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Foreword

Since the beginning of our civilization, the human race in its engineering challenges
has had to confront numerous technological problems such as finding optimal
solutions for various problems in civil engineering, scheduling, control technolo-
gies, and in many other fields. These examples encompass both ancient and modern
technologies such as automatic theater controlled by special programs in ancient
Greece (Heron of Alexandria), the first electrical energy distribution network in the
USA, mechanical, electronic as well as computational controllers, and control and
scheduling of the space exploration. Technology development of these and related
areas has had and continues to have a profound impact on our civilization and our
everyday lifestyle.

A special class of algorithms that plays an important role in the solution process
of the above-mentioned problems is the so-called nature-inspired algorithms. The
oldest in this class are evolutionary algorithms that are based on Darwinian evo-
lution theory and Mendel’s theory of propagation of genetic information. These
algorithms are simple, flexible, mathematically unrestrictive, and very powerful.
This book discusses one of such algorithms that was proposed in 1999 and sub-
sequently further developed and published as conference articles, journal articles,
and book chapters. It is SOMA: Self-Organizing Migrating Algorithm that mimics
competitive–cooperative behavior of a pack of intelligent agents. SOMA can be
regarded as a member of the family of swarm intelligence algorithms and is based
on effective combination of exploration and exploitation. The SOMA has been used
during its existence by numerous researchers from different countries for solving
diverse tasks such as controller design, chaos control, synthesis and identification,
electronic circuit synthesis, synthesis of control program for an artificial ant (Santa
Fe trail), aircraft wing design, mathematical model synthesis for astrophysical data,
artificial neural network synthesis, and learning among many others.

The book you are holding in your hands consists of a detailed description of
SOMA principles, its history with all relevant references and selected new as well
as summarized application of this algorithm. Authors of the chapters are
well-experienced practitioners and researchers in their respective fields.
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The topics discussed in this book cover the above-mentioned areas and they are
cohesively joined into a comprehensive text, which while discussing the specific
selected topics gives a deeper insight into the interdisciplinary fusion of those
modern and promising areas of emerging technologies in computer science.

Therefore, this book titled Self-Organizing Migrating Algorithm: Methodology
and Implementation, edited by Donald Davendra and Ivan Zelinka, is a timely
volume to be welcomed by the community focused on innovative algorithms of
optimization, computational intelligence, and beyond. This book is devoted to the
studies of common and related subjects in intensive research fields of
nature-inspired algorithms. For these reasons, I enthusiastically recommend this
book to our students, scientists, and engineers working in the aforementioned fields
of research and applications.

Singapore Ponnuthurai Nagaratnam Suganthan
October 2015
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Preface

Swarm-based algorithms have become one of the foremost researched and applied
heuristics in the field of evolutionary computation within the past decade. One
of the new and novel approaches is that of the self-organizing migrating algorithm
(SOMA). Initially developed and published in 2001 by Prof. Ivan Zelinka, SOMA
has been actively researched by a select group of researchers over the past decade
and a half.

SOMA is conceptualized on a predator/prey relationship, where the sampling
of the search space is conducted on a multidimensional facet, with the dimension
selection conducted pre-sampling, using a randomly generated PRT vector. Two
unique aspects of SOMA, which differentiate it from other swarm-based algorithms,
are the creation and application of the PRT vector, and the path length, which
specifies the distance and sampling required within a particular dimension.

Over the past few years, SOMA has been modified to solve combinatorial
optimization problems. This discrete variant so-called discrete self-organizing
migrating algorithm (DSOMA) has been proven to be robust and efficient.

With its ever-expanding applications and utilization, it was thought beneficial
and timely to produce a collated work of all the active applications of SOMA,
which shows its current state of the art. To this effect, we have reached out and have
obtained original research topics in SOMA and its application from a very diverse
group of academics and researchers. This provides a rich source of material and
ideas for both students and researchers.

Chapter authors’ background: Chapter authors are to the best of our knowledge
the originators or closely related to the originators of the different variants and
applications of SOMA.
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Organization of the Chapters

The book is divided into two parts. The first part methodology is divided into two
chapters. The first chapter “SOMA—Self-organising Migrating Algorithm” written
by the originator of SOMA, Ivan Zelinka, introduces SOMA to the broad audience.
The second chapter “DSOMA—Discrete Self-Organising Migrating Algorithm” by
Davendra, Zelinka, Pluhacek, and Senkerik describes the discrete variant of SOMA.

The second part of the book describes the different implementations of SOMA.
The chapters in this section are given in the following order. Chapter “SOMA and
Strange Dynamics” by Zelinka introduces the concepts of chaos and complex
networks in SOMA.

Chapter “Multi-objective Self-organizing Migrating Algorithm” by Kadlec and
Raida introduces multi-objective SOMA (MOSOMA), whereas chapter “Multi-
objective Design of EM Components” describes its application to EM component
design.

Chapter by Běhálek, Gajdǒs, and Davendra shows the “Utilization of Parallel
Computing for Discrete Self-organizing Migration Algorithm” using OpenMP and
CUDA.

Chapter “C-SOMAQI: Self-organizing Migrating Algorithm with Quadratic
Interpolation Crossover Operator for Constrained Global Optimization” by Singh,
Agarway, and Deep introduces another variant of SOMA, C-SOMAQI, to solve
constrained optimization problems. Another hybrid variant C-SOMGA also used to
solve constrained optimization problems is given in chapter “Optimization of
Directional Overcurrent Relay Times Using C-SOMGA” by Deep and Singh.
SOMAGA is further expanded in chapter “SOMGA for Large Scale Function
Optimization and its Application” to solve large-scale and real-life problems.

Chapter “Solving the Routing Problems with Time Windows” by Čičková,
Brezina, and Pekár describes the application of SOMA to the vehicle routing
problem. The same authors apply SOMA to financial modeling in chapter “SOMA
in Financial Modeling.”

The final two chapters deal with SOMA parameters and influences. Chapter
“Setting of Control Parameters of SOMA on the Base of Statistics” by Čičková and
Lukáčik looks at different statistical bases for SOMA parameter settings. The final
chapter “Inspired in SOMA: Perturbation Vector Embedded into the Chaotic PSO
Algorithm Driven by Lozi Chaotic Map” by Pluhacek, Zelinka, Senkerik, and
Davendra looks at the influences of the PRT vector in the PSO algorithm.

Audience: The book will be an instructional material for senior undergraduate
and entry-point graduate students in computer science, applied mathematics,
statistics, management and decision sciences, and engineering, who are working in
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the area of modern optimization. The book will also serve as a resource handbook
and material for practitioners who want to apply SOMA to solve real-life problems
and challenging applications.

USA and Czech Republic Donald Davendra
October 2015 Ivan Zelinka
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SOMA—Self-organizing Migrating
Algorithm

Ivan Zelinka

Abstract This chapter discuss basic principles of Self-Organizing Migrating
Algorithm (SOMA) that has been firstly proposed in 1999 and published conse-
quently in various journals, book chapters and conferences. Algorithm itself is,
from today classification point of view, between memetic and swarm algorithms
and is based on competetive-cooperative strategies, that generate new solutions.
During its existence it has been tested on various problems, including real-
time + black box ones, it has been parallelized and used with such algorithms like
genetic programming, grammatical evolution or/and analytic programming in order
to synthesize complex structures—solutions of different problems. In this chapter
are discussed basics of algorithm, its use and selected applications. All mentioned
SOMA use is completely referenced for detailed reading and further research.

1 Introduction

In recent years, a broad class of algorithms has been developed for stochastic
optimization, i.e. for optimizing systems where the functional relationship between
the independent input variables x and output (objective function) y of a system S is
not known. Using stochastic optimization algorithms such as Genetic Algorithms
(GA), Simulated Annealing (SA) and Differential Evolution (DE), a system is
confronted with a random input vector and its response is measured. This response
is then used by the algorithm to tune the input vector in such a way that the system
produces the desired output or target value in an iterative process. Most engineering
problems can be defined as optimization problems, e.g. the finding of an optimal
trajectory for a robot arm, the optimal thickness of steel in pressure vessels, the
optimal set of parameters for controllers, optimal relations or fuzzy sets in fuzzy

I. Zelinka (&)
Department of Computer Science, Faculty of Electrical Engineering and Computer Science,
VSB-Technical University of Ostrava, 17. Listopadu 15, 708 33 Ostrava-Poruba,
Czech Republic
e-mail: ivan.zelinka@vsb.cz

© Springer International Publishing Switzerland 2016
D. Davendra and I. Zelinka (eds.), Self-Organizing Migrating Algorithm,
Studies in Computational Intelligence 626, DOI 10.1007/978-3-319-28161-2_1
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models, etc. Solutions to such problems are usually difficult to find their parameters
usually include variables of different types, such as floating point or integer vari-
ables. Evolutionary algorithms (EAs), such as the Genetic Algorithms and
Differential Evolutionary Algorithms, have been successfully used in the past for
these engineering problems, because they can offer solutions to almost any problem
in a simplified manner: they are able to handle optimizing tasks with mixed vari-
ables, including the appropriate constraints, and they do not rely on the existence of
derivatives or auxiliary information about the system, e.g. its transfer function.
Evolutionary algorithms work on populations of candidate solutions that are
evolved in generations in which only the best-suited—or fittest—individuals are
likely to survive. This article introduces SOMA (‘Self-Organizing Migrating
Algorithm’), a new class of stochastic optimization algorithms. It explains the
principles behind SOMA and demonstrates how this algorithm can assist in solving
of various optimization problems. Functions on which SOMA have been tested can
be found in this chapter. SOMA, which can also works on a population of indi-
viduals, is based on the self-organizing behavior of groups of individuals in a
“social environment”. It can also be classified as an evolutionary algorithm, despite
the fact that no new generations of individuals are created during the search (based
on philosophy of this algorithm). Only the positions of the individuals in the search
space are changed during a generation, called a ‘migration loop’. Individuals are
generated by random according to what is called the ‘specimen of the individual’
principle. The specimen is in a vector, which comprises an exact definition of all
those parameters that together lead to the creation of such individuals, including the
appropriate constraints of the given parameters. SOMA is not based on the phi-
losophy of evolution (two parents create one new individual—the offspring), but on
the behavior of a social group of individuals, e.g. a herd of animals looking for
food. One can classify SOMA as an evolutionary algorithm, because the final result,
after one migration loop, is equivalent to the result from one generation derived by
the classic EA algorithms—individuals hold new positions on the N dimensional
hyper-plane. When the group of individuals is created, then the rule mentioned
above governs the behavior of all individuals so that they demonstrate
‘self-organization’ behavior. Because no new individuals are created, and only
existing ones are moving over the N dimensional hyper-plane, this algorithm has
been termed the Self-Organizing Migrating Algorithm, or SOMA for short. In the
following text the principle of the SOMA algorithm including its constraint han-
dling and testing will be explained. The description is divided into short sections to
increase the understandability of principles of the SOMA algorithm.

2 Historical Background and Algorithm Classification

Evolutionary algorithms are based on principles of evolution which have been
observed in nature long time before they were applied to and transformed into
algorithms to be executed on computers. When next reviewing some historical facts
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that led to evolutionary computation as we know it now, we will mainly focus on
the basic ideas, but will also allow to glimpse at the people who did the pioneering
work and established the field. Maybe the two most significant persons whose
research on evolution and genetics had the biggest impact on modern understanding
of evolution and its use for computational purposes are Gregor Johann Mendel and
Charles Darwin.

Gregor Johann Mendel, July 20, 1822–January 6, 1884) was an Augustinian
priest and scientist, and is often called the father of genetics for his study of the
inheritance of certain traits in pea plants. He was born in the family of farmers in
Hyncice (Heinzendorf bei Odrau) in Bohemia (that time part of Austrian—Hungary
empire). The most significant contribution of Mendel for science was his discovery
of genetic laws which showed that the inheritance of these traits follows particular
laws (published in [1]), which were later named after him. All his discoveries were
done in Abbey of St. Thomas in Brno (Bohemia). Mendel published his research at
two meetings of the Natural History Society of Brünn in Moravia (east part of
Bohemia) in 1865 [1]. When Mendel’s paper was published in 1866 in Proceedings
of the Natural History Society of Brünn, it had little impact and was cited only
about three times over the next thirty-five years. His paper was criticized at the time,
but is now considered a seminal work. The significance of Mendel’s work was not
recognized until the turn of the 20th century. Its rediscovery (thanks to Hugo de
Vries, Carl Correns and Erich von Tschermak) prompted the foundation of the
discipline of genetics. Very peculiar historical fact about Mendel’s research is also
that his letters about his discovery, sent to many of scientific societies, had been
found after many years in their libraries unopened. Mendel died on January 6, 1884,
at age 61, soon after his death the succeeding abbot burned all papers in Mendel’s
collection, to mark an end to the disputes over taxation [2].

The other important (and much more well-known and therefore here only briefly
introduced) researcher whose discoveries founded the theory of evolution was the
British scientists Charles Darwin. Darwin published in his work [3] the main ideas
of the evolutionary theory. The full and original title was “On the Origin of Species
by Means of Natural Selection, or the Preservation of Favoured Races in the
Struggle for Life”. Word “races” refers here to biological varieties. The title has
been changed to [3] for the 6th edition of 1872. In Darwin’s book On the Origin of
Species (1859) established evolutionary descent with modification as the dominant
scientific explanation of diversification in the nature.

The above mentioned ideas of genetics and evolution have been formulated long
before the first computer experiments with evolutionary principles had been done.
The beginning of the ECT is officially dated to the 70s of the 20th century, when
famous genetic algorithms were introduced by Holland [4, 5] or to the late 60s with
evolutionary strategies, introduced by Schwefel [6] and Rechenberg [7] and evo-
lutionary programming by Fogel [8]. However, when certain historical facts are
taken into consideration, then one can see that the main principles and ideas of ECT
as well as its computer simulations had been done earlier than mentioned above.
Conceptionally, ECT can be traced back to the famous Turing [9], first numerical
experiments to the (far less famous) N.A. Barricelli and others. For more see [10].

SOMA—Self-organizing Migrating Algorithm 5



At the present time, there is a broad spectrum of publications dealing with
optimization algorithms, for example, [11]. The purpose of this chapter is to outline
only the principles of some selected algorithms for better information for the reader.
The discussed algorithms are in the next section.

2.1 SOMA in the Context of Selected Evolutionary
Algorithms

Since the first introduction of evolutionary algorithms in 50s by Barricelli [12–14]
and in 70s genetic algorithms by Holland [4, 5] has been developed a rich class of
so called genetic algorithms, later on memetic algorithms and swarm algorithms
that copied less more bio/natural processes on different scales, i.e.
micro/mezo/macro level (genetic operations, interactions amongst intelligent
agents,…). In order to better understand SOMA position amongst today existing
algorithms and its classes, it is better to briefly mention a few main representative of
them.

Genetic algorithm (GA) This algorithm is one of the first successful applied ECT
methods [4, 15]. In GAs the main principles of ECT are applied in their purest
form. The individuals are encoded as binary strings (mostly over the alphabet
[0, 1]), which can be understood as a model of the biological counterpart, the
genome,1 and represent possible solutions to the optimization problem under
study. After initially a population of binary strings is created randomly, the
circle as given in Fig. 1 is carried out with the steps fitness evaluation,
selection, offspring generation (crossover) and mutation until the algorithm
terminates. The application area of these algorithms are wide and it seem
particularly sensible to use them if the problem description allows a straight-
forward coding of the objects to optimize as binary string over a finite alphabet,
for instance in combinatorial optimization problem timetabling and scheduling.

Evolutionary strategy (ES) This algorithm also belongs to the first successful
stochastic algorithms in history. It was proposed at the beginning of the sixties
by Rechenberg [7] and Schwefel [6]. It is based on the principles of natural
selection similarly as the genetic algorithms. Contrary to genetic algorithms, the
evolutionary strategy works directly with individuals described by vectors of
real values. Its core is to use candidate solutions in the form of vectors of real
numbers, which are recombined and then mutated with the help of a vector of
random numbers. The problem of accepting a new solution is strictly deter-
ministic. Another distinctive feature is that ES use self-adaptation, that is the
mutation strength for each individual is variable over the generational run and
subject to an own evolutionary adaption and optimization process.

1The genome is coded over the alphabet ½A; C; G; T �, which stand for the amino acids adenine A,
cytosine C, guanine G, thymine T.
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Evolutionary programming (EP) EP algorithms [8] have much similarity to ES in
using vectors of real numbers as representation. The main operator in the
generational circle is mutation, in most (particularly early) implementations no
recombination is carried out. In recent years, by adopting elements of their
algorithmic structure EP more and more tends to become similar to ES.

Learning classifier systems (LCS) LCS [16] are machine learning algorithms
which are based on GAs and reinforcement learning techniques. Interestingly,
LCS were introduced by Holland2 [4] and for a certain time regarded as a
generalization of GAs. LCS optimize over a set of rules that are intended to
best-fit inputs to outputs. The rules are coded binary and undergo an adaption
using GA-like optimization that modifies and selects the best rules. The fitting
of the rules is determined by reinforcement learning methods.

Population-based incremental learning (PBIL) PBIL was proposed by Baluja
[17] and combines ideas from evolutionary computation with methods from

Initial population 
setting

Control parameters 
definition of the selected  
evolutionary algorithm

Fitness evaluation 
of each individual 

(parent)

Parent selection 
based on their 

fitness 

Offspring creation

Mutation of a new 
offsprings

Fitness evaluation

Best individual 
selection from 

parents and 
offsprings 
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Fig. 1 The general principle of evolution

2Holland is also known as the father of GAs.
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statistical learning [18]. It uses a real valued representation that is usually
restricted to the interval [0, 1] and can be interpreted as the probability to have a
“1”-bit at a certain place in a binary string. From these probabilities, a col-
lection of binary strings is created. These strings are subjected to a standard
evolutionary circle with fitness evaluation, selection and discarding of inferior
samples. In addition, based on the evaluation of the fitness, a deterministic
statistical-learning-like updating of the probability vector takes place, which
afterwards is also altered by random mutation.

Ant Colony Optimization (ACO), [19] This is an algorithm whose action simu-
lates the behaviour of ants in a colony. It is based on the following principle.
Let there be a source of ants (colony) and the goal of their activity (food). When
they are released, all the ants move after some time along the shorter (optimum)
route between the source and goal. The effect of finding the optimum route is
given by the fact that the ants mark the route with pheromones. If an ant arrives
to the crossroads of two routes that lead to the same goal, his decision along
which route to go is random. Those ants that found food start marking the route
and when returning, their decision is influenced thanks to these marks in favor
of this route. When returning, they mark it for the second time, which increases
the probability of the decision of further ants in its favor. These principles are
used in the ACO algorithm. Pheromone is here represented by the weight that is
assigned to a given route leading to the goal. This weight is additive, which
makes it possible to add further “pheromones” from other ants. The evaporation
of pheromones is also taken into account in the ACO algorithm in such a way
that the weights fade away with time at individual joints. This increases the
robust character of the algorithm from the point of view of finding the global
extreme. ACO was successfully used to solve optimization problems such as
the traveling salesman problem or the design of telecommunication networks,
see [20].

Immunology System Method (ISM) This algorithm is unusual by its algorithm
based on the principles of functioning of the immunology system in living
organisms. As indicated in [20], there are several principles based on this
model. In this work, the immunology system is considered as a multivalent
system, where individual agents have their specific tasks. These agents have
various competencies and ability to communicate with other agents. On the
basis of this communication and a certain “freedom” in making decisions of
individual agents, a hierarchic structure is formed able to solve complicated
problems. As an example of using this method, antivirus protection can be
mentioned in large and extensive computer systems [21, 22].

