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Abstract Evolutionary techniques are generally considered to be effective tool for
solving a wide range of optimization problems. However, those algorithms are
controlled by a special set of parameters according to their type. Control parameters
of self-organizing migrating algorithm (SOMA) can be divided into several groups:
the stopping parameters, parameters which depended on the type of problem to be
solved and finally, parameters that are responsible for the quality of the results. The
values of some parameters are directly evident from the nature of the algorithm, but
the values of some may vary based on the problem and their efficient settings may
significantly affect the quality of the calculation. This chapter focuses on the pos-
sibility of using some statistical methods to determine the effective values of some
parameters of SOMA. The use of statistical methods is elucidated by an illustrative
example.

1 Introduction

Evolutionary algorithms are successfully used for solving optimization problems of
different types. Their limitation is caused by the fact that they are controlled by
special set of parameters. Some of these parameters can be successfully set
exogenously based on the philosophy of the algorithm, however, there is a no
deeper theoretical base to adjust certain parameters (e.g. parameters determining the
rate stochastics), whilst (im)proper setting can radically affect the quality of
obtained results.
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Based on the various tests one can conclude that SOMA is even more sensitive
to the parameters setting than other algorithms [3]. The control parameters are
usually set on the basis of experimental results [3, 5]. Some of the control
parameters are given directly by the nature of the problem and can be changed only
by its reformulation. An example of such a parameter is the dimensionality (Dim).
Setting other parameter can be derived from simple geometric interpretation of
SOMA. Such parameter is the parameter PathLength, where its recommended
setting is 3–5. Parameters PopSize and Migrations determine “the size and length”
of simulation and their settings can use philosophy “more is better” (however,
increasing these parameters affect the time needed to calculation and thus is
dependent on the user’s hardware). The parameter MinDiv can be set to e.g.
negative value if it is desired to reach all iterations, or to positive number if one
want to watch the convergence of the calculation. Parameters Step and PRT are also
responsible for the quality of the results. This chapter is devoted to some statistical
methods that may be helpful in clarifying their settings. To adjust the control
parameters it can be suitable before final calculating to carry out several simulations
with e.g. smaller population size and lower number of iterations (which are not time
consuming) with different values of the other control parameters. Further on, except
basic descriptive statistics (e.g. average, mode, median), which allow to acquire the
initial idea of the parameters settings, also various statistical methods can be used,
e.g. single and multiple-factor analysis of variance.

The chapter is divided as follows. The first part is devoted to the theoretical
description of some statistical methods. The second part gives an illustrative
example of setting of control parameters.

2 Single and Multiple-Factor Analysis
of Variance—Theory

Analysis of variance (ANOVA) is a technique, which enables to identify if there is
any difference between groups on some variable (so called factor). When two or
more groups are being compared, the characteristic that distinguishes the group
from one another is called the factor under investigation. Consider the evolutionary
techniques; an experiment might be carried out to compare different values of
control parameters of algorithm from the perspective of obtained value of the fitness
of the best individual (usually value of objective function).

Further on, the following notation will be used: a population is the set of all
observations of interest and a sample is any subset of observations selected from the
population. Let N be the total number of observation in the data set. Consider
k levels of factor under investigation and a sample for each factor level, so that the
sample size by jth factor level, j = 1, 2, …k is designate as nj,

Pk
j¼1 nj ¼ N. Then,

the ith observation for each jth factor level can be designated as xij, j = 1, 2, …k,
i = 1, 2, … nj. Whether the null hypothesis of a single-factor analysis of variance
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should be rejected depends on how substantially the samples from the different
populations differ from one another. Let µj, j = 1, 2, …k be a mean of population
group on corresponding factor level.

A single-factor analysis of variance problem involves a comparison of all
k group means. The objective is to test the null hypothesis (H0):

H0: l1 ¼ l2 ¼ � � � ¼ lk ð1Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
j

;s; j ¼ 1; 2; . . .k; are different ð2Þ

A measure of disparity among the sample means is the between-group sum of
squares, denoted by SSB and given by

SSB ¼
Xk
j¼1

nj �xj � ��x
� �2 ð3Þ

where �xj is the sample mean of jth group and ��x is the overall mean (ratio of sum of
all observations to the total number of observations in the data set). SSB has an
associated degree of freedom (df1 = k − 1).

A measure of variation within the k samples, called error sum of squares and
denoted by SSE, is given by

SSE ¼
Xk
j¼1

nj � 1
� �

s2j ð4Þ

where s2j is the sample variance of jth group. SSE has an associated degree of
freedom (df2 = N − k).

Total sum of squares, denoted by SST, is given by

SST ¼
Xk
j¼1

Xnj
i¼1

xij � ��x
� �2 ð5Þ

with associated degree of freedom (df = N − 1).
The relationship between those three sums of squares is called the fundamental

identity and for single-factor analysis of variance is SST = SSB + SSE.
A mean square is a sum of squares divided by its degree of freedom. In

particular:

between-group mean square: MSB ¼ SSB
k � 1

within-group mean square: MSE ¼ SSE
N � k

.
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The test statistic (F) of the single-factor analysis of variance has a Fisher dis-
tribution and it is given by the formula: F ¼ MSB

MSE.
The validity of the analysis of variance test requires some assumptions. Peck

et al. [4] present these ones:

1. Each of the k group or population distributions is normal.
2. The k normal distributions have identical standard deviations.
3. The observations in the sample from any particular one of the k groups or

populations are independent of one another.
4. When comparing group or population means, k random samples are selected

independently of one another.

