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Abstract Self Organizing Migrating Genetic Algorithm (SOMGA) is a hybridized
variant of Genetic Algorithm (GA) inspired by the features of Self Organizing
Migrating Algorithm, presented by Deep and Dipti (IEEE Congr Evol Comput,
pp 2796–2803, 2007) [1]. SOMGA extracts the features of binary coded GA and
real coded SOMA in such a way that diversity of the solution space can be
maintained and thoroughly exploited keeping function evaluation low. It works
with very less population size and tries to achieve global optimal solution faster in
less number of function evaluations. Earlier SOMGA has been used to solve
problems up to 10 dimensions with population size 10 only. This chapter is brake
into three sections. In first section a possibility of using SOMGA to solve large
scale problem (dimension up to 200) has been analyzed with the help of 13 test
problems. The reason behind extension is that SOMGA works with very small
population size and to solve large scale problems (dimension 200) only 20 popu-
lation size is required. On the basis of results it has been concluded that SOMGA is
efficient to solve large scale global optimization problems with small population
size and hence required lesser function evaluations. In second section, two real life
problems from the field of engineering as an application have been solved using
SOMGA. In third section, a comparison between two ways of hybridization has
been analyzed. There can be two approaches to hybridize a population based
technique. Either by incorporating a deterministic local search in it or by merging it
with other population based technique. To see the effect of both the approaches on
GA, the results of SOMGA on five test problems are compared with the results of
MA (GA+ deterministic local search). Results clearly indicates that SOMGA is less
expensive and effective to solve these problems.
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1 Introduction

A variety of computational techniques have appeared in literature for solving
nonlinear optimization problems. However, there is no single technique that can
claim to efficiently solve each and every nonlinear optimization problem. In fact, a
technique, which is efficient for one type of nonlinear optimization problem, may be
inefficient for solving other types of nonlinear optimization problems. Moreover,
the computational time and memory space requirements of most of these techniques
are quite large. Keeping this in view, it is desirable to develop more efficient and
reliable computational techniques for solving a large variety of nonlinear real life
optimization problems of practical interest which require less memory space so that
these can be easily implemented on personal computers. Some of the general
requirements of a computational algorithm for solving global optimization prob-
lems are: (i) wide applicability i.e., it should be applicable to a wide class of real life
problems (ii) simplicity in structure, which would allow it to be easily implemented
on a computer system (iii) minimum mathematical complexities, so that it can be
used conveniently, even by non expert users.

Optimization problems arise in several fields such as system engineering,
telecommunication and manufacturing systems etc. In fact the newly developed
optimization techniques are now being extensively used in various spheres of human
activity where decisions have to be taken in some complex situations that can be
represented by mathematical models. A real life optimization problem may have a
number of local as well as global optimal solutions. It is desired by most of the users
to design optimization techniques which determine the global optimal solution rather
than the local optimal solution of nonlinear optimization problems. With the advent
of computers, population based heuristics are becoming popular day by day, not only
because of their ease of implementation, but also due to their wide applicability.
Population based stochastic search methods have been frequently used in the liter-
ature to solve real life global optimization problems. Although these probabilistic
search algorithms do not give absolute guarantee to determine the global optimum
solution, these methods are preferred over traditional methods. Evolutionary
Algorithms, particularly Genetic Algorithms (GAs) are the most commonly used
heuristics for solving real life problems. Though GAs are efficient to solve global
optimization problem but usually converges very slow and generally required large
population size also. Many attempts have been made in literature to improve the
efficiency of Genetic algorithms either by designing new operators or by incorpo-
rating the features of other techniques. Grefensette [2] introduced a hybrid variant of
GA which uses a traditional hill climbing routine for improving the fitness of newly
generated points known as Fawwin and Lamarckian evolution approach and then the
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new offspring compete with their parents for selection as a member of the next
population. Kasprzyk and Jasku [3] developed a variant of GA which is
hybridization of GA and simplex method known as genetic—simplex algorithm, in
this approach first the solution area is explored by GA operators and then simplex
method uses starting points provided by the GA to determine an optimum solution.
Chelouah and Siarry [4] also proposed a hybrid method by combining the features of
continuous Tabu search and Nelder-Mead simplex algorithm. This approach is used
to find the global minima of nonlinear optimization problems. Wang et al. [5] apply
quantum computing to GAs to develop a class of quantum-inspired GAs.