Memetic Algorithms (MA) This term represents a broad class of metaheuristic
algorithms [20, 23–25]. The key characteristics of these algorithms are the use
of various approximation algorithms, local search techniques, special recom-
bination operators, etc. These metaheuristic algorithms can be basically char-
acterized as competitive-cooperative strategies featuring attributes of synergy.
As an example of memetic algorithms, hybrid combinations of genetic algo-
rithms and simulated annealing or a parallel local search can be indicated.

8 I. Zelinka



Memetic algorithms were successfully used for solving such problems as the
traveling salesman problem, learning of a neural multilayer network, mainte-
nance planning, nonlinear integer number programming and others (see [20]).

Scatter Search (SS) This optimization algorithm differs by its nature from the
standard evolutionary diagrams. It is a vector oriented algorithm that generates
new vectors (solutions) on the basis of auxiliary heuristic techniques. It starts
from the solutions obtained by means of a suitable heuristic technique. New
solutions are then generated on the basis of a subset of the best solutions
obtained from the start. A set of the best solutions is then selected from these
newly found solutions and the entire process is repeated. This algorithm was
used for the solution of traffic problems, such as traffic control, learning neural
network, optimization without limits and many other problems [20, 26].

Particle Swarm (PSO) The “particle swarm” algorithm is based on work with the
population of individuals, whose position in the space of possible solutions is
changed by means of the so-called velocity vector. According to the description
in [20, 27, 28, 29], there is no mutual interaction between individuals in the
basic version. This is removed in the version with the so-called neighborhood.
In the framework of this neighborhood, mutual interaction occurs in such a
manner that individuals belonging to one neighborhood migrate to the deepest
extreme that was found in this neighborhood.

Differential Evolution (DE) Differential Evolution [30, 31] is a population-based
optimization method that works on real-number coded individuals. For each
individual~xi;G in the current generation G, DE generates a new trial individual
~x0i;G by adding the weighted difference between two randomly selected indi-
viduals~xr1;G and~xr2;G to a third randomly selected individual~xr3;G. The resulting

individual ~x0i;G is crossed-over with the original individual ~xi;G. The fitness of
the resulting individual, referred to as perturbated vector ~ui;Gþ 1, is then com-
pared with the fitness of~xi;G. If the fitness of~ui;Gþ 1 is greater than the fitness of
~xi;G; ~xi;G is replaced with ~ui;Gþ 1, otherwise ~xi;G remains in the population as
~xi;Gþ 1. Differential Evolution is robust, fast, and effective with global opti-
mization ability. It does not require that the objective function is differentiable,
and it works with noisy, epistatic and time-dependent objective functions.

Fire Fly algorithm (FF) is a metaheuristic algorithm, inspired by the flashing
behaviour of fireflies. The primary purpose for a firefly’s flash is to act as a
signal system to attract other fireflies, as defined by Yang in [32].

Bat algorithm (BA) Bat-inspired algorithm is a metaheuristic optimization algo-
rithm developed by Yang in [31]. This bat algorithm is based on the echolo-
cation behaviour of microbats with varying pulse rates of emission and
loudness.

Cuckoo search (CS) is an optimization algorithm developed by Yang and Deb in
[30]. As inventors reported, it was inspired by the obligate brood parasitism of
some cuckoo species by laying their eggs in the nests of other host birds. Some
host birds can engage direct conflict with the intruding cuckoos.

SOMA—Self-organizing Migrating Algorithm 9



Chaos based and hybridized algorithms (CHA) are already mentioned (and
another) algorithms that are hybridized with deterministic chaos used like
generators of randomness and are used instead of pseudorandom number
generators, see for example [34–39].

In this context it can be stated that SOMA is a stochastic optimization algorithm
that is modeled on the social behavior of cooperating individuals [33], as swarm
algorithms are, e.g. PSO or later on BA, FF amongst the others. SOMA works on a
population of candidate solutions in loops called migration loops. The population is
initialized randomly distributed over the search space at the beginning of the search.
In each loop, the population is evaluated and the solution with the highest fitness
becomes the Leader L. Apart from the leader, in one migration loop, all individuals
will traverse the input space in the direction of the leader. Mutation, the random
perturbation of individuals, is an important operation for evolutionary algorithms. It
ensures the diversity amongst the individuals and it also provides the means to
restore lost information in a population. Mutation is different in SOMA compared
with other EAs. SOMA uses a parameter called PRT to achieve perturbation. This
parameter has the same effect for SOMA as mutation has for GA. The novelty of
this approach is that the PRT Vector is in canonical version created before an
individual starts its journey over the search space. The PRT Vector defines the final
movement of an active individual in search space. The randomly generated binary
perturbation vector controls the allowed dimensions for an individual. If an element
of the perturbation vector is set to zero, then the individual is not allowed to change
its position in the corresponding dimension. An individual will travel a certain
distance (called the path length) towards the Leader in n steps of defined length. If
the path length is chosen to be greater than one, then the individual will overshoot
the leader. This path is perturbed randomly.

The evolutionary algorithms can be essentially used for the solution of very
heterogeneous problems. Of course, for the solution of the optimization problems,
there are many more algorithms than were indicated here. Because their description
would exceed the framework of this text, we can only refer to the corresponding
literature, where the algorithms indicated above are described in more details.

3 SOMA Applicability

The set of functions on which a given algorithm shows good performance (i.e. its
algorithm domain) should be clearly defined. This definition is, however, very
general and hence not satisfactory for these purposes here. Based on experiences
from artificial and real world test functions can be classified like for example:

1. None-fractal type: theoretically, the geometrical complexity of the cost function
shall be finite, i.e. under repeated zoom no more complex structures should be
discovered. If zoom is going to infinity and complex structures are still visible,
then we can say that the function is a fractal, which are complex structures
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repeated in itself, see for example [40]. Due to the physical reality, where
infinity does not exists (everything has its own limits) we can model fractal
functions as defined on Fig. 2.

2. Defined at real, integer or discrete argument spaces: function can be based on
the mixture of the various arguments of different nature (i.e. real numbers,
integer numbers etc.).

3. Constrained, multiobjective, nonlinear: functions can be constrained by different
constrains, can represent multiobjective problem where solutions lie on the so
called Pereto front. Also nonlinearity in combinations with previous attributes is
allowed.

4. Needle-in-haystack problems: this problem usually can be understood like
search for a global extreme which is represented like Dirac (or better
pseudo-Dirac) peak in the wide and flat area, see Fig. 3. Finding of such a
extreme is matter of randomness rather than of sophisticated search procedure.

5. NP problems: i.e. problems where exists a huge number of possible solutions
and only one is the right one. Typical example is the traveling salesman.

6. Permutative problems: problem of the permutative nature like flow shop
scheduling, no wait problems, etc.
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Fig. 2 Pseudo-fractal function: fractal “noise” added to the 1st DeJong function, see Eq. (1) and
Fig. 4
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Fig. 3 Possible vizualization of the needle in haystack problem: graphical approximation. On the
right side is a zoom. Only one solution is the right one
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SOMA has been successfully tested on functions of all types reported here.
Generally, the SOMA algorithm should be able to work on any system which
provides an objective function, i.e. one that returns cost value. No auxiliary
information, such as gradients etc. are needed.

Beside real-world problems and artificial permutative test problems, SOMA was
also tested on classical test functions that were selected from the test bed of 17 test
functions. In total 16 test function were selected as a representative subset of
functions which shows geometrical simplicity and low complexity as well as
functions from the “opposite side of spectra”. Selected functions (see Figs. 4, 5, 6
and 7) were: 1st DeJong (1), Schwefel function (6), Rastrigin function (5), Ackley
function (10) amongst the others [see (1)–(16)]. Dimension is in the formulas (1)–
(16) represented by variable D, so as one can see, it is easy to calculate selected
functions for an arbitrary dimension. Functions (1)–(16) has been selected due to
their various complexity and mainly for the fact that this functions are widely used
by researchers working with evolutionary algorithms. Another reason was, that
speed of convergence and thus evolutionary dynamics itself, is different for simple
functions like (1) or more complex example (13).
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4 SOMA Principles and Control Parameters

In the previous sections it was mentioned that SOMA was inspired by the
competitive-cooperative behavior of intelligent creatures solving a common prob-
lem. Such a behavior can be observed anywhere in the world. A group of animals
such as wolves or other predators may be a good example. If they are looking for
food, they usually cooperate and compete so that if one member of the group is
successful (it has found some food or shelter) then the other animals of the group
change their trajectories towards the most successful member. If a member of this
group is more successful than the previous best one (is has found more food, etc.)

Fig. 5 Schwefel function (6)

Fig. 6 Selected test
functions: Rastrigin function,
(5)
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then again all members change their trajectories towards the new successful
member. It is repeated until all members meet around one food source. This
principle from the real world is of course strongly simplified. Yet even so, it can be
said it is that competitive-cooperative behavior of intelligent agents that allows
SOMA to carry out very successful searches. For the implementation of this
approach, the following analogies are used:

1. Members of herd/pack , individuals of population, PopSize parameter of
SOMA.

2. Member with the best source of food , Leader, the best individual in popu-
lation for actual migration loop.

3. Food , fitness, local or global extreme on N dimensional hyper-plane.
4. Landscape where pack is living , N dimensional hyper-plane given by cost

function.
5. Migrating of pack members over the landscape , migrations in SOMA.

The following section explains in a series of detailed steps how SOMA actually
works. SOMA works in loops—so calledMigration loops. These play the same role
as Generations in classic EAs. The difference between SOMA’s Migrationloops
and EA’s Generations come from the fact that during a Generations in classic EA’s
offspring is created by means of at least two or more parents (two in GA, four in DE
for example). In the case of SOMA, there is no newly created offspring based on

Fig. 7 Ackley function (11)

SOMA—Self-organizing Migrating Algorithm 15



parents crossing. Instead, new positions are calculated for the individuals traveling
towards the current Leader. The term Migrations refers to their movement over the
landscape-hyper-plane. It can be demonstrated that SOMA can be viewed as an
algorithm based on offspring creation. The Leader plays the role of roe-buck
(male), while other individuals play the role of roe (female); note that this has the
characteristics of pack reproduction with one dominant male. Hence, GA, DE, etc.
may be seen as a special case of SOMA and vice versa (see later SOMA strategy
AllToAll). Because the original idea of SOMA is derived from
competitive-cooperative behavior of intelligent beings, we suppose that this back-
ground is the most suitable one for its explanation. The basic version of SOMA
consists of the following steps:

1. Parameter definition. Before starting the algorithm, SOMA’s parameters, e.g.
Specimen, Step, PathLength, PopSize, PRT, MinDiv, Migrations and the cost
function needs to be defined. Cost function is simply the function which returns
a scalar that can directly serve as a measure of fitness. The cost function is then
defined as a model of real world problems, (e.g. behavior of controller, quality
of pressure vessel, behavior of reactor, etc.).

2. Creation of Population. A population of individuals is randomly generated. Each
parameter for each individual has to be chosen randomly from the given range
[Lo, Hi] by using Eq. (17). The population (Fig. 8) then consists of columns—
individuals which conform with the specimen.

3. Migrating loop. Each individual is evaluated by cost function and the Leader
(individual with the highest fitness) is chosen for the current migration
loop. Then all other individuals begin to jump, (according to the Step definition)
towards the Leader. Each individual is evaluated after each jump using the cost
function. The jumping (Eq. 18) continues, until a new position defined by the
PathLength has been reached. The new position after each jump is calculated by
Eq. (18). This is shown graphically in Fig. 13. The individual returns then to that
position where it found the best fitness on its trajectory. Before an individual
begins jumping towards the Leader, a random number is generated (for each
individual’s component), and then compared with PRT. If the generated random
number is larger than PRT, then the associated component of the individual is set
to 0 by means of the PRTVector (see Eq. (19) otherwise set to 1. Hence, the
individual moves in the N-k dimensional subspace, which is perpendicular to the
original space. This fact establishes a higher robustness of the algorithm. Earlier
experiments have demonstrated that, without the use of PRT, SOMA tends to
determine a local optimum rather than the global one. Migrations can be also
viewed as a competitive-cooperative phase. During the competitive phase each
individual tries to find the best position on its way and also the best from all
individuals. Thus during migration, all individuals compete among themselves.
When all individuals are in new positions, they release information as to their
cost value. This can be regarded as a cooperative phase. All individuals cooperate
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so that the best individual (Leader) is chosen. Competitive-cooperative behavior
is one of the other important attributes typical for memetic algorithms.

4. Test for stopping condition. If the difference between Leader and the worst
individual is not lower than theMinDiv and the maximum number ofMigrations
has not been reached, return to step 3 otherwise go to step 5.

5. Stop. Recall the best solution(s) found during the search.

Fig. 8 SOMA Principle
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InitilPopulation ¼ xðloÞj þ randj 0; 1½ � � ðxðhiÞj � xðloÞj Þ ð17Þ

xMLþ 1
i;j ¼ xML

i;j;start þðxML
L;j � xML

i;j;startÞ t PRTVectorj ð18Þ

if rndj\PRT then PRTVectorj ¼ 1 else 0; j ¼ 1; . . .;N ð19Þ

Steps 1–5 are graphically depicted in Fig. 8 or in pseudocode in Eq. (20).
The pseudocode of SOMA can be written like this:

SOMAAllToOne input parameters :
x : the initial randomly generated population
Controlling and stopping parameters − see Tab. 1.1
fcost : cost function (fitness function)
Specimen : an individual structure (parameters range, its ”nature” i.e. real, integer, discrete, ...)
for i ≤ Migration do

begin
Selection o f the best individual − Leader

for j ≤ PopSize do
selection o f jth individual
calculate fcost o f the new positions see Eq.1.18
save the best solution o f the jth individual on its tra jectory in a new population

end
ifMinDiv < |best individual−worst individual|
then begin
Stop SOMA and return the best solution (or last calculated population)

end
end

or more technically see Eq. (20). SOMA principle can be graphically visualized as
it is done at the Fig. 8.

Input: N; MigrationsðMLÞ; PopSize� 2; PRT 2 ½0; 1�; Step 2 ð0; 1�; MinDiv 2 ð�1; 1Þ;
PathLength 2 ð1; 5�; Specimen with upper and lower bound xðhiÞj ; xðloÞj

Inicialization: 8i�PopSize ^ 8j�N : xML0
i;j ¼ xðloÞj þ randj 0; 1½ � xðhiÞj � xðloÞj

� 	
i ¼ f1; 2; . . .;Migrationsg; j ¼ f1; 2; . . .; Ng

(

While i\Migrations

8i�PopSize

While t�PathLength
if rndj\PRT then PRTVectorj ¼ 1 else 0; j ¼ 1; . . .;N
xMLþ 1
i;j ¼ xML

i;j;start þðxML
L;j � xML

i;j;startÞt PRTVectorj
f xMLþ 1

i;j

� 	
¼ if f xML

i;j

� 	
� f xML

i;j;start

� 	
else f xML

i;j;start

� 	
t ¼ tþ Step

8>>>>><
>>>>>:

i ¼ iþ 1

8>>>>>>>><
>>>>>>>>:

ð20Þ
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Based on above described principles, SOMA can be also regarded as a member
of swarm intelligence class algorithms. In the same class is the algorithm particle
swarm, which is also based on population of particles, which are mutually influ-
enced amongst themselves. Some similarities as well as differences are between
SOMA and particle swarm, for details see [33, 41].

5 SOMA Strategies

Currently, a few variations—strategies of the SOMA algorithm exist. All versions
are almost fully comparable with each other in the sense of finding of global
optimum. These versions are:

1. ‘AllToOne’: This is the basic strategy, that was previously described. Strategy
AllToOne means that all individuals move towards the Leader, except the
Leader. The Leader remains at its position during a Migration loop. The prin-
ciple of this strategy is shown in Fig. 9.

2. ‘AllToAll’: In this strategy, there is no Leader. All individuals move towards the
other individuals. This strategy is computationally more demanding.
Interestingly, this strategy often needs less cost function evaluations to reach the
global optimum than the AllToOne strategy. This is caused by the fact that each
individual visits a larger number of parts on the N dimensional hyper-plane
during one Migration loop than the AllToOne strategy does. Figure 10 shows
the AllToAll strategy with PRT = 1.

3. ‘AllToAll Adaptive’: The difference between this and the previous version is,
that individuals do not begin a new migration from the same old position (as in
AllToAll), but from the last best position found during the last traveling to the
previous individual.

Fig. 9 SOMA AllToOne, the principle of migrating (left) and new individual position (right) after
one migration
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4. ‘AllToRand’: This is a strategy, where all individuals move towards a randomly
selected individual during the migration loop, no matter what cost value this
individual has. It is up to the user to decide how many randomly selected
individuals there should be. Here are two sub-strategies:

• The number of randomly selected individuals is constant during the whole
SOMA process.

• For each migration loop, (in intervals of [1, PopSize]) the actual number of
individuals is determined randomly. Thus, the number of randomly chosen
individuals in the second sub-strategy is different in each migration loop.

5. Clusters: This version of SOMA with Clusters can be used in any of the above
strategies. The word ‘Cluster’ refers to calculated clusters. Each individual from
the population is tested for the cluster to which it belongs, according to Eq. (21)
expressed below, where INDi is the ith parameter of the individual; CCi is the ith
parameter of the Leader (Cluster Center); HBi and LBi are the allowed bounds
for the given parameter (see Specimen); and CD is the Cluster Distance given by
the user. The result is that after a cluster calculation, clusters with their leaders
are derived, and each individual belongs to one cluster. In the case that all
individuals create their own cluster (1 individual = 1 cluster), then each indi-
vidual will jump toward all others, (this is identical with the ‘AllToAll’ strat-
egy). Some clusters may be created or annihilated during migration loops.

CD[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXD
i¼1

INDi � CCi

HBi � LBi

� �2
vuut ð21Þ

Fig. 10 SOMA AllToAll, the principle of migrating (left) and new individual position (right) after
one migration
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By using SOMA with clusters, the user must define a so-called ‘Cluster
Distance’—the parameter, which says how large (how many of individuals) the
cluster should be, and the domain of attraction of the local cluster Leader. Using
this basic parameter, SOMA breaks itself up into more local SOMAs, each focusing
on the contained Leader. Therefore, independent groups of individuals are carrying
out the search. These local SOMAs create clusters, which can join together or split
into new clusters. This strategy has not been studied in detail yet, because of its
increased complexity of computation compared with the low quality improvement
of the optimization process. Other possible strategies or variations of SOMA are,
for example, that individuals need not move along a straight line-vectors, but they
can travel on curves, etc.

5.1 SOMA Parameters

SOMA, as other EAs, is controlled by a special set of parameters. Some of these
parameters are used to stop the search process when one of two criteria are fulfilled;
the others are responsible for the quality of the results of the optimization process.
The parameters are shown in Table 1.

A sensitivity of SOMA, as well as of other EAs, is that it has a slight dependence
on the control parameter setting. During various tests it was found that SOMA is
sensitive on the parameter setting as well as others algorithms. On the other side
there was found setting that is almost universal, i.e. this setting was used almost in
all simulations and experiments with very good performance of SOMA. The control
parameters are described below and recommended values for the parameters,
derived empirically from a great number of experiments, are given:

• PathLength 2 [1.1, 5]. This parameter defines how far an individual stops
behind the Leader (PathLength = 1: stop at the leader’s position,
PathLength = 2: stop behind the leader’s position on the opposite side but at the
same distance as at the starting point). If it is smaller than 1, then the Leader’s
position is not overshotted, which carries the risk of premature convergence. In
that case SOMA may get trapped in a local optimum rather than finding the
global optimum. Recommended value is 3–5.