The statistical significance of the F ratio is most easily judged by its P-value. If
the P-value is less than 0.05, the null hypothesis of equal means is rejected at the
5 % significance level. This does not imply that every mean is significantly different
from every other mean. It only implies that the means are not all the same.

All the sums of squares, degrees of freedom, mean squares and F ratio with its P-
value are entered in a general format of an analysis of variance table (Table 1).

Peck, Olsen and Devore also claim that in practice, the test based on these
assumptions works well as long as the assumptions are not too badly violated. If the
sample sizes are reasonably large, normal probability plots or boxplots of the data in
each sample are helpful in checking the assumption of normality. Often, however,
sample sizes are so small, that they suggest that the F test can safely be used if the
largest of the sample standard deviations is at most twice the smallest one.

When null hypothesis is rejected by the F test, it can be stated that there are
differences among the k group or population means. Several procedures called
multiple-comparison procedures exist to determine which sample means are sig-
nificantly different from others. Dowdy et al. [2] discuss five different approaches:
Fisher’s least significant difference, Duncan’s new multiple-range test, Student–
Newman–Keuls’ procedure, Tukey’s honestly significant difference and Scheffé’s
method.

Next, Fisher’s least significant difference (LSD) procedure will be performed.
Fisher’s LSD procedure could be based on the t test statistic used for the two-
population case. It could be easier to determine how large the difference between
the sample means must be to reject null hypothesis.

In this case the test statistic by Anderson et al. [1] is the difference �xj � �xl, where
j, l = 1, 2, …k, so that j ≠ l and the objective is to test the null hypothesis (H0):

Table 1 General format for an analysis of variance table

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups SSB k – 1 MSB F P

Within groups SSE N – k MSE

Total SST N – 1
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H0: lj ¼ ll; j; l ¼ 1; 2; . . .k; j 6¼ l ð6Þ

against alternative hypothesis (Ha):

H0: lj 6¼ ll; j; l ¼ 1; 2; . . .k; j 6¼ l ð7Þ

The null hypothesis should be rejected if �xj � �xl
�� ��� LSD, where least significant

difference is given by

LSD ¼ ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
nj

þ 1
nl

� �s
; j; l ¼ 1; 2; . . .k; j 6¼ l ð8Þ

where α denotes the significance level and t denotes critical value of Student’s
distribution.

Dowdy, Weardon and Chilko recall, that Fisher’s test has a drawback; it requires
that the null hypothesis be rejected in the analysis of variance procedure by the
F test. These authors also discuss presented assumptions. At first, the normality of
the treatment groups can be roughly checked by constructing histograms of the
sample from each group. The analysis of variance by them leads to valid conclu-
sions in some cases where there are departures from normality. For small sample
sizes the treatment groups should be symmetric and unimodal. For large samples,
more radical departures are acceptable due to the central limit theorem. Dowdy,
Weardon and Chilko assume that conditions on independence are usually satisfied
if the experimental units are randomly chosen and randomly assigned to the
treatments. If the treatment groups already exist the experimenter by them does not
have the opportunity to assign the subjects at random to the treatments. In such
cases he uses random samples from each treatment group.

The last one of the assumptions underlying the analysis of variance is that the
variances of the populations from which the samples come are the same. Dowdy,
Weardon and Chilko state that the F tests are robust with respect to departures from
homogeneity; that is, moderate departures from equality of variances do not greatly
affect the F statistic. If the experimenter fears a large departure from homogeneity,
several procedures are available to test equality of variances.

The Fmax test was developed by Hartley. Hartley’s test may be used when all
treatment groups are the same size n and involves comparing the largest sample
variance with the smallest sample variance. The null hypothesis (H0) of test (where
σj
2 is the population variance of jth group, j = 1, 2, …k) is:

H0: r
2
1 ¼ r22 ¼ � � � ¼ r2k ð9Þ

Setting of Control Parameters of SOMA on the Base of Statistics 259



against alternative hypothesis (Ha):

Ha: at least two of the rj
;s, j¼ 1; 2;. . .k; are different ð10Þ

when each of the k populations is normal and there is a random sample of size
n from each population. Then sample variances s2j , j = 1,2…k can be computed and
it is possible to calculate

Fmax ¼
max s2j ; j ¼ 1; 2; . . .k

n o
min s2j ; j ¼ 1; 2; . . .k
n o ð11Þ

Statistics Fmax is significant if it exceeds the value given in the Fisher’s table
with degrees of freedom df1 = k and df2 = n − 1. Dowdy, Weardon and Chilko state,
that because of the sensitivity of Hartley’s test to departures from normality, if
statistics Fmax is significant, it indicates either unequal variances or a lack of
normality.