Javadi et al. [6] presented a neural-network based genetic algorithm which uses
neural network to improve solution quality and convergence speed of GAs. Fan et al.
[7] integrate the Nelder–Mead Simplex search method with genetic algorithm and
particle swarm optimization in an attempt to locate the global optimal solution of
nonlinear continuous variable functions focusing mainly on response surface
methodology. Comparative performance on ten test problems is demonstrated.
Hwang and Song [8] present a novel adaptive real-parameter simulated annealing
genetic algorithm which maintain the merits of GAs and simulated annealing. Zhang
and Lu [9] define a new real valued mutation operator and use it to design a hybrid
real coded GA with quasi-simplex technique. A nitche hybrid genetic algorithm is
proposed by Wei and Zhao [10] and results are reported on 3 benchmark functions.
Premalatha and Nataranjan [11] established hybrid PSO which proposes the modi-
fication strategies in PSO using GA to solve the optimization problems. Khosravi
et al. [12] proposes a novel hybrid algorithm that uses the abilities of evolutionary
and conventional algorithm simultaneously. Ghatei et al. [13] designed a new variant
of particle swarm optimization by including Great Deluge Algorithm (GDA) as local
search factor. Esmin and Matwin [14] presented a hybrid approach of using the
features of PSO and GA known as HPSOM algorithm. The main idea of this
approach is to integrate the PSO with genetic algorithm mutation method.

It is clear from the literature that several variants of GA are available in literature
to improve the efficiency of these algorithms. Deep and Dipti [1] presented a variant
of GA named as SOMGA in which GA has been hybridized with a new emerging
population based technique, Self Organizing Migrating Algorithm (SOMA).
SOMA is an emergent search technique in the field of population based techniques,
developed by Zelinka and Lampinen [15]. This algorithm is based on the self
organizing behavior of group of individuals looking for food. For this all indi-
viduals follow the path of one individual known as Leader selected among them
based on the best fitness value. In the whole process of this algorithm, no new
solutions are created during the search. Instead, only the positions of the solutions
are changed during a generation, called a migration loop and it works with small
population size. The details of this algorithm can be found in many research papers
and books Oplatkova and Zelinka [16], Zelinka [17], Nolle and Zelinka [18], Nolle
et al. [19], Nolle [20], Zelinka et al. [21, 22], Onwubolu and Babu [23], etc. The
common feature between GA and SOMA is that both are population based
stochastic search heuristics. Mutation and crossover is done (but the way in which
they are applied is different). Some differences of the two algorithms are as follows:
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• In GA new points are generated, whereas in SOMA no new points are gener-
ated, but instead their positions are updated.

• Individuals can proceed in any direction in GA, whereas in SOMA individuals
proceed only in the direction of the leader.

• GA has a competitive behavior, but SOMA has competitive-cooperative
behavior.

• GA works with a large population size, whereas SOMA works with a small
population size.

2 Previous Work Done

The algorithm SOMGA has been designed to solve the unconstrained non-linear
optimization problems of the type:

Min f Xð Þ;X ¼ x1; x2; . . .xnð Þ
ai � xi � bi; i ¼ 1; 2; . . .n:

)
ð1Þ

where ai and bi are the lower and upper bounds on the variables.
As discussed above several variants of population based techniques are available

in literature, for improving the convergence of these algorithms. The main reason of
slow convergence and premature convergence of these algorithms is considered as
diversity mechanism. If one algorithm fails to maintain the diversity during the
search then there are more chances to be converging premature. SOMGA is an
effort to improve the efficiency of both the algorithms GA and SOMA by extracting
the best features of these algorithms. In the hybridization of SOMGA, binary coded
GA and real coded SOMA has been used. It derives the features of selection,
crossover and mutation from binary coded GA and derives the features of small
population size, organization and migration from real coded SOMA. The features of
GA and SOMA are combined in such a way that solution search space can be
thoroughly exploited and diversity of the search domain can be preserved by
generating new points in solution space. The methodology of this algorithm is:

Methodology

First the individuals are generated randomly. These individuals compete with each
other through tournament selection; create new individuals via single point cross-
over and bitwise mutation. Then the best individual among them is considered as
leader and the worst individual is considered as active. The active individual pro-
ceeds in the direction of the leader in n steps of the defined length. This path is
perturbed randomly by a parameter known as PRT parameter. It is defined in the
range 0; 1h i: Using this PRT parameter value, PRT vector is created before an
individual proceeds towards leader. This parameter has the same effect as mutation
in GA. The movement of an individual is given as follows:
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xMLnew
i;j ¼ xML

i;j;start þ xML
L;j � xML

i;j;start

� �
tPRTVectorj ð2Þ

where t 2 0; by Step to;PathLengthh i;
ML is actual migration loop.
xMLnew
i;j is the new positions of an individual.

xML
i;j;start is the positions of active individual.

xML
L;j is the positions of leader.

At last the best individuals (number equal to population size) from the previous
and current generations are selected for the next generation. The computational
steps of this approach are given below:

Step 1: Generate the initial population.
Step 2: Evaluate all individuals
Step 3: Apply tournament selection on all individuals to select the better

individuals for the next generation.
Step 4: Apply crossover operator on all individuals with crossover probability

Pc to produce new individuals.
Step 5: Evaluate the new individuals.
Step 6: Apply mutation operator on every bit of every individual of the

population with mutation probability Pm.
Step 7: Evaluate the mutated individuals.
Step 8: Find leader (best fitted individual) and active (worst fitted individual) of

the population.
Step 9: For active individual a new population of size N is created. where

N = (Path Length/step size). This population is nothing but the new
positions of the active individual towards the leader in n steps of the
defined length. The movement of this individual is given in Eq. (2).

Step 9.1: Select the best individual of the new population and replace the active
individual with this best individual.

Step 10: Select the best individuals (in fitness) of previous and current generation
for the next generation via tournament selection.

Step 11: If termination criterion is satisfied stop else go to Step 3.
Step 12: Report the best chromosome as the final optimal solution.

Salient Features of SOMGA

The salient features of the SOMGA are:

1. SOMGA attempts to determine the global optimal solution of nonlinear
unconstrained optimization problems.

2. SOMGA does not require the continuity and/or differentiability conditions of the
objective function.
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3. SOMGA works on purely function evaluations and hence can be used in situa-
tions where the objective function is discontinuous in nature.

4. SOMGA does not require an initial guess value to start, but instead SOMGA
requires a lower and upper bound for the unknown variables.

3 Section 1

3.1 Solution of Large Scale Problems Using SOMGA

Now a days, to solve large scale optimization problems using evolutionary algo-
rithms has become the new field of research. In large scale problems, where the
number of unknown variables vary up to 200 not only the computational time but
also the memory space requirements becomes very large. Besides this the com-
plexity of the problem also increases significantly that many algorithms fails to
reach the optimal solution. One algorithm able to reach optimal solution requires
large population size as well as functional evaluations. The possibility of using
SOMGA for solving large scale problems is considered in this section. One possible
way to reduce the computational time and also to reduce the memory space is to
reduce the population size. Since SOMGA already works with less population size
hence there is no need of reducing population size. Reduction in memory space is
also not required because the population generated for the active individuals takes
memory space only for short time. After choosing the best one of the generated
population, active individual gets replaced by this best individual and other indi-
viduals release the memory space. So here the chances for using it to solve large
scale problems are very strong. The problems up to 200 variables can be solved on
Pentium IV normally configured system.

3.2 Results and Discussion

In order to observe the performance of SOMGA on large scale problems a set of
thirteen test problems have been selected given in appendix. These problems are
scalable in nature that is their size can be increased or decreased as per the user’s
choice. In general, the complexity of the problem increases as the dimension of the
problem increases. Here in Griewank function the complexity at dimension 10 is
maximum. The complexity of this function decreases as the dimension increases
above 10.

