that
it requires the smallest number of keys. This is in sharp contrast to chain-based
approaches, which provide no guidance on how best to select a chain partition
of the poset (of which there may be many) nor provide a way of computing the
number of keys required for a given partition. Thus, there are particular practical
advantages to using a tree-based approach.

There are several interesting opportunities for future work. From a mathe-
matical perspective, it would be interesting to establish the minimum total num-
ber of keys required by a chain-based scheme and, if possible, to quantify the
benefits offered by a tree-based scheme. This is, however, likely to be non-trivial,
as it is not clear that there exists a weight function for chain-based schemes that
can be used to formulate a result analogous to Theorem 2. From a more practi-
cal perspective, it would be interesting to find an algorithm that can compute a
derivation tree such that (i) no user requires more than w keys, where w is the
width of the poset (ii) the total number of keys is as small as possible. In partic-
ular, such a construction may be useful in scenarios where the user devices have
limited secure storage for keys. Our preliminary work on this problem suggests
that no efficient algorithm exists, but whether it is an NP-hard problem remains
open. We also intend to investigate whether a forest-based enforcement scheme,
which would share some of the characteristics of tree- and chain-based schemes,
would offer advantages in terms of reducing (i) the maximum number of steps
required for key derivation (ii) the administrative effort required following key
revocation (since we can limit key updates to those vertices within a tree in the
forest). In Fig. 5b, for example, we could delete arc gd to yield a forest of two
trees: each user assigned to vertex h or g would require an additional key (κ(d))
but worst-case key derivation would require two, rather than four, hops.

Acknowledgments. BP was supported by EPSRC Leadership Fellowship
EP/H005455/1, a Sofja Kovalevskaja Award of the Alexander von Humboldt
Foundation, and the German Federal Ministry for Education and Research.

A Proofs

Proof (of Theorem 1). The argument proceeds using sequences of |X| = n hybrid
games that interpolate between experiments Exptkist,0 and Exptkist,1. In each
hybrid step, if specific conditions are met, we replace one PRF instance by a
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random function; from the point of view of the adversary, the distance between
each two consecutive hybrids is not greater than AdvF , for an appropriate PRF
distinguisher.

Fix a poset (X,�), a derivation out-tree T = (X,E(T )) for X, a label x ∈ X,
and an efficient adversary A. Let xn ≺ xn−1 ≺ · · · ≺ x2 ≺ x1 = r be any
(reverse) linear extension of X; that is xn is a smallest element in X and x1 is
the root.7 For b ∈ {0, 1}, we set Gb

0 = Exptkist,bX,x,A and define games Gb
1, . . . , G

b
n

such that, if x �� xk then Gb
k and Gb

k−1 are identical, and if x � xk then the
difference between games Gb

k and Gb
k−1 is precisely that all PRF invocations

with key σ(xk) are replaced by assignments with values in K drawn uniformly
at random. Let Sb

k denote Pr[Gb
k ⇒ 1] for all b, k.

Observe that we replace PRF invocations by random assignments for pre-
cisely those labels x that do not have a corresponding entry in CorruptX,x.
Observe also that, as we consider labels x ∈ X in a suitable order, for all switch-
ings from a PRF to a random function we have that the corresponding PRF key
σ(x) was replaced with a uniform random value before. Hence, by a standard
reductionist argument, in the cases x � xk we have

|Sb
k − Sb

k−1| = |Pr[Gb
k ⇒ 1] − Pr[Gb

k−1 ⇒ 1]| � AdvF
D, (4)

for a specific (efficient) distinguisher D; in addition, whenever x �� xk we have
Gb

k = Gb
k−1 and hence |Sb

k − Sb
k−1| = 0. Now, by repeated application of the

triangle inequality and (4), we have

∣
∣Sb

0 − Sb
n

∣
∣ �

n∑

i=1

∣
∣Sb

i−1 − Sb
i

∣
∣ �

c∑

i=1

AdvF
Db

i
,

where c = |{x′ ∈ X : x � x′}| and distinguishers Db
i are constructed as specified.

We now consider games G0
n and G1

n. In both cases κ(x) is picked uniformly at
random, thus lines 2 and 3 in the experiment implement the same operation.
Hence G0

n is identical to G1
n and

∣
∣S0

n − S1
n

∣
∣ = 0. Thus, we obtain

Advkist
X,x,A = |S1

0 − S0
0 | � |S1

0 − S1
n| + |S1

n − S0
n| + |S0

n − S0
0 |

� AdvF
D1

1
+ . . . + AdvF

D1
c

+ 0 + AdvF
D0

1
+ . . . + AdvF

D0
c

as required. �	

Proof (of Corollary 1). We simply set |U(x)| = 1 and apply Theorems 2
and 3. �	

Proof (of Corollary 2). Replace H∗ by its subgraph D = (X,E) obtained as
follows: for each vertex x �= r delete all arcs to x apart from those of minimum
7 That is, if x � y (in X) then x � y (in the linear extension). Every (finite) partial

order has at least one linear extension, which may be computed, in linear time, by
representing the partial order as a directed acyclic graph and using a topological
sort [7, §22.3].
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weight (among arcs to x). Observe that D can be constructed in time O(|E∗
0 |).

Find an out-tree with minimum number of leaves using algorithm MinLeaf [14].
It remains to observe that MinLeaf’s runtime is O(|E| + |X|3/2 |E|1/2). �	

Proof (of Lemma 5). Suppose t ∈ γ(xy) ∩ γ(yz). Since t ∈ γ(yz), we have t � z
and t �� y; since t ∈ γ(xy), we have t � y, immediately leading to the desired
contradiction.

Now suppose t ∈ γ(xy). Then t � y and t �� x. Hence, we have t > z, by
transitivity; thus t ∈ γ(xz) and γ(xy) ⊆ γ(xz). Finally, suppose t ∈ γ(yz). Then
t � z and t �� y. Now t �� x (otherwise, we would have t > y by transitivity) and
hence t ∈ γ(xz); thus γ(yz) ⊆ γ(xz). �	

Proof (of Corollary 3). Consider the case p = 3, with x > y > z. Using Lemma 5
and the fact that |U(t)| � 0 for all t, we have

ω(xz) =
∑

t∈γ(xz)

|U(t)|

�
∑

t∈γ(xy)

|U(t)| +
∑

t∈γ(yz)

|U(t)|

= ω(xy) + ω(yz).

Now suppose the result holds for all p < P and consider a path x1 . . . xP con-
taining P vertices. Then x1xP−1 ∈ E∗

0 and, by Lemma 5 and the inductive
hypothesis, respectively, we have

ω(x1xP ) � ω(x1xP−1) + ω(xP−1xP )
� ω(x1x2) + · · · + ω(xP−2xP−1) + ω(xP−1xP )

=
P−1∑

i=1

ω(xixi+1)

Thus the result holds by induction. �	

Proof (of Corollary 4). Let T ′ = (X,E′) be a minimum weight spanning out-
tree for (X,�), and suppose arc xy is in E′ but not in E0. Then x �H y and
let zy be the last arc in this path. Since ω(uv) � 0 for each arc uv and by
Corollary 3, ω(zy) � ω(xy). Therefore by removing xy from E′ and adding zy,
we have a spanning out-tree with weight at most that of T ′. By replacing every
arc in E′ \ E0 in this way, we have a spanning out-tree T = (X,E) of weight at
most that of T ′, and therefore of minimum weight. �	

Proof (of Corollary 5). By Corollary 4, we may restrict our attention to arcs in
the Hasse diagram. Thus we can compute the minimum weight derivation tree
in time O(|E0|) and we can compute φ in time O(|E0| + |X|2). �	
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Abstract. Distributed data usage control enables data owners to con-
strain how their data is used by remote entities. However, many data
usage policies refer to events happening within several distributed sys-
tems, e.g. “at each point in time at most two clerks might have a local
copy of this contract”, or “a contract must be approved by at least two
clerks before it is sent to the customer”. While such policies can intu-
itively be enforced using a centralized infrastructure, major drawbacks
are that such solutions constitute a single point of failure and that they
are expected to cause heavy communication and performance overhead.
Hence, we present the first fully decentralized infrastructure for the pre-
ventive enforcement of data usage policies. We provide a thorough eval-
uation of our infrastructure and show in which scenarios it is superior to
a centralized approach.

1 Introduction

Due to the ever increasing value of data, the continuous protection of sensitive
data throughout its entire lifetime has drawn much attention in recent years.
Corresponding solutions are applicable in many contexts: businesses, military
and governments aim at protecting their internal procedures, research reports,
financial reports, and the like; individuals want to constrain businesses from
using or releasing their private data, e.g. for advertisement or market research;
copyright owners want their licenses to be respected.

Usage control [1,2] tackles such challenges by proposing different models and
enforcement infrastructures [3–6]. Generally, policies describe how data may or
may not be used once initial access has been granted. Additionally, policies might
specify obligations that must be fulfilled before, upon, or after usage. Correspond-
ing solutions [7–10] inject reference monitors, or Policy Enforcement Points
(PEP), into different layers of the computing system. These PEPs intercept
events within the system and enforce the Policy Decision Point’s (PDP) deci-
sion such as allowing, modifying, inhibiting or delaying the event. By tracking
data flows, such as when copying files or loading content from a database into
a process, aforementioned solutions allow to enforce data usage policies on all
representations of some data rather than on particular files or database entries.
Hence, data usage policies are enforced independently of the data’s concrete
representations at runtime. Enforcement may be preventive or detective [1,6],
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 409–430, 2015.
DOI: 10.1007/978-3-319-28166-7 20
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meaning that policy violations never occur, or that they can be detected in
hindsight, respectively.

This work tackles the problem of enforcing data usage policies on data that
has been disseminated to remote systems. In this respect, solutions that track
data flows across systems and attach the corresponding policies have been pro-
posed [11,12]. Further, these solutions enable the enforcement of policies that
can be independently evaluated on every single system, such as “do not open
this document with editor X”, or “do not print this document after 5pm”. How-
ever, the preventive enforcement of more sophisticated global policies pertaining
to events and/or the states of multiple systems, such as “not more than five
instances of this software might be executed simultaneously”, or “all copies of
this document must be deleted upon the owner’s demand”, still poses challenges
[6,13,14]. We are not aware of solutions that achieve preventive policy enforce-
ment (i) without the need for any central components, (ii) on all copies and
derivations of the original data, and (iii) which are deployable on commodity
networks.

While Digital Rights Management solutions handle such challenges by
deploying central license servers [15], such a solution comes with the drawbacks
of being a single point of failure, privacy concerns, and the necessity that the
central component must be always reachable by all PEPs. Moreover, a central-
ized solution is expected to impose significant performance and communication
overhead [13,16]. The main reason is that the PEP is stateless. Hence, when-
ever a potentially relevant system event is observed by the PEP, it is unknown
whether it is of actual importance for evaluation by the PDP. Consequently, all
observed events would need to be signaled to the central PDP. While recent
works addressed this problem by decentralizing some aspects of policy evalua-
tion, data flow tracking, and/or information retrieval [6,8,17,18], some of them
do not allow for preventive policy enforcement [6,18], while others effectively
make use of central components [8,17], or do not integrate data flow tracking
[8,17,18].

Problem. We tackle the problem of enforcing global data usage control policies
if (i) the data to be protected resides, (ii) the data usage events occur, and
(iii) the data flow events occur within and across multiple distributed systems.
While a solution could naively be implemented in a centralized fashion, such a
solution imposes drawbacks such as being a single point of failure. Intuitively,
a centralized solution is also expected to impose significant performance and
network communication overhead [13,16].

Solution. We design and implement a fully decentralized enforcement infrastruc-
ture with the goal to minimize aforementioned drawbacks and overheads. This
infrastructure deploys one PDP at each site which takes all decisions pertaining
to all local PEPs. Global policies are enforced by synchronizing the PDPs using a
distributed database. We optimize the information being exchanged according to
theoretical results [13].
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Contribution. To the best of our knowledge, our contributions are:

1. The first fully decentralized architecture and implementation for the preven-
tive enforcement of global data usage control policies (Sect. 3).

2. A thorough evaluation of the proposed and implemented architecture, show-
ing in which scenarios its adoption is beneficial (Sect. 4).

Further, we provide the source code of our implementation as open source1.

Attacker Model and Assumptions. Our infrastructure prevents users from
using data in a way that does not comply with the corresponding policy—be
the attempt intentional or unintentional. Foremost, we consider users with-
out administrative privileges. Such a scenario is pervasive in business environ-
ments, where employees are given ready-to-use computing systems. To defend
against stronger attackers, the trust anchor must be embedded at a lower layer,
e.g. by using TPMs or SmartCards. Since our infrastructure runs as a process
within the operating system, we assume both to be free of vulnerabilities. Oth-
erwise, an attacker might be able to gain administrative privileges and switch off
our infrastructure and/or tamper with it. Moreover, we assume state-of-the-art
access control mechanisms to be in place.

Running Example. We illustrate our work along a running example, in which
an insurance company provides potential customers the ability to request con-
tract offers via a web interface. After internal processing of the request, the
customer retrieves a contract offer via email, which may be accepted or declined
via a web link. The entire scenario, including the insurance provider’s internal
data processing, is depicted in Fig. 1.

First, the customer fills a web form on the insurance provider’s website. By
submitting the form (1), a new ContractRequest (CR) object is created (2) and
the web server sends the CR to a set of clerks via the mail server (3,4). One
of the clerks will then review the attached CR (5) and start an analysis job
on the internal data analysis server (6), thereby creating a new AnalysisResult
(AR) object (7). Once the analysis is performed, the clerk retrieves the AR (8)
and performs a manual review on her workstation (9). The clerk then creates a
Contract (C) object using a collaborative word processor (10,11). Once created,
C might be retrieved (12), reviewed (13) and revised (14) by several clerks. After
C has been approved by a predefined number of clerks (15), one of the clerks
retrieves its final version (16) and sends it to the customer via the mail server
(17,18). Once the customer receives the offer, he might decline (19a) or accept
(19b) the Contract. Alternatively, he might delete his initial ContractRequest
altogether (19c).

Besides the application-specific events mentioned above, we also consider
events originating at the operating system layer, i.e. system calls [10]. Using
such an approach, we are able to detect data flows that happen outside the

1 https://github.com/fkelbert/uc/ and https://github.com/fkelbert/uc4linux/.

https://github.com/fkelbert/uc/
https://github.com/fkelbert/uc4linux/
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Web Mail AnalysisClerk DocsCustomer
1. reqOffer()

3. sendReq(CR) 4. sendReq(CR)
5. review(CR)

10. create(AR)
9. review(AR)

12. retrieve(C)

13. review(C)
14. revise(C)

15. approve(C)

16. retrieve(C)17. sendContract(C)

19a. decline(C)

19b. accept(C)

19c. delete(CR)

6. startAnalysis(CR)

8. retrieve (AR)

18. sendContract(C)

2. new CR

7. new AR

11. new C

2'. CR

loop

[for several clerks]

alt

Fig. 1. Sequence of events in the running example.

application context or that have not been anticipated within the application
context, e.g. if a clerk creates a copy of a Contract using a file manager or a
shared file system.

Clearly, the customer’s data flows through many different systems in many
different formats. Further, the AnalysisResult and the Contract are data items
that have been derived from the original ContractRequest and must as such be
treated as containing the customer’s personal data. All of these data items are
stored and processed by many different systems and users, all of which must
enforce data usage policies such as:

Policy 1: ‘Exactly one contract offer must be sent to the customer not later
than 30 days after a request has been received.’

Policy 2: ‘If the customer declines an offer, all derived data items must not be
used anymore.’

Policy 3: ‘Each contract must be reviewed and approved by at least two clerks.’
Policy 4: ‘At no point in time might two clerks have a copy of the same analysis

result.’

Note, that all of those policies are global policies, meaning that they refer to data
and events that are distributed across several systems.

2 Background

2.1 Existing Data Usage Control Infrastructures

Data usage control infrastructures have been built for various system layers and
scenarios [4,6–10,12], and policy enforcement is usually performed using a PEP,
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a PDP, and a Policy Information Point (PIP). Once the PEP observes an attempt
of using an object, this attempt is signaled to the PDP which is configured with
the policies to be enforced. Depending on these policies, its internal state, and
additional information from the PIP, the PDP decides whether to allow, inhibit,
modify, or delay the usage attempt. The PEP is then in charge of enforcing
the decision. The information provided by the PIP differs slightly in different
models and includes subject and object attributes, environmental information,
and details about which data takes which representations within the system, i.e.
the system’s data flow state.

The set of events intercepted by the PEP is categorized into two, possibly
overlapping, subsets: data usage events and data flow events. Informally, data
usage events are events whose occurrence is obliged or constrained by data usage
policies. As such, all data usage events must be signaled to the PDP. Data
flow events, in contrast, must be signaled to the PIP. According to an event’s
predefined semantics and its actual parameters, the PIP will update its data
flow state. For example, if a ContractRequest data item is known to be stored as
a database entry, then all result sets of database queries selecting this entry will
also be associated with the same ContractRequest data item, and hence with
the same data usage policies.

Using such a combination of policy enforcement and data flow tracking tech-
nology, data usage control infrastructures allow to not only protect one single
data representation, such as a file or database entry, but rather all representa-
tions of the same data.

To differentiate between detective and preventive enforcement, the distinc-
tion between desired events and actual events is needed. Desired events are
intercepted by PEPs before their execution and they may be inhibited or mod-
ified in correspondence with the PDP’s decision. Actual events are intercepted
by the PEP after their execution. They can not be inhibited or modified, but
only be compensated for. Thus, desired events must be intercepted and evalu-
ated for preventive enforcement, while actual events must be monitored because
they cause state changes within the PDP and PIP.

2.2 Data Usage Control Policies: Syntax, Semantics, Evaluation

Building upon previous works [5,7,13,19], we assume policies to be specified as
Event-Condition-Action (ECA) rules: once a triggering Event is observed and
if the execution of this event would make the Condition true, then additional
Actions might be performed. Notably, the triggering event might also be an
artificial event, e.g. to indicate that a certain amount of time has passed. We will
use the terms ‘policy’ and ‘ECA rule’ interchangeably. ECA conditions (Φ) are
specified in terms of past linear temporal logics and their syntax is specified as:

Ψ = true | false | E
Σ = isNotIn(D,P(C)) | isCombined(D,D,P(C)) | isMaxIn(D,N,P(C))
Φ = (Φ) |Ψ |Σ |not(Φ) |Φ and Φ |Φ or Φ |Φ since Φ |Φ before N | repmin(N,N, E)
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While the formal semantics of Φ are detailed in [13], we recap the intuitive
semantics: E denotes the set of all data usage events (cf. Sect. 2.1); D denotes the
set of data items to be protected; C denotes the set of all possible representations,
or containers, for data, such as files and database entries. Ψ refers to boolean
constants (true, false) and data usage events E . Σ refers to so-called state-based
operators, allowing to express constraints over the system’s data flow state as
computed and maintained by the PIP: isNotIn(d,C) is true iff data d is not in
any of the containers C; isCombined(d1, d2, C) is true iff there is at least one
container in C that contains both data d1 and d2; isMaxIn(d,m,C) is true iff
data d is contained in at most m containers in C. For Φ, the semantics of not , and
and or are intuitive; α since β is true iff β was true some time earlier and α was
true ever since, or if α was always true; α before j is true iff α was true exactly j
timesteps ago; repmin(j,m, e) is true iff event e happened at least m times in the
last j timesteps. Further, we define repmax (j,m, e) ≡ not(repmin(j,m + 1, e))
and always(α) ≡ α since false.

Fixing one data item d, Table 1 shows the example policies from Sect. 1 as
ECA rules. Rule 1a expresses that the CEO must be notified via mail if no con-
tract offer has been sent to the customer 30 days after a corresponding request.
Note that this rule does have a wildcard trigger event, implying that the rule is
evaluated upon every event. Further, this rule is detective only: satisfaction of
the condition results in a compensating action; actual violation of the policy is
not prevented. Rule 1b expresses that a contract offer must not be sent if there
was no corresponding contract request, or if a contract offer was already sent.
Rule 2 expresses that any attempt to use data item d is inhibited if the corre-
sponding contract offer was declined in the past. Note, that we have used event
use to refer to a set of events. This set might include events such as Analysis-
Server.start, Docs.create and Mail.sendContract. Rule 3 expresses that sending
of a contract is inhibited if this contract was not reviewed or approved by at
least two clerks in the last 30 days. Rule 4 expresses that any event must be

Table 1. Example policies as ECA rules.
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inhibited if its execution would lead to a state in which data d is in more than
one of the clerk’s workstations.

Policy Evaluation. A policy is evaluated whenever a trigger event occurs or if
a predefined amount of time has passed. The amount of time is configurable per
policy and the interval between two subsequent time-based policy evaluations
is called a timestep. The introduction of timesteps is necessary for practical
reasons: If an ECA condition such as ϕ = (Web.reqOffer(d) before 30[days]) is
to be evaluated, then it is unlikely that event Web.reqOffer(d) has happened
exactly 30 days (i.e. 2592000 s) ago. What is more likely and practical, however,
is that Web.reqOffer(d) has happened ‘approximately’ 30 days ago, e.g. 30 days
± 12 h. Similarly, consider the conjunction and disjunction of operators, and
and or . While it is unlikely that two events happen at exactly the same point
in time, what is more likely and practical is that two events happen within a
specified time interval, i.e. within the same timestep.

For policy evaluation purposes, we consider conditions ϕ ∈ Φ as expression
trees. Leaves represent the constants true and false, events E , and state-based
operators Σ; internal nodes are operators such as before, since, and , etc. Figure 2
depicts ECA rule 1a as expression tree. Leaves are stateful by storing whether the
represented operand has become true or false, depending on the actual operand,
during the current timestep. Whenever a PEP signals an event to the PDP,
it is evaluated against all of ϕ’s leaves, potentially changing their states. E.g.,
if a leaf represents the event Mail.sendContract, then this leaf’s state changes
to true once the PEP signals event Mail.sendContract. If a leaf corresponds to
a state-based operator Σ, then its state is examined with the help of the PIP
under consideration of the signaled event’s data flow semantics. In a nutshell, the
expression trees’ leaves track which events have happened and which state-based
operators have changed their state during the ongoing timestep.

Fig. 2. Expression tree of
ECA rule 1a.

Only if the event signaled by the PEP matches
the ECA rule’s trigger event, then the entire condi-
tion ϕ is evaluated, denoted eval(ϕ). For this, the
expression tree’s internal nodes recursively query
their child nodes for their current state. Subse-
quently, the internal nodes are evaluated using this
information. Internal nodes also maintain a state,
capturing historical values of child nodes. E.g. if
ϕ = (Web.reqOffer(d) before 30[days]), then before
will keep a history of occurrences of Web.reqOffer(d)
for 30 days.

If eval(ϕ) = true, then the ECA’s actions will be
triggered. Notably, evaluation of a condition ϕ ∈ Φ at the end of a timestep is
different in that the leaves’ evaluation results correspond to the truth values that
have been ‘accumulated’ during the elapsed timestep: an event’s truth value is
true iff the event happened at least once during the elapsed timestep, while a
state-based operator’s truth value is true iff the operator was true at least once



416 F. Kelbert and A. Pretschner

during the elapsed timestep. Note that cardinality operators such as repmin
count all occurrences of an event during a timestep. Once eval(ϕ) has been
computed, the leaves’ truth values are reset for the next timestep.

2.3 Distributed Policy Decisions

As motivated in Sect. 2.1, all data usage events and data flow events must be sig-
naled to the PDP and PIP for decision making and data flow tracking purposes.
Moreover, both the PDP and the PIP maintain an internal state necessary to
perform those tasks. As discussed in [13], this leads to new challenges if the data
to be protected, as well as the data usage and data flow events are distributed.
One naive solution to enforce global policies is to deploy one central PDP/PIP.
However, such an approach is expected to be poorly performing in terms of
runtime and communication overhead [13,16].

The remaining challenge is to build an enforcement infrastructure that
enforces global policies without the need for central components [14]. As such,
it has been proposed to deploy PDPs and PIPs locally and consequently to keep
all communication between PEP and PDP/PIP local [13]. However, consistent
enforcement of global policies across all PDPs then necessitates their coordi-
nation. While naively each PDP/PIP could notify all internal state changes
to all other PDPs/PIPs, we optimize our implementation according to formal
results presented in [13]. In a nutshell, the paper analyzes for which policies and
event traces coordination between PDPs may or may not be omitted. E.g., if
ϕ = e1 or e2 with e1, e2 ∈ E , then if e1 happens within system A while e2 hap-
pens within system B, then two decentrally deployed PDPs on systems A and B
can both locally conclude evalA(ϕ) = evalB(ϕ) = true without contacting the
other PDP.

3 Architecture and Implementation

Our implementation deploys a PDP and a PIP at each site, such as a single
system, or an organizational unit, cf. Fig. 3. Those components are responsible
for local data flow tracking and policy evaluation (Sects. 2.1–2.2), as well as cross-
system data flow tracking and policy shipment [12]. For deciding global policies,
the PDPs coordinate their decisions using a distributed database (Sect. 3.2),
leveraging previous results on how to efficiently enforce global data usage policies
in distributed systems [13].

3.1 Distributed Policy Evaluation

Once a policy has been deployed at multiple PDPs, their decisions are expected
to be consistent at all times. To explain how we achieve such consistency, we take
the view of the PDP within system A, PDPA, enforcing policy p1 with trigger
event ep1 ∈ E , condition ϕp1 ∈ Φ, and action ap1 . As described in Sect. 2.2,
any event signaled to PDPA potentially changes the state of leaves within ϕp1 .
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Fig. 3. High-level architecture view.

Since such state changes are of importance for other PDPs enforcing p1, PDPA

publishes any such state changes via the distributed database. We assume this
database to be always available and strongly consistent; Sect. 3.4 explains how
this is achieved in practice.

As described in Sect. 2.2, ϕp1 must be evaluated whenever a timestep has
passed or whenever a signaled event matches p1’s trigger event ep1 . In any
of those cases, PDPA first evaluates ϕp1 locally. If this local evaluation yields
eval(ϕp1) = true, no further coordination with other PDPs is necessary: action
ap1 will be executed. However, if eval(ϕp1) = false, then it might still be the
case that ϕp1 is true globally, evalg(ϕp1) = true, i.e. when considering other
PDPs’ state changes. Hence, ϕp1 is re-evaluated: For each leaf of ϕp1 whose
local state was false, a lookup within the distributed database is performed. If
the lookup yields true, implying that the operator was satisfied at some other
PDP, the parent nodes are recursively re-evaluated up to the root node.2 For
example, consider condition ϕp1 = ev1 and isCombined(d1, d2, C), where at sys-
tem A ev1 is happening, while system B combines data items d1 and d2. Locally,
both PDPA and PDPB evaluate ϕp1 to false, evalA(ϕp1) = evalB(ϕp1) = false.
Subsequently, PDPA looks up isCombined(d1, d2, C) in the distributed database,
while PDPB looks up whether ev1 happened. Hence, distributed evaluation of
ϕp1 results in evalgA(ϕp1) = evalgB(ϕp1) = true.

It is important to note that time-based policy evaluations must consistently
happen at the same time across all PDPs. Otherwise, the PDPs might come to
different conclusions when evaluating the same policy. Consider once again ϕp1 , a
point in time t, a timestep interval of 10 min, and the fact that PDPA evaluates
at times t, t + 10, t + 20, . . ., while PDPB evaluates at times t + 5, t + 15, . . ..
Further, assume ev1 happens at time t + 2, while isCombined(d1, d2, C) is only
true at time t + 7. Then, PDPA’s evaluation at time t + 10 yields true, while
PDPB’s evaluation yields false at times t + 5 and t + 15. For this reason, our
decentral PDPs always evaluate at the same time. While we are aware that such
synchronization is subject to scheduling and clock synchronization issues, our
experiments (cf. Sect. 4) did not reveal evaluation inconsistencies.
2 In fact, for operators isNotIn and isMaxIn a lookup is performed if their local eval-

uation result is true rather than false. This reflects that local satisfaction of those
operators never implies their global satisfaction, while their local violation always
implies their global violation [13].
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3.2 Using Cassandra as a Distributed Database

As indicated in Fig. 3, our infrastructure is built on top of Cassandra—a distrib-
uted database originally developed at Facebook [20] and now maintained by The
Apache Foundation [21]. Cassandra’s purpose is to provide a “highly available
service with no single point of failure” being run “on top of [. . . ] hundreds of
nodes” [20]. As such, Cassandra has been designed to achieve high scalability,
availability, and performance.

Data Replication. In Cassandra, the entire set of nodes forming the distrib-
uted database is called a cluster. The cluster’s data is organized via keyspaces,
and each table is associated with exactly one keyspace. Keyspaces take a cen-
tral role, since each keyspace’s replication strategy defines among which nodes
of the cluster its associated tables are replicated. Hence, data with the same
replication requirements should be organized within the same keyspace. In our
context, each PDP might need to enforce several policies at the same time and
for each the set of remote PDPs with which coordination is required might dif-
fer. Hence, we represent each policy by exactly one keyspace. Consider policy p1

constraining the usage of data d1 which has representations in systems A and B.
Then, in our implementation there exists keyspace kp1 with replication strategy
krep
p1

= {A,B}. Thus, if PDPA shares a state change of ϕp1 within keyspace kp1 ,
this information is replicated to exactly those PDPs for which it is of interest,
i.e. PDPB.

Data Consistency. With the CAP theorem [22] stating that consistency, avail-
ability, and partition-tolerance can not all be achieved at the same time, many
eventually consistent databases have emerged. In this respect, Cassandra is flex-
ible by allowing to trade consistency with performance. For the time being, we
assume strong data consistency; Sect. 3.4 shows how this is efficiently achieved
in practice. In case strong consistency is not sufficient, Cassandra provides lin-
earizable consistency (compare-and-set transactions) on the basis of the Paxos
consensus protocol [23].

As described in Sect. 4, our architecture can be flexibly deployed: While in
Fig. 3 PDP, PIP, and Cassandra are local to the PEPs, it is possible to deploy
those components remotely, allowing to set up a centralized infrastructure. We
also assume all Cassandra nodes to know at least one seed node that is already
part of the cluster; this is discussed in Sect. 3.5.

3.3 Bootstrapping and Cross-System Data Flows

Consider a set of PDPs/PIPs with their corresponding Cassandra nodes and
assume that no data usage policy has yet been deployed. Then, at some point
in time the first policy p1 is deployed at PDPA. While deploying, one or more
containers are marked to contain data d1 whose usage is constrained by p1.
This initial classification is performed by PIPA. Since p1 and d1 are only known
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to PDPA, PDPA can independently take all decisions about p1 as described
in Sect. 2.2.

Now, consider that system A shares data d1 with system B, e.g. via net-
work transfer. From then on, also system B might influence the evaluation of
p1. Our implementation reflects this first cross-system data transfer of d1 by
creating keyspace kp1 with krep

p1
= {A,B}. Consequently, all data written to kp1

is immediately replicated to nodes A and B. As Cassandra’s database triggers
are experimental, actual data flow tracking and policy transfer to system B is
performed via remote procedure calls using Apache Thrift [24].

Now, system B might further share data d1 with system C. Since keyspace
kp1 exists already, our implementation adapts the existing keyspace to incorpo-
rate node C, krep

p1
← krep

p1
∪ {C} = {A,B,C}. Notably, the keyspace’s adaption

is immediately perceived by node A, such that from now on all data written to
kp1 will be replicated to nodes A, B and C. In order to prevent conflicts and
lost updates, this adaption of a keyspace’s replication strategy must be atomic;
we implemented corresponding locking mechanisms on top of the keyspace being
updated. For atomic acquiring of the lock, we use Cassandra’s lightweight trans-
actions, which provide linearizable consistency.

3.4 Cassandra Consistency

In Cassandra, each single read and write operation can be configured with a con-
sistency level (CL), which defines how many nodes of the corresponding keyspace
must acknowledge the operation. Among others, Cassandra provides the self-
explanatory consistency levels One, Two, Three and All . While using CL=All
guarantees strong data consistency, as assumed in this paper up to now, it comes
at the cost of performance and the requirement that all of the keyspace’s nodes
must be always online and reachable by all other nodes. By providing consis-
tency level Quorum, Cassandra allows to achieve strong consistency without
such drawbacks: If CL=Quorum, then operations must be acknowledged by at
least half of the nodes. Consequently, strong consistency can be achieved by
using CL=Quorum for all reads and writes. Note that strong consistency can
also be achieved by using CL=All for all writes and CL=One for all reads.

Whenever a consistency level different from One is used, reads and writes to a
keyspace might fail. If CL=All , then it is sufficient that only one of the keyspace’s
nodes is not available in order to make queries to the keyspace fail. Since failing of
a node or some network link is not unlikely in practice, a consistency level of All
can be considered impractical. If CL=Quorum, read and write operations might
fail if half of the nodes of a keyspace are not available. While such situations are
not impossible, e.g. if network partitions occur, they are much more unlikely in
practice. Considering the Cassandra cluster from the point of view of a single
node, any query to a keyspace with CL�=One fails in case the considered node
is offline. While configurable, by default our implementation uses CL=Quorum
for all reads and writes.

Our implementation tackles the aforementioned problems by two means:
First, it is configurable how often and in which intervals failed queries are retried.
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Second, if queries still fail after the predefined amount of tries, the PDP takes a
fallback decision. Clearly, such a fallback decision depends on the policy being
enforced, the scenario, and the attacker model. Hence, our policies can be con-
figured accordingly.

3.5 Connecting Cassandra Nodes

When starting up, new Cassandra nodes need some way to discover the cluster
they ought to participate in. Cassandra achieves this by defining a fixed set
of seed nodes, through which new nodes can learn about the cluster. Since our
original goal was to develop a fully decentral infrastructure, we provide solutions
to the problem of integrating new nodes into an existing cluster without any
well-known seed nodes. Unfortunately, Cassandra does not provide an API to
explicitly command a running Cassandra node to further explore the cluster via
some specific node. Having in mind that such a functionality would simplify the
following solutions, we provide the following workarounds.

Recap the scenario described in Sect. 3.3, in which the very first policy p1,
protecting data d1, is deployed at PDPA, while PDPB is not yet enforcing any
policies. At some point in time, d1, and subsequently policy p1, is transferred
to system B. In Sect. 3.3 we assumed system B’s Cassandra node to participate
in the cluster. Our solution is to not start the Cassandra node together with
the PDP/PIP, but only once the first global policy ought to be enforced: Once
PDPB receives policy p1 via remote procedure call from PDPA, this call includes
the address of system A’s Cassandra node. Knowing this address, system B will
start its Cassandra node, using the given address as a seed node.

Now, consider an extended scenario in which systems PDPA and PDPB

enforce policy p1, while PDPC enforces policy p2 which protects data d2. Since
the sets of systems enforcing p1 and p2 are disjoint, the overall cluster can be
considered to be partitioned, while the single partitions are not aware of any
other partitions. Once d1 is transferred to system C, these two partitions must
be merged. Since an explicit ‘explore’-command as described above is missing,
we solve this problem as follows: Once d1 is transferred, we start a temporary
Cassandra node which uses both A’s Cassandra node as well as C’s Cassandra
node as seed nodes. Exploring the cluster through this temporary node, the pre-
viously autonomous parts of the cluster will get to know about each other. Once
this has happened, the temporary node can be taken down again.

4 Evaluation

Since our goal was to improve over the communication and performance overhead
imposed by a centralized approach, we conducted case studies to understand
which approach causes which overheads in which situations. After detailing our
experiment setup, we elaborate on the results obtained by enforcing ECA rules
1a, 1b and 2.
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System Setup. Our virtual environment was based on VMware ESXi 5.1.0
with a host capacity of a 8× 2.6 GHz CPU and 128 GB RAM. All machines,
s0..s7, were configured with a 4× 2.6 GHz CPU. Further, s0 was configured with
16 GB RAM, s1..s7 with 4 GB RAM each. All machines run Linux Mint 17.1
64 bit, kernel 3.13.0; Cassandra was used in version 2.1.2; the infrastructure of
PDP/PIP and its connection to Cassandra was written in Java 8; PEP and PDP
communicated via Thrift 0.9.2. For the central system setup, s0 was hosting the
central PDP/PIP instance, which was responsible for policy evaluation and data
flow tracking for several PEPs being run on systems s1..s7. In this case, no Cas-
sandra instance was run. For the decentral setup, systems s1..s7 all run exactly
one instance of PEP, PDP, PIP, and Cassandra; s0 was not used. All cross-system
communication was encrypted using SSL; Cassandra used CL=Quorum.

Parameters. We identified and experimented with the following parameters:
(i) the policy being enforced, (ii) the total number of systems being usage con-
trolled, (iii) the number of systems actually enforcing the policy, (iv) the event
frequency, (v) the percentage of events relevant for data flow tracking and/or
policy evaluation. Although those parameters impose a huge complexity on the
performed experiments, we are confident that our results provide a good under-
standing of their influence on any overheads.

Experiment Execution. For each measurement we fixed all of the above para-
meters and randomly generated an event trace that matched the given (global)
event frequency; each event was randomly assigned to one of the participating
usage controlled systems. We then let the experiment run for 30 s, whereby the
policy was evaluated upon every trigger event as well as for a timestep inter-
val of one second. After each run, we reset the entire infrastructure. Note, that
our PEPs intercepted the system events both before and after their execution,
resulting in a desired event and an actual event being sent to the PDP. The data
was gathered using tcpdump and standard datetime utilities.

We present the results that we obtained by enforcing ECA rules 1a, 1b and
2. For ECA rules 1a and 1b we fixed the total number of systems being usage
controlled to three, and all of those systems where actually enforcing the policy.
For ECA rule 2, a total number of seven usage controlled systems were monitored
and enforcing the policy.

Communication Overhead. Figures 4 and 5 show the global communication
overhead when enforcing ECA rules 1a and 1b, respectively. We experimented
with the event frequency and the percentage of events relevant for data flow
tracking and policy evaluation. Trends are visualized using linear regression.

The results produced by the central system setup (Figs. 4 and 5, ) where of
little surprise: For each event being observed by a PEP, around 1070 Bytes were
exchanged between the PEP and the PDP. The percentage of relevant events did
not have any influence on the communication overhead. This is of no surprise
when recapping that the PEP is stateless and that every event must be signaled
to the PDP.
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Running our decentralized infrastructure, our first observation is that Cas-
sandra causes some base ‘noise’ of around 1050 Bytes/sec/node—independent of
any operations being performed. This implies that the centralized approach will
inexorably perform better in case of very low event frequencies as can be seen in
Figs. 4 and 5. However, depending on the event frequency as well as the percent-

Fig. 4. Communication overhead when enforcing Policy 1a on three systems.

Fig. 5. Communication overhead when enforcing Policy 1b on three systems.



A Fully Decentralized Data Usage Control Enforcement Infrastructure 423

age of relevant events, our decentralized approach is capable of outperforming
the centralized approach.

While in general event traces with a low percentage of relevant events per-
form particularly well (Figs. 4 and 5, (10 % relevant events), (25 %)),
we also observe some remarkable exceptions. First of all, aforementioned traces
perform good for two reasons: (i) policies can in many cases be conclusively
evaluated locally, avoiding costly lookups within the distributed database; (ii) a
low percentage of relevant events implies a small amount of state changes that
must be notified to other PDPs and thus written to the database. Secondly,
traces with 0 % of relevant events perform badly ( ), since our infrastruc-
ture must perform database lookups for each event and timestep. Thirdly, traces
with a high percentage of relevant events also perform badly ( (75 %),
(100 %)). While in the latter case the PDPs can almost always decide locally, a
high amount of state changes must be notified to other PDPs. Thus, the lion’s
share of the communication overhead is due to state changes being written to
the database.

As depicted in Figs. 4 and 5, ECA rule 1a can be evaluated more efficiently
than ECA rule 1b. The main reason is that evaluation of operator before in ECA
rule 1a necessitates at most one database lookup per PDP per timestep, while
in the worst case each repmin operator, which occurs twice in ECA rule 1b,
necessitates one lookup upon every event.

Fixing several event frequencies, Figs. 6 and 7 show how the percentage of
relevant events influences the total amount of Bytes being exchanged between all
involved systems. To compare those numbers, we normalize the measurements
by dividing the total amount of Bytes by the number of observed events. Again,
for the centralized approach ( ) the communication overhead is constant
(1070 Bytes per event) and the percentage of relevant events does not influence
the amount of Bytes being exchanged.

Fig. 6. Communication overhead when enforcing Policy 1a on three systems.
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Fig. 7. Communication overhead when enforcing Policy 1b on three systems.

We observe that the decentralized approach performs best for high event
frequencies (Figs. 6 and 7, (67 Events/sec), (167 Events/sec)) and if
the percentage of relevant events is around 3 % to 60 %. Firstly, this is because
higher event frequencies exploit better Cassandra’s base noise, which keeps the
database consistent. Secondly, a low percentage of relevant events results in many
situations in which the local PDPs can decide conclusively, while a low amount
of state changes must be signaled to other PDPs. However, if the amount of
relevant events is too low, then many lookups within the database are required,
while the presence of many relevant events results in many writes to the database.
Hence, the centralized approach outperforms the decentralized approach if the
percentage of relevant events is very low or very high (�2 %, �85 %; concrete
values depend on the policy and the event frequency, cf. Figs. 6 and 7).

Regarding the enforcement of ECA rule 2 within a total of seven usage con-
trolled systems, the most important difference to ECA rules 1a and 1b is the con-
dition of ECA rule 2. This condition is satisfied if event Web.decline(d) happened
at least once in the past. Once this event is observed for the first time and notified
to all other PDPs, no further coordination is ever needed. This is also reflected
in our evaluation results. First of all, we again observe a worst case scenario if no
events relevant for policy evaluation are happening (AppendixA, Fig. 9, ). In
this case each PDP must query the database upon each evaluation in order to
learn whether the event in question has happened at some remote point. Since
this event never happens, communication overhead is immense. However, once
event Web.decline(d) has happened, then no further communication is required,
and we only observe Cassandra’s base noise (Appendix A, Fig. 9, (10 %),

(25 %), (50 %), (75 %), (100 %)). As for the other scenarios, the
communication overhead caused by the centralized infrastructure is linear in the
number of events. Again, AppendixA, Fig. 10 shows that a very low percent-
age of relevant events (i.e. �2 %) causes very high communication overheads.
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However, different to the previous policies, AppendixA, Fig. 10 reveals that for
ECA rule 2 the communication overhead for higher percentages of relevant events
is constant; the decentralized approach outperforms the centralized approach if
the global event frequency is higher than approximately 20 Events/sec.

In addition, we enforced ECA rule 1a within a total of seven usage controlled
systems, only three of them being ‘aware’ of the protected data and thus enforc-
ing the policy. While the communication overhead in the centralized approach
was the same as in the scenarios described above, in the decentral approach it
dropped to approximately 60 % of the above values for ECA rule 1a: While in
the central approach still every event must be signaled to the central PDP, in
our decentralized approach four out of three PDPs are not aware of any copy of
the protected data and thus they neither enforce the policy nor participate in
the corresponding Cassandra keyspace.

PDP Evaluation Times. Figure 8 shows how many milliseconds it takes for
an event to be decided upon by the PDP for different event frequencies and
percentages of relevant events. For each event, this includes (i) the time to send
the event from the PEP to the PDP, (ii) the PDP’s evaluation process, and (iii)
the time to send the decision to the PEP.

For the centralized infrastructure, we observe that the evaluation times
increase as the event frequency increases. Clearly, higher event frequencies push
the central PDP towards its limits, since more events must be processed by the
single component. Also, more events cause more load on the network an thus
slightly higher network latency. For the same reasons as discussed above, the per-
centage of relevant events is irrelevant. Overall, the PEP usually gets responses
from the PDP after 3 to 10 ms.

For the distributed infrastructure, we observed that the event frequency does
not influence the PDP’s evaluation times. However, we observe an anomaly when
enforcing traces with 0 % relevant events. This is in correspondence with the
communication overhead and can be explained by the fact that in this case
the PDPs can never conclusively evaluate locally. Hence, for each event lookups
within the database are required. By using the Quorum consistency level, this
results in remote requests to other nodes of the cluster, decreasing performance
of the evaluation process. In these cases, the PEP may need to wait up to 16 ms
for the PDP’s response. In contrast, if an event trace contains at least some
relevant events, then the distributed decision process is capable of outperforming
the centralized approach by providing responses between 2 to 9 ms.

Wrap-Up. Considering the bare numbers, we realize that a fully enforcement
infrastructure is not unconditionally superior to a centralized one. According
to our case studies, the adoption of a decentralized approach is particularly
beneficial if (i) event frequencies are high, (ii) the percentage of events relevant
for policy evaluation and/or data flow tracking is within a range of approximately
3 % to 60 %, and/or if (iii) the policy being enforced allows for many locally
conclusive evaluations.
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Instead of bluntly deploying either of those infrastructures, experiments as
the ones above should be performed, considering the concrete parameters, i.e.
the policies, the amount of systems, and the expected event traces, of a given
application scenario. We also envision that such experiments can be performed
at runtime, and that the technology in use (i.e. central or decentral) may be
switched dynamically in correspondence with those live observations. While Cas-
sandra simplified the implementation of our infrastructure, it comes at the cost
of performance and communication overhead. It stands to reason that a tailored
solution would improve upon those overheads.

5 Related Work

Service Automata [17] address the problem of enforcing policies that cannot be
decided locally. For this, local “service automatons”, roughly equivalent to PEP,
PDP and PIP, monitor the execution of programs within a distributed system.
If an automaton’s knowledge is insufficient to take a policy decision, it delegates
the decision to some other automaton. For this, each security-relevant event
is statically mapped to one single responsible automaton; possibly conflicting
events must be mapped to the same automaton. In contrast, our approach does
not rely on such a static mapping, but allows each PDP to take the corresponding
decisions. Further, Service Automata do not cater to the fact that the data to
be protected might be copied both within and across systems.

Lazouski et al. [8] provide a framework that enforces usage control policies
if data copies are distributed. Besides access and usage control rules, so-called
PDP/PIP allocation policies are embedded into the protected data, specifying
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which PDPs and PIPs are involved in the decision process. Subject and object
attributes required by the PDP are stored at different PIP locations. Different
to our approach, the proposed allocation policies effectively introduce central
components: for each protected data, the responsible PDP is fixed. Also, each
attribute is under the responsibility of one single PIP. Failure of any of those
components will break policy enforcement.

Bauer et al. [18] monitor LTL formulas in distributed systems using rewrit-
ing techniques. Whenever a local monitor observes an event that influences pol-
icy evaluation, the policy is rewritten according to predefined rules and then
exchanged with the other local monitors. Hence, the local monitors are capable
of detecting violation or satisfaction of the formula. The approach is different
from ours in that it requires a synchronous system bus. Further, our approach
is more expressive by also considering state-based usage control policies and by
integrating data flow tracking.

Basin et al. [6,25] are capable of detectively enforcing data usage policies in
distributed systems. For this, log files are decentrally collected and a-posteriori
(i.e. offline) merged and evaluated against data usage policies. In contrast, our
approach also allows for the preventive enforcement of data usage policies.

6 Conclusions

We presented the first fully decentralized infrastructure for the preventive
enforcement of global data usage policies if the data to be protected, as well
as the corresponding data usage events, happen within multiple distributed sys-
tems.

We based the implementation of our infrastructure onto the distributed data-
base Cassandra. Local monitors, PEPs, observe data usage events within the dis-
tributed system, and signal those events to local decision points, PDPs, which
decide whether the event complies with the data usage policies. Since remote
PDPs might also observe events that influence the local PDP’s decision, the
PDPs exchange relevant information via Cassandra. This way, we achieve consis-
tent policy enforcement across multiple PDPs without any central components.
To minimize the amount of database queries, we optimized our implementation
using formal results from the literature.

We evaluated our infrastructure by comparing it with a centralized app-
roach, in which one single PDP is responsible for taking all policy decisions for
all events being observed by all distributed PEPs. Our case studies revealed that
the adoption of a decentralized infrastructure is particularly beneficial in case the
frequency of the observed system events is high and if approximately 3 % to 60 %
of all events are of relevance for policy evaluation and/or data flow tracking. In
terms of PDP evaluation times, our results revealed that the centralized and the
decentralized approach perform similarly. For our decentralized infrastructure,
the PEP usually gets policy evaluation results from the PDP within 2 to 9 ms.
While performing our experiments, we also realized that all of the above evalu-
ation results highly dependent on the policy being enforced. Notably, there also
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exist policies (cf. ECA rule 2) for which the decentralized approach performs
tremendously better than the centralized one for most situations.

In any case, a decentralized infrastructure overcomes many problems
omnipresent in a centralized approach. By deploying all components locally and
by replicating data to different locations, there is no single point of failure and
no need for a central component to be always available for all clients.

In terms of future work, we plan to experiment with the different consistency
levels provided by Cassandra, which allow to trade consistency with perfor-
mance. While we will likely be able to improve performance and communication
overhead, it would be interesting to understand to which extent a non-strongly
consistent database influences the consistency of the distributed policy evalu-
ations. Clearly, it would depend on the considered scenario whether any such
inconsistencies are acceptable. Depending on those results, a further option is
to abandon off-the-shelf databases and to implement mechanisms specifically
tailored to usage control requirements.

Acknowledgements. This work was supported by the DFG Priority Programme
1496 “Reliably Secure Software Systems - RS3”, grant PR-1266/3.

A Further Evaluation Results

Fig. 9. Communication overhead when enforcing Policy 2 on seven systems.
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Fig. 10. Communication overhead when enforcing Policy 2 on seven systems.
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Abstract. Search engines are the prevalently used tools to collect infor-
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prise a variety of sources that contain personal information — either
intentionally released by the person herself, or unintentionally leaked or
published by third parties without being noticed, often with detrimen-
tal effects on the individual’s privacy. To grant individuals the ability to
regain control over their disseminated personal information, the Euro-
pean Court of Justice recently ruled that EU citizens have a right to be
forgotten in the sense that indexing systems, such as Google, must offer
them technical means to request removal of links from search results that
point to sources violating their data protection rights. As of now, these
technical means consist of a web form that requires a user to manually
identify all relevant links herself upfront and to insert them into the web
form, followed by a manual evaluation by employees of the indexing sys-
tem to assess if the request to remove those links is eligible and lawful.

In this work, we propose a universal framework Oblivion to sup-
port the automation of the right to be forgotten in a scalable, provable
and privacy-preserving manner. First, Oblivion enables a user to auto-
matically find and tag her disseminated personal information using nat-
ural language processing (NLP) and image recognition techniques and
file a request in a privacy-preserving manner. Second, Oblivion provides
indexing systems with an automated and provable eligibility mechanism,
asserting that the author of a request is indeed affected by an online
resource. The automated eligibility proof ensures censorship-resistance
so that only legitimately affected individuals can request the removal
of corresponding links from search results. We have conducted compre-
hensive evaluations of Oblivion, showing that the framework is capable
of handling 278 removal requests per second on a standard notebook
(2.5 GHz dual core), and is hence suitable for large-scale deployment.
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1 Introduction

The Internet has undergone dramatic changes in the last two decades, evolving
from a mere communication network to a global multimedia platform in which
billions of users not only actively exchange information, but also increasingly
carry out their daily personal activities. While this transformation has brought
tremendous benefits to society, it has also created new threats to online privacy
that existing technology is failing to keep pace with. In fact, protecting privacy
on the Internet remains a widely unsolved challenge for users, providers, and
legislators alike. Users tend to reveal personal information without considering
the widespread, easy accessibility, potential linkage and permanent nature of
online data. Many cases reported in the press indicate the resulting risks, which
range from public embarrassment and loss of prospective opportunities (e.g.,
when applying for jobs or insurance), to personal safety and property risks (e.g.,
when stalkers, sexual offenders or burglars learn users’ whereabouts).

Legislators have responded by tightening privacy regulations. The European
Court of Justice recently ruled in Google Spain v. Mario Costeja González [9]
that EU citizens have a fundamental right to be forgotten for digital content
on the Internet, in the sense that indexing systems such as Google (or other
search engines, as well as systems that make data easily discoverable, such as
Facebook and Twitter) must offer users technical means to request removal of
links in search results that point to sources containing their personal information
and violating their data protection rights1. While a comprehensive expiration
mechanism for digital data has often been postulated by privacy advocates in the
past, this court decision, for the first time, imposes a legal constraint for indexing
systems that operate in the EU to develop and deploy suitable enforcement
techniques. As of now, the solution deployed by leading search engines, such as
Google, Microsoft and Yahoo, consists of a simple web form that requires a user
to manually identify all relevant links herself upfront and to insert them into the
web form, followed by a manual evaluation by the search engine’s employees to
assess whether the author of the request is eligible and the request itself is lawful,
i.e., the data subject’s right to privacy overrides the interests of the indexing
operator and the freedom of speech and information.

According to the Google transparency report [16], the number of removal
requests that have been submitted to Google since the court decision in May
2014 has already exceeded 1/5 of a million and the number of URLs that Google
has evaluated for removal are approximately 3/4 of a million. Clearly, in order
to enable efficient enforcement, it is essential to develop techniques that at
least partly automate this process and are scalable to Internet size, while being
1 In the court’s case, the plaintiff requested the removal of the link to a 12-year old news

article that listed his real-estate auction connected with social security debts from
the Google search results about him. The court ruled that the indexing by a search
engine of the plaintiff’s personal data is “prejudicial to him and his fundamental
rights to the protection of those data and to privacy — which encompass the right
to be forgotten — [and overrides] the legitimate interests of the operator of the search
engine and the general interest in freedom of information.”
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censorship-resistant by ensuring that malicious users cannot effectively blacklist
links to Internet sources that do not affect them.

Our Contribution. We propose a universal framework, called Oblivion, pro-
viding the foundation to support the enforcement of the right to be forgotten in
a scalable and automated manner. Technically, Oblivion provides means for a
user to prove her eligibility2 to request the removal of a link from search results
based on trusted third party-issued digital credentials, such as her passport or
electronic ID card.

Oblivion then leverages the trust imposed by these credentials to generate
eligible removal requests. More specifically, the officially-generated signatures
contained in such credentials comprise personally-identifiable information of the
card owner, such as her signed passport picture, address, etc. These so-called
signed attributes are subsequently automatically compared with publicly avail-
able data whose removal should be requested, in order to determine if a source
indeed contains information about a given entity. In Oblivion, we use state-of-
the-art natural language processing (NLP) and image recognition techniques, in
order to cover textual and visually identifiable information about a user, respec-
tively. Further modalities can be seamlessly integrated into Oblivion. These tech-
niques in particular automate the task for a user to determine if she is actually
affected by an online source in the first place. The outcome of these comparisons,
based on the signed attributes, is then used to provide proof to the indexing sys-
tem that a user is eligibly affected by a source. To avoid creating further privacy
concerns, Oblivion lets the user prove her eligibility to request data removal with-
out disclosing any further personal information beyond what is already available
at the link. This approach applies to a variety of different indexing systems, and
in particular goes beyond the concept of search engines that we refer to through-
out the paper for reasons of concreteness. Moreover, Oblivion exploits the homo-
morphic properties of RSA [29] in order to verify the eligibility of an arbitrarily
large set of user credentials using only a single exponentiation, and is thus capa-
ble of handling 278 requests per second on a standard notebook (2.5 GHz dual
core and 8 GB RAM). We consider this suitable for large-scale deployment.

Outline. This paper is structured as follows. We review related work in Sect. 2.
The conceptual overview of Oblivion and its detailed realization are presented in
Sects. 3 and 4, respectively. Section 5 provides performance analysis of Oblivion.
Section 6 discusses various aspects of Oblivion. Next, we conclude and outline

2 With our framework we allow for the automation of the eligibility proof of the user.
Eligibility in our framework describes the user being personally affected by an online
source, or in legal terms being the data subject. The right to be forgotten additionally
requires that the user’s data protection rights override the legitimate interests of
the search engine operator and the freedom of information. This assessment of the
lawfulness of the request is a purely legal task, which is in the domain of courts.
Hence the technical assessment of lawfulness is out of scope for our framework. If
courts and regulators agree on guidelines for this assessment, Oblivion could be
extended to a partly automated assessment of these guidelines in future work.
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future work in Sect. 7. Appendix A formally states and proves the security prop-
erties of Oblivion.

2 Related Work

The most common way to prevent web robots (or web crawlers) [24] from index-
ing web content is the Robots Exclusion Protocol (a.k.a. robots.txt protocol) [2],
a standard for controlling how web pages are indexed. Basically, robots.txt is a
simple text file that allows site owners to specify and define whether and how
indexing services access their web sites. The use of this protocol for privacy
enforcement is limited, since the file that defines the protocol can only be placed
and modified by the administrator of the web site. The individual whose personal
data is being published is hardly capable of contacting and persuading all admin-
istrators of these sources to remove the data or modify the robots.txt file. There
are many attempts to approach this privacy enforcement problem in an orthog-
onal fashion, by adding an expiration date to information at the time of its first
dissemination [5,7,15,22,27,28]. The basic idea is to encrypt images and make
the corresponding decryption key unavailable after a certain period of time. This
requires the decryption key to be stored on a trusted server, which takes care of
deleting the key after the expiration date has been reached. Although some of the
approaches utilize CAPTCHAs to prevent crawling the images easily, there is no
fundamental protection against archiving images and corresponding keys while
they are still openly available, even though first successes using trusted hardware
to mitigate this data duplication problem have been achieved [5]. Another app-
roach in this direction is the concept of sticky policies [6,8,21,26]. The concept
was originally introduced by Mont et al. [21] and requires a machine-readable
access policy to be bound to the data before it is disseminated. The policy then
ensures that the recipient of the data acts in accordance with the policy def-
inition. However, enforcement of such policies has to be backed by additional
underlying hardware and software infrastructure. In addition to these shortcom-
ings, a user needs to take care to augment data with expiration dates before the
data is disseminated in all these approaches. Thus these approaches are inher-
ently unsuited to cope with data that is already openly available on the Internet
or gets published by third parties. Finally, to implement the European Court of
Justice’s decision, Google, Microsoft and Yahoo recently launched dedicated web
forms [17,20,34] for submitting removal requests. Users have to manually iden-
tify all relevant links and insert them into this form. Subsequently, the request
is evaluated manually by the employees of the indexing system to assess first,
weather the author is eligible to file that request and second, whether the link
to the source needs to be deleted for a specific search. To this end, users have
to additionally hand over a legible copy of an ID document. The necessity of
handing over a user’s full identity to use the service comes with additional pri-
vacy implications that one would like to avoid. Oblivion constitutes a technical
follow-up to this solution, with a dedicated focus on censorship-resistance, while
additionally avoiding the detrimental effect of having to disseminate further per-
sonal information.
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Fig. 1. Conceptual Overview of Oblivion.

3 Conceptual Overview of Oblivion

In this paper, we propose a framework laying the foundation for a privacy-
preserving automation of the right to be forgotten in a scalable manner. The
basic idea is that users automatically identify online sources that contain their
personal data and can automatically request its removal from indexing systems,
if it violates their data protection rights. Upon receiving the request, we enable
the indexing service to automatically verify if the author of the request is prov-
ably affected by the source in question. Our framework is sufficiently generic to
incorporate any type of data, such as text, pictures, voice and video. For brevity
reasons, in this paper, we mainly focus on two data types: text and pictures.

3.1 Motivating Scenario and System Model

We start with a motivating scenario to explain the required functionality of
the framework and the different parties involved. We assume that a user, Alice,
discovers that an indexing service, say Google, returns certain query requests
with links pointing to a document that contains her personal information and
violates her privacy. In the next step, Alice contacts an Ownership Certification
Party (OCP) in order to receive validation that this source indeed contains
her personal information. Such an OCP could be a third party or the Google
helpdesk. Along with the relevant links, she hands over publicly verifiable ID
documents such as driver’s license, passport or national ID card to the OCP.
If the provided documents and the content of the article in question indeed
match (which will be automatically checked by Oblivion), the OCP hands back
a corresponding certificate. Alice then contacts Google to request removal of
these links, providing an additional explanation, and proves her eligibility to do
so based on the certificate of the OCP. Upon receiving this information, Google
checks if the considered document is indeed indexed by Google, and if the OCP
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certificate is valid for this specific document and user. In this case, the requested
article will be removed from the indexing system.

Based on this use case scenario, we consider the following entities in our
proposed framework designed for automating the process of handling removal
requests.

User: An authorized user who issues the request to remove her personal data.
Indexing System: This system is capable of removing links to sources con-

taining a user’s personal data from its indexing system, based on a removal
request of the user.

Ownership Certification Party (OCP): It is responsible for verifying if the
user is the eligible data subject of the source under consideration3.

Certification Authority (CA): It issues publicly verifiable credentials to the
users.

3.2 Threat Model and Security Objectives

We assume that all entities in the system fully trust the CA. However, a CA
does not need to be online because the issuance of credentials to the users takes
place out of band, typically for a longer period of time, say a couple of years.

Unlike the CA, the OCP is an entity that is not fully trusted from the user’s
perspective because it can try to learn the user’s keying material and additional
user credentials not required for the ownership verification; moreover, it might
want to forge removal requests. The OCP is the only entity that is not part of
the traditional system. The OCP can be run by the organization (e.g., Google)
that manages the indexing system, or it can be a third-party service. The OCP
is assumed to be online during the execution of a request.

The indexing system is an entity inherently present in the traditional system.
The indexing system and the OCP mutually trust each other; in practice, this is
often trivially the case since the OCP and the indexing system are often managed
by the same organization. If the OCP is an independent third party, this trust
would typically be established via the CA using appropriate certificates.

We assume that users protect their private keys or at least, if their private
keys are lost or stolen, a key revocation mechanism is installed and the user
generates new keys. During the ownership verification, we do not assume any
interaction between the users and the OCP. A user can present the OCP-signed
proof to remove links to the data from multiple indexing systems, such as Google
and Yahoo. We also consider an external adversary that could harm credibility
of the user through replay attacks with the intention to make the service unavail-
able. For providing confidentiality over the communication network, we assume
the presence of secure channels (such as SSL/TLS [11]) between a user, the OCP
and the indexing system.

3 Ownership in this context should not be confused with the legal term. Legally, the
OCP can only assess and certify the individual’s eligibility since, at least in EU
context, legal ownership is not applicable to the right to be forgotten.
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Based on these assumptions, we intend to achieve the following security objec-
tives:

• Minimal Disclosure: An indexing system should not learn anything beyond
what is required for eligibility checking and assessment of lawfulness. The
court decision ruled that the right has to be judged on a case-by-case decision.
Hereby, the right of the individual has to be balanced with the public right of
information. Our system handles removal requests that prove eligibility but
do not reveal any further information beyond what can be found in the online
source in question4.

• Request Unforgeability: The system should be designed such that an indexing
system can only verify user requests without any possibility of forging existing
or generating new requests on behalf of the user.

• Censorship-Resistance: The system should prevent censorship in the sense
that only requests from provably affected users should be taken into account.

In addition to ensuring these security properties, the system should satisfy
the following system properties in order to be suitable for large-scale deploy-
ment. It should be scalable in order to be able to process a large amount of
queries simultaneously, while at the same time ensuring a thorough treatment
of each individual query. It should blend seamlessly into existing infrastructures,
to enable adoption by current indexing systems and certification authorities;
moreover, the solution should be conceptually independent of the device and the
operating system used. Finally, it should be easy to understand and use even for
the general public.

3.3 Key Ideas of the Protocol

Oblivion is built on top of already available infrastructure (as explained in
Sect. 3.1) that includes users, an indexing system and a CA. For the automatic
verification of ownership, we introduce only a single new entity, the OCP, thus
making our framework deployable in practice. In the framework, we distinguish
three main phases: registration, ownership claim and reporting phases. Figure 1
presents the overall architecture for achieving the goals defined in Sect. 3.2.

Registration Phase. During the registration phase, each user registers with
the CA as shown in Fig. 1. For the registration, a user presents (in Step 1) her
attributes (along with evidence) and her verification key. The verification key
should, for privacy reasons, be generated by the user herself before contacting
the CA, but the generation of the key is orthogonal to our framework. The CA
checks the validity of the attributes presented, certifies them and returns (in
Step 2) a list of signed attributes, where each signed attribute is bound with

4 Although Oblivion provides for minimal disclosure, the indexing system might
request additional information, such as an author’s name, for liability reasons in
a real-world deployment of Oblivion. Moreover, the assessment of lawfulness could
in some cases also require additional personal information.
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the user’s verification key. Typical examples of attributes are the date of birth,
name or a user’s profile picture.

Ownership Claim Phase. Once a registered user finds leakage of her personal
data through the indexing system, she can contact the OCP claiming eligibility
(in Step 3). This is the core phase in which the OCP expects justification of why
the given piece of data affects the user. To make such a justification, the user can
put tags on the given data that consist of her attributes which were signed by
the CA. In order to improve usability, we automate the tagging and verification.
One trivial automation method is to simply check if any user attribute appears
anywhere in the article; if this happens, the matched item could be tagged with
that attribute. The name attribute, say Alice, could be matched in this way.

The exact matching can semi-automate the tagging process but it cannot work
in general because it may not return the correct results for all user attributes. Let
us consider a user attribute in the form of a tuple: 〈Nationality, German〉 (as
explained in Sect. 4.1). In order to match this attribute, the OCP has to check if the
user attribute or its synonym has appeared in the article. This includes semanti-
cally linkable formulations, such as being a citizen of Germany and having German
nationality.

Letting the user manually deploy this solution, i.e., forcing the user to find
synonyms of each possible word in the article, is an exhaustive task. Therefore,
we employ an NLP-based technique — the named entity recognizer (NER) [14]
in our case — for efficiently collecting all possible candidates in the article.
The NER detects and classifies the data into various categories, such as person,
organization, location, date and time, and it thus helps to identify if a user
has attributes belonging to the category identified by the NER. If yes, we can
perform exact matching or run a synonym checker [23] on identified categories.
Articles containing a user’s picture are tagged in a corresponding manner.

After the attributes are matched, the user has to generate a proof by prepar-
ing a message that contains a list of signed attributes that are required for the
verification, the tagged article and her verification key. The user signs this mes-
sage and sends it to the OCP (in Step 3) as an eligibility claim.

The OCP first verifies the message signature and the signed attributes used
in the tagging. If the claim relates to text attributes, the OCP runs an entity dis-
ambiguator to identify whether the article is about the user. If the claim includes
a picture, the OCP runs a corresponding face recognition algorithm. Upon suc-
cessful evaluations of all steps, the OCP presents to the user an ownership token
(in Step 4).

Reporting Phase. After receiving the ownership token from the OCP, the user
sends a request for removal to the indexing system (in Step 5). The indexing
system automatically validates the ownership token and then assesses whether
to remove the links pointing to the user’s personal information from its system.
Finally, it sends (in Step 6) an acknowledgment to the user, which could be a
success or failure message.
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4 Realization Details of Oblivion

In this section, we provide details of each phase of our framework and explain
the communication protocol to show interaction between different components.
An indexing system and a user are denoted with IS and U, respectively. The
communication protocol steps, described in this section, correspond to the flow
illustrated in Fig. 1. After that, we provide details on how to securely and effi-
ciently realize the proposed protocols using cryptographic primitives.

4.1 Registration Phase

As we can see in the communication protocol, a user sends (in Step 1) her
attributes, A = {a1, a2, . . . , an}, which characterize her, with supporting proofs
and the verification key vkU to the CA. Each user attribute ai ∈ A is a name
and value key pair 〈NAME, VALUE〉, representing name of the attribute and
value specific to each user, respectively. For instance, an attribute name could
be National, and if say, a user is national of Germany, then the value will be
German. Some general user attribute names include, but are not limited to, Full
Name, Date of Birth, Place of Birth, Current Residence and ID Picture.

Upon a successful verification of the provided data, the CA issues a list of
signed attributes σUA

= {σUa1
, σUa2

, . . . , σUan
} and sends it back to the user (in

Step 2). Our attribute signing scheme binds every user’s attribute with her ver-
ification key. Note that one of the attributes ai is a profile picture that uniquely
identifies the user.

Steps 1 and 2 constitute the registration phase that takes place securely and
out of the band. The concept of digital signature together with user attributes
(signed by the government) is already present in some EU countries [12,13,32].

4.2 Ownership Claim Phase

In order to make an ownership claim to the OCP, we consider a user client,
say a browser plugin. The plugin sends the claim to the OCP and receives an
ownership token from the OCP in the case the claim can be verified, cf. Figure 1.
In order to do so, the first step is that the user client has to formulate the claim,
then it has to identify personal information and finally the actual removal request
has to be generated. In the next step, the OCP has to verify the request. This
is done by first verifying the authenticity of the request and second verifying
the relationship to the data. The latter verification depends on the type of data,
e.g., face recognition can be used for pictures. The last step is to generate the
ownership token that is then transferred from the OCP to the user. In the
following, we present the details of all these tasks.

Identifying Personal Information. For identifying user’s personal informa-
tion in an article (as illustrated in Fig. 2), a user client may run the NER algo-
rithm locally (assuming it is delivered as a part of the user client) to extract
all possible candidates. The NER algorithm could also be run as a third-party
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Fig. 2. An article illustrating personal information of Alice Schmidt who has an ID
card with digital credentials issued by the German government.

service (e.g., a web service), called by the user client. After running the NER
algorithm, a user client picks each of the candidates and matches them with the
user attributes (see Fig. 2).

If the match is not successful, a user client runs a synonym checker. If both
words are synonyms then they are considered matched; otherwise, the next can-
didate is picked from the queue for the comparison. The synonym checker could
be delivered as a part of the user client. To make the user client lightweight,
we can assume a third party service (e.g., a web service). In either case, the
synonym checker should be very specific to the attributes issued by the CA5.

Face Detection. Besides the textual description, an article could also contain
a user’s picture, either as a solo or a group picture. Like textual attributes,
the user client can run the face detection algorithm to automatically detect the
user’s face. On successful detection, a user client can automatically include the
CA-signed user picture in the removal request, which is explained next.

Generating Removal Request. After identifying personal information, a user
client prepares a removal request. During the preparation, it chooses all signed
attributes required for the ownership claim. Next, it packs them as PσUA∗ so
that the OCP can verify the signed user attributes using a single exponentiation
operation using the CA verification key. This would also require a user client
to include in the message a subset of her attributes A∗ corresponding to the
packed ones, i.e., PσUA∗ . Since a user client signs the message using the user’s
signing key, the user’s verification key vkU is also included in the message to let

5 For instance, the user’s date of birth might appear differently in an article, i.e., in the
form of her age as shown in Fig. 2. If this happens, the age could be compared with the
difference of the user’s date of birth and publication date of the article, if present.
As we can see in the example, 30 years old will be compared with 20.10.2014 -
29.07.1984. Further tests for checking syntactic equivalence are conceivable, but are
postponed to future work.