Two other commonly used tests of homogeneity of variances are those of
Cochran and Bartlett. In most situations, Cochran’s test is equivalent to Hartley’s.
Cochran’s test compares the maximum within-sample variance to the average
within-sample variance. After computing of sample variances s2j , j = 1,2…k, it is
calculated

C ¼
max s2j ; j ¼ 1; 2; . . .k

n o
Pk

j¼1 s
2
j

ð12Þ

and statistics C is significant if value

A ¼ k � 1ð Þ C
1� C

ð13Þ

exceeds the Fisher’s table value with degrees of freedom df1 ¼ n
k � 1 and

df2 ¼ n
k � 1
� �

k � 1ð Þ.
Bartlett’s test has a more complicated test statistic but has two advantages over

the other two: It can be applied to groups of unequal sample sizes, and it is more
powerful. Bartlett’s test: compares a weighted average of the within-sample vari-
ances to their geometric mean. The test statistics is

B ¼ 1
D

Xk
j¼1

nj � 1
� � !

ln
1Pk

j¼1 nj � 1
� �Xk

j¼1

nj � 1
� �

s2j

 !
�
Xk
j¼1

nj � 1
� �

ln s2j
� 	" #

ð14Þ
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where

D ¼ 1þ 1
3 k � 1ð Þ

Xk
j¼1

1
nj � 1

� �
� 1Pk

j¼1 nj � 1
� �

" #
ð15Þ

Statistics B is significant if it exceeds the value given in the chi-squared dis-
tribution with (k – 1) degrees of freedom.

The last presented statistics of homogeneity of variances is Levene’s test. This
test performs a one-way analysis of variance on the variables zij ¼ xij � �xj

�� ��,
j = 1,2…k, where �xj is either a mean of jth group or a median of jth group. At first
variables zij are computed and the F statistic of the single-factor analysis of variance
for these variables is obtained. Levene’s statistics is significant if it exceeds the
Fisher’s table value with degrees of freedom df1 = k − 1 and df2 = N − k.

Some statistical software also presents the results of a set of two-sample F tests
that compare the standard deviations for each pair of levels. This makes sense only
if the initial overall test shows significant differences amongst the variances (and
standard deviations). Any pair with a small P value would be a pair whose standard
deviations were significantly different.

An alternative to the standard analysis of variance that compares level medians
instead of means is the Kruskal-Wallis test. This test is much less sensitive to the
presence of outliers than a standard one-way analysis of variance and should be
used whenever the assumption of normality within levels is not reasonable. Dowdy,
Weardon and Chilko indicate this procedure.

First, it is necessary to rank the data from 1 (the smallest observation) to N (the
largest observation), irrespective of the group in which they are found. If two or
more observations are tied for the same numerical value, the average rank for which
they are tied is assigned. Then for every group, when all treatment groups are the
same size n, the average rank of group denoted by �rj is computed. Finally, the test
statistic is:

H ¼ n

Pk
j¼1 �rj � Nþ 1

2

� �2h i
N Nþ 1ð Þ

12

ð16Þ

The null hypothesis (H0) of test is

H0:E �rj
� � ¼ N þ 1

2
for all j ð17Þ

against alternative hypothesis (Hα):

H0:E �rj
� � 6¼ Nþ 1

2
for some j ð18Þ

where E �rj
� �

denotes the expected value by �rj.
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Statistics H is significant if it exceeds the value given in the chi-squared dis-
tribution with (k – 1) degrees of freedom and it indicates that there are significant
differences amongst the level medians.

However, in some experiments it is desirable to draw conclusions about more
than one variable or factor. The term factorial is used because the experimental
conditions include all possible combinations of the factors. For example, for
a levels of factor A and b levels of factor B, the experiment will involve collecting
data on ab combinations. In experimental design terminology, the sample size of
r for each group combination indicates that there are r replications, so abr obser-
vations are needed. Additional replications (2r, 3r) and larger sample size put
statistical conclusions in more precise terms.

This situation brings new effect—interaction effect. If the interaction effect has a
significant impact, it can be concluded that the effect of the type of factor A depends
on the factor B. There are three sets of hypothesis with the two-way ANOVA.

At first, the objective is to test the null hypothesis of comparison of a group
means µAi, i = 1, 2, …a by different values of factor A (H0):

H0: lA1 ¼ lA2 ¼ � � � ¼ lAa ð19Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
Aj

;s, j ¼ 1; 2;. . .a; are different ð20Þ

and also comparison of b group means µBi, j = 1, 2, …b by different values of factor
B:

H0: lB1 ¼ lB2 ¼ � � � ¼ lBb ð21Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
Bj

;s, j ¼ 1; 2;. . .b; are different ð22Þ

Second objective is comparison of ab group means µAiBj, i = 1, 2, …a, j = 1, 2,
…b by different values of A and B:

H0: lA1B1 ¼ lA2B2 ¼ � � � ¼ lAaBb ð23Þ

against the alternative (Ha):

Ha:There is no interaction between the factors A and B ð24Þ

The analysis of variance procedure for the two-factor factorial experiment
requires us to partition the total sum of squares into sum of squares for factor A,
sum of squares for factor B, sum of squares for interaction and sum of squares due
to error.
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Sum of squares for factor A is denoted by SSA and given by

SSA ¼ br
Xa
i¼1

�xi � ��xð Þ2 ð25Þ

where b is number of levels of factor B, a is number of levels of factor A, ��x is the
overall mean and r is the number of replications.