The parameters of SOMGA used to solve 100 and 200 dimension are same and
are given in Table 1. These parameters are population size, crossover rate, mutation
rate, string length, PRT, step size, path length and total number of function calls
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allowed. Main thing to notice in Table 1 is that for solving 100 and 200 dimensional
problems, only 20 population size is required. The results for problem size 10 are
given in Table 2 taken from Deep and Dipti [1].

Here, first we apply SOMGA for problem size 100. The percentage of success,
average function evaluations, mean and standard deviation of the objective function
values of 30 runs are recorded in Table 3. The same information for problem size
200 is shown in Table 4. These values are also shown graphically in Figs. 1 and 2.
It can be observed in Table 3 that SOMGA gives 100 % success in 11 problems out
of thirteen. In Griewank problem the success rate is 40 % and Rosenbrock could not
be solved at all.

In Table 4, the results for a problem size of 200 are presented. It is notable that
SOMGA gives 100 % success in 10 problems out of thirteen. In Griewank problem,

Table 1 Parameters of SOMGA for problem size 100 and 200

Population size 20

Crossover rate 0.95

Mutation rate 0.0001

String length 30

PRT 1

Step 0.091

Path length 3

Total number of function calls allowed 350,000

Table 2 Results of large scale problems for problem size 10

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function 0.996 0.003 100 4336

Exponential function 0.994 0.003 100 2028

Ackley function 0.007 0.002 100 9644

Sphere function 0.007 0.003 100 3790

Griewank function 0.068 0.036 20 13,639

Axis parallel hyper ellipsoid
function

0.006 0.003 100 4137

Schwefel’s double sum
function

0.007 0.003 100 7324

Restrigin’s function 0.003 0.003 100 16,895

Rosenbrock function 4.699 1.889 0 NA

Schwefel’s function 0.004 0.003 100 11,660

Zakhrov’s function 0.005 0.003 100 4939

Ellipsoidal function 0.006 0.003 100 3468

Schwefel’s problem 4 function 0.005 0.003 100 310
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the success rate is 60 % for problem size 200 where as for problem size 100 it is
40 %. The success rate in Griewank problem increases as the dimension of the
problem increases. This shows the behavior of Griewank problem on increasing the

Table 3 Results of large scale problems for problem size 100

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function −9.99544 0.003721 100 66,865

Exponential function −0.99245 0.002478 100 35,523

Ackley function 0.008684 0.00129 100 126,121

Sphere function 0.0077 0.002573 100 75,449

Griewank function 0.050896 0.071455 40 259,559

Axis parallel hyper ellipsoid
function

0.008083 0.001724 100 85,889

Schwefel’s double sum
function

0.006285 0.002476 100 126,078

Restrigin’s function 0.004288 0.004288 100 185,626

Rosenbrock function 95.24293 1.177368 0 NA

Schwefel’s function 0.009224 0.000703 100 248,930

Zakhrov’s function 0.006024 0.002964 100 156,021

Ellipsoidal function 0.008618 0.002317 100 118,629

Schwefel’s problem 4
function

0.004494 0.002769 100 521

Table 4 Results of large scale problems for problem size 200

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function −19.9926 0.003517 100 114,165

Exponential function −0.99016 0.00015 100 61,248

Ackley function 0.008969 0.001514 100 203,392

Sphere function 0.009564 0.000559 100 115,071

Griewank function 0.05995 0.109189 60 257,840

Axis parallel hyper ellipsoid
function

0.00962 0.000466 100 180,245

Schwefel’s double sum
function

0.008717 0.002257 100 246,508

Restrigin’s function 0.005262 0.004334 100 272,246

Rosenbrock function 221.4295 35.95709 0 NA

Schwefel’s function 4159.555 166.9408 0 NA

Zakhrov’s function 0.009576 0.000521 100 255,085

Ellipsoidal function 0.008911 0.001696 100 311,626

Schwefel’s problem 4
function

0.004653 0.003564 100 527
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dimension that is, the complexity of the Griewank problem decreases as the
dimension increases. In Rosenbrock problem SOMGA fails. Schwefel problem
gives 100 % success for problem size 100, but could not be solved at all for
problem size 200. This shows that the complexity of the schewefel problem
increases as the dimension increases.