Table 1 SOMA parameters

Parameter name Recommended range Remark

ParthLength [1.1, 5] Controlling parameter

Step [0.11, ParthLength] Controlling parameter

PRT [0, 1] Controlling parameter

Dim Given by problem Number of arguments in cost function

PopSize [10, up to user] Controlling parameter

Migrations [10, up to user] Stopping parameter

MinDiv [arbitrary negative, up to user] Stopping parameter
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• Step 2 [0.11, PathLength]. The step size defines the granularity with what the
search space is sampled. In case of simple objective functions (convex, one or a
few local extremes, etc.), it is possible to use a large Step size in order to speed
up the search process. If prior information about the objective function is not
known, then the recommended value should be used. For greater diversity of the
population, it is better if the distance between the start position of an individual
and the Leader is not an integer multiple of the Step parameter. That means that
a Step size of 0.11 is better than a Step size of 0.1 (that lead jumping directly on
the Leader position), because the active individual will not reach exactly the
position of the Leader. Recommended value is 0.11.

• PRT 2 [0, 1]. PRT stands for perturbation. This parameter determines whether
an individual will travel directly towards the Leader, or not. It is one of the most
sensitive control parameters. The optimal value is near 0.1. When the value for
PRT is increased, the convergence speed of SOMA increases as well. In the case
of low dimensional functions and a great number of individuals, it is possible to
set PRT to 0.7–1.0. If PRT equals 1 then the stochastic component of SOMA
disappears and it performs only deterministic behavior suitable for local search.

• Dim—the dimensionality (number of optimized arguments of cost function) is
given by the optimization problem. Its exact value is determined by the cost
function and usually cannot be changed unless the user can reformulate the
optimization problem. Recommended value is 0.1–0.2.

• PopSize 2 [10, up to the user]. This is the number of individuals in the popu-
lation. It may be chosen to be 0.5–0.7 times of the dimensionality (Dim) of the
given problem. For example, if the optimization function has 100 arguments,
then the population should contain approximately 30–50 individuals. In the case
of simple functions, a small number of individuals may be sufficient; otherwise
larger values for PopSize should be chosen. It is recommended to use at least 10
individuals (two are theoretical minimum), because if the population size is
smaller than that, SOMA will strongly degrade its performance to the level of
simple and classic optimization methods. Recommended value is 10>.

• Migrations 2 [10, up to user]. This parameter represents the maximum number
of iterations. It is basically the same as generations for GA or DE. Here, it is
called Migrations to refer to the nature of SOMA—individual creatures move
over the landscape and search for an optimum solution. Migrations is a stopping
criterion, i.e. it tells the optimizing process when to stop. Recommended value is
up to user experience, generally 10>.

• MinDiv 2 [arbitrary negative (switch off this criterion), up to the user]. The
MinDiv defines the largest allowed difference between the best and the worst
individual from actual population. If the difference is smaller then defined
MinDiv, the optimizing process is will stop (see Fig. 11). It is recommended to
use small values. It is safe to use small values for the MinDiv, e.g. MinDiv = 1.
In the worst case, the search will stop when the maximum number of migrations
is reached. Negative values are also possible for the MinDiv. In this case, the
stop condition for MinDiv will not be satisfied and thus SOMA will pass
through all Migrations.
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When recommended values are taken into consideration like acceptable, then
they can be included into algorithm or permanently set to be constant and number
of control parameters will decrease from 6 to 1 (Migrations). The problem of
deterministic finding suitable SOMA parameter settings for a given optimization
problem is not absolutely solved (as for another algorithms) and can be regarded as
one of the future research activities.

5.2 Standard Evolutionary Operations in SOMA

5.2.1 Population

SOMA, as well as the other algorithms mentioned above, is working on a popu-
lation of individuals. A population can be viewed as a matrix of size N �M
(Table 2) where the columns represent individuals. Each individual in turn repre-
sents one candidate solution—or input vector—for the given problem or system, i.e.
a set of arguments for the cost function. Associated with each individual is also a
so-called cost value, i.e. the system response to the input vector. The cost value
represents the fitness of the evaluated individual. It does not take part in the evo-
lutionary process itself—it only guides the search process.

3 2 1 0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Fig. 11 MinDiv principle

Table 2 Population (of the NxM size), lx is the x-th individual, Py is the y-th individual Fitness—
individual quality measured by means of the objective function

I1 I2 I3 I4 ··· ··· ··· IM
Fitness 55.2 68.3 5.36 9.5 ··· ··· ··· 0.89
P1 2.55 549.3 −55.36 896.5 ··· ··· ··· 1.89

P2 0.25 66.2 2 −10 ··· ··· ··· −2.2

P3 −66.3 56 4 15.001 ··· ··· ··· −83.66

··· ··· ··· ··· ··· ··· ··· ··· ···

PN 259.3 −10 22.22 536.22 ··· ··· ··· −42.22
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A population is usually randomly initialized at the beginning of the evolutionary
process. Before that, a so-called Specimen (Eq. 22) has to be defined on which the
generating of the population is based.

Specimen ¼ Real, Lo, Hif gf g; Integer, Lo, Hif gf g; . . .f g ð22Þ

The Specimen defines for each parameter the type (e.g. integer, real, discrete,
etc.) and its borders. For example, Integer, Lo, Hi defines an integer parameter with
an upper border Hi and a lower border Lo. In other words, the borders define the
allowed range of values for that particular cost function parameter. The careful
selection of these borders is crucial for engineering applications, because without
well-defined borders one can get solutions which are not applicable to the real
physical system. For example one could get a negative thickness of the wall of a
pressure vessel as an optimal result. The borders are also important for the evolution
process itself. Without them, the evolutionary process could go to infinity (author’s
experience with Schwefel’s function—extremes are further and further away from
the original). When a Specimen is properly defied then the population (Table 2) is
generated as follows

Pð0Þ ¼ xð0Þi;j ¼ rndi;jðxðHiÞj � xðLoÞj Þþ xðLoÞj i ¼ 1; . . .; nPopSize; j ¼ 1; . . .;mparam

ð23Þ

Meaning of parameters is following—P(0) is the initial population and x is jth
parameter of individual which consist of n parameters. Population then consist of
nPopSize individuals. Equation (12) ensures that the parameters of all individuals are
randomly generated within the allowed borders, i.e. that the initial candidate
solutions are chosen from that area within the search space that contains a feasible
solution to the optimization problem, see Fig. 12.
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Fig. 12 Randomly generated
population inside searched
space
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5.2.2 Mutations

Mutation, the random perturbation of individuals, is an important operation for EA
strategies. It ensures the diversity amongst the individuals and it also provides the
means to restore lost information in a population. Mutation in SOMA is different
compared to other EA strategies. SOMA uses a PRT parameter to achieve pertur-
bation. This parameter has the same effect for SOMA as mutation has for GA. It is
defined in the range [0, 1] and is used to create a perturbation vector (PRTVector,
see Table 3) as follows:

if rndj\PRT then PRTVectorj ¼ 1 else 0; j ¼ 1; . . .; nparam ð24Þ

The “novelty” of this approach was that the PRTVector is created before an
individual starts its journey over the search space (in standard EA terminology
“before crossover”). The PRTVector defines the final movement of an active
individual in N − k dimensional subspace (see next section. Later on, PRTVector
creation has been changed so that it was generated after each jump of each indi-
vidual, as reported later. This improved SOMA performance significantly and
individual trajectory was no longer straight line but stepwise one.

5.2.3 Crossover

In standard EAs the Crossover operator usually creates new individuals based on
information from the previous generation. Geometrically speaking, new positions
are selected from an N dimensional hyper-plane. In SOMA, which is based on the
simulation of cooperative behavior of intelligent beings, sequences of new positions
in the N dimensional hyper-plane are generated. They can be thought of as a series
of new individuals obtained by the special crossover operation. This crossover
operation determines the behavior of SOMA. The movement of an individual is
thus given as follows:

r
! ¼ r0

! þ m
!
t PRT

!
Vector

where t 2 h0; by Step to; PathLengthi ð25Þ

Table 3 An example of
perturbation vector for four
parameter individual with
PRT = 0.3

rndj PRTVectorj
0.231 1

0.456 0

0.671 0

0.119 1
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or, more precisely:

xMLnew
i;j ¼ xML

i;j;start þðxML
L;j � xML

i;j;startÞt PRTVectorj
where t 2 h0; by Step to; PathLengthi
and ML is actual migration loop

ð26Þ

It can be observed from Fig. 13 that the PRTVector causes an individual to move
toward the leading individual (the one with the best fitness) in N-k dimensional
space. If all N elements of the PRTVector are set to 1, then the search process is
carried out in an N dimensional hyper-plane (i.e. on a N + 1 fitness landscape). If
some elements of the PRTVector are set to 0 (see Eq. 24) then the second terms on
the right hand side of equation equal 0. This means those parameters of an indi-
vidual that are related to 0 in the PRTVector are ‘frozen’, i.e. not changed during
the search. The number of frozen parameters k is simply the number of dimensions
which are not taking part in the actual search process. Therefore, the search process
takes place in a N-k dimensional subspace.

There is one important issue about SOMA sampling by Step jumping. This
jumping is scale-free, i.e. for all trajectories there is for example 30 jumps per
trajectory of one individual. On the beginning, when path of jumping can be over
the entire space as well as at the end, when all individuals are in small limited part
of space of possible solutions. That means that SOMA, when approaching (global if
possible) extreme then sampling is more dense and searched space of more
intensively explored.

Another, newer and better strategy for perturbation, was set according to the idea
that perturbation vector is generated after each Step. This caused dynamics as

PRTVector  0,1
Position given
by Mass

Leader

Individual

PRTVector  1,1

1

L

Step
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200
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Fig. 13 PRTVector and its
action on individual
movement (an artificial
example) when calculated
before jumping sequence and
kept without changes during
jumping of one individual
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depicted on Fig. 14. Also negative steps are allowed, that lead to more random-like
behavior, based on probability of occurrence of negative perturbations. see Table 4.
Another possibility is to include 0 between −1 and 1 etc.

if rndj\PRT then PRTVectorj ¼ 1 else �1; j ¼ 1; . . .; nparam ð27Þ

0 1 2 3 4 5
0

1

2

3

4

5

Fig. 14 PRTVector and its action on individual movement when recalculated after each Step.
Solid thick black arrows shows vector of direction and its components (selected according to the
PRT) and red and blue stepwise lines shows one on many possible trajectories when PRTVector is
recalculated after each Step. There are possible two kind of trajectories (depend on style
recalculation), the first one as in figure and second, where the individual jumps on vector
components

Table 4 An example of
perturbation vector for four
parameter individual with
PRT = 0.5

rndj PRTVectorj
0.231 1

0.456 1

0.812 −1

0.671 1

0.119 −1
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5.2.4 Constraint Handling

SOMA, as well as other such evolutionary algorithms, can be used to solve opti-
mization problems, sometimes called mixed integer-discrete-continuous, non-linear
programming problems, etc. These can (see also [42]) be expressed as follows:

Find
X ¼ x1; x2; x3; . . .; xnf g ¼ XðiÞ;XðdÞ;XðcÞ
 �T
to minimize
f ðXÞ
subject to constraints
gjðXÞ� 0 j ¼ 1; . . .; m
and subject to boundary constraints
xðLoÞi � xi � xðHiÞi i ¼ 1; . . .; n
where
XðiÞ 2 Ri; XðdÞ 2 Rd ; XðcÞ 2 Rc

ð28Þ

X(i), X(d) and X(c) denote feasible subsets of integer, discrete and continuous
variables respectively. The above formulation is general and basically the same for
all types of variables. Only the structure of the design domain distinguishes one
problem from another. However, it is worth noticing here the principal differences
between integer and discrete variables. While both integer and discrete variables
have a discrete nature, only discrete variables can assume floating-point values. For
example, Discrete = −1, 2.5, 20, −3, −5.68…. In practice, the discrete values of the
feasible set are often unevenly spaced. These are the main reasons why integer and
discrete variables require different handling. SOMA can be categorized as
belonging to the class of floating-point encoded, ‘memetic’ optimization algorithms.
Generally, the function to be optimized, f, is of the form:

f ðXÞ : Rn ! R ð29Þ

The optimization target is to minimize the value of this objective function f(X),

min f ðXÞð Þ ð30Þ

by optimizing the values of its parameters:

X ¼ x1; . . .; xnparam
� �

x 2 R ð31Þ

where X denotes a vector composed of nparam objective function parameters.
Usually, the parameters of the objective function are also subject to lower and upper
boundary constraints, xðLoÞ and xðHiÞ, respectively:
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xðLoÞj � xj � xðHiÞj j ¼ 1; . . .; nparam ð32Þ

5.2.5 Boundary Constraints

With boundary-constrained problems, it is essential to ensure that the parameter
values lie within their allowed ranges after recalculation. A simple way to guarantee
this, is to replace the parameter values that violate boundary constraints with ran-
dom values generated within the feasible range:

x0ðMLþ 1Þ
i;j

ri;jðxðHiÞj � xðLoÞj Þþ xðLoÞj if x0ðMLþ 1Þ
i;j \xðLoÞj _ x0ðMLþ 1Þ

i;j [ xðHiÞj

x0ðMLþ 1Þ
i;j otherwise

(
where, i ¼ 1; . . .;PopSize; j ¼ 1; . . .; nparam:

ð33Þ

5.2.6 Constraint Functions

A soft-constraint (penalty) approach was applied for the handling of the constraint
functions. The constraint function introduces a distance measure from the feasible
region, but is not used to reject unfeasible solutions, as is the case with
hard-constraints. One possible soft-constraint approach is to formulate the
cost-function as follows:

fcostðXÞ ¼ f ðXÞþ að Þ � Qm
i¼1

cbii

where

ci ¼ 1:0þ si � giðXÞ if giðXÞ[ 0
1 otherwise

�
si � 1
bi � 1
min f ðXÞð Þþ a[ 0

ð34Þ

The constant, a, is used to ensure that only non-negative values will be assigned
to fcost. When the value of a is set high enough, it does not otherwise affect the
search process. The constant, s, is used for appropriate scaling of the constraint
function value. The exponent, b, modifies the shape of the optimization
hyper-plane. Generally, higher values of s and b are used when the range of the
constraint function, g(X), is expected to be low. Often setting s = 1 and b = 1 works
satisfactorily and only if one of the constraint functions, giðXÞ, remains violated
after the optimization run, will it be necessary to use higher values for si and/or bi.
In many real-world engineering optimization problems, the number of constraint
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functions is relatively high and the constraints are often non-trivial. It is possible
that the feasible solutions are only a small subset of the search space. Feasible
solutions may also be divided into separated islands around the search space,
Fig. 15. Furthermore, the user may easily define totally conflicting constraints so
that no feasible solutions exist at all. For example, if two or more constraints
conflict, so that no feasible solution exists, EAs are still able to find the nearest
feasible solution. In the case of non-trivial constraints, the user is often able to judge
which of the constraints are conflicting on the basis of the nearest feasible solution.
It is then possible to reformulate the cost-function or reconsider the problem setting
itself to resolve the conflict. A further benefit of the soft-constraint approach is that
the search space remains continuous. Multiple hard constraints often split the search
space into many separated islands of feasible solutions. This discontinuity intro-
duces stalling points for some genetic searches and also raises the possibility of
new, locally optimal areas near the island borders. For these reasons, a
soft-constraint approach is considered essential. It should be mentioned that many
traditional optimization methods are only able to handle hard-constraints. For
evolutionary optimization, the soft-constraint approach was found to be a natural
approach.

5.2.7 Handling of Integer and Discrete Variables

In its canonical form, SOMA (as well as DE) is only capable of handling contin-
uous variables. However extending it for optimization of integer variables is rather
easy. Only a couple of simple modifications are required. First, for evaluation of
cost-function, integer values should be used. Despite this, the SOMA algorithm
itself may still work internally with continuous floating-point values. Thus,

Fig. 15 Separated islands around the search space
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fcost yið Þ i ¼ 1; . . .; nparam
where

yi ¼ xi for continuous variables
INTðxiÞ for integer variables

�
xi 2 X

ð35Þ

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation.
Truncated values are not elsewhere assigned. Thus, EA works with a population of
continuous variables regardless of the corresponding object variable type. This is
essential for maintaining the diversity of the population and the robustness of the
algorithm. Secondly, in case of integer variables, the population should be initial-
ized as follows:

Pð0Þ ¼ xð0Þi;j ¼ ri;jðxðHiÞj � xðLoÞj þ 1Þþ xðLoÞj
i ¼ 1; . . .;PopSize; j ¼ 1; . . .; nparam

ð36Þ

Additionally, instead of Eq. (35), the boundary constraint handling for integer
variables should be performed as follows:

x0ðMLþ 1Þ
i;j ¼

ri;jðxðHiÞj � xðLoÞj þ 1Þþ xðLoÞj

if INT x0ðMLþ 1Þ
i;j

� 	
\xðLoÞj _ INT x0ðMLþ 1Þ

i;j

� 	
[ xðHiÞj

x0ðMLþ 1Þ
i;j otherwise

8>>><
>>>:
where, i ¼ 1; . . .; npop; j ¼ 1; . . .; nparam

ð37Þ

Discrete values can also be handled in a straightforward manner. Suppose that
the subset of discrete variables, XðdÞ, contains l elements that can be assigned to
variable x:

XðdÞ ¼ xðdÞi i ¼ 1; . . .; l where xðdÞi \xðdÞiþ 1 ð38Þ

6 Parameter Dependence

As already mentioned above, and reported in [43], the control parameters for
SOMA are: PRT, ParthLength, Step,MinDiv and PopSize. The quality of the results
for the optimization partially dependent on the selection of these parameters. To
demonstrate, how this influences the algorithm, some simulations were performed
to show SOMA’s dependence on them (Figs. 16, 17, 18 and 19).

These simulations demonstrate the dependency of the quality of optimization on
the parameters PRT, ParthLength, Step, MinDiv and PopSize. A total of 100
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Fig. 16 Discrete parameter handling

Fig. 17 Dependence SOMA on control parameters PathLength and PopSizer
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Fig. 18 Dependence SOMA on control parameters PRT and Step

Fig. 19 Dependence SOMA
on control parameter MinDiv
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simulations were performed for each change of each parameter. The results are
depicted as columns of points (point—the best value founded during actual simu-
lation). On Fig. 17, left, shows the dependence on the ParthLength parameter. It can
be observed that an increases of the ParthLength parameter resulted in deeper
(better) extremes. This is logical since the search process passes through a lager
search space. On Fig. 17 right shows the dependence on the PopSize parameter. In
addition, there is a small improvement. On Fig. 18, left, shows the dependence on
PRT from which it is visible, that in the case of low PRT, SOMA’s efficiency is very
good. On Fig. 17, right, shows the dependence on the Step parameter. From this
picture, it is clear that in the case of big steps, results are poor due to individuals
performing large jumps and thus the searched space is poorly searched. The last part
Fig. 19 shows the dependence on the MinDiv parameter. From the picture it is
visible that the MinDiv plays a role of something like a lens which determines the
dispersion of final solutions in the case of repeated simulations (or/and solutions in
the last population). MinDiv is the difference between the worst and the best
individual and if it is quite large, then the process may stop before the optimal
solution is found.