Oblivion: A Framework for Enforcing the Right to be Forgotten 441

the OCP verify the message. For preventing replay attacks, a timestamp TS is
also included in the message. The user client sends to the OCP (in Step 3) the
message M = (TS, vkU , A∗, PσUA∗ ,D) along with the signature σM .

Verifying Removal Request. Upon receiving a removal request, an OCP
verifies it before issuing any ownership token. As a first step, the signature σM

over the message M is verified. Next, the OCP checks the timestamp and verifies
the packed version of the user attributes signed by the CA. Then, the OCP checks
if all tagged attributes are valid. This step comprises the exact matching and/or
synonym checking.

Face Recognition. Optionally, the face recognition algorithm could be run
provided there is a user picture in the article. As we explained earlier in this
section, faces are pre-identified by the user client, in order to ease the job of the
OCP. The OCP compares the user-tagged face with one provided as a signed user
attribute in the request (see Fig. 2). If the face recognition algorithm discovers
similarity with a certain confidence, the user’s picture in the article is considered
matched with her profile picture.

Entity Disambiguation. When the given article contains text, the OCP can
execute the disambiguation algorithm (e.g., AIDA [18]) for ensuring the eligi-
bility goal, i.e., checking whether the article is about the user. The outcome of
this algorithm is the relation between the user attributes, her name in particular,
and the context of the text. The outcome, say satisfying the predefined threshold
value, would help the OCP to mark the user as being affected by the data in the
article. Figure 2 illustrates an example article about Alice Schmidt.

Issuing Ownership Token. On successful evaluations of all the steps per-
formed by the OCP, the user is issued an ownership token. This is accomplished
by the OCP by sending (in Step 4) an ownership token DU to the user. It is
important to note that the OCP verification protocol is non-interactive.

4.3 Reporting Phase

Once the user receives the ownership token, she can report to the indexing sys-
tem. In this phase, a user reports by sending (in Step 5) the ownership token DU

(corresponding to D) to the indexing system. The indexing system verifies the
token, fires the incident and sends (in Step 6) an acknowledgment Ack to the user.
If the OCP is a third-party service, the ownership token is signed by the OCP and
could be sent to multiple indexing systems simultaneously.

4.4 Efficient Cryptographic Realization

The cryptographic instantiation relies on RSA-full-domain hashing as the
underlying signature scheme. We briefly recall the definition of this signature
scheme. The scheme assumes a given collision-resistant family of hash functions
Hk : {0, 1}∗ → {0, 1}k. In the following, we omit the security parameter k for
readability. The key generation KeyGen computes a key pair (sk, vk) by first



442 M. Simeonovski et al.

computing an RSA modulus N = p · q, where p and q are two random primes,
and then computing e and d such that e · d = 1 mod (p − 1)(q − 1). The keys
are sk = (d, vk) and vk = (e,N). The signing function Sign(sk, M) computes
σM := H(M)d mod N . Finally, the verification function Verify(vk,σ,M) out-
puts accept if H(M) = σe mod N and reject otherwise.

Using this cryptographic primitive, we finally describe the construction that
we propose for our framework to achieve goals defined in Sect. 3.2. The censorship-
resistance and eligibility checking goals could be achieved using X.509 based
schemes [19]; however, those schemes are not able to achieve goals including min-
imal disclosure (i.e., disclosing only those attributes required for the ownership
claim) and scalability (i.e., reducing computational overhead on the OCP end).
Using our construction, the user can provide a minimal set of her attributes
required for the ownership claim, and we are able to delegate some computation
to the user client so that the OCP could be offloaded. Our construction allows an
OCP to verify all user attributes with just a single exponentiation.

Definition 1 (Data Ownership Scheme). The data ownership scheme
DATA-OWN is a tuple of algorithms 〈Init, KeyGen, CA.SignA, U.SignM,
OCP.VerifyM, U.PackA,OCP.VerifyA〉. The definition of the algorithms can be
found in Fig. 3.

Fig. 3. Details on the algorithms of the data ownership scheme.
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Lemma 1 (Correctness). Informally speaking, OCP.VerifyA(vkCA, vkU ,
PσUA∗ , A∗) will always return accept if the list of signed attributes that are packed
by the user are the same as the list of attributes A∗ provided by the user to the
OCP. More formally,

Pr[OCP.VerifyA(vkCA, vkU , PσUA∗ ,A∗) = accept] = 1

The claim easily follows from the homomorphic property of exponentiation
modulo N . We analyze the security properties of Oblivion in Appendix A.

5 Performance Analysis

In this section, we provide implementation details for all components that we
newly developed for Oblivion and name libraries that this implementation relies
on. We subsequently evaluate the performance overhead of this implementation
for each involved component (CA, user client, and OCP).

5.1 Implementation Details and Evaluation Parameters

Components of the Implementation. The implementation prototype is writ-
ten in Java. To reflect the different involved participants, the implementation
consists of three components: a module for the CA (CA-module), a module for
the OCP (OCP-module) and a module for the user client (user-module). For
the sake of simplicity, the prototypical implementation assumes that the OCP
and the indexing system are managed by the same organization; this avoids an
additional trust level between these institutions and allows us to concentrate
on the performance measurements. The size of each of these modules (without
included libraries; see below) is below 5 KB.

Libraries Used. Our prototypical implementation relies on several existing
open source libraries. First, we include the Stanford NER library [1] for iden-
tifying personal information in the textual article. The NER library is of size
3.2 MB and the NER classifier, for covering seven distinct classes of data, requires
16.6 MB. Second, we rely on OpenCV (Open Source Computer Vision Library),
an open source computer vision and machine learning library [25], for face detec-
tion and recognition. Finally, we include the AIDA (Accurate Online Disambigua-
tion of Named Entities) framework [18] to achieve ownership disambiguation.
In our experiments, we used the AIDA framework itself and its corresponding web
service, which works with entities registered in the DBpedia [3] or YAGO [30]
knowledge base.

Evaluation Parameters. We have evaluated the performance of the implemen-
tation on a dataset of 150 news articles that we randomly crawled from the inter-
national news agency Reuters6, using the Java-based web crawler crawler4j [10].
These articles cover different topics and range from 1 K to about 10 K words;
6 http://www.reuters.com/.

http://www.reuters.com/


444 M. Simeonovski et al.

the average length is 1.9 K words per article. The actual experiments were run
on a standard notebook with 2.5 GHz dual-core processor and 8 GB RAM. The
experimental results described below constitute the average over 100 indepen-
dent executions. Network latency was not considered in the experiments.

5.2 Evaluating the CA-Module

Evaluating the performance of the CA-module consists of measuring the over-
head of attribute certification.
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Fig. 4. Evaluation of the CA-module:
Performance overhead for certifying
user attributes.

Attribute Certification. Figure 4 illus-
trates the computational overhead for cer-
tifying user attributes. In our experiment,
we generated up to 50 attributes and con-
sidered CA’s signing keys of varying size,
ranging from 512 to 4096 bits. As we
expected, certification time grows linearly
in the number of attributes. For the most
complex cases under consideration — the
CA signing 50 attributes, and thus far more
than what a user would typically maintain,
using a signing key of size 4096 bits —
the attribute certification took 7.5 s. For
smaller numbers of attributes, or for all
smaller key sizes, this certification takes less than a second. Since attributes
are typically certified only once per user, this computational overhead should be
acceptable as a one-time upfront effort.

5.3 Evaluating the User-Module

Evaluating the user-module is performed in two steps: identifying suitable
attributes in the given sample texts, and pre-processing these attributes for the
subsequent ownership-proof phase.

Identifying Attributes. As explained in Sect. 3.3, the user-module pre-
processes the article using NER techniques and appropriately selects all entities
that are necessary for the identification process. We evaluate the performance
of the user-module on the aforementioned 150 news articles from Reuters, and
measure the time required to identify and extract all entities. The results are
depicted in Fig. 5(a). The performance overhead varies from 77 to 814 millisec-
ond (ms), with an average of 174 ms per article. The number of unique entities in
the articles ranges from 43 to 590, where the average number of unique entities
per article is 135.

Attribute Packing. After identifying all personal attributes in a given news
article, the user-module pre-processes a set of signed attributes as required for
the ownership proof. This pre-processing in particular reduces the number of
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Fig. 5. Evaluation of the user-module: Performance overhead of (a) identifying personal
information and (b) for packing user attributes.

exponentiations that are required to verify the attributes for the OCP, and
thereby avoids a potential bottleneck. In the performance measurement, we again
considered up to 50 attributes and varying key sizes. As shown in Fig. 5(b), the
time for this pre-processing increases linearly in the number of attributes, with
an additional overhead for larger key sizes. For the maximum of 50 attributes,
the pre-processing only took between 0.1 ms (for a 512-bit key) and 4.1 ms (for
a 4096-bit key).

Message Signing. The user client signs the message using her signing key. For
this experiment, we considered the aforementioned 150 news articles. Consider
the overhead of signing a message with a signing key of size 1024 bits. Depending
on the size of the article, the signing took between 2.8 and 3.8 ms, with an average
of 2.9 ms per article.

5.4 Evaluating the OCP-Module

We split the performance evaluation of the OCP-module into two parts: First,
we evaluate the time required to verify the validity of requests for varying para-
meters: for varying numbers of articles, for varying number of attributes, and
for varying verification requests. Second, we evaluate the time required to decide
whether the request is legitimate, i.e., whether the document under consider-
ation affects the user’s data, either by means of entity disambiguation or face
recognition.

Validating the User Request. Upon receiving a signed message from a user,
the OCP verifies the validity of the signature using the user’s verification key.
This verification time (with a 1024-bit key) ranges from 2.9 to 4.3 ms with an
average of 3.2 ms per article. Figure 6(a) illustrates the cumulative verification
time to verify up to 150 articles. It grows linearly, so verifying message validity
for 150 articles takes the OCP less than 0.72 s.

Similarly, Fig. 6(b) displays the time required to verify a certain number of
signed user attributes. Recall that the user sends a packed version of her signed
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Fig. 6. Evaluation of the OCP-module: Performance overhead of (a) verifying the mes-
sages, (b) verifying user attributes signed by the CA, (c) verifying user requests and
(d) running entity disambiguation.

attributes to ease the verification task of the OCP. Still, the OCP needs to
calculate the hash of each individual attribute and multiply all hashes together
before being able to verify the signature based on the packed version. Verifying
50 user attributes takes 0.37 ms (for a 512-bit key) and 10 ms (for a 4096-bit key),
respectively. For l attributes, the packed version is at least l − 2 exponentiations
faster than verifying each attribute individually.

Finally, Fig. 6(c) shows the performance overhead for verifying a certain num-
ber of user requests. In our experimentation, we assumed that every request
requires the verification of 20 attributes, each one signed with a key of size
1024 bits. To measure the performance overhead, we gradually increased the
number of user requests from 2000 to 20,000 and observed an (essentially linearly-
growing) overhead from 0.824 to 7.96 s. Processing a single verification request
with 20 attributes took less than 0.4 ms on average.

The overall computational overhead of the OCP-module is a combination of
the message verification and the attribute request verification, each one incurring
on average 3.2 ms and 0.4 ms, respectively. Therefore, our implementation man-
ages to process a removal request within 3.6 ms. In summary, it allows the OCP
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to handle 278 requests per second (using the standard laptop that we based these
experiments on).

Eligibility of the User Request. Identifying whether the requested article
indeed contains personal data of the requesting user relies on appropriate entity
disambiguation. Figure 6(d) illustrates the performance overhead for entity dis-
ambiguation with up to 10 entities.

Recall that we require the user client to run the face detection algorithm
and select the appropriate face and send it the OCP along with the standard
request. The performance overhead of the face recognition algorithm depends
on multiple factors such as the picture resolution and the face position in the
picture. In our experiments, we have chosen pictures with well-defined frontal
faces. The resolution of the pictures is up to 3072× 4608 pixels with an average
size of 4 MB. Having all these predefined conditions, the runtime of the face
recognition algorithm stays in the range of 150 to 300 ms.

The overall performance overhead, comprising both entity disambiguation
and image recognition, currently constitutes the bottleneck for verifying the
validity of removal requests in the OCP-module. Currently, we are exploring
further optimization here.

6 Discussion

Deployability and Usability. In order to deploy our solution, Oblivion
requires a national or local government-wide CA that issues credentials to citi-
zens. We argue that this requirement does not limit practicality of our approach
because the issuance of such credentials is already part of an EU standard [12],
implemented by some member states and meant to be adopted by all the EU
member states [13,32]. The European EID standards also enable the use of digi-
tal credentials for Internet communication (e.g., for online shopping) [13] which
also strengthens usability for Oblivion’s developers as well as end-users.

Scope of Eligibility. First, it is a hard problem to decide on the eligibility of
an ownership claim if two persons have the same attributes, e.g., name. Oblivion
addresses this issue by using attributes that in combination should be sufficiently
unique for most people. Second, our framework cannot decide whether a piece of
content is of public interest (such information falls into the category of freedom
of the press) and outweighs the privacy interest of an individual. This decision
is a legal assessment. This is outside of the scope of Oblivion and subject to
ongoing research about the automation of legal assessments [4].

Privacy and Availability. The OCP could be a third-party service or managed
by the search engine provider. From a privacy point of view, the latter setup
may reveal personal information about citizens. However, we argue that a search
engine provider does not learn more than what is already available in the article.
This is because Oblivion follows a principle of least privilege, where only those
particular attributes that are present in the article are sent to the OCP. The
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collection of information and verification makes the OCP a key component of
Oblivion. The availability of the OCP becomes essential in the long-run success
of Oblivion. Therefore, to prevent a single point of failure, we can consider
deploying multiple instances of the OCP.

Robustness. Oblivion relies on NLP and image recognition techniques. The
NLP technique we use in our framework is simple and sufficiently robust in prac-
tice. Concerning robustness of the image recognition technique, recent research
has shown that automated face recognition is almost comparable to human face
recognition accuracy [31]. Therefore, when the removal request includes a picture
that uniquely identifies the user with a certain confidence (part of the deployed
policy), our framework can easily approve the removal request.

7 Conclusion

In this work, we have introduced a universal framework, called Oblivion, pro-
viding the foundation to support the enforcement of the right to be forgotten
in a scalable and automated manner both for users and indexing systems. The
framework enables a user to automatically identify personal information in a
given article and the indexing system to automatically verify the user’s eligibil-
ity. The framework also achieves censorship-resistance, i.e., users cannot blacklist
a piece of data unless it affects them personally. This is accomplished using the
government-issued digital credentials as well as applying the entity disambigua-
tor technique. We have conducted comprehensive evaluations of Oblivion on
existing articles, showing that the framework incurs only minimal overhead and
is capable of handling 278 removal requests per second on a standard notebook
(2.5 GHz dual core). In these evaluations, we have observed that the remain-
ing performance bottleneck on the OCP is caused by the entity disambiguator
(i.e., AIDA) and the face recognition (i.e., OpenCV) algorithms. We believe that
optimized versions of both could help in significantly improving the performance.

For future work, we plan to improve Oblivion’s accuracy and overall coverage
for proving affectedness. Following the principle of reCAPTCHA digitizing books
[33], improving the accuracy of NER by taking into account the user client
tagging constitutes a promising approach. Another promising research direction
is to analyze the assessment of lawfulness and automate the application of future
guidelines for the right to be forgotten. Staying close to the precedent, this would
also require semantically analyzing the article to determine if its content violates
privacy rights, e.g., by being outdated or by containing sensitive information for
the entity requesting removal.

A Security Analysis

The framework is supposed to achieve three security objectives: minimal dis-
closure, request unforgeability and censorship-resistance (cf. Sect. 3.2). In the
following, we show that we achieved these goals.
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Minimal Disclosure. Minimal disclosure in this context is the minimization
of knowledge increase for the indexing system in order to verify eligibility of a
request. In the case that OCP and IS are separate, this is given since the IS only
receives a token from the OCP through the user. This token does not need to
contain any information about the user. However, if the OCP and the IS collide,
it has to receive the input to run OCP.VerifyA.

A user who wants to hide her verification key or credentials could potentially
use interactive zero-knowledge proofs on top of our construction. This, however,
would sacrifice efficiency and would not improve the disclosure of information.
The reason is that the verification key is basically a pseudonym, i.e., it is only
linked to the attributes that we send. Thus, the only need to minimize is the
sending of attributes. In Oblivion, we only send those attributes that are indeed
necessary for proving that the user is affected, i.e., that already occur in the link
we report. We implement this by sending only subsets7.

Request Unforgeability. For unforgeability we show that even the user cannot
construct a message that verifies without having a signature on every single
attribute. As a consequence, the user cannot show that she is affected by content
concerning other users’ attributes.

Theorem 1 (Request Unforgeability). If OCP.VerifyA returns accept then
the packed attributes correspond to the set A∗. More formally, every A that has
access to a signing oracle S with public key vk can only generate P for subsets
A∗ of all signatures A requested from S.

Proof. Let A be the set of queried attributed signatures of the adversary A
for a given execution. Assume there is a set (B,P ) $← AS(vku) such that
OCP.VerifyA(vk, vkU , P,B) = accept and B �⊆ A. So there exists b∗ ∈ B such
that b∗ �∈ A. Then there also exists an adversary A∗ that queries A ∪ B\{b∗},
i.e., b∗ is the only unqueried attributed in B. Since OCP.VerifyA(vk, vkU , P,B) =
accept, it follows that P eCA ≡

∏
b∈B H(b||vkU ) by construction. Since we queried

all b except b∗ in B, we can compute σ := P/
∏

b�=b∗∈B H(bi||vkU )dCA . For this
σ, we have σeCA = H(b∗||vkU ). However, this contradicts the Chosen Message
Attack (CMA) security of the underlying signature scheme. Thus, the adversary
A cannot exist. �

Censorship-Resistance. Finally, we have to ensure that the overall system
does not enable any user to censor, i.e., to successfully report data that she is
not affected by. There are two possible approaches. First, we could do a reduc-
tion proof to the CMA-security of the signature scheme as done for the request

7 We stress again that we only show affectedness of the user. Arguing about the legal
implications and whether this minimization of data is sufficient in order to apply
them is beyond the scope of this (and all existing) work.
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unforgeability8. Second, we can formulate the protocol in the applied π-calculus
and automatically verify the properties of interest using tool support. The out-
come can then be leveraged from the protocol to the implementation by using
computational soundness which links symbolic execution traces to computational
execution traces. Thus, we can use tools for symbolic verification and the out-
come transfers to the implementation. In what follows, we pursue the second
approach since the protocol is easy to express and verify using state-of-the-art
verification tools.

The applied π-calculus defines a way of modeling processes (P,Q).
Thereby, the calculus gives constructs for parallel execution of processes
(P|Q), for repetition of processes (!P), for communication between processes
(in(chan,msg),out(chan,x)) and for restricted computation. The restriction
is that only symbolic constructors (let x=sig(sk,msg)) and destructors (let
m=verify(vk,sig)) can be used to modify terms which consist of symbols. The
difference is that constructors create symbolically larger symbols, i.e., in the
example x will be handled as the symbol sig(sk,msg) whereas destructors can
give reduction rules to remove or replace constructors. Finally, for symbols, there
are two classes, publicly known symbols and freshly introduced symbols (new N;
P) which are unequal to all other symbols.

For the sake of exposition, we briefly describe the process for the indexing
system. The system receives a message and verifies it with the corresponding
key (computational soundness requires the key to be part of the signature). We
then verify the first part of the signed message with the verification key of the
OCP. This message must be the user’s verification key and the requested data,
i.e., we check for equality before the IS is convinced that the signer is affected.

let IS = in(ch,x); let tmpkey = vkof(x);
let (c,reportData) = verifySig(tmpKey, x) in
let (sigKey, sigData) = verifySig(vkOCP, c) in
if reqData==sigData then if tmpKey==sigKey then
event affected(sigKey,reqData).

The end of the process is a so-called event. These events have no semantic
meaning in the calculus, but can be used by the model checker to prove certain

8 Such a proof would look like this: Assume censorship is possible. That means there
is an execution that ends with a successful report at the indexing system without the
user reporting the data. Therefore, there was a DU sent to the IS that verifies with
the key of the OCP. Either the OCP signed DU or there is a contradiction to the
signature scheme’s CMA-property. Consequently, the OCP signed DU and since we
assume the OCP to be trustworthy, it means that the OCP received an M, σM from
a user and verified it. Here, either the user’s signature σM was forged (contradicting
the CMA-property of the signature scheme) or the user forged a message M that
verifies (contradicting the request unforgeability proven before). It follows that the
user could not have generated such a request, proving censorship-resistance.

While this argumentation sounds plausible, it does not consider every possible
interleaving or repetition of executions. In contrast, tool support offers a trustworthy
guarantee that we did not overlook any execution generated by these processes.
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properties of the protocol. In our example, the event symbolizes the belief of the
IS that the user with verification key sigKey is affected by the data reqData.
The model checker answers queries such as query ev:affected(k,d). which
formalizes that the model checker can prove that this event can be reached in
the protocol execution.

Censorship-resistance can be formulated as a sequence of events that has
to occur whenever the IS thinks a user is affected, i.e., whenever a request is
considered to affect the requesting user, the OCP has verified that this data
belongs to the user that sends the request. This can be done by two queries of
the form query ev:affected(key,d) ==> ev:VerifiedOw(x,key,d). mean-
ing that whenever the event affected occurs there has to be a corresponding
event verifying the ownership beforehand. Analogously, we prove that the own-
ership verification is preceded by the attribute verification of the CA.

The complete formalization in the applied π-calculus can be found online at
the project website9. The protocol verification takes 8 ms.

Other Security Goals. In order to prevent a replay attack, the user includes
the timestamp in her request. One can argue that a replay attack is not an
issue because it is a legitimate request by the authorized user. However, we
consider that a replay attack could harm the credibility of the user if an adversary
launches it to mount a Denial-of-Service (DoS) attack on the OCP.
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Abstract. Traditional user authentication methods using passcode or
finger movement on smartphones are vulnerable to shoulder surfing
attack, smudge attack, and keylogger attack. These attacks are able to
infer a passcode based on the information collection of user’s finger move-
ment or tapping input. As an alternative user authentication approach,
eye tracking can reduce the risk of suffering those attacks effectively
because no hand input is required. However, most existing eye tracking
techniques are designed for large screen devices. Many of them depend
on special hardware like high resolution eye tracker and special process
like calibration, which are not readily available for smartphone users. In
this paper, we propose a new eye tracking method for user authentication
on a smartphone. It utilizes the smartphone’s front camera to capture
a user’s eye movement trajectories which are used as the input of user
authentication. No special hardware or calibration process is needed. We
develop a prototype and evaluate its effectiveness on an Android smart-
phone. We recruit a group of volunteers to participate in the user study.
Our evaluation results show that the proposed eye tracking technique
achieves very high accuracy in user authentication.

Keywords: Authentication · Eye tracking · Privacy protection ·
Smartphone

1 Introduction

Two authentication methods, passcode-based and finger movement pattern-
based, have been widely used by various smartphones for user authentication.
However, previous research has revealed that both authentication methods are
vulnerable to shoulder surfing attack [28], smudge attack [2], and keylogger attack
[5,18,19,26]. For shoulder surfing attacks, an attacker could steal a password just
by peeking over a user’s shoulder when the user is entering its password. Recently,
some researchers found that it is possible to steal a password even when a user is
behind some obstacles [25]. Smudge attacks exploit the oily residues left on the
screen for inferring a password. Keylogger attacks are launched from the inside of
device. The malicious program running on the smartphone utilizes smartphone’s
sensors to record the vibrations during the authentication. Then attackers could
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 457–477, 2015.
DOI: 10.1007/978-3-319-28166-7 22



458 D. Liu et al.

figure out the password based on those information. All these attacks exploit the
information from user’s hand typing or finger moving activities.

The authentication methods leveraging eye tracking do not need hand input;
therefore, they are resistant to those attacks above. So far, there are already some
works applying eye tracking techniques in user authentication. These works can
be classified into biometric-based [3,12–14] and pattern-based [7,9,10,15]. The
biometric-based methods authenticate a user based on the biometric information
extracted from the user’s eyes or eye movement characteristics. Differently, the
pattern-based methods require a user to issue commands via their eye move-
ments. The pattern-based authentication can be further divided into two types.
The first type [15] tracks a user’s gaze point on the screen as the input. A calibra-
tion process is required for predicting the gaze point accurately. And users have
to keep their heads fixed after the calibration. The other type [7,9,10] recognizes
a user’s eye movement trajectory that represents a specific command, and does
not need calibration process. Most of these eye tracking applications are pro-
posed for the devices with large screen. Many of them require special hardware
like high resolution eye trackers.

However, it is impractical for smartphone users to either carry a high resolu-
tion eye tracker or conduct the calibration process. In this paper, we propose a
new eye tracking authentication method for smartphone users. We leverage the
eye movement trajectories as the input, which reflect eye moving direction but
not the exact gaze point on the screen. Neither extra eye tracker nor calibration
process is needed.

In our proposed scheme, there are multiple moving objects on the screen,
one of which is the target. A user just tracks the moving target with her eyes.
The authentication passes when the user’s eye movement trajectories match
the target’s movement trajectories. The routes of all moving objects are ran-
domly generated every time. Therefore, an attacker cannot infer the password
by observing the user’s eye movement during authentication. Each object should
also move very differently from the others, and thus the user’s eye tracking tra-
jectory can easily match the target’s trajectory. We develop a prototype based
on Android 4.2.2 and deploy it on Google Nexus 4 smartphone. Then we invite
21 volunteers to take the user study. The evaluation results show that average
authentication accuracy is as high as 91.6%.

The major research contributions of this work are summarized as follows:

– To the best of our knowledge, this is the first smartphone authentication
method applying the eye tracking technique that does not require extra eye
tracker and calibration process.

– We design a movement pattern for the authentication. The randomness within
the movement pattern reduces the risks of leaking a password. Besides, The
movement pattern just requires four corresponding eye movement actions,
which are basic and straightforward for users to perform, achieving high detec-
tion rate.

– We introduce and compare six metrics used for matching the eye movement
trajectory and target movement trajectory. We identify the most effective
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metric based on our experiments. Four of them are not used in previous works,
and two newly introduced metrics lead to higher detection rate than those used
in the previous works.

– We implement a prototype on Android OS, and conduct a user study to
evaluate the effectiveness of this proposed user authentication scheme.

The remainder of the paper is organized as follows. In Sect. 2, we introduce
threat models to the popular user authentication methods on smartphones. We
present the new authentication method in Sect. 3. Then we evaluate its effective-
ness in Sect. 4. The limitations of our work are discussed in Sect. 5. We survey
related work in Sect. 6. Finally, we conclude this work in Sect. 7.

2 Threat Models

In this section we present the threat models in the existing authentication meth-
ods on smartphone. Two kinds of authentication methods are popular among
most smartphone users. One is the passcode-based and the other is pattern-
based. As a classic authentication method, the passcode-based methods need a
user to type its passcode. Pattern-based methods require a user to move fingers
following some pre-set patterns. Both authentication methods are vulnerable to
shoulder surfing attack, smudge attack, and keylogger attack.

To launch a shoulder surfing attack, an attacker just peeks from a user’s
shoulder when the user is entering the password. Then the attacker can infer the
password based on the keyboard layout and the user’s typing actions. A recent
research work [25] reveals that attackers could steal a password even if the user
is behind some obstacles. A smudge attack [2] exploits the oily residues, called
smudge, left on the touch screen to infer a user’s password. Attackers just hold
camera at special angle to the orientation of the touch screen, and put the device
under special lighting source and lighting angle. Under the certain conditions,
the password pattern could be exposed. Some other attacks utilizing the acoustic
of the tapping are introduced in [4,29].

Keylogger attacks compromise a user’s password from the inside of device.
They leverage various sensors like the accelerometer and the gyroscope equipped
on a smartphone to extract the behavior features of each individual. These infor-
mation could result in the leakage of a password. In [5], it is observed that tap-
pings on the different position of a screen cause different vibrations. Attackers
can infer a password based on the vibration features. Xu et al. [26] proposed to
collect the information from more sensors like the accelerometer, gyroscope, and
orientation sensors. Using the collected information, they constructed the user
pattern to calculate the user’s action and input. TapPrints [18] estimates the
tapping location by using machine learning to analyze the motion data. In [19],
the authors can conjecture the input sequences using the data extracted from
the accelerometer sensor.
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3 A New Authentication Approach

Applying eye tracking techniques in user authentication can significantly reduce
the risks of suffering those attacks mentioned above. We design a new authenti-
cation approach based on eye movement pattern so that a smartphone user can
just use the device’s front camera and skip the calibration before each authen-
tication. Compared to the user patterns like EyePassShape and Eye gesture [7]
which require a user to draw some shape using eyes actively, tracking the mov-
ing object with eyes in a passive manner is much easier. Besides, users do not
need to remember the complex shapes but just the target object as a password.
Considering that humans’ eyes move in fast and straight saccades and thus can-
not perform any curves or other non-linear shapes [10], we make the objects
move in straight lines for eye tracking. In the following, we first introduce the
basic authentication process and the architecture of our eye tracking authenti-
cation system. Then we present how to measure the similarity between the eye
movement trajectory and the target movement trajectory.

3.1 Authentication Process

The basic authentication process is described as follows. There are four objects
in the center of the screen at the beginning. The layout is shown in Fig. 1a.
Each object is labeled with a number in the range of 1 to 4, and moves in a
straight line smoothly for five rounds. In each round, the four objects move to
different directions simultaneously. When the objects are moving, the user tracks
the target object using eyes. Figure 1b shows a snapshot when the objects are
moving. The target object represents the password in that round. When the
objects start to move, the user eye-tracks the target and could extend the vision
in that direction beyond the screen for providing a more clear eye movement

(a) (b)

Fig. 1. (a) The layout of objects before they start to move (b) The four objects are
moving in four different directions (up, down, left and right) in a round.
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trajectory. Once the movements stop at the end of each round, all objects return
to the original positions. Meanwhile, there is a beep sound to notify the user
to move eyes back to the center. Furthermore, before the next round starts, all
the objects pause for one second to guarantee that the user moves eyes back
to the center. The front camera of the smartphone captures the eye movements
and delivers the frames to the analysis component, which extracts the eye points
from each frames. Then a set of metrics will be calculated based on the eye
points. These computed metrics are compared to those of the target’s movement
trajectory. If the metrics match, the authentication passes. Here is an example
showing how our authentication scheme works.

– The user sets the password like 1-2-3-1-4. Each digit represents the target
object in the corresponding movement round.

– When the user is ready, she just clicks the “start” button to initiate the
authentication.

– All the objects are moving at the same time, the user uses her eyes to track
the target object in that round.

– After the five rounds movement, the system outputs the match result.

3.2 System Architecture

The authentication system’s architecture consists of two parts: the front-end
and the back-end. The front-end includes pattern design, route generation, and
moving control. The back-end mainly captures eye movement trajectory and
matches it to the target movement trajectory. The architecture is illustrated in
Fig. 2.

Front-End. We propose to secure the authentication by moving all the objects
randomly each time. Since the authentication process does not need hand input,
the smudge attack and keylogger attack cannot steal any information from the
authentication process. For the shoulder surfing attack, even if attackers record
the eye movement and figure out the eye movement trajectories, they cannot pass
the authentication by replaying the same set of trajectories. This is because the
target’s routes for moving are random in each time. Moreover, attackers have to

Fig. 2. Architecture of the system
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deploy a camera close enough to the user’s eyes to capture the eye movement
trajectories, which makes it a challenging task without alerting the user.

With respect to the layout, all the objects are in the center of the screen at
the beginning of each round. To make the user locate the target easily, the start
positions of all objects should not be changed in each round. Pursuits [24] shows
that the detection rate decreases when there are many objects on the screen.
We also find that users may look towards some other moving objects when they
are tracking the target. We call it distraction problem. It becomes serious when
two moving objects are close to each other. If we leave the objects at one side
of the screen or the corners of the screen at the beginning, the objects could
move across one another. In addition, setting the start positions of the objects
at different corners may exposure the password. In such a scenario, the user will
look to a corner at the beginning of each round. Then, the attacker could figure
out the start position of the target by only observing the gaze direction of the
user. Thus, in our design, the objects move far away from each other while they
are clustered together in the center of the screen at the beginning of a round.

The four objects move to four different directions: up, down, left, and right,
which is shown in Fig. 3a. There are four reasons for such a design. (1) Since the
screen of a smartphone is much smaller than a regular screen device, the number
of the moving objects on the screen should be small to avoid the distraction prob-
lem. (2) For the purpose of not exposing the target, all the objects’ movement
directions are evenly distributed on the screen. Furthermore, the fewer objects,
the larger the angle between two objects’ movement directions. Consequently,
it is easier to match the eye movement trajectory to the target movement tra-
jectory. In other words, it is easier to distinguish the eye movement trajectory
from the other objects’ movement trajectories. (3) Although users can look at
any direction theoretically, it is difficult for them to control eyes to move in an
exact angle. Looking up, down, left, and right are the four most basic and sim-
plest eye movement actions for users. (4) Since the eye movement just roughly
follows the target movement, the problem appears when the eye movement tra-
jectory is close to two different objects’ movement trajectories. In such a case,

Fig. 3. (a) The trajectories of four objects in a round (b) It is hard to tell which object
the user tracks with eyes when the trajectories of two objects are close to each other.
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it is hard to tell which object the user eye-tracked. As shown in Fig. 3b, it is
unclear which object the user is eye-tracking. In our design, the four directions
are distinguishable from each other and help alleviate such problems.

Another disadvantage of a small screen is that the user’s eye movement could
be negligible if the user only looks inside of the screen boundary. Some users could
be able to look any positions on the screen without obvious eye movements. In
such a case, it is hard to tell the user’s eye movement trajectory. To make the
eye movement more clear to be detected, we allow the user to look beyond the
screen area following the target’s movement direction, and provide a beep sound
to remind the user look back when the movement ends.

In our current design, we just set five movement rounds in the prototype and
the corresponding key space is 45 = 1024. The key space can be enlarged simply
by allowing a user to choose different number of movement rounds for authenti-
cation. Specifically, a password could consist of arbitrary number of digits. The
system first asks the user to input the number of movement rounds, then it
provides corresponding object movements for authentication. More movement
rounds make the authentication safer. Note that the authentication method can
be applied in different scenarios, such as unlocking a phone and accessing an
important file.

Back-End. We leverage the front camera to capture the eye movements. The
record starts when the target begins to move. It ends when the target finishes
its movement within one round. The eye tracking component will extract eye
points from these continuous frames. After the 5th round eye tracking finishes,
the Decision Maker starts to match the eye movement trajectory to the target’s
movement trajectory. Note that the Decision Maker only informs the user of
the final match result after five rounds, and does not inform the user about the
match result for each round. A mismatch notice could benefit the legitimate user
because the user can start a new authentication early if the current eye-tracking
round fails. However, it is insecure, because it also informs the attacker whether
the guessed number in the current round is correct. Then, the attacker just needs
to try at most four times to identify the target object in each round and 20 times
to uncover the whole password.

There are two sets of eye points (left eye and right eye) whose correspond-
ing trajectories could be different. It could be that both trajectories match the
target’s trajectory or only one of them matches that of the target. When the
user is eye-tracking the target object, it is possible she peeks to another moving
object because of the distraction problem. The problem could make one eye’s
movement trajectory deviate from the target’s trajectory. However, it is very
hard for the user to intentionally eye-track two different objects at the same
time. So, we regard that the user eye-tracks the target when there is at least one
eye’s movement trajectory matching the target’s movement trajectory.

We introduce six metrics to measure the similarity between the eye movement
trajectory and an object’s movement trajectory. If the eye movement trajectory
is most similar to the target’s movement trajectory, we regard it as a match. On
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the other hand, if the eye movement trajectory is most similar to a non-target
object’s movement trajectory, the authentication fails.

Measure the Similarity. After the pre-processor extracts eye points, the cru-
cial task is how to effectively measure the similarity between the eye movement
trajectory and the target’s movement trajectory. Assume that the screen is a
rectangular coordinate system, we can refine the problem as how to measure the
similarity between two lines with directions. We expect that the user’s eye move-
ment trajectory should be similar to that of the moving target. The similarity is
represented as that the two trajectories’ direction should be close to each other.

In previous works [22,24], correlation is used for matching. Principle Compo-
nent Analysis (PCA) [3] is also used to estimate the direction. In this paper, we
propose to fit a straight line into the eye points and compare the angle difference
between this line and the target trajectory. We adopt RANdom SAmple Con-
sensus (RANSAC) algorithm and introduce three error functions for line fitting.
Simple Linear Regression (SLR) is another potential option for line fitting. We
compare and evaluate them with the previous methods in the evaluation part.

In the following, we present the metrics used to measure the similarity. Cor-
relation can measure the linear association between two variables Xa and Xb

in statistics. It is defined as the covariance of the two variables divided by the
product of the two variables’ standard deviations. The formula is

ρXa,Xb
=

E[(Xa − μXa
)(Xb − μXb

)]
σXa

σXb

The coefficient is between +1 and −1, where +1 represents the total positive
correlation, 0 means no correlation, and −1 stands for the total negative correla-
tion. The formula can calculate the correlation between two variables. However,
each eye point contains two variables X and Y coordinates. In such a case,
the correlation between eye movement and object movement has to be calcu-
lated separately: one is for X and the other is for Y . In the previous works, the
authors claimed that if X and Y of the eye movements change with those of the
object movements, the user’s eyes move following the objects. A threshold is set
for determining whether the two trajectories match.

In this work, we propose to fit a straight line into the eye points whose
angle should be close to the target’s trajectory. Four methods are used to fit a
line into the eye points. The first three are based on the RANSAC algorithm.
RANSAC is designed for removing the noise and identifying the inliers in a set.
As an iterative method, RANSAC cannot test all data points for the mathematic
model exhaustively for a large set of data. However, the number of eye points is
limited. Thus, we can try all possible combinations in a short time. The algorithm
is described in Algorithm 1.

We leverage RANSAC’s idea and introduce three error functions (Err1, Err2,
Err3) in the algorithm. Err1 measures the number of points whose distance to
the line is less than a threshold. Based on the observed data, we set the threshold
to 3 pixels, implying that the line containing most points under this distance
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Algorithm 1. RANSAC algorithm with error functions
1: Data: Eye movement points
2: Result: A line matches the points
3: BestMode1, BestMode2, BestMode3
4: BestMode1Score= 0
5: BestMode2Score = BestMode3Score = Infinity
6: Err1(line L): return the number of points whose distance to the line is smaller than

a threshold
7: Err2(line L): return the sum of distance to the line of all points
8: Err3(line L): return the sum of squared distance of all points
9: for point p1 in the set do

10: for another point p2 in the same set do
11: generate a line L based on the two points p1 and p2
12: if Err1(L) > BestMode1Score then
13: BestMode1 = L
14: end if
15: if Err2(L) < BestMode2Score then
16: BestMode2 = L
17: end if
18: if Err3(L) < BestMode3Score then
19: BestMode3 = L
20: end if
21: end for
22: end for
23: Return BestMode1, BestMode2, BestMode3

bound is chosen as the best fitting. Err2 measures the sum of all points’ distance
to the line. Err2 chooses the line, which has the smallest sum, as the best fit.
Err3 measures the sum of squared distance. The error functions 2 and 3 are
similar, but their results could be different.

All of the three error functions choose the line that is calculated from two
points in the eye point set. It is possible that a better-fit line would not pass
any two points. Therefore, we introduce another function SLR to generate the
line. The function SLR is used to fit a straight line through a set of points so
that the sum of the squared residual of the mode is as small as possible. Suppose
there are n eye points (x1, y1), (x2, y2), . . . , (xn, yn). SLR will fit a straight line
y = αx + β, which provides the minimum sum of squared residues (the vertical
distance from a point to the line).

Find min
α,β

Q(α, β)

ForQ(α, β) =
n∑

i=1

ξ2 =
n∑

i=1

(yi − αxi − β)2

The values of α and β that result in minimum Q can be computed by either
using the calculus and the geometry of inner product spaces, or expanding to
get quadratic in α and β:
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α =
COV [x, y]

V ar[x]
=

∑n
i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)
, β = y − αx.

PCA is a statistical procedure which employs the orthogonal transforma-
tion to convert a set of observed possibly correlated data into a group of linear
uncorrelated variables called principle components. In our case, PCA is used to
estimate the direction of the set of eye points. Assume there are n eye points
(x1, y1), (x2, y2), . . . , (xn, yn), the steps for PCA calculation are listed as follows:

– Calculate x′ and y′ as: x′
i = xi − x̄, y′

i = yi − ȳ.
– Construct covariance matrix M

(
COV [x′, x′] COV [x′, y′]
COV [y′, x′] COV [y′, y′]

)

– Calculate the eigenvalues and eigenvectors of the matrix. The eigenvector of
the highest eigenvalue is the principle component of the data set.

– Assume the eigenvector is
(

x′

y′

)

. The straight line’s slope is the value of y′

x′ .

To provide a detailed view of these metrices, we conduct some preliminary
experiments to measure and compare them. We deploy a preliminary eye tracking
prototype on Google Nexus 4 running Android 4.2.2. There is only one object
moving on the screen. The object’s moving distance is set as 300 pixels on the
screen. The moving speed is 200 pixels per 1000 ms. The object moves on the
screen with 45 degree. A volunteer eye-tracks the moving object for 10 times.
The gaze point is used for eye tracking in the previous work. Considering the low
resolution of front camera and the hand tremble during eye tracking, the gaze
points could be unreliable for smartphone authentication. Therefore, we utilize
eye points to identify the eye movement.

There are 10 movements corresponding to 10 sets of eye points. The average
range of eye points’ x coordinate is 19.4± 10.26 pixels; that of y coordinate is
7.9± 3.78 pixels. Figure 4a shows the straight lines which fit the eye points of one
movement. The x-range is 11 and y-range is 5. It is clear that the lines generated
by the five different methods can reflect the eye movement trajectory. Figure 4b
shows the object movement trajectory and the lines generated by RANSAC Err2
using the 10 sets of eye points.

From this figure, we can see that the user’s eye movement basically follows
the object movement. In other words, the eye movement trajectory is similar to
the object movement trajectory. However, we also observe that the user’s eye
movement cannot strictly follow the object movement. There are three possible
reasons. First, the eye tracking technique cannot guarantee 100% accuracy; sec-
ond, distraction causes the user to move her eyes to a different direction; and
third, the head and hand trembles impact the eye tracking. The average corre-
lation of the 10 set data is 0.74± 0.1. The value is the sum of x-coordinate’s and
y-coordinate’s correlation. Figure 5 depicts the angle difference between the eye
movement and the object movement. The smaller the angle difference, the eye
movement is more similar to the object movement.
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Fig. 4. (a) The lines generated by the five functions based on one set of eye points
(b) The lines generated by one function (Err2) based on 10 sets of eye points

Fig. 5. The average angle difference between the trajectory of eye movement and that
of object movement

3.3 Majority Vote

We regard that the eye movement trajectory matches the target movement tra-
jectory if the angle difference between them is less than 45 degree. However, the
user’s eye movement trajectory could deviate more than 45 degree from the tar-
get movement trajectory in practice. The reasons could be eye tracking’s error
or the distraction problem. Moreover, a user cannot control her eyes to move
in an exact straight line, which is just like that a user cannot draw an exact
straight line.

To tolerate these errors, we introduce the majority vote to improve detection
accuracy. The majority vote mechanism works as follows: as long as there are
any 4 successful matches within 5 rounds, we relax the matching condition (i.e.,
the angle difference) from 45 degree to 90 degree for the deviated eye movement
trajectory.

For example, assume that the object “1” in Fig. 6 is the target, the eye
movement trajectories in red are regarded as successful matches, since their
angle difference from the target movement trajectory is less than 45 degree;
however, the eye movement trajectory in green, whose angle difference is larger
than 45 degree but less than 90 degree, is still classified as a successful match
under the relaxed matching condition. While the matching relaxation reduces
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Fig. 6. When there are any four successful matches, we relax the match constraint for
the remainder match.

the number of false rejections, it also increases the chance of false acceptance.
Using the example above, if an attacker guesses “2” as the password and her
eye movement trajectory happens to fall into the north-west quadrant with the
probability of 50%, it will be classified as a match. The similar situation exists
when the attacker guesses “3” as the password and her eye movement trajectory
falls into the north-east quadrant.

However, in the design of the majority vote, the matching relaxation hap-
pens only if the attacker has already made four successful matches. Thus, the
probability that the attacker could pass the authentication by simply guessing
a password is only C1

4 · C1
4 · C1

4 · C1
4 · C(1+1/2+1/2)

4 = 1+1/2+1/2
4×4×4×4×4 = 0.2%.

4 Evaluation

We implement a prototype as an app based on Android 4.2.2. The prototype
can be integrated as an option in Android’s authentication setting. Currently,
we use the beep sound to notify a user to look back to the screen center. In a
noisy environment, we could replace the beep with vibration. We leverage the
Snapdragon SDK from Qualcomm [1] to track the user’s eye movement. The
snapdragon can be deployed on many existing smartphones. It can extract the
eye points in real time. To better evaluate and analyze the results, we record
eye points and object routes into files. For future real world deployment, these
functions can be easily integrated together and the data can be analyzed in real
time without writing them into files.

To evaluate the effectiveness of the proposed authentication method, 21 vol-
unteers are invited to participate our user study with age range from 24 to 33.
Among them, 14 wear glasses. In the following, we first measure detection accu-
racy. Then we compare the performance of matching trajectories using different
metrics. Finally, we assess the security of our scheme.

4.1 Experimental Setup

Our experiments consist of three parts: indoor, outdoor, and mimic attacks. The
indoor experiments are conducted in a normal office environment with enough
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lights. It is common that people use smartphones indoors. Unlike outdoor lights,
indoor lights remain stable as time goes on. So, indoors is the ideal environment
for accuracy evaluation. All volunteers are involved with the indoor experiments,
and each of them applies the correct password for 30 times. Users hold the
smartphone in the front of their faces, and stay in a comfortable posture (either
sitting or standing). They take a short break (at least 5 seconds) between two sets
of experiments. After the indoor experiments are completed, we select five users
to do the outdoor experiments. They perform the same operations as the indoor
experiments. Two users do the outdoor experiments on a cloudy day. The other
three use the smartphone under the tree shade on a sunny day. We do outdoor
experiments under the tree shade because users feel uncomfortable when they
look at the screen in the sun. It also results in inaccurate eye movement detection.
Finally, five users are involved in the mimic attacks for security evaluation.

4.2 Detection Accuracy

Detection accuracy is the key performance indicator of an authentication
method. A user could be unsatisfied if the authentication fails even when the
correct password is applied. Our detection accuracy (i.e., true positive rate) is
listed in Table 1.

While using the RANSAC Err2 metric for matching, the detection accuracy
of indoor experiments is 77.1% (486/630) and that of outdoor experiments is
79.3% (119/150). We regard that such results are reasonable, considering that
neither extra eye tracker nor calibration process is required. In the previous
work [22] that utilizes the front camera for eye gesture detection, five users
were enrolled in the user study with the smartphone fixed on the table. Its
recognition rate is just about 60%. In our evaluation, we further observe that
many authentication failures only have one digit mismatch. After applying the
majority vote, the detection accuracy of indoor experiments increases to 91.6%
(577/630) and that of outdoor experiments increases to 97.3% (146/150).

Since we track the eye movement for authentication, users do not need to
keep their heads fixed during the authentication. They can take a comfortable
posture to conduct eye movements. Different postures like standing or sitting
have little impact on detection accuracy. Our method can tolerate the slight head
and hand tremble, because the eye point range is large enough for reflecting the
eye movement trajectory. The eye point ranges are shown in Fig. 7a, b.

As stated before, a user’s eye movement trajectory of left eye could be dif-
ferent from that of right eye. We choose the one which is closer to the target

Table 1. Accuracy of the authentication method

Users Trials Environment Left eye Right eye Detection Detection accuracy

accuracy majority vote

21 630 (30× 21) Indoor 1584 1566 77.1% 91.6%

5 150 (30× 5) Outdoor 336 414 79.3% 97.3%
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Fig. 7. The average range of eye points in indoor experiments (a) and that in outdoor
experiments (b)

Fig. 8. The number of eye points captured at different time

movement trajectory for matching. There are 1584 left eye movement trajecto-
ries and 1566 right eye movement trajectories being used in the evaluation. Note
that we use different eye movement data just for matching with higher accuracy.
When left eye movement data is selected, it does not mean that the right eye
movement data mismatches.

The accuracy of outdoor experiments during the daytime is close to that
of indoor experiments. No matter it is sunny or cloudy, the accuracy does not
change much. Our authentication method does not work well in weak light or
dark. If there is adequate light, the number of captured eye points should be
about 89. It means that we extract eye points from 16 frames in a second. The
eye point number in weak light could be as low as 28, which corresponds to that
5 frames are handled in a second. It is clear that the eye point number in weak
light is much less than that in normal light. This will negatively impact the line
generation and match precision. Be aware that different people have different
understanding of the weak light. Thus, we provide an approximation view on
the connection between eye point number and light strength. Figure 8 shows the
eye point number extracted at different time of a day. We can see that in most
time when a user needs authentication, the light should be strong enough. We do
not suggest to use this authentication method in weak light, which could cause



Exploiting Eye Tracking for Smartphone Authentication 471

Table 2. Consecutive failures statistic

No majority vote One time failure Two failures Three failures Four and more failures

Number 83 36 21 4

Rate 13.2% 5.7% 3.3% 0.6%

Majority vote One time failure Two failures Three failures Four and more failures

Number 40 10 3 0

Rate 6.3% 1.6% 0.5% 0%

an authentication failure. In such a case, the user could choose an alternative
option, for example the pattern-based authentication.

We further classify the failures into one time failure, two consecutive failures,
three consecutive failures, four and more consecutive failures. When a legitimate
user suffers a failure, she will expect to pass the authentication in the next
trial. The consecutive failures will frustrate the users. Table 2 demonstrates the
failure statistics. There are 84 one time failures, 18 two consecutive failures, 7
three consecutive failures, and only 1 four consecutive failures. The three and
more consecutive failures happen in a low probability. When majority vote is
applied, there are 42 one time failures, 5 two consecutive failures, and only 1
three consecutive failures.

4.3 Effectiveness Comparison

Correlation and PCA are used to estimate the eye movement direction in previ-
ous works. Besides these two metrics, we further consider four additional meth-
ods to fit a line into the eye points and compare the angle difference between
the fitted line and the target movement trajectory. Thus, in total we use six
metrics to measure the similarity between the eye movement trajectory and the
target movement trajectory. Figure 9 shows the average successful match number
among the 21 users.

Fig. 9. Number of successful matches belonging to the 6 metrics

There are 150 (5× 30) comparisons in 30 sets of experiments for one user.
The correlation’s average successful match number is 129.7, which corresponds
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Table 3. Total match of all metrics

PCA Cor Err1 Err2 Err3 SLR

Number 1200 2724 2890 2961 2304 2661

Rate 38.1 % 86.5 % 91.7 % 94 % 73.1 % 84.5%

to the match rate of 86.5%. RANSAC with error function 2 makes the largest
number of successful matches (141), and the match rate is as high as 94%.
Among the 21 users, 20 user’s RANSAC ERR2 successful match number exceeds
that of other metrics, and only 1 user’s SLR successful match number is higher
than that of RANSAC ERR2. Table 3 lists the overall successful match number
and the corresponding match rate for six metrics without applying the majority
vote. We note that oscillation could happen during a user’s eye movement. It
means that users’ eyes may move back, left, right, and then forward. Correlation
is calculated by the eye point sequence. Such oscillation will impact the final
correlation result. However, it brings little impact on fitting a line, since all
these points are still distributed along the line. It could be a reason why fitting
a line achieves higher match rate than correlation. Through the comparison,
we identify that RANSAC ERR2 is the most effective and reliable metric for
matching among the six metrics.

4.4 Security Evaluation

Since our authentication method requires no hand input, it is resistant to the
smudge and keylogger attacks. We try to compromise it by mounting a shoulder
surfing attack. When a user is authenticating, an “attacker” peeks the process
from different angles around the user. However, the “attacker” cannot figure out
the password no matter standing in the front of the user or facing the user’s back.
In such cases, the “attacker” can only see either the objects’ movements on the
screen or eye movement. We observe that the password could be stolen only if
the “attacker” stands at a special position—the “attacker” stands very close to
the user (less in a meter) and face to the user’s one side so that the “attacker”
can make slight turns to monitor both the user’s eye movement and the objects’
movements. But the user will notice the peek easily in such a special scenario.
Thus, our authentication method can significantly reduce the vulnerability to
shoulder surfing attacks.

To further evaluate the security of our proposed scheme, we ask 5 users to
authenticate using incorrect passwords. Each user tries 15 incorrect passwords.
These passwords are divided into 5 groups, one of which contains 3 passwords.
Each password in the first group contains 0 correct digit. For example, if the
correct password is “1-4-3-1-2”, the incorrect passwords could be “2-3-1-3-1”,
“3-1-1-2-4”, or “4-1-2-3-3”. Each password in the second group contains 1 correct
digit, each password in the third group contains 2 correct digits, and so forth. All
incorrect passwords are generated randomly. In this set of experiments, all trails
(75) fail as expected without matching relaxation. After matching relaxation



Exploiting Eye Tracking for Smartphone Authentication 473

is applied, there is still no false acceptance if the number of correct digits in
a password is smaller than 4. The false acceptance could occur if an incorrect
password contains 4 correct digits. However, as we discussed in Sect. 3.3, the
false acceptance rate is merely 0.2% given that matching relaxation is active.

5 Discussion

To provide a comprehensive view of this work, we discuss the limitations of this
work and the potential future work in this section.

Like other applications leveraging face recognition and eye tracking tech-
niques, our work depends on adequate light. It cannot accurately track a user’s
eyes in weak light or dark. We try to capture eye movements by leveraging the
screen illumination in dark; however, the eye movements cannot be recorded.
One possible solution is to use the infrared detector to capture the eye move-
ments. Unfortunately, many current smartphones have not yet equipped with
the infrared detector. We plan to explore this problem in the future.

Another limitation is that our method will cost longer time than passcode-
based and pattern-based authentication. However, eye tracking authentication
methods offer stronger security to resist those attacks discussed before. In addi-
tion, the time of conducting our authentication method for one time is about 9.6
seconds. It is shorter than the average time of existing works EyePIN (48.6 s) and
EyePassShape (12.5 s) [7], which work with the assistance of desktop display.

When the eye points are clustered together, it is hard to tell the eye movement
direction. A simple solution to this problem is that we just fail the authentication
when either the x-range or y-range of eye points is less than a threshold. The
threshold could vary from user to user.

This work is a first step towards applying the eye tracking technique in
smartphone authentication. It may not be able to satisfy all because of individual
difference. But it provides smartphone users a new authentication option for
lowering the risks. With the development of hardware equipped on smartphone,
e.g., higher resolution front camera, front infrared detector or front flash light,
we believe that this authentication method can achieve higher accuracy within
a shorter period.

6 Related Work

Biometric information, such as fingerprint, has been used in authentication.
However, researchers have shown that a fingerprint-based authentication sys-
tem could be defeated [17]. Moreover, an attacker may bypass the fingerprint-
based authentication system using a carefully printed fingerprint image. Human
behavioral biometrics have also been used for user authentication. Keystroke
dynamics have been studied as a second-factor for user identification. Each indi-
vidual shows unique rhythm during keypad tapping. Zahid et al. [27] extracted
six features from a user’s keystrokes for individual identification. In [6], neural
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network classifier is utilized to distinguish impostors from legitimate users when
someone dials a phone number or types text.

An abundance of sensors equipped on a smartphone can provide much valu-
able information on a user’s tapping behaviors. The sense data from multi-touch
screen, accelerometer, orientation and compass is translated to a user’s gesture
in work [16]. The data is used to train a classifier which can decide whether a user
is legitimate. Another work [8] collects touch pressure, size, X and Y coordinates,
and time as the raw data, then uses Dynamic Time Warping (DTW) algorithm
to decide whether the input data matches the legitimate user’s pattern. GEAT
[21] authenticates a user based on behavioral features, including finger velocity,
device acceleration, and stroke time extracted from users’ hand input. Zheng
et al. [28] proposed an authentication method based on a four-feature combi-
nation (acceleration, pressure, size, and time). Their study indicates that the
four-feature combination can effectively distinguish impostors from legitimate
users. Different from other works, they used one-class classifier for user verifica-
tion, which only needs the legitimate user’s data in training. However, the work
[20] reveals that it is feasible to highly increase the equal error rate of the classi-
fiers, which could penetrate the second level authentication methods by utilizing
the data from a general population of operation statistics.

Authentication based on eye tracking can be classified into two categories.
The first authenticates a user using the biometric features of the user’s eyes or eye
movements. The second authenticates a user based on eye movement patterns.

The biometric authentication methods in the first category extract biomet-
ric features, e.g., the distance between two eyes, light reflection, and so on, to
identify a user. These features belong to physical biometrics like fingerprint. Spe-
cial hardware such as the eye tracker is needed for catching a user’s biometric
features. Usually, a calibration process will be launched before authentication,
during which the user keeps head fixed in the front of the eye tracker and stays a
certain distance from the device. Bednarik et al. [3] made the first step towards
using eye movements as biometric identification. They found that the distance
between eyes turns out to be the most discriminative and stable indicator. How-
ever, this feature does not truly reflect the behavioral properties of eyes. The
best dynamic feature is the delta pupil size, which brings 60% identification
rate in this work. CUE [14] incorporates the individual and aggregated charac-
teristics belonging to a scanpath. Using the combination of Oculomotor Plant
Characteristics (OPC) and Complex Eye Movement (CEM) patterns, it can
reduce the authentication error by 30% comparing to using one of them. It can
also achieve the highest False Rejection Rate (FRR) 18% and False Acceptance
Rate (FAR) 20% at the same time. Holland and Komogortsev [12] evaluated
the effects of stimulus types and eye tracking specifications on the accuracy of
biometric verification based on CEM. The work [13] presents an objective eval-
uation of utilizing patterns identifiable in human eye movement to distinguish
individuals. The authors hypothesized that the distribution of primitive features
inherent in basic eye movements could be exploited to uniquely identify a given
individual. However, these works are not applicable for portable devices because
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it is infeasible for a user to carry an eye tracker and conduct calibration in public
places.

The methods in the second category leverages gaze points as the input. To
use the authentication system proposed in [15], users input password by star-
ing at corresponding buttons on the display. Researchers also proposed to use
the trajectory of eye movement as password. Since recognizing a trajectory is
much easier than identifying the gaze points, these methods do not need calibra-
tion process and high resolution eye tracker. De Luca et al. [9] evaluated three
different eye gaze interaction methods. They also investigated an approach on
gaze gestures and compared it to the well known gaze-interaction methods. The
authors of work [10] introduced three types of password patterns-ShapePass,
Eye Gesture and EyePass. ShapePass allows users to easily remember complex
shapes, which consist of arbitrary combinations of eight basic strokes (eight
directions). Eye gesture is constructed by different gaze tracks that represent
different digits. EyePass is a combination of ShapePass and EyeGesture. They
mentioned that the stroke perfectly fits human eye’s biometric constraint because
eyes move in fast and straight saccade, and thus cannot perform any curves or
other non-linear shapes. EyePassShape [7] combines EyePin and PassShape. It
requires a user to remember some shape and draw the shape via eye movement
actively. Unfortunately, none of these works is applicable for smartphone users.

Some recent works reveal the feasibility of exploiting the eye tracking tech-
niques for smartphone authentication. Drewes et al. [11] evaluated eye gaze inter-
action as a new input method on mobile phones with the assistance of eye tracker.
They compared a dwell time based gaze interaction to the gaze gesture, and
found that both methods are feasible on mobile phones. The work [22] presents
the first prototype of eye gesture recognition system for portable devices. The
system does not need any additional hardware. It incorporates techniques of
image processing, computer vision, and pattern recognition to detect eye ges-
tures in a video recorded by the device’s front camera. Normalized correlation
coefficient is used as the metric which brings about 60% accuracy. Although eye
gesture makes authentication robust, users cannot easily remember the complex
eye gestures in practice. The work [23] introduces a novel set of shape features,
which capture the characteristic shape of smooth pursuit movement over time.
Each feature individually represents incomplete information about the smooth
pursuit, but they can reflect the pursuit once combined. Pursuit [24] is pro-
posed to recognize a user’s eye movement when the user tracks a moving target
on a big screen through eyes. It provides a general design guidance for pursuit
applications.

7 Conclusion

In this paper, we propose an eye tracking authentication method for smartphone
users. Unlike conventional user authentication on a smartphone, our scheme only
needs a user to track a moving target on the screen through eyes. Thus, it is
resistant to shoulder surfing attack, smudge attack, and many other attacks that
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infer a user’s password based on the hand input information. In our design, the
moving pattern consists of four basic strokes to reduce distraction as much as
possible. Meanwhile, the object movement route is randomly changed to lower
the risk of password leakage. We introduce six different metrics to measure the
similarity between the eye movement trajectory and the target movement tra-
jectory, and identify the most effective metric for development. To validate the
efficacy of the proposed authentication approach, we implement a prototype on
Android and conduct a user study with the help of 21 volunteers. The evaluation
results show that our authentication method is able to achieve high accuracy.
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Abstract. Distance bounding protocols become important since wire-
less technologies become more and more common. Therefore, the security
of the distance bounding protocol should be carefully analyzed. However,
most of the protocols are not secure or their security is proven infor-
mally. Recently, Boureanu and Vaudenay defined the common structure
which is commonly followed by most of the distance bounding protocols:
answers to challenges are accepted if they are correct and on time. They
further analyzed the optimal security that we can achieve in this struc-
ture and proposed DBopt which reaches the optimal security bounds.
In this paper, we define three new structures: when the prover registers
the time of a challenge, when the verifier randomizes the sending time
of the challenge, and the combined structure. Then, we show the opti-
mal security bounds against distance fraud and mafia fraud which are
lower than the bounds showed by Boureanu and Vaudenay for the com-
mon structure. Finally, we adapt the DBopt protocol according to our
new structures and we get three new distance bounding protocols. All of
them are proven formally. In the end, we compare the performance of the
new protocols with DBopt and we see that we have a better efficiency.
For instance, we can reduce the number of rounds in DB2 (one of the
instances of DBopt) from 123 to 5 with the same security.

1 Introduction

Some important applications such as NFC-based payments, RFID access cards
in our daily lives provide services according to the user’s location. Relay attacks
are serious threats against these applications. For instance, if someone makes a
payment with a card on a malicious device then the device can relay to a fake
card which is paying for something more expensive [13]. Similarly, a malicious
person can open a car by relaying the communication between the wireless key
and the car.

In [2], the fact that the speed of communication cannot be faster than the
speed of light is used to detect relay attacks. Then, Brands and Chaum [7]
introduced the notion of distance bounding (DB) protocols where a prover proves
that he is close enough to a verifier. Simply, in distance bounding protocols,
the verifier determines the proximity of the prover by computing the round
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trip communication time in challenge/response rounds. The proximity proof is
disincentive against relay attacks. The literature considers the following threat
models:

– Distance Fraud (DF): A malicious prover far away from the verifier tries to
convince him that he is close enough.

– Mafia Fraud (MF) [12]: A man-in-the-middle (MiM) adversary between a far
away honest prover and a verifier relays or modifies the messages to make the
verifier accept.

– Terrorist Fraud (TF) [12]: An adversary tries to make the verifier accept with
the help of far away and malicious prover without gaining any advantage to
later pass the protocol on his own.

– Impersonation fraud (IF) [1]: An adversary tries to impersonate the prover to
the verifier.

– Distance Hijacking (DH) [11]: A far away prover takes advantage of some
honest, active provers to make the verifier accept.

Some of the distance bounding protocols [7–9,15,18,20–22] have been broken
since either their security were not proven formally or they do not have any
security proofs. Amongst existing distance bounding protocols, only the SKI
protocol [3–5], the Fischlin-Onete (FO) protocol [14,23] and the DBopt protocol
[6] are formally proven to be secure against all above threats.

Boureanu and Vaudenay [6] formalize the threat models and propose a new
distance bounding protocol DBopt which has three concrete instances DB1, DB2
and DB3. They give the definition of the “Common Structure” for the distance
bounding protocols. A DB protocol in common structure consists of three phases:
an initialization phase and a verification phase which do not depend on com-
munication time, and a distance bounding phase between them. The distance
bounding phase consists of number of rounds. In each round, the prover responds
the challenge of the verifier. The verifier checks if the responses are on time and
correct. DBopt follows the common structure and all instances have the secu-
rity proofs against DF and MF. All but DB3 have a security proof for TF. The
common structure is defined by four parameters: the number of rounds n, the
minimal number of correct rounds τ , the cardinality numc of the challenge set,
and the cardinality numr of the response set. The optimal security bounds for
DB protocols that follow the common structure are given in [6]. All instances of
DBopt have optimal security bounds against MF and all but DB2 have optimal
security bounds against DF.

Random delays for the messages (challenges and responses) on both the ver-
ifier and the prover side in the distance bounding phase is used for location
privacy as discussed in [17,19]. In this paper, we add random delays only on the
verifier side and achieve better security bounds.

The contribution of this paper is as follows:

– We define three new structures for distance bounding protocols. Differently
than the common structure [6], we suggest to add properties that the prover
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measures time like the verifier and the verifier sends challenge in a time that
is randomly chosen.

– We show the optimal security bounds for each new structure. Compared to
common structure [6], we obtain better security bounds.

– We modify DBopt protocol [6] according to the new structures and have new
protocols DBoptSync, DBoptSyncRand and DBoptRand. We prove the secu-
rity of them against DF, MF and IF (DH and TF resistance are unchanged
compared to [6]). We reach the optimal security bounds for DF and MF for
all of them in their respective structure.

– We analyse the performance of our new DB protocols and conclude that we
have a better efficiency than previous works [3–6,14,23].

2 Definitions and Preliminaries

In this section, we recall the formal model of distance bounding protocols
from [6].

Definition 1 (Distance Bounding Protocol). A (symmetric) distance
bounding protocol is a two party probabilistic polynomial time (PPT) protocol
and consists of a tuple (K, P, V,B). Here, K is the key domain, P is the proving
algorithm, V is the verifying algorithm where the inputs of P and V is from K,
and B is the distance bound. Given x ∈ K, P (x) and V (x) interact with each
other. At the end of the protocol, the verifier V (x) sends a final message OutV .
If OutV = 1, then the verifier accepts. If OutV = 0, then the verifier rejects.

In a DB protocol, apart from the prover and the verifier, there may exist
other participants called adversaries. Each participant has instances and each
instance has its own location. P denotes the set of instances of the prover, V
denotes the set of the instances of the verifier and A denotes the set of the
instances of the other participants.

Instances of an honest prover run the algorithm P denoted by P (x). An
instance of a malicious prover runs an arbitrary algorithm denoted by P ∗(x).

The verifier is always honest and its instances run the algorithm V denoted
by V (x).

The other participants are (without loss of generality) malicious. They may
run any algorithm without no initialized key. A denotes a participant from A.

The locations of the participants are elements of a metric space.

Communication and Adversarial Model: The communication and adver-
sarial model of a DB protocol [3] is the following:

DB protocols run in natural communication settings. There is a notion of
time, e.g. time-unit, a notion of measurable distance and a location. Besides,
timed communication follows the laws of physics, e.g., communication cannot
be faster than speed of light.

An adversary can see all messages (whenever they reach him). He can change
the destination of a message subject to constraints. Namely, a message sent by
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U at time t to V can be corrupted by A at time t′ if t′ + d(A, V ) ≤ t + d(U, V )
where d is a metric that shows the distance between its inputs. In addition, the
adversary may have extra technology to correct the noise of the channel while
honest participants cannot have it.

In fact, the adversary has very limited action because of the communication
speed. For instance if the adversary relays the messages between the far away
prover and the verifier, the responses arrive very late. Similarly if the adversary
forces the far away prover for any online help, still he cannot succeed to respond
correctly and on time. Basically, the adversary cannot break the laws of physics!

Definition 2 (DB Experiment). An experiment exp for a distance bound-
ing protocol with the tuple (K, P, V,B) is a setting (P,V,A) with several PPT
instances of participants, at some locations.

We denote by exp(V ) a distinguished experiment where we fix a verifier
instance V called the distinguished verifier. Participants that are within a dis-
tance of at most B from V are called close-by participants. Others are called
far-away participants.

Definition 3 (Common Structure [6]). A DB protocol with the common
structure based on parameters (n, τ, numc, numr) has some initialization and ver-
ification phases which do not depend on communication times. These phases are
seperated by distance bounding phase which consists of n rounds of timed chal-
lenge/response exchanges. A response is called on time if the elapsed time
between sending the challenge (by verifier) and receiving the response (by ver-
ifier) (See Fig. 1) is at most 2B. Provers do not measure the time. Challenges
and responses are in sets of cardinality numc and numr, respectively.

When the protocol follows the specified algorithms but messages during the
distance bounding phase can be corrupted during transmission, we say that the
protocol is τ -complete if the verifier accepts if and only if at least τ rounds have
a correct and on-time response.

In practice, the noise in the communication should be considered. We assume
that there is probability of noise pnoise in one round of distance bounding phase.
Therefore the probability that a number of τ responses are correct and on time
in the case of a close-by prover is Tail(n, τ, 1 − pnoise) where:

Tail(n, τ, ρ) =
n∑

i=τ

(
n

i

)

ρi(1 − ρ)n−i

Accordingly, the probability to fail is negligible when n
τ < 1 − pnoise due to

the Chernoff-Hoeffding bound [10,16].
We now give security definitions and theorems from [6] that show the optimal

security bounds for the DB protocols following the common structure.

Definition 4. (α-resistance to Distance Fraud [6]). The distance-bounding
protocol α-resists to distance fraud if for any distinguished experiment exp(V )
where there is no close participant to V, the probability that V accepts is bounded
by α.



482 H. Kılınç and S. Vaudenay

Theorem 1 ([6]). A DB protocol following the common structure with para-
meters (n, τ, numc, numr) cannot α−resists to distance fraud for α lower than
Tail(n, τ,max( 1

numc
, 1

numr
)).

This is the optimal security bound that a DB protocol can reach against
distance fraud. The DB1 and DB3 protocols from DBopt [6] reach this bound.

Definition 5 (β-secure Distance Bounding Protocol [6]). We say that a
distance-bounding protocol is β-secure if for any distinguished experiment exp(V )
where the prover is honest, and the prover instances are all far away from V (the
distance between the prover instances and V is more than B), the probability that
V accepts is bounded by β.