Sum of squares for factor B is denoted by SSB and given by

SSB ¼ ar
Xb
i¼1

�xi � ��xð Þ2 ð26Þ

Sum of squares for interaction is denoted by SSAB and given by

SSAB ¼ r
Xa
i¼1

Xb
j¼1

�xij � �xi � �xj þ��x
� �2 ð27Þ

where xij is the sample mean for the observations corresponding to the combination
of group i (factor A) and group j (factor B).

Error sum of squares (SSE) and total sum of squares (SST) are given by the same
relations as in the case of single-factor analysis of variance (4) and (5). All the sums
of squares, degrees of freedom, mean squares and F ratios with their P-values are
presented in the analysis of variance table (Table 2).

3 Parameters Setting of SOMA

Next, the setting of control parameters of SOMA will be presented based on an
illustrative example of solving traveling salesman problem. Consider the matrix of
shortest distances between eight cities (Table 3).

The traveling salesman needs to find the shortest route between all the cities so
that each city is visited exactly once. The solving was provided with the use of
natural representation (the city was represented directly with its index in an

Table 2 General format for an analysis of variance table

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Factor A SSA a − 1 MSA FA PA

Factor B SSB b − 1 MSB FB PB

Interaction SSAB (a − 1)(b − 1) MSAB FAB PAB

Error SSE ab(r − 1) MSE

Total SST N − 1

Setting of Control Parameters of SOMA on the Base of Statistics 263



individual). A simple penalty approach was used if the unfeasible solutions
appeared. Some of the control and termination parameters were set as follows:
Parameter PopSize was set to 80 and parameter Migrations was set to 300. The
parameter MinDiv was set to negative value to reach all iterations (the small size of
instance enables to reach all iteration in a relative short time). The parameter
PathLength was set to the value 3. The settings of parameters Step and PRT was
provided on the base of before mentioned statistical methods. Let the value of the
shortest route (denoted as fc) be the response variable. Further on, we can specify
the impact of factors’ level (levels of parameters Step and PRT) on the variability of
the response variable.

Parameter PRT can take values from 0 (purely stochastic behavior of algorithm)
to 1 (purely deterministic behavior). At first, the levels of parameters PRT were set
to 0.2, 0.4, 0.6 and 0.8. Parameter Step can take values from 0.1 to value of
parameter PathLength, which equals 3. Following the previous simulations it was
found that the value of the Step >1, increased probability of getting extremely “bad”
outcome. So, the values 0.3, 0.5, 0.7 and 0.9 were used as the levels of parameter
Step in testing.

First tested hypothesis is comparison of 4 group means fc1; fc2; fc3; fc4 by dif-
ferent values of parameter PRT (0.2, 0.4, 0.6 and 0.8) according to (1) and (2). The
experiment is balancing—for each pair PRT-Step the same number of simulations
was realized—eight replications. It was thus implemented the first phase of a total
of 128 simulations (Table 4).

The summary of the descriptive statistics for every value of parameter PRT is
given in Table 5.

There is big difference between the smallest and the largest standard deviation.
This may cause problems since the analysis of variance assumes that the standard
deviations at all levels are equal. The results are also presented by the box and
whisker plot (Fig. 1).

There is evident some significant non-normality in the data, which violates the
assumption that the data come from normal distributions. Someone may wish to
transform the values of fc to remove any dependence of the standard deviation on

Table 3 Matrix of shortest distances between eight cities

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8

City 1 – 202 197 115 191 123 161 86

City 2 202 – 389 85 393 121 48 195

City 3 197 389 – 304 35 317 351 241

City 4 115 85 304 – 308 84 46 138

City 5 191 393 35 308 – 297 355 221

City 6 123 121 317 84 297 – 73 74

City 7 161 48 351 46 355 73 – 147

City 8 86 195 241 138 221 74 147 –
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the mean. The analysis of variance decomposes the variance of fc into two com-
ponents: a between-group component and a within-group component (Table 6).

The F ratio, which equals 33.0788, is a ratio of the between-group estimate to
the within-group estimate. Since the P-value of the F test is less than 0.05, there is a
statistically significant difference between the mean fc from one level of PRT to
another at the 5.0 % significance level. Then, Fisher’s least significant difference
was used to determine which means are significantly different from which others
(Table 7).