7 SOMA and Cost Function Evaluations

Number of cost function evaluation for SOMA and DE can be calculated quite
easily. If principles of SOMA are taken into account, then number of cost function
evaluations done during one individual run is given by

Neval 1 individual ¼ PathLength
Step

ð39Þ

Because there is one Leader and thus (PopSize − 1) individuals will run in one
migration loop then for one migration is done number of cost function evaluations
by

Neval 1 migration ¼ ðPopSize� 1Þ � PathLength
Step

ð40Þ

Finally, during all migrations is total number of cost function evaluations given
by

Neval ¼ ðPopSize� 1Þ � PathLength �Migrations
Step

ð41Þ

For strategy AllToAll is situation similar. Because there is no Leader and all
individuals run toward themselves, then nominator is multiplied by PopSize. Term
(PopSize − 1) means here the fact, that no one individual run toward itself. The
number of cost function evaluations is for AllToAll strategy given by

34 I. Zelinka



Neval ¼ PopSize � ðPopSize� 1Þ � PathLength �Migrations
Step

ð42Þ

It is visible from Eq. (42), when compared with Eq. (41), that AllToAll is
PopSize times harder (in cost function evaluations) than AllToOne. That is why (in
previous experimentation, reported in various journals and conferences) it is pos-
sible to set Step = 0.4 and more because AllToAll search process is very dense and
thus bigger step does not influence it so strongly as in the case of the AllToOne
strategy.

Under some assumptions can be also calculated probability that global extreme
will be found. Main assumption is that searched space is discrete, i.e. can be
covered by grid, fine or rough. This discretization can be done if there are no
individuals, who are exactly at one point, i.e. there are no individuals with exactly
the same coordinates. This is true every time, because probability that two or more
individuals will share the same position is almost 0 (there is an infinite number of
real numbers). Discretization can be done a priori by estimation or a posteriori so
that after evolution is grid size based on minimal distance of individuals in the
population. Thus each axe of searched space consist of L discrete elements and for
cost function with n arguments (i.e. n axes) is probability done by

PGE ¼ Neval

Ln
ð43Þ

If grid size is constant, then probability of global extreme retrieval is bigger if
Neval increase and vice versa. Values represented by Neval can increase only if
PopSize, PathLength and Migrations are bigger or/and Step is lover.

8 Selected SOMA Applications

Since 1999 when the first SOMA versions has been released, there was done a lot of
various research experiments with this algorithm as well as a few applied research
projects. In this section are briefly discussed selected experiments. The most
interesting applications of SOMA were:

• Chemical reactor design and control. The SOMA algorithm was used for static
optimization of a given chemical reactor with 5 inputs and 5 outputs. SOMA
was used on this reactor for static optimization because the reactor, which was
set by an expert, shows poor performance behavior. Participation consists of
simulation results, which shows how expertly set reactor behaves. Also set of
static optimization simulations of given reactor is presented here including
results and conclusions.

• Plasma reactor control. In this research, the performance of SOMA, has been
compared with simulated annealing (SA) and differential evolution (DE) for an
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engineering application. This application is the automated deduction of fourteen
Fourier terms in a radio-frequency (RF) waveform to tune a Langmuir probe.
Langmuir probes are diagnostic tools used to determine the ion density and the
electron energy distribution in plasma processes. RF plasmas are inherently
nonlinear, and many harmonics of the driving fundamental can be generated in
the plasma. RF components across the ion sheath formed around the probe
distort the measurements made. To improve the quality of the measurements,
these RF components can be removed by an active-compensation method. In
this research, this was achieved by applying an RF signal to the probe tip that
matches both the phase and amplitude of the RF signal generated from the
plasma. Here, seven harmonics are used to generate the waveform applied to the
probe tip. Therefore, fourteen mutually interacting parameters (seven phases and
seven amplitudes) had to be tuned on-line. In previous work SA and DE were
applied successfully to this problem, and hence were chosen to be compared
with the performance of SOMA. In this application domain, SOMA was found
to outperform SA and DE (Figs. 20 and 21).

• Aircraft wing design. The paper deals with a promising approach of modeling
the real life systems, characterized with sets of measured/discrete data, by
replacing them with analytical functions framework. The article is focused on
neural network approximation of functional expressions. As an analyzed system
a dynamic flight model has been chosen due to the necessity of considering
several classes of large sets of aerodynamic lift, drag, speed, force, balance and

Fig. 20 Plasma reactor
equipment

Fig. 21 Plasma reactor
chamber
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Fig. 22 Aircraft Cobra
partially optimized by SOMA

Fig. 23 Another version of
the Cobra aircraft

Fig. 24 Bifurcation diagram
of artificially synthesized
chaotic system by SOMA
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mass data to get a comparable mock-up response. Handling such type of model
is naturally a huge computation time demanding process. Being able to sub-
stitute it with analytical functions system presenting a coincident behavior could
dramatically improve computation time at all aspects of utilization (UAV/UAS,
autopilot systems, flight simulators, real time control and stability response
determination, etc.). Therefore first steps how to obtain analytical function are
shown here. In this paper, sample case parameters were used to produce data
that were then fitted with an exact function obtained from feedforward neural
network (Figs. 22, 23, 24, 25 and 26).

• Chaos control. In this research was SOMA used (with another algorithms also)
for the optimization of the control of chaotic system. The main aim of this paper
is to show a new approach of solving this problem and constructing new cost

Fig. 25 Bifurcation diagram
of another artificially
synthesized chaotic system by
SOMA

Fig. 26 The Santa Fe trail
test problem
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functions operating in blackbox mode without previous exact mathematical
analysis of the system, thus without knowledge of stabilizing target state. Three
proposals of blackbox mode cost functions are tested in this paper. As a model
of deterministic chaotic system, the two dimensional Henon map was used. The
optimizations were realized in several ways, each one for another desired state
of system. The evolutionary algorithms Self-Organizing Migrating Algorithm
(SOMA) and Differential Evolution (DE) were used. For each version, repeated
simulations were conducted to outline the effectiveness and robustness of used
method and cost function (Figs. 27 and 28).

• Flow-shop scheduling problem. This paper introduces a novel Discrete
Self-Organizing Migrating Algorithm for the task of flow-shop scheduling with
no-wait makespan. The heuristic used in this research is the novel Discrete
Self-Organizing Migrating Algorithm (SOMA). SOMA is a class of swarm
heuristic which has been used to solve real domain problems. SOMA provided a
new inputs to the swarm class of metaheuristics. In total four unique versions
exist, namely the All to One, All to Best, All to All and All to All Adaptive.

Fig. 27 Chaos stabilized in
all 100 repeated experiments
at the 4 period orbit

Fig. 28 Cost function surface
of chaos control problem
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Initial research has been conducted in the field on real domain problems;
specifically in the field of Chaos Control. Initial work on SOMA in the discrete
problem domain was conducted by Lampinen and Zelinka [42]. The new
algorithm is tested with the small and medium Taillard benchmark problems and
the obtained results are competitive with the best performing heuristics in the
literature.

• Synthesis of robot control program. The paper deals with a novelty tool for
symbolic regression–Analytic Programming (AP) which is able to solve various
problems from the symbolic regression domain. One of tasks for it can be setting
an optimal trajectory for artificial ant on Santa Fe trail which is the main
application of Analytic Programming in this paper. In this contribution main
principles of AP are described and explained. In second part of the article how
AP was used for setting an optimal trajectory for artificial ant according the user
requirements is in detail described. AP is a superstructure of evolutionary
algorithms which are necessary to run AP. In this contribution 3 evolutionary
algorithms were used–Self Organizing Migrating Algorithm, Differential
Evolution and Simulated Annealing. The results show that the first two used
algorithms were more successful than not so robust Simulated Annealing.

• Controller synthesis and setting of classical PID control. A novel tool for
symbolic regression, Analytical Programming and its application for the syn-
thesis of a new robust feedback control law are presented in this paper. This
synthesized robust chaotic controller secures the fully stabilization of several
selected sets containing one-dimensional, two-dimensional and evolutionary
synthesized discrete chaotic systems. The paper consists of the descriptions of
analytic programming as well as selected chaotic systems, used heuristic and
cost function design. For experimentation, Self-Organizing Migrating Algorithm
and Differential evolution were used.

• SOMA powered by deterministic chaos and periodic generators. Inherent part of
evolutionary algorithms that are based on Darwin theory of evolution and
Mendel theory of genetic heritage, are random processes. In participation [34–
38, 44] we discuss whether random processes really are needed in evolutionary
algorithms. We use n periodic deterministic processes instead of random number
generators and compare performance of evolutionary algorithms powered by
those processes and by pseudo-random number generators. Deterministic pro-
cesses used in this participation are based on deterministic chaos and are used to
generate periodical series with different length. Results presented here are
numerical demonstration rather than mathematical proofs. We propose that
certain class of deterministic processes can be used instead of random number
generators without lowering the performance of evolutionary algorithms.

• Nonlinear dynamic system synthesis. This SOMA application introduces the
notion of chaos synthesis by means of evolutionary algorithms and develops a
new method for chaotic systems synthesis. This method is similar to genetic
programming and grammatical evolution and is being applied along with three
evolutionary algorithms: differential evolution, self-organizing migration and
genetic algorithm. The aim of this investigation is to synthesize new and
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“simple” chaotic systems based on some elements contained in a pre-chosen
existing chaotic system and a properly defined cost function. The investigation
consists of eleven case studies: the aforementioned three evolutionary algo-
rithms in eleven versions. For all algorithms, 100 simulations of chaos synthesis
were repeated and then averaged to guarantee the reliability and robustness of
the proposed method. The most significant results were carefully selected,
visualized and commented in this report.

• Evolutionary algorithm synthesis. This research was focused on evolutionary
synthesis of another evolutionary algorithms. Different technique apart from
genetic programming and grammatical evolution, called “analytic program-
ming” [45] was used here. The main attention was given to possibility whether it
is possible to synthesize another evolutionary algorithm by means of methods of
symbolic regression, in this case by analytic programming, as was already
mentioned. The results presented in [46, 47] clearly shows that it is possible,
however powerful hardware and coding in low-level programmable language is
needed.

Of course number of its use was more wider, let for example mention solution of
partial differential equation of civil engineering, describing the beam in the wall
under statical load, synthesis of electrical circuits (train control, house heating and
traffic light control) [45], and more.

9 SOMA in Computer Games

SOMA has not been used only in various applications or interdisciplinary imple-
mentations, it has been used also in computer game Star Craft.3 In this game was
SOMA used in realtime regime so that trajectories of an individuals were
one-to-one trajectories of game bot warriors.

In [48] SOMA application focused on techniques of artificial intelligence
(AI) applications and practical utilization. The goal of the [48] is to implement
computer player replacing human in real time strategy StarCraft: Brood War. The
implementation uses conventional techniques from scope of artificial intelligence,
as it at same time endeavors use of unconventional techniques, such as evolutionary
computation. The computer player is provided by implementation of decision-
making tree together with evolutionary algorithm called SOMA. Everything was
written in programming language Java. I created system, which ensures behavior of
computer player in an easy way in implementation of artificial intelligence. My
particular implementation of SOMA algorithm provides an opportunity for efficient,
coordinated movement of combat units over the map. The work has shown great
benefit of evolutionary techniques in the field of real time strategy games.

3http://eu.blizzard.com/en-gb/games/hots/landing/.
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The peculiarities of this algorithm implementation in Star Craft game is a variable
size population (parameter PopSize). Combat units were treated as members of the
population at the moment of creation to the population and deleted out of population
when they are killed. This is not the only specific modification of the population in
this application. The entire population is composed of two, say subspecies. One
subspecies is a classic of the population of units, moving around hypersurface—
battle field. This population is dynamic. Beside it contains implementations still
static subspecies of the population, which is unique in that individuals of this sub-
species does not move. These individuals are placed at all points on the battle field
where there are natural sources of materials, and also to all points on the battle field
that are starting points of the players. This subpopulation avoid its journey and are
never destroyed. A leader can be selected from this subpopulation for most of the
time. It is due to the fact that under the objective function on all of these positions
represent the static local extremes, while dynamic local extremes (enemy combat
units moving around the battle field) are found in motion of a dynamic subspecies
(combat units). This implementation populations solves all the disadvantages of
using the classic version of the algorithm SOMA. It consist of individuals that are
dynamic warrior/scout subpopulation pseudorandomly set on battle field (static
subpopulation is set according to the deterministic knowledge and is distributed
according to the positions of natural materials and starting positions of players).

After the start of the algorithm is chosen as the leader of a static subject,
corresponding to the second starting position on a map. There is the enemy’s main
base. After the warrior unity was generated (dynamic population algorithm SOMA)
and begins its journey directly to the leader (the main enemy base). It is possible to
implemented here, that the condition that his journey will start only with a certain
dynamic population size to achieve a more concentrated combat force. On the way

Fig. 29 Combat screenshot—battle remoted by SOMA
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to the leader (in this moment enemy base) can warriors encounter enemy units,
which is a dynamic component of the objective function, and try to destroy them. In
this moment can be applies classical combat algorithms as well as algorithms based
on AI which will decide whether it is the strength of my troops found sufficient to
destroy the enemy army, or put prefer to retreat and preferentially produce more
units. Another role of leader, in the position of home base, play the alarm function
representing a threat of the enemy, attacking one of our bases. This is a beneficial of
that static population, because it contains individuals presenting a position of its
own base. Since the weight of enemy units (in defined cost function) are set at a
high value, although dynamic population currently attacking the enemy base and
the enemy in a greater number attacks our base, a leader is selected from static
population, representing the position base, which is currently under heavy attack,
thus it is currently attracting dynamic population to the source of hostile attacks.

Race, which was chosen as a test has been Zerg race. Screenshot in Fig. 29
demonstrate one of many game phases. As reported in [48], SOMA driven combats
has exhibit high statistical success rather than another, more classical, approaches.

10 SOMA and Interdisciplinary Research

The SOMA has been used not only in classical optimization tasks but also in
interdisciplinary research as for example in evolutionary dynamics and its relations
with complex networks structures. The latest research, inspired SOMA and its

Fig. 30 The complex network based on GA dynamics
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dynamics, is focused on clear analogy between individual interactions in population
and interactions between people on social networks. As already reported in [49–51]
then it can be stated that, in fact, dynamics of an arbitrary bio-inspired algorithm
based on population philosophy, can be viewed as a complex network in which
nodes are individuals and edges are related to its mutual interactions. During
evolutionary process is then generated complex network, see Fig. 30 that show
attributes of well known social networks and that can be used in EA performance

Fig. 31 Mutual comparison of the dependance of DE performance on different level of chaos in
logistic equation (A = 3.828, numerical precision = 7). The red lines is DE with MT PRNG
(100× repeated) and blue DE with chaotic generator instead of PRNG (100× repeated)

Fig. 32 Mutual comparison of the dependance of SOMA performance on different level of chaos
in logistic equation (A = 4, numerical precision = 10). The red lines is SOMA with MT PRNG
(100× repeated) and blue DE with chaotic generator instead of PRNG (100× repeated)
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improvement. This approach has been successfully tested on DE, SOMA, GA and
ABC (Artificial Bee Colony). All important results were described in [52–56].

Another future research, that is already in process, see [57], is focused on what
are relations between chaos level (measured by Lyapunov exponent) and its impact
on EAs performance, as preliminary reported in [57]. In this paper was control
parameter A of so called logistic equation [19] varied and logistic equation then
used instead of pseudorandom number generator under this setting. It was found
that for some settings EAs gave much more better results than with Mersenne
twister generator, see Figs. 31 and 32.

11 Conclusion

This chapter has been discussed SOMA, a new swarm class search algorithm for
global optimization. In this chapter were introduced:

• Basic principles of SOMA algorithm
• Various strategies (versions) of the algorithm
• Testing for robustness
• Handling of various constraints
• Selected applications

The methods described for handling constraints are relatively simple, easy to
implement and easy to use. They were introduced in [42] and used here because of
their universality and easy implementation. A soft-constraint (penalty) approach is
applied for the handling of constraint functions. Some optimization methods require
a feasible initial solution as a starting point for a search. Preferably, this solution
should be rather close to a global optimum to ensure convergence to it instead of to
a local optimum. If nontrivial constraints are imposed, it may be difficult or
impossible to provide a feasible initial solution. The efficiency, effectiveness and
robustness of many methods are often highly dependent on the quality of the
starting point. The combination of SOMA algorithm and the soft-constraint
approach does not require an initial solution, but yet it can take advantage of a high
quality initial solution if one is available. For example, this initial solution can be
used for initialization of the population in order to establish an initial population
that is biased towards a feasible region of the search space. If there are no feasible
solutions in the search space, as is the case for totally conflicting constraints,
SOMA algorithms with the soft-constraint approach are still able to find the nearest
feasible solution. This is often important in practical engineering optimization
applications, because many nontrivial constraints are involved. The test functions
used for basic SOMA testing (amongst the others as combinatorial ones) had all
negative attributes. Well known tested functions Eqs. (1)–(16) have been used.
Each test was designed so that the global extreme was searched in 101 dimensions,
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i.e. the cost functions had 100 arguments. For each cost function, the success for
SOMA and DE for 100 simulations was given. These tests have demonstrated that
SOMA is capable of solving hard optimization problems. However it is important
to remember some important facts:

1. All versions of SOMA has been tested against another algorithms like (DE, GA,
PSO, SA…) and all algorithms were compared on heavy test problems as
reported above and related papers. Problems on which SOMA has been tested
during 16 years of its existence were of different nature, from real-encoded to
permutative, from artificial to realtime problems of black-box systems.

2. Test functions (as well as the others problems) are sensitive to coordinates of the
global extreme. This means that small differences in coordinates of the global
extreme can cause a large change in the final cost values despite the fact that the
evaluated position is not far from the position of the global extreme. This is
especially important for high dimensional extremes. From this point of view, a
difference of 10 % or 39.56 (say from 0) does not means that the optimizing
process is far from the global extreme (in sense of the cost function—
coordinates).

3. For some functions it is difficult to find the global optimum. Typical examples
are Schwefel function and Rosenbrock saddle. Schwefel function being par-
ticularly difficult: The first problem is that the minimum is not in the origin as it
usually is for other functions, but at the edge of the search space. The second
problem is more interesting: in the case of symmetrical unfolding of the search
space owing to the origin, the position of the global extreme cyclically changes
its position. A second tricky function is Rosenbrock saddle. There are almost
two identical extremes but only one is the global one. Hence, this is a quite an
unpleasant test function for any optimization algorithm. Both functions (and the
others as well as) provide rather difficult test conditions for EAs as well as
problems where global extreme change its position (that was problem of real
example on plasma reactor, [58].

4. The conditions for the optimization were set as highly difficult as possible i.e. a
limited number of individuals was used, etc. Usually, 20–60 individuals were
used for searching in 100 dimensional hyper-plane. It is for this reason that the
global extreme was not exactly found in all cases. Different numbers of indi-
viduals, different parameter settings or different versions of the algorithms could
improve this dramatically. Based on results can be declared that the SOMA
performance was almost the same like DE. SOMA showed a very good, and
sometimes better, ability to find extremes as DE or another algorithms.

5. Convergence speed. In the case of many test functions different EAs were less
more of the same speed like SOMA. It can be stated that SOMA gives better
performance on problems which shows higher dimensionality and/or irregularity
like functions Eqs. (1)–(16)

6. Despite comparing only the basic version of the SOMA algorithm with usually
of the best versions of selected EAs, it is visible that SOMA performance on the
tested functions was very good. The SOMA algorithm works with minimum
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assumptions with respect to the objective function. The algorithm requires only
the cost value returned from the objective function for guidance of its seeking
for the optimum. No derivatives or other auxiliary information are needed.
Including the algorithm’s extensions discussed in this article, the SOMA
algorithm can be applied to a wide range of optimization problems, which
practitioners in the field of modern optimization would like to solve.
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DSOMA—Discrete Self Organising
Migrating Algorithm

Donald Davendra, Ivan Zelinka, Michal Pluhacek
and Roman Senkerik

Abstract A discrete Self Organising Migrating Algorithm (DSOAM) is described
in this chapter. This variant is specifically designed for the permutative based
combinatorial optimisation problem, where the problem domain in generally
NP-Hard. Specific sampling between individuals in the search space is introduced
as a means of constructing new feasible individuals. These feasible solutions are
improved using 2-Opt routines. DSOMA has proven successful in solving manu-
facturing scheduling and assignment problems.