We recall that β-security captures the threat models MF, MiM and IF [6].

Theorem 2 ([6]). A DB protocol following the common structure with para-
meters (n, τ, numc, numr) cannot be β−secure lower than Tail(n, τ,max
( 1

numc
, 1

numr
)).

This is the optimal security bound that a DB protocol can reach against
mafia fraud. All instances of DBopt protocols [6] reach this bound.

t2

t0

PV

Fig. 1. The time check in the com-
mon structure is done by measuring
the time difference between the curly
parenthesis. t shows the time.

t2

t0

t1 PV

Fig. 2. The time check in the sync struc-
ture is done by measuring the time dif-
ference between the curly parentheses. t
shows the time.

3 Optimal Distance Bounding Protocol with Almost
Synchronized Parties

3.1 Definitions and Lemmas

Definition 6 (Sync Structure). A DB protocol with the sync structure based
on parameters (n, τ, numc, numr) has some initialization and verification phase
which do not depend on communication times. There is an n-round distance
bounding phase between the initialization and verification phase. The challenge
is on time if the elapsed time between sending the challenge (by verifier) and
receiving the challenge (by prover) (Corresponds first part in Fig. 2) is at most
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B. The response is on time if the elapsed time between sending the response
(by prover) and receiving the response (by verifier) (Corresponds second part in
Fig. 2) is at most B. Challenges and responses are in sets of cardinality numc

and numr, respectively.
When the protocol follows the specified algorithms but messages during the

distance bounding phase can be corrupted during transmission, we say that the
protocol is τ -complete if the verifier accepts if and only if at least τ rounds have
a correct and on-time response and challenge.

The important difference between “Common Structure” and “Sync Struc-
ture” is that provers now need to measure time since the verifier needs to check
if the challenge arrive on time to the prover.

Lemma 1. Let exp be an experiment, V be a participant and t0 be a time. We
consider a simulation expt0 of the experiment in which each participant U stops
just before time t0+d(V,U). We denote by Viewexp

t (U) and View
expt0
t (U) the view

of participant U at time t in exp and expt0 , respectively. For any t < t0+d(V,U),

Viewexp
t (U) = View

expt0
t (U).

Proof. We prove by induction on t that for all participant U such that t <
t0+d(V,U), Viewexp

t (U) = View
expt0
t (U). Clearly this is the case at the beginning

of the both experiments. If it is the case at any time less than or equal to
t − 1, we can now prove it is the case at time t. Let participant U be such
that t < t0 + d(V,U). We know that Viewexp

t−1(U) = View
expt0
t−1 (U). Any incoming

message m at time t from a participant U ′ was sent at time t′ = t−d(U,U ′). We
have t′ < t0 + d(V,U) − d(U,U ′) ≤ t0 + d(V,U ′). If U ′ is at a different location
than U , we have t′ ≤ t − 1 so we can apply the induction hypothesis. Therefore
Viewexp

t′ (U ′) = View
expt0
t′ (U ′) and so the message m is the same in exp and expt0 .

This applies to all instances at the same location as U , since they locally compute
the same messages for each other. Hence, Viewexp

t (U) = View
expt0
t (U). ��

Lemma 2. Given an experiment, if a message c is randomly selected with fresh
coins by a participant V at time t0, any ĉ received by a participant U at time
t1 < t0 + d(U, V ) is statistically independent from c.

Proof. We apply Lemma 1. c is not selected at all in expt0 because V stops just
before t0 in expt0 . Since t1 < t0 + d(U, V ), ĉ is the same in exp and expt0 . c is
randomly chosen with fresh coins, so ĉ is statistically independent from c. ��

Theorem 3. Assuming the time when V sends his challenge can be predicted
by the adversary, a τ−complete DB protocol following the sync structure with
parameters (n, τ, numc, numr) can not be β secure (Definition 5) for β lower than
Tail(n, τ, 1

numc.numr
).

Remark that this bound is an improvement compared to Theorem2 in the
common structure.
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Proof. We consider V, a far-away prover P and a MiM A with noiseless com-
munication. A relays the messages between V and P in the initialization and
verification phases which are time insensitive. During the challenge phase, A
should arrange the response and the challenge time. Since P is far-away, he can-
not just relay the messages. Therefore he should guess the challenge and the
response before receiving them. We denote that the distance between V and
A by d1 and the distance between A and P by d2. So it can do the following
strategy:

No-ask Strategy: A can guess the response and the challenge and forward
them before seeing them so that they arrive on time.

We assume that A knows the time t0 that V sends the challenge c and he
chooses a distance d ≤ B. He guesses the challenge and sends it to P at time
t0 + d − d2 so that P receives it at time t1 where t1 = t0 + d. He guesses the
response and sends V at time t0 + 2d − d1. V receives the response at time
t2 = t1 + d. Since t1 − t0 = d ≤ B and t2 − t1 = d ≤ B, the challenge and the
response rounds are on time.

As a result, A can be successful on the verification of the challenge and
the response time with no-ask strategy if he guesses both the challenge and
response correctly. The probability that he passes the verification for one round
is 1

numc.numr
and so the probability that the V accepts A is Tail(n, τ, 1

numc.numr
).
��

Fig. 3. The DBoptSync distance-bounding protocol
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3.2 DBoptSync with Synchronized Parties

We propose a new distance bounding protocol DBoptSync described in Fig. 3
which uses the ideas in [6]. The assumption here is that the prover P and the
verifier V have synchronized clocks.

DBoptSync is a symmetric distance bounding protocol in which P and V
share a secret x ∈ Z

s
2 where s is a security parameter. The notations are the

folllowing: n is the number of rounds, �tag is the length of the tag, τ is a threshold,
T is the set of all possible time values, q is a prime power.

As in DBopt, we use the function fx which maps different codomains depend-
ing on the input. fx(NP , NV , Lμ, b) ∈ GF (q)n and fx(NP , NV , Lμ, T, b, c) ∈
GF (q)�tag . Lμ is a mapping defined from a vector μ ∈ Z

s
2 where Lμ(x) =

(μ(x), μ(x), ..., μ(x)) and μ(x) = map(μ.x) such that map : Z2 → GF (q) is
an injection. Here NP , NV ∈ {0, 1}�nonce , Lμ ∈ L where L includes all possible Lμ

mappings, b, c ∈ GF (q)n and T ∈ T n.
The initialization phase of the DBoptSync is the same as in the DBopt proto-

col [6]. The distance bounding phase is almost the same. The difference is that P
saves the each time ti1 that he receives the challenge c′

i from V at round i and V
saves the times ti0 and ti2 that he sends the challenge ci and he receives response
r′
i, respectively. In the verification phase, the prover sets T = (t11, t

2
1, ..., t

n
1 ) and

c′ = (c′
1, c

′
2, ..., c

′
n) and calculates the tag fx(NP , NV , Lμ, T, b, c′). Then he sends

the tag and the verifier does the following:

– He checks if the tag and (c′, T ) are compatible which means the tag he received
is equal to fx(NP , NV , Lμ, T, b, c′). If it is compatible, he does the next step.
Otherwise he rejects P .

– V counts the number of correct rounds. A round is correct if c′
i = ci and r′

i = ri.
If the number of correct rounds are less then τ , he rejects P . Otherwise he
continues with the next step.

– V checks the challenge and response time for each correct round i. The chal-
lenge and response time is correct if ti0 ≤ ti1 ≤ ti2, ti1 − ti0 ≤ B and ti2 − ti1 ≤ B,
respectively. If the number of timely and correct rounds is at least τ , then V
accepts P . Otherwise, he rejects.

We note that the timely condition in DBoptSync implies ti2 − ti0 ≤ 2B, which
is the only verification done in DBopt [6]. Therefore, the DBoptSync’s timely
condition is more restrictive.

The responses are computed depending on the concrete instance of b and
φci . There are three protocols defined in [6] whose instances are given in Table 1.
Hence, DBoptSync has the same instances as well.

Theorem 4 (Security). Assuming that V and P are synchronized, the DBopt-
Sync protocol with the selection of b and φ as in Table 1 is β−secure,

– (DB1 and DB2) β = Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + (r + 1)ε + r2−�tag when f is a
(ε,K)-circular PRF (See AppendixA).

– (DB3) β = Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + ε + 2−�tag when f is a (ε,K)-PRF.
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Here, r is the number of honest instances and K is a complexity bound on the
experiment. β is negligible for τ

n ≥ 1
q2 + cte when r and K are polynomially

bounded and ε is negligible.

Table 1. Classification of the protocols according the selection of b and φ in DBoptSync

Protocol q map b φci

DB1 q > 2 map(u) �= 0 no b used φci(a,x
′
i, bi) = ai + cix

′
i

DB2 q = 2 map(u) = u Hamming weight n
2

φci(a,x
′
i, bi) = ai + cix

′
i + cibi

DB3 q ≥ 2 no map used Hamming weight n φci(a,x
′
i, bi) = ai + cibi

If ε, 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are optimal for
the security according to Theorem 3.

Proof. The proof starts like in [6]. We consider a distinguished experiment
exp(V ) with no close-by participant and no adversary and V accepts with prob-
ability p. We consider a game Γ0 where we simulate exp(V ) and succeed if and
only if V accepts P . So, the success probability of this game is p. We reduce
Γ1, Γ2 and Γ3 as in [6].

We reduce Γ0 to Γ1 whose success additionally requires that for every
(NP , NV , Lμ) triplet there is no more than one instance P (x) and one instance
V (x) using this triplet. Since P (x) is honest and P (x) and V (x) are selecting
NP and NV at random, respectively, so the success probability of Γ1 is at least
p − r2

2 2−�nonce .
Γ2 is the reduction where Γ1 and its success requires additionally that V does

not accept forged tag. fx satisfies the circular PRF assumptions (See Appen-
dixA) as shown in [6]. It means that the tag can be forged with probability ε +
2−�tag . Therefore the success probability of Γ2 is at least p− r2

2 2−�nonce −rε−r2−�tag

(See [6] for the full proof of this step).
Now, in whole game Γ2, we replace the oracle Ox,fx

by Ox̃,F and obtain a
simplified game Γ3. Γ3’s requirements for the success is the same with Γ2. So we
have PrΓ3 [success] ≥ p − r2

2 2−�nonce − (r + 1)ε − r2−�tag .
We now detail the analysis of Γ3 which differs from [6]. In Γ3, P and V never

repeat the nonces and use a random function F to select a. So, the distinguished
V has a single matching P and these two instances pick a at random. Further-
more, acceptance implies that both instances have seen the same Lμ, T, b, c. The
acceptance message of V also depends on the correct and timely response and
challenge. In the case that V accepts P , P has to receive the challenge c on time
and V has to receive the corresponding response r on time for at least τ rounds.
Let’s denote ti0 the time when V sends ci, ti1 the time when P receives c′

i and
ti2 is the time when V receives ri. Thanks to Lemma 2, the challenge that P (x)
receives is independent from the challenge that is sent by V (x), since the chal-
lenge c is randomly selected by V (x), the message that P (x) received matches
with probability 1

q .
Similarly, if we exchange the roles of P and V in Lemma 2 and replace t0 with

ti1 and t1 with ti2, we can conclude that r that V (x) receives is independent from
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the response r′
i that is sent by P (x) as well. The response functions on DB1,

DB2 in each round i depends on challenge, ai and x′
i. In Γ3, ai is random in

GF (q)n. Since φc′
i
(ai, x

′
i, bi) = ai + g(c′

i, x
′
i, bi) where g is a function (See Table 1

for the details of g) we can assume that ai is randomly selected in GF (q) just
when r′

i is computed. Equivalently, ri is uniformly selected in GF (q) just before
being sent. So, ri = r′

i with probability 1
q .

To sum up, we have p ≤ Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + (r + 1)ε + r2−�tag .

If φ and b are as in DB3 [6], we lose r2

2 2−�nonce from Γ0. In Γ1, we apply full
PRF reduction and lose ε to obtain Γ2 with a random function. We lose 2−�tag

more to assume that tag is received by V was not forged in some Γ3. Γ3 succeeds
with a probability bounded by Tail(n, τ, 1

q2 ) because of Lemma 1. In the end, we

have p ≤ Tail(n, τ, 1
q2 ) + r2

2 2−�nonce + ε + 2−�tag for DB3. ��

3.3 DBoptSync with Unsynchronized Verifier and Prover

DBoptSync assumes that the prover and the verifier have synchronized clocks.
In this section, we discuss the problems of having unsynchronized clocks for P
and V in the DBoptSync. Let’s say that the time difference between the clocks of
the verifier and prover is |δ|1. For example, V has time t on his local clock while
P has time T = t + δ on his local clock. V sends the challenge at t0 according
to V’s local clock and P receives it at T1 = t0 + d1 + δ according to P ’s local
clock. Then V receives the response at t2 ≥ t0 + 2d1. So V gets the following
result in the verification of timing: T1 − t0 = δ + d1 and t2 − T1 = d1 − δ. If the
prover is close, the inequality |δ| ≤ B − d1 should be satisfied so that P passes
the protocol.

In addition, unsynchronized honest prover and verifier give advantage to the
adversary since he is able to do pre-ask (for δ > 0) and post-ask (for δ < 0).
Indeed, if the honest prover is far at a distance up to B + |δ| and at least
max(B, |δ|), A passes the protocol with probability Tail(n, τ,max( 1

numc
, 1

numr
)).

Note that ti2−T i
1 ≤ B and T i

1 −ti0 ≤ B imply that ti2−ti0 ≤ 2B which is what
is described in DBopt [6]. So, the security result of [6] apply to our protocol even
if the clocks are not synchronized.

Pre-ask: A guesses the challenge before it is released and asks for the response
to P on time so that he can later on answer. If P and V are synchronized,
this strategy never works because A relays the response from P to V where the
distance between them is more than B. However the following happens if P and
V are not synchronized and δ > 0.

We consider d1 + d2 ∈ [max(B, |δ|), B + |δ|]. V sends the challenge c at t0. A
guesses the challenge ĉ and sends it to P at tA to be determined which is before
receiving the challenge from V. P receives ĉ at T1 = tA +d2 +δ that is local time
of P . P sends response r and A relays it and V receives r at t2 = tA + 2d2 + d1.
1 If the difference between clocks is not constant it can be still considered as a constant

during the protocol since the distance bounding phase takes very short time (order
of nanoseconds).
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T1−t0 = tA+d2+δ−t0. By selecting tA = t0+d1−2δ, T1−t0 = d1+d2−δ ∈
[0, B]. So the challenge is considered on time.

t2 − T1 = tA + 2d2 + d1 − tA − d2 − δ = d1 + d2 − δ ∈ [0, B]. So the response
is considered on time.

Post-ask: A guesses the response at the same time he forwards the challenge
to P . If P and V are synchronized, this strategy never works because A relays
the challenge from V to P where the distance between them is more than B.
However the following happens if P and V are not synchronized and δ < 0.

We consider d1 + d2 ∈ [−δ,B − δ]. V sends the challenge c, then A relays c
and P receives it at T1 = t0 + d1 + d2 + δ. Without waiting the response from
P , A guesses response and sends it at time tA. So V receives it at t2 = tA + d1.

T1 − t0 = t0 + d1 + d2 + δ − t0 = d1 + d2 + δ ∈ [0, B]. So the challenge is on
time.

By selecting tA = t0 + d1 + 2d2 + 2δ, we have t2 − T1 = d1 + d2 + δ ∈ [0, B].
So the response is on time.

Therefore, there is an attack when the distance between P and V is in between
max(B, |δ|) and B + |δ|.

As a result, we have the security bound of Theorem4 if the distance between
P and V is more than B+|δ| even though P and V are not synchronized. However
if P is in the distance between B and B+ |δ|, we have the weaker security bound
as in Theorem 2.

One of the important problems in DBoptSync with unsynchronized P and
V is correctness, since the close-by P cannot pass the protocol, when d(P, V ) ≤
B − |δ|. Therefore if the verification fails in DBoptSync, V can do the time
verification of DBopt [6] which is checking if t2 − t0 ≤ 2B, but in this case we
have a weaker security which is as in DBopt. We stress that this does not require
to restart the protocol. We rather obtain a variant of DBoptSync which OutV
can take 3 possible values: “reject”, “DBopt accept”, or “DBoptSync accept”.
Applications can decide if a “DBopt accept” is enough depending on the required
security level.

4 Randomizing Sending Time of the Challenge

We think of a new modification to distance bounding protocols that are in either
“Common Structure” or “Sync Structure”. Before, we assumed that the sending
time ti0 of the challenge for each round i in distance bounding phase was known by
the adversary. Now, we suggest a new modification where the verifier randomizes
the sending time ti0 ∈ [T, T + Δ] where T and Δ are public and ti0 is uniformly
distributed (as real numbers) so that the exact ti0 cannot be accurately known
by the adversary before seeing the challenge.

4.1 Definitions and Lemmas

Definition 7 (Rand Structure). A DB protocol with the rand structure based
on parameters (n, τ, numc, numr,Δ) has the same properties with the common
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structure in Definition 3. Additionally, the verifier chooses randomly a sending
time in the interval [T, T +Δ] for each challenge in the distance bounding phase.

Definition 8 (SyncRand Structure). A DB protocol with the rand struc-
ture based on parameters (n, τ, numc, numr,Δ) has the same properties with the
sync structure in Definition 6. Additionally, the verifier chooses randomly a send-
ing time in the interval [T, T + Δ] for each challenge in the distance bounding
phase.

Theorem 5. A DB protocol following either the “Rand Structure” or the “Syn-
cRand Structure” with parameters (n, τ, numc, numr,Δ) cannot α-resists to dis-
tance fraud (DF) for α lower than Tail(n, τ,max( 1

numc
, 1

numr
).2B

Δ ).

Proof. We construct a DF following the early reply strategy: A malicious prover
guesses the challenge ci or the response ri before it is emitted, and then already
sends the response at time T i

1 (We use capital T since the prover does not
have to be synchronized with the verifier). Therefore the prover has to guess
proper time T i

1 to send the response because the verifier checks the inequalities
ti2 − ti0 ≤ 2B for the “Rand Structure” and T i

1 − ti0 ≤ B and ti2 − T i
1 ≤ B for

the “SyncRand Structure”. ti2 is the time that the verifier receives the response
so it depends on the sending time T i

1 of response by the prover. It means that
0 ≤ ti2 − ti0 = T i

1 + d − ti0 ≤ 2B where d is the distance between the prover and
the verifier. So we can conclude that if ti0 ∈ [T i

1+d−2B, T i
1+d] then P passes ith

verification. The probability that it happens is 2B
Δ . Once c is received, the prover

can deduce ti0 and use ti1 = ti0+ti2
2 in the “SyncRand Structure” since verifier

needs to know it to check if the response and challenge are on time. Therefore
the probability that prover succeeds the round i is max( 1

numc
, 1

numr
).2B

Δ since he
also have to guess correctly c or r. We can conclude that P succeeds at least τ
rounds with probability at least Tail(n, τ,max( 1

numc
, 1

numr
).2B

Δ ). ��

Note that in the “Rand Structure”, there is no change on the optimal β which
is given in Theorem 2. As for the “SyncRand Structure”, the new bound is as
follows.

Theorem 6. A τ -complete DB protocol following the “SyncRand Structure”
with parameters (n, τ, numc, numr,Δ) cannot be β-secure for β lower than
Tail(n, τ, 1

numc.numr
.B
Δ ).

Proof. We consider V, a far away prover P and MiM A with noiseless communi-
cation. As showed in Theorem 3, A can use No-ask strategy to pass the protocol.
Differently, he needs to guess proper time tiA to send guessed challenge to P .
P receives the challenge from A at time ti1 where ti1 = tiA + d2. If A passes ith

round, the following inequality 0 ≤ ti1 − ti0 ≤ B should be satisfied. It means
that 0 ≤ tA + d2 − t0 ≤ B. If tA satisfies this inequality then t0 should be in the
interval [tA+d2−B, tA+d2]. The probability that it happens is B

Δ . Therefore the
probability that prover succeeds the round i is 1

numc.numr
.B
Δ since he also have to

guess correct c and r. We can conclude that P succeeds at least τ rounds with
probability at least Tail(n, τ, 1

numc.numr
.B
Δ ). ��
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As a result of all the structures, “SyncRand Structure” gives the best optimal
security bounds for both β-security and α-resistance. See Table 2 for the review
of the optimal bounds for all of the structures.

Table 2. The review of optimal security bounds according to defined structures

Structure DF MF

Common Tail(n, τ, max( 1
numc

, 1
numr

)) Tail(n, τ, max( 1
numc

, 1
numr

))

Sync Tail(n, τ, max( 1
numc

, 1
numr

)) Tail(n, τ, 1
numc

. 1
numr

)

Rand Tail(n, τ, max( 1
numc

, 1
numr

). 2B
Δ

) Tail(n, τ, max( 1
numc

, 1
numr

))

SyncRand Tail(n, τ, max( 1
numc

, 1
numr

). 2B
Δ

) Tail(n, τ, 1
numc

. 1
numr

B
Δ

)

4.2 DBoptSyncRand and DBoptRand with Randomized Sending
Time

We construct new distance bounding protocols DBoptSyncRand and DBop-
tRand. DBoptSyncRand follows the same steps as in DBoptSync and DBoptRand
follows the same steps as in DBopt [6]. Differently in both of the protocols, the
verifier randomizes the send time ti0 ∈ [T, T +Δ] where T and Δ are public and ti0
is uniformly distributed (as real numbers) for each round i in the distance bound-
ing phase.

In Sect. 5, we consider Δ = 100B. For instance, Δ = 1μs and B = 10ns (this
corresponds to 3 m according to speed of light). n rounds take n μs which is
reasonable.

Theorem 7 (Security). Assuming that V and P are synchronized, the sending
time of the challenge is randomized and the time interval [T, T + Δ] to send the
challenge is public. Then the DBoptSyncRand protocol is β−secure for

– (b and φ as in DB1 and DB2 [6]) β = Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce + (r + 1)ε +
r2−�tag when f is a (ε,K)-circular PRF [6].

– (b and φ as in DB3 [6]) β = Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce + ε + 2−�tag when f is
a (ε,K)-PRF.

Here, r is the number of honest instances of the prover and K is a complexity
bound on the experiment and φ is response function. β is negligible for τ

n ≥
1
q2 + cte and r and K polynomially bounded and ε is negligible.

If ε, 2−�nonce and 2−�tag are negligible, DB1, DB2 and DB3 are optimal for
the security according to Theorem 6.

Proof. The proof is the same as Theorem 4 until game Γ3. The success of Γ3

depends on the correct and timely response and challenge. Lemma 2 shows that
the challenge and the response have to be independent so that they arrive on time
and these independent response and challenge can be correct with probability
1
q2 (See the proof of Theorem4). Additionally, the independent challenge ĉ is
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on time when the sending time is randomized, if ĉ is sent on proper time. This
proper time can be correct with probability B

Δ as showed in Theorem 6. Therefore
the probability of one successful round is 1

q2 .B
Δ .

Consequently, success probability Γ0 is at least Tail(n, τ, 1
q2 .B

Δ ) + r2

2 2−�nonce +
(r + 1)ε + r2−�tag for DB1 and DB2. For DB3, it is at least Tail(n, τ, 1

q2 .B
Δ ) +

r2

2 2−�nonce + ε + 2−�tag . ��

Theorem 8 (DF-resistance). The DBoptSyncRand and DBoptRand protocols
are α−resistant to distance fraud for

– (DB1 and DB3) α = Tail(n, τ, 1
q .2B

Δ ).

– (DB2) α =
n∑

i+j≥τ
i,j≤n/2

(
n/2

i

)
( 2B

Δ )i(1 − 2B
Δ )

n
2 −i

(
n/2

j

)
(B

Δ )j(1 − B
Δ )

n
2 −j.

DB1 and DB3 are optimal for the DF-resistance according to Theorem 5, while
DB2 cannot reach the optimal bounds for DF.

Proof. We consider distinguished experiment exp(V ) with no close-by partici-
pant. Due to the Fundamental Lemma in [6], the response ri is independent (in
the sense of Fundamental Lemma in [6]) from ci. For DB1 and DB2, ri is correct
with probability 1

q . Since ri has to be arrived on time, the proper time has to
be chosen. As stated in Theorem 5 the sending time is chosen correctly with
probability 2B

Δ . So the probability of success in one round i is 1
q .2B

Δ .
In DB2, half of the rounds where x′ = bi are correct because of the ham-

ming weight of b. Therefore, the only necessity in these rounds is sending the
response in correct time which can be chosen well with probability 2B

Δ . For
the remaining rounds (n

2 rounds), at least τ − n
2 rounds should pass correctly.

The correct response is chosen with the probability 1
2 and correct time with the

probability 2B
Δ . ��

5 Performance

Three new protocols DBoptSync DBoptSyncRand and DBoptRand have differ-
ent success probabilities for distance fraud and mafia fraud. DBoptSync and
DBoptSyncRand have better bound against mafia fraud compared to DBopt
while DBoptRand has the same security against mafia fraud with DBopt. In
addition, DBoptRand and DBoptSyncRand have the same and better success
probability for distance fraud compared to DBopt but DBoptSync is same with
DBopt.

Assuming a noise level of pnoise = 0.05 and B
Δ = 0.01, we get the results in

Tables 3 and 4. We find τ in terms of rounds n such that Tail(n, τ, 1 − pnoise) ≈
99% for τ−completeness. Table 3 shows the required number of rounds for dis-
tance fraud i.e. α ≤ s. Table 4 shows the number of rounds required for the
security i.e. β ≤ s. We used Theorems 4, 7 and 8 and theorems in [6] to compute
the required number of rounds to achieve security level.
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Table 3. Number of required rounds to be secure against distance fraud where s is the
security level in DB protocols. The bold protocols improve DBopt

s = 2−10 s = 2−20

DB1 DB1 DB2 DB3 DB1 DB1 DB2 DB3

(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 14 12 69 24 24 20 123 43

DBoptSyncRand 3 3 2 3 6 6 2 6

DBoptRand 3 3 2 3 6 6 2 6

DBopt 14 12 69 24 24 20 123 43

Table 4. Number of required rounds to be secure against mafia fraud where s is the
security level in DB protocols. The bold protocols improve DBopt

s = 2−10 s = 2−20

DB1 DB1 DB2-DB3 DB1 DB1 DB2-DB3

(q = 3) (q = 4) (q = 3) (q = 4)

DBoptSync 7 6 12 12 8 20

DBoptSyncRand 3 1 3 5 5 5

DBoptRand 14 12 24 24 20 43

DBopt 14 12 24 24 20 43

As we can see in Tables 3 and 4, we can use DB2 with 5 rounds (instead
of 123) in DBoptSyncRand and reach a pretty good security. If synchronized
clocks are not realistic, we can see that we have a much better DF-security with
DBoptRand with the same number of rounds.

6 Conclusion

We define new structures for DB protocols which are not used before. The first
structure is the “Sync Structure” where the prover measures the time as well
as the verifier. We modify the DBopt [6] according to sync structure and we
get DBoptSync which has better security against mafia fraud. Then we add new
modification which is randomizing the sending challenge time to both “Common
Structure” and “Sync Structure” and get the second and third structures “Rand
Structure” and “SyncRand Structure”, respectively. Similarly, we modify the
DBopt and DBoptSync protocols based on these structures and get better secu-
rity bounds against distance fraud for the DBoptSyncRand and DBoptRand
protocols and mafia fraud for DBoptSyncRand protocol. We give the optimal
security bounds against distance fraud and mafia fraud for all DB protocols that
follows the new structures.
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A Circular-Keying PRF

The notion of circular-keying in pseudorandom functions introduced in [4,5].
It is necessary to use circular-keying PRF in our protocols to prove security
against MiM attacks. Circular-keying PRF has an extra assumption to the PRF
(fx)x∈GF (q)s to handle reuse of a fixed x outside of a PRF instance fx.

Definition 9 (Circular PRF [6]). Let be s, n1, n2 and q some parameters. An
oracle Ox̃,F is defined as Ox̃,F (y, L,A,B) = A · L(x̃) + B · F (y), using dot prod-
uct over GF (q), given L : {0, 1}s → GF (q)n1 and F : {0, 1}∗ → GF (q)n2 . We
assume that L is taken from a set of functions with polynomially bounded repre-
sentation. Let (fx)x∈GF (q)s be a family of functions from {0, 1}∗ to {0, 1}n2 . The
family f is a (ε,K)-circular-PRF if for any distinguisher having K complexity,
if the probability of distinguishing Ox,fx

, x ∈ {0, 1}s from Ox̃,F is bounded by
1
2 + ε. Additionally, we require two conditions on the list of queries:

– for any pair of queries (y, L,A,B) and (y′, L′, A′, B′), if y = y′, then L = L′.
– for any y, if (y, L,Ai, Bi), i = 1, 2, ..., � is the list of queries using this value

y, then ∀ λ1, λ2, ..., λ� ∈ GF (q)

�∑

i=1

λiBi ⇒
�∑

i=1

λiAi = 0

over the GF (q)-vector space GF (q)n2 and GF (q)n1 .
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Abstract. As the underground market of malware flourishes, there is an
exponential increase in the number and diversity of malware. A crucial
question in malware analysis research is how to define malware specifica-
tions or signatures that faithfully describe similar malicious intent and
clearly stand out from other programs. It is evident that the classical
syntactic signatures are insufficient to defeat state-of-the art malware.
Behavior-based specifications which capture real malicious characteris-
tics during runtime, have become more prevalent in anti-malware tasks,
such as malware detection and malware clustering. This kind of speci-
fication is typically extracted from system call dependence graphs that
a malware sample invokes. In this paper we present replacement attacks
to poison behavior-based specifications by concealing similar behaviors
among malware variants. The essence of the attacks is to replace a behav-
ior specification to its semantically equivalent one, so that similar mal-
ware variants within one family turn out to be different. As a result,
malware analysts have to put more efforts to re-analyze similar samples.
We distill general attacking strategies by mining more than 5,000 mal-
ware samples’ behavior specifications and implement a compiler-level
prototype to automate replacement attacks. Experiments on 960 real
malware samples demonstrate effectiveness of our approach to impede
multiple malware analyses based on behavior specifications, such as simi-
larity comparison and malware clustering. In the end, we provide possible
counter-measures to strengthen behavior-based malware analysis.

1 Introduction

Malware, or malicious software with harmful intent to compromise computer
systems, is one of the major challenges to the Internet. Over the past years, the
ecosystem of malware has evolved dramatically from “for-fun” activities to a
profit-driven underground market [3], where malware developers sell their prod-
ucts and cyber-criminals can simply purchase access to tens of thousands of
malware-infected hosts for nefarious purposes [1]. Normally malware develop-
ers do not write new code from scratch, but choose to update old code with
new features or obfuscation methods [23]. With thousands of malware instances
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 497–517, 2015.
DOI: 10.1007/978-3-319-28166-7 24
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appearing every day, efficiently processing large quantity of malware samples
which exhibit similar behavior, has become increasingly important. A key step
to improve efficiency is to define discriminative specifications or signatures that
faithfully describe intrinsic malicious intents, so that malware samples with sim-
ilar functionalities tend to share common specifications. Malware analysts ben-
efit from general specifications. For example, every time a suspicious program is
found in the wild, malware analysts can quickly determine whether it belongs
to a previous known family by matching its specification.

As malware keeps evolving to evade detection, the classical syntactic speci-
fications are insufficient to defeat various obfuscation techniques, such as poly-
morphism [21], binary packing [31] and self-modifying code [12]. In contrast,
behavior-based specifications, which are generated during malware execution,
are more resilient to static obfuscation methods and able to disclose the natural
behavior of malware, such as replication, download and execution and remote
injection. The main means for malware to interact with an operating system
is through system calls1. The dataflow dependencies among system calls are
expressed as an acyclic graph, namely system calls dependency graph (SCDG),
where nodes represent system calls executed and a directed edge indicates a
data flow between two nodes. Typically, the dependencies derive from the return
value or the arguments computed by previous system calls. When a data source is
passed to one of its succeeding native APIs, a directed edge connecting these two
nodes is created. Since data flow dependencies are hard to be reordered, SCDG
has been broadly accepted as a reliable abstraction of malware behavior [15,
18], and widely employed in malware detection [6,20] and malware scalable
clustering [7,28].

With quite a number of compelling applications, SCDG looks promising.
However, it is not impossible to circumvent. In order to inspire more state-of-
the-art malware analysis techniques, we exploit the limitations of the current
approaches and present replacement attacks against malware behavior specifi-
cations. We show that it is possible to automatically conceal similar behavior
specifications among malware variants by replacing a SCDG to its semantically
equivalent one, so that similar malware variants show large distances and there-
fore are assigned to different families. Eventually, malware analysts have to re-
analyze large number of malware samples exhibiting similar functionalities. To
achieve this goal, we first mine two large data sets to identify popular system calls
and OS objects dependencies. We summarize two general attacking strategies to
replace SCDG: (1) mutate a sequence of dependent system calls (sub-SCDG) to
its equivalent ones, and (2) insert redundant data flow dependent system calls.
Our approach ensures that the new generating dependence relationships are so
common that they cannot be easily recognized. After transformation, similar
malware samples reveal large distance when they are measured with widely used
similarity metrics, such as graph edit distance [13] or Jaccard Index [11]. As a
result, subsequent analyses (e.g., malware detection and clustering) are misled.

1 The systems call in Windows NT is called as native API.
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To demonstrate the feasibility of replacement attacks, we have developed a
compiler-level prototype, API Replacer, to automatically perform transforma-
tion on top of the LLVM framework [22] and Microsoft Visual Studio. Given
a single malware source code, API Replacer is able to generate multiple mal-
ware binaries, and each one exhibits different behavior specifications. We evalu-
ate our replacement attacks on a variety of real malware samples with different
replacement ratio. Our experimental result shows that our approach successfully
impede malware similarity comparison and state-of-the-art behavior-based mal-
ware clustering. The cost of transformation is low and the execution overhead
after transformation is moderate.

In summary, we make the following contributions:

– We propose replacement attacks to camouflage similar behavior specifications
among malware variants by replacing system call dependence graphs.

– We summarize the rules for equivalent replacements by mining large set of
malware samples. The distilled attacking strategies tangle structure of system
call dependency as well as behavior feature set without affecting semantics.

– We automate replacement attacks by developing a compiler-level prototype
to perform source to binary transformation. The experimental results demon-
strate our approach is effective.

– To the best of our knowledge, we are the first one to demonstrate the feasi-
bility of automatically obfuscating behavior based malware clustering on real
malware samples.

The rest of the paper is organized as follows. Section 2 introduces previous
work on behavior based malware analysis. Section 3 describes in detail about
how to generate replacement attacks rules with a case study. Section 4 highlights
some of our implementation choices. We present the evaluation of our approach
in Sect. 5. Possible counter-measures are discussed in Sect. 6 and we conclude
the paper in Sect. 7.

2 Related Work

In this section we first present previous work on behavior based malware analysis,
which is related to our work in that their methods rely on system call sequences
or graphs that a malware sample invokes. Then, we introduce previous research
on impeding malware dynamic analysis. In principle, our approach belongs to
this category. At last we describe related work on system call API obfuscation,
which is close in spirit to our approach.

Behavior Based Malware Analysis. Malware dynamic analysis techniques are
characterized by analyzing the actual executing instructions of a program or the
effects that this program brings to the operating system. Compared with static
technique, dynamic analysis is less vulnerable to various code obfuscation [26].
Christodorescu et al. [15] introduce malware specifications on data-flow depen-
dencies among system calls, which capture true relationships between system
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calls and are hard to be circumvented by random system call injection. Since
then, such malware specifications based on SCDG have been widely used in
malware analysis tasks, such as extracting malware discriminative feature by
mining the difference between malware behavior and benign program behav-
ior [18], determining malware family in which instances share common function-
alities [6,7,28], and detecting malicious behavior [8,20,25]. However, none of the
presented approaches is explicitly designed to be resilient to our replacement
attacks.

Anti-malware Behavior Analysis. Some countermeasures have been proposed
to evade behavior based malware analysis. Since malware behavior analysis is
typically performed in a controlled sandbox environment, the lion’s share of pre-
vious work focus on run time environment detection [14,27]. If a malware sample
detects itself running in a sandbox rather than real physical machine, it will not
carry out any malicious behaviors. To defeat environment-sensitive malware,
Dinaburg et al. [17] build a transparent analysis platform, which remains invisi-
ble to such sandbox environment check. Another direction relies on contrasting
different executions of a malware sample when running in multiple sandboxes.
The control flow deviations may indicate evasion attempts [19]. Our method does
not detect sandbox and is valid in any run time environment. Our replacement
attacks shares similar idea to subvert malware clustering with recent work [9,10].
Our work is different from these previous works in that we attempt to obfus-
cate data flow dependencies between system calls, while the behavior features
these works attack contain no data flow dependencies. As data relationships
between behavior features are hard to be affected by random noise insertion,
our attacking method is more challenging. Furthermore, these work evaluated
their attacks by directly manipulating malware behavior feature set instead of
malware code, which means their attacks may not be feasible in practice. In
contrast, to demonstrate the feasibility of replacement attacks, we develop a
compiler-level converter to transform malware source code to binary.

System Call Obfuscation. The original idea to obfuscate system call API can
be traced to mimicry attack against intrusion detection [35]. Illusion [34] allows
user-level malware to invoke kernel operations without calling the corresponding
system calls. To launch the Illusion attack, the attacker has to install a mali-
cious kernel module, which is not practical in many real attacking scenarios. Ma
et al. [24] present shadow attacks by partitioning a malware sample into multi-
ple shadow precesses and each shadow process presents no-recognizable malware
behavior. But it’s still an open question to launch a multi-process malware sam-
ple covertly. Our proposed attack is inspired by Xin et al. [37]’s approach to
subvert behavior based software birthmark. However, their attacking method is
restricted to replacing a dependency edge with a new vertex and two new edges.
As shown in Sect. 5.2, this simple attacking method only has limited effect on
reducing Jaccard Index. In contrast, our approach provides multiple attacking
strategies. In addition, Xin et al. [37]’s attack code is pre-loaded as a dynamic
library when the program starts running. The drawback is it’s quite easy to
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detect such library interruption. Our API Replacer embeds newly added system
calls into the native code transparently, so that our approach has better stealth.

3 Replacement Attacks Design

3.1 Overveiw

In spite of various metamorphic or polymorphic obfuscation, malware samples
within the same family tend to reveal similar malicious behavior [23]. Our goal in
this paper is to separate similar malware variants by replacing SCDG, the most
prevalent expression to represent malware behavior specifications. Figure 1 shows
an example of SCDG before/after replacement attacks. At the top of Fig. 1, we
list pseudo code fragment written in MSVC for ease of understanding. In the
original SCDG, the return value of “NtCreateFile” is a FileHandle (“hFile1”),
denoting the new created file object. As hFile1 is passed to “NtClose”, a data
flow dependency connects “NtCreateFile → NtClose”. Windows API “SetFile-
Pointer” in the new code moves the file pointer and returns new position, which
is quite similar to “lseek” system call in Unix. The return value of “SetFile-
Pointer” is equal to moving distance plus the offset of starting point, which is
0 (“FILE BEGIN”) in this example. We exploit the fact that the data type of
“hFile1” and the distance to move are both unsigned integers, and deliberately
assign the distance to move with the same value of “hFile1” (line 2 in the new
code). As a result, the return value of “SetFilePointer” (“dwFilePosition”), is
equal to the “hFile1”. Then “dwFilePosition” is passed to “NtClose” to close
the file. When calling “SetFilePointer”, native API “NtSetInformationFile” is
invoked to change the position information of the file object represented by
“hFile1”. In this way, the new code still preserves the original data flow, while
the SCDG changes significantly. Note that compared with the original code, the
file object is updated with new position information. However, the file object is
closed immediately, imposing no lasting side effect to the final state.

1: HANDLE hFile1 = CreateFile (“logfile”,
GENERIC_READ, ...);

2: CloseHandle (hFile1);

(a) the original SCDG (b) the new SCDG

NtCreateFile

hFile1

NtSetInformationFile

1: HANDLE hFile1 = CreateFile (“logfile”,
GENERIC_READ, ...);

2: DWORD dwFilePosition =SetFilePointer
(hFile1, (DWORD) hFile1, NULL, FILE_BEGIN);

3: CloseHandle ( (HANDLE) dwFilePosition);

NtClose

NtCreateFile

hFile1

NtClose

dwFilePosition

Replacement
Attacks

Fig. 1. An example of SCDG before and after replacement attacks
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Fig. 2. Illustration of replacement attacks

A typical scenario to apply replacement attacks is illustrated in Fig. 2. Taking
malware source code as input to API Replacer, our compiler-level transforma-
tion tool, malware authors generate multiple binary mutations of the initial
version. Each mutation shares similar malicious functionalities, but exhibits dif-
ferent behavior specifications. Then cyber-criminals spread these malware sam-
ples to the Internet or plant them in the live vulnerable hosts. Suppose these
transformed malware samples, with other suspicious binaries are finally col-
lected by anti-malware companies. To process large number of malware samples,
anti-malware companies utilize automated clustering tools to identify samples
with similar behavior. These tools execute malware instances in a sandbox and
collect run time information to generate behavior specifications, which will be
normalized and then fed to clustering algorithm. As we mentioned in Sect. 2,
current malware clustering tools are not designed to explicitly resist replace-
ment attacks, therefore similar malware mutations after replacement attacks are
probably assigned to different clusters. In that case, malware analysts have to
waste excessive efforts to re-analyze these similar samples.

3.2 Mining Two Large Data Sets

Since there are various expressions of malware behavior based on SCDG, to find
out the possible targets we may attack, we first mine two large data sets of
malware behavior specifications used for malware detection and clustering.

– BRS-data [6] is used by Babić et al. to evaluate malware detection with tree
automata inference. BRS-data contains system calls dependency graphs gen-
erated for 2631 malware samples and covers a large variety of malware, such
as trojan, backdoor, worm, and virus.

– BCHKK-data [7] is used for evaluating malware clustering technique proposed
by Bayer et al. BCHKK-data includes behavior profiles extracted from 2658
malware samples, and more than 75% samples are the variants of Allaple
worm. Note that SCDG is not amenable to scalable clustering techniques,
which usually operate on numerical vectorial feature set. Bayer et al. converted
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system call dependencies to a set of features in terms of operations (create,
read, write, map, etc.) on OS objects (file, registry, process, section, thread,
etc.) and dependencies between OS objects.

These two data sets reflect two typical applications of SCDG to represent
malware specifications: (1) directly utilize rich structural information contained
in SCDG [15,18,29], which is able to match behavioral patterns exactly but
lacks of scalability; (2) extract higher level abstractions from SCDG to fit for
efficient large-scale malware analysis [7,8,30] at the cost of precision. The simi-
larity of BRS-data is normally measured by graph edit distance or graph isomor-
phism [13], while the similarity metrics of BCHKK-data is calculated by Jaccard
Index [11].

Popular Dependencies. We calculate popular native API dependencies from
BRS-data and OS operations and dependencies from BCHKK-data. Table 1 lists
11 popular native API dependencies out of BRS-data, which are mainly related
to the operations on Windows registry, memory and file system. The second
column is the medium data flow types passed between system calls. Most of
the medium types are handles, which stands for various OS objects such as file,
registry, section (memory-mapped file), process, etc. Table 2 presents popular
OS object types, operations and dependencies from BCHKK-data. We believe
as long as we diversify these popular dependencies and behavior features, the
similarity among malware mutations can drop significantly.

Common Sub-SCDGs. Although extracted from different sources, these data
reveal some common malicious functions, which are mapped to sub-SCDGs. The
top 3 popular sub-SCDGs are corresponding to malware replication, registry
modification for persistence and code remote injection. For example, the sev-
eral frequent dependencies regarding “NtMapViewOfSection” and OS objects
dependency between file and section, indicate malware writers commonly uti-
lize memory mapped file to facilitate file manipulation. Malware often configure
Windows registry for persistence in order to run automatically when machine
starts, leading to frequent operations on Windows registry. “NtOpenProcess →
NtWriteVirtualMemory” and “process → thread” are mainly introduced by cre-
ating a new thread in a remote process, the most common way to launch mal-
ware covertly in vulnerable hosts [33]. If we implement these common functions
through different ways, the corresponding sub-SCDGs can be changed drastically
as well.

3.3 Attacking Strategies

In this section we elaborate how to construct replacement attacks strategies. We
propose 3 requirements that our attacking strategies have to meet:

1. (R1) Our replacement attacks should invalidate various malware behavior
similarity metrics, such as graph edit distance and Jaccard Index.
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Table 1. Popular windows native API dependencies

Dependencies Data flow types Ratio (%)

NtMapViewOfSection → NtProtectVirtualMemory void *address 22.4

NtOpenKey → NtQueryValueKey KeyHandle 19.4

NtCreateSection → NtMapViewOfSection SectionHandle 9.6

NtMapViewOfSection → NtUnmapViewOfSection void *address 8.9

NtOpenSection → NtMapViewOfSection SectionHandle 6.3

NtCreateFile → NtReadFile FileHandle 5.4

NtCreateSection → NtQuerySection SectionHandle 4.8

NtOpenKey → NtQueryKey KeyHandle 4.6

NtCreateFile → NtQueryInformationFile FileHandle 4.2

NtOpenFile → NtSetInformationFile FileHandle 4.1

NtOpenProcess → NtWriteVirtualMemory ProcessHandle 3.8

Table 2. Popular OS object types, operations and dependencies

OS object type OS operation

file open, create, read, write, query information,

query directory, set information, query file

registry create, open, query value, set value

section query, create, map, open, mem read

process create, open, query

thread create, query, resume

OS object dependency

file → file, registry → file, registry → registry,

process → thread, section → file, file → section

2. (R2) New system calls and dependencies impose no side effect to original data
flow.

3. (R3) Transformed SCDG should be as common as possible.

We meet our design requirement R1 by two attacking methods. The first one
is embedding redundant data flow dependent system calls to replace original
popular dependencies. As a result, new vertices and dependencies are created
(see example in Fig. 1). At the same time, we make sure data types and values
of original dependencies are preserved (satisfy R2). Further more, we observe
that malicious functionalities can be developed with different technical meth-
ods, making it possible for SCDG mutations without undermining the intended
purpose. For example, malware replication can be implemented through either
memory-mapped file or file I/O; multiple ways exist to modify registry for the
purpose of persistence. Therefore our second attacking strategy is transforming
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a sub-SCDG to its semantically equivalent mutations (satisfy R2). As a result,
the original dependencies probably do not exist anymore. A by-product of our
mining result in Sect. 3.2 is that popular dependencies can also be served as
possible candidates to be embedded in a SCDG, so that the new SCDG doesn’t
look unusual (satisfy R3). Note that these two attacking methods can seamlessly
weave together to amplify each other’s effect.

3.4 Replacement Attacks Arsenal

In this section we present the details of our replacement attacks arsenal. Accord-
ing to our attacking strategies, we classify them into 2 categories:

Inserting Redundant Dependencies. We summarize attacks belong to this
category based on the medium data flow types listed in Table 1.

1. “NtSetInformationFile” attack. This attack can replace the dependencies with
FileHandle as medium, which has been illustrated in Fig. 1.

2. “NtDuplicateObject” attack. “NtDuplicateObject” returns a duplicated
object handle, which refers to the same object as the original handle.

3. “NtQuery*” attack. There are several windows native APIs for querying infor-
mation of kernel objects, such as “NtQueryAttributesFile”, “NtQueryKey”,
“NtQueryInformationProcess” and “NtQueryInformationFile”. All of these
query APIs take certain object handle as one of input argument and output
object information. No any modification is introduced to the kernel objects.
Hence “NtQuery*” native APIs are good candidates for our replacement
attacks. For example, we could insert “NtQueryInformationFile” into a pop-
ular NtCreateFile → NtSetInformationFile dependency, where the output of
“NtQueryInformationFile” (“FileInformation”) is passed to “NtSetInforma-
tionFile”. The two new dependencies also appear frequently.

4. The medium of “void *address” shown in Table 1 receives address of a mapped
memory. To handle this medium, we can insert “NtQueryVirtualMemory” or
“NtReadVirtualMemory”, which do not affect the mapped memory address.

Sub-SCDG Mutations. We present multiple implementation ways to achieve
3 common malicious sub tasks we observed in Sect. 3.2, and what’s more, we
make sure that each implementation reveals different sub-SCDG with others.

1. Replication. When malware authors call Windows API “CopyFile” to repli-
cate malware sample from source to target file, it is actually achieved through
memory mapped file. When a process maps a file into its virtual address space,
reading and writing to the file is simply manipulating the mapped memory
region, which produces OS objects dependencies between file and section.
First we can choose to map either source or destination file to memory section.
Another implementation is only through file I/O operations. For example, we
can copy a file by calling “NtReadFile” and “NtWriteFile” instead of using
memory as medium.
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2. Modify registry for persistence. Malware often add entries into the registry
to remain active in the event of a reboot. There are multiple registry keys
that can be configured to load malware at startup. The reference [4] lists 23
registry keys are accessed during system start. We leverage these multiple
choices to randomly pick up available registry keys to update.

3. Code remote injection. Malicious code can be injected into another running
process so that the process could execute the malware unwittingly. To achieve
this functionality, we can either inject the malicious code directly into a
remote process, or put the code into a DLL and force the remote process
to load it [33].

3.5 Case Study

For a better understanding of our replacement attacks, we provide a real case
to mutate the replication behavior of Worm.Win32.Hunatcha. Figure 3(a) shows
a native API sequence fragment we collected from the initial version and the
corresponding SCDG. The malware sample replicates the file “hunatcha.exe” to
“ladygaga.mp3.exe” by first memory-mapping the source file and then writing
the memory content to the destination file. Figure 4(a) presents the feature set
abstracted from Fig. 3(a) , following the definition of BCHKK-data [7]. The first
3 lines are operations (open, create, write, etc.) on OS objects (file, section). The
fourth line is an OS dependency from section to destination file.

Table 3. Similarity metrics of 3 mutations

a vs. a a vs. b a vs. c b vs. c

Graph edit distance 0.0 0.71 0.60 0.71

Jaccard Index 1.0 0.14 0.33 0.27

As shown in Fig. 3(b), we first mutate the generated SCDG by switching the
file mapped to the memory, that is, we explicitly map the destination file (not
source file) into the memory, so that file copying is achieved by reading content
of source file to the mapped memory region. At the same time, we also insert
redundant data flow dependent system calls to create new dependencies and
decouple original dependencies. Therefore the structure of resulting SCDG and
feature set (shown in Fig. 4(b)) are changed significantly. Figure 3(c) presents
another round attack. Instead of utilizing memory mapped file, we directly copy
file through file I/O. Therefore no memory section appears in SCDG and feature
set. Table 3 shows the two similarity metrics for these 3 mutations. The calcula-
tion of these two metrics is introduced in Sect. 5.2. The graph edit distance value
of 0.0 or Jaccard Index value of 1.0 indicates that two behaviors are identical.
The large graph edit distance or small Jaccard Index value means that after our
replacement attacks, the similarity of malware variants drops substantially.
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1: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, );
2: HANDLE dst = NtCreateFile

(“\My Shared Folder\ladygaga.mp3.exe”, );
3: HANDLE  hSection= NtCreateSection( , src);
4: void *base = NtMapViewOfSection (hSection, );
5: NtWriteFile (dst, base, length (src), );

1: NtQueryAttributesFile (“D:\hunatcha.exe”,  ); 
2: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, );
3: HANDLE dst = NtCreateFile

(“\My Shared Folder\ladygaga.mp3.exe”, );
4: HANDLE  hSection= NtCreateSection ( , dst);
5: void *base =  NtMapViewOfSection (hSection, ); 6: 
NtQueryVirtualMemory ( , base, );
7: *base = NtReadFile (src, length (src) , );

(a) the original SCDG

Replacement 
Attacks

NtOpenFile src NtCreateSection

NtCreateFile

NtWriteFile

NtMapViewOfSection

hSection

base

dst

NtCreateFile dst NtCreateSection

NtOpenFile NtReadFile

NtMapViewOfSection

hSection

base

(b) the new SCDG

Replacement 
Attacks

NtQueryAttributesFile

D:\hunatcha.exe

src

NtQueryVirtualMemory

base

1: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, );
2: HANDLE dst = NtCreateFile

(“\My Shared Folder\ladygaga.mp3.exe”, );
3: void *buffer = NtReadFile (src, length (src) , )
4: NtWriteFile (dst, buffer , length (src) );

NtCreateFile

dst

NtOpenFile

NtReadFile

src

NtWriteFile

buffer

(c) the new SCDG

Fig. 3. System calls dependence graph (SCDG) of replication before and after replace-
ment attacks
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1: op|file|D:\hunatcha.exe
open:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe
create:1, write: 1

3: op|section|D:\hunatcha.exe
create:1, map:1, mem_read: 1

4: dep|section|D:\hunatcha.exe
file|\My Shared Folder\ladygaga.mp3.exe

(a) the original feature set

1: op|file|D:\hunatcha.exe
open:1, query_file:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe
create:1

3: op|section|\My Shared Folder\ladygaga.mp3.exe
create:1, map:1, query:1, mem_write: 1

4: dep|file|D:\hunatcha.exe
section|\My Shared Folder\ladygaga.mp3.exe

(b) the new feature set

1: op|file|D:\hunatcha.exe
open:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe
create:1, write:1

3: dep|file|D:\hunatcha.exe
file|\My Shared Folder\ladygaga.mp3.exe

(c) the new feature set

Fig. 4. Feature set of replication before and after replacement attacks

4 Implementation

To automate the attacking strategies we distill in Sect. 3, we have implemented
a prototype tool, API Replacer, on top of LLVM and Microsoft Visual Studio
2012. Given an initial version of malware source code, API Replacer is able to
automatically generate multiple versions of malware binaries, which share simi-
lar malicious functionalities but exhibit different malware specifications. Figure 5
describes the architecture of API Replacer. It takes malware source code as input
and first generates LLVM IR through the Clang compiler. Then the IR code is
manipulated by our transformation pass to fulfill replacement attacks. After-
wards the new transformed code are passed to LLC to emit object code, which
are given to Visual Studio’s link.exe to generate an executable binary. More-
over, new malware IR can be converted back to source code by LLC for another
round of transformation. We follow the instructions in [2] to integrate LLVM
system with Visual Studio. More specifically, our transformation pass inherits
“CallGraphSCCPass” provided by LLVM to traverse the call graph and identify
candidate system calls to attack. Our pass utilizes data flow analysis of LLVM to
find out dependencies among system calls. Then two attacking strategies are per-
formed in order to change the original SCDG. Section 3.3 describes these steps
in details. After that, our pass updates the changes of call graph. Algorithm 1
lists each step of API Replacer’s transformation pass.

The major implementation choice we made is using Windows APIs as a
proxy for Windows native APIs. The reason is Windows native APIs are not
comprehensively documented, while Windows APIs is well described in MSDN2.

2 http://msdn.microsoft.com/.

http://msdn.microsoft.com/
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According to the mapping between Windows APIs and native APIs [32], we are
able to manipulate Windows APIs directly.

Algorithm 1. API Replacer’s algorithm
1: Traverse call graph
2: Identify candidate system calls and their dependencies
3: Mutate a sequence of dependent system calls to their equivalent ones
4: Insert redundant data flow dependent system calls
5: Update new call graph

Malware
Source Code 

(C/C++)

Clang
(Frontend)

Malware IR 
(LLVM bitcode)

New Malware IR 
(LLVM bitcode)

Malware
Source Code 

(C/C++)

Clang
(Compiler)

Malware IR 
(LLVM bitcode)

Link.exe
(Visual Studio)

Transformed
Malware IR 

LLC
(Code Generator)

Malware
Binary

New Malware 
Source Code 

IR Analysis &
Transform Passes

LLVM Optimization

Object Code 

Fig. 5. The architecture of API Replacer

5 Evaluation

In this section, we apply API Replacer to transform real malware samples and
evaluate the effectiveness of our approach to impede malware similarity metrics
calculation and behavior-based malware clustering. We also test with 5 SPEC
CPU2006 benchmarks to evaluate performance slowdown imposed by replace-
ment attacks.

5.1 Experiment Setup

We transform malware source code collected from VX Heavens3. These malware
samples are chosen for two reasons: (1) they do not contain any trigger-based
behavior [36] or runtime environment checking condition [19]; (2) they have
different malicious functionalities. In this way, we ensure that each sample fully
exhibits its specific malicious intent during runtime execution and each sample
presents different behavior specifications. Malware samples under experiment are
executed in a malware dynamic analysis system, Cuckoo Sandbox4, to collect
windows native API calls traces. We first filter out isolated nodes which have no
dependencies with others. Then we compute SCDG for each sample following
the data flow dependencies between native APIs. Statistics for lines of code and
SCDG are shown in Table 4.
3 http://vxheaven.org/src.php.
4 http://www.cuckoosandbox.org/.

http://vxheaven.org/src.php
http://www.cuckoosandbox.org/
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Table 4. Test set statistics

Sample Type LoC # SCDG

Node # Edge #

BullMoose Trojan 30 602 360

Clibo Trojan 90 698 342

Branko Worm 270 590 332

Hunatcha Worm 340 756 408

WormLabs Worm 420 895 506

KeyLogger Trojan 460 811 439

Sasser Worm 950 1860 1044

Mydoom Worm 3276 9342 5418

5.2 Subverting Malware Behavior Similarity Metrics

In this experiment, we evaluate replacement attacks with two representative
similarity metrics, namely graph edit distance and Jaccard Index. The former
is used to measure the similarity of SCDG structure; while the latter represents
the similarity of behavior feature set, a higher level abstraction extracted from
SCDG. We first set the ratio of replaced system calls as 0 %, 10 %, 20 %, and
30 % and then generate 4 mutations respectively for each testing malware sample.
Then we run these mutations in Cuckoo Sandbox to collect SCDGs in order to
compute graph edit distance. After that, we convert SCDGs to feature sets to
calculate their Jaccard Index.

Graph Edit Distance. We measure the similarity of SCDG G1 and SCDG G2

via graph edit distance [13], which is defined as

d(G1, G2) = 1 − |MCS(G1, G2)|
max(|G1|, |G2|)
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Fig. 6. Graph edit distance and Jaccard Index after replacement attacks
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MCS(G1, G2) is the maximal common subgraph and |G| is the number of nodes
in a graph. The value of the distance varies from 0.0 to 1.0. Distance value 0.0
denotes that two graphs are identical. Park et al. employed the graph edit dis-
tance for malware classification and clustering [28,29], where they set similarity
threshold as 0.3. Graph distance above the threshold means two malware sam-
ples are different. Taken the sample with 0 % replacement ratio as the baseline,
Fig. 6(a) shows the graph edit distance after replacement attacks. Basically the
graph edit distance increases steadily as the amount of replaced system calls
raises. Please note that when we only enforce 20% replacement, all the dis-
tances are beyond the threshold of 0.3. This experiment demonstrates that our
replacement attacks change the structure of SCDG significantly.

Jaccard Index. Assume behavior feature set of malware sample a and b are Fa

and Fb, Jaccard Index is defined as

J(a, b) =
|Fa ∩ Fb|
|Fa ∪ Fb|

Bayer et al. [7] identified two similar malware feature sets by checking whether
their Jaccard Index is ≥ 0.7. Similar with the setting of Fig. 6(a), Fig. 6(b)
presents the result of Jaccard Index after replacement attacks. We can draw a
similar conclusion that Jaccard Index reduces as replacement ratio increases.
However, the decline rate of Jaccard Index is not as large as the rising rate of
graph edit distance. We attribute this to a better fault tolerance of large scale
feature set. For example, Mydoom in our testing set has more the 1000 features.
Consequently, small portion of system calls replacement imposes less effect on
Jaccard Index. In spite of this, when the replacement ratio is increased to 30%,
all of the Jaccard Index value are below the similarity threshold of 0.7.
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Fig. 7. Our attacks vs. other approaches
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Our Attacks vs. Other Approaches. Furthermore, we compared our attacks with
two other attacking approaches, that is system call random insertion (“Random”
bar) and Xin et al.’s approach [37], which obfuscates SCDG by replacing a
dependency edge with a new vertex and two new edges. The ratio of new system
calls insertion, replaced edges and replaced system calls are all set as 30%. The
comparison results are presented in Fig. 7. The quite small graph edit distance
and large Jaccard Index value show that SCDG is resilient to the attack of system
call random insertion, which does not consider data flow dependencies. As shown
in Fig. 7(a), although Xin et al.’s approach is able to subvert the structure of
SCDG (the distance is >0.3), our attacks outperform their approach by a factor
of 1.6x on average. Moreover, Fig. 7(b) indicates that Xin et al.’s attacking only
has a marginal effect on the behavior feature set such as BCHKK-data [7]. The
reason is Xin et al.’s approach neither introduces new OS objects nor brings new
dependencies between OS objects.

5.3 Against Behavior-Based Clustering

In this section, we demonstrate that replacement attacks are able to impede
behavior-based malware clustering approach. We choose the clustering approach
proposed by Bayer et al. [7], which is a state-of-the-art clustering system for
malware behavior. Bayer et al.’s approach contains two major steps: (1) employ
locality sensitive hashing (LSH) to find approximate near-neighbors of feature
sets; (2) perform single-linkage hierarchical clustering.

We use the LSH code from [5] in our experiment. To fairly evaluate the
clustering approach, we stick to a similar setup. The Jaccard Index threshold
and LSH parameters, are all exactly the same as in [7]. As mentioned in Sect. 5.1,
malware samples in our initial dataset belong to 8 different families. To enlarge
the dataset for our malware clustering evaluation, we generate 5 datasets:

– Dataset 0: We apply various polymorphism obfuscation and packing [31] on
our initial samples. For each family, we generate 30 variants. All mutations in
each group are only different in terms of static properties. The samples within
the same family exhibit quite similar behavior.

– Dataset 1 ∼ 3: We set system call replacement ratio as 10%, 20% and 30%
respectively and then produce 30 variants for every family under each replace-
ment ratio setting. Each dataset includes 240 instances.

– Dataset 4: We mix all samples within Dataset 0 ∼ 3 to this dataset, which
comprises 960 malware samples in total.

We perform LSH-based single-linkage hierarchical clustering on each dataset.
The quality of the clustering results is measured by two metrics: precision and
recall. The goal of precision is to measure how well a clustering algorithm assigns
malware samples with different behavior to different clusters, while recall indi-
cates how well a clustering algorithm puts malware with the same behavior into
the same cluster. The naive clustering method that creates only one cluster com-
prising all samples has the highest recall (1.0), but the worst precision. On the
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contrary, the method sets up a clustering for each sample achieves the highest
precision (1.0) but with low recall number. An optimal clustering method should
provide both high precision and recall at the same time. Please refer to [7] for
detailed information.

Table 5. Quality of the clustering

Dataset 0 1 2 3 4

Samples # 240 240 240 240 960

Cluster # 8 12 35 110 208

Precision 1.000 0.981 0.978 0.965 0.973

Recall 0.975 0.933 0.483 0.121 0.529

Table 5 summarizes our results. Since the samples in Dataset 0 are only differ-
ent in terms of static features, the clustering result has the optimal precision and
recall. Because 6 samples crashed after applying virtualization obfuscators [16],
the recall value is slightly smaller than 1.0. The results of Dataset 1 ∼ 3 show the
trend that the recall value falls as system call replacement ratio raises. For exam-
ple, under the replacement ratio of 30%, on average only about 2 samples are
clustered into each family. A small recall value implies that more clusters are cre-
ated than expected. Dataset 4 simulates a real scenario we mentioned in Sect. 3.1:
malware samples after replacement attacks, mixed with other suspicious bina-
ries, are finally collected for clustering. The low recall value demonstrates that
our approach is effective in practice.

5.4 Performance

Since switching between kernel and user mode is inherently expensive, the
redundant system calls introduced by replacement attacks will no doubt impact
runtime performance. We measure runtime performance after applying replace-
ment attacks on 5 SPEC CPU 2006 benchmarks, including bzip2, libquantum,
omnetpp, astar and xalancbmk. Our testbed is a laptop with a 2.30 GHz
Intel(R) Core i5 CPU and 8 GB of memory, running on the operating system of
Windows 7. On average, testing programs have a slowdown of 1.33 times (normal-
ized to the runtime without transformation) when the system call replacement
ratio is 30%. Considering the significant effect under this replacement ratio, the
performance tradeoff is worthy.

6 Discussion

Limitations. Currently the compatibility with Visual Studio and LLVM tool
chain is not perfect. For example, C++ standard library and Windows Platform
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SDK are not fully supported by clang, which prevent us from testing more com-
plicated malware. The attacking strategies we summarized in Sect. 3.3, especially
the sub-SCDG mutation rules are limited. Implementing the same functionality
through diverse ways need comprehensive domain knowledge. We plan to extend
our replacement attacks arsenal in future work.

Possible Ways to Defeat. We suggest possible ways to defend against replace-
ment attacks. As one of our attacking strategies is to insert redundant depen-
dencies, the size of SCDG could be enlarged. An analyzer is able to detect such
change by comparing new SCDG with the original one. However, without more
close investigation (usually involving tedious work), analyzer cannot easily differ-
entiate whether the size change of SCDG comes from incremental updates or our
attacks. Another countermeasure is to normalize the behavior graph mutations.
For example, the multiple semantically equivalent graph patterns of malware
replication can be unified as a canonical form before clustering. The effort in this
direction is Martignoni et al.’s work [25]. They designed a layered architecture to
detect alternative events that deliver the same high-level functionality. However,
admitted by the authors, the layered hierarchy is generated manually and tested
only with 7 malware samples. A general and automated behavior graph nor-
malization is still missing. Moreover, high-level malware behavior abstractions
may overlook subtle distinctions among malware samples. Therefore, the higher-
level of behavior abstractions are probably valid in distinguishing malware from
benign program, but are incompetent to differentiate malware variants. Another
way is to perform more fine-grained data flow analysis. For example, If the data
passed in two sequential dependencies are not changed, the medium system call
is probably a redundant native API such as NtSetInformationFile and NtDupli-
cateObject. However, this approach cannot defeat sub-SCDG mutations, which
may completely change the structure of sub-SCDG.

7 Conclusion

Behavior-based malware specifications have been broadly employed in malware
detection and clustering. In this paper we study the vulnerability of current
behavior based malware analysis and propose replacement attacks to impede
malware behavior specifications. We distill general attacking strategies by mining
large malware behavior data sets and develop a compiler level prototype to
demonstrate their feasibilities. Our evaluation on real malware samples shows
that the transformed malware could evade malware similarity comparison and
impede behavior-based clustering. We expect our study can cultivate further
research to improve resistance to this potential threat.
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Abstract. There have been several papers which studied the security
of CRT-RSA when some bits of CRT-exponents dp and dq are known
to attackers. At first, Blömer and May (Crypto 2003) proposed attacks
which used the most or the least significant bits of either dp or dq. Next,
Sarkar and Maitra (ACNS 2009) generalized the scenario and proposed
an attack which used the most significant bits of both dp and dq. Recently,
Lu et al. (ACNS 2014) proposed improved attacks for the same scenario
as Blömer and May. These works showed that public RSA modulus can
be factored when e < N3/8, or sizes of unknown bits are less than N1/4.
In this paper, we propose improved attacks when attackers know the
most/least significant bits of dp or/and dq. Unlike previous works, our
attacks work in the same conditions regardless of positions of known
bits; either the most or the least significant bits are not the matter. In
addition, using our attacks, public RSA modulus can be factored even
when an encryption exponent is full size or sizes of unknown bits are less
than N1/3.

Keywords: CRT-RSA · Cryptanalysis · Partial key exposure · Copper-
smith’s method · Lattices

1 Introduction

1.1 Background

CRT-RSA. RSA [RSA78] is one of the most famous cryptosystems and is
widely used. Let N = pq be a public RSA modulus where prime factors p and
q are the same bit size. An encryption exponent e and a decryption exponent
d satisfy ed = 1 mod (p − 1)(q − 1). For encryption/verifying (resp. decryp-
tion/signing), we should calculate the heavy modular exponentiation. To speed
up the calculation, a simple solution is to use a smaller encryption (resp. decryp-
tion) exponent. However, public RSA modulus can be factored in polynomial
time when too small decryption exponent is used. At first, Wiener [Wie90] pro-
posed a polynomial time attack which works when d < N0.25. Boneh and Durfee
[BD00] revisited the attack and improved the bound to d < N0.292 using the
Coppersmith method [Cop96a].
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 518–537, 2015.
DOI: 10.1007/978-3-319-28166-7 25
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To thwart the attack and achieve a faster calculation for decryption/signing,
Chinese Remainder Theorem (CRT) is often used as described by Quisquater
and Couvreur [QC82]. Instead of the original decryption exponent d, we use
CRT-exponents dp and dq which satisfy

edp = 1 mod (p − 1) and edq = 1 mod (q − 1).

However, when too small CRT-exponents are used, analogous attacks to [BD00]
have been proposed [May02,GHM05,BM06,JM07,HM10]. Jochemsz and May
[JM07] revealed that public RSA modulus N can be factored in polynomial time
when an encryption exponent is full size, and dp and dq < N0.073. In addition,
CRT-RSA is more vulnerable than standard RSA against fault injection attacks
[BDL97]. To use RSA efficiently and securely, we should analyze the security in
detail.

Partial Key Exposure Attacks on RSA. It is widely known that factoriza-
tion and RSA problems become easy when certain amount of secret information
is known to attackers. When we know the most significant bits of primes fac-
tors, we can factor public RSA modulus N [RS86,Cop95,Cop96b]. Coppersmith
[Cop96b] showed that the half most significant bits of a prime factor suffices to
factor N .

RSA becomes vulnerable also with partial bits of decryption exponent d.
Boneh et al. [BDF98] showed that the most or the least significant bits of a
decryption exponent d enable us to factor public RSA modulus N . Later, several
papers revisited the attack [BM03,EJMW05,Aon09,SGM10,JL12,TK14], and
Ernst et al. [EJMW05] revealed that RSA is vulnerable even for a full size
encryption/decryption exponent against the attack.

Partial Key Exposure Attacks on CRT-RSA. As with standard RSA,
several attacks which use partial information of dp and dq have also been con-
sidered [BM03,SM09,LZL14]. Blömer and May [BM03] proposed attacks when
the most or the least significant bits of either dp or dq are known to attack-
ers. The attacks work when encryption exponent is small, e < N1/4 when the
most significant bits are known and e = poly(log N) when the least significant
bits are known. In addition, the attacks can recover unknown bits which are
less than N1/4. Recently, Lu et al. [LZL14] revisited Blömer and May’s attack
[BM03]. When the most significant bits are known and dp and dq ≈ N1/2, they
cannot improve Blömer and May’s attack. However, for smaller dp and dq, they
improved the previous attack. When the least significant bits are known, they
improved Blömer and May’s result and their attack works when e < N3/8.