Table 4 Results of simulations

Step PRT fc Step PRT fc Step PRT fc Step PRT fc

0.3 0.2 862 0.3 0.2 862 0.3 0.2 921 0.3 0.2 906

0.3 0.4 862 0.3 0.4 848 0.3 0.4 848 0.3 0.4 848

0.3 0.6 848 0.3 0.6 848 0.3 0.6 848 0.3 0.6 848

0.3 0.8 848 0.3 0.8 848 0.3 0.8 848 0.3 0.8 848

0.5 0.2 896 0.5 0.2 857 0.5 0.2 1072 0.5 0.2 896

0.5 0.4 906 0.5 0.4 896 0.5 0.4 842 0.5 0.4 848

0.5 0.6 848 0.5 0.6 848 0.5 0.6 848 0.5 0.6 848

0.5 0.8 848 0.5 0.8 848 0.5 0.8 848 0.5 0.8 848

0.7 0.2 848 0.7 0.2 907 0.7 0.2 979 0.7 0.2 963

0.7 0.4 848 0.7 0.4 871 0.7 0.4 848 0.7 0.4 857

0.7 0.6 848 0.7 0.6 905 0.7 0.6 848 0.7 0.6 848

0.7 0.8 857 0.7 0.8 848 0.7 0.8 848 0.7 0.8 848

0.9 0.2 980 0.9 0.2 848 0.9 0.2 857 0.9 0.2 905

0.9 0.4 848 0.9 0.4 857 0.9 0.4 848 0.9 0.4 848

0.9 0.6 848 0.9 0.6 848 0.9 0.6 848 0.9 0.6 848

0.9 0.8 848 0.9 0.8 857 0.9 0.8 857 0.9 0.8 848

0.3 0.2 919 0.3 0.2 988 0.3 0.2 871 0.3 0.2 954

0.3 0.4 848 0.3 0.4 848 0.3 0.4 857 0.3 0.4 848

0.3 0.6 848 0.3 0.6 848 0.3 0.6 848 0.3 0.6 848

0.3 0.8 848 0.3 0.8 848 0.3 0.8 848 0.3 0.8 848

0.5 0.2 905 0.5 0.2 919 0.5 0.2 857 0.5 0.2 896

0.5 0.4 848 0.5 0.4 848 0.5 0.4 857 0.5 0.4 848

0.5 0.6 848 0.5 0.6 848 0.5 0.6 848 0.5 0.6 848

0.5 0.8 848 0.5 0.8 848 0.5 0.8 848 0.5 0.8 848

0.7 0.2 907 0.7 0.2 919 0.7 0.2 848 0.7 0.2 862

0.7 0.4 848 0.7 0.4 848 0.7 0.4 862 0.7 0.4 848

0.7 0.6 848 0.7 0.6 857 0.7 0.6 857 0.7 0.6 857

0.7 0.8 862 0.7 0.8 848 0.7 0.8 848 0.7 0.8 848

0.9 0.2 862 0.9 0.2 907 0.9 0.2 919 0.9 0.2 1003

0.9 0.4 848 0.9 0.4 848 0.9 0.4 848 0.9 0.4 905

0.9 0.6 848 0.9 0.6 848 0.9 0.6 848 0.9 0.6 848

0.9 0.8 848 0.9 0.8 848 0.9 0.8 848 0.9 0.8 857
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Table 5 Summary statistics—data grouped by PRT

PRT Count Average Standard
deviation

Coefficient of
variation (%)

Minimum Maximum Range Median

0.2 32 909.219 53.0324 5.83274 848.0 1072.0 224.0 905.5

0.4 32 855.625 16.3997 1.9167 842.0 906.0 64.0 848.0

0.6 32 850.625 10.2729 1.20769 848.0 905.0 57.0 848.0

0.8 32 849.563 3.77545 0.444399 848.0 862.0 14.0 848.0

Total 128 866.258 37.5064 4.3297 842.0 1072.0 230.0 848.0

0.
2

0.
4

0.
6

0.
8

850 900 950 1000 1050

fc

P
R

T

Fig. 1 Box and whisker plot—data grouped by PRT

Table 6 Analysis of variance table—data grouped by PRT

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 79418.1 3 26472.7 33.08 0.0000

Within groups 99236.3 124 800.293

Total 178654.4 127

Table 7 Comparison procedure of Fisher’s least significant difference—data grouped by PRT

Contrast Difference of means LSD Significant differences

0.2–0.4 53.5938 13.9982 Yes

0.2–0.6 58.5938 13.9982 Yes

0.2–0.8 59.6563 13.9982 Yes

0.4–0.6 5.0 13.9982 No

0.4–0.8 6.0625 13.9982 No

0.6–0.8 1.0625 13.9982 No
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Now, one can see significant difference for group of simulations where PRT
equals 0.2 to other groups. It can be stated that there is a large departure from
homogeneity, so all the equality of variances’ tests are used (Table 8).

The statistics displayed in the Table 8 and also the P-values show, that there is a
statistically significant difference amongst the standard deviations of groups. This
violates one of the important assumptions underlying the analysis of variance.

The comparison of the standard deviations for each pair of samples is given in
Table 9. All P-Values below 0.05 indicate statistically significant differences
between standard deviations of every pair of groups.

The situation is clear; statistically different values of averages and standard
deviations for groups of values fc by different values of parameter PRT were
obtained. Due to failure of assumptions, the results of the analysis of variance
cannot be taken into account. Finally, despite all the previous conclusions, the
decision is to use the Kruskal-Wallis test as alternative to the standard analysis of
variance to compare the medians instead of the means (Table 10).