1 Introduction

Complex engineering problems can be loosely defined into three main domains.
Unimodal and multimodal real domain problems generally deal with floating point
values. Combinatorial optimisation problems on the other hand deal with integer
based values. In strict sense combinatorial optimisation problems, the values are
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inherently permutative. Wide sense combinatorial optimisation problems deal with
integer values within specific ranges. The third domain in simply a mixture of the
first two, and is generally called mixed integer-real optimisation.

Combinatorial optimisation problems are generally considered NP-Hard, with
the associated decision problems formulated as NP-Complete. A range of different
problems in engineering have been classified as combinatorial optimisation prob-
lems. The most common ones are scheduling problems, routing and assignment
problems amongst others.

Scheduling problems such as flowshop, openshop and jobshop are readily
identifiable as the most common manufacturing problems whereas routing prob-
lems such as vehicle routing and traveling salesman problems are classic mathe-
matical problems, and forms the general basis for the P versus NP Problem
Millennium problem [7].

Since these problems are NP-Hard, specific deterministic and stochastic algo-
rithms have been developed to solve these problems in reasonable time with given
resources. One of the powerful stochastic algorithms are evolutionary algorithms
(EA). However, general canonical EA’s for real-domain problems cannot be used to
solve combinatorial optimisation problems. Therefore, a separate class of discrete
EA’s have been developed to deal with this domain of problem.

All established metaheuristics have developed discrete variants such as: Genetic
algorithms [4, 8, 13], Ant Colony Optimisation [5], Tabu Search [14], Particle
Swarm [11, 15], Differential Evolution [9, 10], Artificial Bee Colony [12, 16] and
Harmony Search [1, 6].

A discrete variant of the Self-Organising Migrating Algorithm (SOMA) has been
developed to solve combinatorial optimisation problems [2, 3]. This chapter details
the discrete Self-Organising Migrating Algorithm (DSOMA), with population ini-
tialisation, creating jump sequences, constructing trial individual, repairment and
selection.

2 Discrete Self-organising Migrating Algorithm

Discrete Self-Organising Migrating Algorithm (DSOMA) [3] is the discrete version
of SOMA, developed to solve permutation based combinatorial optimisation
problem. The same ideology of the sampling of the space between two individuals
is retained. Assume that there are two individuals in a search space as given in
Fig. 1. The objective for DSOMA is to transverse from one individual to another,
while mapping each discrete space between these two individuals. Figures 2 and 3
are 3D representations, where the DSOMA mapping is shown as the surface joining
these two.

The major input of this algorithm is the sampling of the jump sequence between
the individuals in the populations, and the procedure of constructing new trial
individuals from these sampled jump sequence elements.
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The overall outline for DSOMA can be given as:

1. Initial Phase

a. Population Generation: An initial number of permutative trial individuals is
generated for the initial population.

b. Fitness Evaluation: Each individual is evaluated for its fitness.

2. DSOMA

a. Creating Jump Sequences: Taking two individuals, a number of possible
jump positions is calculated between each corresponding element.

b. Constructing Trial Individuals: Using the jump positions; a number of trial
individuals is generated. Each element is selected from a jump element
between the two individuals.

c. Repairment: The trial individuals are checked for feasibility and those, which
contain an incomplete schedule, are repaired.
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Fig. 1 Two individuals in search space
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Fig. 2 End view of the two individuals in 3D search space
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3. Selection

a. New Individual Selection: The new individuals are evaluated for their fitness
and the best new fitness based individual replaces the old individual, if it
improves upon its fitness.

4. Generations

a. Iteration: Iterate the population till a specified migration.

DSOMA requires a number of parameters as given in Table 1. The major
addition is the parameter Jmin, which gives the minimum number of jumps (sam-
pling) between two individuals. The SOMA variables PathLength, StepSize and
PRT Vector are not initialised as they are dynamically calculated by DSOMA using
the adjacent elements between the individuals.

2

4

6

8

10

Positions

1.0

1.5

2.0

0

5

10

Fig. 3 Isometric view of the two individuals in 3D search space

Table 1 DSOMA parameters

Name Range Type

Jmin (1+) Control Minimum number of jumps

Population 10+ Control Number of individuals

Migrations 10+ Termination Total number of iterations
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3 Initialisation

The population is initialised as a permutative schedule representative of the size of
the problem at hand (1). As this is the initial population, the superscript of x its set
to 0. The rand() function obtains a value between 0 and 1, and the INT() function
rounds down the real number to the nearest integer. The if condition checks to
ensure that each element within the individual is unique.

x0i;j ¼
1þ INT randðÞ � N � 1ð Þð Þ
if x0i;j 62 x0i;1; . . .; x

0
i;j�1

n o
(

i ¼ 1; . . .; b; j ¼ 1; . . .;N

ð1Þ

Each individual is vetted for its fitness (2), and the best individual, whose index
in the population can be assigned as L (leader) and it is designated the leader as X0

L

with its best fitness given as C0
L.

C0
i ¼ = X0

i

� �
; i ¼ 1; . . .;b ð2Þ

The pseudocode for generating a population is given in Fig. 4.
After the generation of the initial population, the migration counter t is set to 1

where t ¼ 1; . . .;M and the individual index i is initialised to 1, where i ¼ 1; . . .; b.
Using these values, the following sections (Sects. 4–7) are recursively applied, with
the counters i and t being updated in Sects. 8 and 9 respectively.

Fig. 4 Pseudocode for generating initial population
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4 Creating Jump Sequences

DSOMA operates by calculating the number of discrete jump steps that each
individual has to circumnavigate. In DSOMA, the parameter of minimum jumps
(Jmin) is used in lieu of PathLength, which states the minimum number of indi-
viduals or sampling between the two individuals.

Taking two individuals in the population, one as the incumbent (Xt
i ) and the

other as the leader (Xt
L), the possible number of jump individuals Jmax is the mode

of the difference between the adjacent values of the elements in the individual (3).
A vector J of size N is created to store the difference between the adjacent elements
in the individuals. The mode() function obtains the most common number in J and
designates it as Jmax.

Jj ¼ xt�1
i;j � xt�1

L;j

��� ���; j ¼ 1; . . .;N

Jmax ¼ mode Jð Þ if mode Jð Þ[ 0
1 otherwise

� ð3Þ

The step size (s), can now be calculated as the integer fraction between the
required jumps and possible jumps (4).

s ¼
Jmax
Jmin

j k
if Jmax � Jmin

1 otherwise

(
ð4Þ

Create a jump matrix G, which contains all the possible jump positions, that can
be calculated as:

Gl;j ¼
xt�1
i;j þ s � l if xt�1

i;j þ s � l\xt�1
L;j and xt�1

i;j \xt�1
L;j

xt�1
i;j � s � l if xt�1

i;j þ s � l\xt�1
L;j and xt�1

i;j [ xt�1
L;j

0 otherwise

8><
>:
j ¼ 1; . . .;N; l ¼ 1; . . .; Jmin

ð5Þ

The pseudocode for creating jump sequences is given in Fig. 5.

5 Constructing Trial Individuals

For each jump sequence of two individuals, a total of Jmin new individuals can
now be constructed from the jump positions. Taking a new temporary popula-
tion H H ¼ Y1; . . .; YJminf gð Þ; in which each new individual Yw w ¼ 1; . . .; Jminð Þ, is
constructed piecewise from G. Each element yw;j Yw ¼ yw;j; . . .; yw;N

� �
;

�
j ¼

1; 2; . . .;NÞ in the individual, indexes its values from the corresponding jth column
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in G. Each lth l ¼ 1; . . .; Jminð Þ position for a specific element is sequentially
checked in Gl;j to ascertain if it already exists in the current individual Yw. If this is a
new element, it is then accepted in the individual, and the corresponding lth value is
set to zero as Gl;j ¼ 0: This iterative procedure can be given as in Eq. (6) and the
pseudocode for constructing trial individual is represented in Fig. 6.

yw;j ¼
Gl;j

if Gl; j 62 yw;1; . . .; yw;j�1
� �

and Gl;j 6¼ 0;

then Gl; j ¼ 0;

(

0 otherwise

8>><
>>:
l ¼ 1; . . .; Jmin; j ¼ 1; . . .;N; w ¼ 1; . . .; Jmin

ð6Þ

6 Repairing Trial Individuals

Some individuals may exist, which may not contain a permutative schedule. The
jump individuals Ywðw ¼ 1; 2; . . .; JminÞ, are constructed in such a way, that each
infeasible element yw;j is indexed by 0.

Fig. 5 Pseudocode for creating jump sequences
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Taking each jump individual Yw iteratively from H, the following set of pro-
cedures can be applied recursively.

Take A and B, where A is initialised to the permutative schedule A ¼
1; 2; . . .;Nf g and B is the complement of individual Yw relative to A as given in

Eq. (7).

B ¼ AnYw ð7Þ

If after the complement operation, B is an empty set without any elements;
B ¼ fg, then the individual is correct with a proper permutative schedule and does
not require any repairment.

However, if B contains values, then these values are the missing elements in
individual Yw. The repairment procedure is now outlined. The first process is to
randomise the positions of the elements in set B. Then, iterating through the ele-
ments yw;j ðj ¼ 1; . . .;NÞ in the individual Yw, each position, where the element
yw;j ¼ 0 is replaced by the value in B. Assigning Bsize as the total number of
elements present in B (and hence missing from the individual Yw), the repairment
procedure can be given as in Eq. (8).

yw; j ¼
Bh if yw; j ¼ 0

yw; j otherwise

�

h ¼ 1; . . .;Bsize; j ¼ 1; . . .;N

ð8Þ

Fig. 6 Algorithm for constructing trial individuals
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After each individual is repaired in H, it is then evaluated for its fitness value as
in Eq. (9) and stored in γ, the fitness array of size Jmin.

cw ¼ = Ywð Þ; w ¼ 1; . . .; Jmin ð9Þ

The pseudocode for repairing trial individuals is given in Fig. 7.

7 Population Update

2 Opt local search is applied to the best individual Ybest obtained with the minimum
fitness value min cwð Þð Þ. After the local search routine, the new individual is
compared with the fitness of the incumbent individual Xt�1

i , and if it improves on
the fitness, then the new individual is accepted in the population (10).

Xt
i ¼

Ybest if = Ybestð Þ\Ct�1
i

Xt�1
i otherwise

(
ð10Þ

Fig. 7 Pseudocode for repairing trial individuals
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If this individual improves on the overall best individual in the population, it
then replaces the best individual in the population (11).

Xt
best ¼

Ybest if = Ybestð Þ\Ct
best

Xt�1
best otherwise

�
ð11Þ

8 Iteration

Sequentially, incrementing i, the population counter by 1, another individual Xt�1
iþ 1

is selected from the population, and it begins its own sampling towards the des-
ignated leader Xt�1

L from Sects. 4–7. It should be noted that the leader does not
change during the evaluation of one migration.

9 Migrations

Once all the individuals have executed their sampling towards the designated
leader, the migration counter t is incremented by 1. The individual iterator i is reset
to 1 (the beginning of the population) and the loop in Sects. 4–8 is re-initiated.

10 2 Opt Local Search

The local search utilised in DSOMA is the 2 Opt local search algorithm. The reason
as to why the 2 Opt local search was chosen, is that it is the simplest in the k-opt
class of routines. As the DSOMA sampling occurs between two individuals in
k-dimension, the local search refines the individual. This in turn provides a better
probability to find a new leader after each jump sequence. The placement of the
local search was refined heuristically during experimentation.

The complexity of this local search is O n2ð Þ. As local search makes up the
majority of the complexity time of DSOMA, the overall computational complexity
of DSOMA for a single migration is O n3ð Þ.

A schematic of the DSOMA routine is given in Fig. 8, which graphically out-
lines the procedure for creating jump sequence between two individuals, and
constructing trial individuals.
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11 Conclusion

The discrete Self Organising Migrating Algorithm is described in this chapter.
Using specific sampling of individuals in the search space, new individuals are
constructed which assists in driving the population towards the leader.

DSOMA has proven successful in solving problem in the combinatorial opti-
misation domain. As a relatively new algorithm, it has a lot of scope for further
development and refinement, especially in individual sampling and parallelisation
aspects.
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SOMA and Strange Dynamics

Ivan Zelinka

Abstract This chapter discusses the basic relations between of Self-Organizing
Migrating Algorithm and complex systems that are sources of the so called strange
dynamics. Interaction between SOMA and complex systems is considered from two
pints of views. In the first one we are focused on chaos control, synthesis and
identification. In the second one is used chaotic dynamics instead of pseudorandom
number generator in order to improve SOMA performance. A few experiments with
fractals, that are a part of complex systems, are introduced here too. All mentioned
SOMA use is fully referenced for detailed reading and further research.

1 Introduction

Deterministic chaos and evolutionary algorithms seem to be two different areas of
research that are not joined together, but this is not in fact, true. Both areas are
tightly joined, as it is discussed in this chapter. Because discussed topics are wide
enough and it is not possible to discuss all in the limited space of this chapter, only
main ideas are reported here. For detailed study it is recommended to use references
provided in the chapter. To better understand background and consequently dis-
cussed mutual relations between chaos and evolutionary dynamics, that is in fact
discrete dynamical system, a brief overview of evolutionary algorithms is done
here. For more detailed text about evolutionary techniques it is recommended to
read [1, 2].
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2 SOMA and Chaos

Deterministic chaos, discovered by Lorenz [3] is a fairly active area of research in
last few decades. The Lorenz system produces one of the well-known canonical
chaotic attractors in a simple three-dimensional autonomous system of ordinary
differential equations [3, 4]. For discrete chaos, there is another famous chaotic
system, called logistic equation [5]. Logistic equation is based on a predator-prey
model showing chaotic behavior. This simple model is widely used in the study of
chaos, where other similar models exist (canonical logistic equation [6] and 1D or
2D coupled map lattices [7]) based on it. Since then, a large set of nonlinear systems
that can produce chaotic behavior have been observed and analyzed. Chaotic
systems thus have become a vitally important part of science and engineering in
theoretical as well as practical levels of research. The most interesting and appli-
cable notions are, for example, chaos control and chaos synchronization related to
secure communication, amongst others. Recently, the study of chaos is focused not
only along the traditional trends but also on the understanding and analyzing
principles, with the new intention of controlling and utilizing chaos as demonstrated
in [8, 9]. The term chaos control was first coined by Ott, Grebogi and Yorke in
1990. It represents a process in which a control law is derived and used so that the
original chaotic behavior can be stabilized on a constant level of output value or a
n-periodic cycle. Since the first experiment of chaos control, many control methods
have been developed and some are based on the first approach [10], including pole
placement [11, 12] and delay feedback [13, 14]. Another research has been done on
CML control by [15], special feedback methods for controlling spatio-temporal
on-off intermittency has been used there and [15]. In [7] is summarized control of
CML systems while in the [2, 16, 17] use of EAs on CML control. Many methods
were adapted for the so-called spatiotemporal chaos represented by coupled map
lattices (CML). Control laws derived for CML are usually based on existing system
structures [7], or using an external observer [18]. Evolutionary approach for control
was also successfully developed in, for example [16, 19, 20]. Many published
methods of deterministic chaos control (DCC) were (originally developed for
classic DCC) adapted for so called spatiotemporal chaos represented by CML.
Models of this kind are based on set of spatiotemporal (for 1D, Fig. 5 and its fitness
landscape Fig. 6) or spatial cells which represents appropriate state of system
elements. Typical example is CML based on so called logistic equation [5, 18, 21],
which is used to simulate behavior of system which consists of n mutually joined
cells via nonlinear coupling, usually noted like ε, see [7].

2.1 Chaos Synthesis

In recent years, interests in softcomputing methods are increasing, including in
particular evolutionary algorithms. These algorithms are based on similar principles
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of biological evolution in the real world as already mentioned. One of the typical
EAs use is to solve computationally hard problems which are too complex to be
solved by conventional methods. In its canonical form, EAs can be used only for
numerical estimation of parameters (usually, arguments of a given cost function).
Together with EAs in the canonical form, another modification allows to use EAs as
symbolic “constructors”, i.e., a processor, for synthesizing complex structures in a
symbolic way, based on some predefined simple elements (mathematical operators
or electronic elements like diode, transistor, etc.). The term “symbolic way”
specifies that mathematical structures and equations, electronic systems, etc., are
generated from those simple elements just mentioned.

Given the above background in [22–24], the main motivation of investigation
was the question “Is it possible to synthesize the mathematical description of a new
chaotic system, based on simple and elementary mathematical objects, by means of
evolutionary computation?” This question was also based partially on the fact that
in engineering applications, it is very often vitally important to know not only when
chaos can be generated but also how to generate it [8, 25]. This is extremely
important in cryptography, for example, where chaotic systems are often used in the
design. From a mathematical point of view, it is quite clear that there are some
classes of chaotic systems which can be represented by one canonical form (one
class—one canonical form) [6]. However, generally speaking, it is not so easy to
exactly synthesize a chaotic system with specified features by means of classical
mathematical methods. A positive answer to the question mentioned above would
open possibilities to synthesize not only a set of not-yet-described chaotic systems,
but also some chaotic systems with predefined features. It is believed that such
possibilities would have an important impact on engineering design of various
complex nonlinear systems, especially chaotic systems. The main ides of evolu-
tionary synthesis is that in the evolutionary process are used like individuals basic
building blocks (i.e. mathematical objects like þ ;�; =; x; . . .) that are used in
chaotic systems. Evolution then synthesize under user defined criteria systems, that
exhibit chaos. Selected examples of evolutionary synthesized chaotic systems from
[2] are depicted in Figs. 1 and 2.

Fig. 1 Bifurcation diagram
of xnþ 1 ¼ x

x3

2A3 ðx�AÞðAþ xÞ þA
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2.2 Chaos Control

Since now, it has outlined how can be used and/or used chaos inside evolutionary
algorithms. Opposite side of topic discussed above is use of evolutions on chaotic
systems. Few important selected topics are discussed here such as the evolutionary
control of deterministic chaos, evolutionary control of CML systems, evolutionary
synthesis of chaotic systems, evolutionary identification and synchronization of
chaotic systems. At the end evolutionary algorithms as a discrete systems with
complex dynamics are discussed.

Generally said the evolutionary algorithms (EA) are known as powerful tool for
almost any difficult and complex optimization problem. But the quality of opti-
mization process results mostly depends on proper design of used cost function,
especially when the EAs are used for optimization of chaos control. The results of
numerous simulations lend weight to the argument that deterministic chaos in
general and also any technique to control of chaos are sensitive to proper parameter
set up, initial conditions and in the case of optimization they are also extremely
sensitive to the construction of used cost function.

The main aim of chaos control by EAs is focused on the EA implementation to
methods for chaos control for the purpose of obtaining better results, which means
faster reaching of desired stable state and superior stabilization, which could be
robust and effective to optimize difficult problems in the real world. In other words
use EAs on control deals with an investigation on the optimization of the control of
chaos by means of EA and constructing of the cost function securing the
improvement of system behavior and faster stabilization to desired periodic orbits.
The control law can be based on various methods as for example on two Pyragas
methods [2, 26–29]: Delay feedback control—TDAS and Extended delay feedback
control—ETDAS. As models of deterministic chaotic systems, one dimensional
Logistic equation and two dimensional Henon map were used. The evolutionary
algorithm SOMA and DE were used. Also the comparison with classical control
technique—OGY is presented.