In Fig. 1, the success rate obtained by SOMGA in 10 dimension, 100 dimension
and 200 dimension problems is plotted. Since the complexity of the Griewank
function decreases as the dimension of the problem increases. Same kind of
behavior can be seen in Fig. 2 problem number 5. In Fig. 2, the function evaluations
required by SOMGA in 10 dimension, 100 dimension and 200 dimension problems
are plotted. The behavior is obvious. Function evaluations are increasing as the
dimension of the problem is increasing. In Griewank problem the function evalu-
ations in 100 dimesion and 200 dimensions are almost same.
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Fig. 2 Performance of SOMGA in terms of function evaluations for 100 dimension and 200
dimension problems
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4 Section 2

Solution of Two Real Life Problems

To show the efficiency of algorithm SOMGA, it has been tested to solve two real
life problems from the field of engineering. The problems and their solutions are
described as follows.

4.1 Optimal Thermohydraulic Performance
of an Artificially Roughened Air Heater

This problem is taken from Prasad and Saini [24]. In this problem the optimal
thermo hydraulic performance of an artificially roughened solar air heater is con-
sidered. Optimization of the roughness and flow parameters (p/e, e/D, Re) is con-
sidered to maximize the heat transfer while keeping the friction losses to be
minimum. This is an unconstrained optimization problem. It has three decision
variables. The mathematical model of the problem, as given in Prasad and Saini
[24] is:

Maximize L ¼ 2:5log eþ þ 5:5� 0:1RM � GH

where

RM ¼ 0:95x0:532

GH ¼ 4:5 eþð Þ0:28 0:7ð Þ0:57

eþ ¼ x1x3 f=2
� �1=2

�f ¼ fs þ frð Þ=2
fs ¼ 0:079x�0:25

3

fr ¼ 2 0:95x0:533 þ 2:5 log 1=2x1ð Þ2 � 3:75
h i�2

The notations used are as follows:

e+ roughness height.
p pitch of the roughness element.
D the hydraulic diameter of solar heater.
x1 = e/D relative roughness height.
x2 = p/e relative roughness pitch.
x3 = Re Reynolds number.
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The bounds on the variables are:

0:02� x1 � 0:8; 10� x2 � 40; 3000� x3 � 20;000

This is an unconstrained problem and has been solved by SOMGA. It is earlier
solved by Prasad and Saini [24] and Pant [25]. The results obtained by SOMGA are
compared with the available results and are presented in Table 5. It is clear from the
Table 5 that the solution obtained by SOMGA is better than previously quoted
results.

4.2 Frequency Modulation Sounds Parameter Identification
Problem

This problem has been taken from Tsutsui and Fujimoto [26]. It is an unconstrained
optimization problem. This problem is to determine the six parameters
a1; x1; a2; x2; a3; x3 of the Frequency Modulation Sound model represented by

y tð Þ ¼ a1 � sin x1 � t � hþ a2 � sin x2 � t � hþ a3 � sin x3 � t � hð Þð Þð Þ;

with h ¼ 2�p
100. An evaluation function Pfms is defined as the summation of 101 square

errors between the evolved data and the model data as follows:

Pfms a1;x1; a2;x2; a3;x3ð Þ ¼
X100
t¼0

y tð Þ � y0 tð Þð Þ2;

where the model data are given by the following equation:

y0 tð Þ ¼ 1:0 � sin 5:0 � t � h� 1:5 � sin 4:8 � t � hþ 2:0 � sin 4:9 � t � hð Þð Þð Þ:

Each parameter is in the range −6.40 to 6.35. In this problem, a generated sound
wave and its evaluation function Pfms are extremely sensitive to some of these
parameters a1, w1, a2, w2, a3, w3. This makes the problem difficult to reach the
optimal point. This problem is a highly complex multimodal one having strong
epistasis, with minimum value Pfms(x

*) = 0. Empirical results are shown in Table 6.