Sarkar and Maitra [SM09] generalized partial key exposure attacks on CRT-
RSA. Unlike other previous works [BM03,LZL14], they proposed an attack when
the most significant bits of both dp and dq are known to attackers1. However, the

1 In their paper [SM09], they also used the most significant bits of a prime factor p.
However, we do not consider the additional information in this paper.
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Fig. 1. Recoverable conditions for par-
tial key exposure attacks on CRT-RSA
when the most significant bits of either
dp or dq are known to attackers.

Fig. 2. Recoverable conditions for par-
tial key exposure attacks on CRT-RSA
when the least significant bits of either
dp or dq are known to attackers.

attack is weaker than other attacks [BM03,LZL14] in the sense that the attack
does not work when dp and dq ≈ N1/2 though they used more information than
[BM03,LZL14]. The attack works only for smaller dp and dq.

1.2 Our Contributions

Our Results. In this paper, we study partial key exposure attacks on CRT-
RSA. We propose improved attacks when the most/least significant bits of dp

or/and dq are known. Unlike previous works, the conditions when our attacks
work do not depend on the position of known bits, that is, either the most or
the least significant bits are not the matter.

When we know the most/least significant bits of dp or dq, we improve Blömer
and May’s results [BM03] and Lu et al.’s results [LZL14] for a large encryption
exponent e. As we claimed, our attack works in the same condition regardless
of positions of known bits. Therefore, this is the first result to attack CRT-RSA
when 1/4 ≤ e < N3/8 and the most siginificant bits of either dp or dq are known.
Figures 1 and 2 compares the recoverable ranges by each algorithm when dp and
dq ≈ N1/2. Horizontal axis α represents a size of encryption exponent, α =
logN e. Vertical axis δ represents a size of unknown bits. We obtain improvements
in gray areas. Our improved algorithms can recover larger δ for large α. Note
that we do not compare the bound of Theorem2 by Blömer and May [BM03],
since the algorithm works only for an extremely small encryption exponent e =
poly(log N).

When we know the most significant bits of both dp and dq, we improve
Sarkar and Maitra’s result [SM09]. In addition, we also propose an analogous
attack when the least significant bits of dp and dq are known. Our algorithm
works even when an encryption exponent e is full size and sizes of unknown bits
are less than N1/3. Figure 3 shows the recoverable ranges by our algorithm when
dp and dq ≈ N1/2. We again stress that Sarkar and Maitra’s algorithm does not
work when dp and dq ≈ N1/2. Their algorithm works only for smaller dp and dq.
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Fig. 3. Recoverable conditions for partial key exposure attacks on CRT-RSA when the
most/least significant bits of both dp and dq are known to attackers.

Technical Overview. At Eurocrypt 1996, Coppersmith introduced two lattice-
based methods, (1) to find small roots of modular univariate polynomials [Cop96a]
and (2) to find small roots of bivariate polynomials over the integers [Cop96b].
The methods can be generalized to find small roots with more variables under
heuristic argument. So far, several RSA vulnerabilities have been revealed by using
the methods. See [Cop97,Cop01,NS01,May03,May10] for more information.

Recoverable sizes of roots using the Coppersmith methods depend on two
factors, Newton polygon and a size of a modulus of a polynomial2. The simpler
Newton polygon of a polynomial is, and the larger the size of the modulus is, we
can recover larger roots. To the best of our knowledge, there are no exact criteria
to decide which methods (1) or (2) enable us to recover larger roots. Therefore,
we should use the appropriate method for each problem.

Blömer and May [BM03] and Lu et al. [LZL14] used the method (1). Though
Lu et al.’s first attack (Theorem 4) works under the same condition regardless of
positions of known bits, Blömer and May’s attack (Theorem 1) and Lu et al.’s
second attack (Theorem 5) work for only the case when the most or the least
significant bits are known, respectively. Blömer and May’s attack makes use of
the most significant bits of dp or dq and exploits a modular polynomial with a
simple Newton polygon. Lu et al.’s attack makes use of the least significant bits
of dp or dq and exploits a modular polynomial with a large modulus. Therefore,
these attacks cannot simply be generalized to the other cases when the least or
the most significant bits known, respectively.

In this paper, we use the Coppersmith method (2) for partial key expo-
sure attacks on CRT-RSA. For the attacks, we can consider polynomials with
the same Newton polygon regardless of positions of known bits. Note that the
Newton polygons of these polynomials are the same as that of the polynomials
2 Note that when we use the Coppersmith method (2), we set a suitable modulus

and solve a modular equation. The size of the modulus depends on a size of the
polynomial.
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Ernst et al. [EJMW05] used for partial key exposure attacks on RSA. In addi-
tion, Ernst et al.’s attacks work under the same condition regardless of positions
of known bits, since sizes of polynomials are the same and we can use moduli
for the same sizes. Analogous to Ernst et al.’s results, our partial key expo-
sure attacks on CRT-RSA work in the same conditions regardless of positions of
known bits.

To achieve better bounds when we use the Coppersmith method, it is crucial
to select appropriate lattice bases. Our lattice constructions are based on the
Jochemsz-May strategy [JM06]. The Jochemsz-May strategy is very simple to
understand. Moreover, to the best of our knowledge, there are no results known
which achieve better bounds when we use the Coppersmith method (2). The
finer analyses enable us to obtain better bounds than previous results including
Sarkar and Maitra’s results [SM09] which also use the Coppersmith method (2).

1.3 Organization

In Sect. 2, we introduce tools for the Coppersmith method to find small roots of
multivariate polynomials over the integers, Howgrave-Graham’s Lemma and the
LLL algorithm. Afterward, we explain the Jochemsz-May lattice construction
strategy. In Sect. 3, we define the situations of partial key exposure attacks on
CRT-RSA and summarize previous results [BM03,SM09,LZL14]. In Sect. 4, we
propose our attacks when the most/least significant bits of either dp or dq are
known. In Sect. 5, we propose our attacks when the most/least significant bits
of both dp and dq are known.

2 Preliminaries

In this section, we summarize the Coppersmith method to find small roots of
polynomials over the integers [Cop96b] and the Jochemsz-May strategy for lat-
tice constructions [JM06]. So far, simpler reformulations of the method have
been proposed by Coron [Cor04,Cor07]. In this paper, we introduce Coron’s
reformulation in [Cor04]. Though the method needs larger dimensional lattice
than the other methods [Cop96b,Cor07], is much easier to understand.

For a k-variate polynomial over the integers h(x1, . . . , xk) =
∑

hi1,...,ik
xi1
1

· · · xik

k , we define a norm of a polynomial ‖h(x1, . . . , xk)‖ =
√∑

h2
i1,...,ik

and ‖h(x1, . . . , xk)‖∞ = maxi1,...,ik
|hi1,...,ik

|. To find roots of a polynomial
h(x1, . . . , xk), it suffices to find new k − 1 polynomials which have the same roots
over the integers. We use lj to denote the largest exponent of xj in the polyno-
mial h(x1, . . . , xk). We set a integer m and W ≤ ‖h(x1, . . . , xk)‖∞. Based on the
Jochemsz-May strategy [JM06], we set a integer R := W

∏k
j=1 X

lj(m−1)
j and con-

sider a modular equation h(x1, . . . , xk) = 0 mod R. To derive new polynomials
from the modular equation, we introduce Howgrave-Graham’s Lemma [How97].

Lemma 1 (Howgrave-Graham’s Lemma [How97]). Let h(x1, . . . , xk) ∈
Z[x1, . . . , xk] be a polynomial over the integers, which consists of at most n
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monomials. Let R,X1, . . . , Xk be positive integers. Consider the case that the
polynomial h(x1, . . . , xk) satisfies
1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,
2. ‖h(x1X1, . . . , xkXk)‖ < R/

√
n.

Then h(x̃1, . . . , x̃k) = 0 holds over the integers.

To find new polynomials which have the same roots as the original polynomial,
we should find k − 1 new polynomials which have the same roots modulo R and
whose norms are small enough to satisfy Howgrave-Graham’s Lemma.

To find such small polynomials, we use the LLL Algorithm. Let b1, . . . ,bn ∈
Z

d be linearly independent d-dimensional vectors. All vectors are row represen-
tations. The lattice L(b1, . . . ,bn) spanned by the basis vectors b1, . . . ,bn is
defined as L(b1, . . . ,bn) = {

∑n
j=1 cjbj : cj ∈ Z}. We also use matrix represen-

tations for lattice bases. A basis matrix B is defined as the n×d matrix that has
basis vectors b1, . . . ,bn in each row. In this representation, a lattice spanned by
the basis matrix B is defined as L(B) = {cB : c ∈ Z

n}. We call n a rank of
the lattice, and d a dimension of the lattice. We call the lattice full-rank when
n = d. In this paper, we only use full-rank lattices. We define a determinant of
a lattice det(L(B)) as det(L(B)) =

√
det(BBT ) where BT is a transpose of B.

A determinant of a full-rank lattice can be computed as det(L) = |det(B)|.
For a cryptanalysis, to find short lattice vectors is a very important problem.

In 1982, Lenstra et al. [LLL82] proposed a polynomial time algorithm to find
short lattice vectors.

Proposition 1 (LLL algorithm [May03]). Given a lattice L spanned by a
basis matrix B ∈ Z

n×n, the LLL algorithm finds new reduced bases b′
1, . . . ,b

′
n

for the same lattice that satisfy

‖b′
j‖ ≤ 2n(n−1)/4(n−j+1)(det(L(B)))1/(n−j+1),

for all j = 1, 2, . . . , n. These norms are all Euclidean norms. The running time
of the LLL algorithm is polynomial time in n and input length.

Based on the Jochemsz-May strategy [JM06], we define a set of shift-
polynomials g and g′ as

g : xi1
1 · · · xik

k · h(x1, . . . , xk)
n∏

j=1

X
lj(m−1)−ij

j for xi1
1 · · · xik

k ∈ S,

g′ : xi1
1 · · · xik

k · R for xi1
1 · · · xik

k ∈ M\S,

for

S := {xi1
1 · · · xik

k |xi1
1 · · · xik

k is a monomial of h(x1, . . . , xk)m−1},

M := {monomials of xi1
1 · · · xik

k · h(x1, . . . , xk) for xi1
1 · · · xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the same roots as h
(x1, . . . , xk). We construct a lattice with coefficient vectors of g(x1X1, . . . , xkXk)
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and g′(x1X1, . . . , xkXk) as the bases. Polynomials whose coefficients correspond
to any lattice vectors modulo R also have the same roots as the original roots. By
omitting a small term and Jochemsz and May showed that new k−1 polynomials
obtained by vectors output by the LLL algorithm satisfy Howgrave-Graham’s
Lemma when

k∏

j=1

X
sj

j < W |S| for sj =
∑

x
i1
1 ···xik

k ∈S

ij .

When the condition holds, we can find all small roots.
The above lattice construction is based on the Jochemsz-May basic strategy.

In the extended strategy, we add extra shifts for some variables. We omit the
detail in this section though we use the strategy in the following sections. See
[JM06] for more detailed information.

We should note that the method needs heuristic argument. There are no
assurance if new polynomials obtained by vectors output by the LLL algorithm
are algebraically independent though Coron [Cor04] proved that the original
polynomial and each new polynomial is algebraically independent. In this paper,
we assume that these polynomials are always algebraically independent and
resultants of polynomials will not vanish since there have been few negative
reports which contradict the assumption.

3 Previous Works

3.1 Definitions of Partial Key Exposure Attacks on CRT-RSA

We use α, β to represent the sizes of encryption/CRT exponents, that is, e ≈ Nα

and dp, dq ≈ Nβ . When attackers know some bits of either dp or dq, we call
an attack a single partial key exposure attack on CRT-RSA. Similarly, when
attackers know some bits of both dp and dq, we call an attack a double partial
key exposure attack on CRT-RSA. Without loss of generality, we assume that
attackers know some bits of dp for single cases.

Next, we formulate exposed bits. When attackers know the most significant
bits (MSBs) of dp and dq, we write dp0 and dq0 as partial information. Therefore,
we can rewrite

dp = dp0M + dp1 and dq = dq0M + dq1

with some positive integer M ≈ N δ. Attackers do not know the least significant
bits dp1 and dq1 < N δ. Similarly, when attackers know the least significant bits
(LSBs) of dp and dq, we write dp0 and dq0 as partial information. Therefore, we
can rewrite

dp = dp1M + dp0 and dq = dq1M + dq0

with some positive integer M ≈ Nβ−δ. Attackers do not know the most signifi-
cant bits dp1 and dq1 < N δ.
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3.2 Previous Results

Next, we summarize the previous results for single/double MSBs/LSBs partial
key exposure attacks on CRT-RSA which work in polynomial time in log N .

Theorem 1 (Single MSBs [BM03]). Let 0 < α ≤ 1/4. For a single MSBs
partial key exposure attacks on CRT-RSA, when

δ <
1
4

− α,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best when α is small and β is large.

Theorem 2 (Single LSBs [BM03]). Let e = poly (log N). For a single LSBs
partial key exposure attacks on CRT-RSA, when

δ < β − 1
4
,

then public RSA modulus N can be factored in polynomial time.

In this paper, we do not compare our results with the above result, since the
algorithm works only for an extremely small encryption exponent.

Theorem 3 (Double MSBs Adapted from [SM09]). Let 1/2 − β < α <
5/4−5β/2. For a double MSBs partial key exposure attacks on CRT-RSA, when

δ <
(18 − 36β − 12α)τ2 + (20 − 40β − 16α)τ + 5 − 10β − 4α

24τ3 + 30τ2 + 16τ + 4

holds for some τ ≥ 0, then public RSA modulus N can be factored in polynomial
time.

Theorem 4 (Single MSBs/LSBs [LZL14]). Let 1/2 < α + β < 3/4. For a
single MSBs/LSBs partial key exposure attacks on CRT-RSA, when

(

α + β − 1
2

) (
3
2

− δ − 2

√

α + β − δ − 1
2

)

<
1
8

for 1 −
√

2
4

≤ α + β <
3
4
,

α + β + δ <
1√
2
,

δ

(

2 − α − β − 2

√

δ − α − β +
1
2

)

<
1
8

for
1
2

< α + β ≤ 3
√

2
4

− 1
2
,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best for the single LSBs attack for small α. Note that the
second condition is valid when 1/2 < α + β ≤ 1/

√
2 and better than the other

conditions when 3
√

2/4 − 1/2 < α + β < 1 −
√

2/4.
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Theorem 5 (Single LSBs Adapted from [LZL14]). Let 1/2 < α + β ≤ 7/8.
For a single LSBs partial key exposure attacks on CRT-RSA, when

δ <
5 − 2

√
1 + 6(α + β)

6
,

then public RSA modulus N can be factored in polynomial time.

The algorithm is the best for large α and the first algorithm which works when
1/4 < α ≤ 3/8. Note that the condition of Theorem 5 is slightly worse than that
was written in [LZL14]. Though we omit the detail, thier condition is not valid,
since their analysis implicitly has a restriction for the parameter σ ≤ τ in their
notation and the result does not satisfy the restriction.

4 Single Partial Key Exposure Attacks on CRT-RSA

For single MSBs/LSBs partial key exposure attacks on CRT-RSA, we obtain the
following result.

Theorem 6 (Single MSBs/LSBs). Let 1/2 < α + β ≤ 7/8. For single
MSBs/LSBs partial key exposure attacks on CRT-RSA, when

− 5 + 8(α + β) + 8δ − 12δ2 − 2(1 − 4δ)
√

1 − 4δ < 0,

then public RSA modulus N can be factored in polynomial time.

In this section, we focus on the MSBs case.

Based on the Jochemsz-May Basic Strategy. At first, we start from the
Jochemsz-May basic strategy. It is interesting that the lattice construction yields
the second condition of Theorem 4.

For a single MSBs partial key exposure attack on CRT-RSA, looking at
CRT-RSA key generation,

e(dp0M + dp1) = 1 + �(p − 1),

with some integer � ≈ Nα+β−1/2. We consider a polynomial over the integers

fsMSBs(x, y, z1) := csMSBs + ex + y(z1 − 1)

where csMSBs = 1 − edp0M whose roots are (x, y, z1) = (−dp1 , �, p). If we can
find two polynomials which have the same roots over the integers as fsMSBs, we
can recover the roots. We also use an additional variable z2 = q and the Durfee-
Nguyen technique [DN00] z1z2 = N which Bleichenbacher and May [BM06] and
Lu et al. [LZL14] used to attack CRT-RSA. Sizes of the solutions are bounded
by X := N δ, Y := Nα+β−1/2, Z1 := N1/2, Z2 := N1/2.

We set an integer WsMSBs := Nα+β since ‖fsMSBs(x, y, z1)‖∞ ≥ |csMSBs| ≈
Nα+β . Next, we set an integer Rs1 := WsMSBs(XY )m−1Zm−1−k

1 Zk
2 with
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some integer m and k = ηm with a restriction 0 ≤ η ≤ 1 such that
gcd(csMSBs, Rs1) = 1. We compute asMSBs1 = c−1

sMSBs mod Rs1 and
f ′

sMSBs1(x, y, z1) := asMSBs1 · fsMSBs(x, y, z1) mod Rs1. We define a set of
shift-polynomials gsMSBs1, gsMSBs2 and g′

sMSBs1, g
′
sMSBs2 as

gsMSBs1 : xixyiyz
iz1−k
1 · f ′

sMSBs1(x, y, z1)Xm−1−ixY m−1−iyZ
m−1−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss1,

gsMSBs2 : xixyiyz
k−iz1
2 · f ′

sMSBs1(x, y, z1)Xm−1−ixY m−1−iyZm−1−k
1 Z

iz1
2

for xixyiyz
iz1
1 ∈ Ss2,

g′
sMSBs1 : xixyiyz

iz1−k
1 · Rs1 for xixyiyz

iz1
1 ∈ Ms1\(Ss1 ∪ Ss2),

g′
sMSBs2 : xixyiyz

k−iz1
2 · Rs1 for xixyiyz

iz1
1 ∈ Ms2\(Ss1 ∪ Ss2),

for

S1 := {xixyiyz
iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 ≥ k},

S2 := {xixyiyz
iz1
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs1(x, y, z1)
m−1 and iz1 < k},

M1 := {xixyiyz
iz1
1 |monomials of xi′xyi′yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi′yz
i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 ≥ k},

M2 := {xixyiyz
iz1
1 |monomials of xi′xyi′yz

i′z1
1 · f ′

sMSBs1(x, y, z1)

for xi′xyi′yz
i′z1
1 ∈ Ss1 ∪ Ss2 and iz1 < k}.

For shift-polynomials gsMSBs2, we eliminate the term z1z2 by using the Durfee-
Nguyen technique z1z2 = N . By definition, the index sets become

Ss1 ⇔ ix = 0, 1, . . . , m − 1 − k; iy = k, k + 1, . . . , m − 1 − ix;
iz1 = k, k + 1, . . . , m − 1 − ix,

Ss2 ⇔ ix = 0, 1, . . . , m − 1; iy = 0, 1, . . . ,m − 1 − ix;
iz1 = 0, 1, . . . ,min{k − 1,m − 1 − ix},

Ms1 ⇔ ix = 0, 1, . . . , m − k; iy = k, k + 1, . . . , m − ix; iz1 = k, k + 1, . . . , m − ix,

Ms2 ⇔ ix = 0, 1, . . . , m; iy = 0, 1, . . . ,m − ix; iz1 = 0, 1, . . . ,min{k − 1,m − ix}.

All these shift-polynomials gsMSBs1, gsMSBs2 and g′
sMSBs1, g

′
sMSBs2 modulo

Rs1 have the roots (x, y, z1, z2) = (−dp1 , �, p, q) which are the same as
fsMSBs(x, y, z1) and the definition of z2. We construct a lattice with coeffi-
cient vectors of gsMSBs1(xX, yY, z1Z1, z2Z2), gsMSBs2(xX, yY, z1Z1, z2Z2) and
g′

sMSBs1(xX, yY, z1Z1, z2Z2), g′
sMSBs2(xX, yY, z1Z1, z2Z2) as the bases. Based

on the Jochemsz-May strategy [JM06], LLL outputs two short lattice vectors
which satisfy Howgrave-Graham’s Lemma when

X
m3
6 +o(m3)Y

m3
3 +o(m3)Z

(1−η)3

6 m3+o(m3)
1 Z

(

η2

2 − η3

6

)

m3+o(m3)

2 < W
m3
6 +o(m3)

sMSBs .
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Ignoring low order terms of m, and the condition becomes

δ · 1
6

+
(

α + β − 1
2

)

· 1
3

+
1
2

·
(

(1 − η)3

6
+

η2

2
− η3

6

)

< (α + β) · 1
6
.

The detailed calculation is discussed later. We optimize the parameter η = 1 −
1/

√
2 which satisfy 0 ≤ η ≤ 1 and obtain the condition,

α + β + δ <
1√
2
.

The condition corresponds to the second condition of Theorem 4.

Based on the Jochemsz-May Extended Strategy. Next, we show our lat-
tice construction based on the Jochemsz-May extended strategy. The lattice
construction enables us to solve the equation fsMSBs(x, y, z1) = 0 for larger
α + β and yields the condition of Theorem6.

We set an integer Rs2 := WsMSBs(XY )m−1Zm−1−k+t
1 Zk

2 with some inte-
gers m, k = ηm and t = τm with restrictions 0 ≤ τ ≤ η ≤ 1 such that
gcd(csMSBs, Rs2) = 1. We compute asMSBs2 and f ′

sMSBs2(x, y, z1) as in the
basic strategy and define a set of shift-polynomials gsMSBs3, gsMSBs4 and
g′

sMSBs3, g
′
sMSBs4 as

gsMSBs3 : xixyiyz
iz1−k
1 · f ′

sMSBs2(x, y, z1)Xm−1−ixY m−1−iyZ
m−1+t−iz1
1 Zk

2

for xixyiyz
iz1
1 ∈ Ss3,

gsMSBs4 : xixyiyz
k−iz1
2 · f ′

sMSBs2(x, y, z1)Xm−1−ixY m−1−iyZm−1−k+t
1 Z

iz1
2

for xixyiyz
iz1
1 ∈ Ss4,

g′
sMSBs3 : xixyiyz

iz1−k
1 · Rs2 for xixyiyz

iz1
1 ∈ Ms3\(Ss3 ∪ Ss4),

g′
sMSBs4 : xixyiyz

k−iz1
2 · Rs2 for xixyiyz

iz1
1 ∈ Ms4\(Ss3 ∪ Ss4),

for

Ss3 :=
⋃

0≤j≤t

{xixyiyz
iz1+j
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)m−1

and iz1 ≥ k},

Ss4 :=
⋃

0≤j≤t

{xixyiyz
iz1+j
1 |xixyiyz

iz1
1 is a monomial of f ′

sMSBs2(x, y, z1)m−1

and iz1 < k},

Ms3 := {xixyiyz
iz1
1 |monomials of xi′

xyi′
yz

i′
z1
1 · f ′

sMSBs2(x, y, z1)

for xi′
xyi′

yz
i′
z1
1 ∈ Ss3 ∪ Ss4 and iz1 ≥ k},

Ms4 := {xixyiyz
iz1
1 |monomials of xi′

xyi′
yz

i′
z1
1 · f ′

sMSBs2(x, y, z1)

for xi′
xyi′

yz
i′
z1
1 ∈ Ss3 ∪ Ss4 and iz1 < k}.
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For shift-polynomials gsMSBs4, we eliminate the term z1z2 by using the Durfee-
Nguyen technique z1z2 = N . By definition, the index sets become

Ss3 ⇔ ix = 0, 1, . . . ,m − 1 − k + t; iy = k − t, k − t + 1, . . . , m − 1 − ix;
iz1 = k, k + 1, . . . , m − 1 + t − ix,

Ss4 ⇔ ix = 0, 1, . . . ,m − 1; iy = 0, 1, . . . ,m − 1 − ix;
iz1 = 0, 1, . . . ,min{k − 1,m − 1 + t − ix},

Ms3 ⇔ ix = 0, 1, . . . ,m − k + t; iy = k − t, k − t + 1, . . . , m − ix;
iz1 = k, k + 1, . . . , m + t − ix,

Ms4 ⇔ ix = 0, 1, . . . ,m; iy = 0, 1, . . . ,m − ix;
iz1 = 0, 1, . . . ,min{k − 1,m + t − ix}.

All these shift-polynomials gsMSBs3, gsMSBs4 and g′
sMSBs3, g

′
sMSBs4 modulo

Rs2 have the roots (x, y, z1, z2) = (−dp1 , �, p, q) which are the same as
fsMSBs(x, y, z1) and the definition of z2. We construct a lattice with coeffi-
cient vectors of gsMSBs3(xX, yY, z1Z1, z2Z2), gsMSBs4(xX, yY, z1Z1, z2Z2) and
g′

sMSBs3(xX, yY, z1Z1, z2Z2), g′
sMSBs4(xX, yY, z1Z1, z2Z2) as the bases. Based

on the Jochemsz-May strategy [JM06], LLL outputs two short lattice vectors
which satisfy Howgrave-Graham’s Lemma when XsX Y sY Z

sZ1
1 Z

sZ2
2 < W

|S|
sMSBs

where

sX =
m∑

i=0

m−i∑

j=0

(m − i − j) +
m∑

i=0

t∑

j=1

(m − i) =
(

1
6

+
τ

2

)

m3 + o(m3),

sY =
m∑

i=0

m−i∑

j=0

(i + j) +
m∑

i=0

t∑

j=1

i =
(

1
3

+
τ

2

)

m3 + o(m3),

sZ1 =
m∑

i=s

m−i∑

j=0

(i − s) +
m∑

i=s−t

t∑

j=s−t−i

(i + j − s) =
(1 + τ − η)3

6
m3 + o(m3),

sZ2 =
s∑

i=0

m−i∑

j=0

(s − i) +
s∑

i=0

min{t,s−i}∑

j=1

(s − i − j) =
(

η2

2
− (η − τ)3

6

)

m3 + o(m3),

|S| =
m−1∑

ix=0

m−1−ix∑

iy=0

m−1+t−ix∑

iz1=0

1 =
(

1
6

+
τ

2

)

m3 + o(m3).

Ignoring low order terms of m, the condition becomes

δ ·
(

1
6

+
τ

2

)

+
(

α + β − 1
2

)

·
(

1
3

+
τ

2

)

+
1
2

·
(

(1 + τ − η)3

6
+

η2

2
− (η − τ)3

6

)

< (α + β) ·
(

1
6

+
τ

2

)

.

Let τ = 0 and we can obtain the condition based on the Jochemsz-May basic
strategy. We optimize the parameter η = (1 − 2δ) /2, τ =

(√
1 − 4δ − 2δ

)
/2 and

obtain the condition,
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− 5 + 8(α + β) + 8δ − 12δ2 − 2(1 − 4δ)
√

1 − 4δ < 0.

Note that the restriction τ ≤ η ≤ 1 always holds. The restriction 0 ≤ τ holds
only when δ ≤ 1/

√
2−1/2. However, the condition always holds for α+β > 1/2,

which is the smallest choice of α + β for CRT-RSA.

Single LSBs Partial Key Exposure Attack on CRT-RSA. For a sin-
gle LSBs partial key exposure attack on CRT-RSA, looking at CRT-RSA key
generation,

e(d1M + d0) = 1 + �(p − 1),

with some integer � ≈ Nα+β−1/2. We consider a polynomial over the integers

fsLSBs(x, y, z1) := csLSBs + eMx + y(z1 − 1)

where csLSBs = 1 − ed0 whose roots are (x, y, z1) = (−d0, �, p). We also use an
additional variable z2 = q. Sizes of the solutions are bounded by X := N δ, Y :=
Nα+β−1/2, Z1 := N1/2, Z2 := N1/2.

We set an integer WsLSBs := Nα+β since ‖fsLSBs(x, y, z1)‖∞ ≥ |eMx| ≈
Nα+β . The polynomial fsLSBs(x, y, z1) has the same Newton polygon as
fsMSBs(x, y, z1), and the integers WsMSBs and WsLSBs are the same sizes.
Therefore, we use the same lattice construction as above and obtain the con-
dition of Theorem6.

5 Double Partial Key Exposure Attacks on CRT-RSA

For double MSBs/LSBs partial key exposure attacks on CRT-RSA, we obtain
the following result.

Theorem 7 (Double MSBs/LSBs). Let 1/2 < α + β ≤ 3/2. For double
MSBs/LSBs partial key exposure attacks on CRT-RSA, when

δ <
(18 − 12(α+β))τ2 + (20 − 16(α+β))τ + 5 − 4(α+β)

24τ3+54τ2+40τ + 10
for

15
16

< α + β <
3
2
,

δ <
5 − 4(α + β)

10
,

δ <
(12 − 24(α+β))τ3 + (27 − 30(α+β))τ2 + (20 − 16(α+β))τ + 5 − 4(α+β)

36τ2 + 40τ + 10

for
1
2

< α + β <
15
26

,

hold for some τ > 0, then public RSA modulus N can be factored in polynomial
time.

Note that the second condition is valid when 1/2 ≤ α+β ≤ 5/4 and better than
the other conditions when 15/26 ≤ α + β ≤ 15/16.

In this section, we focus on the MSBs case.
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Based on the Jochemsz-May Basic Strategy. As in a previous section, we
start from the Jochemsz-May basic strategy. The lattice construction yields the
second condition of Theorem 7.

Looking at CRT-RSA key generation,

edp = 1 + �p(p − 1) and edq = 1 + �q(q − 1),

with some integers �p, �q ≈ Nα+β−1/2. We multiply following two equations

edp − 1 + �p = �pp and edq − 1 + �q = �qq,

and obtain

e2dpdq + edp(�q − 1) + edq(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

For a double MSBs partial key exposure attack on CRT-RSA, we obtain

e2(dp0M + dp1)(dq0M + dq1) + e(dp0M + dp1)(�q − 1)
+e(dq0M + dq1)(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

We consider a polynomial over the integers,

fdMSBs(x1, x2, y1, y2) = e2x1x2 + (e2dq0M − e)x1 + (e2dp0M − e)x2

+ex1y2 + ex2y1 + (edq0M − 1)y1 + (edp0M − 1)y2
−(N − 1)y1y2 + cdMSBs,

where cdMSBs = e2dp0dq0M
2 − edp0M − edq0M + 1 whose roots are

(x1, x2, y1, y2) = (dp1 , dq1 , �p, �q). Sizes of the roots are bounded by X1 :=
N δ,X2 := N δ, Y1 := Nα+β−1/2, Y2 := Nα+β−1/2.

We set an integer WdMSBs := N2(α+β) since ‖fdMSBs(x1, x2, y1, y2)‖∞ ≥
|(N − 1)y1y2| ≈ N2(α+β). Note that fdMSBs(x1, x2, y1, y2) has the same mono-
mials as the polynomial which Jochemsz and May considered in [JM07]. There-
fore, we use the same lattice construction as [JM07]. We set an integer Rd1 :=
WdMSBs(X1X2Y1Y2)m−1 with some integer m such that gcd(cdMSBs, Rd1) =
1. We compute adMSBs1 = c−1

dMSBs mod Rd1 and f ′
dMSBs1(x1, x2, y1, y2) :=

adMSBs1 · fdMSBs(x1, x2, y1, y2) mod Rd1. We define a set of shift-polynomials
gdMSBs1 and g′

dMSBs1 as

gdMSBs1 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs1(x1, x2, y1, y2)X

m−1−ix1
1 X

m−1−ix2
2 Y

m−1−iy1
1 Y

m−1−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1,

g′
dMSBs1 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd1 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md1\Sd1,

for

Sd1 := {x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs1(x1, x2, y1, y2)m−1},

Md1 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs1(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd1}.
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By definition, the index sets become

Sd1 ⇔ ix1 = 0, 1, . . . ,m − 1 − iy1 ; ix2 =; 0, 1, . . . ,m − 1 − iy2 ;
iy1 = 0, 1, . . . ,m − 1; iy2 = 0, 1, . . . , m − 1,

Md1 ⇔ ix1 = 0, 1, . . . ,m − iy1 ; ix2 =; 0, 1, . . . ,m − iy2 ; iy1 = 0, 1, . . . ,m;
iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs1 and g′
dMSBs1 modulo Rd1 have the roots

(x1, x2, y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2).
We construct a lattice with coefficient vectors of gdMSBs1(x1X1, x2X2,
y1Y1, y2Y2) and g′

dMSBs1(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the
Jochemsz-May strategy [JM06], LLL outputs three short lattice vectors which
satisfy Howgrave-Graham’s Lemma when

(X1X2)
5
12m4+o(m4)(Y1Y2)

5
12m4+o(m4) < W

1
4m4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 · 5
12

+
(

α + β − 1
2

)

· 2 · 5
12

< 2(α + β) · 1
4
,

that is,

δ <
5 − 4(α + β)

10
.

The detailed calculation is discussed later.

Based on the Jochemsz-May Extended Strategy. Next, we show our lat-
tice construction based on the Jochemsz-May extended strategy. The lattice con-
struction enables us to solve the equation fdMSBs(x1, x2, y1, y2) = 0 for larger
α+β and yields the first and the third condition of Theorem7. At first, we show
the lattice construction for the first condition of Theorem7.

We set an integer Rd2 := WdMSBs(X1X2)m−1+t(Y1Y2)m−1 with some inte-
gers m and t = τm such that gcd(cdMSBs, Rd2) = 1. We compute adMSBs2 =
c−1
dMSBs mod Rd2 and f ′

dMSBs2(x1, x2, y1, y2) as in the basic strategy. We define
a set of shift-polynomials gdMSBs2 and g′

dMSBs2 as

gdMSBs2 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs2(x1, x2, y1, y2)X

m−1+t−ix1
1 X

m−1+t−ix2
2 Y

m−1−iy1
1 Y

m−1−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2,

g′
dMSBs2 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd2 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md2\Sd2,
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for

Sd2 :=
⋃

0≤j1,j2≤t

{x
ix1+j1
1 x

ix2+j2
2 y

iy1
1 y

iy2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs2(x1, x2, y1, y2)m−1},

Md2 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs2(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd2}.

By definition, the index sets become

Sd2 ⇔ ix1 = 0, 1, . . . ,m − 1 + t − iy1 ; ix2 =; 0, 1, . . . ,m − 1 + t − iy2 ;
iy1 = 0, 1, . . . ,m − 1; iy2 = 0, 1, . . . ,m − 1,

Md2 ⇔ ix1 = 0, 1, . . . ,m + t − iy1 ; ix2 =; 0, 1, . . . ,m + t − iy2 ; iy1 = 0, 1, . . . ,m;
iy2 = 0, 1, . . . ,m.

Shift-polynomials gdMSBs2 and g′
dMSBs2 modulo Rd2 have the roots (x1, x2,

y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2). We
construct a lattice with coefficient vectors of gdMSBs2(x1X1, x2X2, y1Y1, y2Y2)
and g′

dMSBs2(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May
strategy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-
Graham’s Lemma when3

(X1X2)(τ
2+ 9

4 τ2+ 5
3 τ+ 5

12 )m
4+o(m4)(Y1Y2)(

3
2 τ2+ 5

3 τ+ 5
12 )m

4+o(m4)

< W
(τ2+τ+ 1

4 )m
4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 ·
(

τ2 +
9
4
τ2 +

5
3
τ +

5
12

)

+
(

α + β − 1
2

)

· 2 ·
(

3
2
τ2 +

5
3
τ +

5
12

)

< 2(α + β) ·
(

τ2 + τ +
1
4

)

,

that is,

δ <
(18 − 12(α + β))τ2 + (20 − 16(α + β))τ + 5 − 4(α + β)

24τ3 + 54τ2 + 40τ + 10
.

The condition becomes the first condition of Theorem 7.
Next, we briefly summarize the lattice construction to yield the third con-

dition of Theorem7. This is the almost the same as the lattice construction
described above except we add extra-shifts to y1 and y2 instead of x1 and x2.

To solve the equation fdMSBs(x1, x2, y1, y2) = 0, we set an integer Rd3 :=
WdMSBs(X1X2)m−1(Y1Y2)m−1+t with some integer m and t = τm such
3 In this paper, we omit the calculation since that is the same as [JM07]. See the paper

for detailed calculation.



534 A. Takayasu and N. Kunihiro

that gcd(cdMSBs, Rd3) = 1. We compute adMSBs3 = c−1
dMSBs mod Rd3 and

f ′
dMSBs3(x1, x2, y1, y2) := adMSBs3fdMSBs(x1, x2, y1, y2) mod Rd3. We define a

set of shift-polynomials gdMSBs3 and g′
dMSBs3 as

gdMSBs3 : x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2

·f ′
dMSBs3(x1, x2, y1, y2)X

m−1−ix1
1 X

m−1−ix2
2 Y

m−1+t−iy1
1 Y

m−1+t−iy2
2

for x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3,

g′
dMSBs3 : x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · Rd3 for x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Md3\Sd3,

for

Sd3 :=
⋃

0≤j1,j2≤t

{x
ix1
1 x

ix2
2 y

iy1+j1
1 y

iy2+j2
2 | x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 is a monomial of

f ′
dMSBs3(x1, x2, y1, y2)m−1},

Md3 := {monomials of x
ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 · f ′

dMSBs3(x1, x2, y1, y2)|
x

ix1
1 x

ix2
2 y

iy1
1 y

iy2
2 ∈ Sd3}.

By definition, the index sets become

Sd3 ⇔ ix1 = 0, 1, . . . , m − 1 − iy1 ; ix2 =; 0, 1, . . . ,m − 1 − iy2 ;
iy1 = 0, 1, . . . , m − 1 + t; iy2 = 0, 1, . . . ,m − 1 + t,

Md3 ⇔ ix1 = 0, 1, . . . , m − iy1 ; ix2 =; 0, 1, . . . ,m − iy2 ; iy1 = 0, 1, . . . ,m + t;
iy2 = 0, 1, . . . , m + t.

Shift-polynomials gdMSBs3 and g′
dMSBs3 modulo Rd3 have the roots (x1, x2,

y1, y2) = (dp1 , dq1 , �p, �q) which are the same as fdMSBs(x1, x2, y1, y2). We
construct a lattice with coefficient vectors of gdMSBs3(x1X1, x2X2, y1Y1, y2Y2)
and g′

dMSBs3(x1X1, x2X2, y1Y1, y2Y2) as the bases. Based on the Jochemsz-May
strategy [JM06], LLL outputs three short lattice vectors which satisfy Howgrave-
Graham’s Lemma when

(X1X2)(
3
2 τ2+ 5

3 τ+ 5
12 )m4+o(m4)(Y1Y2)(τ2+ 9

4 τ2+ 5
3 τ+ 5

12 )m4+o(m4)

< W
(τ2+τ+ 1

4 )m4+o(m4)

dMSBs .

Ignoring low order terms of m, the condition becomes

δ · 2 ·
(

3
2
τ2 +

5
3
τ +

5
12

)

+
(

α + β − 1
2

)

· 2 ·
(

τ2 +
9
4
τ2 +

5
3
τ +

5
12

)

< 2(α + β) ·
(

τ2 + τ +
1
4

)

,

that is,

δ <
(12 − 24(α+β))τ3+(27 − 30(α+β))τ2+(20 − 16(α+β))τ +5 − 4(α+β)

36τ2 + 40τ + 10
.

The condition becomes the third condition of Theorem7.
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Double LSBs Partial Key Exposure Attack on CRT-RSA. As above,
we can obtain the following equation

e2dpdq + edp(�q − 1) + edq(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0,

from CRT-RSA key generations. For a double LSBs partial key exposure attack
on CRT-RSA, we obtain

e2(dp1M + dp0)(dq1M + dq0) + e(dp1M + dp0)(�q − 1)
+e(dq1M + dq0)(�p − 1) − (N − 1)�p�q − (�p + �q − 1) = 0.

We consider a polynomial over the integers,

fdLSBs(x1, x2, y1, y2) = e2M2x1x2 + (e2dq0 − e)Mx1 + (e2dp0 − e)Mx2

+eMx1y2 + eMx2y1 + (edq0 − 1)y1 + (edp0 − 1)y2
−(N − 1)y1y2 + cdLSBs,

where cdLSBs = e2dp0dq0 − edp0 − edq0 + 1 whose roots are (x1, x2, y1, y2) =
(dp1 , dq1 , �p, �q). Sizes of the roots are bounded by X1 := N δ,X2 := N δ, Y1 :=
Nα+β−1/2, Y2 := Nα+β−1/2.

We set an integer WdLSBs := N2(α+β) since ‖fdLSBs(x1, x2, y1, y2)‖∞ ≥
|e2M2x1x2| ≈ N2(α+β). The polynomial fdLSBs(x1, x2, y1, y2) has the same New-
ton polygon as fdMSBs(x1, x2, y1, y2), and the integers WdMSBs and WdLSBs

are the same sizes. Therefore, we use the same lattice construction as above and
obtain the condition of Theorem 7.
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Abstract. This work presents the first differential power analysis of an
implementation of the McEliece cryptosystem. Target of this side-channel
attack is a state-of-the-art FPGA implementation of the efficient QC-
MDPC McEliece decryption operation as presented at DATE 2014. The
presented cryptanalysis succeeds to recover the complete secret key after
a few observed decryptions. It consists of a combination of a differential
leakage analysis during the syndrome computation followed by an alge-
braic step that exploits the relation between the public and private key.

Keywords: Differential power analysis · McEliece cryptosystem ·
QC-MDPC Codes · FPGA

1 Introduction and Motivation

The basic idea of the McEliece public-key encryption scheme can be traced back
more than 35 years [19]. Having passed the test of time, today it is considered
one of the most promising alternatives to public-key encryption schemes whose
underling hardness assumptions are invalidated by known quantum algorithms
[23]. A critical point of McEliece-based constructions is the large key size, and
to tackle this problem it is tempting to impose additional structure on the code
involved. For some proposals in this line of work, including constructions build-
ing on Goppa codes, cryptanalytic strategies to exploit the additional structure
have been put forward [5–7]. Lacking obvious algebraic code structure that can
be exploited by an adversary, quasi-cyclic moderate-density parity-check (QC-
MDPC) codes currently receive considerable attention as an implementation
choice [3,9,17,18]. In this paper we take a closer look at a lightweight state-of-
the-art FPGA implementation of this scheme as presented in [17].

Our Contribution. In this paper we are not concerned with the security of
the specific parameters in [17] against the underlying theoretical problem, and
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 538–556, 2015.
DOI: 10.1007/978-3-319-28166-7 26
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instead focus on side-channel attacks. Even in a post-quantum world, i.e., when
scalable quantum computers are available, implementation-specific information
leakage will remain a serious issue, but so far no differential power analysis (DPA)
has been documented on implementations of McEliece. In fact, [10] concluded
that a classical DPA attack is not possible for their target implementations. In
this paper we demonstrate that DPA can be a realistic threat for a state-of-the-
art FPGA implementation of McEliece. Besides showing that significant parts of
the private key can be recovered by DPA, we show that knowledge of the public
key can be utilized to recover missing key information or to correct remaining
errors in hypothesized key bits.

On the conceptual side it deserves to be noted that our cryptanalysis tar-
gets the decoding algorithm, and thus is not restricted to a basic McEliece as
presented in [17]. If the basic scheme is augmented with a padding to establish
stronger provable guarantees, then this does not prevent our side-channel attack
as long as the decryption algorithm is applied to the ciphertext directly, pos-
sibly followed by some plausibility checks. This type of padding is common in
combination with the McEliece cryptosystem [13,22].

Related Work. Using QC-MDPC codes in the McEliece cryptosystem was first
proposed by [20] and later published with small changes in the parameter set
in [21]. These codes have no obvious algebraic structure and still allow small
key sizes, which gained high interest in the research community. First imple-
mentations of this scheme for AVR microcontrollers and Xilinx FPGAs were
proposed in [9]. Their FPGA implementation aimed for a high throughput at
the cost of a high resource consumption while their microcontroller implementa-
tion for the first time showed that it is possible to implement McEliece without
external memory to store the keys. A recent lightweight FPGA implementation
showed the full potential of this promising scheme [17]. Occupying less than 230
slices and 4 Block RAMs on Xilinx’s smallest Spartan-6 FPGA (XC6SLX4) for
a combined encryption/decryption unit, their implementation still provides a
reasonable performance of 3.4 ms and 23 ms for en-/decryption, respectively.

Side-channel leakages of McEliece have first been studied in [26]. This work,
as well as two follow-up studies focused on analyzing timing behavior of different
parts of PC implementations of McEliece [24,25]. Subsequently, [1] improved
over prior results, presented countermeasures and pointed out leakages in the
preprocessing steps of McEliece encryption. Heyse et al. [10] performed power
analysis on software implementations of classic McEliece implementations. Their
work relies on simple power analysis (SPA)-based approaches, which usually do
not translate well to hardware implementations, due to the increased paral-
lel processing of data and the much smaller side-channel leakage. They also
show that side-channel analysis is impeded by the large key sizes of McEliece.
In a recent work, AVR/ARM microcontroller implementations of QC-MDPC
McEliece were shown to be susceptible to SPA attacks [18]. The found weak-
nesses rely on secret dependent branches, which allow to recover the encrypted
message as well as to recover the secret key.



540 C. Chen et al.

2 Background

McEliece based on (QC-)MDPC codes is fully described in [21]. To provide the
necessary context for our attack, this section gives a brief summary of (QC-)
MDPC codes and their instantiation in the McEliece cryptosystem.

2.1 Quasi-Cyclic Moderate-Density Parity-Check Codes

A binary linear [n, k] error-correcting code C of length n is a k-dimensional vector
subspace of Fn

2 . We write r = n−k for the co-dimension of C. The code C can be
specified by providing a generator matrix G ∈ F

k×n
2 , i.e., a matrix whose rows

form a basis of C. Alternatively, one can provide a parity-check matrix H ∈ F
r×n
2

which characterizes the linear code as C = {c ∈ F
n
2 | cHT = 0r}. Given a parity-

check matrix and a vector x ∈ F
n
2 , we refer to s = HxT ∈ F

r
2 as syndrome of x.

In particular, a vector from F
n
2 is contained in C if and only if its syndrome is

0r.
If a code C is closed under cyclic shifts of its codewords by n0 positions

for some integer n0 ≥ 1, we refer to C as quasi-cyclic (QC). If n = n0 · p
for some integer p, both generator and parity-check matrix can be chosen to
be composed of p × p circulant blocks. This has the advantage that only one
row (usually the first) of each circulant block needs to be stored to completely
describe the matrices. For a moderate-density parity-check (MDPC) code, we
choose the weight of each row to have the same density w = O(

√
n log(n)).

For short, we refer to a binary linear [n, k] error-correcting code defined by
a parity-check matrix with constant row weight w and co-dimension r as an
(n, r, w)-MDPC code. If such a code is in addition quasi-cyclic with n = n0r, we
speak of an (n, r, w)-QC-MDPC code.

2.2 The QC-MDPC McEliece Public-Key Encryption Scheme

The QC-MDPC McEliece public-key encryption scheme uses t-error correcting
(n, r, w)-QC-MDPC codes, i.e., up to t “flipped bits” in any codeword c ∈ C can
be corrected. Specifically, using such a code, key generation, encryption, and
decryption operations can be described as follows.

Key-Generation. The secret key is comprised of the first rows h0, . . . , hn0−1 ∈ F
r
2

of the n0 parity-check matrix blocks H0, . . . , Hn0−1. These rows are chosen at
random and it has to be ensured that their weights—the number of non-zero
entries—sum up to w:

∑n0−1
i=0 wt(hi) = w, where wt() denotes the Hamming

weight computation function. Iterated cyclic rotation of the hi yields the parity-
check matrix blocks H0, . . . , Hn0−1 ∈ F

r×r
2 and thereby the secret parity-check

matrix H = (H0| . . . |Hn0−1) of an (n, r, w)-QC-MDPC code with n = n0r.
Assuming the last block Hn0−1 to be non-singular, the public key is obtained as
generator matrix G = [Ik|Q] in standard form, simply concatenating the identity
matrix Ik ∈ F

k×k
2 with
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Q =

⎛

⎜
⎜
⎝

(H−1
n0−1 · H0)T

(H−1
n0−1 · H1)T

· · ·
(H−1

n0−1 · Hn0−2)T

⎞

⎟
⎟
⎠ .

Similarly as for the secret key, the public matrix G is determined through
its first row. For a textbook version of McEliece the systematic form of G is
problematic, but in combination with a conversion to protect against chosen-
ciphertext attacks (cf. [13,22]) having the generator matrix G in systematic
form is accepted practice.

Encryption. To encrypt a message m ∈ F
k
2 , an error vector e ∈ F

n
2 of weight

wt(e) ≤ t is chosen at random. With this, the ciphertext evaluates to x =
(m · G ⊕ e) ∈ F

n
2 .

Decryption. To decrypt a ciphertext x ∈ F
n
2 , a t-error correcting (QC-)MDPC

decoder ΨH is applied to x, recovering mG ← ΨH(x). Since G is in systematic
form, the message m can simply be read off from the first k positions of mG.

Parameters. For the implementation investigated in this paper, we used parame-
ters, which in [21] have been considered for an 80-bit security level: n0 = 2, n =
9602, r = 4801, w = 90, t = 84. With these parameters a 4801-bit plaintext block
results in a 9602-bit codeword to which t = 84 errors are added. The parity-check
matrix H has constant row weight w = 90 and is obtained as juxtaposition of
n0 = 2 circulant blocks. The Q-part of the public generator matrix G consists
of a single circulant block.

2.3 Decoding (QC-)MDPC Codes

Several decoders have been proposed to actually decode (QC-)MDPC codes
[2,8,9,11,21]. The implementation investigated in this paper employs the
decoder from [9], an optimized version of the bit-flipping decoder by [8]. The
precomputed thresholds are derived from the code parameters as proposed by
[8]. To decode a received ciphertext x ∈ F

n
2 , four main steps are involved:

1. Compute the syndrome s = HxT .
2. Count the number of unsatisfied parity checks for every ciphertext bit.
3. If the number of unsatisfied parity checks for a ciphertext bit exceeds a pre-

computed threshold, flip the ciphertext bit and update the syndrome.
4. If s = 0r, the codeword was decoded successfully. If s �= 0r, go to Step 2 or

abort after a defined maximum of iterations with a decoding error.

2.4 Target Implementation

The target under investigation is a lightweight implementation of QC-MDPC
McEliece for reconfigurable devices by [17]. The resource requirements are 64
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slices and 1 block RAM (BRAM) to implement encryption and 159 slices and 3
BRAMs to implement decryption on a Xilinx Spartan-6 XC6SLX4 FPGA. This
lightweight implementation is possible mainly for two reasons. First, QC-MDPC
codes allow smaller keys compared to (optimized) binary Goppa codes. Second,
the implementation stores inputs, outputs and most intermediate values during
encryption and decryption in block memories. Since our attack focuses on secret-
key recovery, we limit the description of the details of the implementation to the
decryption, especially to the part in which the syndrome is computed.

Decryption uses three BRAMs, one BRAM stores the 2 · 4801-bit secret
key, one BRAM stores the 2 · 4801-bit ciphertext, and one BRAM stores the
4801-bit syndrome. Each BRAM is dual-ported, offers 18/36 kBit, and allows to
read/write two 32-bit values at different addresses in one clock cycle. To com-
pute the syndrome, set bits in the ciphertext select rows of the parity-check
matrix blocks that are accumulated. Since only one row of each block is stored
in the BRAM, they need to be rotated by one bit to generate the next rows. To
generate all rows of H, the rotation is repeated 4801 times.

Rotating the two parts of the secret key is implemented in parallel, which
means that the 4801-bit rows of the first and the second part of the parity-
check matrix are rotated at the same time. Efficient rotation is realized using
the Read First mode of Xilinx’s BRAMs which allows to read the content of
a 32-bit memory cell and then to overwrite it with a new value, all within one
clock cycle.

The key rotation is implemented as follows: in the first clock cycle, the least
significant bit (LSB) is loaded from the last memory cell. The first 32-bit of the
row to be rotated are loaded next. In all following clock cycles, the succeeding
32-bit blocks of the row are read and overwritten by the rotated preceding 32-
bit block. The LSB of each 32-bit block is delayed by a flip-flop and becomes
the most significant bit (MSB) of the following block. An abstraction of this
implementation is depicted in Fig. 1. In addition to a rotation of the rows, this
introduces a rotation of the memory cells. After one 4801-bit rotation, the most
significant 32 bits of a parity-check matrix row do not reside in memory cell 0
but in memory cell 1.

The syndrome s is computed by processing the ciphertext x in a bitwise
fashion. If the j-th bit is set, i.e., xj = 1, then the j-th row of H is added to the
syndrome s. The implementation adds two 32-bit words in parallel: one word of
the rotated h0 and one word of h1 are processed in each clock cycle.

3 Attack Description

Usually DPA attacks exploit an intermediate state y = f(x, k) that is a function
of both a known data item x and a subkey k. The subkey space K should be
small enough so that a hypothesis y can be checked for all candidates k ∈ K.
Some works that elaborate on this model are [14,16,27]. McEliece does not offer
itself for this approach, as also noted in [10]. One would expect the syndrome
s to serve as a potential predictable intermediate state y. However, the bits in
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Fig. 1. Abstract block diagram of the syndrome computation circuit including key
rotation as implemented in [17].

the ciphertext x only determine which rows of the parity check matrix H are
added to s, where H is the secret key to be recovered. Predicting (parts of) the
syndrome s requires an additional key bit hypothesis for each variation of each
bit of s, i.e., each bit of s depends on l key bits after l variations, supporting
the infeasibility claim of [10]. One of the strengths of QC-MDPC, its small
private key size, comes from the fact that secret information is highly redundant:
each row of H contains the same information—namely 〈h0 ≫ z||h1 ≫ z〉—only
rotated by one bit per row, z ∈ {0, 4800}. This redundancy allows for an efficient
recovery of key information. More important, it enables a differential analysis
approach which greatly enhances the visibility of even faint leakages.

We exploit this leakage of the key rotation operation during syndrome compu-
tation. Our analysis recovers a static key leakage that is completely independent
of the known or chosen ciphertext input x. Since the exploited leakage occurs sev-
eral times during one syndrome computation, our attack combines these leakage
events, as commonly done in horizontal side channel attacks.

3.1 Leakage Behavior of the Target Implementation

The described attack recovers the key during the syndrome computation step of
the decryption algorithm. The key for QC-MDPC consists of a single line of the
parity check matrix H, namely h0||h1. As described in Sect. 2.4, only this line
of H, or one of its rotated versions 〈h0 ≫ z||h1 ≫ z〉, is stored in BRAM. The
key has some noteworthy features that influence the derived DPA attacks. First,
the private key is of low weight : both parts of the secret key h0 and h1 are of
low Hamming weight such that, wt(h0||h1) = w. For the target implementation,
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w = 90 and wt(hi) = 45, i. e. both h0 and h1 have exactly 45 bits set. This
means, each key bit hi,j ∈ {0, 1} where i ∈ {0, 1} and j ∈ {0, 4800} is set with
probability Pr(hi,j = 1) = w/(n0r) = 45/4801 ≈ .94%. This implies low-weight
leakages: Syndrome and key parts hi are stored in BRAMs and are processed as
151 32-bit words. The chance of a 32-bit key word to be all-0 is still 74%, about
22% contain a single one bit, leaving the chance of having more than one bit set
in a word below 5%.

The critical parts of the target implementation that feature exploitable key
leakage are depicted in Fig. 1. There are two operations that contribute to the
leakage during syndrome computation. One operation is the key rotation, which
is always performed. The second operation is the syndrome computation. Our
analysis focuses on the key rotation operation, which is independent of the
ciphertext input x. The stored key row 〈h0 ≫ z||h1 ≫ z〉 is constantly rotated
during the syndrome generation. In fact, it is rotated by a single bit 4801 times,
where each rotation takes 151 clock cycles (plus two additional clock cycles for
preprocessing and a data read-write delay, resulting in the 153 clock cycles men-
tioned in [17]). The implementation features a separate register which stores
the carry bit during rotations. In each of these clock cycles, one bit hi,j—the
LSB of the last accessed word—is written to the carry register, causing leakage
λcarry(i, j). In the following clock cycle, that bit is overwritten with the LSB
of the next word, hi,j+32. Assuming a Hamming distance leakage function, this
register leaks first

λcarry(i, j) = w1 · wt(hi,j−32 ⊕ hi,j), (1)

then, in the subsequent clock cycle, leaks λcarry(i, j+32) = w1 ·wt(hi,j ⊕hi,j+32),
where w1 ∈ R is an appropriate weight. Assuming that hi,j = 1 and further
hi,j±32 = 0, λcarry(i, j) gives a clearly distinguishable leakage from the case
where hi,j = 0. This leakage is the target of the described attack.

In addition to the leakage of the carry register λcarry(i, j) described in Eq. (1),
there are related leakages happening in the same clock cycles. In fact, when
hi,j is written to the carry register, the implementation also reads the word
〈hi,j+1 . . . hi,j+32〉 from the block memory at one address and then stores the
word 〈hi,j−32 . . . hi,j−1〉 into the block memory at the same address. Both read-
ing and storing operations will cause leakages at different levels. Assuming a
Hamming weight leakage function here, reading data and storing data words
leaks as

λread(i, j) = w2 · wt(〈hi,j+1 . . . hi,j+32〉) and
λstore(i, j) = w3 · wt(〈hi,j−32 . . . hi,j−1〉),

respectively. Here, w2 ∈ R and w3 ∈ R are appropriate weights for the different
types of operations. The overall observed leakage is approximated as:

Li(j) = λcarry(i, j) + λread(i, j) + λstore(i, j) + N

where Li is the overall leakage at the clock cycle where hi,j is written into the
carry register and N is noise, which is assumed to be Gaussian. Please note that
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the target implementation processes h0 and h1 in parallel. This means that the
leakage functions L0 and L1 for h0 and h1 overlap. There are two carry registers
(cf. Fig. 1), one stores h0,j when the other stores h1,j . While these leakages
slightly differ, we will not attempt to distinguish them. Instead we recover the
combined leakages. That is, we predict the combined leakage hΣ = h0+h1, which
is still sparse. Note that the addition here is not in F2, i.e., we can distinguish
the case where h0,j = h1,j = 1 from the case h0,j = h1,j = 0, although this case
is very rare (and will be ignored in the further description). While the model is
not perfect, it describes the observed leakages well enough to base a decent key
recovery on it.

As in the classical DPA by Kocher et al. [15], we can now hypothesize the
value of each key bit hi,j separately. We further know at which clock cycle
the leakage of the carry registers (for the key rotation) occurs. Based on this
knowledge, one can build the following attack.

3.2 DPA of Key Rotation

As mentioned above, we do not distinguish h0,j and h1,j . Instead, we predict
the combined leakage hΣ,j = h0,j + h1,j . Our key recovery works well for this
combined leakage, as explained in Sect. 5. Note that we know for each key bit hi,j

at which clock cycle it is processed (if not, several hypotheses can be checked in
parallel by analyzing neighboring clock cycles). In fact, knowing the implemen-
tation, it is predictable which key bit hi,j enters the carry register in which clock
cycle for the key rotation. We use this information to build a differential power
analysis attack. In spite of the independence of the input x we claim the analysis
method to be differential leakage analysis, since differential leakage traces can
be computed—similar to the approach originally proposed in [15].

Our algorithm identifies all clock cycles where hi,j is written to or overwritten
in the carry register in each trace L and extracts that leakage from L. Per
processed ciphertext bit, only 150 words are rotated. The additional bit is stored
in the carry register. Hence, all rotations together result in a total of 4801 · 150
carry register overwrites for each hi. Since there are 4801 bits in hi, each bit
is written to the carry register 150 times. The corresponding clock cycles l are
then identified and their corresponding leakage Li(j, l) is combined, as done in
horizontal SCA. The result is a differential leakage trace Δcarry with only one
bin per key bit. In other words, the difference between a key bit being zero and
a key bit being one can be observed by comparing points of the leakage trace
Δcarry horizontally. Since the key is sparse, there are only very few bins that
correspond to a bit hi,j = 1, while most bins correspond to a bit hi,j = 0. The
implicit assumption of all bits leaking the same way is perfectly justified: each
bit hi,j takes each column position exactly once, in a specific row. That means
due to the rotation, each key bit leaks in every position exactly once, averaging
out any position-specific leakages.

In order to detect whether a key bit is set, i.e., hi,j = 1, we average over all
clock cycles where hi,j is written to the carry register.
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Δcarry(j) =
1

150

150∑

l=1

(L0(j, l) + L1(j, l))

= avg (λcarry(0, j) + λread(0, j) + λstore(0, j)
+λcarry(1, j) + λread(1, j) + λstore(1, j))

Since hi,j−32 = 0 with very high probability, Δcarry(j) depends directly on the
key bit. Further, hi,j = 1 has an even stronger influence on Δcarry(j ± 32), since
it leaks through λcarry(i, j) and either λread(i, j) or λstore(i, j). The dependence
of Δcarry(j) on neighboring key bits hi,j±δ, with δ ≤ 32, implies that each set
key bit not only results in an increased leakage signal for its own position (i. e.,
index j), but also in the neighboring positions. Note that due to the differing
weights, each set key bit imprints a characteristic shape onto the leakage trace.
These shapes can (and actually will) overlap if several key bits in the same region
are set. Figure 2 shows the comparison of the simulated leakage trace (red(gray)
line) using the power model and the real leakage trace (blue/black line). The
characteristic shape is highlighted in Fig. 3, which is a magnification of a single
set bit of the key, surrounded by zeroes.

Fig. 2. Differential leakage trace for key rotation. The plot shows the normalized leak-
age (vertical axis) of both key parts hΣ,j = h0 + h1 over the key bit index (horizon-
tal axis). The red(gray) line is the simulated leakage while the blue/black line is the
observed leakage from the target implementation (Color figure online).

In summary, the key rotation analysis allows us to detect joint leakages of
h0 and h1. This is due to the target implementation that processes both in
parallel. The key rotation leakage features a characteristic shape with easily
detectable bounds. This allows for a precise location of set key bits. Furthermore,
the analysis of the key rotation is mostly input-independent, as will be discussed
in Sect. 4. More importantly, each bit features 150 leakage observations per trace
L, resulting in a very strong leakage.



Differential Power Analysis of a McEliece Cryptosystem 547

2650 2700 2750 2800 2850 2900 2950 3000 3050 3100 3150
0

0.2

0.4

0.6

0.8

1

X: 2868
Y: 0.2793

key bit h
i, j

D
iff

er
en

tia
l T

ra
ce

 Δ
ca

rr
y

X: 2900
Y: 0.4211

X: 2932
Y: 0.2837

Real Differential trace
Simulated Differential trace

Fig. 3. A magnified version of Fig. 2 that highlights the characteristic shape of a single
set bit (center) as well as the overlap of two (right) and three (left) “adjacent” set bits.

3.3 Key Bit Recovery

The key rotation causes leakages which can be analyzed in the presented differ-
ential leakage traces where characteristic shapes caused by set key bits can be
detected and used to recover the set key bits. In the same way, the traces can
be used to detect key bits that are not set. Since the analyzed implementation
processes h0 and h1 in parallel during the key rotation, resulting in an overlap
of the leakages, the differential leakage trace actually recovers the key bits of
hΣ = h0 + h1.

In order to recover key bits, the characteristic shapes need to be detected.
We propose a generic shape detection algorithm that works as follows:

1. Shape Definition. From the differential leakage trace, one singular charac-
teristic shape can be identified and used as a template for set bits. The tem-
plate is used to generate a shape threshold as shown in Fig. 3. The threshold
is defined by the value of features in this shape such as edges, slopes and
pulses.

2. Shape Detection. For each key bit in the differential leakage trace, we check
if this key bit together with the neighboring key bits can form a characteristic
shape. This is done by checking if there are features that are beyond the
threshold. If more than two features exist, it is highly probable that this key
bit is set. If no feature exists, then it is highly probable that this key bit is
0. Otherwise, we mark this key bit as an undetermined bit.

Note that the shapes will overlap if two set key bits are close to each other.
Furthermore, the leakage traces are noisy, hence we can only recover parts of the
key bits, leaving the other key bits as undetermined. By choosing the thresholds
for shape detection carefully, the number of detected bits can be maximized
while keeping the number of false positive errors as low as needed.
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4 Measurement Setup and Results

We ported the implementation of [17] to a Xilinx Virtex-5 LX50 FPGA which
is mounted on a Sasebo-GII side-channel attack evaluation board1. The imple-
mentation is clocked at 3 MHz by default. Measurements were performed using
a Tektronix DPO 5104 oscilloscope at a sampling rate of 100 MS/s. Since our
attack focuses on the syndrome computation, only the syndrome computation
was recorded. The syndrome computation takes 245 ms, resulting in long traces.
For the ease of analysis, a peak extraction was performed. In each clock cycle
only the point of maximum power consumption is retained. The peak extraction
prevents potential alignment issues and makes data handling much faster.

4.1 DPA Results of the Key Rotation

Since the key rotation is independent of the ciphertext, the choice of the cipher-
text could be arbitrary. However, key rotation and syndrome computation run
in parallel, leading to a mixed leakage. To determine the influence of the syn-
drome computation, two different ciphertext scenarios are studied. One is the
all-0 ciphertext to minimize the influence of the syndrome computation. In this
scenario the syndrome remains all-0 throughout the entire computation. The
other scenario assumes random ciphertexts for each decryption, where each bit
in x is set with a 50 % probability. For each scenario we took 256 measurements.

Next, we averaged over all considered traces in both scenarios. From the
resulting average trace, 4801 · 150 peaks are extracted and used to construct the
differential leakage traces Δcarry as explained in Sect. 3.2. Note that averaging
explicitly before the computation of Δcarry or implicitly during the computation
of Δcarry does not influence the result. Figure 4 shows the differential leakage
traces for the key rotation, showing the key bit position (horizontal axis) vs.
the bit leakage (vertical axis) for all key bits. The blue (black) line indicates
the result for the all-0 ciphertext scenario while the green (gray) line indicates
the results for the random ciphertext. The latter one is slightly noisier, but
nevertheless provides a well-exploitable leakage for a low number of observations.
Figure 3 shows magnifications of the differential leakage trace to highlight the
characteristic shapes, particularly the one generated by setting the key bit hi,2900

as 1 and the neighboring key bits as 0.
The other shapes in Fig. 3 result from the overlapping of characteristic shapes

that occur when set key bits of h are close to each other. We noticed that set
key bits for h0 result in a slightly different shape than those of h1. Since this
difference cannot be distinguished as easily, we did not further try to exploit this
information.

Key Extraction. To extract keys from Δcarry, we used the algorithm described
in Sect. 3.3. The first step is to define the characteristic shape. Distinguishable
1 The VHDL code of the QC-MDPC McEliece implementation of [17] is available at

http://www.sha.rub.de/research/projects/code/.

http://www.sha.rub.de/research/projects/code/
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Fig. 4. Normalized differential leakage trace Δcarry for the key rotation for the bits of
hΣ,j = h0+h1. Whether the ciphertext is known (green(gray) line) or all-0 (blue(black)
line) has only marginal influence on the observed leakage (Color figure online).

features such as the rising edge, the pulse in the center and the falling edge
are clearly visible in Fig. 3 and are used to detect the shape. These features are
quantified using a threshold vector. Then, for each key bit hi,j in Δcarry, we
check if there is a pulse at hi,j , a rising edge at hi,j−32 and a falling edge at
hi,j+32. If more than one feature exists for hi,j , we take hi,j as 1. If no feature
exists, hi,j is taken as 0. If only one feature exists, hi,j is left as undetermined
key bit. Depending on the number of traces used for generating Δcarry, it can
be noisy and there will be false positive errors in recovered key bits. Errors can
also be introduced by unfavorable overlapping of shapes.
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Fig. 5. Key bit recovery rates for a range of detection thresholds for recovering 0 key
bits (left) and 1 key bits (right). Solid line indicates the number of recovered bits (out
of 90 ones and 4711 zeroes, scale on left), the dashed line indicates the number of false
positives (scale on right). Markers ◦, then �, and then ∗ indicate the increasing values
for the threshold.
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Figure 5 shows how the chosen threshold affects the key recovery. Three dif-
ferent thresholds are used. The first one (◦) is exactly the value extracted from
the characteristic shape in Δcarry. The other two (� and then ∗) are increased
based on the first one. In Fig. 5.1, as the number of traces used to generate the
differential leakage trace increases, the number of recovered 0 key bits increases
and the number of false positive errors decreases for all three thresholds. How-
ever, the less aggressive the threshold is, the lower is the number of false positive
errors. In contrast, Fig. 5.2 shows that with the least aggressive threshold (◦),
more key bits of 1 can be recovered with a few more false positive errors. Hence,
to recover more key bits of 0 with least false positive errors, the less aggres-
sive threshold should be used. In contrast, to recover key bits of 1 with least
false positive errors, the more aggressive threshold should be used. Note that we
repeated our experiments for five different randomly generated keys to ensure
the result is not key dependent. The figures show the average result for those
experiments.
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Fig. 6. Key bit recovery rates for recovering 0 key bits. Solid line indicates the number
of recovered bits (out of 4711 zeroes, scale on left), the dashed line indicates the number
of false positives (scale on right). The left figure compares known random (◦) vs. chosen
all-0 (�) ciphertext inputs. The right figure compares the experiments for varying clock
rates: ◦ for 3MHz, � for 8 MHz, and ∗ for 16 MHz.

Figure 6.1 shows a comparison of the number of recovered key bits and false
positive errors between the all-0 ciphertext and random ciphertext. As the num-
ber of traces used to generate the differential leakage trace increases, the num-
ber of recovered key bits of 0 increases and the number of false positive errors
decreases for both cases. However, with the all-0 ciphertext, there are less posi-
tive errors. In conclusion, the all-0 ciphertext is more advantageous to the DPA
of key rotation. Hence, we use the traces with the all-0 ciphertext in the other
experiments.

Modern electronic devices run faster than 3 MHz which is the default clock
rate for the SASEBO board and widely used in power analysis experiments. In
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order to validate our attack on faster platforms, the performance of the attack
was measured for the same design clocked at 8 MHz and 16 MHz. The sampling
rate was accordingly increased to 200 MS/s and 250 MS/s, respectively. For each
case, 256 traces were obtained using the all-0 ciphertext, followed by peak extrac-
tion. Figure 6.2 shows the degradation of the leakage over the increasing clock
rate by comparing the number of recovered 0 key bits and false positive errors.
In all three cases, the number of recovered 0 key bits increases and the number
of false positive errors decreases, as the number of analyzed traces increases.
However, the lower the clock rate is, the better the key bits extraction works.
With a 3 MHz clock rate (◦), almost 4500 of the 0 key bits can be recovered with
about 1 false positive error when using all 256 traces while 4000 of the 0 bits are
recovered with about 3 false positive errors at a clock rate of 16 MHz (∗).