Fig. 2 Bifurcation diagram

of xnþ 1 ¼
A2 ðA�xÞ

xðAð�xÞþAþ 2xÞ�2Aþ x�1

x
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Some research in this field has been recently done using the evolutionary
algorithms for optimization of local control of chaos based on a Lyapunov approach
[19, 30]. But the approach described here is unique and novel and up to date it was
not used or mentioned anywhere. We use EA to search for optimal setting of
adjustable parameters of arbitrary control method to reach desired state or behavior
of chaotic system. The complexity of such process is visible in Fig. 3 in which
space of all possible solutions (x, y) and their quality (z) are depicted. As an
example of successful chaos control is in Fig. 4, see for example [29]. In this case
has been stabilized chaotic system (Henon) in four periodic orbit. In the figure is
captured 100 repeated experiments and as it is visible, EAs successfully stabilized
system after 1400 iterations (in the worst case). Usually solution discovered by EAs
has been faster that classical control techniques [2] (Figs. 5 and 6).

2.3 Chaos Identification

Evolutionary algorithms can be also used for identification (reconstruction) of
mathematical description of chaotic systems. This topic is widely discussed in [2,

Fig. 3 Cost-function surface
representing problem of
synchronization

Fig. 4 Best individual
solution, p-4 orbit
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31]. In this paper we discuss the possibility of using evolutionary algorithms for the
reconstruction of chaotic systems. The main aim of this work is to show that evo-
lutionary algorithms are capable of the reconstruction of chaotic systems without any
partial knowledge of internal structure, i.e. based only on measured data and pre-
defined set of basic mathematical objects. Algorithm such as SOMA [32] and dif-
ferential evolution [33] were used in reported experiments here. Systems selected for
numerical experiments in [31] are the well-known Lorenz system, Simplest
Quadratic Flow, Double Scroll, Damped Driven Pendulum and Nosé—Hoover
Oscilator. According to obtained results it can be stated that evolutionary recon-
struction is an alternative and promising way as to how to identify chaotic systems.
Identification of various dynamical systems is vitally important in the case of
practical applications as well as in theory. A rich set of various methods for
dynamical system identification has been developed in the past. In the case of chaotic
dynamics, it is for example the well-known reconstruction of a chaotic attractor
based on research of [34] which has shown that, after the transients have died out,
one can reconstruct the trajectory of the attractor from the measurement of a single
component. Since the entire trajectory contains a large amount of information, the
series of papers by [35, 36] is introduced to show a set of averaged coordinate
invariant numbers (generalized dimensions, entropies, and scaling indices) by which

Fig. 5 CML T1S2 in configuration 30 × 600—stabilization after 400 iterations is visible
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different strange attractors can be distinguished. The method presented in this
research is based on Evolutionary Algorithm’s (EAs), see [1], which allows the
reconstruction not only of chaotic attractors as a geometrical objects, but also their
mathematical description, based on methods of symbolic regression [22–24]. It is
recommended to study those papers like [31], see Figs. 7, 8, 9 and 10.

2.4 SOMA Powered by Pseudorandom, Chaos
and Deterministic Dynamics

It is well known that evolutionary algorithms use pseudorandom numbers gener-
ators. They need them for example to generate the first population, they are nec-
essary in crossing or perturbation process etc. In paper [37] chaos attractors Arnold
Cat Map and Sinai are used as chaotic numbers generators. The main goal was to
investigate if they are usable instead of pseudorandom number generators and their

Fig. 7 Cost-function surface
representing problem of
synchronization

Fig. 8 Best individual
solution, p-4 orbit

SOMA and Strange Dynamics 73



Fig. 9 SOMA identification
of the Lorenz attractor

Fig. 10 SOMA identification
of the Rössler attractor
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influence on the algorithm convergence’s speed. In [37] were used together SOMA
and DE for mutual comparison.

Another future research is reported in [38]. It is focused on what are relations
between chaos level (measured by Lyapunov exponent) and its impact on EAs
performance. In this paper was control parameter A of logistic equation varied and
logistic equation then used instead of PRNG under this setting. It was found that for
some settings EAs gave much more better results than with Mersenne twister
generator, see Figs. 11 and 12.

Figures 11 and 12 show comparing of results of MT and Chaos random number
generators. It is known that if a = 4 logistic equation will generate numbers from all
interval [0, 1]. This fact is important for evolution process. As it is obvious, evo-
lutions where chaos pseudo-random number generator has been used, converge
faster than evolutions, where MT has been used. On the other hand when a = 3.58
and 1st de Jong’s and Schwefel’s functions have been testing function, see Table 1.

As already mentioned, inherent part of evolutionary algorithms that are based on
Darwin theory of evolution and Mendel theory of genetic heritage, are random
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processes since genetic algorithms and evolutionary strategies use. In [39] is pre-
sented extended experiments of selected evolutionary algorithms and test functions
showing whether random processes really are needed in evolutionary algorithms.
In this experiments were used differential evolution and SOMA algorithms
with functions 2nd DeJong, Ackley, Griewangk, Rastrigin, SineWave and
StretchedSineWave. Use n periodical deterministic processes (based on determin-
istic chaos principles) instead of pseudorandom number generators has been done
there and then compared performance of evolutionary algorithms powered by those
processes and by pseudorandom number generators. Results presented are
numerical demonstration rather than mathematical proofs. In [39] is proposed
hypothesis that certain class of deterministic processes can be used instead of
pseudorandom number generators without lowering the performance of evolu-
tionary algorithms.

Table 1 Minimum, maximu and average fitness value of SOMA experiments for 1st de Jong’s,
Ranna’s and Schwefel’s function with settings mentioned in [38]

Function Min. fitness
value

Max. fitness
value

Average fitness
value

Chaos a = 3.58 1st de
Jong’s

0.000 0.000 0.000

Ranna’s −8588.349 −6946.222 −7716.781

Schwefel’s −8379.658 −6543.776 −7277.547

Chaos
a = 3.828

1st de
Jong’s

0.000 0.000 0.000

Ranna’s −9180.587 −8415.158 −8857.963

Schwefel’s −8379.658 −8379.658 −8379.658

Chaos
a = 3.855

1st de
Jong’s

0.000 0.000 0.000

Ranna’s −9110.511 −8435.843 −8830.062

Schwefel’s −8379.658 −8379.658 −8379.658

Chaos
a = 3.8567

1st de
Jong’s

0.000 0.000 0.000

Ranna’s −9264.553 −8535.640 −8887.881

Schwefel’s −8379.658 −8379.657 −8379.658

Chaos a = 4 1st de
Jong’s

0.000 0.000 0.000

Ranna’s −9258.219 −8947.286 −9090.472

Schwefel’s −8379.658 −8379.658 −8379.658

MT 1st de
Jong’s

0.000 0.000 0.000

Ranna’s −9139.584 −8667.654 −8866.831

Schwefel’s −8379.658 8379.658 8379.658
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An advantage of the proposed use of deterministic processes is the fact that in
such case it is possible to fully repeat runs of given algorithm, analyze its behavior
deterministically, including its full path on searched fitness landscape. We also
believe that mathematical proofs can be in such case more easily constructed for
such class of evolutionary algorithms.

Despite the widely presumed fact that pseudorandom number generators (also
for evolutionary algorithms use) has to have as big period as possible (for example
Mersenne twister with 219937 − 1) and such as the 232 common in many software
packages, in [39] was shown here that deterministic periodical processes with
period 10-35200 is enough for successful experiments reported there.

3 SOMA and Fractal Geometry

Inverse fractal problem is process during which are identified so called coefficients
of affined transformations or coefficients of escape time algorithm (ETA) algorithm,
which is complementary to IFS algorithm [40] as was mentioned before. Fractal
reconstruction is one of well-known problems of fractal geometry and was solved
not only by evolutionary algorithms. Inverse fractal problem is not only artificial
problem, but its solution can help in time series processing (see fractal interpolation
of time series in [40]) or in part of artificial intelligence, so called computer vision.
In the computer vision fractal geometry can be used in object description. Such kind
of description is not big in point of view of data size and is exact—each pixel
position is given by coefficients of affined transformations [40–43].

Algorithms like differential evolution [33] and SOMA [32] were used for
solution of IFP in [44]. For these purposes here was defined cost function whose
minimization produced coefficients of affined transformations. For IFP was chosen
ETA algorithm in grid resolution 100 × 100 cells. Rule of color association of
original ETA was modified here so that recalculated cell remained black if color
was calculated like black otherwise the color was white. In this way usually colored
fractals were transformed into black/white versions. Thanks to this transformation
black cells were associated to 1 and white cells to 0. It represents original and
actually identified elements of matrix (cells of fractal picture). This formula cal-
culate simply sum of cells in which both fractals differs. Minimization of this cost
function (in ideal case 0) has lead to the optimal coefficients, which should be the
same like coefficients of original fractal. For each combination of coefficients the
cost function return total sum—scalar.

Identification of fractal object was done by differential evolution and SOMA so
that there was generated population of individuals of size = number of searched
coefficients [44]. For Mandelbrot set individuals of size = 2 (a, b see Eq. 1). Also
another fractals has been identified like the Vortex and Spider, see [44]. In the case
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of Mandelbrot set, graphically visualizes evolution of fractals, leading to the IFP
solution is depicted in Figs. 13, 14, 15 and 16.

For full report and detail, it is recommended to read [44].

znþ 1 ¼ azbn þ c where z and c 2 C and a; b 2 0; 3h i ð1Þ

Fig. 13 Inverse fractal
problem of Mandelbrot set,
the best fractal estimation on
the start

Fig. 14 Inverse fractal
problem of Mandelbrot set,
the best fractal estimation
during the evolution
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4 SOMA Dynamics as a Complex Networks

The main aim of this SOMA research reported in [45–52], is to show how to
convert EAs dynamics into complex network then interpret tools of complex net-
works analysis on complex networks that are given by evolutionary dynamics.
Reason for this is that today various techniques for analysis and control of complex

Fig. 15 Inverse fractal
problem of Mandelbrot set,
the best fractal estimation
during the evolution

Fig. 16 Inverse fractal
problem of Mandelbrot set,
the best fractal estimation at
the end
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networks exist. If complex network structure is hidden behind EA dynamics, then
we believe and we have numerically demonstrated, that for example above men-
tioned control techniques could be used to improve dynamics and performance of
used EAs. The first steps (i.e. conversion of the EA dynamics to the complex
network and to CML system) have been done in the [45–52]. Now we propose how
standard tools of complex networks analysis can be understood for EAs dynamics
purposes. It has been successfully reported in [45–52] where we discuss conversion
of selected EA to complex network and consequently to CML, its analysis and EA
performance improvement based on network attributes like degree centrality etc.

5 Conclusion

In this chapter were discussed mutual relations between SOMA algorithm and its
dynamics and nontrivial dynamics as chaos for example is. It has been introduced
our results on the field of chaos control, chaos synthesis, chaos identification, as
well as on chaos use instead of PRNGs inside SOMA with constant setting and also
varying of chaos level with measurement of Lyapunov exponent. At the end was
also mentioned so called inverse fractal problem, solved by SOMA. All reported
results here show, that all those applications and hybridizations are useful and
promising.
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Multi-objective Self-organizing Migrating
Algorithm

Petr Kadlec and Zbyněk Raida

Abstract Almost every optimization problem can be viewed as multi-objective
one. Multi-objective problems with conflicting objectives lead to so called Pareto
front which expresses trade-off among the objectives. Multi-objective techniques
yield better understanding of the solved problem because resulting Pareto front
expresses the balance between different objectives. In this chapter, fundamentals of
multi-objective optimization are reviewed. Then, multi-objective optimization
technique based on principle of self-organizing migration is described. The pro-
posed method is able to solve unconstrained, constrained problems having any
number of variables and objectives. The method is designed to find so called
non-dominated set that covers the true Pareto front uniformly.

1 Introduction to Multi-objective Optimization

Almost every optimization problem can be viewed as a multi-objective one: an
engineer can view the design from different angles. An individual fitness (or
objective) function can be formulated for every objective. The considered design
objectives can be either corresponding or conflicting. In the first case, the solved
optimization task leads to a unique solution that achieves the best value of defined
objective function. On the contrary, when two or more objectives are conflicting
some trade-off solution has to be found. Set of all possible trade-off solutions is
usually called as Pareto front. Vilfredo Pareto (1848–1923) was an Italian econo-
mist. He studied conflicting objectives in his works about economic efficiency and
redistribution of incomes. So called Pareto efficiency expresses that improvement of
the proposed solution in one objective leads to deterioration of at least one other
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objective. Let us consider an example of choosing traveling method. We have four
options: a plane, a car, a bus and a bike. Every option brings different traveling time
and different price. If we want to optimize our traveling method from both these
objectives at the same time, there is no obvious winner as indicated in Fig. 1. None
of the options is better than the others in both the objectives. The cheapest variant is
to go by bike but we have to accept that our trip will take the longest time. On the
contrary, flying with a plane is the fastest but the most expensive variant. We can
make some compromise and choose some trade-off solution: a car or a bus. In that
case, we do not get the best possible performance in any of the objectives but
probably satisfactory performance in all of them.

There are two options how to solve a multi-objective optimization problem.
First, we can estimate the balance between objectives and assign individual
objectives importance a priori. This means that one function aggregating all
objectives with relative weight specified by the designer is composed and solved by
a single-objective optimization technique. Second approach is based on searching
for the Pareto front. Once it is known, the designer can see the trade off between all
objectives and can choose the final solution with better understanding of the solved
problem. Generally, MOOP (Multi-Objective Optimization Problem) is composed
of a finite set of objective functions defined for common variables. All of these
objectives are either maximization or minimization problems. Since maximization
problem can be converted to minimization one by simply multiplying the objective
function by −1, just the minimization problems will be considered in the rest of this
text. The general definition of a MOOP is as follows:

Minimize Fmð~xÞ; m ¼ 1; 2; . . .;M:
subject to gjð~xÞ� 0; j ¼ 1; 2; . . .; J:

xðnÞmin � xðnÞ � xðnÞmax:

ð1Þ

where M denotes number of objectives,~x stands for vector of decision variables for

individual solutions and xðnÞmin and xðnÞmax are lower and upper bounds of the n-th

Fig. 1 Example of
multi-objective problem:
choosing a traveling option
[12]
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decision space variable respectively, J stands for number of constraints g. As can be
seen from (1) a multi-objective problem takes place in two multidimensional
spaces: the N-dimensional decision space formed by input variables and M-di-
mensional objective space formed by values of defined objective functions. The
Pareto optimal solutions can be then depicted in both of them (see Fig. 2).

These two spaces are connected with objective functions. Every objective
function “evaluates” a state vector~x and places it in the objective space. Most often,
these objective functions are non-linear. Therefore, the properties in these two
spaces are not the same. For example two state vectors~x having minimal distance in
the decision space can be far from each other in the objective space.

Generally speaking, the search for Pareto optimal solutions takes place in the
decision space and is controlled by information from the objective space. Thanks to
the non-linearity of the solved problems this process can be very difficult.
Moreover, the mechanism of control has to be independent on the nature of solved
problem so the optimization technique can be used for various problems. The
Pareto optimal solutions (state vectors~x) build a set which will be denoted here as
P*. Every member of set P* can be depicted in both the decision and objective
spaces (see red lines in Fig. 2). In general, size of the set P* can be from interval
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Fig. 2 Pareto optimal
solutions of multi-objective
problem depicted in decision
space and objective space [13]
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P�j j 2 h1;1i: Size of the set depends on the relation and nature of the objectives. If
all the objectives are conflicting then the size of P* is larger than 1. On the other
hand, corresponding objectives lead to the degenerate solution having size P�j j ¼ 1:

Generally speaking, M-dimensional problem leads to a Pareto front which is
built by M � 1ð Þ-dimensional hypervolume. For example the Pareto front of
two-objective problem is a curved line while for the three-objective problem it
becomes a curved surface etc. In the real world, it is not possible to find all
members of the Pareto optimal set. However, it is very important to find all parts of
the Pareto front. This brings another goal for the multi-objective optimization.
Beside the request to find the solutions lying exactly on the Pareto front we need to
cover the whole Pareto front uniformly with finite number of solutions. The
example of Pareto-optimal sets with uniform and poor coverage of the Pareto front
are depicted in Fig. 3. As can be seen, members of the set with good distribution are
spaced on the Pareto front equidistantly. On the contrary, the other set covers just
few parts of the Pareto front. Therefore, some information about the problem
remains covered to the designer. The strategy applied for search in the decision
space has to consider the necessity to find solutions with uniform spread.

Most of the pure multi-objective optimizers apply the strategy of so called
principle of dominance. This principle compares two solutions in the objective
space and states if one dominates the other or are mutually non-dominated.
Definition of principle of dominance states that [1]: Solution~x1 is said to dominate
the other solution~x2; if both conditions 1 and 2 are true:

1. Solution~x1 is no worse than~x2 in all objectives.
2. Solution~x1 is strictly better than~x2 in at least one objective.

To understand the principle of dominance well see Fig. 4. In this figure five
solutions of the two-objective problem are depicted in the objective space. The
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dashed lines mark out parts of the objective space that are dominated by the
corresponding solution. As can be seen from this example set: solution ~x1 domi-
nates solutions~x2 and~x3 while solution~x5 is dominated by solution~x4. Sets~x1 and
~x4 are so called non-dominated solutions. If we search in the figure carefully, we
can see that also solutions~x2; ~x3 and~x5 are non-dominated. we can state that there
are two non-dominated subsets:~x1 and~x4 and~x2;~x3,~x5 building advancing fronts. It
is obvious, that non-dominated solutions of any subset of the solved problem are
the solutions closes to the true Pareto front and therefore seem to be very good
candidates for the final solution.

It is obvious that e.g. solution ~x1 is more suitable for our problem than ~x3
because it is better in all objectives. But for non-dominated solutions, it is
impossible to decide which solution is better since. It is good to notice here, that
any solution cannot dominate itself. It is ensured by the second condition of the
dominance principle definition. Therefore, when designing multi-objective opti-
mizer any solution cannot be in the non-dominated subset more than once. Also, the
principle of dominance is transitive. It means that if ~x1 dominates ~x2 and ~x2
dominates~x3; then~x3 has to be dominated also by~x1: This can speed up the process
of search for non-dominated solutions.

The procedure searching for non-dominated solutions is called non-dominated
sorting. There are several approaches in the literature. The problem is to find
non-dominated subset P from the set Q consisting of all solutions. Clearly, any
member of set P can be dominated by any other solution from Q. If set Q covers the
entire objective space, then P becomes the true Pareto optimal set P*. In other
words, P has to cover the whole Pareto front because its members dominates all
other possible solutions of the problem.
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As mentioned before, there are so called advancing fronts of non-dominated
solutions. First front is built by the non-dominated solutions P. All the members of
the second front are dominated by members of the first front and dominate all
solutions from advancing fronts (third and higher). The advancing fronts of
two-objective problem are depicted in Fig. 5. Brief overview of the strategies how
to find non-dominated sets can be found in [1]. If any of the strategies is repeated,
the whole set Q can be sorted into consecutive non-dominated fronts.

Non-dominated sets of higher levels can be important to enhance diversity of
final non-dominated set P found by optimizer. As mentioned before, it is necessary
to cover the Pareto front uniformly. Therefore, the strategy applied in the optimizer
cannot focuse just on members with best values of particular objective functions.
Also, the contribution of a particular solution to the diversity of the non-dominated
set P has to be considered when evaluating quality of particular solutions.

The so called crowding [2] can be applied to enhance diversity of the
non-dominated set P. These methods try to emphasize the solutions from current
population Q that are less crowded in the objective space to preserve the diversity
among the resulting non-dominated set found by the optimizer.