Table 8 Tests of homogeneity of variances—data grouped by PRT

Test P-value

Levene’s 23.1283 5.87053E−12

Cochran’s 0.878564 0

Bartlett’s 4.35742 0

Hartley’s 197.308

Table 9 Comparison of the standard deviations for each pair of groups—data grouped by PRT

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.2/0.4 53.0324 16.3997 10.457 0.0000

0.2/0.6 53.0324 10.2729 26.65 0.0000

0.2/0.8 53.0324 3.77545 197.308 0.0000

0.4/0.6 16.3997 10.2729 2.54853 0.0111

0.4/0.8 16.3997 3.77545 18.8685 0.0000

0.6/0.8 10.2729 3.77545 7.40368 0.0000

Table 10 Kruskal-Wallis test
—data grouped by PRT

PRT Sample size Average rank

0.2 32 104.469

0.4 32 57.4375

0.6 32 47.5

0.8 32 48.5938

Test statistic 66.7 P-value = 0
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The null hypothesis of Kruskal-Wallis test is that the medians of fc within each
of the four levels of PRT are the same (17). Since the P-value is less than 0.05, there
is a statistically significant difference amongst the medians.

It is evident (from the results of tests and also from box and whisker plot) that
median of group where PRT equals 0.2 is significantly different from others. It
seems that values 0.6 or 0.8 for the parameter PRT are the appropriate choice. More
preferred alternative is a latter value in order to eliminate possible outliers.

Second tested hypothesis is comparison of 4 group means fc1; fc2; fc3; fc4 by
different values of parameter Step (0.3, 0.5, 0.7 and 0.9) according to (1) and (2).

The summary of the descriptive statistics by every value of Step is given in the
Table 11.

In this case there is not so big difference between the smallest and the largest
standard deviation as in previous case. From the box and whisker plot (Fig. 2) it is
seen some significant non-normality in the data, which again violates the
assumption that the data come from normal distributions. Recall that the normal
distribution is symmetric with a median in the middle of the box bounded by the

Table 11 Summary statistics—data grouped by Step

Step Count Average Standard
dev.

Coef. of
variation (%)

Minimum Maximum Range Median

0.3 32 864.313 34.6656 4.01077 848.0 988.0 140.0 848.0

0.5 32 867.469 43.6984 5.03746 842.0 1072.0 230.0 848.0

0.7 32 866.813 33.9995 3.92236 848.0 979.0 131.0 848.0

0.9 32 866.438 38.6013 4.45517 848.0 1003.0 155.0 848.0

Total 128 866.258 37.5064 4.3297 842.0 1072.0 230.0 848.0
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Fig. 2 Box and whisker plot—data grouped by Step
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first and the third quartile. This is not the case, because the median is the smallest
value in three cases and for the last one is typical outlier.

The analysis of variance decomposes the variance of fc once again into two
components: a between-group component and a within-group component, but now
data are grouped by parameter Step (Table 12).

The F ratio, which equals 0.0414313, is a ratio of the between-group estimate to
the within-group estimate. Since the P-value of the F test is greater than 0.05, there
is not a statistically significant difference amongst the mean fc from one level of
Step to another at the 5.0 % significance level. Fisher’s test requires that the null
hypothesis could be rejected in the analysis of variance procedure by the F test,
what is not the case; nevertheless its results are shown (Table 13).

Evidently, there is not a significant difference in means between groups.
The all statistics displayed in the Table 14 and also the P-values greater than or

equal to 0.05 show, that there is not a statistically significant difference amongst the
standard deviations of groups.

The comparison of the standard deviations for each pair of samples is given in
Table 15. It can be stated there are no statistically significant differences between
any pair of means.

Table 12 Analysis of variance table—data grouped by Step

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 178.898 3 59.6328 0.04 0.9887

Within groups 178476.6 124 1439.32

Total 178654.4 127

Table 13 Comparison procedure of Fisher’s least significant difference—data grouped by Step

Contrast Difference of means LSD Significant differences

0.3–0.5 −3.15625 18.7727 No

0.3–0.7 −2.5 18.7727 No

0.3–0.9 −2.125 18.7727 No

0.5–0.7 0.65625 18.7727 No

0.5–0.9 1.03125 18.7727 No

0.7–0.9 0.375 18.7727 No

Table 14 Tests of
homogeneity of variances—
data grouped by Step

Test P-value

Levene’s 0.0490732 0.985551

Cochran’s C 0.331675 0.298469

Bartlett’s 1.02079 0.472019

Hartley’s 1.65191
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The situation is different from the previous case; we didn’t obtain statistically
different values of averages and standard deviations for groups of values fc by
different values of parameter Step. Again, we decided to use alternative to the
standard analysis of variance—the Kruskal-Wallis test—to compare the medians
instead of the means (Table 16).

The null hypothesis of Kruskal-Wallis test is that the medians of fc within each
of the four levels of Step are the same (17). Since the P-value is greater than 0.05,
there is not a statistically significant difference amongst the medians.

Hence, the results of tests and also from box and whisker plot show the means,
medians and standard deviations of all four samples are equal. It is not a difference
between arbitrary values of the parameter Step from a statistical point of view.
Despite the results, it seems that values 0.7 or 0.9 for the parameter Step is the
appropriate choice, since calculations are usually faster for bigger values of
Step. These values generate the equivalent results with similar outliers. More
preferred alternative is a latter value because of smaller interquartile range.