Overall, it can be seen that with as little as 10 measurements, more than
half the key bits can be recovered with a remaining number of errors that is
small enough to allow for efficient error correction. With 100 measurements and
a careful choice of thresholds, the determined bits are entirely error-free at lower
clock rates. This strong leakage is partially due to the fact that 150 leakages are
extracted from each measurement, strongly amplifying the amount of leakage
gained from each individual trace.

5 Full Key Recovery

Next we analyze how to recover the full key of QC-MDPC McEliece if the adver-
sary has knowledge of several 1 bits of the key as well as several 0 bits of the
key, possibly with few errors. We show that the structure of the key can be used
to recover the remaining uncertain bits efficiently, or to detect remaining errors.

5.1 Exploiting a Connection Between Secret Key and Public Key

As described in Sect. 2.2, the secret key consists of two related parts, h0 and h1.
Due to the relation between the secret h0, h1 and the public matrix Q, we can
express h0 as:

h0 = h1 · QT (2)

Likewise, given h0, one can compute h1, since Q is invertible. This means that
once the first half of the secret key is recovered, the second half can be computed
using the public key. More interestingly, this relationship can be used for error
detection for each hi independently: since Q is of high weight (each bit has
approximately a 50 % chance of being 1), even a single bit error in h∗

i will result
in a high weight of a consequently derived h∗

ī
, i.e., wt(h∗

ī
) ≈ r/2. A correct hi,

however, will result in an hī of low weight, in our case wt(hī) = 45. We are
currently not aware how slightly faulty or noisy information of h0 and h1 can
be combined more efficiently without a trial and error approach using the above
mentioned relationship.
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If the adversary observes a combined leakage of h0 and h1 as described above,
this is not a problem, since knowledge of h0 ⊕ h1 can also enable key recovery.
Adding h1 on both sides of Eq. (2) we obtain

h0 ⊕ h1 = h1 · (QT ⊕ I4801). (3)

If side-channel leakage allows us to obtain the combined leakage h0 ⊕ h1 and
the rank of QT ⊕ I4801 is high, we can solve this linear system of equations for
h1 with a computer algebra system like Magma [4]—and then derive h0 from
Eq. (2). In our experiments, the rank observed for QT ⊕I4801 was 4800, resulting
in two candidate solutions with only one of them having the correct Hamming
weight. So in cases where all ones can be correctly identified, Eqs. (2) and (3)
enable a practical key recovery.

Due to noise and leakage overlapping, there are probably false positive errors
in the recovered bits and hence error correction would be essential to correct
positions that are slightly off. Guessing error positions becomes infeasible quickly,
even with small improvements over an exhaustive search of

(
4801

l

)
possibilities

for l errors. We did not try to devise elaborate error-correction strategies, as a
different attack strategy which relies on exploiting detected zeroes turned out to
be quite effective. We explain this strategy next.

5.2 Efficient Key Recovery from Partial Information

After having identified several 1 bits and 0 bits of the secret key correctly, we
aim at an efficient way to recover remaining unknown or uncertain key bits. For
this, we define B0, B1 and Bu as index sets indicating the locations of definite
zeroes, definite ones and positions of undetermined bits in h0 ⊕ h1 such that

B0 ∪̇ B1 ∪̇ Bu = {0, 1, . . . , 4800} . (4)

Positions in B0 indicate that both h0 and h1 are zero in that position, while
positions in B1 will mean a one in either h0 or h1.2 Hence, the uncertain positions
for h1 are B1

u = B1 ∪̇ Bu, and with Iverson’s convention [12] we can summarize
our knowledge of h0 ⊕h1 and h1 as h0 ⊕h1 = 〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800

and h1 =
〈
u · [i ∈ B1

u]
〉
0≤i≤4800

, where u indicates unknown bits (“erasures”).
So Eq. (3) yields

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉
0≤i≤4800

· (QT ⊕ I4801).

As the indices in B0 indicate definite zeroes in h0 ⊕ h1 and h1, the corre-
sponding rows in the matrix QT ⊕ I4801 will always be multiplied with a zero
coefficient. We remove these |B0| rows and the corresponding known 0-entries in
h1, obtaining an updated equation system

〈1 · [i ∈ B1] + u · [i ∈ Bu]〉0≤i≤4800 =
〈
u · [i ∈ B1

u]
〉

i�∈B0
· Q′. (5)

2 The (rare) case of h0 and h1 having a one in the same position is not considered
here, as this situation is quite apparent from the side-channel leakage.
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with a (smaller) matrix Q′ ∈ F
(4801−|B0|)×4801
2 . There are 4801 − |B0| − |B1|

unknown bits on the left- and 4801 − |B0| unknown bits on the right-hand side
of Eq. (5). As we are only interested in finding h1, we can try to eliminate
unknown values in h0 ⊕ h1 by dropping columns from Q′. One may hope that
|Bu| columns can be eliminated without Q′ dropping in rank, so that we end up
with a linear system of equations

〈1 · [i ∈ B1]〉i�∈Bu
=

〈
u · [i ∈ B1

u]
〉

i�∈B0
· Q′′ (6)

in 4801 − |B0| unknowns and a matrix Q′′ ∈ F
(4801−|B0|)×(4801−|Bu|)
2 . If |Bu| ≤

|B0| one may hope that this linear system of equations can be solved and yields
a unique candidate for h1.

To check the practical feasibility of this approach, we ran several experiments
in Magma [4], solving the equation system given in (6) for several different vectors
B0 and B1. We were particularly interested in the situation where knowledge of
1-positions in h0 ⊕h1 is ignored (i.e., B1 = ∅), because in our measurements the
0-detection was more reliable. With B1 = ∅, the resulting system of equations
is homogeneous and thus in addition to h1 also has the trivial solution. From
Eq. (4) we see that the condition |Bu| ≤ |B0| now implies that |B0| ≥ �4801/2�.
Staying above this threshold, in our experiments we obtained no more than
8 candidates for h1, and the weight condition identified the correct secret key
uniquely.

For |B0| < 2400, the kernel of the matrix Q′′ in Eq. (6) gets larger quickly
and we obtain additional candidates for h1, but finding the correct h1 may still
be feasible by looking at the Hamming weight of the candidates as long as the
number of candidates is not overwhelming. The results in Sect. 4 show that for
the target implementation the attacker can expect to recover more information
from the side-channel than necessary for recovering the secret key. Having |B0|
comfortably above the threshold of 2400, a few false positives in B0 can be dealt
with efficiently: Instead of using all of these bit positions, one can select subsets
of size 2401 at random. Assuming a hypergeometric distribution, with f false
positive errors among the |B0| indices, the probability of guessing 2401 error-free
positions is

(|B0|−f
2401

)
/
(|B0|
2401

)
. E.g., with |B0| = 3281 and f = 4, this probability

is still ≈ 2−7.6. In summary, as long as more than half the bits of the key can
be recovered with a low error rate, the remaining key bits can be determined
using the above-described algebraic methods. Knowledge of additional bits of
h0 ⊕ h1 facilitates the handling of possibly remaining errors. Not being able to
recover more than half the number of key bits can make the search infeasible,
although—due to the highly biased key—guessing a few additional zeroes may
still be an option.

6 Preventing the Attack

The described attack is somewhat specific to the implementation choices of the
target, but can be adjusted to other implementation parameters as well. For
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example, an implementation that does not process h0 and h1 in parallel would
simplify the attack and amplify the leakage. Implementations that use a dif-
ferent word size (the targeted implementation processes 32-bit words due to
the BRAM structure of the FPGAs) will influence the described attack as well.
The smaller the word size, the more leakages per target bit, most likely facilitat-
ing the attack further. However, a massively parallelized implementation such as
the one described in [9] could impede the described attack, since all bits would
always be leaking in parallel. One might still be able to exploit resource-specific
leakages, e.g., leakage from a carry register. Furthermore, such an implementa-
tion is very resource-consuming and might not find widespread use.

A more reliable way to prevent this attack is provided by side-channel coun-
termeasures. A good overview of standard DPA countermeasures is available
in [16]. Countermeasures are typically classified as masking or hiding counter-
measures. Both classes can be applied to an implementation of (QC-)MDPC
McEliece and, if done correctly, should prevent the above-mentioned attack.

7 Conclusion

This work presents the first successful differential power analysis of a state-of-the-
art McEliece implementation based on quasi-cyclic MDPC codes. The analysis is
not affected by a potentially present padding as commonly used to achieve CCA
security. The analysis exploits the leakages of a key rotation operation which
occurs during the syndrome computation step of the decryption and recovers a
combined leakage of h0 and h1. The leakage model provides precise and strong
leakage. The resulting attack is independent of the ciphertext and succeeds with
tens of traces. A significant part of the key recovery stems from the relation
between the private key and public key, which can be exploited to ease key
recovery. In fact, recovering only half the bits of the (highly biased) secret key
with a low error rate is sufficient for full key recovery.
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Abstract. A common countermeasure to thwart side-channel analysis
attacks is algorithmic masking. For this, algorithms that mix Boolean
and arithmetic operations need to either apply two different masking
schemes with secure conversions or use dedicated arithmetic units that
can process Boolean masked values. Several proposals have been pub-
lished that can realize these approaches securely and efficiently in soft-
ware. But to the best of our knowledge, no hardware design exists that
fulfills relevant properties such as efficiency and security at the same
time.

In this paper, we present two design strategies to realize a secure and
efficient arithmetic adder for Boolean-masked values. First, we introduce
an architecture based on the ripple-carry adder that targets low-cost
applications. The second architecture is based on a pipelined Kogge-
Stone adder and targets high-performance applications. In particular,
all our implementations adopt the threshold implementation approach
to improve their resistance against SCA attacks even in the presence
of glitches. We evaluated the security of our designs practically against
SCA using a non-specific statistical t-test. Based on our analysis, we
show that our constructions not only achieve resistance against first-
and (univariate) second-order attacks but also require fewer random bits
per operation compared to any existing software-based approach.

Keywords: Side-channel analysis · Threshold implementation ·
Boolean masking · Arithmetic modular addition

1 Introduction

Side-channel analysis (SCA) poses a serious threat to any cryptographic imple-
mentation. If no dedicated countermeasure is applied, the secret of the underlying
device can be easily extracted by SCA. A popular approach to increase the secu-
rity of a cryptographic implementation is the use of masking. It is achieved by
blinding the processed values by means of random masks [21] so that it should
become impossible for an attacker to predict intermediate values.

To date there exist several types of masking schemes that differ in the level
of abstraction and the target operation. In this work we focus on the tech-
niques developed to be applied at algorithmic level, e.g., Boolean and arithmetic
c© Springer International Publishing Switzerland 2015
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masking, which need to be adjusted according to the underlying cryptographic
algorithm [21]. Note that nearly all proposed ciphers employ both logical and
arithmetic operations.

As an example, ARX-based designs consist of three operations: integer addi-
tion, rotation, and XOR. Such constructions are the foundation for block ciphers
(like FEAL [23] or Threefish [13]), stream ciphers (Salsa20 [5], ChaCha [4], HC-
128 [35]) and hash functions (BLAKE [2], Skein [13]). There are further examples
that also include a mixture of Boolean and arithmetic operations like the TEA
family of block ciphers [34] and SHA-2 [30]. To realize a masked implementation
of these constructions, one option is to employ both Boolean and arithmetic
masking schemes. Rotation and XOR operations can be protected by Boolean
masking, while arithmetic masking is advantageous for the addition operations.
However, the required conversions between both operations can also be the tar-
get of an SCA attacker and hence need to be implemented in a secure way. In
particular, many existing results discussing this method identified the conversion
between arithmetic and Boolean masking as a major hurdle [3,9,14].

Related Works. We now briefly highlight several works on the conversion
between Boolean and arithmetic masking. The conversion techniques can be
categorized into those which use precomputation [12] and those without precom-
putation [17]; however most of them were designed specifically for software plat-
forms. Unfortunately, these constructions cannot be easily mapped to a dedicated
hardware module without violating their claims on security. Roughly speaking,
this is mainly due to critical glitches that occur inside masked circuits [22]. To
avoid this problem, every step would need to be separated by a register stage
which would be detrimental to the performance.

We like to remark that a hardware design for such conversions has been
proposed in [15], but since both the mask and masked data are involved in
the processes of the proposed techniques, such constructions are expected to
still have first-order leakages (see [25]). Another problem is the transformation
of conversion algorithms to higher orders. It has been shown in [10] how to
secure the conversions against higher-order attacks, but this feature comes with
a prohibitive overhead for any cryptographic implementation.

Along the same lines, in order to avoid the conversions a technique to securely
perform modular arithmetic addition on Boolean masked operands has been
introduced in [18]. However, this scheme has been developed to be used in soft-
ware applications and cannot be easily applied on a hardware platform where
performance is a key factor.

Recently, an approach was developed in [11] which uses the Kogge-Stone
adder as a basis. But the conversion and masked addition requires more random
bits compared to the solutions from [17,18] and are only faster for larger bit
sizes (i.e., 64 bits). Still their focus lies on software applications which makes
them inefficient in hardware.
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Contributions. The target of this work is to design efficient hardware modules
for modular addition of Boolean masked operands. More precisely, our goal is to
develop a similar technique such as [18] for a hardware platform.

Since masked hardware designs face severe challenges due to glitches, we
apply the concept of threshold implementations (TI) [29] that can satisfy the
security requirements even in the presence of glitches. TI combines the ideas
of Boolean secret sharing and multiparty computation. It has previously been
applied to realize the secure hardware design of symmetric ciphers [6,26,31].
Although it has initially been developed with respect to first-order security, its
extension to higher orders has been recently introduced [7].

In this paper we consider two factors to design the aforementioned module:
(a) throughput and (b) SCA security order. With respect to performance (i.e.,
throughput) we consider two designs to implement a 32-bit arithmetic adder
that is required by many cryptographic algorithms:

1. Ripple-Carry Adder (RCA) that requires 32 clock cycles to perform a com-
plete addition, and

2. Kogge-Stone Adder (KSA) with 6 clock cycles latency and a fully pipelined
architecture.

We present the first-order and (univariate) second-order secure threshold imple-
mentation of the two above mentioned designs. We show that our designs not
only outperform the inefficient approaches of [10] but also reduce the number
of fresh random mask bits required for each addition. We also present practical
SCA evaluations performed on a Spartan-6 FPGA to confirm the claimed secu-
rity levels. To the best of our knowledge, our four proposed architectures are
the only available hardware-dedicated solutions that are supported by security
proofs as well as by practical investigations.

2 Background

In this section, we introduce the used notations and present the basic ideas
behind our designs.

2.1 Notations

In the following all equations are bit-level operations. An n-bit integer operand a
is represented as (an−1an−2 . . . a1a0) where a0 is the least significant bit. These
integers are split up into shares of which the j-th share of a bit ai∈{0,...,n−1} is
denoted by aj

i . Inside the equations two Boolean operators are used: ⊕ denotes
the logical XOR and ∧ the logical AND. AND operators are always evaluated
before any XOR operators.
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2.2 Ripple-Carry Adder

In [18] the authors presented a way to securely add two Boolean masked values.
Instead of three conventional steps (conversion, addition, reconversion), the addi-
tion can be implemented in just one step. Depending on the application, this can
signficantly increase the performance over the classical approach. The algorithm
introduced in [18] is based on a ripple-carry adder (RCA). This adder has been
rewritten into a sequence of Boolean operations that take the Boolean masks
into consideration. The algorithm is word-oriented for efficiency in software but
not in hardware.

Similarly, our design is based on the basic algorithm described in [18]. The
underlying algorithm builds on the fact that one bit of sum s can be computed as

si = ai ⊕ bi ⊕ ci. (1)

Therefore, the addition is replaced by a simple XOR of the two operands a and
b and the carry c. The only unknown part in such an equation is the carry bit
which can be computed using a recursive formula

ci+1 = ai ∧ bi ⊕ ai ∧ ci ⊕ bi ∧ ci, (2)

where c0 = 0. The costly part of the RCA is the recursive carry computation.
Its function has to be evaluated iteratively which leads to a high circuit depth
in case of a fully combinatorial design.

2.3 Kogge-Stone Adder

Another addition circuit with a lower depth is given by the Kogge-Stone adder
(KSA) [19] that splits the carry generation into generate (g) and propagate (p)
functions. Instead of evaluating the carry function recursively, the KSA benefits
from a tree-like structure and achieves a logarithmic complexity. For a hardware
design, a KSA can significantly increase the overall performance.

The basic structure of KSA for n = 4-bit operands is shown in Fig. 1. For
operands a and b it computes the carry bits in three steps. During preprocessing
the initial gi and pi values are generated as

gi = ai ∧ bi, pi = ai ⊕ bi. (3)

In the following stages a function is used to combine the g and p values of different
bit positions. This function receives 4 bits as input and returns 2 output bits.
For i > j the output values are computed as

gi:j = gi ⊕ gj ∧ pi, pi:j = pi ∧ pj . (4)

After log2(n = 4) = 2 stages, the computation is finished and all carry bits can
be derived as

ci∈{2...n} = gi−1:0, c1 = g0, c0 = 0.

Finally the sum s can be obtained according to Eq. (1).
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Fig. 1. The structure of the carry generation for 4-bit operands using the KSA

2.4 Threshold Implementations

In order to realize secure masked implementations and avoid the leakage caused
by glitches (e.g., [22,25]), the threshold implementation (TI) scheme has been
introduced and developed in [7,27–29]. Based on the algebraic degree t of the
targeted non-linear function (Sbox) as well as the desired order1 of security d,
the minimum number of input shares sin and the minimum number of output
shares sout are defined as

sin = t × d + 1, sout =
(

sin

t

)

.

The input x of the e.g., Sbox is represented by (x1, . . . , xsin) in such a way

that x =
sin⊕

i=1

xi. The output of the TI of the corresponding Sbox (y1, . . . , ysout)

should be also a shared representation of y = S(x) =
sout⊕

j=1

yj while each yj

is provided by a component function f j(. . .) over a subset of input shares
(x1, . . . , xsin). This property is known as correctness while non-completeness
is referred to the fact that any d (security order) selection of component func-
tions f1(. . .), . . . , fsout(. . .) is independent of at least one input share. These two
properties are relatively easy to achieve, but the third property uniformity is
challenging. As the security of masking schemes is based on the uniform distri-
bution of the masks, the output of a TI Sbox must be uniform as it is used as
input in further parts of the implementation.

Suppose that for a certain input x all possible sharings
{

( 1x 1, . . . , 1x sin),

( 2x 1, . . . , 2x sin), . . . , ( px 1, . . . , px sin)
}

are given to the TI Sbox. The tuple
(
f1(. . .), . . . , fsout(. . .)

)
should be drawn uniformly from the set

{
( 1y

1, . . . ,

1 With respect to [32] only univariate security at order d > 1 can be achieved.
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1y
sout), ( 2y

1, . . . , 2y
sout), . . . , ( qy

1, . . . , qy
sout)

}
as all possible sharings of

y = S(x).
An important point is that the output of the component functions must be

stored in dedicated registers to avoid the propagation of glitches. Another issue
is related to the uniformity of the TI functions of security order d > 1. In such
a case, the number of output shares sout is usually higher than the number of
input shares sin; hence uniformity cannot be achieved. Therefore, some of the
registered output shares should be combined to reduce the number of output
shares to sin at most. After such a combination the uniformity can be examined.
For more detailed information, the interested reader is referred to the original
works [7,29].

3 Implementation

We present two designs of a modulo 232 adder that provides resistance against
first- and second-order SCA. This is a quite common type of addition used in
many cryptographic algorithms (e.g., Salsa20, HC-128, SHA-2), but our archi-
tectures can be also easily adapted to other bit lengths.

3.1 Ripple-Carry Adder (First-Order SCA-Resistant)

Based on the scheme presented in Sect. 2.2 we build a first-order SCA-resistant
adder. To achieve this, Eqs. (1) and (2) should be transformed to meet the three
required TI properties.

Given that Eq. (2) is of degree 2, at least 3 shares (for input as well as for
output) are necessary. It is supposed that each processed value, e.g., ai, is split
into 3 shares as (a1

i , a
2
i , a

3
i ). In case of Eq. (1), due to its linearity the shares are

easily combined via XOR as

s1i = a1
i ⊕ b1i ⊕ c1i , s2i = a2

i ⊕ b2i ⊕ c2i , s3i = a3
i ⊕ b3i ⊕ c3i . (5)

As mentioned before, Eq. (2) is non-linear and has algebraic degree of 2.
Following direct sharing approach represented in [8], we can construct a correct
and uniform shared implementation of such a function. The shares of the carry
bit can be computed as

c1i+1 = a2
i ∧b2i ⊕a2

i ∧b3i ⊕a3
i ∧b2i ⊕a2

i ∧c2i ⊕a2
i ∧c3i ⊕a3

i ∧c2i ⊕b2i ∧c2i ⊕b2i ∧c3i ⊕b3i ∧c2i (6)

c2i+1 = a3
i ∧b3i ⊕a3

i ∧b1i ⊕a1
i ∧b3i ⊕a3

i ∧c3i ⊕a3
i ∧c1i ⊕a1

i ∧c3i ⊕b3i ∧c3i ⊕b3i ∧c1i ⊕b1i ∧c3i (7)

c3i+1 = a1
i ∧b1i ⊕a1

i ∧b2i ⊕a2
i ∧b1i ⊕a1

i ∧c1i ⊕a1
i ∧c2i ⊕a2

i ∧c1i ⊕b1i ∧c1i ⊕b1i ∧c2i ⊕b2i ∧c1i (8)

Here we should note that Eqs. (1) and (2) can be seen as a function
f : (ai, bi, ci) �→ (si, ci+1). At a first glance one may think of examining the
uniformity of the (si, ci+1) tuple2. However, such a tuple is never supplied to
2 If sharing of x and y are uniform, the tuple of sharing of (x, y) is not necessarily

uniform if x and y are not independent.
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Fig. 2. Structure of the first-order secure adder based on RCA

any function within the RCA algorithm. Note that si is an output bit and is not
propagated while ci+1 is given to the next stage where it is combined with ai+1

and bi+1 which are independent of ci+1. Hence the uniformity of ci+1 suffices to
fulfill the corresponding property.

During the implementation of such a design we encountered an issue that
has never been reported before. The output of the shared carry computation
function (Eqs. (6) to (8)) cannot be directly used as feedback signal since the
output of a function from a previous cycle is used as input in the next clock
cycle.

As a remedy we constructed a two-stage design as depicted in Fig. 2. The
three shares of the two operands a and b are stored in shift registers. The RCA
algorithm and the deployment of shift registers supports an efficient scanning
of operand bits. Two instances of the shared carry computation function are
implemented whose outputs are stored in carry registers c0 and c1. The carry
registers are enabled alternately while the other intermediate registers (c′

0, a
′
0,

a′
1, b

′
0 and b′

1) are enabled every second clock cycle synchronized with that of c1.
The operand registers are also shifted two bits every other second clock cycle.
The additional registers, i.e., c′

0, a
′
0, a

′
1, b

′
0, and b′

1 synchronize the computation
of the sum bits, which need to be performed one clock cycle after that of the
carry bits. Note that we use the shift register of operand a to save the result of
the addition.

Another issue is related to the first stage, i.e., when i = 0. In our designs
we suppose that input carry c0 = 0 so that (c10, c

2
0, c

3
0) should be a shared

representation of 0. Therefore, both carry registers have to be initialized with a
random set representing 0. In other words, our design requires four fresh mask
bits fm1, . . ., fm4 only at the start of the addition to initialize c0 and c1 with
(fm1, fm2, fm1 ⊕ fm2) and (fm3, fm4, fm3 ⊕ fm4) respectively. Note that all
other stages of our design do not require fresh random bits leading to an efficient
design with respect to the number of required fresh mask bits. For instance, our
design is considerably more efficient than the solutions proposed in [10,11,18].
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3.2 Ripple-Carry Adder (Second-Order SCA-Resistant)

The design described above can be simply transformed to support resistance
against higher-order attacks. We now present a solution for the second-order
resistant design. We increase the number of input shares sin to 5 and all corre-
sponding functions have to be chosen according to the principles of higher-order
TI [7].

Equation (5) just needs to be adapted to the increased number of shares.
The computation of the carry has to be split up into two steps. In the first step,
sout = 10 component functions generate 10 output shares. Following the same
concept presented in [7], these intermediate shares are then again reduced to 5
shares in the second step.

No major changes to the basic structure depicted in Fig. 2 are necessary for
implementation. Just the registers have to be adjusted to the increased number
of shares and the F block is split by an additional register stage. All uniform
equations for the F function, obtained by direct sharing, are described in detail
in the appendix of this work.

As a consequence, the amount of utilized resources increases and the number
of clock cycles needed for the carry computation doubles. Just as before, the
carry registers need fresh randomness during the initialization. Therefore, the
number of required fresh random masks increases to 8 bits.

3.3 Kogge-Stone Adder (First-Order SCA-Resistant)

The design based on the RCA has low requirements for space and randomness.
However, the number of clock cycles for one addition grows linearly with the bit
length of the operands. For increased performance we therefore implemented a
design that uses a KSA as foundation and which is still secure against first-order
attacks.

Equations (3) and (4) need to be split into shares. Since all the corresponding
formulas are of degree two, similar to that of the RCA, at least 3 shares are
required to realize a functional TI.

The two outputs of the preprocessing step are both given to the next stages;
thus, the uniformity of each tuple (gi, pi) must be taken into account. One part
of Eq. (3) needs to be implemented by the AND of the two operands for which
no uniform TI with 3 shares exists [29]. For this, fresh mask bits have to be
used to make it uniform (see remasking in [8,26]). In our design, we adopted the
solution from [8] with only a single virtual share. One fresh random bit mi is
required for every invocation of the function in the preprocessing step:

g1i = a2
i ∧ b2i ⊕ a2

i ∧ b3i ⊕ a3
i ∧ b2i ⊕ mi (9)

g2i = a3
i ∧ b3i ⊕ a1

i ∧ b3i ⊕ a3
i ∧ b1i ⊕ a1

i ∧ mi ⊕ b1i ∧ mi (10)

g3i = a1
i ∧ b1i ⊕ a1

i ∧ b2i ⊕ a2
i ∧ b1i ⊕ a1

i ∧ mi ⊕ b1i ∧ mi ⊕ mi. (11)

Further, preprocessing involves another linear XOR-function. We implement this
part similar to Eq. (5). Both functions as well as their joint output (gi, pi) fulfill
the three TI properties.
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The preprocessing step is followed by stages in which the g and p values are
updated according to Eq. (4). These two functions can be considered as a 4-bit
to 2-bit mapping. Similar to the preprocessing step, the tuple of the 2-bit output
has to be considered for the uniformity check. For the computation of the g part
of Eq. (4) (as an AND/XOR operation), we followed the direct sharing approach
[8] and achieved:

g1i:j = g2i ⊕ g2j ∧ p2i ⊕ g2j ∧ p3i ⊕ g3j ∧ p2i (12)

g2i:j = g3i ⊕ g3j ∧ p3i ⊕ g1j ∧ p3i ⊕ g3j ∧ p1i (13)

g3i:j = g1i ⊕ g1j ∧ p1i ⊕ g1j ∧ p2i ⊕ g2j ∧ p1i . (14)

The other part (computation of p) of Eq. (4) can be implemented similar to
Eq. (9). To reduce the amount of required fresh random bits, we replaced mi with
g1j . This bit is not used in this equation and can take the role of a mask. Although
our construction does not closely follow the assumptions in [8] considering the
construction of virtual shares, we can demonstrate that this has no impact on
security. Our simulation results show not only the uniformity of shared pi:j but
also the uniformity of the shared tuple (pi:j , gi:j). We need to emphasize that
due to the specific architecture of the KSA algorithm, g1j is only used once as a
mask to introduce uniformity into the computation of a p. In other words, the
mask bit g1j is never reused again what could potentially violate the uniformity
in later stages.

Our design is optimized for maximum throughput by using a fully pipelined
architecture. Figure 3 depicts the basic structure of our design. Since only the
preprocessing step requires fresh random bits and – as stated above – all other
stages are computed without additional mask, the total number of required fresh
mask bits is n = 32. Compared to the other solutions like [10,11,18] this is still
reasonable.

3.4 Kogge-Stone Adder (Second-Order SCA-Resistant)

Similar as for the RCA, the design based on the KSA is also easily extensible to
higher orders. We outline the exemplary procedure for second-order security. In
this case, the number of input shares is again set to 5. The four aforementioned
equations are adjusted to meet the requirements of the second-order TI.

The XOR part of Eq. (3) is implemented as before but adapted to the higher
number of shares. The AND part to compute gi of Eq. (3) is split into two steps.
As before, the first step results in 10 output shares and the second step merges
the last 6 shares into a total number of 5 shares again. Furthermore, we have to
use fresh masks to assure the uniformity. In this case, four fresh random bits are
necessary. The two functions of the following stages are also split into two steps.
For the computation of gi:j of Eq. (4) we use the second-order TI representation
of the AND/XOR function given in [7]. For the pi:j part (the AND operation)
we use the same construction of gi of the preprocessing step. Instead of four
fresh mask bits, we used 4 shares of gj as fresh masks to reduce the required
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Fig. 3. Block diagram of the first-order secure adder based on KSA

randomness. Details of the underlying uniform equations can be found in the
appendix.

The basic structure as shown in Fig. 3 is also the template for the architecture
of most other parts. It has mainly to be adapted to 5 shares and the functions
need to be split into two steps with a register in between. Hence the number of
clock cycles for one addition is doubled. In terms of randomness the demand of
our implementation quadruples, because each invocation of the AND operation
in the preprocessing step requires 4 random bits.

3.5 Comparison

We now compare our designs in terms of size and performance that are imple-
mented on a Spartan-6 FPGA with other solutions. All our findings are summa-
rized in Table 1. In terms of size, the RCA-based variant is clearly superior to
other solutions due to the iterative structure. On the contrary, the designs based
on the KSA provide low latency and high-performance applications.

Due to the different implementation platforms, we cannot fairly compare our
hardware designs with software-based solutions [10,11,18]. Therefore, Table 1
restricts the comparison to the number of required fresh random bits.

We can conclude that the RCA-based design is most efficient regarding the
number of required random bits. The requirement of 4·d random bits outperforms
all other proposals and is also independent of the operands bit length n. The
approach based on KSA requires a higher number of random bits which also
depends on n. Nevertheless, the first-order secure design uses the same amount
of fresh masks as the solution of [18] and less than [11]. For higher orders it
even outperforms the design of [10]. It is noteworthy that the number of fresh
masks for d-order KSA with d ≥ 2 can be decreased even further. For d = 1 we
can use the trick presented in [8] that requires only one fresh mask bit for an
AND operation. Such a construction – with one virtual variable – might be also
found for higher-order TI of the AND operation thereby reducing the number
of required fresh mask bits.
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Table 1. Results and comparison of our hardware architectures

Design LUTs FFs Latency
(CLK)

Frequency
(MHz)

Throughput
(Mbit/s)

Randomness
(bit)

RCA 1st order 227 223 32 101 101 4

RCA 2nd order 388 387 65 107 52 8=4 · d
KSA 1st order 937 1330 6 62 330 32

KSA 2nd order 4223 5509 12 63 168 128=2 · d · n
[18] (1st order) - - - - - n

[10] (d order) - - - - - (2 · d2 + d) · n
[11] (1st order) - - - - - 3 · n

4 Analysis

For the practical SCA evaluations we employed a SAKURA-G platform [1] pop-
ulated with a Spartan-6 FPGA as target. All SCA traces have been collected
by a digital oscilloscope while measuring the voltage drop over a 1Ω resistor in
Vdd path. In order to obtain clean signals and reduce the electrical noise, we
used the embedded amplifier of the SAKURA-G and restricted the bandwidth
of the oscilloscope to 20 MHz.

As evaluation metric we applied a non-specific statistical t-test [16]. The
feature of this test is to indicate the existence of any leakage at a defined order
in the power traces. Following the concept of non-specific t-test, power traces
corresponding to fixed and randomly selected inputs are collected. Hence this
scheme is also denoted as fixed vs. random t-test. During the measurements the
fixed and random inputs need to be randomly interleaved. Then, the traces T
are categorized into two groups G1 and G2 with respect to the fixed and random
inputs, respectively. In the following explanation, we consider only one point of
the collected traces for the sake of simplicity:

Recall that Welch’s (two-tailed) t-test is computed as

t =
μ(T ∈ G1) − μ(T ∈ G2)√

δ2(T∈G1)
|G1| + δ2(T∈G2)

|G2|

,

where μ and δ2 denote the sample mean and sample variance respectively, and
|.| represents the cardinality. The t-test indeed examines the validity of the null
hypothesis as the samples in both groups were drawn from the same population.
If the null hypothesis is correct, it can be concluded with a high level of confi-
dence that the device under test does not have any first-order leakage, given the
recorded traces.

For such a conclusion the Student’s t-distribution function (in addition to
the degree of freedom) is applied to determine the probability of rejecting the
aforementioned hypothesis (cf. [7,16]). For typical evaluations, a threshold for
|t| as > 4.5 is defined to reject the null hypothesis and indicate that a first-order
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attack is feasible. This process is repeated at each sample point independently
to obtain a curve of t value.

The aforementioned scheme can be easily extended to higher orders by pre-
processing the traces as, for example, centered square (for the second-order),
standardized cube (for the third order), etc. It is noteworthy that the same eval-
uation scheme has been applied in [7,20] to investigate the existence of first- and
higher-order leakages. For detailed information on how to conduct the tests at
higher orders the interested reader is referred to [33].

4.1 Ripple-Carry Adder

Now we analyze the security of our first-order SCA-resistant RCA design. A
sample trace of such a design is shown in Fig. 4(a). In order to have a reference
for the existing leakage in our platform as well as an evidence for the suitability
of the applied evaluation scheme, we first turned the PRNG off that provides the
randomness for initial sharing and fresh masks. Hence all outputs of the PRNG
are set to zero and the underlying design receives unshared inputs as (a, 0, 0)
and (b, 0, 0). With such a setting we collected 100 000 traces corresponding to a
mixture of fixed and random inputs. Therefore, we expect the t-test to report
clearly exploitable first-order leakages, which is confirmed by the corresponding
result shown in Fig. 4(b). It can be seen that the t value exceeds 400 during the
cryptographic operation exceeding the defined threshold by far.

As the next step we activated the PRNG so that the adder circuit receives
randomly shared inputs and fresh random masks. Hence the design is expected
to provide first-order security. In order to examine this we collected 100 000 000
traces and performed the t-test up to third order. The corresponding results
shown in Fig. 4 indicate the resistance of the design to first-order attacks and –
as expected – its vulnerability to second- and third-order attacks.

We continued our evaluation with the second-order-SCA-resistant RCA
design with an active PRNG. Due to the high amount of randomness, i.e.,
fourth-order Boolean masking (five shares), exploiting a leakage from such a
design needs a large number of traces. Therefore, following the above-explained
procedure we collected 300 000 000 traces and ran the t-test evaluations. The
results shown in Fig. 5 confirm the resistance of our design to first- and second-
order attacks. Similar to the results of [7], the third-order leakage still cannot be
detected, but we observe fourth- and fifth-order leakages as the design with five
shares is expected to be vulnerable to a fifth-order attack.

4.2 Kogge-Stone Adder

Both analyses on the first- and second-order RCA were repeated on the first- and
second-order SCA-resistant KSA designs. We even collected the same number
of traces, i.e., 100 000 000 traces to evaluate the 1st-order KSA and 300 000 000
traces for the second-order KSA. The results which confirm the resistance of our
constructions are shown in Figs. 6 and 7, respectively.
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Fig. 4. RCA 1st order, t-test results using 100 000 000 traces

4.3 Higher-Order Security

Recently, Reparaz published a note [32] on the security of higher-order threshold
implementations. It states that when different intermediates values, i.e., shares,
from different clock cycles are combined, a second-order TI might be vulnerable
to the corresponding second-order attack. Although confirming this statement in
general, we like to emphasize that this is not addressed in [7]. The idea behind
higher-order TI is to resist against univariate higher-order attacks where the
leakage of different points (of different clock cycles) are not combined. Hence,
in the model of univariate higher-order attacks, all lemmas and proofs as given
in [7] remain valid. Furthermore, this is backed by our practical investigations
as shown above. Still we need to highlight that the second-order TI designs we
presented in this work are designed to resist against univariate second-order
attacks.

In this context, it has been previously shown in [24] that multivariate leakages
can be easily summed up and be represented in a univariate form. The suggested
approaches for such a combination include (a) running the target device at a
relatively high frequency, e.g., 24 MHz–48 MHz, and (b) making use of a DC
blocker and/or certain amplifiers in the measurement setup. Both techniques
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Fig. 5. RCA 2nd order, t-test results using 300 000 000 traces

Fig. 6. KSA 1st order, t-test results using 100 000 000 traces



Arithmetic Addition over Boolean Masking 573

Fig. 7. KSA 2nd order, t-test results using 300 000 000 traces

cause overlapping the power peaks of adjacent clock cycles, and hence the leakage
associated to consecutive clock cycles are somehow added together. In [24] it has
been shown that employing any of the aforementioned techniques causes an
implementation of a univariate second-order resistant design to be vulnerable to
a univariate second-order attack.

In order to examine the effect of such an issue on our second-order TI
designs, we considered the second aforementioned technique. In other words,
we employed a DC blocker (BLK-89-S+ from Mini-Circuits) and two serially
conected AC amplifiers (ZFL-1000LN+ from Mini-Circuits) in the measurement
setup. By means of this setup we repeated the same measurements and evalua-
tions of our developed second-order Kogge-Stone Adder using the same number
of 300 000 000 traces. We kept the measurement settings, e.g., sampling rate,
bandwidth, and the target frequency of operation, the same as the last experi-
ments. The results shown in Fig. 8 indeed practically confirm the note given in
[32]. The second-order TI design demonstrates second-order leakages when the
power peak of consecutive clock cycles are combined (by the measurement setup).
Interestingly, by such a measurement setup the 4th-order and 5th-order analy-
ses (in contrary to the previous experiment of Fig. 7) do not show a detectable
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Fig. 8. (modified measurement setup) KSA 2nd order, t-test results using 300 000 000
traces

leakage. We believe that it is due to the noise introduced by the measurement
setup, i.e., overlapping the adjacent power peaks, which can certainly affect the
feasibility of higher-order attacks.

5 Conclusion

In this paper, we presented two ways of performing addition on Boolean masked
values that are secure against SCA attacks on a hardware platform. Compared
to the KSA-based approach, the RCA-based solution is slower but requires less
space and the least amount of random bits. In terms of performance, the design
based on the KSA provides a suitable choice due to its pipelined architecture.
In comparison to other already published algorithms, our approaches are able
to match and even reduce the randomness requirements especially for higher
orders. The resistance of both approaches has been verified by practical evalu-
ations showing the security of our constructions. Our proposed designs enable
an efficient and secure implementation of ARX-based designs in hardware which
have not been fully investigated yet.
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A Second-Order RCA

A.1 Carry (1. Step)

c̃1i+1 = a2
i ∧b2i ⊕a1

i ∧b2i ⊕a2
i ∧b1i ⊕a2

i ∧c2i ⊕a1
i ∧c2i ⊕a2

i ∧c1i ⊕c2i ∧b2i ⊕c1i ∧b2i ⊕c2i ∧b1i (15)

c̃2i+1 = a3
i ∧b3i ⊕a1

i ∧b3i ⊕a3
i ∧b1i ⊕a3

i ∧c3i ⊕a1
i ∧c3i ⊕a3

i ∧c1i ⊕c3i ∧b3i ⊕c1i ∧b3i ⊕c3i ∧b1i (16)

c̃3i+1 = a4
i ∧b4i ⊕a1

i ∧b4i ⊕a4
i ∧b1i ⊕a4

i ∧c4i ⊕a1
i ∧c4i ⊕a4

i ∧c1i ⊕c4i ∧b4i ⊕c1i ∧b4i ⊕c4i ∧b1i (17)

c̃4i+1 = a1
i ∧b1i ⊕a1

i ∧b5i ⊕a5
i ∧b1i ⊕a1

i ∧c1i ⊕a1
i ∧c5i ⊕a5

i ∧c1i ⊕c1i ∧b1i ⊕c1i ∧b5i ⊕c5i ∧b1i (18)

c̃5i+1 = a2
i ∧ b3i ⊕ a3

i ∧ b2i ⊕ a2
i ∧ c3i ⊕ a3

i ∧ c2i ⊕ c2i ∧ b3i ⊕ c3i ∧ b2i (19)

c̃6i+1 = a2
i ∧ b4i ⊕ a4

i ∧ b2i ⊕ a2
i ∧ c4i ⊕ a4

i ∧ c2i ⊕ c2i ∧ b4i ⊕ c4i ∧ b2i (20)

c̃7i+1 = a5
i ∧b5i ⊕a2

i ∧b5i ⊕a5
i ∧b2i ⊕a5

i ∧c5i ⊕a2
i ∧c5i ⊕a5

i ∧c2i ⊕c5i ∧b5i ⊕c2i ∧b5i ⊕c5i ∧b2i (21)

c̃8i+1 = a3
i ∧ b4i ⊕ a4

i ∧ b3i ⊕ a3
i ∧ c4i ⊕ a4

i ∧ c3i ⊕ c3i ∧ b4i ⊕ c4i ∧ b3i (22)

c̃9i+1 = a3
i ∧ b5i ⊕ a5

i ∧ b3i ⊕ a3
i ∧ c5i ⊕ a5

i ∧ c3i ⊕ c3i ∧ b5i ⊕ c5i ∧ b3i (23)

c̃10i+1 = a4
i ∧ b5i ⊕ a5

i ∧ b4i ⊕ a4
i ∧ c5i ⊕ a5

i ∧ c4i ⊕ c4i ∧ b5i ⊕ c5i ∧ b4i (24)

A.2 Carry (2. Step)

c1i+1 = c̃1i+1 (25)

c2i+1 = c̃2i+1 (26)

c3i+1 = c̃3i+1 (27)

c4i+1 = c̃4i+1 (28)

c5i+1 = c̃5i+1 ⊕ c̃6i+1 ⊕ c̃7i+1 ⊕ c̃8i+1 ⊕ c̃9i+1 ⊕ c̃10i+1 (29)

B Second-Order KSA

B.1 AND (1. Step)

g̃1i = a2
i ∧ b2i ⊕ a1

i ∧ b2i ⊕ a2
i ∧ b1i ⊕ m1

i (30)

g̃2i = a3
i ∧ b3i ⊕ a1

i ∧ b3i ⊕ a3
i ∧ b1i ⊕ m2

i (31)
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g̃3i = a4
i ∧ b4i ⊕ a1

i ∧ b4i ⊕ a4
i ∧ b1i ⊕ m3

i (32)

g̃4i = a1
i ∧ b1i ⊕ a1

i ∧ b5i ⊕ a5
i ∧ b1i ⊕ m4

i (33)

g̃5i = a2
i ∧ b3i ⊕ a3

i ∧ b2i (34)

g̃6i = a2
i ∧ b4i ⊕ a4

i ∧ b2i ⊕ m1
i (35)

g̃7i = a5
i ∧ b5i ⊕ a2

i ∧ b5i ⊕ a5
i ∧ b2i (36)

g̃8i = a3
i ∧ b4i ⊕ a4

i ∧ b3i ⊕ m2
i (37)

g̃9i = a3
i ∧ b5i ⊕ a5

i ∧ b3i ⊕ m3
i (38)

g̃10i = a4
i ∧ b5i ⊕ a5

i ∧ b4i ⊕ m4
i (39)

B.2 AND/XOR (1. Step)

g̃1i:j = g2i ⊕ g2j ∧ p2i ⊕ g1j ∧ p2i ⊕ g2j ∧ p1i (40)

g̃2i:j = g3i ⊕ g3j ∧ p3i ⊕ g1j ∧ p3i ⊕ g3j ∧ p1i (41)

g̃3i:j = g4i ⊕ g4j ∧ p4i ⊕ g1j ∧ p4i ⊕ g4j ∧ p1i (42)

g̃4i:j = g1i ⊕ g1j ∧ p1i ⊕ g1j ∧ p5i ⊕ g5j ∧ p1i (43)

g̃5i:j = g2j ∧ p3i ⊕ g3j ∧ p2i (44)

g̃6i:j = g2j ∧ p4i ⊕ g4j ∧ p2i (45)

g̃7i:j = g5i ⊕ g5j ∧ p5i ⊕ g2j ∧ p5i ⊕ g5j ∧ p2i (46)

g̃8i:j = g3j ∧ p4i ⊕ g4j ∧ p3i (47)

g̃9i:j = g3j ∧ p5i ⊕ g5j ∧ p3i (48)

g̃10i:j = g4j ∧ p5i ⊕ g5j ∧ p4i (49)
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10. Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between boolean
and arithmetic masking of any order. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg (2014)
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Abstract. A Physically Unclonable Function (PUF) can be seen as
a source of randomness that can be challenged with a stimulus and
responds in a way that is to some extent unpredictable. PUFs can be used
to provide efficient solutions for common cryptographic primitives such
as identification/authentication schemes, key storage, and hardware-
entangled cryptography. Moreover, Brzuska et al. have recently shown,
that PUFs can be used to construct UC secure protocols (CRYPTO
2011). Most PUF instantiations, however, only provide a static chal-
lenge/response space which limits their usefulness for practical instan-
tiations. To overcome this limitation, Katzenbeisser et al. (CHES 2011)
introduced Logically Reconfigurable PUFs (LR-PUFs), with the idea to
introduce an “update” mechanism that changes the challenge/response
behaviour without physically replacing or modifying the hardware.

In this work, we revisit LR-PUFs. We propose several new ways to
characterize the unpredictability of LR-PUFs covering a broader class of
realistic attacks and examine their relationship to each other. In addition,
we reconcile existing constructions with these new characterizations and
show that they can withstand stronger adversaries than originally shown.
Since previous constructions are insecure with respect to our strongest
unpredictability notion, we propose a secure construction which relies on
the same assumptions and is almost as efficient as previous solutions.

Keywords: Physically unclonable functions · Logically reconfigurable ·
Tamper-resistance

1 Introduction

Physically Unclonable Function (PUFs) are non-programmable hardware tokens
that can be challenged with a stimulus and output responses that are unpre-
dictable. The unpredictable output of the PUFs results from the manufac-
tory process and cannot be controlled even by the producer itself. PUFs are
extremely useful to build cryptographic applications, such as e.g., identifica-
tion/authentication schemes, key storage, and hardware-entangled cryptography,
and also to obtain protocols that are secure in Canetti’s UC framework as shown
by Brzuska et al. [4]. Most PUF instantiations, however, only provide a static
challenge/response space which limits their usefulness for practical instantia-
tions. To overcome this limitation, Katzenbeisser et al. [8] introduced Logically
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Reconfigurable PUFs (LR-PUFs), with the idea to introduce an “update” mech-
anism that allows to change the input/output behaviour of a PUF. In this work,
we revisit LR-PUFs presenting several ways to characterize the unpredictabil-
ity, we examine their relationship to each other, and we show that previous
constructions can withstand stronger adversaries than originally shown.

1.1 Background and Related Work

Physically Unclonable Functions were proposed as Physical One-Way Functions
[13]. They consist of a physical device which can be challenged with a stimulus
and responds in a way that is to some extent unpredictable.

– The PUF provides unpredictable, but robust responses. This means the
response for a given challenge does not vary beyond a typically low bound,
but it should be not be possible to predict the response for a stimulus that
has not yet been applied.

– The PUF is not clonable, i.e., one cannot produce a device which exhibits the
same response behavior. This goes even as far as not being able to recreate
the same behavior if one has physical access to the device itself and not just
a list of challenge-response pairs.

Fig. 1. Schematic of a generic Logically
Reconfigurable PUF construction.

Fig. 2. The relations between the
unpredictability notions we introduce.

A third property that is usually cited is tamper-evidence, which is closely related
to unclonability. These properties are derived from imprecisions in the manufac-
turing process of some other object, such as differing gate delays in an integrated
circuit. For a survey on the multitude of different PUF constructions, we refer
the reader to [11]. A formal description of these properties has been the subject
of many research efforts. An in-depth treatment to the definition of these proper-
ties that proposes a game-based framework for the description of PUF properties
and even PUF creation is given in [2]. Brzuska et al. propose an entropy based
characterization of the unpredictability property and examine how PUFs can be
integrated into the UC-security framework in [4]. We use their formalization of
PUFs as families of distributions.

The tamper-evidence property forbids most PUF designs to have a stimulus-
response behavior which is anything but static. In applications where PUFs serve
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as physical tokens for e.g., access control this can be a disadvantage. Consider
for example that the PUF-token should be transferable to a different person.
The traditional PUF designs do not allow this, unless the new owner of the
PUF should be allowed to carry the same credentials as the previous owner.
Thus, there have been efforts to construct reconfigurable PUFs, the first being
Controlled Physical Random Functions [6], and a more recent one being Recon-
figurable PUFs, short rPUFs [10].

Both of these approaches have their own limitations. Controlled PUFs effec-
tively limit the PUF response space a single user can draw from, thereby lessen-
ing security. Physically reconfigurable rPUFs require a potentially costly physical
reconfiguration process, and there are no guarantees regarding the effectiveness
of that process.

A solution which aims to sidestep these limitations are Logically Reconfig-
urable PUFs (LR-PUFs) [8]. In this approach, reconfiguration leaves the physical
device untouched and is instead performed on a piece of state, which is stored
together with the PUF. The stimulus mechanism of the PUF is encapsulated
in a query algorithm, which processes challenges by entangling them in some
way with the current state of the device. See Fig. 1 for a visual representation
of the LR-PUF concept. The idea is a combination of the state and the chal-
lenge to perform a logical reconfiguration, in which a new state is chosen instead
of altering the actual physical device. This preserves the original input/output
characteristics of the PUF, but does not require physical manipulation of the
device.

1.2 Applications

PUFs have a wide range of applications such as key extraction and authentication
[9,16–18], remote attestation [16], and tamper-proof and fault injection resilient
implementations of cryptographic primitives [1,3,15]. Most of these applications
assume that the PUFs are somewhat ideal in the sense that they support large
challenge and/or response spaces. Since most of the known PUF instantiations
do not fulfil these properties, LR-PUFs seem to be better suited. Another appli-
cation of LR-PUFs are electronic fare systems for public transport as suggested
in [8]. In this setting, an access token is equipped with an LR-PUF, that serves
to authenticate the passenger at the entry points to the transport system and
can be used to secure a credit stored on the token. The reconfiguration capability
of the device enables the easy reuse of tokens, as reconfiguration of the LR-PUF
is (ideally) equivalent to physically replacing the device without causing the cost
of a new device.

Another interesting application of LR-PUF technology is presented in [5].
Here, the LR-PUF is used to provide secure key storage and helps to prevent
cloning and downgrading of embedded software authenticated using the stored
keys. In this application, software is bound to an embedded device by encrypting
it with a device-specific key. This key is generated by querying a PUF that is
part of the device, making the key dependent on the unique properties of the
PUF in each device. This prevents cloning of the software to a new device, as
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the key on a cloned device will be generated differently. The reconfigurability
is used in the event of a software update, to prevent downgrading to an older
version of the software. In this event, a new key to encrypt the updated software
is derived, and the old software version will no longer be useful, because the old
key can no longer be retrieved from the LR-PUF.

1.3 Contribution

We revisit the LR-PUFs as introduced in [8] and present several ways to charater-
ize the unpredictability notion. We reconsider existing constructions with respect
to these new measures, and we propose a novel construction that is secure w.r.t.
our strongest notion of unpredictability. In the following, we discuss each con-
tribution more in detail.

Definitions. We introduce four different notions of unpredictability. The
first one is called Plain-unpredictability and it is a natural extension of
backward/forward-unpredictability of [8]. The basic idea of this definition is
to allow the adversary to reconfigure the PUF several times. The second
notion, called St-Access-unpredictability, removes the assumption that the
state is stored in a tamper-evident manner and allows the adversary to directly
write the state. The third notion, called PUF-Access-unpredictability, mod-
els the case where the adversary manages to bypass the query and reconfigu-
ration logic and where it gains direct access to the PUF. The fourth notion,
called Full-Access-unpredictability, combines PUF-Access-unpredictability
and St-Access unpredictability in the sense that the adversary has direct access
to the PUF and is allowed to set the state maliciously. Perhaps surprisingly there
is an obstacle when trying to compare the power of state-setting adversaries to
PUF-access adversaries. The issue is that a PUF-access adversary might be able
to completely precompute the behavior of an LR-PUF given the current state,
which makes both notions incomparable. A visual representation of these rela-
tions is given in Fig. 2, where an arrow A → B denotes, that notion A implies
notion B and an arrow A �→ B means that notion A does not imply notion B.

Analysis. In AppendixC we give a comprehensive security analysis of the “speed-
optimized” and the “area-optimized-construction” from [8] w.r.t. our unpre-
dictability notions. The former employs a collision resistant hash function both
to combine state information and query and to generate a new state frome the
old one. The latter uses an identical reconfiguration algorithm, but is geared
towards PUFs with small area, i.e., small input range by providing a query
mechanism that involves iteratively constructing a response from smaller sub-
queries. (For full definitions, please refer to Fig. 8). Our analysis shows that both
constructions are St-Access-unpredictable. Previously, it was only known that
both constructions are backward (resp. forward) unpredictable. The practical
consequences of this result is that the scheme remains secure, even if the state
is not stored in a tamper-evident manner. On the negative side we show that
both constructions are not secure against adversaries that have direct access to
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the PUF. In fact, our result here is more general, showing that any LR-PUF
cannot satisfy this notion where access to the underlying PUF makes the query
and reconfiguration algorithms completely predictable to the adversary.

Construction. We propose a simple LR-PUF construction that is Full-Access-
unpredictable. Our scheme can be seen as a randomized variant of the
“speed-optimized” construction from [8] with the difference being that our recon-
figuration algorithm samples a fresh state st upon reconfiguration and it evalu-
ates the underlying PUF on w ← Hash(st || c). This construction relies on the
same computational assumptions as the scheme of [8], it is almost as efficient,
but it satisfies both Full-Access- and St-Access-unpredictability.

1.4 Outline

In Sect. 2 we give some background by reviewing a formalization of Physically
Unclonable Functions and present our formalization of LR-PUFs. Section 3 intro-
duces the new unpredictability notions we propose and the relations among them.
Section 4 contains the specification of a construction which achieves the strongest
of our unpredictability notions.

2 Logically Reconfigurable PUFs

2.1 Physically Unclonable Functions

A Physically Unclonable Function (PUF) is a noisy function that is realized
through a physical object [13]. The PUF can be queried with a challenge c
and answers with a response r. The output of the PUF is noisy meaning that
querying the PUF twice with the same challenge yields most likely two different
but closely related responses. In the following we recall the definition of PUFs
and their main security property given in [4].

Definition 1 (Physically Unclonable Functions). Let ρ be the dimension
of the range of the PUF responses of the PUF family, and let dnoise be a bound on
the PUF’s noise. A pair P = (S,E) is a family of (ρ, dnoise)-PUFs if it satisfies
the following properties:

Index Sampling. Let Iλ be an index set. The sampling algorithm S outputs,
on input the security parameter 1λ, an index id ∈ Iλ. We do not require that
the index sampling can be done efficiently. Each index id ∈ Iλ corresponds
to a set Did of distributions. For each challenge c ∈ {0, 1}λ, Did contains
a distribution Did(c) on {0, 1}ρ(c). We do not require that Did has a short
description or an efficient sampling algorithm.

Evaluation. The evaluation algorithm E gets as input a tuple (1λ, id, c), where
c ∈ {0, 1}λ. It outputs a response r ∈ {0, 1}ρ(λ) according to distribution Did.
It is not required that E is a PPT algorithm.

Bounded Noise. For all indices id ∈ I, for all challenges c ∈ {0, 1}λ, we have
that when running E(1λ, id, c) twice, then for any two outputs r1, r2 that are
produced the Hamming distance dis(r1, r2) is smaller than dnoise(λ).
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Unpredictability of PUFs. Loosely speaking, a PUF is unpredictable if it
is difficult to predict the response of the PUF to a given, previously unknown
challenge. This intuition is formalized in an experiment where the adversary can
adaptively query the PUF on challenges of its choice and wins if it can predict
the response to a fresh challenge of its choice, within the bound dnoise. Fresh
means that the adversary did not query the PUF on this challenge.

Definition 2 (PUF-Unpredictability). A family of PUFs P = (S,E) is
unpredictable if for any PPT algorithm A the probability that the experiment
PREP

A(λ) evaluates to 1 is negligible (in the security parameter λ), where

Experiment PREP
A(λ)

id ← S(1λ)
(c∗, r∗) ← AE(id)
r ← E(c∗)

Return 1 iff dis(r, r∗) ≤ dnoise and c∗ is fresh.

For the sake of simplicity we use this game based definition of unpredictabil-
ity. A formulation with respect to entropy contained in the PUF responses is
given in [4]. A comprehensive and more in-depth game-based formulation of
PUF properties is found in [2].

2.2 Definition of Logically Reconfigurable PUFs

In practice, many PUF instances have only a restricted challenge and response
space, such that after a certain number of queries they cannot be used anymore.
The basic idea of Logically Reconfigurable PUF (LR-PUFs) is to extend the PUF
by a control logic that allows to change the challenge and response behavior of
the system. Our definition is similar to the one of [8].

Definition 3 (Logically Reconfigurable PUFs). Let P = (S,E) be a family
of (ρ, dnoise)-PUFs. A logically reconfigurable PUF (LR-PUF) with black-box
access to P is a tuple of efficient algorithms L = (SetupS,E,QueryE,RcnfE), which
satisfies the following properties

Setup. The Setup algorithm takes as input the security parameter 1λ. It outputs
an index id ∈ I, determining the underlying PUF from P and an initial state
st ∈ {0, 1}�(λ) of the LR-PUF. We require that �(λ) ≥ λ.

Query mechanism. The Queryst algorithm takes as input a challenge c ∈
{0, 1}λ and outputs a response r ∈ ρ(λ).

Reconfiguration. The Rcnfst algorithm updates the state of the LR-PUF to a
new state st′ ∈ {0, 1}�(λ) which is (possibly probabilistically) computed from
the old state st. The new state is also output.

The three algorithms may interact with the underlying PUF family via the oracles
E and S. We will often omit giving the oracle access explicitly. Additionally, we
assume that the noise of the LR-PUF responses is bounded in the same way as
the noise of the underlying PUF’s responses.
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Remark 1. The setup algorithm of almost all constructions in this paper is the
same and consists of the following steps. Setup(1λ) generates the underlying PUF
id ←$ S(1λ), chooses a string st ←$ {0, 1}�(λ) uniformly at random, and outputs
(id, st). In the following, unless stated otherwise, all constructions will use this
standard setup algorithm.

Unpredictability of LR-PUFs. Ideally, an LR-PUF in one specific state
should be as unpredictable as its underlying physical PUF, so the internal state
of the LR-PUF can be seen as a mapping from LR-PUF queries to PUF queries
that is ideally a permutation. Reconfiguration then constitutes a “shuffling” of
this mapping, such that a completely new permutation is reached. To formalize
this, the authors of [8] propose two complimentary notions of unpredictability:

Forward-unpredictability: The reconfiguration changes the mapping in such
a way, that knowledge about the previous state does not enable an adversary
to predict the challenge-response behavior for the reconfigured LR-PUF.

Backward-unpredictability: The reconfiguration reveals no additional infor-
mation about the old internal state, i.e., after reconfiguration an adversary
should not be able to predict the challenge-response behavior for the old
state.

We provide a formal characterization of these properties as derivatives of our
plain unpredictability notion (see Definition 4).

3 New Notions of Unpredictability

In this section we extend the original unpredictability notion by considering
strengthened adversaries. We show how the new notions relate to each other
and in which scenarios their consideration might be beneficial.

3.1 Multiple Reconfigurations

In [8], the unpredictability experiments revolve around a single reconfigura-
tion process. However, an adversary might witness several reconfigurations and
thereby deduce some information about the influence of the state on the LR-
PUFs behavior. This motivates our first unpredictability definition, which is an
extension of the backward/forward-unpredictability properties to multiple recon-
figurations of the LR-PUF. To this end, we provide the adversary access to a
reconfiguration oracle, which invokes the reconfiguration algorithm.

Let Rcnf denote the reconfiguration oracle for an LR-PUF L with current
state st. The oracle Rcnf accepts two kinds of inputs: ⊥, upon which Rcnfst is
invoked, and st’ upon which the internal state of L is set to st’. The latter input
functionality allows the adversary to program the state and is only available to
state-setting adversaries (see Appendix C.2). Let S denote the list of states the
adversary obtains over the course of an experiment, be it through Setup or the
oracle Rcnf. Further, let Query denote the query oracle, which takes as input a
state st and a challenge c and returns Queryst (c) to the adversary. The adversary
can only invoke the query oracle with states stored in S.
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Definition 4 (Plain-Unpredictability). An LR-PUF L = (Setup,Queryst,
Rcnfst) is unpredictable if for any PPT adversary A the probability that the
experiment PLAINL

A(λ) evaluates to 1 is negligible (in the security parameter λ),
where the game is defined in Fig. 3.

Remark 2. We can obtain the backward- and forward-unpredictability notions
described in [8] by considering restricted adversaries that invoke Rcnf(⊥) only
once, setting and obtaining the new state st’, in the following only query
Query(st′, ·).

Corollary 1. Let L be a Plain-unpredictable LR-PUF, then L is also backward-
and forward-unpredictable.

Separation of Plain- and Backward/Forward-Unpredictability. In
what follows we show that Plain-unpredictability is strictly stronger than
the previous notions. Let BackwardL

A(λ) (resp. ForwardL
A(λ)) denote

Pr
[
PLAINL

A(λ) = 1
]

where A is a backward-unpredictability adversary (resp.
forward-unpredictability adversary) as described above. We separate the secu-
rity notions with the following two propositions.

Proposition 1. If collision-resistant hash functions relative to a PUF exist (cf.
AppendixA), then there exist backward-unpredictable LR-PUFs, which are not
Plain-unpredictable.

The basic idea of our counterexample is to let the adversary learn a prediction
by calling the reconfiguration oracle. This prediction, however, only helps him in
combination with the evaluation oracle, that outputs the evaluation on a point

Fig. 3. Security of plain unpredictabil-
ity.

Fig. 4. Security of state-setting unpre-
dictability.

Fig. 5. Security of direct access unpre-
dictability.

Fig. 6. Security of full access unpre-
dictability.



Foundations of Reconfigurable PUFs 587

different from the challenge, if the query contains a specific prediction. More
precisely, we store a pair (u, v) in the state. Then we modify the query algorithm,
whose input is a challenge c, such that it evaluates the PUF on

(
1λ ⊕ c‖st′

)
if

c = E(u). Clearly, in our construction the attacker can never invoke the query
oracle on u and thus, cannot exploit this part directly. However, whenever the
attacker queries the reconfiguration oracle, it obtains this answer through the
state.

A more detailed proof appears in the full version of this paper.

Proposition 2. If collision-resistant hash functions relative to a PUF (cf.
AppendixA) exist, then there exist forward-unpredictable LR-PUFs, which are
not Plain-unpredictable.

The proof is analogous to the one of Proposition 1, as the same construction
describe there is also forward-unpredictable and is thus omitted.

3.2 State-Setting Adversaries

The authors of [8] assume that the state is stored in a tamper-evident manner
and therefore an attacker cannot set the state of the LR-PUF to arbitrary values.
We believe that there are many plausible scenarios where tamper-evident storage
of the state is too expensive and where the adversary might be able to change
the state, even though the internal physical PUF is tamper-evident. Therefore,
we propose the following unpredictability notion, in which an adversary can set
the internal state of the LR-PUF. As mentioned above, this is formalized via the
type of inputs to the reconfiguration oracle Rcnf which are arbitrary states that
are to be set as the new state of the LR-PUF.

Definition 5 (St-Access-Unpredictability). An LR-PUF L = (Setup,
Queryst,Rcnfst) is unpredictable for a state-setting adversary if for any PPT
adversary A the probability that the experiment ST-ACCESSL

A(λ) evaluates to 1
is negligible (in the security parameter λ), where the game is defined in Fig. 4.

The state-setting adversary can be thought of as bypassing the reconfigura-
tion algorithm, thus security against state-setting adversaries should be consid-
ered a property of the Query mechanism.

Remark 3. It is easy to see that an LR-PUF construction satisfying this notion
of unpredictability must also be Plain-unpredictable (Definition 4). Any adver-
sary against Plain-unpredictability is also a valid adversary in the ST-ACCESS-
unpredictability experiment, which simply does not invoke the reconfiguration
oracle on an input other than ⊥.

Corollary 2. Let L = (Setup,Queryst,Rcnfst) be St-Access-unpredictable.
Then L is also Plain-unpredictable.

The inverse relationship does, however, not hold.
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Proposition 3. There exist Plain-unpredictable LR-PUF constructions, which
are not St-Access-unpredictable.

To show the separation, we consider a construction which has a “vulner-
able” state, i.e., a state which does not support a secure reconfiguration.
A state-setting adversary can then prepare the LR-PUF to have that state and
get an advantage through the defective reconfiguration algorithm. An adversary
without state-setting capabilities, however, would have to wait for that state to
occur in a chain of honest reconfigurations to get any advantage, as long as the
reconfiguration is working correctly for any other state. For more details, please
refer to the full version of this paper.

3.3 Direct Access Adversaries

Another assumption made in [8] is that the attacker cannot bypass the Query
mechanism and thus, does not have direct access to the embedded PUF. In
the real world, however, it might be that case that the attacker finds a way to
stimulate the physical PUF directly, circumventing the control logic of the LR-
PUF. In what follows, we remove this assumption by giving the adversary direct
access to the embedded PUF as well.

Definition 6 (PUF-Access-Unpredictability). An LR-PUF L = (Setup,
Queryst,Rcnfst) is unpredictable for an adversary with direct PUF access if for
any PPT adversary A the probability that the experiment PUF-ACCESSL

A(λ) eval-
uates to 1 is negligible (in the security parameter λ), where the game is defined
in Fig. 5.

Because an LR-PUF construction might rely solely upon the PUF itself to
perform reconfiguration and querying, an adversary that has access to the PUF
may be able, given the current state of the PUF, to compute challenge-response
pairs for all the following states the LR-PUF will have.

Proposition 4. If collision-resistant hash functions relative to a PUF exist,
then there exists a Plain-unpredictable LR-PUF construction, which is not
PUF-Access-unpredictable.

The proof relies on the fact that an adversary can in some construction
simulate the Rcnf and Query oracles himself. The full proof can be found in the
full version of this paper.

Perhaps surprisingly there is an obstacle when trying to compare the power
of state-setting adversaries to PUF-access adversaries. As described above, a
PUF-access adversary might be able to completely precompute the behavior
of an LR-PUF given the current state. Thus the definition of PUF-Access-
unpredictability demands the adversary predict a challenge response pair not
for the state, which it finally outputs, but for the state which results from the
reconfiguration based on that state. This excludes bypassing the Rcnf oracle and
enables the definition to capture the unpredictability gain provided by the Rcnf
algorithm.
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Proposition 5. Unpredictability against state-setting adversaries is not compa-
rable to unpredictability against PUF-access adversaries, i.e.,

(i) There exists an LR-PUF which is PUF-Access-unpredictable but not
St-Access-unpredictable.

(ii) If collision-resistant hash functions w.r.t. PUFs exist, there exist LR-PUFs,
which are St-Access-unpredictable but not PUF-Access-unpredictable.

The proof of this proposition appears in the full version of this paper.

3.4 Full Access Adversaries

A combination of the previous scenarios provides the PUF access adversary with
the possibility to set the internal state. This is intuitively the strongest notion,
as it provides the adversary with essentially complete control over the LR-PUF
during the query phase of the experiment.

Definition 7 (Full-Access-Unpredictability). An LR-PUF L = (Setup,
Queryst,Rcnfst) is unpredictable for a state-setting adversary with PUF access if
for any PPT adversary A the probability that the experiment FULL-ACCESSL

A(λ)
evaluates to 1 is negligible (in the security parameter λ), where the game is
defined in Fig. 6.

As Full-Access-unpredictability is an immediate extension of PUF-Access-
unpredictability, it is easy to see that any Full-Access-unpredictable L is
also PUF-Access-unpredictable. However, the PUF-Access-unpredictability
adversary is strictly weaker than the state-setting Full-Access-unpredictability
adversary.

Proposition 6. There are LR-PUF constructions which are PUF-Access-
unpredictable, but not Full-Access-unpredictable.

For the full proof, please refer to the full version of this paper.
Since Full-Access-unpredictability implies PUF-Access-unpredictability

and we because have seen that St-Access- and PUF-Access-unpredictability
do not imply each other (see Proposition 5), Full-Access-unpredictability can
also not follow from St-Access-unpredictability.

Corollary 3. There exists a St-Access-unpredictable LR-PUF construction,
which is not secure w.r.t. Full-Access-unpredictability.

4 Construction

In this section we present our construction that fulfills the Full-Access notion of
unpredictability we defined in Sect. 3. Our scheme can be seen as a randomized
version of the speed-optimized construction from [8] with the difference that the
reconfiguration algorithm chooses a fresh state uniformly at random (instead
of computing it as the hash of the old state). Afterwards, we show that the
reconfiguration algorithm must be randomized in order to achieve our strongest
notion of unpredictability.
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Fig. 7. The full LR-PUF construction.

Theorem 1. The full construction (Fig. 7) is Full-Access-unpredictable.

As the reconfiguration algorithm chooses a new state uniformly at random,
the probability that the adversary correctly predicts the new state is negligible.
The probability that the output prediction made by the adversary is valid for
a different state as well can be bounded by the probability of predicting the
outputs of the underlying physical PUF, which was assumed to be negligible.
The full proof of this theorem appears in the full version of this paper.

Proposition 7. The full construction is St-Access-unpredictable.

As the construction’s Query algorithm is the same as the speed-construction’s
(see Fig. 8), and the Rcnf-algorithm cannot be used in any advantageous way by
an adversary, the construction is St-Access-unpredictable as long as the speed-
construction is St-Access-unpredictable. This is shown in Proposition 9. The
proof of this theorem appears in the full version of this paper.