Table 5 Optimal thermo hydraulic performance of an artificially roughened air heater

Value of objective Values of variables

Solution obtained by SOMGA 4.18241 x1 = 0.10558676, x2 = 10.000276,
x3 = 4567.99

Solution given in Pant [25] 4.182 x1 = 0.052, x2 = 10.00, x3 = 10258.46

Solution given in Prasad and
Saini [24]

�4:18 x1 � 0.0205, x2 � 10.00
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Tsutsui and Fujimoto [26] have used this problem for the testing of their technique
that is Phenotypic Forking Genetic Algorithm (p-fGA). This technique takes 22621
generations on average to solve this problem. On the other hand SOMGA solves
this problem in 156 generation or 7207 function evaluation only.

5 Section 3

5.1 Comparison with the Memetic Algorithm

Generally two kinds of local search methods can be used in GAs to improve the
efficiency of these algorithms. One is the deterministic method and the other is to use
another population based stochastic search strategies as local searches. Although
deterministic methods have less exploration capabilities but they converges very
fast in small neighborhood. In this section a comparison has been made between the
two approaches of hybridization. One approach is SOMGA described in Sect. 2,
Previous work done, in which GA is hybridized with another population based
technique SOMA. Another approach is hybridization of GA with a deterministic
local search method. This approach is based on the idea that first let the population
evolve using GA and when the search domain become narrow and convergence slow
down after certain number of generations apply local search on selected individual
to faster the convergence of it. The methodology of this approach is as follows:

Step 1: Generate the initial population.
Step 2: Evaluate all individuals.
Step 3: Apply selection operator on all individuals to select the better individuals

for the next generation.
Step 4: Apply crossover operator on all individuals with crossover probability Pc

to produce new individuals.
Step 5: Evaluate the new individuals.
Step 6: Apply mutation operator on every bit of every individual of the

population with mutation probability Pm.
Step 7: Evaluate the mutated individuals.
Step 8: If generation is less than the specified generations go to Step 3 else go to

Step 9.
Step 9: Select best q% individuals and apply LS.
Step 10: If termination criterion is satisfied stop else go to Step 3.

Table 6 Solution of Frequency modulation sounds parameter identification problem

Method Result obtained Total runs required # Evaluation

SOMGA 0.00941009 156 7207

p-fGA – 22621 –
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The algorithm terminates as soon as the best fit solution is obtained within 1 %
accuracy of the known global optimum solution or it crosses the allowed number of
function evaluations. Any derivative free local search method can be used in this
approach. We use the well known Hooke and Jeeves direct search method described
in Bazaraa et al. [27]. It is multidimensional search method with discrete steps and
works without using derivatives. Hence it is able to solve a wide range of problems.
It is also very quick and robust at finding the local optimal solution of a problem. It
is tested on five well-known benchmark test problems, namely, Ackley function,
Schwefel’s function, Griewank’s function, Restrigin’s function, Rosenbrock’s
function taken from Ali et al. [28]. These five test problems are most commonly
used for evaluating the performance of evolutionary algorithms. The parameters
used in this approach namely population size, probability of crossover (Pc), prob-
ability of mutation (Pm), specified number of generations (taken in our experiments
after fine-tuning) after which LS has to be activated and total number of function
calls allowed are given in Table 7 and the results obtained by this approach are
presented in Table 8.