The method crowding distance introduced by Deb et al. in [3] can be used
without need to define any extra parameter. First, members within one front are
sorted according to one objective. Then, the density of solutions surrounding every
member of the front is computed from the Euclidean distance to the neighboring
solutions. For the boundary solutions (extreme in sense of the objective functions
values) large crowding distance value is set to save the found extreme solutions
automatically. This technique gives preferential treatment to the less crowded
solutions.

The crowding distance c is measured in the objective space. First of all, the
members of one front are sorted according to all the objectives Fm: The vectors of
sorted indices~Im are found. The crowding distance c for each member of the front
can be computed using the following equations [1]:

Fig. 5 The advancing
non-dominated fronts [12]
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cðImðiÞÞ ¼
XM
m¼1

cmðImðiÞÞ ð2Þ

where

cmðImðiÞÞ ¼ fmðImðiþ 1ÞÞ � fmðImði� 1ÞÞ
fm;max � fm;min

ð3Þ

where ImðiÞ is the i-th index from the m-th vector of indices, fm;max and fm;min are the
maximal and minimal values of the m-th objective in the current front, respectively.
The value cm for these two extreme solutions is set to infinity (or very large value
considering minimization problems). The crowding distance is the average side
length of the hyper-cuboid defined by solutions surrounding a particular solution
(see Eq. 6). The less crowded solutions (with a higher value of c) are preferred in
the rest of the algorithm (Fig. 6).

Next term from theory of multi-objective optimization that should be explained
here is so called external archive [4]. The external archive is formed by fixed
number of non-dominated solutions. It can be viewed as form of elitism for
multi-objective swarm optimization techniques. Members of the swarm are influ-
enced by the solutions that are present in the external archive. Different methods for
including and removing solutions from external archive can be used.

Similarly, as in case of single-objective optimization, elitism brings the danger
of premature convergence. If all members of the eternal archive lie in the region of
local optimum (e.g. non-dominated front of the second level), all other members of
set Q can be attracted towards these local optima. While the global optimum can be
in the decision space placed very far from solutions in current external archive. it is
good to notice here, that distances between solutions in the decision space and
objective space are usually not in proportion.
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2 MOSOMA

Self-organizing Migrating Algorithm (SOMA) has proven very good performance
on both the benchmark and real-life optimization problems [5]. It has been also
successfully used to solve real-life problems having multiple objectives.
Nevertheless, it was used in connection with so called aggregation methods that
transfers MOOP to SOOP (for overview see [6]). As shown in [7] these methods are
not efficient for searching of Pareto front of the pure multi-objective problem. These
methods lack in the diversity of final non-dominated set and usually have problems
to find solutions on concave parts of the Pareto front.

The algorithm MOSOMA (Multi-Objective Self-Organizing Migrating
Algorithm) was derived in [8] and [9]. This algorithm is able to solve both the
constrained and unconstrained MOOPs having any number of decision space
variables (discrete or continuous) and objective functions. It is suitable for solving
problems with different types of Pareto front: convex, non-convex or discontinuous.
The MATLAB code of MOSOMA can be downloaded at website [10].

MOSOMA makes profit of two basic principles mentioned above: (i) exploration
of the decision space employing techniques that original SOMA uses and (ii) and
search for the non-dominated set in the objective space from current population. For
illustration see Fig. 7. The run of the algorithm can be described by following steps:

1. Defining controlling parameters of the algorithm.
2. Generating the initial population, evaluating objective functions.
3. Choosing external archive from the current population.
4. Migrating agents to members of external archive. Evaluating objective functions

for new positions. Updating the external archive. Selecting migrating agents for
next migration loop.
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5. Testing for stopping condition. If no stopping condition is accomplished, go
back to 3.

6. Choosing final non-dominated set from the current external archive.

The pseudo-code of MOSOMA can be found in Fig. 8. In the following
sub-sections the key parts of the algorithm will be discussed more in detail.

2.1 Controlling Parameters

At the beginning of the algorithm, user has to set some controlling parameters. Most
of them are took over from the single-objective SOMA (see Part I, section “SOMA
Principles and Control Parameters” of this book) but few of them had to be added.
They can be summarized as follows:
FFC Number of fitness function computations.
|P(1)| Initial population size.
T Number of migrating agents.
ST Number of steps in one migration.
PL Relative length of path for one migration.
PRT Probability of perturbation.
Nex,min Minimal size of the external archive.

Initial population size strongly influences the convergence rate of the algorithm.
According to our experience, it is better to generate larger initial population,
because it is expedient to research whole decision space. The higher value of the

Fig. 8 Pseudo-code of
MOSOMA [13]
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parameter reduces speed of MOSOMA just for initial iteration because the con-
vergence rate of the algorithm is controlled especially by number of migrating
agents T and actual size of external archive j~EXT j:

The number of migrating agents in every migration loop is specified by
parameter T. Its integer value is restricted just by the size of initial population
T\ Pð1Þj jð Þ: With higher number of T, research of a decision space is more precise
on one hand, but the speed of MOSOMA decreases on the other hand. It is
appropriate to choose this value similar to size of final non-dominated set Pj j: The
strategy for choosing the migrating agents influences efficiency of the algorithm
more significantly.

In MOSOMA, the meaning of parameters path length and steps is slightly
different than is their meaning in classical SOMA. Path length (PL) is the multiple
of length between two migrating agents. And ST is number of steps that is the
migration path divided to. These two parameters should not be set independently.
They should be set so that the migration does not go through previously visited
places. The condition can be expressed as:

s � PL
ST

6¼ 1; 8s ¼ 1; 2; . . .; ST ð4Þ

As indicated in Fig. 7, MOSOMA assumes that solutions closer to the true
Pareto front lie close to positions of agents currently saved in EXT. Some of s-
multiples of ratio between PL and ST should acquire values slightly higher or lower
than one. The other steps of the migration are also necessary, because they should
avoid the bottleneck of MOSOMA in region of local optimum.

Objective functions values are evaluated in every step of the migration. After
that, a new external archive members EXTðiÞ are selected by the non-dominated
sorting with crowding the union between two sets: previous external archive
EXTði� 1Þ and set of all temporary positions ~TMP defined during last migration.
Within i-th migration loop, the number of fitness function computations FFCðiÞ is
given by number of steps for one migration, number of migrating agents and
external archive size in the previous migration loop:

FFCðiÞ ¼ EXTði� 1Þj j � T � ST ð5Þ

The minimal size of external archive is denoted by symbol Nex;min. This
parameter is important especially for more complex problems when MOSOMA is
not able to find sufficient number of non-dominated solutions during last two
migration loops. It is usually better to fill the external archive with solutions from
advancing fronts to keep efficiency of those migration loops rather than let the
agents to make less migrations during current iteration. Parameter Nex;min cannot
exceed size of the initial population Pð1Þj j and should be similar to the size of the
final non-dominated set specified by user Pj j: As discussed above, the number of
objective function computations FFC increases with growing external archive size.
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Usually, MOSOMA finds larger number of non-dominated solutions. Thus, final
size of EXT is greater than parameter Nex;min:

In [11], sensitivity of MOSOMA on controlling parameters has been investi-
gated. According to the large amount of tests on benchmark problems (few of them
and evaluation metrics are presented in the Appendix of this chapter), the intervals
for individual parameters have been recommended. The values are summarized in
Table 1.

2.2 Migration of Agents

MOSOMA exploits the concept of external archive where all the best solutions are
stored. These solutions build usually the non-dominated set assigned as P. In the i-
th migration loop, every migrating agent visits temporarily new positions in the
decision space:

~TMPt;sðiÞ ¼~xtði� 1Þþ ð~xpði� 1Þ �~xtði� 1ÞÞ � s
ST

� PL �~PRTVt;s ð6Þ

where ~TMPt;s is the vector specifying s-th position during the migration of agent~xt
towards agent ~xp: Symbol ST defines the number of steps for one migration
s ¼ 1; 2; . . .; STð Þ. Parameter PL denotes the multiple of the distance between
agents~xt and~xp. So called perturbation vector~PRTV has the same size as a decision
space vector ~x and consists of zeros and ones. For every migration, N random
numbers from zero to one are generated and the PRTV is then:

PRTVðnÞ ¼ 1 if randðnÞ[PRT ;
0 if randðnÞ\PRT :

�
ð7Þ

where PRT denotes the probability of perturbation set by user.
T migrating agents are selected within every migration loop. According to our

experience, the best way is to choose the migrating set partly randomly (the pre-
mature convergence is suppressed) and partly from the members of the current EXT
(the region of the so far found best solutions is researched carefully to speed-up the
convergence rate).

Table 1 Recommended
intervals for MOSOMA
controlling parameters [11]

Parameter Recommended interval

Pð1Þj j=N h5; 12i
T=N h5; 10i
ST h2; 5i
PL h1:1; 1:7i
PRT h0:1; 0:4i
Nex;min=jPð1Þj h1=3; 2=3i
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At the end of every migration loop non-dominated sorting of P is performed. If
size of P (number of first front members) drops to less than Nex;min the remaining
positions are filled with members of advancing fronts with best values of so called
crowding distance according to Eq. (2).

As in case of single-objective SOMA, individuals migrate through the N-di-
mensional hyper-space of input variables and try to find better solutions.
MOSOMA uses the strategy which should be called ‘AllToMany’. Every individual
migrates towards all members of the external archive as depicted in Fig. 7. We
assume that using Eq. (6) with the path length parameter PL defined so that some of
steps are very close to solution from the external archive should provide new
solutions, which are placed closer to the true Pareto front.

After reviewing the basic principles of MOSOMA, following three stopping
conditions are combined:

• Total number of migration loops I.
• Maximal size of external archive Nex;max (usually multiple of the desired number

of Pareto-optimal solutions Pj j).
• Limited number of objective functions computations FFC.

The setting of appropriate stopping conditions is very important from the
computational time viewpoint, especially. Using the above described ‘AllToMany’
strategy, increasing size of external archive brings more computations of objective
functions, which is usually very CPU time consuming. In MOSOMA, the ratio of
CPU-time devoted for two consecutive migration loops is typically greater than
one. Combination of these three stopping conditions ensures that optimization
process stops in an estimable time and that sufficient number of non-dominated set
members (candidates of the Pareto front) are found.

2.3 Final Non-dominated Set Choice

The size of external archive grows very quickly during migration loops and at the
end of the algorithm, there are more non-dominated solutions then user asked for.
Therefore, novel approach to select final non-dominated set P from EXT was
proposed in [8] and [9]. This approach was proposed to enhance the spread of final
non-dominated set. Obviously, it can be applied only if the size of external archive
is greater than desired number of Pareto optimal solutions.

First, M extreme solutions (with minimal value of m-th objective function Fm)
are saved to set P. The rest of P is than filled with EXT members so that set P covers
the Pareto front as uniform as possible. Two methods has been proposed:
two-objective and M-objective. The latter one can be applied aalso for two
objective problems, but its computational time is larger.

The previously described crowding strategy prefers less crowded solutions and
leads MOSOMA to provide solutions with better spread. The performance can be

94 P. Kadlec and Z. Raida



further improved adding an approach based on measuring Euclidean distance
among the non-dominated solutions.

This strategy works with external archive set EXT. First step is sorting of the set
in ascending order according to first objective function F1 value. Then, the length of
the found non-dominated set e is computed by:

e ¼
XEXTj j

p¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
m¼1

ðFmðpÞ � Fmðp� 1ÞÞ2
vuut ð8Þ

where FmðpÞ is m-th objective function value of the p-th solution from external
archive EXT.

Knowing this, the ideal distance between two uniformly spread solutions eu is
computed:

eu ¼ e
Pj j � 1

ð9Þ

where Pj j is desired number of final non-dominated set. Now, extreme solutions are
saved into P as the first and the last member. Then, j-th member is that one having
the minimal distance Dj:

Dj ¼ ej � ðj� 1Þ � eu
�� ��; j ¼ 2; 3; . . .; Pj j � 1: ð10Þ

where ej is computed as e using Eq. 8 where j replaces p.
Resulting Pareto front after applying this procedure is depicted in Fig. 9. Five

non-dominated solutions (marked by plus symbol) are chosen from external archive
containing seven solutions (denoted by cross symbol).
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Unfortunately, the previously described two-objective approach cannot be
directly extended for Pareto fronts having more than two objectives. In fact, when
sorting the solutions of a multi-objective (M[ 2) non-dominated set according to
one of the objectives, the sorted solutions are not neighboring in sense of a topology
[12]. Also, various curved shapes of multi-objective Pareto fronts can make the
choice of the final set P from EXT impossible according to regular elements of a
particular hypervolume (e.g. elements of a surface for M = 3, elements of a volume
for M = 4, etc.).

Therefore, we have proposed a new method for the choice of the final
non-dominated set P from the external archive EXT in [9]. We measure the
Euclidean distance among the found solutions. First, M solutions with minimal
values of particular Fm are saved into P. Particular solutions are then successively
saved into P until P does not contain the desired number of solutions. Always, the
q-th solution from EXT having the maximal distance D (the sum of Euclidian
distances towards all members of the current P) is chosen:

D ¼
XPj j

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

ðFmðpÞ � FmðqÞÞ2
vuut ð11Þ

An example result of this procedure can be found in Fig. 10. A part of the
surface of the paraboloid builds the Pareto front. Red crosses mark the chosen
solutions in set P. It is obvious, that the chosen solutions are spread along the whole
Pareto front uniformly.
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3 Appendix I—Evaluation Metrics

The quality of multi-objective optimizers can be measured by several metrics on
benchmark problems with known Pareto front. Here, few evaluation metrics are
briefly reviewed, for further information see [1] or [12].

Generational distance

The generational distance (GD) evaluates the accuracy of found non-dominated
set P from a set of 500 uniformly spread true Pareto-optimal solutions P*:

GD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP Pj j

p¼1 d
2
p

q
Pj j ð12Þ

where dp stands for the Euclidean distance measured in the objective space between
the p-th solution from the set P and the closest member of P*:

dp ¼ min
P�j j

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

ðfm;p � f �m;kÞ2
vuut ð13Þ

where k denotes the index of the solution in set P*.

Spread

Spread (Δ) measures the uniformity of found non-dominated set:

D ¼
PM

m¼1 de;m þ P MSTj j
p¼1 dp � davg

�� ��PM
m¼1 de;m þ MSTj jdavg

ð14Þ

where dp denotes the Euclidean distance between the p-th and ðpþ 1Þ-st solution
from P; de;m denotes the distance from computed extreme solutions to the true ones
and davg is the average distance among all computed solutions. Symbol MST stands
for so called Minimum spanning tree of the non-dominated set.

Hit rate

Hit rate HR is expressing efficiency of the search. It is simply ratio between
number of found non-dominated solutions and number of objective function
evaluations:

HR ¼ Pj j
FFC

100% ð15Þ
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Hypervolume

Hypervolume HV evaluates accuracy and uniformity of found non-dominated set
at the same time. It measures hypervolume in the objective space dominated by the
found non-dominated set:

HV ¼
[Pj j

p¼1

Vp ð16Þ

where Vp is hypervolume defined by p-th point from set P and the reference point
W (see Fig. 11). Sometimes, relative hypervolume HVR as ratio between HV for
found non-dominated set P and HV for 500 true Pareto front members P* is used:

HVR ¼ HVðPÞ
HVðP�Þ ð17Þ

4 Appendix II—Benchmark Problems

The quality of multi-objective optimizers can be measured by several metrics on
benchmark problems with known Pareto front. Here, few benchmark problems are
briefly reviewed, for further information see [1] or [12]. For every problem,
objective function definition, variable bounds and Pareto front visualization are
derived here.
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Simple convex SC1 (Fig. 12)

F1 ¼ x1
F2 ¼ 1þ x2

x1
0:1� x1 � 1
0� x2 � 1

P� : x�2 ¼ 0; x�1 2 h0:1; 1i

Schwefel SCH1 (Fig. 13)

F1 ¼ x2

F2 ¼ ðx� 2Þ2
�5� x� 5

P� : x� 2 h0; 2i

Fonseca FON (Fig. 14)
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Fig. 12 Benchmark problem SC1 [12]. a Decision space cut, b objective space
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Fig. 13 Benchmark problem Schwefel [12]. a Decision space cut, b objective space

Multi-objective Self-organizing Migrating Algorithm 99



F1 ¼ 1� exp � PN
n¼1

ðxn � 1ffiffiffi
N

p Þ2
� �

F2 ¼ 1� exp � PN
n¼1

ðxn þ 1ffiffiffi
N

p Þ2
� �

�4� xn � 4; n ¼ 1; 2; . . .;N

P� : F�
2 ¼ 1� exp �½2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1� f �1 Þ
p �� �

; 0�F�
1 � 1� expð�4Þ

Poloni POL (Fig. 15)

F1 ¼ 1þðA1 � B� 1Þ2 þðA2 � B2Þ2
F2 ¼ ðx1 þ 3Þ2 þðx2 þ 3Þ2

A1 ¼ 0:5 sinð1Þ � 2 cosð1Þþ sinð2Þ � 1:5 cosð2Þ
A2 ¼ 1:5 sinð1Þ � cosð1Þþ 2 sinð2Þ � 0:5 cosð2Þ

B1 ¼ 0:5 sinðx1Þ � 2 cosðx1Þþ sinðx2Þ � 1:5 cosðx2Þ
B2 ¼ 1:5 sinðx1Þ � cosðx1Þþ 2 sinðx2Þ � 0:5 cosðx2Þ

�p� xn � p; n ¼ 1; 2
P�: analytically not available
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Fig. 14 Benchmark problem Fonseca [12]. a Decision space cut, b objective space
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Zitzler, Deb, Thiele 1 ZDT1 (Fig. 16)

F1 ¼ x1
F2 ¼ gh

gð~xÞ ¼ 1þ 9
N�1

PN
n¼2

xn

hðF1; gÞ ¼ 1�
ffiffiffiffi
F1
g

q
0� xn � 1; n ¼ 1; 2; . . .;N

P� : x�1 � 1; x�n ¼ 0

Zitzler, Deb, Thiele 2 ZDT2 (Fig. 17)
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Fig. 16 Benchmark problem Zitzler, Deb, Thiele 1 [12]. a Decision space cut, b objective space
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Fig. 17 Benchmark problem Zitzler, Deb, Thiele 2 [12]. a Decision space cut, b objective space
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F1 ¼ x1
F2 ¼ gh

gð~xÞ ¼ 1þ 9
N�1

PN
n¼2

xn

hðF1; gÞ ¼ 1� F1
g

	 
2

0� xn � 1; n ¼ 1; 2; . . .;N
P� : x�1 � 1; x�n ¼ 0

Deb, Thiele, Laumanns, Zitzler 1 DTLZ1 (Fig. 18)

F1 ¼ 1
2 x1x2 1þ gð~xKÞ½ �

F2 ¼ 1
2 ð1� x2Þ 1þ gð~xKÞ½ �

F3 ¼ 1
2 ð1� x1Þ 1þ gð~xKÞ½ �

gð~xÞ ¼ 100 ~xKj j þ Pj~xK j
k¼1

xk � 0:5ð Þ2� cos 20p xk � 0:5ð Þð Þ
h i( )

P� : x�2 ¼ 1
2 � x�1; x�k ¼ 0:5; k ¼ 3; 4; . . .;N

Deb, Thiele, Laumanns, Zitzler 2 DTLZ2 (Fig. 19)

F1 ¼ 1þ g ~xKð Þ½ � cos x1 p
2

� �
cos x2 p

2

� �
F2 ¼ 1þ g ~xKð Þ½ � cos x1 p

2

� �
sin x2 p

2

� �
F3 ¼ 1þ g ~xKð Þ½ � sin x1 p

2
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Multi-objective Design of EM Components

Petr Kadlec and Zbyněk Raida

Abstract Design of EM components is usually very demanding task. It comprises
setting of large number of variables. With increasing number of variables, the
number of possible combinations increases exponentially. Therefore, the use of
global stochastic optimizers became essential. Use of multi-objective optimizers
such as MOSOMA (Multi-Objective Self-Organizing Migrating Algorithm) gives
the user extra knowledge about the solved problem and its contradictory require-
ments. In this chapter, applications of MOSOMA for solution of problems from
electromagnetics are first briefly reviewed. Then, three applications are discussed
more in detail: design of Yagi-Uda antenna array, design of dielectric layered filter
and control of adaptive beamforming in time domain of slotted antenna array.
Results of MOSOMA are compared with previously published solutions. The
possibility how to treat problems having discrete decision space is discussed here.