5 Conclusion

In this paper, we have reconsidered the concept of Logically Reconfigurable
PUFs, an extension of the PUF primitive with applications in embedded devices
for access control or object tracking. We have given a formal definition of LR-
PUFs and presented several new notions of unpredictability, which help to clas-
sify constructions according to the scenarios they could be employed in. An
evaluation of two previously given construction has shown these constructions
to withstand stronger adversaries than initially shown. Finally, we have given a
new construction that can handle the strongest adversaries defined in this work
and we have seen that these notions create an interesting separation between such
constructions that rely on deterministic reconfiguration algorithms and such that
randomize reconfiguration.
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A PUFs and Collision-Resistant Hash Functions

As some of the LR-PUF constructions we will discuss use collision resistant hash
functions, we will first have to define this primitive.

Definition 8 (Hash Function). Let � : N → N be a polynomial. A pair of
PPT algorithms (Gen,Hash) is called a hash function if:

Gen. Takes as input a security parameter 1λ and returns an index id from some
index set Iλ.

Hash. Takes as input an index id and a bit string x ∈ {0, 1}∗. It returns an
output string Hash(id, x) ∈ {0, 1}�(λ). We set Hash(x) ..= Hash(id, x).

What follows is the usual definition of collision resistance against a PPT
adversary [7], modified to account for possible advantages an adversary might
have through PUF Access. For a discussion of the possible complexity theoretic
implications of PUF access, please refer to [4,12].

Definition 9 (Collision Resistance w.r.t. PUFs). Let P = (S,E) be a
PUF family. A hash function is called collision-resistant with respect to P, if for
all PPT algorithms A that have black-box access to P the probability that the
experiment COLLP

A evaluates to 1 is negligible, where

Experiment COLLP
A(λ)

id ← Gen(1λ)
(x, x′) ← AS,E(id)

Return 1 iff Hash(x) = Hash(x′) and x �= x′.

A.1 PUFs and Asymptotic Security

From a practitioners perspective, the asymptotic formulation of unpredictability
presented in this paper can seem problematic, as it does not quantify exactly
how much security a given construction provides. In [14] there is also an argu-
ment made against asymptotic security claims about PUFs which suggests that
such claims are not meaningful. The core of the argument is that PUFs are
finite functions and an adversary could just have a hard-coded table of challenge
response pairs for a given PUF. We believe this criticism is not applicable in our
case, as we define PUFs as families of functions from which one is sampled in
the unpredictability experiment. As the probability is also taken over the ran-
domness of this sampling process, it is unlikely that the adversary will have the
lookup table for this specific PUF hard-coded.

B Deterministic Reconfiguration Algorithms

As seen before, the PUF-access variants of unpredictability exclude LR-PUF
constructions where access to the underlying PUF makes the Query and Rcnf
algorithms completely predictable to the adversary. We will now show that an
LR-PUF construction, which is, in this sense, deterministic cannot achieve PUF-
access unpredictability.
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Fig. 8. The speed-optimized construction speed and the area-optimized construction
area from [8].

Proposition 8. A LR-PUF construction L = (Setup,Queryst,Rcnfst), where
Rcnfst is deterministic cannot achieve PUF-Access-unpredictability.

The proof appears in the full version of this paper.
AsPUF-Access-unpredictability is impliedbyFull-Access-unpredictability,

the following corollary follows immediately.

Corollary 4. An LR-PUF construction L = (Setup,Queryst,Rcnfst), where
Rcnfst is deterministic cannot achieve Full-Access-unpredictability.

Of course, these claims exclude LR-PUF constructions which involve more
than one PUF, as the PUF-Access- and Full-Access-unpredictability experi-
ments only provide access to a single underlying PUF. It is, however, straight-
forward to extend the definition to multiple PUFs. This can also be intuitively
motivated, as a multi-PUF construction, which does not secure access to one of
the employed PUFs is unlikely to secure access to the other PUFs.

Remark 4. As generation of proper randomness on an highly embedded system
such as a public transport access token seems impractical, this result establishes
that the Full-Access-unpredictability notion might not be achievable for all
application scenarios. However, in scenarios, where reconfigurations occur infre-
quently the negative effect of randomness that comes from a weak source is
likely to be tolerable. Additionally, if the degree of sophistication of the device
is high enough, there could already be a circuit in the device implementing a
hash function such as SHA-2, which may be used to extract some randomness
in a heuristic fashion.

C Revisiting Earlier Constructions

Based on the newly proposed unpredictability notions it is worthwhile to revisit
the original LR-PUF constructions given in [8]. We show that they provide unpre-
dictability in more adverse settings than originally demonstrated.

C.1 Speed-Optimized-Construction

Let us first consider the speed-optimized implementation of LR-PUFs given
in [8]. The basic idea of the construction is to use a collision-resistant hash
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function to compound the state and the LR-PUF challenge into one PUF stimu-
lus. The formal description of the algorithms is shown in the left part of Fig. 8. As
the reconfiguration algorithm is deterministic, this construction cannot achieve
PUF-Access- or Full-Access-unpredictability (see Sect. 4), however, we can
show that it is St-Access-unpredictable, which is an improvement on the unpre-
dictability result given in [8].

Proposition 9. The speed construction is St-Access-unpredictable.

The proof can be found in the full version of this paper.

C.2 Area-Optimized-Construction

Beside the speed-optimized construction, [8] also propose an area-optimized con-
struction, in which a small-range PUF is stimulated repeatedly on different sub-
challenges derived from the original challenge. The sub-challenge responses are
then assembled to one larger response to the original challenge. The formal
description is given in the right part of Fig. 8. We will now see that the con-
struction can be St-Access-unpredictable, but the degree of unpredictability
depends on the choice of underlying PUF and the iteration count n. Note, that
a noise bound dnoise on the full response means that the underlying PUF should
not produce responses that are noisier than dnoise

n .

Proposition 10. If there exist collision-resistant hash functions with respect to
PUFs, and the underlying PUF is unpredictable, then the area-construction is
St-Access-secure.

For the proof of this statement, please refer to the full version of this paper.
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ditionally focus on exploiting process variations in CMOS (Complemen-
tary Metal Oxide Semiconductor) technology. In recent years, progress in
nanoelectronic devices such as memristors has demonstrated the preva-
lence of process variations in scaling electronics down to the nano region.
In this paper we exploit the extremely large information density avail-
able in the nanocrossbar architecture and the large resistance varia-
tions of memristors to develop on-chip memristive device based PUF
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proposed mrPUF is validated using nanodevices characteristics obtained
from experimental data and extensive simulations. In addition, the per-
formance of our mrPUF is compared with existing memristor based PUF
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between nanocrossbar columns to generate responses to challenges.
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1 Introduction

Modern security systems establish the authenticity of products or identity of
users based on the principle of protecting ‘keys’ required for securing systems
and allowing secret key to be obtained solely by authorized participants. How-
ever, developments in invasive and non-invasive physical tampering methods such
as micro-probing, laser cutting, and power analysis and monitoring have made it
possible to extract digitalized secret information from integrated circuits (ICs),
and consequently compromising conditional access systems by using illegal copies
of the secret information. Tamper proofing techniques used in smartcards to pro-
tect the secret keys such as cutting power or tripping tamper-sensitive circuitry
that leaks the secret information have shown to be vulnerable to physical attacks
[1]. For instance, an adversary can remove a smartcard package and reconstruct
the layout of the circuit using chemical and optical methods. Even the data in
some types of non-volatile memories, such as electrically erasable programmable
read-only memory (EPROM) can be revealed by sophisticated tampering meth-
ods. To protect secret information, the emerging area of physical unclonable
functions (PUFs) promise a reliable and highly-secure approach and is receiving
increasing attention. Note that PUFs express inherent and unclonable instance-
specific features of physical systems and provide an alternative to storing keys
on insecure hardware devices [2,3]. A PUF produces an output signal (response)
to an external physical excitation signal (challenge). The response is a function
of the physical properties of the system such as signal delay variations across
identical integrated circuits and the applied challenge. A significant advantage
in using PUFs is that the key is not digitally stored in the memory of a device
(such as smart cards) but is extracted from device specific characteristics in
response to an external stimulus. Besides the aforementioned device authentica-
tion and identification, PUFs can be used for cryptographic key generation and
more complicated cryptographic protocols such as oblivious transfer (OT), bit
commitment (BC), key exchange (KE) [4–8].

Conventional PUFs such as Ring Oscillator PUF, Arbiter PUF, SRAM (static
random access memory) PUF exploit uncontrollable process variations in con-
ventional CMOS fabrication technology. Although technological developments
in CMOS devices such as FinFET enhanced device operations in ultra deep sub-
micron technologies, such developments are expected to confront the physical
limitation imposed by the continuing trend towards smaller feature sizes [46].
Consequently, CMOS based PUF designs will also face a roadblock in terms of
providing secure physical unclonable functions in the future.

Recent developments in nanoelectronics demonstrated a potentially low-
cost and high-performa nce nonionic nonvolatile resistive memory device called
the memristor (in literatures, memristor and memristive device is used inter-
changeably) [9–11]. Memristors have inherent randomness due to fabrication
process variations (i.e., thickness, cross-sectional area). This inherent random-
ness provides opportunities for building up physical unclonable functions with
high performance. Furthermore, these nanodevices are easy to fabricate and
are compatible with CMOS fabrication processes offering a potentially low cost
security primitive.
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The proposed mrPUF architecture, which combines nano-crossbars and cur-
rent mirror controlled ring oscillators, and the proposed authentication mech-
anism are unique and have not been considered in the past to the best of
our knowledge. Our architecture allows the extraction of secret information by
exploiting the abundant variations in nanodevices and nanofabrication. A sum-
mary of our contributions in this paper are:

1. We propose a novel PUF architecture that exploits the fabrication variations
inherent in nano-electronic devices. In particular we exploit the significant
variations in the resistance values on a nanocrossbar structure based resistive
memory to build mrPUF.

2. We conduct extensive studies to evaluate mrPUF and demonstrate its
superior performance with respect to key performance metrics: diffuseness;
uniqueness; and reliability.

3. We show that mrPUF is resistant to model building attacks by exploiting
characteristics inherent to nanocrossbar arrays, in particular the indepen-
dence of information in individual columns, to develop a challenge selec-
tion strategy for a direct authentication mechanism using a mrPUF. We also
demonstrate the significantly large number of challenge response pairs pos-
sible with our proposed architecture when compared to existing memristor
based PUF designs.

The rest of this paper is organized as follows: Sect. 2 presents related work;
The mrPUF architecture is presented in Sect. 3; Sect. 4 evaluates mrPUF’s per-
formance metrics and compares it with other PUF structures in the literature;
Sect. 5 presents two applications of mrPUF with respect to key generation and
challenge response pairs based authentication protocol, and analyses their secu-
rity; Sect. 6 compares mrPUF with other memristor based PUFs and Sect. 7
concludes this paper.

2 Related Work

Over the years, a number of PUF structures have been proposed, built and
analyzed. These include time delay based PUFs such as the Arbiter PUF [2,
12] (APUF), Feed-Forward APUF [13], An arbiter based PUF built on current
starved inverters [14], Ring-Oscillator PUF [15] (RO-PUF), and Glitch PUF [16];
Memory-based PUFs leveraging device mismatch such as SRAM PUF [17,18],
Latch PUF [19], Flip-flop PUF [20,21], Butterfly PUF [22]. A comprehensive
review of different PUF architectures can be found in [23,24].

Here we introduce the RO-PUF as our mrPUF will integrate it. In addition,
we provide a brief review of nanocrossbar arrays and memristive devices which
our PUF architecture utilizes. Furthermore, we briefly review previous memristor
based PUF architectures.
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2.1 RO-PUF

The RO-PUF is one of the leading microelectronic PUF designs because of its
relatively high reliability. A typical RO-PUF circuit consists of k ring-oscillators,
two k -to-1 multiplexers that select a pair of ring-oscillators, ROi and ROj , two
counters and a comparator, as shown in Fig. 1. All the ring-oscillators in this
structure are identical. Ideally, the frequency of each oscillator is unique, how-
ever, because the oscillating frequency is a function of the physical device para-
meters, which are subject to device process variation, the oscillation frequencies
of each oscillator are not all identical. Therefore, the oscillation frequencies of
each pair is compared by counting this frequency using a digital counter. If
fi < fj (where fi and fj are the oscillating frequencies of ROi and ROj , respec-
tively) the digital comparator output will be ‘0’, otherwise ‘1’. The pairing of
oscillators is controlled using two digital multiplexers, each use a subset of the
input challenge bits to select an oscillator.

Fig. 1. A conventional ring-oscillator PUF (RO-PUF)

In order to avoid an extremely large number of bits in counters, it is important
to design relatively slow oscillators with an oscillation frequency of the order of
hundreds of MHz. Therefore, depending on the technology, 50–100 inverters are
needed for one RO to produce a frequency in this range [23,25]. This design
constraint will increase costly area and power overhead. In contrast, we propose
an ring oscillator design that slows the oscillating frequency by using only a
fraction of the number of inverters used in a RO-PUF.

2.2 Nanocrossbar Arrays and Memristive Devices

Crossbar arrays of metal-oxide based devices have attracted much attention in
recent decades because of their high information density, compatibility with
current CMOS technology, and simple implementation. The nanocrossbar array
consists of parallel horizontal wires on top and perpendicular vertical wires at
the bottom. At each junction, a two terminal device with or without a nonlinear
selector element is formed and acts as a switch.

A nanocrossbar array structure is shown in Fig. 2(a) where each nanodevice is
located at the crosspoint of the top and bottom wires. When reading a targeted
memristive device, reading voltage is applied to the selected word line and the
current of the selected bit line is sensed to determine the state of the memristive
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Fig. 2. (a) Nanocrossbar array of nanoionic memristive devices. (b) Illustrates the
operation principles of a memristive device. The top electrode contains active ionic
which stands for low resistance, while the bottom electrode is poor ionic region. Gray
arrow indicates the ionic motion. The memristive device switches from OFF to ON
with a positive potential difference between the top electrode and bottom electrode
corresponding to ‘SET’ operation as one or more conductive filaments grow or form,
while switches from ON to OFF with a negative potential difference between the top
electrode and bottom electrode as the filaments disrupt (Color figure online).

device. For other unselected word lines and bit lines, they can be connected
to ground or floating. Floating is preferred since it consumes much less power.
During reading it is important to note that there also exists many sneak path
currents (red line) besides the desired read current (blue line).

Recently, a number of nanoscale electronic device implementations have
emerged that include resistive switching and memristive devices. Realization of
a solid-state memristive device [9–11], namely the memristor, shown in Fig. 2(b),
presents a new opportunity for realizing ultra high density memory arrays
together with nanocrossbar structures [31]. The unique properties of such devices
are the non-volatile memory and nanoscale dimensions.

In redox (reduction-oxidation) based resistive switching devices there are
two major types of devices available: (i) electrochemical metalization (ECM)
memory; and (ii) valence change memory (VCM) [48]. Both are examples of
memristive device realizations. The memristor is a solid-state device consisting
of a thin-film semiconductor sandwiched between two metal contacts. Inside a
memristive element there is a built-in concentration gradient of anions (VCM
systems) or cations (ECM systems) together with a temperature gradient which
is a direct result of current passing through the conductive channel (conductive
filament) and is known as Joule-heating. The ionic gradient consists of rich and
poor ionic regions. The rich ionic region (top region in Fig. 2(b)) gives rise to low
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resistance, RON, and the poor ionic region (bottom region in Fig. 2(b)) is respon-
sible for high resistance, ROFF. The basic operating principle of the memristive
device is shown in Fig. 2(b). A positive/negative voltage between two terminals
of the memristive device will form/disrupt the filaments, and hence push the
device in its ON/OFF state. Once memristive device has been programmed its
memristance will remain unchanged even if its power supply is disconnected.

2.3 Memristor-Based PUFs

Because of the interesting properties of memristors discussed earlier, researchers
have started investigating the feasibility of memristors for building a PUF
[30,35,43,45]. Two of these studies [35,45] employ a time and voltage constrained
write mechanism (weak-write) to force each memristor to an undefined logic
region (neither logic ‘1’ or ‘0’). Subsequently, these memristors attain an unpre-
dictable logic state due to process variations that influence memristance. Similar
to SRAM PUF, a memristor PUF [35,45] is only capable of producing a limited
number of CRPs. More significantly, the PUF in [35,45] requires a calibration
procedure to determine the weak-write parameters (time and voltage) to force
memristors into the undefined logic region.

In [44] the author leveraged sneak path currents inherent in memristor-based
nanocrossbars and bidirectional features to build up a nano Public Physical
Unclonable Functions (PPUF). Unlike PUFs, security of the PPUF no longer
relies on the secrecy of its physical parameters that define its uncontrollable
variations and the model of a PPUF that exactly matches the PPUF hardware
behavior is publicly known to every one. The security of a PPUF is based on
the time difference (several orders of magnitude) between fast execution time on
PPUF hardware to acquire correct response and the much longer time required
to compute the response correctly using the PPUF model. In fact, PUFs and
PPUFs are hardware primitives with different requirements for authentication
and other security services. Moreover, the nano PPUF always needs accurate
measurements of its physical parameters to obtain through an accurate model of
the nano PPUF that is inconvenient and expensive. Although the PPUF provides
an alternative to securely storing challenge response pairs, the poor reliability of
the nano PPUF designs still need to be addressed. We refer readers to [41] for a
more comprehensive overview.

Our preliminary design of mrPUF was first outlined in [30] where we illus-
trated the possibility to use the significantly increased variations in high state
and low state of memristor resistance in a nanocrossbar array together with an
RO-PUF. In this paper we build on our initial concept outline. It should be noted
that in this paper, we only exploit abundant resistance variations in RON state in
individual memristors to achieve a more reliable PUF architecture. In addition,
we evaluate key PUF performance metrics of mrPUF and analyze the security
of the PUF based applications: key generation, and device authentication, which
are not investigated in our previous work.
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3 mrPUF

3.1 Concept

It has been shown that the memristor can be used to store digital states by uti-
lizing the two distinct resistance values of the memristor, namely ON and OFF
resistances, referred to as RON and ROFF. These resistances are random variables
with log-normal distribution values [10]. Figure 3 illustrates the distribution of
these resistances after an initial programming step of randomly selected binary
values in a nanocrossbar array. As mentioned in Sect. 2.2, variations in memris-
tors is prevalent when their dimensions approach the nano-scale region. These
inherent variations can be effectively utilized to design a novel PUF architecture,
as we will demonstrate in this article.

Fig. 3. Experimental resistance variation extracted from a 40 × 40 nanocrossbar array
(1600 memristors) from the experimental data [10].

A memristor-based nanocrossbar architecture has the ability to combine large
number of memristive devices in a compact area, and hence, has the ability to
store a very large amount of information within a small physical size. When read-
ing a targeted memristor resistance value, in addition to the current through the
targeted memristor, there exist a number of other current paths that are com-
monly referred to as sneak path currents that result in an inaccurate reading of
the targeted memristor device value (see Fig. 2). To suppress sneak path cur-
rents, a number of techniques are proposed [10]. Three of the leading techniques
at the center of attention in today’s industry and academic research community
to suppress sneak path currents are; (i) an intrinsic current-rectifying behavior
[10,50] which is translated into an extremely high current-voltage nonlinearity
as shown in Fig. 4; (ii) having a highly nonlinear series element with a transistor-
like or a diode-like behavior; and (iii) Complementary resistive switches (CRS)
[38]. Presently, the first solution appears more promising than the two latter
approaches due to its ability to maintain competing memory features such as
small area and the highly nonlinear self-rectifying feature in these solid-state
devices. As for CRS, the read operation is destructive and multilevel capability of
the memristive device can not be used. In fact, sneak path current in nanocross-
bar arrays mitigates the effect of process variations in individual memristors
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during readout. So intrinsic diode characteristic of the memristor helps main-
tain the process variations influence on resistance of memristor during readout;
this is desirable for a PUF design aiming to exploit process variation.

Fig. 4. Memristor with intrinsic diode characteristic.

In [42] the authors demonstrated that resistance variation is more prevalent
in RON state than in ROFF state due to the thickness of memristors. Further-
more, in [27] it was demonstrated that resistance is resilient to temperature and
telegraph noise (refers to resistance fluctuations due to electrons captured or
released again near or inside the filament) in RON state more than in ROFF

state. For these reasons only the RON state is used to construct the mrPUF
architecture (i.e. we initially program the entire nanocrossbar to store the logic
value ‘1’) to reduce susceptibility to both temperature increases and telegraph
noise and consequently increase the reliability of the PUF architecture. The
sources of variations exploited in our mrPUF are listed below:

1. Memristor manufacturing variations: These variations are prevalent in the
nanoscale region, and can be due to variation in device layer thicknesses,
dimensions, or doping.

2. Programing variations: In the first programing operation (i.e., programming
the state to ‘0’ or ‘1’), it will introduce variations because the filament location
and width in memristor are random.

3. CMOS device manufacturing variations: CMOS device properties due to
inherent CMOS process variations, although CMOS process variations in
CMOS components such as decoder, ring oscillators is very small compared
with the first two listed sources.

3.2 mrPUF Architecture

The proposed mrPUF architecture shown in Fig. 5(a) comprises two key com-
ponents: a M × N nanocrossbar array and two current mirror-controlled ring
oscillators (CM-ROs), shown in Fig. 5(b). Individual memristor variations in the
nanocrossbar array is the source of mrPUF’s secrecy. While the CM-RO that
has i (in this work, i = 5) inverters translates the analog resistance variations
of a individual memristor into frequency for digitizing the analog variations to
facilitate measurements.
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Fig. 5. Memristor-based nanocrossbar PUF architecture, mrPUF. (a) All memristors
are in the ON state, the red color (or dark) marked memristors are selected mem-
ristors in the nanocrossbar array. (b) Current controlled RO (CM-RO). One current
mirror configures all the inverters in a RO structure, Mi is the selected memristor
in nanocrossbar array, Although variations in the oscillation frequency of each RO is
slightly influenced by the threshold voltage variations in the CMOS transistor com-
posing the starved inverter and current mirror structures, the overall variation in the
oscillation frequency is primarily determined by the variations in memresistance of Mi

if the supply voltage, VDD, is kept constant (Color figure online).

Challenge bits are used to provide the address bits for both the analog
multiplexer and the decoder. The decoder is used to select one column of the
nanocrossbar array. Two analog M × 1 multiplexers select two rows acting as
bit lines. For example, we can select the red marked memristors (one memristor
between Row2 and Col2 and the other memristor between RowM−1 and Col2)
after applying a single challenge. It should be noted that in this reading scheme
the two randomly selected memristors have to be from the same column.

Each selected memristor is then used to control the current in the current
mirror structure used to starve the current in each inverter in the ring oscillator
loop, resulting in a current starved ring oscillator structure. So, the oscillation
frequency is a direct function of this current which in turn is a direct function
of the value of the memristor. The oscillation frequency of each oscillator is
measured using a counter (as in RO-PUF). The outputs from the two counting
circuits are compared and a response bit is generated accordingly. The reason
only 5 inverters are used in one CM-RO is that the oscillation frequency is
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already down to decades of MHz (as illustrated in Fig. 7) by using 5 inverters
due to a current starved ring oscillator structure.

A challenge is presented as an address to a decoder and a multiplexer as
shown in Fig. 5. Subsequently, the outputs of CM-RO are compared to generate
a response to the challenge. In the mrPUF architecture illustrated in Fig. 5 the
number of possible challenge response pairs (CRPs) are N ×

(
M
2

)
. Where N and

M are the number of columns and rows, respectively, in the nanocrossbar array.
In contrast to RO-PUF, which uses an array of ROs, the proposed mrPUF

efficiently uses two 5-stage CM-ROs which are re-configured using the nanocross-
bar and consequently result in a significant area reduction and ease of reading
as the output frequency is substantially reduced to facilitate accurate counting.
Also unlike the memristor-based PUF in [35] where the goal is to sense the value
of the resistance to determine the binary value of a target element in nanocross-
bar array, we translate a memristance value into a frequency through a CM-RO.
The advantages of this approach are:

1. Use of significantly smaller number of ring oscillators and only 5 inverter
stages to build each ring oscillator.

2. Mitigate some of the undesirable variations in responses caused by power
supply and temperature fluctuations as we employ a differential structure to
generate a response bit.

3. Unlike in [35] we do not need complex circuitry to readout a memory cell and
we do not directly expose full physical information (binary value in memory)
at each junction of a nanocrossbar array.

4 mrPUF Evaluation

4.1 Simulation Environment and Settings

We conduct extensive experiments to evaluate our mrPUF architecture. The
simulation was carried out using Cadence tools. In these simulations the mrPUF
was built using a 40 × 40 nanocrossbar array with 1.25 Ω segment resistance
for nano-wires and two 5-stage CM-ROs as shown in Fig. 5. Each memristor
is programmed to RON where the value of RON is selected from the log-normal
distribution shown in Fig. 3. It should be noted here that the log-normal distribu-
tion values are extracted from the fabricated experimental data in [10]. Readout
is achieved using a 1 V supply voltage. Our selected voltage ensures that we
are operating below the memristor’s threshold voltage and ensures the device
memristance does not alter with respect to time. In these simulations we use
the GPDK 90 nm standard CMOS technology in Cadence with a 1.0 V supply
voltage. The memristor model is adapted from [36,49] and written in Verilog-A
language. The simulated results of our memristor model shown in Fig. 6 agrees
well with experimental results published in [10].

We simulated a 40 × 40 nanocrossbar array architecture shown in Fig. 5 and
obtained 31,200 CRPs using 15 bit length challenges.
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Fig. 6. Memristor with intrinsic diode characteristics. Red dash line is obtained from
experimental data [10,32] and the dot line depicts the accuracy of the simulated results
produced by our memristor model written by Verilog-A language and used in generating
the simulation results in our study (Color figure online).

4.2 Performance

There are a number of performance measures proposed in the literature for eval-
uating PUFs. We have selected fundamental metrics to demonstrate the per-
formance of mrPUF using uniqueness, uniformity, diffuseness and reliability as
proposed in [40] and [29]. Detailed definitions and explanations of these metrics
for evaluating PUF architecture can be found therein. In addition to PUF per-
formance we firstly investigate the frequency distribution of CM-RO to ensure
that the frequency is indeed, mainly, a function of the resistance of the selected
individual memristor.

Frequency Distribution. To test whether the frequency is determined by
the variations from the resistance distribution of memristors in the nanocross-
bar array, we readout all of the frequencies in one mrPUF instance from CM-RO
configured by challenge bits, which select a target memristor in the nanocrossbar.
The number of frequencies are equal to the number of memristors in nanocross-
bar array (i.e. 1600). The frequency distribution is shown in Fig. 7. It can be
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Fig. 7. The plot on the left shows the frequency distribution and the plot on the right
shows the resistance distribution in a 40 × 40 nanocrossbar array. As expected, the
frequency distribution agrees well with the resistance distribution.
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Fig. 8. The relationship between CM-RO’s frequency and memristor’s resistance. The
circuit is shown in Fig. 5(b).

seen that, as expected, the frequency distribution follows a log-normal distrib-
ution. For comparison, we show the resistance distribution in the nanocrossbar
array in Fig. 7 as well. The close alignment of the frequency distribution and the
resistance distribution plots illustrates that the dominant variation determining
the mrPUF response is from the inherent random variations of individual mem-
ristors in the nanocrossbar array (which is more prevalent in the nano-region)
instead of the CMOS technology variations in the peripheral CMOS circuitry.
Detailed relationship between CM-RO’s frequency and memristor’s resistance is
shown in Fig. 8 where we can see how the frequency of a CM-RO is determined
by the resistance of a memristor.

Uniformity. Randomness or uniformity is an indicator of the balance of ‘0’ and
‘1’ in the response vector. An ideal PUF should show that a ‘0’ or ‘1’ response
is equiprobable. For mrPUF our results show that the probability of a ‘0’ or ‘1’
response is very close to 50 % (probability of ‘1’ is 50.34 % as shown in Fig. 9(a)).

Diffuseness measures the difference between responses for different challenges
applied to the same PUF. Diffuseness quantifies the information content that can
be extracted from a PUF. Diffuseness is measured by calculating the mean of
Hamming Distance (HD) for all the possible responses generated by the PUF.
Diffuseness for an ideal PUF is 50 %.

Note the mrPUF, like the APUF, only produces a 1 bit response for a given
challenge. To obtain a binary response vector, we apply a randomly selected set
of challenges to the mrPUF, and then we concatenate these single response bits
to a multiple bit response vector. Here, we use responses with 128 bits, therefore
we apply 100 sets of 128 random challenges to the mrPUF. Subsequentially, we
gain one hundred 128 bit responses to evaluate the diffuseness. The HD among
these 100 responses is shown in Fig. 9(b). The mean of HD is 64.10 bits out of
the 128 bit response, then the diffuseness is calculated as 50.08 % close to the
expected value of 50 %.

Uniqueness. When applying the same challenge set to different PUFs, the
responses from different PUFs are expected to be different due to intrinsic vari-
ations of each PUF. This is a highly desirable characteristic that be capable
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Fig. 9. (a) Uniformity or randomness of mrPUF: probability of output logic ‘1’ and ‘0’
are close to 50 %, which are 50.34 % and 49.66 % for logic ‘1’ and logic ‘0’ respectively.
(b) Diffuseness of the mrPUF: mean of HD among 100 randomly generated responses
is 64.10 bits out of 128 bits (50.08 %)
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Fig. 10. Uniqueness evaluation: mean of inter HD among 100 responses generated from
100 PUF instances for the same given challenge is 64.22 bits out of 128 bits (50.17 %).

of distinguish one PUF from a large population. Uniqueness is the inter-device
performance that can be measured by inter-HD. The mean of hamming distance
is uniqueness expected to be 50 % as an ideal value.

We use 100 different mrPUF instances to evaluate the uniqueness and the
result is shown in Fig. 10. It can be observed that the mean of inter HD for the
mrPUF is 64.22 bits out of the 128 bit response and this value agrees with that
expected from an ideal PUF (i.e. 64 bits). The uniqueness is 50.17 %.

Reliability. Reliability or steadiness indicates stability of the PUF output bits,
i.e. the ability to consistently generate the same response to a corresponding
challenge. Reliability of an ideal PUF should be strong (100 %). However, because
noise (environmental variations, instabilities in circuit, aging) are unavoidable,
there are always uncertain factors affecting the response. Reliability is measured
by intra-chip HD among different samples of PUF response bits to the same
challenge set applied to the same PUF instance.

A reference response Refi is recorded at normal operating condition (27◦C
and 1.0 V supply voltage for our simulation), then a response Ref

′
i is extracted

at a different operating condition but using the same set of challenges as before.
After samples of Ref

′
i are collected, the HD between Refi and Ref

′
i is calculated.

An ideal PUF’s intra HD between Refi and Ref
′
i should be 0 bits. Reliability can

also be described by Bit Error Rate (BER), which is the percentage of flipped
(error) bits (also called measurement noise) out of response bits due to noise.

Under simulation settings, we would always obtain the same responses for
the same challenges if the temperature and voltage conditions do not change.
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Fig. 11. Bit error rate (BER) under different temperature (left) and voltage (right)
deviations.

In other words, the BER caused by measurement noise can not be evaluated.
However, it is feasible to evaluate reliability under different temperature and
supply voltages as discussed below.

We evaluate the reliability of two mrPUF instances and the results obtained
are shown in Fig. 11. We obtained a 500 bit length response by repeatedly chal-
lenging mrPUFs under four different voltages: 0.8 V; 0.9 V; 1.1 V; and 1.2 V.
The temperature settings used for the evaluation was 27◦C. Worst-case BER is
2.6 % under ±20% deviation and 0.65 % under ±10% deviation from nominal
power supply voltage of 1.0 V.

The resistance temperature coefficient of memristive devices in ON state is
similar to a metallic resistor [26,37]. Therefore, we used metallic resistor tem-
perature coefficient to conduct reliability evaluation under different temperature
conditions. Reliability tests were repeated for four different ambient tempera-
tures (−20◦C, 0◦C, 50◦C, 85◦C). The supply voltage used in these tests was 1.0
V. Worst BER of the two mrPUFs is 4.4 % when the temperature is 85◦C.

5 Applications and Security Analysis

5.1 Cryptographic Key Generation

It is impractical to use raw responses of a PUF as cryptographic keys directly
because the BER is higher than the industrial standard of BER that is in the
order of 10−6 (the industrial standard of BER for cryptographic key generation)
[6]. As illustrate in [28], a fuzzy extractor can be used to correct the raw response
and hash the corrected response to build a cryptographic key.

For example, to obtain 63 secret bits with a BER rate lower than 10−6, the
BCH(255,63,61) code can be used to correct raw PUF responses. Our mrPUF
is expected to generate 11 unreliable bits out of a 255 bit response considering
the worst-case BER of 4.4 %. The BCH(255,63,61) code can correct up to 61/2
errors out of 255 bits. Therefore, a BER of 3.9 × 10−7, lower than the desired
10−6, can be obtained by using the BCH code. However, the syndrome generated
from the BCH code can reveal at most 192 (255 − 63) bits of information and
therefore there are 63 secret bits that can be used from the 255 bits response.
Hence an attacker has to guess at least 63 bits to find the correct PUF response.
In general, as proposed in [15], the regenerated response can be hashed to obtain
a fixed size key or serve as a seed for a key generation algorithm.
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5.2 Authentication

Our PUF can also be directly used for device authentication using a simple
challenge-response based authentication protocol. The authentication protocol
follows 5 steps [15,33,34]:

First: A trusted party applies randomly chosen challenges to obtain responses
and saves these CRPs in a database for future authentication (characteriza-
tion of the PUF) before the PUF (as part of an integrated circuit) is sent to
end-users. This is called the provision phase.

Second: Whenever an end-user needs to authenticate the authenticity of the
product to which the PUF has been integrated, the user requests an authen-
tication from the trusted party.

Third: The trusted party randomly selects a challenge from those stored securely
in a database and sends it securely to the end-user. Subsequently, the end-
user applies the challenge to their PUF and obtains a response.

Fourth: The user securely sends the obtained response to the trusted party.
Fifth: The trusted party compares the received response with the response

stored. If they are close to each other, within an expected BER, authen-
ticity of the product integrated with a PUF is established.

In order to prevent a replay attack by a passive attacker, a single CRP is
only used once. This is possible because of the large number of CRPs that can
be generated from a mrPUF.

To evaluate PUF security there are two analysis approaches: (i) evaluate the
internal entropy of the PUF; and (ii) evaluate the number of independent CRPs
produced by the PUF, or in other words, the number of CRPs needed by an
adversary to build a model of the physical PUF with a high prediction accuracy.
In terms of the first approach, it has been demonstrated that the internal entropy
of the PUF does not provide the attacker information to break a PUF, even if
the entropy is very low. In addition, it is not clear that the internal entropy is
a good indicator of a PUF’s security as highlighted in [47]. While the second
approach is a better way to evaluate the security of a PUF [47]. So we use the
second approach to evaluate the security of mrPUF.

PUFs such as APUF and RO-PUF have shown that after exposing a specific
number of CRPs an attacker gains enough knowledge to build a model to predict
responses for a given unused challenge [13,39,47]. This model building attack
can threaten our mrPUF. In this section, we are going to illustrate how to avoid
such a model building attack by leveraging properties inherent to our mrPUF
architecture and a challenge selection strategy.

We assume the attacker does not have authority to physically access the
mrPUF. The CRPs they can acquire is only from eavesdropping. Consider the
mrPUF shown in Fig. 5 with N columns and M rows. Each challenge will select
one column and two rows. In other words, each challenge selects two memristors
in the same column but from different rows, then the resistance of these two
memristors are translated into frequencies by two CM-ROs to generate a single
response bit. Now, if we only consider memristors in one column within the
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Fig. 12. mrPUF access mechanism resilient to model building attacks by using infor-
mation from independent columns: firstly, we use CRPs generated from one randomly
selected Secure Column, after NCRP (number of CRPs required to train the attacker’s
model to acquire needed prediction accuracy) CRPs are used, this column becomes an
Insecure Column. Secondly, we move to another randomly selected Secure Column. The
column currently in use while its number of CPRs exposed is below NCRP is labeled
Inuse Column.

nanocrossbar array, we can model a mrPUF instance as a k ring oscillators
PUF. From [47] we can obtain an estimate of the number of CRPs needed to
train a machine learning based model to achieve an error rate of ε as

NCRP ≈ k(k − 1)(1 − 2ε)
2 + ε(k − 1)

(1)

where NCRP is the number of CRPs needed to train a machine learning classifier
and k is the number of RO in RO-PUF. The total number of CRPs in RO-PUF
is NTCRP, which is equal to k × (k − 1)/2. If an attacker wants to impersonate
the PUF through building a predictive model, the error rate of the predictions
of the model should be less than ε, or the trusted party can still distinguish
the impersonated PUF from the original PUF. Based on Eq. 1, to achieve a
prediction accuracy of 1-ε, an adversary needs NCRP CRPs to train a machine
learning classifier.

It is noticeable that each challenge applied to mrPUF only selects two mem-
ristors in the same column, therefore information exposed in one column does not
leak any information related to other columns. This property can be exploited to
avoid machine learning based model building attacks through careful challenge
selection.

In this paper, we propose a challenge selection strategy outlined in Fig. 12
to avoid model building attacks. The nanocrossbar columns are separated into
three categories. If CRPs produced from one column have never been used, then
this column is a Secure Column, since there is no information exposed to an
adversary thus far. Under the condition that we only use CRPs from one column,
the adversary needs NCRP CRPs to train their machine learning classifier and
build a model of the memristor related delays for a given column. Thus if NCRP
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CRPs generated (obtained using Eq. 1) from the Inuse Column has been used
then this column becomes an Insecure Column because an adversary may have
gathered enough CPRs to build a model and can potentially predict the response
to future challenges with high accuracy. If the number of used CRPs generated
from the column is still less than NCRP, the column is an Inuse Column.

In our mrPUF, each column can be used to generate NCRP secure CRPs
because the attacker cannot predict the response with a high enough accuracy (1–
ε) unless NCRP CRPs are exposed. After more than NCRP CRPs generated from
the Inuse Column are exposed, the Inuse Column becomes an Insecure Column.
We do not use CRPs generated from this Insecure Column again. Since each
column is independent, the attacker is unable to use their existing knowledges to
construct a model of the subsequent Secure Columns. This process can continue
until all Secure Columns have been exhausted.

By using our proposed challenge selection mechanism in Fig. 12, we can make
mrPUF more resilient to model building attacks. To increase security using our
proposed mechanism above, it is better to set N > M . In this way, we are able
to obtain more independent columns.

6 Comparison

Here we compare mrPUF with other memristor based PUFs. However, Compar-
ison with nano PPUF is not presented because the nano PPUF has been devel-
oped to meet the requirements for a public PUF, where the need to build a model
of a nano PPUF requires highly accurate measurements of each individual mem-
ristor in the nanocrossbar array in the provisioning phase. Furthermore, since
the performance evaluations of RO-PUF, APUF and SRAM PUFs are acquired
from experimental data, it is unfair to compare these with our simulated result.
So here, we compare our mrPUF with existing memristor based PUFs where
their results are also from simulation based studies.

Table 1. Comparison with memristor based PUFs

[35] [45] mrPUF

Uniqueness ≈ 50 % ≈ 50% 50.17 %

Uniformity — ≈ 50% 49.66 %

Crossbar used No used

CRP number M × N M N ×
(

M
2

)

Since all the PUFs in Table 1 are based on large uncontrollable variations in
nanofabrication and nanodevices, the uniqueness and uniformity are all close to
the ideal value of 50 %. We do not compare reliability performance because there
is no such information presented in other memristor based PUFs. In Table 1,
whether a nanocrossbar is used or not determines the circuit density. In terms
of the CRP number, M and N denote the number of rows and columns, respec-
tively, in a nanocrossbar array. In particular, for the PUF presented in [45],
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M denotes the number of memristors used in the PUF architecture. The num-
ber of CRPs of the other two memristor based PUFs is equal to the number of
memristors. As for our mrPUF, it can be seen that it is capable of yielding a
significantly larger number of CRPs.

In summary, we have evaluated the uniqueness, randomness performance
of mrPUF. In addition, we also investigate the reliability under different tem-
perature and voltage conditions. Such evaluation is missing in the currently
published memristor based PUFs. Moreover, we have also analyzed the security
of our mrPUF for two potential applications and proposed a challenge selec-
tion strategy to avoid model building attacks when mrPUF is used directly for
authentication applications.

7 Conclusion

In this paper, we present a novel PUF architecture named mrPUF. Our app-
roach exploits the robustness of RO-PUFs and exploits the large variations in
nanodevices as well as the high information density available in nanocrossbar
structures to create a novel PUF. Our architecture not only achieves sound reli-
ability, uniqueness, diffuseness, but also improves the number of available CRPs
in comparison with other recent memristor based PUF architectures. In partic-
ular, we show that mrPUF achieves higher levels of security due to the inherent
features of nanocrossbar arrays that the information in one column is indepen-
dent from other columns. We also demonstrate a mechanism using mrPUF in
an authentication protocol that is resistant to model building attacks by the
proposed challenge selection strategy.

A limitation of our work is that our experiments are conducted based on
device simulations, albeit using de-facto industry standard modelling tools and
experimentally verified process variations, rather than physical realizations,
Addressing this limitation forms the subject of our future work. Furthermore, in
our future work we will investigate the possibility of building a re-configurable
and strong memeristive device based PUF architecture [51] by exploiting the
variations induced during re-programming and increasing the number of CRPs
significantly.
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5. van Dijk, M., Rührmair, U.: Physical unclonable functions in cryptographic pro-
tocols: security proofs and impossibility results. IACR Cryptology ePrint Archive
2012: 228 (2012)

6. Zhang, L., Kong, Z.H., Chang, C.-H.: PCKGen: a phase change memory based
cryptographic key generator. In: Proceedings of the IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1444–1447 (2013)

7. Ruhrmair, U., van Dijk, M.: PUFs in security protocols: attack models and secu-
rity evaluations. In: IEEE Symposium on Security and Privacy (SP), pp. 286–300
(2013)

8. Kang, H., Hori, Y., Katashita, T., Hagiwara, M., Iwamura, K.: Cryptographie
key generation from PUF data using efficient fuzzy extractors. In: Proceedings of
the IEEE 16th International Conference on Advanced Communication Technology
(ICACT), pp. 23–26 (2014)

9. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor
found. Nature 453(7191), 80–83 (2008)

10. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J.M., Hussain, T., Srinivasa,
N., Lu, W.: A functional hybrid memristor crossbar-array/CMOS system for data
storage and neuromorphic applications. Nano Lett. 12(1), 389–395 (2011)

11. Kavehei, O., Al-Sarawi, S., Cho, K.-R., Eshraghian, K., Abbott, D.: An analytical
approach for memristive nanoarchitectures. IEEE Trans. Nanotechnol. 11(2), 374–
385 (2012)

12. Gassend, B., Lim, D., Clarke, D., Van Dijk, M., Devadas, S.: Identification and
authentication of integrated circuits. Concurrency Comput. Pract. Experience
16(11), 1077–1098 (2004)

13. Lim, D., Lee, J.W., Gassend, B., Suh, G.E., Van Dijk, M., Devadas, S.: Extracting
secret keys from integrated circuits. IEEE Trans. Very Large Scale Integr. VLSI
Syst. 13(10), 1200–1205 (2005)

14. Kumar, R., Patil, V. C., Kundu, S.: Design of unique and reliable physically unclon-
able functions based on current starved inverter chain. In: Proceedings of the IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 224–229 (2011)

15. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: Proceedings of the 44th Annual Design Automation
Conference, pp. 9–14 (2007)

16. Suzuki, D., Shimizu, K.: The glitch PUF: a new delay-PUF architecture exploiting
glitch shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 366–382. Springer, Heidelberg (2010)

17. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In Proceedings of the Conference
on RFID Security, vol. 7 (2007)

18. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2009)



614 Y. Gao et al.

19. Su, Y., Holleman, J., Otis, B.P.: A digital 1.6 pJ/bit chip identification circuit
using process variations. IEEE J. Solid-State Circuits 43(1), 69–77 (2008)

20. Maes, R., Tuyls, P., Verbauwhede, I.: Intrinsic PUFs from flip-flops on reconfig-
urable devices. In: 3rd Benelux Workshop on Information and System Security
(WISSec 2008), vol. 17 (2008)

21. van der Leest, V., Schrijen, G.-J., Handschuh, H., Tuyls, P.: Hardware intrinsic
security from D flip-flops. In: Proceedings of the Fifth ACM Workshop on Scalable
Trusted Computing, pp. 53–62. ACM (2010)

22. Kumar, S.S., Guajardo, J., Maes, R., Schrijen, G.-J., Tuyls, P.: The butterfly PUF
protecting IP on every FPGA. In: IEEE International Workshop on Hardware-
Oriented Security and Trust, 2008, HOST 2008, pp. 67–70 (2008)

23. Roel, M.: Physically unclonable functions: constructions, properties and applica-
tions. Ph.D. thesis, Dissertation, University of KU Leuven (2012)

24. Herder, C., Yu, M.D., Koushanfar, F., Devadas, S.: Physical unclonable functions
and applications: a tutorial. Proc. IEEE 102(8), 1126–1141 (2014)

25. Maiti, A., Casarona, J., McHale, L., Schaumont, P.: A large scale characterization
of RO-PUF. In: IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 94–99 (2010)

26. Borghetti, J., Strukov, D.B., Pickett, M.D., Yang, J.J., Stewart, D.R., Williams,
R.S.: Electrical transport and thermometry of electroformed titanium dioxide
memristive switches. J. Appl. Phys. 106(12), 124504 (2009)

27. Choi, S., Yang, Y., Lu, W.: Random telegraph noise and resistance switching analy-
sis of oxide based resistive memory. Nanoscale 6(1), 400–404 (2014)

28. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

29. Hori, Y., Yoshida, T., Katashita, T., Satoh, A.: Quantitative and statistical per-
formance evaluation of arbiter physical unclonable functions on FPGAs. In: Inter-
national Conference on Reconfigurable Computing and FPGAs (ReConFig), pp.
298–303. IEEE (2010)

30. Kavehei, O., Hosung, C., Ranasinghe, D.C., Skafidas, S.: mrPUF: a memristive
device based physical unclonable function. arXiv preprint arXiv:1302.2191 (2013)

31. Kavehei, O., Linn, E., Nielen, L., Tappertzhofen, S., Skafidas, E., Valov, I., Waser,
R.: An associative capacitive network based on nanoscale complementary resistive
switches for memory-intensive computing. Nanoscale 5(11), 5119–5128 (2013)

32. Kim, K.-H., Jo, S.H., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic
diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106 (2010)

33. Ranasinghe, D.C., Engels, D.W., Cole, P.H.: Security and privacy solutions for low-
cost rfid systems. In: Proceedings of the IEEE Inelligent Sensors, Sensor Networks
and Information Processing Conference, pp. 337–342 (2004)

34. Ranasinghe, D.C., Cole, P.H.: Confronting security and privacy threats in mod-
ern RFID systems. In: Proceedings of the IEEE Fortieth Asilomar Conference on
Signals, Systems and Computers, pp. 2058–2064 (2004)
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Abstract. A straightforward way of constructing an n-bit pseudoran-
dom function is to XOR two or more pseudorandom permutations:
p1 ⊕ . . . ⊕ pk. This XOR construction has gained broad attention over
the last two decades. In this work, we revisit the security of this well-
established construction. We consider the case where the underlying
permutations are considered secret, as well as the case where these
permutations are publicly available to the adversary. In the secret permu-
tation setting, we present a simple reduction showing that the XOR con-
struction achieves optimal 2n security for all k ≥ 2, therewith improving
a recent result of Cogliati et al. (FSE 2014). Regarding the public permu-
tation setting, Mandal et al. (INDOCRYPT 2010) proved 22n/3 security
for the case k = 2, but we point out the existence of a non-trivial flaw
in the proof. We re-establish and generalize the claimed security bound
for general k ≥ 2 using a different proof approach.

Keywords: XOR of permutations · Indifferentiability · Beyond
birthday bound · H-coefficient technique

1 Introduction

A fundamental research question in cryptography is how to construct a pseudo-
random function (PRF) from a pseudorandom permutation (PRP). The first to
formally consider this problem were Bellare et al. [21]. They named the prob-
lem “Luby-Rackoff backwards”, referring to the celebrated result by Luby and
Rackoff who showed how to construct a PRP from a PRF [31]. Their PRF
construction consisted of two sequential block cipher calls, where the output of
the first call is the key input to the second one: f(k, x) = E(E(k, x), x). This
construction only achieves security up to the birthday bound on the output size.

Various methods to construct a PRF from a PRP have been presented that
achieve security beyond the 2n/2 birthday bound, the most notable approach
being the XOR of multiple n-bit permutations. In more detail, let p1, . . . , pk be
k ≥ 1 n-bit permutations, and define the following function:

fk = p1 ⊕ · · · ⊕ pk. (1)

For k = 1, the security of f1 is commonly known as the PRP-PRF switch,
and primary analysis on this function has, among others, been performed by
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 619–634, 2015.
DOI: 10.1007/978-3-319-28166-7 30
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Impagliazzo and Rudich [25], Black et al. [19], Hall et al. [29], and Bellare
and Rogaway [4]. For general k ≥ 1, Lucks [9] proved that this function is a
secure PRF up to about 2

k
k+1n queries. For k = 2, Bellare and Impagliazzo [18]

proved security up to approximately 2n/n2/3, and Patarin [30] improved this
bound to approximately 2n. The latter result is proven using the H-coefficient
technique [10], a proof technique that has recently been revisited by Chen and
Steinberger [27] and found adoption (among others) in the security of key alter-
nating ciphers [27], cascade encryption [1], and MACs [5,24]. Using the same
techniques, Cogliati et al. [28] recently improved the security bounds of fk for
k ≥ 3, proving that it behaves like a PRF up to approximately 2

2k+1
2k+2n queries.

The authors also mention that the bound could be improved to 2n, via methods
similar to the iterative method employed by Patarin [30], but no proof is given.
The state of the art is summarized in Table 1.

All of above-mentioned results are in the secret permutation setting. In more
detail, one considers an adversary that is given access to either fk (using secret
permutations), or a random function R, and its goal is to distinguish both worlds.
While to a certain degree it is possible to view the permutations as secret – one
can consider them being instantiated as block ciphers with fixed and secret keys
– a novel trend in cryptography is to view permutations as standalone and pub-
licly available objects. For instance, various permutation-based hash functions
have appeared over the last years [6,7,16,20,22,23] and the recently started
CAESAR competition [11] received various permutation-based submissions, and
all of these constructions have been analyzed in the public permutation model.
If we wish to consider fk in the case where the underlying permutations are pub-
licly available, the indistinguishability model is deficient. An improved notion is
the indifferentiability framework, introduced by Maurer et al. [15]. Informally, it
gives a sufficient condition under which an ideal functionality R can be replaced
by fk using ideal, publicly available, primitives p = (p1, . . . , pk). Indifferentia-
bility proofs consider the existence of a simulator S with access to R such that
(fk, p) on the one hand and (R,S) on the other hand are indistinguishable. In
this indifferentiability model, Mandal et al. [2] proved that f2 achieves O(22n/3)
security. The authors conjecture that their simulator allows to achieve optimal
O(2n) indifferentiability. An additional open problem is to generalize this result
to k > 2 permutations. Table 1 also summarizes the state of the art for the public
permutation setting.

A related result is the construction of a permutation XORed with its inverse,
p ⊕ p−1, as introduced by Dodis et al. [12]. However, this construction is only
proven to achieve indifferentiability security up to the birthday bound.

Our Contributions

We revisit the state of the art in both the secret permutation setting and the
public permutation setting.

Starting with security in the secret permutation setting, we present an alter-
native and short proof showing that fk indeed achieves 2n indistinguishability
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Table 1. State of the art for indistinguishability (first) and indifferentiability (second).
Results in bold are derived in this work

k bound reference remark

indistinguishability (pi secret) ≥1 2
k

k+1n [9]

2 2n/n2/3 [18]

2 2n [30]

≥3 2
2k+1
2k+2n [28] conjectured 2n

≥3 2n Sect. 3

indifferentiability (pi public) 2 2n/2 [2]

2 22n/3 [2] flawed (Sect. 4.3)

≥2 22n/3 Sect. 4

security for all k ≥ 3. The proof is fairly straightforward, consisting of a reduction
of the security of fk+1 to fk for all k ≥ 2, and using Patarin’s proof of 2n secu-
rity of f2 [30]. The proof is simpler than the one suggested by Cogliati et al. to
achieve 2n security [28], but the price to pay is a slightly worse security bound.
(The difference lies in the security exponent. Informally, this is a value c such
that the security bound behaves like (q/2n)c. A larger c means a sharper curve
for the security advantage, or in other words that the threshold value q0 such
that (q0/2n)c = 1/2, is higher. The approach suggested in [28] is expected to
result in a larger security exponent.)

Regarding security in the public permutation setting, we revisit the work of
Mandal et al. [2] and note that the proof contains a subtle but non-negligible flaw.
The bug appears in the technical part of the proof, it is not straightforwardly
fixable, and thus invalidates the security result, leaving the indifferentiability of
f2 beyond 2n/2 as an open problem. Nevertheless, the mistake does not have a
direct influence on the proposed simulator. For a generalization of their simulator
to k ≥ 2 rounds, we next restore the claimed security bound. In more detail, we
re-confirm that fk achieves at least 22n/3 indifferentiability security. The security
result is obtained by following a different proof approach and avoiding the flawed
part all the way. The new proof particularly relies on a result from the area of
Fourier theory proven by Babai [3], Steinberger [13], and Chen et al. [14], that
(informally) bounds the number of solutions to a⊕b = c for (a, b, c) ∈ A×B×C,
where C is a set of random elements and A and B are two arbitrarily chosen
sets of size |C| (details follow in Sect. 4.4). This problem found earlier adoption
in the area of permutation-based hashing [23], digital signatures [17], and the
security of Even-Mansour [14].

The new results are also included in Table 1.

Outline

We introduce some mathematical preliminaries and discuss the indistinguishabil-
ity and indifferentiability models in Sect. 2. We present our short and alternative
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proof for the indistinguishability of fk in Sect. 3. A new indifferentiability proof
for k ≥ 2, using a generalization of the simulator of Mandal et al. [2], is given
in Sect. 4. The work is concluded in Sect. 5. In this section, we also elaborate on
possible improvements of our result to 2n security.

2 Preliminaries

Let n ≥ 1 be an integer. By Func(n) we denote the set of all functions from
{0, 1}n to {0, 1}n and by Perm(n) the set of all permutations on {0, 1}n. For a
set X , we denote by x

$←− X the uniformly random sampling of an element from
X . If x and y are two bitstrings of the same size, x⊕y denotes their bitwise XOR.

Throughout, a distinguisher D is a computationally unbounded probabilistic
algorithm that has oracle access to one or more oracles O. The distinguisher
can make a certain amount of oracle queries to O, and after this interaction DO

outputs a 0 or a 1.

Definition 1 (Indistinguishability). For an integer k ≥ 1, consider fk of
(1) based on p = (p1, . . . , pk) $←− Perm(n)k. Let R $←− Func(n). The distinguishing
advantage of D against fk is defined as

Advdist
fk

(D) =
∣
∣P

(
Dfk = 1

)
− P

(
DR = 1

)∣
∣ ,

where the probabilities are taken over the randomness of p, R, and D.

Maurer et al. [15] introduced indifferentiability as an extension of indistinguisha-
bility, more suitable for the case the underlying primitives are publicly available.
Indifferentiability of a function fk from a random function R, intuitively, means
that fk shows no structural design flaws and that it can replace R in any con-
struction, up to the indifferentiability security bound of fk. We employ the adap-
tion and simplification by Coron et al. [26], rewritten in our own terminology.

Definition 2 (Indifferentiability). For an integer k ≥ 1, consider fk of (1)
based on p = (p1, . . . , pk) $←− Perm(n)k. Let R $←− Func(n). Let S be a simulator
with the same interface as p and with oracle access to R. The differentiating
advantage of D against fk for simulator S is defined as

Advdiff
fk,S(D) =

∣
∣P

(
Dfk,p = 1

)
− P

(
DR,S = 1

)∣
∣ ,

where the probabilities are taken over the randomness of p, R, S, and D.

The indistinguishability and indifferentiability definitions are depicted in Fig. 1.

3 Indistinguishability of fk

We present a short proof for the indistinguishability of fk from a random func-
tion R from Func(n), in accordance with Definition 1. We start with a security
reduction of fk+1 to fk for all k ≥ 2.
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Fig. 1. Indistinguishability (without dashed elements) and indifferentiability (with
dashed elements)

Theorem 1. For all k ≥ 2, for any distinguisher D, we have Advdist
fk+1

(D) ≤
Advdist

fk
(D).

Proof. We consider a distinguisher DO that has access to an oracle O, either
fk+1 or R $←− Func(n), and makes q queries to this oracle. If DO,O′

is given
access to an additional oracle O′ with the same domain as O, this means that
for every query D makes to O, it gets the same query to O′ for free. In other
words, if DO,O′

queries x to its oracle O, it gets as response the values O(x) and
O′(x).

For brevity, we denote P
(
DO = 1

)
= P (O) and P

(
DO,O′

= 1
)

= P (O,O′).
Recall that fk+1 = p1 ⊕ · · · ⊕ pk+1. By construction:

Advdist
fk+1

(D) = |P (p1 ⊕ · · · ⊕ pk+1) − P (R)|
(a)

≤ |P (p1 ⊕ · · · ⊕ pk+1, pk+1) − P (R, pk+1)|
(b)
= |P (p1 ⊕ · · · ⊕ pk, pk+1) − P (R, pk+1)|
(c)
= |P (p1 ⊕ · · · ⊕ pk) − P (R)| = Advdist

fk
(D) ,

where (a) holds as extra access may only increase the advantage, (b) holds as
(p1 ⊕· · ·⊕pk, pk+1) can be computed from (p1 ⊕· · ·⊕pk+1, pk+1) and vice versa,
and (c) holds as pk+1 is an independent permutation. ��

Next, we recall the result of Patarin [30] on the indistinguishability of f2.

Lemma 1 (Patarin [30]). For any D making q oracle queries, we have
Advdist

f2
(D) = O(q/2n).

From Theorem 1 and Lemma 1, the following corollary immediately follows,
showing that fk is indistinguishable up to about 2n queries, for all k ≥ 2.

Corollary 1. For all k ≥ 2, for any D making q oracle queries, we have
Advdist

fk
(D) = O(q/2n).
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4 Indifferentiability of fk

In this section we consider the indifferentiability of fk (cf. Definition 2), in case
the underlying permutations are public. We prove the following result.

Theorem 2. For all k ≥ 2, there exists a simulator S such that for any D
making q ≥ 9n oracle queries,

Advdiff
fk,S(D) ≤ 4q3

22n
+

3n1/2q3/2

2n
+

2
2n

.

The simulator makes at most 2q queries to R.

While the theorem is stated for general k, the bound is independent of k. This
is caused by the fact that we consider a direct generalization of the simulator
of Mandal et al. [2], but the core problems that determine the bound find their
roots in the basic case of k = 2. We refer to Sect. 5 for a more detailed discussion.

The remainder of the section is organized as follows. Firstly, we describe a
generalization of the simulator S introduced by Mandal et al. [2] to k ≥ 2 (in
Sect. 4.1). Secondly, we present Patarin’s H-coefficient technique upon which the
proof is based, along with some preliminary observations (in Sect. 4.2). These fol-
low [2] with the difference that we use the re-formalization of Patarin’s technique
by Chen and Steinberger [27]. Thirdly, we discuss the original indifferentiability
proof of [2] (in Sect. 4.3). Fourthly, we present our new proof (in Sect. 4.4).

4.1 Simulator

We describe the simulator used in our work. It is a direct generalization of the
simulator S of Mandal et al. [2] to a general number of k ≥ 2 permutations.

The goal of the simulator S is to mimic the permutations p = (p1, . . . , pk)
in such a way that (fk, p) and (R,S) look indistinguishable. S therefore has
the same interface as p, and we write S = (S1, . . . ,Sk). The distinguisher can
make forward and inverse queries to each of these functionalities, which means
that it can query S in 2k ways. However, the simulator should look like R =
S1 ⊕ · · · ⊕ Sk, and if a distinguisher would, for instance, query S1(x), it very
likely also wishes to know S2(x), . . . ,Sk(x). To suit the analysis, we model the
simulator in such a way that on a forward query x, the distinguisher is given all
values S(x) = (S1(x), . . . ,Sk(x)). This simplification essentially corresponds to
giving the distinguisher k − 1 “free” queries. It also means that S has only one
interface for forward queries.

A similar issue arises for inverse queries. If the distinguisher makes a query
to S−1

� for � ∈ {1, . . . , k}, the simulator will not only output a preimage x, but
also the corresponding range values S1(x), . . . ,S�−1(x),S�+1(x), . . . ,Sk(x). Also
here, the distinguisher essentially gets k − 1 queries for free.

The simulator maintains a sequence of responses {(xi, y
1
i , . . . , yk

i )}q
i=1, where

q denotes the number of queries to S. These tuples correspond to the evaluations

S(xi) = (S1(xi), . . . ,Sk(xi)) = (y1
i , . . . , yk

i ) ,
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for i = 1, . . . , q. Note that every forward query as well as every inverse query to
S results in exactly one such tuple. Here and throughout, we assume D never
repeats an old query, e.g., in a forward query S(xi), we have xi 	∈ {x1, . . . , xi−1}.

The simulator S is defined as follows. We consider its description for the ith
query, for i ∈ {1, . . . , q}. We describe the simulator for forward queries S(xi),
and for inverse queries S−1

� (y�
i ) for � ∈ {1, . . . , k}.

Forward Query S(xi). For � = 3, . . . , k, the simulator draws y�
i uniformly

randomly from {0, 1}n\{y�
1, . . . , y

�
i−1}. Then, it queries xi to R and generates y1

i

uniformly randomly from

{0, 1}n\{y1
1 , . . . , y1

i−1, ȳi ⊕ y2
1 , . . . , ȳi ⊕ y2

i−1} (2)

where we define ȳi = R(xi) ⊕ y3
i ⊕ . . . ⊕ yk

i . Finally, it sets y2
i = ȳi ⊕ y1

i .
Informally, S(xi) selects random y�

i for � = 3, . . . , k, and uses y1
i and y2

i to
make sure that R(xi) = y1

i ⊕ . . . ⊕ yk
i . Note that, due to the drawing of y1

i from
(2), we have y2

i 	∈ {y2
1 , . . . , y2

i−1}.

Inverse Query S−1
� (y�

i). The simulator generates its response as follows.

(1) Draw y�′
i uniformly randomly from {0, 1}n\{y�′

1 , . . . , y�′
i−1} for �′ ∈ {� +

1, . . . , � + k − 2};1

(2) Draw xi uniformly randomly from {0, 1}n\{x1, . . . , xi−1} and query xi to R;
(3) Set y�−1

i = R(xi) ⊕ y�
i ⊕ . . . ⊕ y�+k−2

i . If y�−1
i ∈ {y�−1

1 , . . . , y�−1
i−1}, return

to (2).

We call a drawing xi such that the resulting value y�−1
i in step (3) is not new

a “failed guess”. As in [2], in the proof we will limit the simulator to make at
most 2 attempts (and thus at most 1 failed guess) per query. The simulator will
abort once it exceeds this bound for some query.

4.2 Patarin’s Technique

Fix any distinguisher D making q queries. As it is computationally unbounded,
without loss of generality we can assume it is deterministic. We summarize the
interaction of D with its oracles by a transcript τ , which consists of all query-
response tuples D sees during its interaction with its oracles. We assume D
never makes duplicate queries. The set of all possible transcripts is denoted by
T . Denote by X (resp. Y ) the probability distribution of transcripts in the ideal
(resp. simulated) world, for the fixed deterministic distinguisher D.

Patarin’s H-coefficient technique [27,30] states the following.2

1 Here and throughout, all indices are taken modulo k and in the range {1, . . . , k}.
2 The H-coefficient technique in fact applies to indistinguishability in general, but to

suit the presentation, we introduce it in the context of the indifferentiability of fk.
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Lemma 2 (H-coefficient Technique [27,30]). Consider a fixed deterministic
distinguisher D. Let T = Tgood ∪Tbad be a partition of the set of transcripts. Let
ε be such that for all τ ∈ Tgood,

P (Y = τ) ≥ P (X = τ) · (1 − ε) . (3)

Then, Advdiff
fk,S(D) ≤ ε + P (X ∈ Tbad).

Proof. The proof is fairly straightforward, and we include it for completeness.
We refer to [27] for a more detailed discussion.

We consider a deterministic distinguisher D, and as such, its differentiating
advantage equals the statistical distance between the distributions of transcripts
in the ideal and simulated world:

Advdiff
fk,S(D) =

1
2

∑

τ∈T

∣
∣P (X = τ) − P (Y = τ)

∣
∣

(a)
=

∑

τ∈T :P(X=τ)>P(Y =τ)

(
P (X = τ) − P (Y = τ)

)

(b)
=

∑

τ∈T :P(X=τ)>P(Y =τ)

P (X = τ)
(

1 − P (Y = τ)
P (X = τ)

)

(c)

≤
∑

τ∈Tgood

P (X = τ) ε +
∑

τ∈Tbad

P (X = τ)

≤ ε + P (X ∈ Tbad) ,

where (a) holds by symmetry, (b) as P (X = τ) > 0 by construction, and (c)
holds by (3). ��

The main idea of the technique is exposed in the last step: for almost all tran-
scripts (the good ones), the ratio of (3) will be rather close to one and for these
transcripts we can take ε close to 0. For the few bad transcripts, ε may become
large (even close to 1). Additionally, the technique allows us to focus on fixed
transcripts and compute the probability of such a transcript to occur.

We build the following distinguisher D′ on top of D. Distinguisher D′ operates
as D, and particularly outputs the same decision. However, at the end D′ will
make an additional amount of q1 primitive queries to p/S as follows: for each
of the queries to fk/R it has made, D′ makes the same query to p/S, except
if this would imply a duplicate primitive query in which case D′ may replace it
with a random non-repeating query. Clearly, D and D′ always output the same
decision, and hence Advdiff

fk,S(D) = Advdiff
fk,S(D′). Also, if D makes q1 queries to

its construction oracle and q2 queries to its primitive, then D′ makes exactly q1

additional queries to its primitive. Note that, particularly, D′ makes q queries to
the primitive. In a transcript of D′, all queries to the construction oracle (fk or
R) are encapsulated in the queries to the primitive oracle (p or S). Therefore,
this approach reduces our problem to the problem of comparing (p1, . . . , pk) with
(S1, . . . ,Sk), the former called the ideal and the latter the simulated world.
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Finally, recall that the simulator may abort. This is formalized by including
in the transcript a dedicated symbol b ∈ {�,⊥}. In the ideal world, we always
have b = �, and in the simulated world, b = � unless the simulator aborted.
Note that if b = ⊥, the distinguisher succeeds with probability 1. In fact, in this
case the transcript will be considered a bad transcript, and due to Lemma2, the
technical part of the work centers around good transcripts.

Let τ =
(
{(xi, y

1
i , . . . , yk

i )}q
i=1, b

)
∈ T be any transcript that can be seen by

distinguisher D′. Note that, as D′ makes no duplicate queries, we have xi 	= xi′

and y�
i 	= y�

i′ for all i, i′, �. For arbitrary z ∈ {0, 1}n, we define

N(z) = {(j, j′) ∈ {1, . . . , q}2 | y1
j ⊕ y2

j′ = z} . (4)

4.3 Intermezzo: Proof of Mandal et al. [2]

The skeleton of our proof is similar to the one of [2]. Differences arise at the
definition of the bad event, and the remainder of the proof. Before proceeding
with our proof, we revisit the one of [2] at a high level (in our terminology),
point out the presence of a flaw, and briefly discuss to what extent our proposed
fix differs. Recall that the proof of [2] is for k = 2.

In the original proof, a transcript3 τ = {(xi, y
1
i , y2

i )}q
i=1 is called “bad” if

N(z) > 24q2

2n−q for some z ∈ {0, 1}n. In [2, Theorem 5], it is then proven that

P (X ∈ Tbad) = P
(

∃z ∈ {0, 1}n : N(z) >
24q2

2n − q

)

≤ 1/211n.

The proof assumes randomness of {(y1
i , y2

i )}q
i=1, but if an adversary makes an

inverse query to one of its primitive oracles, it can freely choose y1
i or y2

i . Inspired
by this, we can consider an adversary that operates as follows (define q′ = q/2):

• Choose z ∈ {0, 1}n;

• Query y1
i

p−1
1−−→ xi, y

2
i for i = 1, . . . , q′, all distinct values;

• Query y2
i = y1

i−q′ ⊕ z
p−1
2−−→ xi, y

1
i for i = q′ + 1, . . . , 2q′ = q, all distinct values.

Then, we have y1
i ⊕ y2

i+q′ = z for all i = 1, . . . , q′. In other words, N(z) ≥ q/2
after q queries, invalidating the claim for any 2 ≤ q ≤ 2n/49. (In a personal
communication, the authors of [2] have confirmed the presence of this flaw.)

We note that a straightforward fix of the proof of [2], consisting of impos-
ing N(z) ≤ const · q for good transcripts, does not work: it only results in
O(2n/2) security of the construction. This issue is resolved in our proof by using
a structurally different bad event, and relying on existing results from the area
of Fourier theory [3,13,14]. Naturally, the employment of a different bad event
also leaves its traces in the analysis of good transcripts, as becomes clear from
the proof.

3 The abortion bit b is absent in the original proof.



628 B. Mennink and B. Preneel

4.4 Proof of Theorem 2

The proof of Theorem 2 roughly consists of four steps: (i) we define what type
of transcripts we consider “bad”, (ii) we bound the probability a bad transcript
occurs, (iii) we derive a bound on the ratio a good transcript is seen in the real
and ideal world, and (iv) the pieces are connected and the proof of Theorem 2
is completed.

The proof differs from the one of [2] in the definition of bad transcripts and
the probability analysis thereof, and in the analysis of forward queries for good
transcripts.

Bad Transcripts

Let τ =
(
{(xi, y

1
i , , . . . , yk

i )}q
i=1, b

)
∈ T be any attainable transcript. Recall the

definition of N(z) for arbitrary z ∈ {0, 1}n, Eq. (4). Transcript τ is called bad if
b = ⊥, or if

q∑

i=1

|N(y1
i ⊕ y2

i )| > C (5)

for some to-be-determined C > 0. Next, we upper bound the probability a bad
transcript is obtained in the ideal world, P (X ∈ Tbad), and lower bound the
ratio P (Y = τ) /P (X = τ) for τ ∈ Tgood.