5.2 Results and Discussion

For this approach, it is suggested that for solving an n dimensional problem,
population size 5 * n should be taken and LS should be applied after 10 * n
generations. But minimum population size 100 is required for 10 or more than 10

Table 7 Parameters of MA

Dimension n = 10

Population size 100

Crossover rate pc 0.95

Mutation rate pm 0.001

Specified number of generations 100

Total number of function calls allowed 40,000

Table 8 Comparative results of SOMGA and MA

Problem SOMGA MA

Mean S.D. # of
success

# of
evaluation

Mean S.D. # of
success

# of
evaluation

Ackley 0.007 0.002 30 9644 0.06023 0.30033 28 22,521

Schwefel 0.004 0.003 30 11,660 0.00013 0 30 21,634

Griewank 0.068 0.036 6 13,639 0.04943 0.04123 5 33,143

Restrigin 0.003 0.003 30 16,895 0.09532 0.26137 26 32,465

Rosenbrock 4.699 1.889 0 – 0.00103 0.00167 30 21,012
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dimensional problem. All the results have been taken using these specifications.
Figure 3 shows the success attained by MA and SOMGA. The greater the portion
covered by an algorithm in a column, the better the method is, in that problem. It is
clear from the graph that the portion covered by both the algorithms GA and
SOMGA is almost equal, except in one problem. The main difference between the
two is that MA is providing success at 100 population size for 10 variable problem
and SOMGA is providing the same success at 10 population size for 10 variable
problem. Hence on the basis of population size SOMGA is better than MA.

Figure 4 shows the function evaluations taken by MA and SOMGA in successful
runs. In this graph, the lesser the portion covered by an algorithm in a column, the
better the method is in that problem. It is evident from the graph that the portion
covered by SOMGA is much lesser than MA. This means SOMGA required less
number of function evaluations than MA for obtaining the global optimal solution
of unconstrained optimization problems. Hence SOMGA is more efficient than MA.

On the basis of these results, it is concluded that SOMGA is far more superior to
MA in terms of function evaluations. Hence SOMGA is recommended for solving
the unconstrained nonlinear optimization problems.
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6 Conclusions

In this chapter a variant of GA and SOMA known as SOMGA has been used to
solve large scale optimization problems. From the discussion part of results for
large scale optimization it is clear that for solving up to 200 dimension problem
SOMGA requires very less population size as well as function evaluations. Later
two real life problems from the field of engineering have been solved using the
same technique and SOMGA proves its efficiency to solve these problems. At last a
comparison between two variants of GA i.e. SOMGA and MA has been made.
Though MA is able to solve all the test problems with good success rate but it is
expensive in terms of function evaluations. One drawback of using deterministic
methods is that they are usually problem specific hence restricted to solve some
specific classes of problems. Another drawback of using these traditional local
searches is that if LS is not implemented properly, the chances of getting trapped in
local minima is more because these methods have less exploration qualities. It
means that these hybridized algorithms demand careful fine tuning of local search
parameters. On the other hand population based stochastic search techniques are not
problem specific and are applicable to solve a wide range of problems. Another
advantage of using these techniques is that they use multiple guesses to improve a
solution. Hence have more exploration qualities.

Appendix

This Appendix contains the list of 13 benchmark test problems taken from litera-
ture, which are used to evaluate the performance of the algorithm. These problems
are unconstrained nonlinear optimization problems having a number of local as well
as global optimal solutions. All the problems have varying difficulty level and
contain unimodal as well as multi modal problems.

Problem 1: (Cosine Mixture Problem)
This problem is Cosine Mixture Function. The global optimum of this function is at
(0, 0,…, 0) with fmin = −0.1n. where n is the dimension of the problem. The
functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i � 0:1
Xn
i¼1

cos 5pxið Þ; for xi 2 �1; 1½ �:

Problem 2: (Exponential Problem)
This problem is Exponential Function. The global optimum of this function is at
(0, 0,…, 0) with fmin = −1. The functional form is as follows:
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min
x

f xð Þ ¼ exp �0:5
Xn
i¼1

x2i

 !
; for xi 2 �1; 1½ �:

Problem 3: (Ackley Function)
This problem is the Ackley function. The surface of the Ackley function has
numerous local minima due to its exponential terms. Any search algorithm based on
the gradient information will be trapped in local optima, but any search strategy that
analyzes a wider region will be able to cross the valley among the optima and
achieve better results. Its global minimum is at (0, 0,…, 0) with fmin = 0. The
functional form is as follows:

f xð Þ ¼ 20þ e� 20e
� 1

5

ffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

x2i

r� �
� e

� i
n

Pn
i¼1

cos 2pxið Þ
� �

; for xi 2 �15; 30½ �:
Problem 4: (Sphere Function Problem)
The next problem is Sphere Function. This problem is continuous convex and
unimodal. Its global minimum is at (0, 0,…, 0) with fmin = 0. The functional form is
as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i ; for xi 2 �5:12; 5:12½ �:

Problem 5: (Griewank Function)
This problem is a widely employed test function for global optimization, the
Griewank function. While this function has an exponentially increasing number of
local minima as its dimension increases, it turns out that a simple Multistart
algorithm is able to detect its global minimum more and more easily as the
dimension increases. The optima of this function are regularly distributed. Number
of local minima for arbitrary n is unknown, but in two dimensional case there are
some 500 local minima. Its global minimum is at (0, 0,…, 0) with fmin = 0. The
functional form is as follows:

f ðxÞ ¼
Xn
i¼1

x2i
4000

�
Yn
i¼1

cos
xiffiffi
i

p
� �

� 1; for xi 2 �5:12; 5:12½ �:

Problem 6: (Axis Parallel Hyper Ellipsoid)
This problem is Axis Parallel Hyper Ellipsoid Function. This test problem is similar
to sphere problem function. It is also known as the weighted sphere model. It is
continuous convex and unimodal. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:
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min
x

f xð Þ ¼
Xn
i¼1

ix2i ; for xi 2 �5:12; 5:12½ �:

Problem 7: (Schwefel’s Double Sum)
This problem is Schwefel’s double sum Function. This function is an extension of
axis parallel hyper ellipsoid function. It produces a rotated hype-ellipsoid. It is
continuous convex and unimodal. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

Xi
j¼1

xj

 !2

; for xi 2 �65:536; 65:536½ �:

Problem 8: (Rastrigin Function)
This problem is the Rastrigin Function. It is the extended form of the sphere
function with a modulator term α · cos(2πxi). This function consists of a large
number of local minima (not exactly known) whose value increases with the dis-
tance to the global minimum. Its global minimum is at (0, 0,…, 0) with fmin = 0.
The functional form is as follows:

f xð Þ ¼ 10nþ
Xn
i¼1

x2i � 10 cos 2pxið Þ� �
; for xi 2 �5:12; 5:12½ �:

Problem 9: (Rosenbrock Function)
This problem is the Rosenbrock function, also known as the banana function. It is a
continuous, differentiable, unimodal and non separable function. Its difficulty arises
due to nonlinear interaction between parameters. The global optimum is inside a
long narrow parabolic shaped flat valley. Its global minimum is at (1, 1,…, 1) with
fmin = 0. The functional form is as follows:

f xð Þ ¼
Xn�1

i¼1

ð100ðxiþ 1 � x2i Þ2 þ xi � 1
� �2Þ; for xi 2 �2:048; 2:048½ �:

Problem 10: (Schwefel Function)
This problem is Schwefel Function. The contour of this function is made up of a
great number of peaks and valleys. This function has a second best minimum far
from the global minimum, so it is difficult for many algorithms to locate the global
optimum of this function. Its global minimum is at (1, 1,…, 1) with fmin = 0. The
functional form is as follows:

f xð Þ ¼ 418:9829n�
Xn
i¼1

xi sin
ffiffiffiffiffiffi
xij j

p� �
; for xi 2 �500; 500½ �:
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Problem 11: (Zakharov’s Problem)
This problem is Zakharov Function. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i þ
Xn
i¼1

i
2
xi

 !2

þ
Xn
i¼1

i
2
xi

 !4

; for xi 2 �5:12; 5:12½ �:

Problem 12: (Ellipsoidal Function)
This problem is Ellipsoidal Function. Its global minimum is at (1, 2,…, n) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

xi � ið Þ2; for xi 2 �n; n½ �:

Problem 13: (Schwefel Problem 4)
This problem is Schwefel Problem 4 Function. Its global minimum is at (0, 0,…, 0)
with fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼ max xij j; 1� i� nf g
i

; for xi 2 �100; 100½ �:
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