Last tested hypothesis is comparison of 4 group means fcA1; fcA2; fcA3; fcA4 by
different values of parameter Step (factor A) according the test (19) and (20), where
the levels of Step were set to 0.3, 0.5, 0.7 and 0.9 and also comparison of 4 group
means fcB1; fcB2; fcB3; fcB4 by different values of parameter PRT (factor B) according
the test (21) and (22), where the levels of PRT were set to 0.2, 0.4, 0.6 and 0.8, as
well as the comparison of 16 group means fcA1B1; fcA2B1; . . .; fcA4B4 by mentioned
different values of Step and PRT (23) and (24).

The ANOVA table (Table 17) decomposes the variability of fc into contributions
due to both factors Step and PRT. The contribution of each factor is measured
having removed the effect of another factor. Since P-value of factor PRT is less than
0.05, this factor has a statistically significant effect on fc at the 5.0 % significance

Table 15 Comparison of the standard deviations for each pair of groups—data grouped by Step

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.3/0.5 34.6656 43.6984 0.629314 0.2029

0.3/0.7 34.6656 33.9995 1.03957 0.9147

0.3/0.9 34.6656 38.6013 0.806481 0.5529

0.5/0.7 43.6984 33.9995 1.65191 0.1679

0.5/0.9 43.6984 38.6013 1.28152 0.4939

0.7/0.9 33.9995 38.6013 0.775783 0.4838

Table 16 Kruskal-Wallis test
—data grouped by Step

Step Sample size Average rank

0.3 32 62.0625

0.5 32 61.6875

0.7 32 69.875

0.9 32 64.375

Test statistic 1.30262 P-value = 0.728508
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level. Significant interaction effects between analysed factors have not been con-
firmed. The results of multiple factor analysis of variance confirmed the conclusions
that were obtained using a single factor analysis of variance. Different values of
parameter Step didn’t result to statistically different values of function fc. Contrary,
different values of parameter PRT resulted to statistically different values of func-
tion fc.

It is evident (Fig. 3) that the small values of PRT (0.2 and 0.4) results to big
variability of values fc regardless of the value of Step. The interaction plot (Fig. 4)
gives the mean values of fc depending on combination of mentioned factors. Based
on that, it seems to be an appropriate choice to set the parameter PRT to 0.6 or 0.8.

Further on, one more analysis was realized in order to choose between the two
values of parameter PRT and one way factor analysis for parameter PRT was
conducted. Tested hypothesis is comparison of 5 group means fc1; fc2; fc3; fc4; fc5
by different values of parameter PRT on levels 0.5, 0.6, 0.7, 0.8 and 0.9 according
to (1) and (2). Parameter Step was set to value 0.9. The experiment is balancing—
for each value of PRT the same number of simulations was realized—eight repli-
cations. It was thus implemented a total of 40 simulations, which results are
summarized in Table 18.

The summary of the descriptive statistics by every value of parameter PRT can
be seen in the Table 19.

Table 17 Multiple analysis of variance table

Source Sum of squares Df Mean square F-ratio P-value

Factor A: step 178.898 3 59.6328 0.07 0.9766

Factor B: prt 79418.1 3 26472.7 30.35 0.0000

Interactions AB 1359.82 9 151.091 0.17 0.9964

Error 97697.6 112 872.3

Total 178654 127
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Fig. 3 Box and whisker plot—data grouped by interaction of Step and PRT
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There is again big difference between the smallest and the largest standard
deviation. Remember, that this may cause problems since the analysis of variance
assumes that the standard deviations at all levels are equal. It is evident also from
the box and whisker plot of results (Fig. 5).

It is evident there is some significant non-normality in the data, which violates
the assumption that the data come from normal distributions. The analysis of
variance decomposes the variance of fc into two components: a between-group
component and a within-group component (Table 20).
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Fig. 4 Interaction plot

Table 18 Results of simulations

PRT fc PRT fc PRT fc PRT fc PRT fc

0.5 848 0.6 857 0.7 848 0.8 848 0.9 848

0.5 857 0.6 848 0.7 848 0.8 848 0.9 848

0.5 862 0.6 921 0.7 857 0.8 857 0.9 848

0.5 862 0.6 848 0.7 848 0.8 848 0.9 848

0.5 959 0.6 896 0.7 857 0.8 848 0.9 848

0.5 905 0.6 871 0.7 848 0.8 857 0.9 848

0.5 1007 0.6 857 0.7 848 0.8 857 0.9 848

0.5 848 0.6 848 0.7 857 0.8 848 0.9 848

Table 19 Summary statistics—data grouped by PRT

prt Count Average Standard
dev.

Coef. of
variation (%)

Minimum Maximum Range Median

0.5 8 893.5 59.4763 6.65655 848.0 1007.0 159.0 862.5

0.6 8 868.25 26.8421 3.09152 848.0 921.0 73.0 857.0

0.7 8 851.375 4.65794 0.547108 848.0 857.0 9.0 848.0

0.8 8 851.375 4.65794 0.547108 848.0 857.0 9.0 848.0

0.9 8 848.0 0 0 848.0 848.0 0 848.0

Total 40 862.5 32.7085 3.79229 848.0 1007.0 159.0 848.0
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The F ratio, which equals 3.3753, is a ratio of the between-group estimate to the
within-group estimate. Since the P-value of the F test is less than 0.05, there is a
statistically significant difference between the mean fc from one level of PRT to
another at the 5.0 % significance level. Fisher’s least significant difference is used to
determine which means are significantly different from which others (Table 21).