Upper Bounding P (X ∈ Tbad)

The ideal world never aborts, hence b = � by construction. Consequently, the
badness of transcripts is solely defined based on the values (y1

i , y2
i ). We isolate

the problem, and consider an adversary whose sole objective is to maximize∑q
i=1 |N(y1

i ⊕ y2
i )|.

In a forward query, the adversary chooses xi and receives randomly drawn
y1

i and y2
i . In an inverse query, it may choose either of the yi-values and receives

a randomly drawn opposite. Therefore, the adversary will be most successful if
it only makes inverse queries to p−1

� for � ∈ {1, 2}. In light of this, we consider
an adversary engaged in the following game. For i = 1, . . . , q, either choose a y1

i

to receive y2
i = p2 ◦ p−1

1 (y1
i ), or choose a y2

i to receive y1
i = (p2 ◦ p−1

1 )−1(y2
i ).

Define zi = y1
i ⊕ y2

i . The adversary’s goal is to maximize

q∑

i=1

|N(y1
i ⊕ y2

i )| =
q∑

i=1

|N(zi)| =
∣
∣{(j, j′, i) ∈ {1, . . . , q}3 | y1

j ⊕ y2
j′ = zi}

∣
∣ .

Note that, as p1, p2
$←− Perm(n), also π = p2 ◦ p−1

1 behaves like a random permu-
tation. We generalize the game as follows. Let π

$←− Perm(n). The adversary can
query π adaptively and in both directions to obtain two lists Y 1 = {y1

1 , . . . , y1
q}

and Y 2 = {y2
1 , . . . , y2

q} such that y2
i = p2 ◦ p−1

1 (y1
i ) for i = 1, . . . , q. Write
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Z = {z1, . . . , zq}, with the zi’s as before. Then, its goal is now to find two lists
U and V of q elements that maximize

λ(U, V, Z) =
∣
∣
{
(u, v, z) ∈ U × V × Z | u ⊕ v = z

}∣
∣ .

Note that, by construction,
q∑

i=1

|N(y1
i ⊕ y2

i )| = λ(Y 1, Y 2, Z) ≤ max
U,V :|U |=|V |=q

λ(U, V, Z) =: μ(Z) .

We therefore obtain:

P (X ∈ Tbad) ≤ P

(
q∑

i=1

|N(y1
i ⊕ y2

i )| > C

)

≤ P (μ(Z) > C) .

The problem of bounding μ(Z) appeared before in works on permutation-based
hashing by Mennink and Preneel [23], on digital signatures by Kiltz et al. [17],
and on the security of Even-Mansour by Chen et al. [14]. It is also known as the
“sum-capture problem”. We follow Chen et al. [14, Theorem 1], which in turn
builds upon Babai [3] and Steinberger [13]:

Lemma 3 (Sum-Capture Problem [14]). Let π
$←− Perm(n) be a random

permutation. Let A be some adversary that makes q two-sided adaptive queries to
π, resulting in transcript {(y1

1 , y2
1), . . . , (y1

q , y2
q )}. Write Z = {z1, . . . , zq}, where

zi = y1
i ⊕ y2

i for i = 1, . . . , q. Then, assuming 9n ≤ q ≤ 2n/2,

P
(
μ(Z) > 3q3/2n + 3n1/2q3/2

)
≤ 2

2n
.

We, logically, define C = 3q3/2n + 3n1/2q3/2.

Lower Bounding Ratio P (Y = τ ) /P (X = τ )

Let τ =
(
{(xi, y

1
i , . . . , yk

i )}q
i=1, b

)
∈ Tgood be a good transcript. This particularly

implies that b = � and that the simulator never aborts, and we omit this sym-
bol in the remaining analysis. Note that in the ideal world p1, . . . , pk are ideal
permutations, and P (X = τ) =

∏q
i=1 1/

(
2n − (i − 1)

)k. In the remainder, we
will compute P (Y = τ). For � = 1, . . . , q, we denote by e� the event that the
failed guess in the �th query (if any) does not equal any x1, . . . , xq and has not
occurred before (the same condition was posed by Mandal et al. [2]). We write
E� = e1 ∧ · · · ∧ e�. Clearly,

P (Y = τ) ≥ P (Y = τ ∧ Eq) , (6)

and we focus on the latter probability. Denote τi = (xi, y
1
i , . . . , yk

i ) for i =
1, . . . , q. Similarly for random variable Y , denote by Yi the random variable
corresponding to the ith tuple. We have

P (Y = τ ∧ Eq) =
q∏

i=1

P
(
Yi = τi ∧ Ei

∣
∣
∣ ∀i−1

j=1Yj = τj ∧ Ei−1

)

︸ ︷︷ ︸
Pi

. (7)

We proceed with the analysis of Pi for i ∈ {1, . . . , q}.
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Forward Query S(xi). Due to attainability of the transcript, xi is distinct of
x1, . . . , xi−1. Additionally, Ei−1 implies that xi has not been queried to R before.
Therefore, the response value R(xi) = y1

i ⊕ · · · ⊕ yk
i is randomly drawn from a

set of size 2n. The values y3
i , . . . , yk

i are all drawn from a set of size 2n − (i − 1).
Finally, y1

i is uniformly randomly drawn from the set (2) which is of size at most
2n − 2(i − 1) + |N(ȳi)|, where ȳi = R(xi) ⊕ y3

i ⊕ . . . ⊕ yk
i . Indeed, the sets

{y1
1 , . . . , y1

i−1} and {ȳi ⊕ y2
1 , . . . , ȳi ⊕ y2

i−1}

have an overlap of at most |N(ȳi)|. For forward queries we thus have

Pi ≥ 1
(
2n − (i − 1)

)k−2
· 1
2n

· 1
2n − 2(i − 1) + |N(ȳi)|

≥ 1
(
2n − (i − 1)

)k
·
(

1 − |N(ȳi)|
2n

)

,

which follows from the fact that (writing B = |N(ȳi)|)
1
2n

· 1
2n − 2(i − 1) + B

=
1

(
2n − (i − 1)

)2 · (2n − (i − 1))2

2n(2n − 2(i − 1) + B)

=
1

(
2n − (i − 1)

)2 ·
(

1 − B

2n
· 2n − (i − 1)2/B

2n − 2(i − 1) + B

)

≥ 1
(
2n − (i − 1)

)2 ·
(

1 − B

2n

)

,

where in the last step we use that 2n − (i − 1)2/B ≤ 2n − 2(i − 1) + B as
(i − 1)2/B − 2(i − 1) + B = (i − 1 − B)2/B ≥ 0.

Finally, as ȳi = y1
i ⊕y2

i by construction, we have B = |N(ȳi)| = |N(y1
i ⊕y2

i )|.

Inverse Query S−1
� (y�

i)(� ∈ {1, . . . , k}). Regarding xi, the simulator may
make 2 trials in order to find a successful x�. For β = 1, 2, denote by succ(β) the
event that attempts 1, . . . , β − 1 failed but attempt β succeeds. Then,

Pi ≥
2∑

β=1

P
(
Yi = τi ∧ Ei ∧ succ(β)

∣
∣
∣ ∀i−1

j=1Yj = τj ∧ Ei−1

)

︸ ︷︷ ︸
Pi,β

. (8)

Now, Pi,β covers the case that (i) the drawings y�+1
i , . . . , y�+k−2

i are all cor-
rect, (ii) the first guess fails (if β = 2), and (iii) the βth succeeds. Firstly,
y�+1

i , . . . , y�+k−2
i are all randomly drawn from a set of size 2n − (i−1). Secondly

(if β = 2), the first guess fails with probability at least
(

1 − (q − (i − 1)) + (i − 1)
2n − (i − 1)

)

· i − 1
2n

,

where the first fraction comes from the number of invalid guesses xi (which
would violate the conditions in ei), and the second fraction is because every
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guess corresponds to a random draw from {0, 1}n (by R) and it fails if R(xi) ∈
{ȳi ⊕ y�−1

1 , . . . , ȳi ⊕ y�−1
i−1}, for ȳi = y�

i ⊕ · · · ⊕ y�+k−2
i . The βth attempt succeeds

with probability
1

2n − (i − 1)
· 1

2n
, where xi is again taken from a set of size

2n − (i − 1) and y�−1
i is defined as the outcome of R. Therefore, from (8):

Pi ≥ 1
(
2n − (i − 1)

)k−1
· 1
2n

·

⎛

⎜
⎜
⎜
⎝

1
︸︷︷︸
β=1

+
2n − q − (i − 1)

2n − (i − 1)
· i − 1

2n

︸ ︷︷ ︸
β=2

⎞

⎟
⎟
⎟
⎠

=
1

(
2n − (i − 1)

)k
· 2n(2n − (i − 1)) + (2n − q − (i − 1))(i − 1)

22n

=
1

(
2n − (i − 1)

)k
·
(

1 − (q + (i − 1))(i − 1)
22n

)

≥ 1
(
2n − (i − 1)

)k
·
(

1 − 2(i − 1)q
22n

)

.

Combination. Combining forward and inverse queries, we find that

Pi ≥ 1
(
2n − (i − 1)

)k
·
(

1 − |N(y1
i ⊕ y2

i )|
2n

− 2(i − 1)q
22n

)

,

and thus, via (6–7):

P (Y = τ) ≥ P (X = τ) ·
q∏

i=1

(

1 − |N(y1
i ⊕ y2

i )|
2n

− 2(i − 1)q
22n

)

≥ P (X = τ) ·
(

1 −
q∑

i=1

|N(y1
i ⊕ y2

i )|
2n

−
q∑

i=1

2(i − 1)q
22n

)

≥ P (X = τ) ·
(

1 −
q∑

i=1

|N(y1
i ⊕ y2

i )|
2n

− q3

22n

)

.

As τ is a good transcript, we know that
∑q

i=1 |N(y1
i ⊕ y2

i )| ≤ C = 3q3/2n +
3n1/2q3/2, and hence we obtain,

ε =
4q3

22n
+

3n1/2q3/2

2n
. (9)

Conclusion of Proof

Using Lemma 2, the value ε of (9) and Lemma 3 for a bound on the probability
of a bad transcript combine to

Advdiff
fk,S(D) = Advdiff

fk,S(D′) ≤ 4q3

22n
+

3n1/2q3/2

2n
+

2
2n

.

This completes the proof of Theorem 2.
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5 Conclusions

Since their first appearance in [18], XOR constructions have received broad
attention in the cryptographic community [2,9,10,18,28,30]. As a matter of fact,
the security of the XOR construction in the secret permutation setting is well-
studied, as reflected in Table 1, and our proof of Corollary 1 closes the case. On
the other hand, for the more relevant case of security in the public permutation
setting, the only result in this direction [2] claimed 22n/3 security. We pointed
out a bug in their analysis, and also our proof only guarantees security as long
as the number of queries does not exceed this bound.

The original simulator of [2], and more generally the simulator of Sect. 4.1 for
k ≥ 2 is conjectured to allow for security up to q � 2n queries. We expect this to
be a highly non-trivial exercise. Our generalized proof clearly shows the bottle-
neck (in the proof of Mandal [2] this was a bit less clear): while the analysis of the
ratio P (Y = τ) /P (X = τ) and the description of bad transcripts as imposed
by our analysis leaves little room for tightening, the lossiness of the bound seems
to originate from the analysis of P (X ∈ Tbad), or in more detail that the quan-
tity of (5) is bounded by O(q3/2n). The bound we derive on this probability,
however, relies on various well-established results from Fourier theory [3,13,14].

A possible alternative improvement lies in the description of the simulator.
Indeed, the presented simulator is constructed to effectively use two out of k
of its responses to comply with R. It may be possible to generate its responses
so as to minimize the quantity of (5) or a generalized variant thereof. This,
however, leads to a simulator that is significantly harder to analyze, and it may
additionally influence the ratio for good transcripts. We recall that, already for
the case k = 2, optimal security is conjectured.
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Abstract. A pseudo-random number generator (PRNG) is a determin-
istic algorithm that produces numbers whose distribution is indistin-
guishable from uniform. In this paper, we extend the formal model of
PRNG with input defined by Dodis et al. at CCS 2013 to deal with
partial leakage of sensitive information. The resulting security notion,
termed leakage-resilient robust PRNG with input, encompasses all the
previous notions, but also allows the adversary to continuously get some
leakage on the manipulated data. Dodis et al. also proposed an efficient
construction, based on simple operations in a finite field and a classical
deterministic pseudo-random generator G. Here, we analyze this con-
struction with respect to our new stronger security model, and prove that
with a stronger G, it also resists leakage. We show that this stronger G
can be obtained by tweaking some existing constructions based on AES.
We also propose a new instantiation which may be better in specific
cases. Eventually, we show that the resulting scheme remains quite effi-
cient in spite of its new security properties. It can thus be recommended
in contexts where side-channel resistance is required.

Keywords: Randomness · Entropy · Side-channel countermeasures ·
Security models

1 Introduction

While most cryptosystems require access to a perfect source of randomness for
their security, such sources are extremely difficult to obtain in practice. For this
reason, concrete implementations of cryptographic schemes often use a pseudo-
random number generator (PRNG). The latter allows to generate a sequence of
bits whose distribution is computationally indistinguishable from the uniform
distribution, when given as input a secret short random value, called seed.

To get around the need for a truly random seed, Barak and Halevi [6]
proposed a tweaked primitive, called PRNG with inputs, which still generates
pseudo-random values but now remains secure even in presence of a potentially
biased random source. Moreover, they also proposed a new security notion, called
c© Springer International Publishing Switzerland 2015
T. Malkin et al. (Eds.): ACNS 2015, LNCS 9092, pp. 635–654, 2015.
DOI: 10.1007/978-3-319-28166-7 31
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robustness, which states that a PRNG with inputs should meet three security
properties: resilience, forward security, and backward security. While resilience
models the inability of an adversary to predict future PRNG outputs even when
manipulating the entropy source, forward and backward security ensures that
an adversary cannot predict past or future outputs of the PRNG even when
compromising its internal state. More recently, Dodis et al. [10] extended the
work of Barak and Halevi to integrate the process of accumulation of entropy
into the internal state. For this purpose, they refined the notion of robustness
and proposed a very practical scheme satisfying it. Under the robustness security
notion, an adversary can observe the inputs and outputs of a PRNG, manipulate
its entropy source, and compromise its internal state.
Side-Channel Resistance for PRNGs. While the notion of robustness seems
reasonably strong for practical purposes, it still does not fully consider the reality
of embedded devices, which may be subject to side-channel attacks. In these
attacks, an attacker can exploit the physical leakage of a device by several means
such as power consumption, execution time or electromagnetic radiation. In order
to consider such attacks, a first and important step was made by Micali and
Reyzin [18] who proposed the framework of physically observable cryptography.
In particular, they formally defined a classical assumption according to which
only computation leaks information. Later, Dziembowski and Pietrzak went a
step further by defining the leakage-resilient cryptography model [13]. In the
latter, every computation leaks a limited amount of information whose size is
bounded by some parameter λ. It benefits from capturing most of the known
side-channel attacks and was consequently used to build many recent primitives
[14,15,19]. In a different direction, we should mention a recent and important
work which was proposed by Prouff and Rivain [20] and then extended by Duc
et al. [12] to formally prove the security of masking implementations. In the latter
works, the sensitive variables are split into different share and the adversary
needs to recover all of them to reconstruct the secret.

In the specific context of PRNGs and stream ciphers, several constructions
have been proposed so far and proved secure in the leakage-resilient cryptography
model (e,g., [22,24,25]). The work of Yu et al. [24], for instance, proposes a very
efficient construction of a leakage-resilient PRNG. Likewise, the work of Standaert
et al. [22] shows how to obtain very efficient constructions of leakage-resilient
PRNGs by relying on empirically verifiable assumptions. None of these works,
however, consider potentially biased random sources, which is our main goal here.
Our Contributions. In this paper, we aim to build a practical and robust
PRNG with input that can resist side-channel attacks. Since the construction
proposed by Dodis et al. [10] seems to be a good candidate, we use it as the basis
of our work. In doing so, we extend its security model to include the leakage-
resilient security and we prove the whole construction secure under stronger
requirements for the underlying deterministic pseudo-random generator1. Since

1 A recent work by Dodis et al. in [11] also extends the robustness model to address
the premature next attack where the internal state has insufficient entropy and an
output is generated. Our work is a different complement.
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it is not obvious how to instantiate the construction to meet our stronger needs,
we propose three solutions based on AES in counter mode that are only slightly
less efficient than the original instantiation proposed in [10]. Two of them are
tweaked existing constructions and the third one is a new proposal which may be
better in specific cases. All three instantiations only require that the implemen-
tation of AES in counter mode is secure against Simple Power Analysis attacks
since very few calls are made with the same secret key.
Organization. From a theoretical side, we propose in Sect. 3 a new formal
security model for PRNGs with input, which, in addition to encompassing all
previous security notions [10], also guarantees security in the leakage-resilient
cryptography model. In Sect. 4, we analyze the robust construction based on
polynomial hash functions given in [10] showing why its instantiation may be
vulnerable to side-channel attacks. We then prove that, under non-restrictive
conditions on the underlying deterministic pseudo-random generator, the generic
construction actually meets our stronger security property. Finally, in Sect. 5, we
discuss the instantiations of this construction.

2 Preliminaries

2.1 Notations and Definitions

Probabilities. When X is a distribution, or a random variable following this
distribution, we denote x

$← X when x is sampled according to X. For a variable
X and a set S, the notation X

$← S denotes both assigning X a value uniformly
chosen from S and letting X be a uniform random variable over S. The uniform
distribution over n bits is denoted Un.
Indistinguishability. Two distributions X and Y are said (t, ε)-computational-
ly indistinguishable (and we denote this property by CDt(X,Y )), if for any
distinguisher A running within time t, its advantage in distinguishing a random
variable following X from a random variable following Y , denoted |Pr[A(X) = 1]
−Pr[A(Y ) = 1]| is bounded by ε. When t = ∞, meaning A is unbounded, we
say that X and Y are ε-close.
Pseudo-Random Generators. A function G : {0, 1}m → {0, 1}n is a (deter-
ministic) (t, ε)-pseudo-random generator (PRG) if CDt(G(Um),Un) � ε.
Pseudo-Random Functions. A keyed family of functions F : {0, 1}μ ×{0, 1}μ

→ {0, 1}μ is a (t, q, ε)-pseudo-random function (PRF) if no adversary can have
an advantage greater than ε, within time t, in distinguishing, for a random key
K

$← {0, 1}μ, q answers FK(xi) for adaptively chosen inputs (xi), from q random
answers yi

$← {0, 1}μ, for i = 1, . . . , q.
Entropy. For a discrete distribution X, we denote its min-entropy by H∞(X) =
minx∈X{− log Pr[X = x]}.
Extractors. Let H = {hX : {0, 1}n → {0, 1}m}X∈{0,1}d be a hash function
family. We say that H is a (k, ε)-extractor if for any random variable I over
{0, 1}n with H∞(I) � k, the distributions (X,hX(I)) and (X,U) are ε-close
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where X is uniformly random over {0, 1}d and U is uniformly random over
{0, 1}m. We say that H is ρ-universal if for any inputs I �= I ′ ∈ {0, 1}n we have
Pr

X
$←{0,1}d

[hX(I) = hX(I ′)] � ρ.

Lemma 1 (Leftover-Hash Lemma). [21, Theorem 8.37] Assume that H is
ρ-universal where ρ = (1 + α)2−m for some α > 0. Then, for any k > 0, it is
also a (k, ε)-extractor for ε = 1

2

√
2m−k + α.

2.2 Basic Security Model

In this section, we recall notations and the security notion of a PRNG with
input and of distribution sampler, introduced in [10]. In Sect. 3, we will propose
a stronger security model that takes into account possible leakage of information
in the context of side-channel attacks.

Definition 1 (PRNG with Input). A PRNG with input is a triple of algo-
rithms G = (setup, refresh, next), with n the state length, � the output length, and
p the input length:

– setup is a probabilistic algorithm that outputs some public parameters seed;
– refresh is a deterministic algorithm that, given seed, a state S ∈ {0, 1}n and

an additional input I ∈ {0, 1}p, outputs a new state S′ = refresh(S, I; seed) ∈
{0, 1}n;

– next is a deterministic algorithm that, given seed and a state S ∈ {0, 1}n,
outputs a pair (S′, R) = next(S; seed) where S′ ∈ {0, 1}n is the new state and
R ∈ {0, 1}� is the output randomness.

The parameter seed is public and fixed in the system once for all. For the sake
of clarity, we drop it in the notations and we write S′ = refresh(S, I) instead of
refresh(S, I; seed) and (S′, R) = next(S) instead of next(S; seed). When a specific
part of the seed will be required, we will explicitly add it as input.

In practice, the global internal state contains all the PRNG features and
some structured and redundant information, such as counters, in addition to
a random pool of length n. When the adversary will have access to the state,
this will be to all this information, with both reading (get-state) and writing
(set-state) capabilities. However, when we denote S in this paper, for the sake of
simplicity, we refer to the randomness pool, that we expect to be truly random,
or with as much entropy as possible.
Adversary. We consider an attacker divided in two parts: a distribution sampler
D and a classical attacker A. The former generates seed-independent inputs that
will be used by the PRNG to improve the quality of its entropy with the refresh
algorithm. These inputs, potentially biased under partial adversarial control,
are generated in practice from the device activities (e.g., system interrupts)
and cannot consequently depend on the parameter seed. Note that as explained
in [10] and in [11], seed-independence is necessary to achieve security of the
scheme.
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Definition 2 (Distribution Sampler). A distribution sampler D is a state-
ful and probabilistic algorithm which, given the current state σ, outputs a tuple
(σ′, I, γ, z) where σ′ is the new state for D, I ∈ {0, 1}p will be the next input for
the refresh algorithm, γ is some entropy estimation of I, z is the possible leakage
about I given to the adversary A2.

If q denotes an upper bound on the number of executions of D, such a distribution
sampler is said legitimate if the min-entropy of every input Ij is not smaller
than the entropy estimate γj , even given all the additional information: H∞(Ij |
I1, . . . , Ij−1, Ij+1, . . . , Iq, z1, . . . , zq, γ1, . . . , γq) � γj , for all j ∈ {1, . . . , q} where
(σi, Ii, γi, zi) = D(σi−1) for i ∈ {1, . . . , q} and σ0 = 0.

Robustness. We now recall the security game ROB(γ∗), from [10], that defines
the main security notion for a PRNG with input, the robustness. We have slightly
modified the initial definition, but in an equivalent way (see Fig. 1, without the
leaking procedures nor the leakage function f as input to the initialize procedure).
In the security game,

– the parameter γ∗ defines the minimal entropy that is required in the internal
state of the PRNG so that the output looks random. Under this threshold,
the PRNG has not accumulated enough entropy in its internal state, and then
is not considered safe for generating random-looking outputs;

– the variable c is an estimation of the actual entropy collected in the internal
state of the PRNG. It does not make use of any entropy estimator, but just
considers the lower-bound provided by the distribution sampler on the entropy
of the input. In case of a legitimate distribution sampler, this lower-bound is
correct;

– the flag/function compromised is a Boolean variable that is true if the actual
entropy (the parameter c) is under the threshold γ∗. In such a case, the PRNG
is with an unsafe status, and thus the adversary may have some control on it;

– the challenge b is a bit that will be used to challenge the adversary, whose
goal is to guess it.

The game ROB(γ∗) starts with an initialize procedure, applies procedures to
answer to oracle queries from the adversary A, and ends with a finalize procedure.
The procedure initialize sets the parameter seed with a call to algorithm setup,
the internal state S of the PRNG, as well as c and b. After all oracle queries,
the adversary A outputs a bit b∗, given as input to the procedure finalize, which
compares the response of A to the challenge bit b. The procedures used to answer
to oracle queries are the following:

– the procedures get-state/set-state allow the adversary A to learn or to fix the
whole internal state of the PRNG, including the structured part. However,
as mentioned above, we just model the impact on the random pool in this
analysis;

2 This leakage is not related to side-channel attacks but represents the partial knowl-
edge the adversary has on the inputs because of its control on the distribution.
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– the procedure next-ror is used to challenge the adversary A on its capability
to distinguish the output of the PRNG from a truly random output. In the
safe case (when c � γ∗), the new estimated entropy of the internal state,
in the variable c, is then set to the state length, that is n. In the unsafe
case, as explained in [10], the real value for R, which might reveal non-trivial
information about the weak internal state, is first output and then the new
estimated entropy of the internal state, in the variable c, is reset to 03.

– the procedure D-refresh allows the adversary A to call the distribution sampler
D to get a new input and to run the refresh algorithm with this specific input
to improve the quality of the internal state. In addition to the input I for the
PRNG, the distribution sampler D also outputs the leakage z on input I that
is given to A and an estimate γ of the entropy of the input (with respect to all
the other inputs and the leakage information z). We use a more conservative
definition, by considering that it really accumulates more entropy only if c
was below γ∗, otherwise, it stays unchanged. The new estimated entropy of
the internal state, in the variable c, is thus set to c + γ if c was below γ∗, but
of course with a maximum of n.

Note that we dropped the get-next procedure from [10], but as noted by [4,8],
multiple calls to next-ror are enough to capture a similar security level.

Definition 3 (Robustness of PRNG with Input). A pseudo-random num-
ber generator with input G = (setup, refresh, next) is called (t, qr, qn, qs, γ

∗, ε)-
robust, if for any adversary A running within time t, that first generates
a legitimate distribution sampler D (for the D-refresh procedure), that there-
after makes at most qr calls to D-refresh, qn calls to next-ror, and qs calls to
get-state/set-state, the advantage of A in game ROB(γ∗) is at most ε.

2.3 Model for Information Leakage

In this paper, we aim to protect the construction of Dodis et al. against side-
channel attacks. In this purpose, we describe hereafter the leakage model.
Only Computation Leaks. From the axiom “Only Computation Leaks” of
Micali and Reyzin [18], we assume that only the data being manipulated in a
computation can leak during this computation. This assumption actually well
fits the reality of practical observations. As a consequence, we can split our
cryptographic primitives into small blocks that independently leak functions of
their inputs. We also authorize the adversary to choose different leakage functions
for each block.
Bounded Leakage Per Iteration. Since it is more suited for a PRNG [7],
we follow the model of leakage-resilient cryptography, with the strong require-
ment to preserve reasonable performances. We let the adversary the choice of
the polynomial time leakage functions with a bound λ on their output length.

3 We could have strengthened this definition, by only reducing c by � bits in this case,
but we kept the conservative notion.
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Fig. 1. Procedures in the leakage-resilient robusteness security game LROB(γ∗, λ)

This parameter is closely related to the security parameter of the underlying
cryptographic primitives and will be part of global scheme’s security bound.
Non-adaptive Leakage. The choice of leakage functions left to the adver-
sary reveals the desire to consider every possible component whatever its way
of leaking. However, we based our work on the practical observation whereby
leakage functions completely depend on the inherent device. On the contrary,
a few works (e.g., [13,19]) give the adversary the possibility to modify its leak-
age functions according to its current knowledge. Even if this model aims to be
more general, it leads to unrealistic scenarios since the adversary is then able
to predict further steps of the algorithm through impossible leakage functions.
For these reasons, this work, as many others before [2,15,24,25], only consider
non-adaptive leakage functions.

3 Leakage-Resilient Robustness of a PRNG with Input

In the security model of [10], recalled in the previous section, the distribution
sampler D generates the external inputs used to refresh the PRNG and already
gives the adversary A some information about how the environment of the PRNG
behaves when it generates these inputs. This information is modeled by z. In
order to model information leakage during the executions of the PRNG algo-
rithms refresh and next, we give the adversary the choice of the leakage functions,
that we globally name f , associated to each algorithm, or even each small block.
Since we restrict our model to non-adaptive leakage, we ask the adversary to
choose them beforehand. So they are provided as input to the initialize proce-
dure by the adversary (see Fig. 1). Then, each leakage function will be implicitly
used by our two new procedures named leak-refresh and leak-next that, in addi-
tion to the usual outputs, also provide some leakage L about the manipulated
data, as described in Sect. 2.3. We thus have a new parameter λ, that bounds
the output length of the leakage function. Our new Leakage-Resilient Robustness
security game LROB(γ∗, λ) makes use of the procedures described in Fig. 1 and
is described in details below:
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– the parameter γ∗, the variable c, and the Boolean flag/function compromised
are the same as in Sect. 2.2 for the basic robustness;

– the new parameter λ fixes the maximal information leakage which can be
collected during the execution of operations refresh and next. Namely, for each
operation (refresh or next), the leakage functions globally output at most λ
bits. Such a leakage will be available when querying the leaking procedures
leak-refresh and leak-next below;

– the new parameter α is an integer that models the minimal expected entropy
of S after a leak-next (next with leakage) call, in a safe case (compromised is
false), that is when the entropy of the internal state was assumed greater than
γ∗. This captures both the creation of computational entropy during a next
execution and the smaller loss of entropy caused by the leakage. We could
expect α = n − λ, but it may depend on the explicit construction;

– the procedures initialize(D, f)/finalize(b∗) initiate the security game with the
additional leakage function f , check whether the adversary has won the game
and output 1 in this case or 0 otherwise. Contrary to the choice made in [10]
(which is also valid), the initial state S is here set to zero (as well as the
entropy counter) so that no assumption needs to be made on its initialization;

– the procedures get-state/set-state, D-refresh, and next-ror are the same as for
the basic robustness;

– the procedure leak-refresh runs the refresh algorithm but additionally provides
some information leakage L on the input (S, I) and seed, as above. As for
the next-ror-queries, the leakage can reveal non-trivial information about a
weak internal state even before the effectiveness of the refresh, and then we
reduce c by λ bits. And if it drops below the threshold γ∗, it is reset to 0.
Again, we could have strengthened this definition, but we preferred to keep
a conservative notion. Furthermore, this strict notion is important w.r.t. our
new definitions of recovering and preserving security with leakage. Note that
if the D-refresh algorithm is complex, several leakage functions can be defined
at every step, but the global leakage is limited to λ, hence the notation {. . .},
since they can be interleaved.

– the procedure leak-next runs the next algorithm but additionally provides some
information leakage L on the input S and seed, according to the leakage func-
tion f provided to the initialize procedure. If the status was safe, then the new
entropy estimate c is set to α, otherwise, it is reset to 0 (as for the next-ror).
As above, if the next algorithm is complex, several leakage functions can be
defined at each step, but the global leakage is limited to λ.

As in [10], attackers have two parts: a distribution sampler and a classical
attacker with the former only used to generate seed-independent inputs (poten-
tially partially biased) from device activities. Examples of the entropy’s traces
for the procedures defined in [10] and in our new model are provided in Fig. 2.
The threshold γ∗ has to be slightly higher in our new model, because for a sim-
ilar next algorithm, we need to accumulate a bit more of entropy to maintain
security even in presence of leakage. Typically, it has to be increased by λ. Now
we detailed the new security game, we can define the notion of leakage-resilient
robustness of a PRNG with input.
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Fig. 2. Traces of entropy estimates in the model [10] (up) and in our new model (down)

Definition 4 (Leakage-Resilient Robustness of PRNG with Input). A
pseudo-random number generator with input G = (setup, refresh, next) is called
(t, qr, qn, qs, γ

∗, λ, ε)-leakage-resilient robust, if for any adversary A running in
time t, that first generates a legitimate distribution sampler D (for the D-refresh/
leak-refresh procedure), that after makes at most qr calls to D-refresh/leak-refresh,
qn calls to next-ror/leak-next, and qs calls to get-state/set-state with a leakage
bounded by λ, the advantage of A in game LROB(γ∗, λ) is at most ε.

4 New Construction

In this section, we show how to modify the original construction of [10] to achieve
the robustness together with the resistance against side-channel attacks.

4.1 Original Construction

We first recall the robust PRNG construction of [10], named G. It makes use of
a (t, ε)-secure pseudo-random generator (PRG) G : {0, 1}m → {0, 1}n+�. The
seed is a pair (X,X ′), n is the state length, � is the output length, and p = n is
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the input length. This construction uses multiplication because it gives a proven
seeded extractor that accumulates entropy, which we do not know how to do
with a hash function. Plus, it is more efficient:

– setup() outputs seed = (X,X ′) ← {0, 1}2n;
– S′ = refresh(S, I;X) = S · X + I, where all operations are over F2n ;
– (S′, R) = next(S;X ′) = G(U), where U = [X ′ · S]m1 , the truncation of X ′ · S.

Unfortunately, even a secure PRG is not enough to resist information leakage.
As shown below, the instantiation proposed in [10] is vulnerable to side-channel
attacks. However, with a secure and leakage-resilient PRG, we prove that the
whole construction remains secure even in the presence of leakage.

4.2 Limitations of the Original Construction

In the original paper [10], G is instantiated with the pseudo-random function
AES in counter mode with the truncated product U as the secret key. Depending
on the parameters, several calls to the PRF are required. We show hereafter that
when the implementation is leaking, this construction faces vulnerabilities.

As shown in [7], several calls to AES with known inputs and one single secret
key may lead to very efficient side-channel attacks that can help to recover the
secret key. Because of the numerous executions of AES with the same key, one
essentially performs a differential power analysis (DPA) attack. Then, for the
above construction, during a leak-next, even with a safe state, the DPA can
reveal the secret key of the internal AES, that is also used to generate the new
internal state from public plaintexts. This internal state, after the leak-next, can
thus be recovered, whereas it is considered as safe in the security game. A next-ror
challenge can then be easily broken.

Furthermore, even if we only make a few calls with the same key, with a
counter as input, the adversary can predict future randomness. This vulnerability
applies to AES with predictable inputs. As determined by the security games,
the adversary chooses a leakage function f to further collect the leakage during
the product and the truncation between the internal state S and the public seed
X ′. Assume that this function is f(S,X ′) =

[

AES([
X′·
(

AES[X′·S]m1
(C0)||...||AES[X′·S]m1

(C0+� n
m 	−1)

)]m

1

)

(
C0 +

⌈
n+�
m

⌉)
]λ

1

with C0 an integer arbitrarily chosen by the attacker. With this leakage function
set, the adversary can make a set-state-call and fix the counter C to C0. Indeed,
this counter is a part of the global internal state which can be compromised
by the adversary. Following this compromission, sufficient calls to D-refresh are
made to refresh S so that its entropy increases above the threshold γ∗. Then, the
attacker can ask a leak-next-query and gets back the leakage f(S,X ′) described
above. Eventually, the attacker asks a challenge next-ror-query, and either gets
the real output or a random one. The λ bits it got from the leakage are exactly
the first λ bits of the real output. The attacker has consequently a significant
advantage in the next-ror challenge.
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4.3 New Assumption

We slightly modify the requirements of [10] on the PRG G, to keep the PRNG
secure even in the presence of leakage: The PRG G : {0, 1}m → {0, 1}n+�

instantiated with the truncated product U = [X ′ · S]m1 is now required to be
a (α, λ)-leakage-resilient and (t, ε)-secure PRG according to Definition 5. In that
definition, λ denotes the leakage during one execution of G, and α is the expected
entropy of the output, even given the leakage.

Definition 5. A PRG G : {0, 1}m → {0, 1}N is (α, λ)-leakage-resilient and
(t, ε)-secure if it is first a (t, ε)-secure PRG, but in addition, for any adversary
A, running within time t, that first outputs a leakage f with λ-bit outputs, there
exists a source S that outputs couples (L, T ) ∈ {0, 1}λ × {0, 1}N , so that the
entropy of T , conditioned on L being greater than α, and the advantage with
which A can distinguish (f(Um),G(Um)) from (L, T ) is bounded by ε. Note that
f(Um) denotes the information leakage generated by f during this execution of
G (on the inputs at the various atomic steps of the computation, that includes
Um and possibly some internal values).

This definition ensures that for one execution of G, its output is indistinguishable
from a source of min-entropy α, with a leakage of size λ on the input of G.

4.4 Security Analysis

Theorem 1 shows that the PRNG G is leakage-resilient robust.

Theorem 1. Let m, n, α, and γ∗ be integers, such that n > m and α > γ∗, and
G : {0, 1}m → {0, 1}n+� an (α + �, λ)-leakage-resilient and (t, εG)-secure PRG.
Then, the PRNG G previously defined and instantiated with G is (t′, qr, qn, qs,
γ∗, λ, ε)-leakage-resilient robust where t′ ≈ t, after at most q = qr + qn + qs

queries, where qr is the number of D-refresh/ leak-refresh-queries, qn the number
of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries,
where ε ≤ qqn ·

(
(qr

2 + 1) · εext + 3εG
)
and εext =

√
2m+1−δ for δ = min{n −

log qr, γ
∗ − λ}.

To prove Theorem 1, we need to adapt the notions of recovering and preserving
introduced in [10] to also capture information leakage. We then prove an inter-
mediate result which states that the combination of recovering and preserving,
both with leakage, imply leakage-resilient robustness. Finally, we show that the
PRNG G satisfies both the recovering security with leakage and the preserving
security with leakage. Full details of the proof are given in the full version [3].

5 Instantiations of the PRG G

In the previous section, we explained that the original instantiation in [10] was
vulnerable to side-channel attacks, and needs a stronger PRG G, namely a
leakage-resilient PRG which takes as input a perfectly random m-bit string
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U , and generates an (n + �)-bit output T = (S,R) that looks random. Even
in case of leakage, S should have enough entropy. In this section, we first dis-
cuss the use of existing primitives for such a leakage-resilient PRG G. Then,
we propose a new concrete instantiation that may achieve better performances
in specific scenarios by taking advantage of the PRNG design. Eventually, we
provide a security analysis of our solution and we implement it to give some
benchmarks.

5.1 Existing Constructions

To instantiate the PRG G, we need a leakage-resilient construction which can get
use of a bounded part of the internal state. We recall here two leakage-resilient
constructions which can be tweaked to fit these requirements at a reasonable
cost. The first one is a binary tree PRF introduced by Faust, Pietzrak and
Schipper at CHES 2012 [15] and the second one is a sequential PRNG with
minimum public randomness proposed by Yu and Standaert at CT-RSA 2013
[25]. We voluntarily ignore the chronological order and start the description with
the second instantiation since it will be used to complete the first one.

Sequential PRNG from [25]. The PRNG of Yu and Standaert comes with an
internal state made of two randomly chosen values : a secret key K0 ∈ {0, 1}μ

and a public seed s ∈ {0, 1}μ. The construction is made of two stages. In the
upper stage, a (non leakage-resilient) generator F′ is processed in counter mode
to expand the seed s into uniformly random values p0, p1, . . . . In the lower stage,
a (non leakage-resilient) PRF F generates outputs with public values pi and
updates the secret so it is never used more than twice. The parameter s can be
included in our PRNG seed (under the notation X ′′) since it shares the same
properties than X and X ′. However, the current counter is varying and thus need
to be stored in the deterministic part of the internal state. In the proof of [25], the
counter is implicitly required to be different at each use since the public values
pi need to be independent. But in our model of leakage-resilient robustness, the
deterministic part of the internal state can be definitively compromised. Attacker
could, in this case, set the counter to a previous value, making the public pi not
independent anymore. To thwart this issue, we suggest to extend the internal
state so that the truncated part of full entropy can contain both the secret key
K0 and a uniformly random counter used only for a single execution of next.
Hence, no parameter can be compromised and we are back to the context of the
original proof. The only difference in the security comes from the probability of
collisions when using a uniformly random counter at each call.

This two-stage instantiation is illustrated in Fig. 3. One can note that the
input U is split in two slices, to initiate the secret key K0 and the counter C,
each of size μ. In order to relate these parameters with the parameters of our
PRNG from Sect. 4 that provides an m-bit random string U as input to the PRG
G, and wants to receive back an N -bit string, where N = n+ �, that is κ = N/μ
blocks generated with κ keys. The κ blocks of output and new internal state are
all generated using 2κ − 1 calls to F′ and 2κ − 1 calls to F.
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Fig. 3. Instantiation of generator G from [25] with random input U = (C, K0)

Tweaked Binary Tree PRF from [15]. The second solution was proposed
by Faust et al. at CHES 2012 [15]. Thanks to its structure of binary tree, it
requires less calls to F and consequently overtakes the performances of the first
solution. However, the original construction does not provide sources for the
required randomness. That is why we suggest to use the same upper stage than
[25] recommended in and proven secure in [2,25]. Plus, with the advantageous
reuse of the two same random values at each layer, the number of calls to F′

is limited to 2 log2(κ) which is less than the number of F calls. Eventually, for
the reasons depicted above, we also need to use a uniformly random counter,
updated at each call to next. The tweaked construction is depicted in Fig. 4.
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Fig. 4. Instantiation of generator G from [15] with random input U = (C, K′
0)
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5.2 New Proposal

To thwart the first attack of Sect. 4.2, we still make use of a PRF with a regular
re-keying whose frequency depends on the parameters of the inherent device. To
thwart the second attack and for the needs of the proof, we continue to make use
of unpredictable values as inputs of the PRF. Combining these two solutions, we
get close to the two stages exhibited by existing constructions. However, while
we keep the same upper stage, we modify the lower one to try to achieve better
performances in function next. The latter still makes several calls to the PRF
F : {0, 1}μ × {0, 1}μ → {0, 1}μ, with public but uniformly distributed inputs
and κ distinct secret keys (as in the second existing construction). However, the
secret keys are all directly extracted from the input value U = [X ′ ·S]m1 together
with the counter C. In this way, there is no need to derive the next keys in
function next but the internal state is much more larger: the extracted value U
is of length (κ+1)μ instead of 2μ in previous constructions. The precise security
requirements are formalized in Definition 6 and the performances comparison
with existing solutions is given in Table 1, Sect. 5.3.

Definition 6 (Leakage-Resilient PRF). A PRF F : {0, 1}μ × {0, 1}μ →
{0, 1}μ is (α, λ)-leakage-resilient and (t, q, ε)-secure if it is a (t, q, ε)-PRF and
if, for any adversary A, running within time t, that first outputs a leakage f
with λ-bit outputs, there exists a source S that outputs (Li, Pi, Ti)i ∈ ({0, 1}λ ×
{0, 1}μ × {0, 1}μ)q, with a uniform distribution for the P ’s, so that the entropy
of (Ti)i, conditioned to (Li, Pi)i, is greater than α, and the advantage with which
A can distinguish the tuple (f(Ki, Pi), Pi,FK(Pi))i from (Li, Pi, Ti)i is bounded
by ε.

When q is large, such a requirement implies security against DPA, but when q
is small only SPA is available which is limited in practice. Such an assumption
is implicitly done in [25] with α = μ − λ, since the loss of entropy in the out-
put corresponds to the leakage. This new two-stage instantiation is illustrated
in Fig. 5. The input U is split in κ + 1 slices, to initiate the κ keys {Ki}0�i�κ−1

and the counter C, each of size μ. Theorem 2 shows that this proposal achieves
the security requirements in Definition 5.

F

p0
0

F′

C

F

p0
ν−1

F′

C + ν − 1

K0

T 0
0

K0

T 0
ν−1

X ′′ X ′′

F

pκ−1
0

F′

C + ν(κ − 1)

F

pκ−1
ν−1

F′

C + νκ − 1

Kκ−1

T κ−1
0

Kκ−1

T κ−1
ν−1

X ′′ X ′′

Fig. 5. New instantiation of generator G with random input U = (C, K0, . . . , Kκ−1)
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Theorem 2. Let μ and κ be paramaters such that νκμ = N . Let F : {0, 1}μ ×
{0, 1}μ → {0, 1}μ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure PRF and
F′ : {0, 1}μ × {0, 1}μ → {0, 1}μ be a (t, qνκ, εF′)-secure PRF, where q is a
bound on the global number of executions of G. The instantiation proposed for
G in Sect. 5.2 with F and F′ provides an (α, λ)-leakage-resilient and (t, εG)-
secure PRG where εG ≤ κ · εF + εF′ + q2νκ/2μ.

In the proposal, each call to G makes νκ calls to the PRF F: κ keys are used at
most ν times. The inputs of F are generated by F′ with the key X ′′ (randomly
set in seed) on a counter C randomly initialized, and then incremented for each
F′ call in an execution of G. The details of the proof which uses a similar
argument as [25] in the minicrypt world [16], can be found in the full version [3].
However, for the global security, we need all the intermediate values (pi

j) to be
distinct and unpredictable to avoid the aforementioned attack. We thus require
F′ to be secure after qnνκ queries and the inputs to be all distinct: by setting
the log(νκ) least significant bits of C to zero, we just have to avoid collisions
on the μ − log(νκ) most significant bits for the qn queries. The probability of
collision is thus less than qn

2νκ/2μ and can appear once and for all in the global
security:

Corollary 1. Let us consider parameters n, m, and � in the construction of
the PRNG with input G from Sect. 4.1, using the generator G as described in
this section. Let μ and κ be paramaters such that νκμ = n + �, and α > γ∗. Let
F : {0, 1}μ×{0, 1}μ → {0, 1}μ be a (α/κ, λ)-leakage-resilient and (t, ν, εF)-secure
PRF, and F′ : {0, 1}μ × {0, 1}μ → {0, 1}μ be a (t, qnνκ, εF′)-secure PRF. Then,
G is (t, qr, qn, qs, γ

∗, λ, ε)-leakage-resilient robust after at most q = qr + qn + qs

queries, where qr is the number of D-refresh/leak-refresh-queries, qn the number
of next-ror/leak-next-queries, and qs the number of get-state/set-state-queries,
where ε ≤ qqn ·

(
(qr

2 + 1) ·
√

2m+1−δ + 3(κ · εF + εF′)
)

+ qn
2νκ/2μ, for δ =

min{n − log qr, γ
∗ − λ}.

It seems reasonable to have (α, λ)-leakage resilience with α = n + � − νκλ: with
a large γ∗, ε can be made small.

5.3 Practical Analysis: Implementation and Benchmarks

We present some benchmarks of the construction of [10] and the three instantia-
tions. Since our leakage-resilient construction is based on [10], we use the latter
as a reference when measuring efficiency. Thus, we simply implemented them on
an Intel Core i7 processor to show that the new property does not significantly
impact the performances. This is mainly due to the use of SPA-resistant AES
implementations instead of DPA-resistant (e.g., masked) ones. We used the same
public cryptographic libraries that in [10] and to achieve a similar security level
as the construction of [10], our experiments show that the tweaked binary tree
construction is only less than 4 times slower.
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General Benchmarks. We recall that our construction is based on the con-
struction of [10]: refresh(S, I) = S · X + I ∈ F2n and next(S) = G(U), with U =
[X ′ · S]m1 . In [10], the PRG G is defined by G(U) = AESU (0)‖ . . . ‖AESU (ν − 1),
where ν is the number of calls to AES with a 128-bit key U , and thus m = 128. For
a security parameter k = 40, the security analysis leads to n = 489, γ∗ = 449,
and ν = 5. To achieve leakage-resilience, we need additional security require-
ments for the PRG G. The three instantiations split G between two PRFs F
and F′, where F is used with public uniformly distributed inputs and κ different
secret keys. In the existing constructions, a first key is extracted from the trun-
cated product U and the other ones are derived through a re-keying process. In
the new instantiation, all the secret keys are extracted from U . The public inputs
of F are generated by the PRF F′ in counter mode, with a secret initial value
for the counter also extracted from U : m = 2 · 128 for the existing constructions
or m = 128(κ + 1) for the new instantiation if both F = F′ = AES with 128-bit
keys. To provide the security bounds of the three constructions, we need to fix
the security bounds of functions F and F′. As far as we know, the best key recov-
ery attacks on AES without leakage [9] require a complexity of 2162.1 with 288

data. However, our functions being executed at most twice (resp. 6 times) with
the same secret keys for 2−40 security (resp. for 2−64 security), such a complexity
is unreachable. As for the leakage, we give the adversary λ bits of useful infor-
mation by leaking query. Nevertheless, until now it remains unclear how these
λ bits of information in a single trace may reduce the security bound of the
AES. In [23] for instance, the authors show that a single trace on the AES might
give the adversary all the required knowledge to recover the secret key, namely,
when a sufficient number of noisy Hamming Weight values are available. But
summing the useful information of these noisy Hamming Weight values would
give a very large λ for which we cannot guarantee anything. However, we can
expect either a larger amount of noise, a desynchronization of the traces or a low
leaking from the inherent component which would result in a reasonable value
for λ. In this case, we can fix εF = εF′ ≈ 2−127. The resulting security bounds
are given in Table 1 with the size n of the internal state, the number of 128 or
256-bit keys and the number of AES calls in function next, for 2−40 and 2−64

security.

Table 1. Security bounds and complexity of the three instantiations

Refs Security bound εG 2−40 security 2−64 security

n keys (128) AES calls n keys (256) AES calls

[25] κεF + ε′
F +

q2(νκ − 1)/2μ
768 7 26 1152 5 30

[15] 2κεF + ε′
F + q2(νκ +

2 log2(κ))/2μ
896 4 20 1408 4 24

New κεF + εF′ + q2νκ/2μ 1408 6 24 1792 5 30
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The best instantiation in terms of complexity is the construction from [15].
This is not surprising considering the advantageous binary shape of this function.
However, if we relax the security assumptions on the AES with εF = ε′

F = 2−126,
the conditions of the security proof are not met and therefore we cannot guar-
antee its security based on Corollary 1. In these specific cases, our construc-
tion seems to be the best one to use since it guarantees that the conditions
of the security proof are met. Note that for 2−64 security, as explained in
Sect. 5.3, we cannot get a provable security with 128-bits input blocks, and
we need εF and εF′ to be smaller than 2−200, and then use AES with 256-
bit keys. Since the implementation built from [15] appears to be the best
one in the general case, we implement it to compare it with the instantiation
of [10]. As in [10], we use fb mul lodah and fb add from RELIC open source
library [5], extended with the necessary fields (F2489 , defined with X489+X83+1
and F2896 , defined with X896 + X7 + X5 + X3 + 1). We use public functions
aes setkey enc and aes crypt ctr from PolarSSL open source library [1]. As in
[10], we measure the number of CPU cycles for a recovering process and a
key generation process. The CPU cycles count is done using ASM instruc-
tion RDTSC, our C code is optimized with O2 flag. We simulate a full recov-
ery of the PRNG for [15] and [10] implementations, with an input contain-
ing one bit of entropy per byte. Then, 8 inputs of size 489 bits are neces-
sary to recover from a compromise for [10], whereas, for [15], 8 inputs of size
896 bits are necessary. Then we simulate the generation of 2048-bit keys that
each requires 16 calls to next, as every call outputs 128 bits. Figure 6 gives
the numbers of CPU cycles for 100 complete recovering experiments (left) and
100 key generations (right) for [10] and [15]. Both processes require on aver-
age 4 times less CPU cycles to perform for [15] implementation than for [10]
implementation.
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Fig. 6. Benchmarks between [15] and [10]

The Tweaked Binary Tree Instantiation. We first recall the constraints
(similar to Corollary 1): the quality of the pseudo-random number generator is
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measured by ε ≤ qqn ·
(
(qr

2 + 1) ·
√

2m+1−δ + 3(2κ · εF + εF′)
)

+qn
2(2 log2(κ)+

νκ)/2μ, for δ = min{n − log qr, γ
∗ − λ}. With qr = qn = qs = 2k, we get:

ε ≤ 3 · 22k ·
(
(22k + 1) ·

√
2m+1−δ + 3(2κ · εF + εF′)

)
+ (2 log2(κ) + νκ) · 22k/2μ

≤ ε1 + ε2 + ε3 + ε4

with ε1 = 24k+2+(m+1−δ)/2, ε2 = 18κ · 22k · εF, ε3 = 9 · 22k · εF′ and ε4 =
22k−μ · (2 log2(κ) + νκ).

2-v Security. With m = 256, μ = 128, εF = εF′ ≈ 2−127: ε1 < 2−v, as soon as
8k+2v+5+m < δ, which is verified for n > 9k+2v+5+m and γ∗ > n+λ−k;
ε2 < 2−v, as soon as 2k + v < 127 − log2(18κ); ε3 < 2−v, as soon as 2k + v <
127 − log2(9) < 123; ε4 < 2−v, as soon as 2k + v < 128 − log2(2 log2(κ) + νκ).

2−40 Security. For k = v = 40, the constraint on ε3 is satisfied. The constraints
on ε1 are satisfied as soon as n > 701 and γ∗ > n + λ − 40. With ν = 2, we need
n = 256κ − 128 > 701 and thus κ = 4, which ensures that the constraints on ε2
and ε4 are satisfied . Finally, n = 896 and γ∗ = 858 for λ ≈ 2.
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Fig. 7. Example of instantiation of generator G for higher security bounds

2−64 Security. Unfortunately, for k = v = 64, one cannot get a provable security
with the size of the input block μ = 128, because of the collisions on the counters.
In order to increase the size of the input blocks, one can XOR PRPs to get a
PRF on larger inputs [17]. This makes ε4 negligible: 22k−2μ = 2−128, and thus the
factor νκ will not affect it. On the other hand, to make ε2 and ε3 small enough,
we need εF and εF′ to be smaller than 2−200, and then use AES with 256-bit keys.
But then we have to use the same key 6 times in order to extract 384 bits (see a
3-block extraction in Fig. 7), where κ keys are used ν = 6 times, and two counters
C0 and C1 are extracted: m = 3 ·128 = 384, n = 3×128×κ−128 = 384κ−128.
As for the constraint on ε1, we need 384κ > 1221. We can take κ = 4. Then,
n = 1408 and γ∗ = 1346.
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6 Conclusion

We have put forward a new property for PRNGs with input, that captures
security in a setting where partial sensitive information may leak. Then, we
have tweaked the PRNG with input proposed by Dodis et al. to meet our new
property of leakage-resilient robustness. Finally, we have proposed three secure
instantiations of the new PRNG with input including a new one which provide
the same level of security as the construction of [10] for a limited additional cost
in efficiency and size.

As further work, the security bounds could be made tighter if the construc-
tion was proven robust with leakage without going through the preserving-with-
leakage and recovering-with-leakage steps. Another interesting future work would
be to implement the construction on constrained devices.
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Abstract. Information leakage is a major concern in modern day IT-
security. In fact, a malicious user is often able to extract information
about private values from the computation performed on the devices. In
specific settings, such as RFID, where a low computational complexity
is required, it is hard to apply standard techniques to achieve resilience
against this kind of attacks. In this paper, we present a framework to
make cryptographic primitives based on large finite fields robust against
information leakage with a bounded computational cost. The approach
makes use of the inner product extractor and guarantees security in the
presence of leakage in a widely accepted model. Furthermore, we show
how to apply the proposed techniques to the authentication protocol
Lapin, and we compare it to existing solutions.

1 Introduction

A major concern for the implementation of secure cryptographic protocols
is resistance to side-channel attacks (SCA). This class of attacks makes use
of information obtained by the observation of physical phenomena that may
occur in the device used to implement the scheme. These include measure-
ments of timings, power consumption level, running machine’s sound or an
electromagnetic radiation (cf. for instance [ISW03,MR04,DP08,FKPR10,GR10,
DHLAW10,BKKV10,DF11,DF12,GR12,GST13]).

The technique called masking is a very efficient way to protect sensitive data.
The idea behind masking is to split the sensitive values into d (the masking
order) random shares and to compute every intermediate value of the algorithm
on these shares. The security requirement is that each subset of d − 1 shares
is independent from the original value. In this way, in fact, an adversary would
need to combine leakage samples obtained by several separate shares in order to
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recover useful information about the sensitive data. Multiple candidates for d-th
order masking schemes have been proposed, such as Boolean masking [RP10]
and polynomial masking [PR11].

Recently, an efficient way to mask the LPN-based authentication protocol
Lapin [HKL+12] with Boolean masking was proposed by Gaspar et al. [GLS14].
The proposal takes advantage of the linearity of the Learning Parity with Noise
(LPN) assumption, on which Lapin is based. This makes it easy and there-
fore very efficient to apply Boolean masking to Lapin. While Boolean masking
decreases the efficiency of AES quadratically in the number of shares, it decreases
the efficiency only linearly in case of Lapin.

The above mentioned masking schemes, however, lack a strong formal secu-
rity proof. A way to deal with this issue from a theoretical point of view was
suggested by Ishai et al. [ISW03], who proposed to use a leakage resilient circuit
compiler based on Boolean masking. Such a compiler takes as input a certain
circuit Γ and returns a modified circuit Γ̂ that computes the same functionality
but is designed to be resilient against a restricted class of leakage attacks. This
was subsequently extended to a broader class of attacks in [FRR+10]. Solutions
based on more complicated algebraic frameworks have been also proposed, for
example Juma and Vahlis [JV10] and Goldwasser and Rothblum [GR10]. These
solutions achieve leakage resilience against polynomial-time computable func-
tions, but require a very heavy and inefficient machinery that involves public-key
encryption to protect the shares.

In two independent works by Dziembowski and Faust [DF12] and again
Goldwasser and Rothblum [GR12], it was shown how to achieve the same results
without relying on secure encryption schemes. Both papers describe leakage-
resilient compilers, which encode values on the internal wires using an inner
product. The leakage resilience follows from the extractor property of the inner
product as a strong extractor which builds a strong theoretical security basis.
The framework has been adjusted and optimized in terms of efficiency for AES
in a work by Balasch et al. [BFGV12], along with a sample implementation and
an analysis of performance results. Unfortunately, the authors lose the strong
theoretical security basis in favor of efficiency by using the inner product as a
masking scheme but not as an extractor. Furthermore, Prouff et al. [PRR14]
showed that some of their proposed algorithms to compute operations in finite
fields can be attacked in theory. It is unclear yet, if these attacks can be exploited
by real world SCAs.

Our Contribution. We use inner product extractor based techniques to gain
leakage resilience while preserving the efficiency such that our techniques are
applicable in practice. Compared to the algorithms proposed by [DF12,BFGV12,
GR12] in order to perform operations on the encoded values we use non-
interactive algorithms which do not use any refresh subroutine, thus improv-
ing the efficiency. Furthermore, the security of these procedures is easy to verify
and does not need any leakage-free components or oracles. The drawback is that
the size of the secret state will grow when using our proposed algorithms. To
overcome this issue, we propose a procedure to shrink down the secret internal
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state. This is an interactive algorithm which uses a refresh algorithm as a sub-
routine. We emphasize that this shrinking procedure is optional and in many
applications not necessary. A refreshing algorithm is required when a computed
value is retrieved from the encodings.

The generation of leak-free randomness is a serious issue in many concrete
scenarios. While [DF12,BFGV12] access leakage-free components in almost all
procedures to perform operations in a finite field, we only access leakage-free
components to retrieve a final value and, depending on the application, to shrink
down the internal state. We also give a complete security analysis for every
proposed algorithm, while, in particular for low dimension encodings together
with large finite fields, the security of some of the algorithms given by [DF12,
BFGV12] is not clear.

We emphasize that an inner product extractor based leakage-resilient storage
is very attractive when using a finite field of an exponential size. Since even
encodings with a low dimension preserve strong statistical extractor properties
of the inner product. This is shown by the analyses of inner product based
leakage-resilient storage of [DDV10,DF11]. Further, we improve the analysis of
the inner product based leakage-resilient storage to get even stronger results.

A suitable application of our techniques are LPN- or LWE-based protocols
over large fields. We will show how to perform a leakage-resilient computation
of the LPN-based protocol Lapin and give implementation results. The results
show that our implementation is efficient enough such that it can be considered
for applications in practice.

2 Preliminaries

We write [n] to indicate the set {1, . . . , n}. We denote with F the finite field
Z2[x]/(g(x)), where g(x) is a degree m polynomial irreducible over Z2[x] and
F

∗ := F \ {0}. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two vectors with
elements in F. The notation A||B indicates the concatenation of the two vectors.
Moreover, we denote with A ⊗ B the following vector of length n2:

A ⊗ B := (A1B1, . . . , A1Bn, A2B1, . . . , A2Bn, . . . , AnB1, . . . , AnBn).

The inner product between A and B is defined in the usual way as

〈A,B〉 :=
n∑

i=1

Ai · Bi.

If an algorithm A has oracle access to a distribution D, we write AD. A
probabilistic polynomial time algorithm is called PPT.

The statistical distance between two random variables A and B with values
in a finite set X is defined as Δ(A,B) = 1

2

∑
x∈X

∣
∣
∣ Pr[A = x] − Pr[B = x]

∣
∣
∣. If

this distance is negligible, we say that the two variables are statistically indis-
tinguishable. The min-entropy of a random variable A is defined as H∞(A) =
− log(maxx∈X Pr[A = x]).
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Two-source extractors. Two-source extractors, introduced in 1988 by Chor
and Goldreich [CG88], are an important and powerful tool in cryptography.

Definition 2.1. Let L, R and C be finite sets, and let U be the uniform distri-
bution over C. A function ext : L × R → C is a weak (m, ε) two-source extractor
if for all distributions of independent random variables L ∈ L and R ∈ R such
that H∞(L) ≥ m and H∞(R) ≥ m we have Δ(ext(L,R), U) ≤ ε.

If we change the condition on the min-entropy to H∞(L) + H∞(R) ≥ k, the
extractor is called flexible. Note that if k = 2m this requirement is weaker than
the original, hence flexibility is a stronger notion.

The fact that the inner product is a strong extractor is well known in the
literature ([Vaz85], [CG88]). The security results in this work are based on the
following lemma regarding the inner product extractor over finite fields.

Lemma 2.1 (Proof of Theorem 3.1 [Rao07]). The inner product function 〈.,.〉 :
F

n×F
n → F is a weak flexible (k, ε) two-source extractor for ε ≤ 2((n+1) log |F|−k)/2.

Limited adversaries and leakage-resilient storage. There have been several
proposals to model SCA in theory [DF11,DF12,GR12]. In the so-called split-
state model, we assume that the memory of a physical device can be split in two
distinct parts, called respectively PL and PR. These could be, for instance, two
separate processors, or also a single processor operating at distinct and separate
times.

All the computation carried out on the device (for computing, for example, a
cryptographic primitive or an algorithm) is performed as a two-party protocol Π
between the two parties PL and PR. More precisely, each of the two parties has
an internal state (initially just some input) and at each step communicates with
the other party by sending some messages. These messages depend on the initial
state, the local randomness, and the messages received earlier in the protocol.
At the end of the execution of Π, each party outputs a new state.

The main reason to adopt this setting is that we assume that the two parties
operate independently, and hence are subject to completely independent leakage.
In our model, we consider an adversary A that is able to interact with both
memory parts. After each execution of Π, the adversary is allowed to query
a leakage oracle Ω(viewL, viewR), where (viewL, viewR) are the respective views
of the players. The view of a player consists of all the information that was
available to him during the execution of the protocol, i.e. his initial state, his local
randomness and all the messages sent and/or received. The adversary submits
functions fL and fR and after submission, he gets back fL(viewL) and fR(viewR).
The only restriction is that the total amount of bits output by the function fL

during one execution of the protocol is limited to a certain constant λ, and the
same holds for fR. An adversary is called λ-limited with respect to the limited
amount of leakage during a single execution, but an arbitrary amount of leakage
over all executions of the protocol. A more formal description of the model may
be found in [DF12] or [GR12].
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An important primitive used to achieve leakage resilience in this model is a
leakage-resilient storage (LRS) [DDV10,DF11,DF12]. An LRS for a set of values
S consists of two PPT algorithms LRS := (Encode,Decode,Refresh):

• Encode(1κ, S) → (L,R): Outputs an encoding (L,R) of a value S ∈ S.
• Decode(L,R) = S: Outputs the private value S corresponding to the encoding

(L,R).

For correctness it is required that Decode(Encode(S)) = S for all S ∈ S.

Definition 2.2. We say an LRS is (λ, ε)-secure if for every private value S and
any λ-limited adversary AΩ(L,R) querying the functions fL(L) to PL and fR(R)
to PR we have

Δ([fL(L), fR(R) | Decode(L,R) = S], [fL(L′), fR(R′)]) ≤ ε

where (L′, R′) is an encoding of a uniformly chosen value.

With this security notion, a λ-limited adversary cannot distinguish whether
the leakage is obtained from a specific value S or a uniformly sampled value S′.

The protocol Π computes operations on encoded values and outputs encod-
ings of the final values. These can be later retrieved with a dedicated procedure.

Remark 2.1. In our leakage model, the total amount of leakage obtained from
each memory part in a single round is bounded by λ. However, after a few
observations, an adversary could recover the shares completely, and trivially
break the security of the scheme. The first procedure we need to define, then,
is a refreshing procedure that allows to inject new randomness in the protocol.
Namely the procedure Refresh takes as input an encoding (L,R) of a value S and
outputs a new encoding (L′, R′) for S. Due to space limitations, we will leave the
details and issues of the Refresh procedure to the appendix. We will mention,
however, that all known provably-secure refreshing algorithms for two parties
need a leakage-free sampling of the randomness1. We will discuss leakage-free
oracles in Sect. 5.

3 A Leakage-Resilient Storage Based on the Inner
Product

An LRS based on the inner product was first proposed by [DDV10]. Given a
field F and an integer n (the dimension of the encodings), the LRS Φn based on
the inner product for values in F is given by:

• Encode(1κ, S) → (L,R): Sample values (L1, . . . , Ln, R1, . . . , Rn−1)
$←

(F∗)2n−1 and set Rn = L−1
n (S − 〈L1‖ . . . ‖Ln−1, R1‖ . . . ‖Rn−1〉). If Rn = 0,

resample. Finally, output (L := L1‖ . . . ‖Ln, R := R1‖ . . . ‖Rn).
1 The construction of a compiler from [GR12] implies a refreshing procedure, which

does not need any leak-free gates. However, it assumes that a number of parties
executing the protocol is much bigger than 2 and is rather unefficient.
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• Decode(L,R) = S: Output S = 〈L,R〉.

Correctness and security were proved in [DF11]. However, we manage to improve
the bounds for which security holds. We will present our result in the next
theorem.

Theorem 3.1. For separated PL and PR and a finite field F, Φn is a (λ, ε)-
secure LRS for

ε ≤ 2− 2n log |F∗|−(n+3) log |F|−2λ
2

Proof. Let A be a λ-limited adversary with access to oracle Ω(viewL, viewR). He
is allowed to query fL(viewL) and fR(viewR) since PL and PR are separated. The
functions fL and fR have joint output size 2λ. These functions define a map-
ping f from (F∗)2n to {0, 1}2λ. For simplicity we will write f(L,R) instead of
fL(viewL) and fR(viewR). Let Px be the set of all preimages of x ∈ {0, 1}2λ.
Then the min-entropy of L and R given a certain leakage x ∈ {0, 1}2λ is
∀f : (F∗)2n → {0, 1}2λ:

H∞,x((L,R) | f(L,R) = x)

= − log

(

max
(L′,R′)∈(F∗)2n

(

Pr
(L,R)

$←(F∗)2n

[(L,R) = (L′, R′) | f(L,R) = x]

))

= − log

(

max
(L′,R′)∈Px

(

Pr
(L,R)

$←Px

[(L,R) = (L′, R′)]

))

= log |Px|

Since fL(viewL) depends only on L and fR(viewR) only on R, L and R are
independent given f . Hence Lemma 2.1 implies the following bounds on the
statistical distances for the elements of {0, 1}2λ:

εx = Δx([〈L,R〉 | f(L,R) = x], 〈L′, R′〉) ≤
√

|F|n+1
√

|Px|−1

for a uniform 〈L′, R′〉 ∈ F. Notice that the statistical distance εx is not necessar-
ily negligible. For instance an adversary could choose a function f such that the
function is 1 if all entries of L and R are 1 ∈ F and otherwise 0. In this case if a
leakage f(L,R) = x = 1 appears, L and R are statistically fixed and εx = ε1 = 1.
Even if an adversary will choose such a function f , a x = 1 will appear only
with a negligible probability then. A straight forward but a lossy technique to
prove the Theorem would be: Either x appears with negligible probability or εx

is negligible. We are not using this approach which is also a reason why we get
better bounds.

We get the Theorem by bounding the final advantage of A: For all S ∈ F

ε = Δ([f(L, R) | 〈L, R〉 = S], f(L
′
, R

′
))

=
1

2

∑

x∈{0,1}2λ

| Pr[f(L, R) = x | 〈L, R〉 = S] − Pr[f(L
′
, R

′
) = x]|

=
1

2

∑

x∈{0,1}2λ

∣

∣

∣

∣

Pr[〈L, R〉 = S | f(L, R) = x] · Pr[f(L′, R′) = x]

Pr[〈L, R〉 = S]
− Pr[f(L

′
, R

′
) = x]

∣

∣

∣

∣
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≤
1

2
|F|

∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

∣

∣

∣

∣

Pr[〈L, R〉 = S | f(L, R) = x] −
1

|F|

∣

∣

∣

∣

≤ |F|
∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

⎛

⎝

1

2

∑

S′∈F

∣

∣Pr[〈L, R〉 = S
′ | f(L, R) = x] − Pr[〈L′

, R
′〉 = S

′
]
∣

∣

⎞

⎠

= |F|
∑

x∈{0,1}2λ

Pr[f(L
′
, R

′
) = x]

(

Δx([〈L, R〉 | f(L, R) = x], 〈L′
, R

′〉)
)

≤
|F|
√

|F|n+1

|F∗|2n

∑

x∈{0,1}2λ

√

|Px| ≤
√

|F|n+3 · 2λ

|F∗|n
= 2

− 2n log |F∗|−(n+3) log |F|−2λ
2

The first steps are straight forward. Then for the first inequality, we use a
probably lossy bound. In the second last line, we sum over the probability, that a
leakage x appears multiplied with the statistical distance εx implied by x. Finally
we plugin the probabilities and apply the bounds on εx for all x ∈ {0, 1}2λ and
use Jensen’s Inequality. �

Flexibility and graceful degradation. The LRS Φn satisfies two additional,
very useful properties. It is flexible, since an adversary could query 2λ bits on
a single party instead of querying λ bits on each of them, without decreasing
the statistical distance. More generally, an adversary is allowed to arbitrary split
the amount of leakage among the two parties, as long as the sum is equal to the
total amount of tolerated leakage.

Even more interesting is the graceful degradation achieved by an LRS in
general. If an adversary queries 2λ + 2k bits instead of 2λ bits, the security
will not entirely break down. In case of Φn, it will only increase the statistical
distance from uniform by a factor of 2k. If the statistical distance is 2κ for security
parameter κ, then the security parameter will be decreased to κ′ = κ − k.

Remark 3.1. For seeing the improvement compared to previous results, we use
the parameters of Lemma 1 in [DF11] which is also used in [DF12]. We set m = 1
and the given leakage and statistical distance is λ = (1/2 − δ)n log |F| − log γ−1

and ε′ = 2(|F|3/2−nδ + |F|γ) for γ > 0 and 1/2 > δ > 0. If we plug in λ in
Theorem 3.1, our bound yields ε = |F∗|−n|F|n+3/2−nδγ ≈ |F|3/2−nδγ for large
fields. Hence ε′ > ε.

Remark 3.2. Further, for a total leakage 2λ of 1/2 of the bits of the encod-
ings or more, security is not guaranteed anymore. This follows from the fact
that (n + 3) log |F| is larger than n log |F∗| which is the entropy of one of the
encodings.

4 Computation and Retrieving Computed Values

To begin, we show how to perform non-interactive operations on the encoded
values. Non-interactivity guarantees that the computation doesn’t contradict
the split-state model’s assumptions, thus ensuring to achieve security. After
describing the non-interactive operations, we give a more formal description of
a set of leakage-resilient operations based on the LRS Φn.
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Addition of a constant and an encoded value. Let X = 〈L,R〉 be the input
secret value and c ∈ F be a constant. To compute c + X, we set L′ = L||c and
R′ = R||1. Then

〈L′, R′〉 =
n∑

i=1

(Li · Ri) + c = X + c.

Addition of two encoded values. Let X = 〈L,R〉 and Y = 〈K,Q〉 be the
input secret values, and (L′, R′) the encoding for Z = X + Y . The simplest
addition procedure is to set L′ = L||K and R′ = R||Q. It is trivial to verify that

〈L′, R′〉 =
n∑

i=1

(Li · Ri + Ki · Qi) =
n∑

i=1

(Li · Ri) +
n∑

i=1

(Ki · Qi) = 〈L,R〉 + 〈K,Q〉.

Multiplication of an encoded value by a constant. Let c be a public
constant and let X = 〈L,R〉 be the input secret value. We would like to obtain
shares (L′, R′) for c · X. It is then enough to set L′ = L and R′

i = c · Ri for
i ∈ [n]. It is immediate to verify that

〈L′, R′〉 =
n∑

i=1

(Li · c · Ri) = c · 〈L,R〉 = c · X.

Multiplication of two encoded values. Let X = 〈L,R〉 and Y = 〈K,Q〉 be
the input secret values and (L′, R′) the encoding for Z = X · Y . The simplest
multiplication procedure is to set L′ = L ⊗ K and R′ = R ⊗ Q. It is now easy
to verify that

〈L′, R′〉 =
n∑

i=1

n∑

j=1

(Li · Kj · Ri · Qj) =
n∑

i=1

(Li · Ri) ·
n∑

i=1

(Ri · Qi) = 〈L,R〉 · 〈K,Q〉.

We emphasize that this operation is too costly for large dimensions. If a multi-
plication between two encoded values is necessary, using the algorithm given by
[DF12] should be considered.

A set of leakage-resilient operations. To describe the set of leakage-resilient
operations, we use again the algorithms of Φn. More precisely, the set of leakage-
resilient operations Ψn consists of nine PPT algorithms for two parties PL and
PR:

• Initialize(S1, . . . , Ss): For all i ∈ [s] compute EncodeΦn(1κ, Si) → (Li, Ri).
Start PL with input L1, . . . Ls and PR with input R1, . . . , Rs.

• Refresh(i): PL and PR replace (Li, Ri) by (L′
i, R

′
i) ← Refresh(Li, Ri).

• cAdd(i, j, c): PL sets Li := Lj‖c and PR sets Ri := Rj‖1.
• Add(i, j, k): PL sets Li := Lj‖Lk and PR sets Ri := Rj‖Rk.
• cMult(i, j, c): PL sets Li := (cLj,1‖cLj,2‖ . . . ) for Lj = (Lj,1‖Lj,2‖ . . . ) and

PR sets Ri := Rj .
• Mult(i, j, k): PL sets Li := Lj ⊗ Lk and PR sets Ri := Rj ⊗ Rk.
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• RetrieveValue(i) → (L′, R′): Invoke Refresh(i), PL outputs Li and PR outputs
Ri.

• ShrinkDown(i): Shrinks down Li and Ri to dimension n + 1. For more details
and the security analysis, we refer to Appendix B.

Remark 4.1. Note that, apart from cMult, the length of the encodings increases
in all the other operations. This can influence the performance of the following
operations. Thus, we have designed a Shrink procedure that allows to reduce an
arbitrary length of encodings down to n + 1 field elements.

It turns out that, in the protocols we considered, using this operation does
not improve the overall efficiency. This is because it requires a call to the Refresh
procedure, which is quite costly. For completeness, we present the Shrink opera-
tion in Appendix B. We remark that this operation is still useful in many situ-
ations, because it does improve the performance for more complicated patterns
of operations (indeed, even for just two consecutive multiplications on encoded
values).

The main property of Ψn is that functions computable by two parties PL

and PR with the operations described above can be made leakage resilient in a
straightforward way. The procedure Initialize, which receives as input all sensitive
values, is called at the beginning of the computation. This process has to be free
of leakage. Once encodings for the sensitive values are created and shared among
PL and PR, arbitrary functions can be computed and retrieved and the leakage
during the computation will not leak any information about the sensitive values,
even if the computed function may reveal them.

After the computation, PL and PR can refresh their encodings by using
Refresh to compute another function without leaking information about the sen-
sitive values during the computation. If Refresh is used, the amount of tolerated
leakage is as large as during the first computation. This follows directly from
the property of Refresh. We prove the general statement about Ψn in the next
theorem.

Theorem 4.1. Let F be an arbitrary function computable by two parties PL, PR

using Ψn. Let the encodings used by PL, PR for computing a value be fresh and
independent. Let S1, . . . , Ss ∈ F be a set of input values for F among additional
inputs that may be chosen uniformly or by an adversary. Then for any λ-limited
adversary A and any q ∈ N:

Δ(AΩ(PL,PR)(x1, . . . xq),AΩ(PU ,PU )(x1, . . . xq)) ≤ q2− 2n log |F∗|−(n+3) log |F|−2λ
2

where xi is an output of F on input S1, . . . , Ss. Furthermore, for every i ∈ [q],
Ω(PL,PR) gives access to λ bits of leakage on each of the views of PL and PR

during the computation of xi, whereas Ω(PU ,PU ) indicates leakage obtained from
the computation of xi for uniform S′

1, . . . , S
′
s ∈ F.

Proof. We start with q = 1. Without loss of generality we set x1 = {S1, . . . Ss}
and assume that A sends queries fL,1(LS1,1), . . . , fL,s(LSs,1) to PL and



664 M. Andrychowicz et al.

fR,1(RS1,1), . . . , fR,s(RSs,1) to PR with a total ouput size of 2λ bits. Let λi

be the output size of fL,1(LSi,1) and fR,1(RSi,1) for i ∈ [s]. Then according to
Theorem 3.1:

ε = Δ(AΩ(PL,PR)(x1),AΩ(PU ,PU )(x1))

= Δ(AΩ(PL,PR)(S1, . . . , Ss),AΩ(PU ,PU )(S1, . . . , Ss))

≤
s∑

i=1

2− 2n log |F∗|−(n+3) log |F|−λi
2

= 2− 2n log |F∗|−(n+3) log |F|
2

s∑

i=1

2
λi
2

≤ 2− 2n log |F∗|−(n+3) log |F|−2λ
2

This is because Theorem 3.1 holds for any private value S ∈ F, which is harder
to achieve than if S is known or even chosen by A. To extend the result to q
outputs of F , we use a simple hybrid argument. For x1, we showed that A can
not distinguish if the leakage is received from encodings of S1, . . . Ss or from
some uniform S′

1, . . . S
′
s with probability more than ε. Since we use fresh and

independent encodings of S1, . . . Ss for the computation of x2 to xq, we can
apply Theorem 3.1 again. So for every single xi, A will notice with at most
probability ε, if the leakage is based on S′

1, . . . S
′
s instead of S1, . . . Ss. Summing

up over q we get:

Δ(AΩ(PL,PR)(x1, . . . xq),AΩ(PU ,PU )(x1, . . . xq)) ≤ qε.

�

Note that Theorem 4.1 provides leakage resilience for any function F with
private values S and computable by two parties PL, PR using Ψn. More precisely,
given q outputs of F and leakage retrieved during the computation of F , an
adversary cannot distinguish if the leakage comes from the computation of F on
input S or a uniformly sampled input in F.

Corollary 4.1. Let F be a function with private input S and additional input
that may be chosen at uniform or by an adversary. Suppose that, for any PPT
algorithm, q outputs of F are distinguishable from uniform with probability at
most ε. Then q outputs of F computed by two parties PL, PR using Ψn are
distinguishable from uniform with probability at most ε′ by any PPT λ-limited
adversary, where

ε′ ≤ ε + q2− 2n log |F∗|−(n+3) log |F|−2λ
2 .

5 Leakage-Resilient Computation Of Lapin

Even though the techniques presented above can be easily applied to other prim-
itives or protocols (for example [LM13]), we set our focus on Lapin. The instan-
tiation of Lapin with a large field fits perfectly the proposed techniques. We
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use the parameters given in [HKL+12]. The authors propose to use the field
F = F2[X]/(X532 + X + 1), which results in a size |F| = 2532. Lapin uses two
private key elements s1, s2 ∈ F and for every protocol execution, a sensitive noise
term e is sampled from the distribution BF

τ , i.e. the distribution over the poly-
nomials of F where each of the coefficients is chosen from the binary Bernoulli
distribution. While s1 and s2 could be stored in encoded form on two separated
parts PL and PR on the device, e has to be resampled after every computa-
tion and not just refreshed. During the protocol a term z = r(cs1 + s2) + e for
uniform field elements r, c is computed. Due to space constraintments, we refer
for details to [HKL+12]. A leakage-resilient computation of z would imply a
leakage-resilient variant of Lapin.

On leak-free oracles. For sampling and encoding e, we use a leak-free ora-
cle Oe. The reason for using Oe to generate an encoding for e is that it is
fundamental to securely sample the randomness. In fact, even leaking a sin-
gle bit of the sampled noise is enough to undermine security, since revealing
the noise from a LPN sample provides a linear equation from which the secret
can be recovered. Hence we assume that an encoding of the random noise is
computed in a leak-free way. This may be not reasonable to assume in some
situations. On the other side, the Oe oracle does not have any input, and
the noise e is independent from any interaction between the parties of the
authentication protocol, this makes it harder to attack such an oracle with
a SCA.

One strategy to deal with this issue (that also concerns refreshing proce-
dures), is to sample the vectors Le and Re in advance, i.e. even before the
challenge c is known. One can therefore compute a number of pairs (Le1 , Re1),
(Le2 , Re2), . . . and pick one of them (possibly at random) whenever a fresh pair
is needed. Storing these pairs on the Tag even for a long time is completely
safe under the assumption that only computation leaks information. Even if an
adversary got access to a stored pair, the scheme would still be secure as long as
the adversary did not learn more than what he could have learned via leakage
queries during a single execution of the protocol. Whenever a Tag is running out
of (Le, Re) pairs, it could sample a few new pairs from Oe and store them in the
memory or sample a new pair after every protocol execution. Even if the oracle
Oe was not completely leakage-free, it would still be hard to attack the system,
since the (Le, Re) pairs are sampled in a different moment from the actual exe-
cution of the protocol and it is probably not easy for an adversary to figure out
which pair is used next time.2

Describing the leakage-resilient computation. At the core of Lapin, there
is the function F (r, c, s1, s2, e) = z = r(s1c+s2)+e = rcs1 +rs2 +e. In Fig. 1 we
give the details of its implementation using the set of leakage-resilient operations
Ψn from Sect. 4.

2 Because the pair to be used can be picked at random from the set of available pairs.
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Fig. 1. Leakage resilient computation for a lapin tag. To see which instructions
of Ψn are used, see Sect. 4. For the encodings hold 〈Ls1 , Rs1〉 = s1, 〈Ls1 , Rs1〉 = s2
and 〈Le, Re〉 = e. Before perfoming the next computation, the encodings of s1 and s2
need to be refreshed.

The encodings Ls1 , Ls2 , Rs1 , Rs2 for s1 and s2 are stored on the device and
e is obtained from Oe. The two parties PL and PR perform non-interactive
additions of shares and multiplications by constants to create an encoding of
the response z. The retrieving procedure is used to get an encoding of z in a
secure way. Finally, z itself can be obtained by computing the inner product of
the encodings. Before starting the next protocol execution, the encodings of s1

and s2 need to be refreshed using the refreshing operation of Ψn.
The security of the scheme and robustness against leakage can be easily

obtained from Corollary 4.1. Let εL be the winning probability against Lapin.
This is essentially the probability of distinguishing, for q outputs, the function
F (r, c, s1, s2, e) = z from uniform, where r is uniform and c is chosen by an
adversary. The values s1, s2 and e are the sensitive values and hence they are
encoded. The winning probability εp against the proposed leakage-resilient pro-
tocol for q executions is εp = εL+εΨn , where εΨn is the distinguishing probability
stated in Theorem 4.1.

Sampling the randomness and refreshing. As we already mentioned, it is
necessary that both the on-chip randomness sampling and the refreshing proce-
dure be secure against continual leakage. In particular, if the refreshing procedure
accesses a sensitive value in order to generate new encodings for it, the overall
security of the protocol could be critically harmed. The sensitive value could in
fact be easily retrieved during refresh executions. In Appendix A we describe
two existing refreshing algorithms for inner product shares. Neither of them
directly accesses a sensitive value so both perform much better, in the presence
of leakage, than simply executing an Decode operation followed by a new Encode
operation. While the weaker refreshing algorithm is not provably secure in a
theoretical sense, the stronger, leakage-resilient refreshing procedure comes at a
cost of a less efficient computation and requires a larger amount of randomness.
Note that even the leakage-resilient refreshing requires that the randomness is
drawn from a leakage-free oracle.
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Efficiency. The efficiency of the scheme is calculated in terms of inversions
and multiplications over F. In Table 1 we report our efficiency analysis of Lapin
when instantiated with the stronger (second row) and the weaker (third row)
refreshing procedures. In our analysis, we do not include the computation of a
refreshing procedure between two protocol executions.

Table 1. Efficiency of the Framework and Robustness Against Leakage. In the
table above, n is the dimension of the encodings, εL is the winning probability against
Lapin and εp is the winning probability against the leakage-resilient protocol with λ bits
of leakage on each of the two parties per protocol execution. The refresh procedure in
between two protocol executions is not covered in the presented computational costs.
The 8 bit AVR implementation for multiplication and division is a straight forward
implementation of the algorithms given in [HVM04] and for Lapin a uniform challenge
c in F is used instead of a sparse element in F.

Protocol Refresh n Efficiency Security

Multiplications & 8 bit AVR λ εp

Invertions

Lapin - - 2 &0 0.3 mio cycles 0 εL

Lapin Leakage-Resilient 4 19n &6n + 1 43 mio cycles 141 εL + 2−81

Lapin Leakage-Free 4 11n + 1 &1 9 mio cycles 141 εL + 2−81

Even though the protocol is quite simple, the computation is perhaps more
expensive than one would expect, due to the expensive refreshing operation
(which we describe in Appendix A). Compared to standard Lapin, the efficiency
decreases by at least a factor of 30. Lapin performs better over a ring with
a reducible multiplication, but in order to apply the proposed techniques, the
extractor properties of a field are necessary. Furthermore, Lapin takes advantage
of a multiplication with sparse field elements. In our framework, only a few field
elements are sparse and hence the optimization does not have a big effect on the
overall efficiency.

The 8 bit AVR implementation is based on a shift and add based division
and multiplication. Even the most costly implementation with 43 million cycles
has a running time of 1.34 seconds on a 32 Mhz architecture. The cycle amount
would drastically decrease on an implementation on a 32 bit architecture, since
shifts and additions can be carried out four times faster. We emphasize, that the
cost of sampling the randomness is not covered here.

Leakage resilience. Our proposal accomplishes leakage resilience in a model
which allows continuous and arbitrarily chosen leakage functions as long as
leakage-free components are not addressed. A choice of n = 4 results in a leakage-
resilient protocol for chosen leakage functions of 141 bits output size per round for
each of the two parties. To get these results, we first set the statistical distance
gained by the inner product to 2−81. For meaningful results, Theorem 4.1 requires
n ≥ 4. Finally we set the amount of protocol executions to be at most q = 240.
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6 Conclusions and Future Work

This work provides techniques to perform leakage-resilient operations which per-
fectly fits cryptographic primitives or protocols running over large finite fields.
It achieves strong provable security results thanks to the improved results for
the underlying LRS based on the inner product extractor and the large size of
the field. This framework could be very helpful to make other primitives leakage-
resilient without using heavy machinery. Since the known refresh algorithms are
still costly, more efficient alternatives would greatly increase the overall efficiency.

An issue from which our techniques suffer is the generation of on-chip ran-
domness. Furthermore, it is required to use leakage-free oracles to sample ran-
domness without leaking information.

Applying the proposed techniques to Lapin, we obtain a very high level of
leakage resilience. In terms of efficiency, it is still very expensive, decreasing the
efficiency compared to standard Lapin by at least a factor of 30. This is also
a drawback for leakage resilience, since additional computation will cause addi-
tional leakage. Therefore, in settings in which performance is very important
and leakage resilience plays a minor role, the Boolean masking of Lapin seems
to be a better choice. On the other hand, in applications in which a high leak-
age resilience is necessary, the proposed techniques applied to Lapin provides
an interesting option while still having reasonable responding times during a
protocol interaction.

Acknowledgements. The authors would like to thank Krzysztof Pietrzak and Eike
Kiltz for the helpful discussions on the leakage resilience of LPN and Tim Güneysu,
Thomas Pöppelmann and Ingo von Maurich for helping with the implementation on
the avr microcontroller.

A Refreshing Procedures for the Inner Product LRS

As a first security requirement, a refreshing procedure needs to be rerandomizing.

Definition A.1 (Rerandomizing). The refreshed encodings are uniformly dis-
tributed over the set of encodings of the encoded value.

Dziembowski and Faust in [DF11] describe two possible refreshing proce-
dures, starting from an intuitive, but flawed, one, and then providing a secure
one. The latter makes use of a leak-free component OR that samples uniformly
random pairs of orthogonal vectors, and has a complexity of O(n2) field opera-
tions. An improved version appears in [DF12]. The procedure was then revisited
and adapted to the AES case in [BFGV12]. We report it in Fig. 2.

This formulation of a refreshing procedure is very simple but, as the authors
incidentally mention, security is based on the (rather unrealistic) assumption
that the whole procedure is leakage-free. The reason for this is that, during
the interaction between PL and PR, one of the parties might learn additional
information about the secret state of the other one. While leakage on input
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Fig. 2. Refreshing Procedure. The refreshing procedure proposed in [BFGV12].

and output does not cause any problem, an adversary could use this additional
knowledge of one of the parties during the procedure to query a leakage function
which depends partially on both the encodings. This might reveal information
about the inner product of the encodings and hence of the encoded value. Even
though in practice, it is not known yet, how to exploit this by a SCA.

To deal with this issue, a property called reconstructability was introduced
in [FRR+10]. Let Op be a masked operation with input (L,R), and output
(L′, R′). We call reconstructor a simulator algorithm Rec that is able to recreate
the views that both parties would have after executing Op, without actually
executing it. More specifically, Rec takes as input (L,R) and (L′, R′), and returns
(viewL, viewR). In addition, it is important that the execution of Rec does not
require any interaction between the parties after they are given the input.3

Definition A.2 (Reconstructability). A masked operation Op is said to be ε-
reconstructable if there exists a reconstructor Rec such that, for every X ∈ F, it
holds that

Δ((L′, R′, viewL, viewR), (L′, R′, view′
L, view′

R)) ≤ ε,

where (L,R) = Encode(X), viewL and viewR are the views of the two parties after
the execution of Op(L,R) = (L′, R′) and (view′

L, view′
R) = Rec((L,R), (L′, R′)).

This property guarantees that leaking from the internal states during the
operation on the encodings does not reveal more than just leaking from the
input and output of the operation.

A reconstructable refreshing procedure was suggested by Andrychowicz in
[And12] and we present it in Figure 3.

As opposed to previous proposals, this procedure is more efficient, having a
complexity of O(n) operations: it requires 2n inversions, 4n multiplications and

3 Therefore, the parties can jointly draw some common randomness in advance. This
will be referred to as offline sampling later in this paper.
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Fig. 3. Refreshing Procedure. The procedure Refreshn is used to refresh the shares
of a secret. The values A, Ã, B, B̃ are such that 〈A, B〉 = −〈Ã, B̃〉 and Ai �= 0 and
B̃i �= 0 for 1 ≤ i ≤ n.

2n additions in the finite field. The procedure makes use of a modified leak-
free component ÕR that generates quadruples of vectors (A, Ã,B, B̃) such that
〈A,B〉 = −〈Ã, B̃〉 and for 1 ≤ i ≤ n it holds that Ai �= 0 and B̃i �= 0. It is easy
to see that this oracle can be simulated by players in possession of OR.

Note that his refreshing algorithm assumes that the shares have all non-zero
coordinates. In practice, we will use very big fields (at least |F| ≥ 2256), so a ran-
dom vector would have all non-zero coordinates with overwhelming probability.

It is easy to verify that the procedure Refreshn of Figure 3 verifies the reran-
domizing property. First of all, it is evident that the two shares output by
Refreshn are indeed a correct masking for the input secret, since

〈L′, R′〉 =

= 〈L,R′〉 + 〈Ũ , R′〉 = 〈L,R′〉 +
∑n

i=0 Ũi · R′
i =

= 〈L,R′〉 +
∑n

i=0 Ãi · B̃i · (R′)−1
i · R′

i = 〈L,R′〉 + 〈Ã, B̃〉 =

= 〈L,R〉 + 〈L,U〉 + 〈Ã, B̃〉 = 〈L,R〉 +
∑n

i=0 Li · Ui + 〈Ã, B̃〉 =

= 〈L,R〉 +
∑n

i=0 Li · L−1
i · Ai · Bi + 〈Ã, B̃〉 = 〈L,R〉 + 〈A,B〉 + 〈Ã, B̃〉 =

= 〈L,R〉.

To see that L′ are R′ are independent from the input, we set U = R′ − R
and Ũ = L′ − L. From the condition 〈L,R〉 = 〈L′, R′〉 follows 〈L,U〉 = −〈Ũ , R′〉
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which is the constraint of OR. Therefore OR outputs samples of the correct
distribution to make L′, R′ independent of L, R.

A reconstructor for Refreshn was given in [And12]. We present it in Figure 4.

Fig. 4. Reconstructor. The above algorithm describes a reconstructor for the proce-
dure Refreshn. The only communication between the parties is the sampling of random
vectors V and Ṽ , which can be done offline.

The author provides a proof that the above procedure is an ε-reconstructor
for Refreshn with ε = 0.

B A Shrinking Procedure for the Inner Product LRS

The Shrink operation is presented in Fig. 5. It transforms an encoding of length
m into an encoding of length n+1. It is based on the implicit shrinking procedure
used in the multiplication gadget in [DF12].

The algorithm Shrink is interactive, so we need to analyze its security care-
fully. The reason for this is that for example PL learns during the execution
the value of R̂, which reveals some partial information about the secret state of
PR. An adversary can use this fact and query a leakage function, which depends
partially on both of the encodings, and thus break the security of LRS.

We already introduced reconstruct ability in Appendix A. Reconstructability
implies that the interaction between two parties does not contradict the leakage
resilience. Since the views of PL and PR during a reconstructable procedure can
be simulated by a non-interactive reconstructor. This reconstructor only uses
Oracles which sample randomness which is independent of sensitive values and
he does not require any interaction between PL and PR.
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Fig. 5. Shrinking Procedure. The procedure Shrink described in this figure is used
to reduce the size of the shares of a secret.

Fig. 6. Reconstructor. The above algorithm describes a reconstructor for the proce-
dure Shrink. The views created by the reconstructor for Refresh are treated as part of
the output.

Theorem B.1. Shrink is 0-reconstructable.

Proof. The reconstructor for the Shrink operation is presented on Fig. 6. We
need to show that reconstructed views (L, L̃, L′, L̂, R̂) and (R, R̃,R′, R̂) have the
same distribution as in the shrink down procedure. This is already clear for L,
R and L′, R′ since the input is identical. In the shrink procedure L̂ and R̂ are
uniform elements in (F \ {0})m−n and their inner product is 〈L̂, R̂〉 = L̃n+1.
The presented reconstructor samples L̂ such that this is the case. The correct
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distribution of L̃, R̃ follows from the correct distribution of L′, R′ and L̂, R̂: The
first n field elements of L̃, R̃ are identical to the first n field elements of L′, R′

and the last m−n field elements are identical to L̂, R̂. The reconstructability of
the view during the refresh procedure follows from the reconstructability of the
refresh procedure. �
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Abstract. Cryptographic protocols are commonly designed and their
security proven under the assumption that the protocol parties have
access to perfect (uniform) randomness. Physical randomness sources
deployed in practical implementations of these protocols often fall short
in meeting this assumption, but instead provide only a steady stream of
bits with certain high entropy. Trying to ground cryptographic protocols
on such imperfect, weaker sources of randomness has thus far mostly
given rise to a multitude of impossibility results, including the impos-
sibility to construct provably secure encryption, commitments, secret
sharing, and zero-knowledge proofs based solely on a weak source. More
generally, indistinguishability-based properties break down for such weak
sources. In this paper, we show that the loss of security induced by using
a weak source can be meaningfully quantified if the source is bounded,
e.g., for the well-studied Santha-Vazirani (SV) sources. The quantifica-
tion relies on a novel relaxation of indistinguishability by a quantitative
parameter. We call the resulting notion differential indistinguishability
in order to reflect its structural similarity to differential privacy. More
concretely, we prove that indistinguishability with uniform randomness
implies differential indistinguishability with weak randomness. We show
that if the amount of weak randomness is limited (e.g., by using it only
to seed a PRG), all cryptographic primitives and protocols still achieve
differential indistinguishability.

Keywords: Indistinguishability · Randomness · Weak sources ·
Differential privacy · Pseudorandom generators · Santha-Vazirani
sources

1 Introduction

Cryptographic protocols are commonly designed and their security proven under
the assumption that the protocol parties have access to perfect, i.e., uniform,
randomness. Actual physical randomness sources that cryptographic implemen-
tations rely on, however, rarely meet this assumption: instead of providing uni-
form randomness, they provide only a stream of bits with a certain high amount
of entropy. Moreover, these so-called weak sources, such as the Santha-Vazirani
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(SV) sources [32], are often non-extractable [15,32], i.e., it is computationally
infeasible to extract more than a super-logarithmic amount of (almost) uniform
randomness from them.

There have been several attempts to bridge this gap, i.e., to ground the
security guarantees of cryptographic systems on such weak sources. As soon as
indistinguishability-based secrecy properties are being desired, however, this line
of research has mostly given rise to a multitude of impossibility results [7,15,29],
only complemented by a few constructive results if additional assumptions are
being imposed. For instance, encryption can be realized using weak sources, if one
imposes strong assumptions on the entropy of encrypted messages [5], or if the
weak source is restricted to the key generation algorithm and a perfect source is
available for the actual encryption algorithm [18]. The plurality of impossibility
results in this area, as well as the absence of comprehensive constructive results,
indicates that traditional indistinguishability-based secrecy notions fall short in
capturing the impact of weak randomness on cryptography. This constitutes an
unsatisfactory situation, with several open questions looking for an answer:

– Is it possible to quantify the secrecy loss of cryptographic operations and
primitives, if a weak source (such as an SV source) is being used?

– Imagine that today a cryptographic protocol (e.g., an e-voting system) is exe-
cuted and tomorrow it turns out that the employed randomness was weak.
Given that there are strong impossibility results [7,15,29] for indistinguisha-
bility, is all lost or can we still give quantitative guarantees about the secrecy
of the system?

– Given that these quantitative guarantees will necessarily be weaker than tradi-
tional cryptographic guarantees, under which assumptions do they still provide
reasonable practical security guarantees?

In this paper we address all of these questions.

1.1 Our Contributions

Relaxing Indistinguishability to Quantify the Secrecy Loss. We derive
quantitative guarantees for all indistinguishability-based cryptographic construc-
tions that are used with arbitrary weak sources that are additionally bounded in
the following sense: in addition to imposing an upper bound on the probability
of each individual bitstring (i.e., requiring a sufficiently high min-entropy), one
additionally imposes a lower bound on these probabilities. These bounded weak
sources include SV sources [32] and resemble balanced sources [23].

To quantify the secrecy loss that weak randomness imposes on cryptogra-
phy, we define differential indistinguishability, a quantitative relaxation of cryp-
tographic indistinguishability in the spirit of differential privacy [19,30] and
pseudodensity [31]. The necessity of a new, relaxed notion arises from the impos-
sibility result of Dodis et al. [15] who showed that whenever only weak sources of
randomness are available, traditional indistinguishability is provably impossible
for cryptographic primitives that have a secrecy requirement, e.g., encryption,
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commitments, and zero-knowledge proofs. More concretely, one cannot ensure
that the advantage in distinguishing two challenger machines X0 and X1 is neg-
ligible for every probabilistic polynomial-time adversary. However, it might still
be the case that no adversary has a non-negligible advantage in performing a
practical attack that breaks the security entirely, e.g., by reaching a state in
which it is certain whether it interacts with X0 or X1. The notion of differential
indistinguishability consequently aims at quantifying the resulting loss of secrecy
without overestimating the adversary’s power to break the scheme entirely: Two
games, i.e., interactions with two machines X0 and X1, are (ε, δ)-differentially
indistinguishable if for all interactive distinguisher machines A, the output prob-
abilities for all outputs x are related by

Pr [〈A|X0〉 = x ] ≤ 2ε · Pr [〈A|X1〉 = x ] + δ,

where x is a possible output of A.1 Here ε ≥ 0 is a reasonably small constant or a
decreasing function such as 1/p(·) for a polynomial p. We allow only a negligible
function for δ, which corresponds to a negligible probability to break the security
of the scheme entirely. Differential indistinguishability thus offers quantitative
parameters to reason about the loss of secrecy incurred by the use of imperfect
randomness.

Guarantees for Cryptographic Primitives Using Weak Sources. As our
main contribution we show that traditional indistinguishability (given a uniform
randomness source) suffices to guarantee differential indistinguishability if the
uniform source is replaced by an arbitrary bounded weak source. This result
immediately entails meaningful quantitative lower security bounds in cases where
indistinguishability-based definitions are provably impossible to achieve [15].

In particular, our methodology can be applied in hindsight and produces
meaningful quantitative guarantees for all cryptographic primitives and proto-
cols, provided that the amount of used imperfect randomness is bounded; there
is no need for new cryptographic constructions for any of the existing primitives
whose security is defined and proven by means of indistinguishability, including
simulator-based notions.

Moreover, we show that if the bounded weak randomness is used only to seed
a secure PRG, differential indistinguishability suffers only a negligible quantita-
tive (additional) security loss under composition – just as traditional indistin-
guishability.

Intuitively, is not surprising that the provided secrecy does not degrade sub-
stantially if the quality of the randomness degrades within certain small bounds,
because otherwise virtually all practical implementations of cryptography would
be insecure due to the inherent imperfection of physical sources. Our work con-
firms this intuition and provides a framework to analyze the resulting loss of
secrecy quantitatively.

1 In contrast to differential privacy and pseudodensity, we use 2 instead of e as a base
for the exponential function, because the base 2 fits standard definitions of entropy
better.
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Technically, Theorem 1 states that the interactions with two machines X0

and X1 are differentially indistinguishable for bounded weak distributions if
they are indistinguishable for the uniform distribution. These machines X0 and
X1 can then be instantiated by arbitrary challenger machines to immediately
derive results for cryptographic notions. Theorem 1 comprises arbitrary classes
of adversaries and thus covers information-theoretical and computational indis-
tinguishability. To derive quantitative guarantees, the theorem only imposes the
requirement that the entropy of the bounded weak randomness used by the prim-
itive or protocol is bounded in terms of the security parameter. Thus all existing
primitives that use a bounded amount of randomness can immediately be ana-
lyzed and their secrecy loss quantified by an additional multiplicative factor that
only depends on the quality of the random source.

Connection to Differential Privacy. We analyze the relation between dif-
ferential indistinguishability and the well-studied notion of differential pri-
vacy [19,30], especially in terms of composition. Similar to the privacy loss in
differential privacy when the privacy of several users is analyzed, differential
indistinguishability suffers from a commensurate loss of entropy, which conse-
quently leads to a secrecy loss in cases where several users use weak, potentially
even dependent randomness. This relation is of particular interest in scenarios
in which the users are not aware of using imperfect randomness and thus fail to
deploy existing methods [12,24,26] to improve their randomness using multiple
sources.

Organization. The rest of the paper is organized as follows: We recall important
concepts and introduce our notation in Sect. 2. We define differential indistin-
guishability and present our main results in Sect. 3. We then demonstrate the
utility of differential indistinguishability to public-key encryption and study com-
posability of differentially indistinguishable primitives in Sect. 4. We interpret
and analyze differential indistinguishability in Sect. 5, including a comparison
between differential indistinguishability with differential privacy. Finally, we dis-
cuss related work in Sect. 6 and possible future directions in Sect. 7. To improve
readability, we have shifted several proofs to the appendix.

2 Preliminaries and Notation

We denote sampling an element r from a distribution D by r ← D. The probabil-
ity of the event F (r), where r is sampled from the distribution D, is denoted by
Pr [F (r)|r ← D] or more compactly by Pr [F (D)]. To keep the notation simple,
we write fk for the value of a function f(·) applied to k, where k is typically the
security parameter. We drop the explicit dependence of parameters and security
bounds (α, β, ε, γ) on k whenever it is clear from the context. We denote by
{Dk}k∈N a family of distributions such that for each k ∈ N the distribution Dk

samples elements from {0, 1}k. In particular, {Uk}k∈N is the family of uniform
distributions, where Uk is the uniform distribution over {0, 1}k.

Throughout the paper we consider (possibly interactive) Turing machines X
that always have implicitly access to a random tape with an infinite sequence of
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uniformly distributed random bits, even if the machines get an additional input
drawn from some random source. Unless we mention that they run in proba-
bilistic polynomial time (ppt) in the length of their first input, those machines
are not bounded. The distribution on the outputs of X when run on input x is
denoted by X(x). Similarly, we write 〈X(x)|Y(y)〉 to denote the distribution on
the output of the machine X on input x in an interaction with the machine Y
on input y. We write log := log2 for the logarithm to base 2.

Randomness Sources. In addition to the commonly used min-entropy, we
make use of a symmetrically defined counterpart, coined max-entropy by
Haitner et. al. [23]: whereas min-entropy bounds the maximum likelihood event,
max-entropy bounds the minimum likelihood event (and consequently requires
probability distributions with full support).2

Definition 1. Let D be a distribution over the set S. The min-entropy of D
is Hmin(D) := minx∈S(− log Pr[D = x]); the max-entropy of D is Hmax(D) :=
maxx∈S(− log Pr[D = x]).

These entropy measures allow us to define bounded weak sources, which must
additionally provide a certain amount of max-entropy in comparison to weak
sources.

Definition 2. A family of distributions {Dn}n∈N, each over the set {0, 1}n of
bitstrings of length n, is a (α, β) -bounded weak source, if every Dn satisfies the
following entropy requirements:

(i) Dn has min-entropy at least n − α, and
(ii) Dn has max-entropy at most n + β.

If a family of distributions {Dn}n∈N satisfies only requirement (i), but not
requirement (ii), we call it an α -weak source (or a min-entropy source) instead.

The following generalization of Santha-Vazirani (SV) sources [32] to block
sources [11,15] is a special case of (α, β)-bounded weak sources. Block sources are
well-suited to describe both physical random sources as well as certain random
sources that have been “tampered with” by an adversary [1].

Definition 3. (SV Block Source). A tuple of distributions D = (D1, . . . , Dt),
each over the set {0, 1}n of bitstrings of length n, is (n, γ) -Santha-Vazirani (SV)
(for 0 < γ < 1) if for all 0 ≤ i ≤ t and for all x1, . . . , xi ∈ {0, 1}n,

(1 − γ) · 2−n ≤ Pr
[
Di = xi

∣
∣
∣ x1 ← D1, . . . , xi−1 ← Di−1

]
≤ (1 + γ) · 2−n.

The original SV sources are a special case of Definition 3 that arises for n = 1.
Every (n, γ)-SV block source over {0, 1}tn is an (α, β)-bounded weak source
where α = t · log(1 + γ) and β = −t · log(1 − γ).

2 This notion of max-entropy is not to be confused with Hartley entropy, which is also
sometimes called max-entropy.
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Remark 1. Our complete analysis is also possible for sources that are only sta-
tistically close to (α, β)-bounded weak sources such as sources in [23] that have
a limited number of outliers. We refer to the full version [3] for both definitions
and results for such sources.

3 Differential Indistinguishability

In this section we present our main results, which can be applied to a variety of
cryptographic notions. Traditional cryptography defines two machines X0 and X1

to be indistinguishable for a certain class of distinguishers A if no distinguisher
A ∈ A in this class is able to notice a difference between an interaction with
X0 and an interaction with X1. Formally, the concept of “noticing a difference”
is captured by requiring that any possible view of a distinguisher is (almost)
equally likely for both X0 and X1, i.e., the difference between the probability that
A outputs any given view in the interaction with X0 and the probability that
A outputs the same view in the interaction with X1 is negligible. We consider a
variant of indistinguishability that allows these probabilities to be also related by
a multiplicative factor 2ε > 1, similar to the concept of mutual pseudodensity [31]
and differential privacy [19,30].

Definition 4 (Differential Indistinguishability). Two probabilistic machi-
nes X0 and X1 are (ε,δ)-differentially indistinguishable for a distribution {D�}�∈N

over {0, 1}� for a positive polynomial � and a class A of adversaries (probabilistic
machines) if for all A ∈ A, for all sufficiently large k, for all possible outputs x
of A, and for all b ∈ {0, 1},

Pr
[
〈A(1k)|Xb(1k,D�)〉 = x

]
≤ 2ε Pr

[
〈A(1k)|X1−b(1k,D�)〉 = x

]
+ δk.

This definition allows to express many of the traditional cryptographic indistin-
guishability notions [21,27]. We discuss the impact of the multiplicative factor,
that can (and must) be interpreted carefully, in Sect. 5. For the traditional case
of ε = 0 we speak of δ-indistinguishability. The definition covers interactive
and non-interactive notions, as well as simulation-based notions. For perfect
(information-theoretic) indistinguishability, the class of adversaries is the class
A∞ of all probabilistic (possibly unbounded) machines and we have δ = 0.3 Sta-
tistical indistinguishability can be expressed with the same class of adversaries
for δ > 0. Cryptographic (computational) indistinguishability can be achieved
with the class Appt of ppt machines with δ being a negligible function.4

3.1 Main Result

Traditional indistinguishability for uniform randomness directly implies differen-
tial indistinguishability for (α, β)-bounded weak sources. This is captured by the
3 We additionally drop the formulation “for sufficiently large k” in the case of

information-theoretic security.
4 Note that this is equivalent to requiring a negligible function for every adversary [4].
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following theorem. It allows us to easily give guarantees for cryptographic prim-
itives whenever their security notions can be expressed in terms of Definition 4.

Theorem 1. If two probabilistic machines X0 and X1 are δ-indistinguishable for
a class of probabilistic machines A and the family of uniform sources {Un}n∈N

over {0, 1}n, then X0 and X1 are also (α+β, 2α ·δ)-differentially indistinguishable
for A and any (α, β)-bounded weak source over {0, 1}n.

Proof. We show the theorem by first proving a technical lemma about bounded
weak distributions: Even though an (α, β)-bounded weak distribution is not
negligibly close to a uniform distribution, the parameters α and β give a bound
on the discrepancy between the uniform distribution and the bounded weak
distribution.

Lemma 1. Let {Dn}n∈N be an (α, β)-bounded weak source over {0, 1}n and
let {Un}n∈N be a family of uniform sources over {0, 1}n. For all probabilistic
machines A, for all k ∈ N and for all possible outputs x of A,

Pr
[
A(1k,Dn) = x

]
≤ 2α Pr

[
A(1k, Un) = x

]
(a)

and Pr
[
A(1k, Un) = x

]
≤ 2β Pr

[
A(1k,Dn) = x

]
. (b)

Proof. Let {Dn}n∈N be an (α, β)-bounded weak distribution over {0, 1}n. By
Definition 2, Dn has min-entropy at least n−α and max-entropy at most n+β.
We start with (a). For all values r0 ∈ {0, 1}n,

log
(

Pr [Dn = r0]
Pr [Un = r0]

)

= log (Pr [Dn = r0]) − log
(
2−n

)

≤ − min
y∈{0,1}n

(− log (Pr [Dn = y])) − log
(
2−n

)

≤ − (n − α) + n = α.

Using this inequality we can show (a) as follows. For all possible outputs x of A,

Pr
[
A(1k,Dn) = x

]
=

∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
Pr [Dn = r0]

≤
∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
· 2α · Pr [Un = r0]

≤ 2α Pr
[
A(1k, Un) = x

]
.

This shows (a). For (b), note that for all values r0 ∈ {0, 1}n, the probability
Pr [Dn = r0] is strictly larger than zero because β < ∞. For all values r0 ∈
{0, 1}n,

log
(

Pr [Un = r0]
Pr [Dn = r0]

)

= log
(
2−n

)
− log (Pr [Dn = r0])

≤ log
(
2−n

)
+ max

y∈{0,1}n
(− log (Pr [Dn = y]))

≤ −n + (n + β) = β.
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Using this equation we can show (b) as follows. For all possible outputs x of A,

Pr
[
A(1k, Un) = x

]
=

∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
Pr [Un = r0]

≤
∑

r0∈{0,1}n

Pr
[
A(1k, r0) = x

]
· 2β · Pr [Dn = r0]

≤ 2β Pr
[
A(1k,Dn) = x

]
.

This completes the proof of Lemma 1. 	


Now we use the lemma to prove our main theorem. Let {Dn}n∈N be an (α, β)-
bounded weak source, and {Un}n∈N be the uniform source, both over {0, 1}n.
Furthermore, let X0, X1 be probabilistic (not necessarily polynomially bounded)
machines, and let A ∈ A be an adversary machine such that for a function δ,

Pr
[
〈A(1k)|X0(1k, Un)〉 = x

]
≤ Pr

[
〈A(1k)|X1(1k, Un)〉 = x

]
+ δ.

Using Lemma 1, we show that A behaves similarly on Dn, as otherwise a
machine that simulates 〈A(1k)|X0(1k, r)〉 (or 〈A(1k)|X1(1k, r)〉) could distinguish
{Dn}n∈N and {Un}n∈N.

Pr
[
〈A(1k)|X0(1k,Dn)〉 = x

]
≤ 2α Pr

[
〈A(1k)|X0(1k, Un)〉 = x

]
(1)

≤ 2α Pr
[
〈A(1k)|X1(1k, Un)〉 = x

]
+ 2α · δ (2)

≤ 2α+β Pr
[
〈A(1k)|X1(1k,Dn)〉 = x

]
+ 2α · δ (3)

Here, inequalities (1) and (3) follow from inequalities (a) and (b) in Lemma 1,
respectively. The remaining inequality (2) holds by assumption. 	


Recall that every (n, γ)-SV block source over {0, 1}tn (Definition 3) is an (α, β)-
bounded weak source where α = t · log(1 + γ) and β = −t · log(1 − γ). With
γ < 1/2, it holds that β ≤ 2tγ and α ≤ 2tγ. Thus, we can instantiate Theorem 1
for SV block sources as follows:

Corollary 1. If two probabilistic machines X0 and X1 are δ-indistinguishable for
a class of probabilistic machines A and the family of uniform sources {Unt}nt∈N

over {0, 1}nt, then X0 and X1 are also (ε, 2εδ)-differentially indistinguishable for
A and any family of (n, γ)-SV block sources {Dnt}nt∈N over {0, 1}tn with γ ≤ 1

2 ,
where ε = γ · 4t.

Remark 2. Lemma 1 can also be interesting for sources with unbounded max-
entropy. In this case, β is infinitely large and consequently, inequality (b) does
not yield interesting guarantees anymore. However, for restricting undesirable
events that are not based on indistinguishability, inequality (a) suffices, which
is in line with the results of Dodis and Yu [18]. We refer to AppendixB for a
discussion.
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3.2 Computational Differential Indistinguishability Guarantees

In the computational setting where adversaries are ppt machines, we can achieve
a stronger result: If we rely on a pseudorandom generator (PRG), we can expand
a short seed from a randomness source to polynomially many bits of pseudoran-
domness. This well-known property is especially interesting here, as it allows us
to apply Theorem 1 in a much broader form: Virtually every classically secure
protocol is differentially secure when only a short random seed has been drawn
from a bounded weak source and then expanded via a PRG, as this puts a limit
on the entropy loss imposed by the actual bounded weak source. We formalize
this observation in the following corollary, which is central to our work.

Corollary 2. If two probabilistic machines X0 and X1 are computationally indis-
tinguishable for a class of ppt machines A and uniform randomness, then X0 and
X1 are also (α + β, 2α · δ)-differentially indistinguishable for A and for a negli-
gible function δ, if they draw their randomness from a PRG that is seeded with
a (α, β)-bounded weak source.

The corollary also gives guarantees for protocols and security proofs in which
the amount of necessary randomness can be influenced by the adversary, e.g.,
by sending requests to the machine.

4 Application to Cryptography

We apply differential indistinguishability to a common secrecy definition, namely
indistinguishability under chosen ciphertext attacks for public-key encryption.
This definition serves as example for how to instantiate the notion and how to
apply our main results to quantify the secrecy loss under imperfect randomness.

Moreover, we analyze differential indistinguishability under composition. We
obtain a general composability result for differential indistinguishability that
comes, similar to the composability of differential privacy, with a loss of secrecy.
We refer to the full version [3] for a discussion about additional examples (com-
mitment schemes and zero-knowledge proofs).

4.1 Public-Key Encryption

For PKE, standard security definitions, e.g., indistinguishability under adaptive
chosen ciphertext attack (IND-CCA) [21] can naturally be relaxed to use differ-
ential indistinguishability instead of traditional indistinguishability.

Definition 5. ((ε, δ)-DIF-IND-CCA). A pair A = (A0,A1) of ppt oracle
machines is an IND-CCA adversary if A0 outputs two messages x0, x1 of the same
length together with a state s, A1 outputs a bit, and both A0 and A1 have access
to decryption oracles as defined below. A PKE scheme E = (Gen,Enc,Dec) has
(ε, δ) -differentially indistinguishable encryptions under adaptive chosen cipher-
text attack for a randomness source {Dn}n∈N if for all IND-CCA adversaries
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and for all sufficiently large k and bitstrings z of polynomial length in k, it holds
that Pr

[
P
(0)
k,z = 1

]
≤ 2ε Pr

[
P
(1)
k,z = 1

]
+ δ, where P

(i)
k,z is defined as:

P
(i)
k,z := (e, d) ← Gen(1k); ((x0, x1), ) ← A

Dec(d,·)
0 (1k, e, z)

c ← Enc(e, xi;Dn); output A
Decc(d,·)
1 (1k, , c)

Here, Decc(d, ·) denotes a decryption oracle that answers on all ciphertexts except
for c, where it returns an error symbol ⊥. The randomness used by the encryption
algorithm Enc is drawn from Dn.

Note that (0, δ)-DIF-IND-CCA security is equivalent to traditional δ-IND-CCA
security.

Encryption with Imperfect Randomness. Both the encryption algorithm
and the key generation algorithm require randomness. Dodis and Yu [18] show
that even if weak sources are used for the key generation of IND-CCA secure
encryption schemes, the security is preserved. However, this result does not apply
when imperfect randomness is used by the encryption algorithm. The next the-
orem, an application of Theorem 1, quantifies the secrecy loss whenever the
encryption algorithm has only access to an (α, β)-bounded weak source.

Theorem 2. Let E = (Gen,Enc,Dec) be any PKE scheme that is δ-IND-CCA
secure under the assumption that Enc consumes at most n bits of uniform ran-
domness. Then E is (α + β, 2αδ)-DIF-IND-CCA secure if Enc uses an (α, β)-
bounded weak source {Dn}n∈N instead of a uniform source.

We refer to AppendixA.1 for a proof.

Discussion. Theorem 2 enables us to provide meaningful guarantees if an IND-
CCA secure encryption scheme relies on imperfect randomness, as long as the
randomness used to encrypt the ciphertext in question is drawn from a bounded
weak source. If an encryption scheme is (ε,δ)-DIF-IND-CCA secure, the adversary
may learn that the probability that a ciphertext contains a particular message
m0 is 2ε times higher than the probability that it contains another message
m1. However, if ε is reasonably small, e.g., ε = 0.001 (and thus 2ε ≈ 1.001),
both m0 and m1 are a plausible content of the ciphertext. In particular, the
adversary cannot reasonably believe or even convince a third party that m0 is
the value that has been encrypted. Moreover, the encryptor retains (a weak form
of) deniability: She could indeed have encrypted any message.

Imperfect Randomness in Both Key Generation and Encryption. Our
results also enable us to give a differential indistinguishability guarantee in the
case when both the key generation algorithm Gen and the encryption algorithm
Enc make use of a bounded weak source. If a PRG was used, seeded by a bounded
weak random source, then we can immediately apply Corollary 2 to derive a
differential indistinguishability guarantee. In contrast to the result of Dodis and
Yu that requires the encryption scheme to be simulatable as defined by [18],
which excludes, e.g., stateful schemes, we do not require any such structural
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property of the scheme.5 If, for some reason, no PRG was used, one can still apply
Theorem 1, but this will naturally yield weaker guarantees, as the combined
randomness of Gen and Enc needs to be taken into account (and moreover the
security loss under composition is significant, as discussed below).

Multiple Encryptions. Theorem 2 states a guarantee only for a single encryp-
tion (namely the encryption of one challenge message). However, it can be
extended to the encryption of a message vector. In particular, if a PRG is used
(and thus the amount of bounded weak randomness is limited to the seed of the
PRG), Corollary 2 yields immediately a differential indistinguishability guaran-
tee with ε being independent of the number of encrypted messages. If however,
the encryption algorithm Enc is run several times with (fresh) imperfect ran-
domness, the entropy loss of the randomness can increase linearly in the number
of messages in the vector for SV block sources, and consequently, ε increases
significantly.

Other Security Definitions. Although we focus on IND-CCA security for PKE
in this section, the broad applicability of Theorem 1 allows to handle other secu-
rity definitions such as indistinguishability under chosen plaintext attack (IND-
CPA) similarly.

4.2 Composability

Traditional indistinguishability with a negligible function δ and ε = 0 allows
for polynomially many compositions, because a polynomial factor for the advan-
tage of an adversary, which might come from seeing multiple samples, does not
help the adversary substantially (the advantage remains negligible). This is not
true for differential indistinguishability in general, because the (non-negligible)
multiplicative factors can, under certain conditions, be accumulated as well.

For individual users we have shown that sequential composition of one or
more primitives is possible without an (additional) loss of secrecy if a PRG is
used (Corollary 2). If, however, several users within a protocol use imperfect
randomness, the secrecy can degrade. Interestingly, we can give a bound on
the loss of secrecy that is similar to the composition that occurs for differential
privacy. We formulate a general composition lemma that we can instantiate to
cope with several situations.

Lemma 2. Let A be a class of adversaries. If X0 and X1 are (ε, δ)-differentially
indistinguishable for A, and X1 and X2 are (ε′, δ′)-differentially indistinguishable
for A, then X0 and X2 are (ε′′, δ′′)-differentially indistinguishable for A where
ε′′ = ε + ε′ and δ′′ = 2ε′

δ + 2εδ′.

We refer to AppendixA.2 for a proof.
A direct application of the lemma is the above described scenario in which

multiple users (sequentially or concurrently) contribute to a protocol and use

5 We discuss simulatability as well as the relation between our result and the result
by Dodis and Yu [18] in Sect. 5.2.
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bad randomness. In this case, the machine X1 can express an intermediate sce-
nario that is used in a straightforward hybrid argument, where for two users
X1 is the only hybrid. Moreover, the lemma is applicable to scenarios where an
individual user draws from a random source several times (for several primitives
or protocols) instead of using a PRG, and also to compositions of differential
indistinguishability guarantees in information-theoretical settings, where a PRG
cannot be employed in the first place.

5 Interpretation and Analysis

In this section, we analyze and interpret the security guarantees provided by
differential indistinguishability. In particular, we study the impact of a mul-
tiplication factor, and the influence of min- and max-entropy on differential
indistinguishability. Furthermore, we discuss the relation between differential
indistinguishability and differential privacy.

5.1 Impact of a Multiplicative Factor

Similar to differential privacy, differential indistinguishability adds a multiplica-
tive factor to the inequality used in the traditional indistinguishability notion.
We observe that a multiplicative bound may express properties that are inex-
pressible by an additive bound. While every multiplicative bound of the form
Pr [A] ≤ 2ε Pr [B]+δ implies a purely additive bound Pr [A] ≤ Pr [B]+δ+2ε−1 ≈
Pr [B] + δ + ε, the converse does not hold in general. No matter which additive
bound can be shown between two probabilistic events, there does not neces-
sarily exist a multiplicative bound. In particular, there are machines that are
δ-indistinguishable for some δ but not (ε, δ′)-indistinguishable for any ε such
that δ′ < δ. We refer to AppendixA.3 for a formal counterexample.

For secrecy properties, traditional indistinguishability intuitively states that
no adversary can learn any information about the secret, except with negligible
probability. The multiplicative factor generalizes indistinguishability to addition-
ally allow the adversary to learn information about the secret with more than
a negligible probability, as long as the loss of secrecy is bounded; e.g., if ε is a
small constant, then differential indistinguishability ensures that the owner of
the secret retains deniability by introducing doubt for the adversary.

Besides differential privacy, a multiplicative factor has also been used to
achieve a specialized relaxation of semantic security in the presence of efficient
adversaries that may tamper with an SV source [1, App B.4], and additionally
for a security analysis of anonymous communication protocols [2].

Example. Let us assume that Alice participates in an e-voting protocol based
on, e.g., a commitment scheme. If the random source that she uses to seed her
PRG turns out to be an (α, β)-bounded weak source, the commitments are still
ε -differentially hiding (see the full version [3] for a formal definition), where
ε = α + β is a small constant. Assume that Alice can vote for one of two
popular candidates, say, Bob and Charlie, and she chooses to vote for Bob. In
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the traditional indistinguishability case, a non-negligible additive difference in
the guarantee could result from a non-negligible probability of leaking the vote,
which is highly unsatisfactory. The multiplicative factor 2ε, however, allows us
to guarantee that both cases will still maintain non-zero probability and no dis-
tinguisher can be sure whether Alice voted for Bob or for Charlie. Consider a
distinguisher that only outputs, say ‘1’ if it is certain that the vote was cast for
Bob, and ‘0’ in all other cases. Such a distinguisher is affected by the multiplica-
tive bound as the output ‘1’ is almost equally probable in all cases. Moreover, if
the probability of outputting ‘1’ is zero when the vote was cast for Charlie, then
differential indistinguishability implies that the probability of outputting ‘1’ is
zero when the vote was cast for Bob.

Notice that the same analysis applies if a negligible additive value δ = 0 is
present. In this case, there might be a negligible chance for the adversary to be
certain about the vote, but in all other cases, deniability is preserved.

5.2 Influence of Min- and Max-Entropy

The literature on imperfect randomness has focused on “weak (entropy) sources”
(called α-weak sources in this paper), because a non-trivial amount of min-
entropy suffices for many applications. It is known to be sufficient to achieve
unpredictability-based definitions, i.e., security notions in which the adversary
has to guess a whole bitstring, e.g., the binding property of commitments and
unforgeability of signatures and message authentication codes [13,15,28] (see also
AppendixB).

Recently, Dodis and Yu [18] have extended this result significantly by showing
that if such an unpredictability game can be considered a part of an indistin-
guishability game (e.g., for an encryption scheme with a weakly generated key)
and if a simulatability condition proposed by the authors holds, then min-entropy
also suffices for the indistinguishability game. In particular, they consider a prim-
itive that can be divided into a setup phase (generating setup elements such as
a key pair) and a simulatable (i.e., stateless and repeatable) indistinguishabil-
ity game phase. They show that indistinguishability for such a primitive that
can be preserved despite the setup phase (but not the game phase!) employ-
ing an α-weak source instead of uniform randomness. Here, the security notion
under consideration is indeed divided. The setup phase has some, usually not
explicitly specified, unpredictability notion (e.g., no adversary must be able to
guess a correct key), and a corresponding game. Nevertheless, due to the impos-
sibility result by Dodis et al. [15], whenever only min-entropy is ensured, a
secrecy guarantee cannot be achieved in general, but only for certain schemes
and under certain conditions. We discuss this in detail for public-key encryption
in Sect. 4.1.

If, however, the randomness source has additionally a bounded max-entropy
(and thus, among other properties, a full support), generic results are possi-
ble. In particular, a differential secrecy guarantee is still possible for a secrecy
notion that is not simulatable (as defined by Dodis and Yu [18]), when an (α, β)-
bounded weak source is used for generating the key. More importantly, such a
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differential guarantee is achievable when bounded weak randomness is used by
the encryption algorithm itself.

Interestingly, max-entropy on its own is not sufficient for giving meaningful
guarantees. If only the max-entropy of a source is bounded, the source could
still output one individual element with a very high probability such that the
probability over the other elements is evenly distributed. Therefore, we require
both min-entropy and max-entropy measures for giving reasonable quantitative
guarantees in all cases for which none of the specialized (e.g., unpredictability-
based) solutions is applicable.

5.3 Relation to Differential Privacy and Sensitivity

Differential privacy [19] quantifies the privacy provided by database query mech-
anisms: Intuitively, differential privacy requires that the output of a query mech-
anism should not allow to distinguish similar databases better than with a small
multiplicative factor. Both in terms of the definition and in terms of the small
but usually non-negligible multiplicative factor, differential privacy and differ-
ential indistinguishability are closely related. We find this relation to be helpful
for interpreting the guarantees and for understanding the drawbacks of differ-
ential indistinguishability. Differential privacy is influenced by the sensitivity of
a statistical query, i.e., the amount of influence individual database records can
have on the output of the query. Typical differential private mechanisms sanitize
their output by adding random noise to guarantee a certain ε-level of privacy;
the amount of added noise directly depends on the sensitivity.

Although there are neither databases nor the concept of utility (in the same
sense as in differential privacy) in our setting, the fact that a bounded weak
source is differentially indistinguishable from a uniform source is analogous to the
differential privacy of a query mechanism. From this point of view, the missing
entropy of the weak source corresponds to the sensitivity in differential privacy.

This relation between sensitivity and entropy is interesting for sources that
can be analyzed in a block-by-block manner, e.g., (n, γ)-SV sources. For such
a source the entropy loss and thus the “sensitivity” is directly associated with
the parameter γ and the amount of blocks that are drawn from this source. The
higher the sensitivity, i.e., the more randomness is drawn by honest parties, the
smaller γ must be to allow for guaranteeing ε-differential indistinguishability for
a given value of ε. Clearly, the bias and thus the entropy loss in a (1, γ)-SV source
can be arbitrarily increased, e.g., by drawing more random bits and taking the
majority vote over them. Although this amplification does not make a difference
for uniform randomness, it may increase the bias of the bits for SV sources.
Therefore, for SV sources, the amount of randomness is a necessary parameter
that influences the security.

6 Related Work

The effect of imperfect randomness on traditional cryptography is well-studied.
On the negative side, several papers demonstrate the inherent limitations
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of indistinguishability-based cryptographic guarantees with imperfect random-
ness [1,7,15,16]. Remarkably, Dodis et al. [15] show that traditional indistin-
guishability required for encryption, commitments, secret sharing, and zero-
knowledge cannot be realized if a bounded weak source is used, which constitutes
the main motivation for our work. More precisely, they prove that no protocol
for any of these primitives can be secure against certain block sources, which
include bounded weak sources. These sources sample blocks (i.e., several bits
at once) that are 1/poly(k) close to the uniform distribution [11,15,32] for an
arbitrary polynomial, where k is the security parameter.

This impossibility result has been refined and generalized over the last few
years. Bosley and Dodis [7] show that information-theoretically secure encryp-
tion of more than log(n) bits is possible only if more than log(n) almost-uniform
bits can be extracted from the source in the first place. In the universal com-
posability (UC) setting [9], Canetti, Pass, and Shelat [10] show that even for
(sampleable) sources for which a deterministic extractor exists, UC-secure com-
mitments are not possible. Austrin et. al. [1] refined the impossibility result
by Dodis et. al. [15] to show that it holds even when the adversary that tam-
pers with the SV source is required to be efficient. Recently, Dodis and Yao [17]
proposed a novel classification of random sources that groups them into “separa-
ble” and “expressive” sources. They apply their notions to rule out even one-bit
encryption, commitment, and zero-knowledge proofs for many weak sources.

On the positive side, one line of research examines the extraction of (almost)
perfect randomness from several kinds of imperfect randomness sources [6,11,
12,26,33,34]. However, extraction generally requires the source to have a certain
degree of independence, whereas the only main requirement for bounded weak
sources is to provide some entropy.

Aiming at particular applications, it has been shown that a few primitives can
be securely instantiated even if only imperfect randomness is available [1,14,25],
e.g., signatures [15] and Byzantine agreement [22].

Dodis et al. [14] prove that differential privacy of statistical queries can be
preserved even when the noise is generated using an imperfect random source.
In particular, they ask whether differential privacy is possible if no uniform
randomness is available, and give a positive answer for SV sources by presenting
a γ-differentially private algorithm that works on these sources. Relevant to our
observations, they note that traditional indistinguishability-based privacy is a
stronger notion as compared to, e.g., unforgeability.

A multiplicative factor as in this work has also been used to achieve a spe-
cialized relaxation of semantic security in the presence of efficient adversaries
that may tamper with an SV source [1, App. B.4]. Moreover, such a factor has
proven useful for a security analysis of anonymous communication protocols [2].

Most closely related to our work, Dodis and Yu [18] show that for
all unpredictability-based primitives as well as for a class of restricted
indistinguishability-based primitives, randomness sources with high min-entropy
suffice to guarantee security whenever a uniform random source already guar-
antees security. While this is related to our result for unpredictability-based
primitives (Corollary 3), Dodis and Yu establish a traditional indistinguishability
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guarantee (i.e., ε = 0) for a restricted class of indistinguishability-based prim-
itives under weaker assumptions on the randomness source, clearly surpassing
our results in these cases. However, the imposed gray-box requirements on indis-
tinguishability games rule out many common and interesting cases. In partic-
ular, their analysis applies only to scenarios in which imperfect randomness is
used at the beginning of a game, i.e., typically as input to a key generation
algorithm. This leads to the observation that, e.g., for encryption, their result
is restricted to imperfectly generated keys, and does not take care of the case
where the encryption algorithm has access only to imperfect randomness.6 In
contrast, while our method provides only a differential guarantee, it is capa-
ble of obliviously analyzing essentially all indistinguishability games that make
use of imperfect randomness, without imposing restrictions on the usage of this
imperfect randomness. We refer to Sect. 5.2 for a more thorough analysis of our
requirements on randomness and the possible results.

Kamara and Katz [25] propose a notion of security for symmetric-key encryp-
tion that is able to cope with imperfect randomness. However, their notion
applies only if the challenge messages are encrypted using uniform random-
ness. While we consider their approach orthogonal to ours, it turns out that
a combination with our approach is possible. In the public-key setting, Bellare
et al. [5] define and realize the notion of hedged public-key encryption, which
provides secrecy guarantees even in the case of randomness failures, as long as
the encrypted message has enough entropy.

7 Future Directions

Our work presents a novel view on the relation between weak randomness and
indistinguishability, and it naturally leads to many more interesting questions.

From a theoretical point of view, we can ask whether it can be used in more
scenarios such as for leakage-resilient cryptography [8,20]. In particular, is it
possible to give differential guarantees in cases where the adversary learns more
than allowed by existing leakage-resilient schemes?

On the practical side, a natural next step is to apply our results to real appli-
cations and to random sources that are used in practice: Can we use entropy
measurements of real randomness generators (both hardware generators and
software generators) together with differential indistinguishability to give cryp-
tographic guarantees?
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about randomness sources and differential privacy. This work was supported by the
German Ministry for Education and Research (BMBF) through funding for the Center

6 We note that this restriction cannot be circumvented by storing enough imperfect
randomness at the beginning of the game in order to use it later during encryption.
This approach would require the challenger to remember what parts of the stored
randomness have already been used, which is implicitly excluded in [18]. We refer to
Sect. 4.1 for a discussion.
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for IT-Security, Privacy and Accountability (CISPA) and the German Universities
Excellence Initiative.

A Postponed Proofs

A.1 Proof of Theorem 2 (Public-Key Encryption)

Proof. Let E = (Gen,Enc,Dec) be a public-key encryption scheme, let Appt be
the class of ppt machines, and let {Dn}n∈N be an (α, β)-bounded weak source.
To simplify the notation we write P

(b,r)
k,z for simulating P

(b)
k,z and using r ∈ {0, 1}n

as the randomness for Enc. Let X0(1k, r) :=P
(0,r)
k,z and X1 :=P

(1,r)
k,z with the mod-

ification that X0 and X1 additionally provide a decryption oracle (as defined in
Definition 5) to the adversary. Observe that by our definition of X0 and X1, the
following two statements hold:

(i) X0(1k, Un) and X1(1k, Un) are indistinguishable for the class Appt of adver-
saries if and only if E is IND-CCA.

(ii) X0(1k,Dn) and X1(1k,Dn) are (ε, δ)-differential indistinguishability for the
class Appt of adversaries if and only if E is (ε, δ)-DIF-IND-CCA for {Dn}n∈N.

Thus, the claim follows immediately from Theorem 1. 	


A.2 Proof of Lemma 2 (General Composition)

Proof. Given any adversary A ∈ A, for sufficiently large k and every possible
output x of A, applying the definition of differential indistinguishability for X0

and X1 as well as X1 and X2 yields

Pr
[
〈A(1k)|X0(1k)〉 = x

]
≤ 2ε Pr

[
〈A(1k)|X1(1k)〉 = x

]
+ δ

≤ 2ε(2ε′
Pr

[
〈A(1k|X2(1k)〉 = x

]
+ δ′) + δ

≤ 2ε+ε′
Pr

[
〈A(1k)|X2(1k)〉 = x

]
+ 2ε′

δ + 2εδ′.

Symmetrically, we obtain the opposite bound

Pr
[
〈A(1k)|X2(1k)〉 = x

]
≤ 2ε′+ε Pr

[
〈A(1k)|X0(1k)〉 = x

]
+ 2εδ′ + 2ε′

δ. 	


A.3 On Additive and Multiplicative Bounds (Sect. 5.1)

Given any arbitrary function δ with 1 ≥ δk > 0, we construct a commitment
scheme C such that for every adversary there is an additive bound of δ (C is
δ-hiding), but there is no pair (ε, δ′) with δ′

k < δk (for sufficiently large k) such
that C is (ε, δ′)-differentially hiding. No matter which additive bound can be
shown between two probabilistic events, there does not necessarily exist a non-
trivial multiplicative bound, i.e., a multiplicative bound that could be used to
improve on the additive bound.
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Proof. Let CIT be an information-theoretically hiding commitment scheme. We
construct C = (S,R) from CIT as follows. For security parameter k, C behaves
like CIT but with probability δk, the algorithm S additionally leaks the message.
Clearly the scheme is δ-hiding. Consider the distinguisher A that sends two
messages m0,m1 to the challenger for the hiding game. Only if S leaks m0, A
outputs 0. In all other cases, A outputs 1. Let ε ≥ 0 and δ be functions with
δ′
k < δk for sufficiently large k. For such k,

Pr
[
〈A(1k)|S(1k,m0)〉 = 0

]
= δ > δ′ = 2ε 0 + δ′

= 2ε Pr
[
〈A(1k)|S(1k,m1)〉 = 0

]
+ δ′.

Consequently, C is not (ε, δ′)-differentially hiding. 	


B Unpredictability

So far we only considered the effect of (bounded) weak randomness on cryp-
tographic indistinguishability notions. The security games for notions such as
the binding property of commitments, unforgeability of signatures and message
authentication codes, or guessing the key of an encryption scheme do not require
indistinguishability. Instead, the adversary typically has to predict a particular
bitstring, which should only be possible with negligible probability. It is well-
known that such unpredictability (or unbreakability) notions are achievable even
if an α-weak source is employed [13,15,18,28].

We further analyze how imperfect randomness influences the probability for
guessing a whole bitstring, e.g., for breaking the binding property of a commit-
ment. The corresponding security definitions typically require that no adversary
has more than a negligible chance to reach a certain bad event. We generalize the
intuition of breaking a scheme by dividing a game Z into two parts. The “normal
game” Z0 and a judge Z1 that decides whether or not a given string constitutes
a break of the scheme. Technically, the output of an adversary A in interaction
with Z0 is fed into Z1, which finally outputs a bit b ∈ {0, 1} indicating whether
the adversary has won.

Definition 6 (Unpredictability). Let Z = (Z0,Z1) be a probabilistic machine
that may keep state. We say that Z is δ-unpredictable for a class A of adversaries
and for a distribution {Dn}n∈N, if for all A ∈ A and for sufficiently large k,

Pr
[
Z1

(
〈A(1k)|Z0(1k,Dn)〉

)
= 1

]
≤ δ.

We show that for all games that can be described as a unpredictability game
and for which the probability to win is negligible under uniform randomness, the
probability is still negligible if an α-weak source is used. Similar to our comments
in Remark 2, we notice that min-entropy suffices for this result.

Corollary 3. If a probabilistic machine Z = (Z0,Z1) that may keep state is δ-
unpredictable for a class of probabilistic machines A and consumes at most n
bits of uniform randomness, then Z is (2αδ)-unpredictable for A for any α-weak
source {Dn}n∈N.
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Proof. We reduce this corollary to Lemma 1 as follows: Let Z = (Z0,Z1) be
a probabilistic (not necessarily polynomially bounded) machine that may keep
state. Given any adversary A ∈ A, we construct a probabilistic machine B on
input r ∈ {0, 1}n as follows. B simulates the interaction between A and Z0(1k, r),
yields an output a and simulates Z1 on a. If Z0 keeps state for Z1, B also simulates
this behavior. It holds that

Pr
[
Z1(a) = 1

∣
∣
∣ a ← 〈A(1k)|Z0(1k,Dn)〉

]
(B.1)

= Pr
[
B(1k,Dn) = 1

]
≤ 2α Pr

[
B(1k, Un) = 1

]
(B.2)

= 2α Pr
[
Z1(a) = 1

∣
∣
∣ a ← 〈A(1k)|Z0(1k, Un)〉

]
≤ 2α δ. (B.3)

Inequality (B.2) follows from Lemma 1 and inequality (B.3) holds by assumption.
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