It is seen significant difference for group of simulations where PRT equals 0.5 to
groups where PRT equal to 0.7, 0.8 and 0.9. It is evident a large departure from
homogeneity, so next all the equality of variances’ tests are used (Table 22).

The statistics displayed in this table and also the P-values show, that there is a
statistically significant difference amongst the standard deviations of groups. This
violates one of the important assumptions underlying the analysis of variance.

The comparison of the standard deviations for each pair of samples is given in
Table 23. P-Values below 0.05 indicate statistically significant differences between
standard deviations of these pair of groups.

The situation is such as in the first analysis of parameter PRT; there are statis-
tically different values of averages and standard deviations for groups of values fc
by different values of parameter PRT. Due to failure of assumptions, the results of
the analysis of variance cannot be taken into account. Finally, despite all the pre-
vious conclusions, we decided to use the Kruskal-Wallis test to compare the
medians instead of the means (Table 24).
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Fig. 5 Box and whisker plot—data grouped by PRT

Table 20 Analysis of variance table—data grouped by PRT

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 11614.8 4 2903.69 3.3753 0.01946

Within groups 30109.3 35 860.264

Total 41724.0 39
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The null hypothesis of Kruskal-Wallis test (17) is that the medians of fc within
each of the fiver levels of PRT are the same. Since the P-value is less than 0.05,
there is a statistically significant difference amongst the medians. It seems that
median of group where PRT equals 0.5 and 0.6 are significantly different from
others. Based on mentioned above the values 0.7–0.9 for the parameter PRT are
considered as the appropriate choice.

Table 21 Comparison procedure of Fisher’s least significant difference—data grouped by PRT

Contrast Difference of means LSD Significant differences

0.5–0.6 25.25 29.7719 No

0.5–0.7 42.125 29.7719 Yes

0.5–0.8 42.125 29.7719 Yes

0.5–0.9 45.5 29.7719 Yes

0.6–0.7 16.875 29.7719 No

0.6–0.8 16.875 29.7719 No

0.6–0.9 20.25 29.7719 No

0.7–0.8 0 29.7719 No

0.7–0.9 3.375 29.7719 No

0.8–0.9 3.375 29.7719 No

Table 22 Tests of homogeneity of variances—data grouped by PRT

Test P-value

Levene’s 3.2163 0.023823

Cochran’s 0.822405 0.00000532605

Bartlett’s 5.77786 4.76942E−10

Hartley’s 163.042

Table 23 Comparison of the standard deviations for each pair of groups – data grouped by PRT

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.5/0.6 59.4763 26.8421 4.90969 0.0523

0.5/0.7 59.4763 4.65794 163.042 0.0000

0.5/0.8 59.4763 4.65794 163.042 0.0000

0.5/0.9 59.4763 0 – –

0.6/0.7 26.8421 4.65794 33.2082 0.0002

0.6/0.8 26.8421 4.65794 33.2082 0.0002

0.6/0.9 26.8421 0 – –

0.7/0.8 4.65794 4.65794 1.0 1.0000

0.7/0.9 4.65794 0 – –

0.8/0.9 4.65794 0 – –
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4 Conclusions

Evolutionary algorithms are considered to be universal and effective tool for solving
various optimization problems. Their effectiveness is limited by fact they are
generally controlled by special set of parameters. Although some of parameters can
be successfully set exogenously based on the philosophy of the algorithm or
according to type of solved problem, there is a no deeper theoretical base to adjust
all the parameters. This chapter focuses on the possibility of using some statistical
methods that may be helpful to determine the effective values of some parameters of
SOMA.

Based on the various tests one can conclude that SOMA is even more sensitive
on the parameters setting than other algorithms [3, 5], thus the efficient setting may
significantly affect the quality of the results. The setting of control parameter can be
supported by statistical methods especially aimed at determining whether the level
of some parameter brings the difference in results. A brief view to corresponding
statistical methods (single factor analyze of variance, Levene’s test, Cochran’s test,
Bartlett’s test, Hartley’s test, two-way analyze of variance) is given in the first half
of the chapter. The second half is aimed on example of practical use based on
illustrative data of traveling salesman problem.

References

1. Anderson, D.R., Sweeney, D.J., Williams, T.A.: Statistics for business and economics, 11th
edn. South-Western Cengage Learning, Boston (2011)

2. Dowdy, S., Weardon, S., Chilko, D.: Statistics for research, 3rd edn. Wiley, New York (2004)
3. Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Berlin

(2004)
4. Peck, R., Olsen, C., Devore, J.: Introduction to statistics and data analysis, 4th edn. Cengage

Learning, Boston (2012)
5. Zelinka, I.: Umělá inteligence v problémech globální optimalizace. BEN-technická literature,

Praha (2002)

Table 24 Kruskal-Wallis test
—data grouped by PRT

PRT Sample size Average rank

0.5 8 29.375

0.6 8 25.125

0.7 8 18.0

0.8 8 18.0

0.9 8 12.0

Test statistic 10.844 P-value = 0.0283745
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