Multi-objective optimization can be used to solve problems from any field of
human activities: e.g. civil engineering, economics, mechanical engineering etc.
Also MOSOMA (Multi-Objective Optimization Algorithm) is derived as general
tool and therefore can be used relatively easily to solve any type of problem.

As discussed in previous chapter, solution of the multi-objective problem leads
to so called Pareto front. The advantage of multi-objective approach is that designer
acquires from the shape of the Pareto front extra information about trade-off
between particular objectives. The optimizer offers him a set of non-dominated
solutions and he can choose the final one, which meets best his requirements.

This chapter is divided into two parts: first one discusses application of
MOSOMA to benchmark problems and compares MOSOMA with other
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multi-objective algorithms from the point of view of convergence properties.
Second part shows some real-life problems which has been successfully solved by
MOSOMA.

1 Design of EM Components

Design of EM (ElectroMagnetic) components e.g. antennas, filters, guiding struc-
tures etc. implies the large number of degrees of freedom or variables. With
increasing number of variables, the number of combinations increases exponentially
which makes the parametric analysis of the problem impossible. Therefore, use of
global optimization methods has long tradition in the field of electromagnetics.

MOSOMA is relatively new algorithm, since it was introduced in 2011 [1]. It
has been successfully applied to design various EM components since then. In [2]
MOSOMA was used to control adaptive beamforming of array of slot antennas in
time domain. In [3] a digital filter coefficients were found using MOSOMA so that
the filter is able to truncate computational domain of the FDTD (Finite Difference
Frequency Domain) method with no reflections. In [4] traditional EM components
parameters—Yagi-Uda antenna and dielectric layered filter—are designed by
MOSOMA. In [5, 6] MOSOMA helps to design so called filtenna—an antenna with
filtering properties. In the following subsections, selected applications will be
discussed more in detail.

1.1 Yagi-Uda Antenna Design

Yagi-Uda antenna is well known concept of wired antenna array. It was named after
two Japanese physicists: Yagi [7] introduced this concept in 1928 and Uda [8] who
continued in Yagi’s work in 1954. Venkatarayalu and Ray [9] and Kuwahara [10]
have defined design of Yagi-Uda antenna as multi-objective optimization problem.

The antenna consisting of N elements is depicted in Fig. 1. The first element is
usually the longest one and acts as reflector. Second element is driven by a source
current. Rest of the elements are so called directors. In the figure, dn denotes the
total length of the nth element. Symbol sn stands for the spacing between nth and
(n + 1)st element.

The design of Yagi-Uda array consists in searching for lengths of N elements
and spacing between them. To keep the optimization task as general as possible, all
parameters are defined with respect to the operating wavelength k. The optimization
task is then to compute 2N�1 parameters. The length of every element can be
chosen from interval dn=k 2 h0:30; 0:70i and the spacing from interval
sn=k 2 h0:10; 0:35i.
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Two objectives are considered in this formulation of the Yagi-Uda design
problem—maximization of gain G and minimization of relative side lobe levels
SLL:

F1 ¼ �G ð1Þ

F2 ¼ SLL ð2Þ

Antenna parameter gain expresses how much power is transmitted in the
direction of peak radiation in comparison with isotropic source. Side lobe level is
parameter, that describes maximal level of far-field radiation pattern, that is not the
main lobe. Usually, side lobes should be suppressed as much as possible. Please
notice that gain is multiplied by −1 in the first objective function. The codes of
MOSOMA [11] presume just minimization objective functions. Two constraint
functions are added to ensure a proper impedance matching of the antenna:

j50� <ðZinÞj ¼ 5 ð3Þ

j50� =ðZinÞj ¼ 10 ð4Þ

where Zin denotes the input impedance of the antenna. The analysis of the antenna
array necessary for the computation of objectives and constraints can be performed
using the freeware software 4NEC2 based on Method of Moments [12]. The
detailed description how to run 4NEC2 software directly from Matlab can be found
in [4].

The settings of MOSOMA was made so that it computes objective functions
maximal 36,000-times. Then, our results can be compared with results published in
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[9, 10]. The MOSOMA controlling parameters set for the run are summarized in
Table 1.

For simplicity, we will consider the Yagi-Uda antenna having N = 4 elements.
MOSOMA has been run ten-times and the best results are published here. Resulting
Pareto front is depicted in Fig. 2. Here, results of the MOSOMA can be directly
compared with results of algorithm MOEA (Multi-Objective Evolutionary
Algorithm) published in [9]. MOSOMA outperforms MOEA, because most of the
solutions proposed by MOEA are dominated by solutions proposed by MOSOMA.

In Fig. 2, three selected solutions are highlighted: the best solution according to
objective F1 (maximal gain G ¼ 10:35 dBi), the best solution according to objective
F2 (minimal side lobe level SLL ¼ �54:29 dB) and the trade-off solution which
shows compromise between the gain (G ¼ 10:08 dBi) and relative side lobe level
(SLL ¼ �11:81 dB). Radiation patterns for all these solutions are depicted in Fig. 3.
The lengths and spacing between individual elements can be found in Table 2.

1.2 Dielectric Layered Filter Design

Design of a dielectric filter can be formulated as constrained two-objective problem.
It involves an optimization of a relative permittivity and a width of individual layers
to perform desired filtering properties in microwave frequency band. Venkatarayalu
used his MOEA to solve this problem in [13]. Goudos used for its solution a variant

Table 1 MOSOMA settings for design of Yagi-Uda antenna

Parameter FFC PL ST jP1j T Nex,min

36,000 1.3 5 30 20 15

−10 −8 −6 −4 −2 0

−60

−50

−40

−30

−20

−10

0

F
1
 (dBi)

F
2 (

dB
)

MOSOMA
MOEA
best F

1

best F
2

trade−off

Fig. 2 Pareto optimal
solutions found by
MOSOMA [4] and by MOEA
[9] for 4-element Yagi-Uda
antenna
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of MOPSO (Multi-Objective Particle Swarm Optimization) to solve the same
problem in [14].

If we want to design a filter having N layers, 2N parameters are set by the
optimizer. The geometry of layered medium is depicted in Fig. 4. The theory of
diffraction solves the problem of wave propagating through layered medium [15].

Table 2 Yagi-Uda antenna parameters designed by MOSOMA ([4]) and MOEA ([9])

Algorithm MOSOMA MOEA [9]

Best F1 Best F2 Trade-off Best F1 Best F2

dðkÞ sðkÞ dðkÞ sðkÞ dðkÞ sðkÞ dðkÞ sðkÞ dðkÞ sðkÞ
1 0.473 0.313 0.494 0.245 0.474 0.295 0.480 0.270 0.628 0.204

2 0.445 0.350 0.469 0.196 0.463 0.260 0.474 0.186 0.488 0.195

3 0.439 0.288 0.402 0.272 0.440 0.249 0.436 0.274 0.436 0.114

4 0.434 – 0.651 – 0.433 – 0.434 – 0.582 –

G (dBi) 10.35 5.64 10.08 9.60 5.50

SLL (dB) −7.60 −54.29 −11.81 −12.14 −62.60

ZinðXÞ 45.18 + 6.96i 45.32 − 1.70i 45.36 + 3.65i 47.59 − 5.67i 45.51 + 7.83i

VSWR(−) 1.19 1.11 1.13 1.13 1.21
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Fig. 3 H-plane radiation patterns of chosen solutions from Pareto front obtained by MOSOMA
for four-element Yagi-Uda antenna [4]
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In Fig. 4, k0 stands for the wave vector of the impinging wave, ln denotes width of
nth layer, er;n denotes relative permittivity of nth layer, an is the incident angle for
nth interface and Rn is the reflection coefficient of nth interface. Interface between
the first and second dielectric layer is denoted by R2.

In theory of diffraction, reflection coefficient is the complex number which
expresses how much of the waves energy is reflected from the interface of two
dielectric media. For this example, homogeneous, lossless, nonmagnetic materials
are considered. Then, generalized recursive reflection coefficient Rn for the nth
interface is derived [15]:

Rn ¼ rn þRnþ 1 expð2iknlnÞ
1þ rnRnþ 1 expð2iknlnÞ ð5Þ

The wave vector kn valid in nth layer is computed using:

kn ¼ 2pf
c

ffiffiffiffiffiffiffi
er;n

p ð6Þ

In theory, two modes can propagate through the layered medium: transversally
electric (TE) and magnetic (TM). The two reflection coefficients are then:

rn;TE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;n�1ð1� sin2 an�1Þ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;nð1� sin2 anÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;n�1ð1� sin2 an�1Þ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;nð1� sin2 anÞ
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and

rn;TM ¼
er;n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;n�1ð1� sin2 an�1Þ

q
� er;n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;nð1� sin2 anÞ

q

er;n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;n�1ð1� sin2 an�1Þ

q
þ er;n�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er;nð1� sin2 anÞ

q ð8Þ

The nth layer incidence angle is:

an ¼ sin�1ð
ffiffiffiffiffiffiffiffiffiffiffi
er;n�1

p
ffiffiffiffiffiffiffi
er;n

p an�1Þ ð9Þ

Considering the whole medium having N layers, reflection coefficient R1,(TE) and
R1,(TM) expresse the reflection properties of the whole filter. Then, two-objective
functions can be defined [4]:

F1 ¼ 1
P

XP
p¼1

½jR1;TEðfpÞj2 þ jR1;TMðfpÞj2� ð10Þ

F2 ¼ 1
S

XS
s¼1

½2� jR1;TEðfsÞj2 � jR1;TMðfsÞj2� ð11Þ

where fp and fs denote the pass and stop frequencies of the filter, respectively, and
P and S stands for the number of frequencies in the frequency list. The objective
function F1 minimizes the reflection of the layered media in the pass band while the
other function F2 maximizes the reflection in the stop band. Four constraint func-
tions are added to objectives to formulate the problem. These constraints define
limits for the pass band fpc and stop band fsc [13]:

20 log jR1;TEðfpcÞj\�10 dB ð12Þ

20 log jR1;TMðfpcÞj\�10 dB ð13Þ

20 log jR1;TEðfscÞj[�5 dB ð14Þ

20 log jR1;TMðfscÞj[�10 dB ð15Þ

Here, fpc and fsc denote the pass and stop band frequencies considered for con-
straints, respectively.

For the example, number of layers was fixed to N = 7 as in [4, 13, 14]. The
incidence angle of wave impinging the filter a0 (see Fig. 4) was set to p

4. The width
of every layer ln can vary in the interval h1; 10i mm. The relative permittivity of all
layers can be chosen from commercially available dielectric materials 1.01, 2.20,
2.33, 2.50, 2.94, 3.00, 3.02, 3.27, 3.38, 4.48, 4.50, 6.00, 6.15, 9.20, 10.20 [13].
MOSOMA works in general only with continuous input variables. The problem
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with discrete input variables can be solved using a relatively simple approach. As
we have 15 discrete values, the input variables denoting relative permittivity from
the discrete set containing 15 values, are set from the interval h0; 15i. This interval
is divided uniformly into 15 subintervals, each corresponding to one value of an
available dielectric permittivity (e.g. variable denoting width of the first layer
x8 = 6.35 corresponds to the seventh value from the list of available permittivities
er ¼ 3:02). The variables are within the algorithm treated as continuous. Only
objective functions are evaluated with the corresponding value of the relative
permittivity.

This procedure brings obviously some shortcomings. If both the agents that
participate on the migration have similar values of the input variable, all steps of the
migration can cause, that the continuous variable does not leave the original
subinterval and the same permittivity is examined again. Another problem is caused
by the fact that different values of the input variable means one value of the relative
permittivity. Then, the result of the migration depends on the initial value of the
migrating agent in the subinterval. Let us consider Eq. (6) from Chap. 1 with no
influence of perturbation and parameters PL = 1.3 and ST = 3 and two different
migrating agents having only one variable xq = 0.10 and x�q ¼ 0:90. Now, let them
migrate towards the member of the external archive xp = 3.5. The resulting steps of
the migration correspond to different dielectric materials TMP ¼ 1:62; 3:13; 4:65
and TMP� ¼ 2:51; 4:02; 5:54. Beside all the shortcomings, the algorithm is able to
solve problems with continuous and discrete variables simultaneously without any
change of MOSOMA program. The only change comprises the evaluation of
objective functions—discrete values are used according to subintervals of the input
variable.

In the example, band-pass filter for the band from 28 to 32 GHz is designed. The
frequencies for the objective functions (10) and (11) and constraint functions (12)–
(15) are summarized in Table 3. The controlling parameters are set according to
Table 4.

The best Pareto front obtained from ten runs of MOSOMA is depicted in Fig. 5.
Again, three solutions are highlighted here: the best solution according to the first
objective (red marker), second objective (green) and the trade-off solution (blue).

Table 3 Frequency bands for the band-pass filter design

Band Lower limit (GHz) Upper limit (GHz)

fp 28 32

fs 24; 32 28; 36

fpc 29 31

fsc 24; 34 26; 36

Table 4 MOSOMA settings for design of dielectric layered filter

Parameter FFC PL ST jP1j T Nex,min

15,000 1.3 5 30 20 15
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The reflection properties according to frequency of those three solutions is depicted
in Fig. 6. Here, the red solution ideally satisfies the first objective, but the last two
constraints are violated. On the contrary, green solution suits the second objective
very well but violates first two constraint functions. Finally, blue solution respects
both the objectives and does not violate any constraint function.

The trade-off solution composed of layers having width respectively 4.686,
1.995, 4.739, 1.001, 1.003, 1.002, 8.663 mm and relative permittivities 10.20, 1.01,
10.20, 1.01, 1.01, 2.94, 2.35 was chosen as the final trade-off solution. This can be
compared with solutions published in [9, 14]. Resulting reflection coefficients are
compared in Fig. 7. Reflection coefficient for our solution remains below −16 dB
for the TE mode and −22 dB for the TM mode in the whole operational band.
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Coefficients RTE and RTM of our proposal decrease steeper at the boundaries of the
desired frequency band than for solutions from [9, 14]. Total width of our design is
23.08 mm compared to 33.44 mm [9] and 21.35 mm [14].

1.3 Adaptive Beamforming in Time Domain

Previous two examples of MOSOMA application in electromagnetics considered
design of some product—filter and antenna. In this case, specific physical properties
of the designed product were changed by the optimization. In addition, MOSOMA
can be applied for controlling purposes, also. In [3], MOSOMA was used to control
properties of theoretical approach—digital filter for purposes of the FDTD (Finite
Difference Time Domain). The coefficients of filter are designed so that it truncates
the computational domain as the perfectly matched layer—no energy is reflected
back to the computational domain from its boundary.

Another example of MOSOMA application as controlling mechanism can be the
adaptive beamfoming of slot antennas array in time domain presented in [2]. Beam
forming is used for an antenna array directional transmissions. It can be applied in
many fields of human interest: e.g. radar, wireless communication or biomedicine.
Beamforming tries to set antenna elements so that nulls and peaks appears in
desired positions of the radiation pattern. It can be achieved either in time domain—
by delaying the inputs of individual elements, or in frequency domain—by
changing the phase of individual elements. The amplitude of the feeding can vary
for both the methods.

To this example, slot antenna array feeding is optimized so the radiated energy is
focused to desired space while vanishes in another part of the irradiated body. This
scenario meets the requirements of biomedicine hyperthermia [16]. The radiated
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energy is focused to a certain part of the body to heat e.g. a tumor while another
parts of the body should not be heated more than is necessary.

The computational scenario can be found in Fig. 8. Here, N non-overlapping slot
antennas with a finite width in infinitesimal PEC (Perfect Electric Conductor)
ground plane are depicted. The computational domain D is irradiated by the antenna
array. It is filled with vacuum with relative permittivity er ¼ 1 and relative per-
meability lr ¼ 1. The nth slot An is defined as an\x1\bn with respect to
a1\b1\a2\ � � �\bn.

Every slot is excited by power exponential EM pulse [17]:

VðtÞ ¼ Vmax
t
tr

v
exp½�vð t

tr
� 1Þ�Hðt � TÞ ð16Þ

where Vmax denotes pulse amplitude, t denotes time, tr means rise time when the
pulse reaches its amplitude Vmax, v[ 0 is so called rising exponent, H(.) assigns the
Heaviside step function and T is the start time of the pulse. It is assumed that the
first slot is excited at time T1 and consecutive slots (n ¼ 2; 3; . . .;N) are excited at
times Tn [ T1.

The closed form expressions for the EM pulsed fields radiated by a planar array
of slot antennas have been derived in [18]. This time domain approach is based on
so called Cagniard-DeHoop method [19]. The field in the computational domain
D is the superposition of the fields radiated by individual slots. The space-time (x1,
x3, t) EM fields can be computed according to [18]:
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E1;E3;H2f g ¼
XN
n¼1

Vn

bn � an

� 1
p

x3ðx1 � bnÞ
c2t2 � x23

; 1;
1
l0

tðx1 � bnÞ
c2t2 � x23

� �
Hðt � Tb;nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � T2
a;n

q
2
64

� 1
p

x3ðx1 � anÞ
c2t2 � x23

; 1;
1
l0

tðx1 � anÞ
c2t2 � x23

� �
Hðt � Ta;nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 � T2
a;n

q

þ 1; 0;
ffiffiffiffiffi
e0
l0

r� �
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Þ
�

ð17Þ

where * denotes the time convolution, c denotes velocity of light in vacuum, Ta,n
denotes the time of arrival from the edge denoted an of the nth slot and dð:Þ denotes
the Dirac pulse. First two constituents in Eq. (17) are cylindrical waves from the
edges of the slot, third constituent is a plane wave propagating from the slot
aperture. All the components contain the time convolution integral that can be
solved numerically. The field components from Eq. (17) can be used for compu-
tation of two components of the Poynting vector S:

S1 ¼ �E3H2

S3 ¼ �E1H2
ð18Þ

In the example, slot antenna array having N = 5 elements is considered. All the
slots have the same width W and are in positions with spacing w/2. In this con-
figuration, 14 parameters can vary during the optimization: excitation times Tn of
four most right slots, amplitudes Vmax,n of the excitation pulses for all the slots
(v = 2 for Eq. (16)) and rice times of the excitation pulses tr,n.

Knowing that, two objectives can be formulated. First one maximizes the energy
in point Pmax while the second one minimizes it in point Pmin at time t/tn = 10.
Points of interest are defined as follows: Pmax x1=w ¼ 0; x2=w ¼ 6:25f g and
Pmin x1=w ¼ 2:25; x2= ¼ 6:25f g. Then, objective F1 is:

F1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ðPmaxÞ

Sn

� �2
þ S3ðPmaxÞ

Sn

� �2s
ð19Þ

and second objective F2:

F1 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ðPminÞ

Sn

� �2
þ S3ðPminÞ

Sn

� �2s
ð20Þ
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where Sn denotes the Poynting vector of the TEM mode propagating in a parallel
plate waveguide used for the feeding of the apertures.

The settings of MOSOMA for the experiment have been chosen with respect to
N = 14 variables of the optimization problem. Settings for MOSOMA parameters
has been set according to Table 5. The bounds for individual variables were defined
as follows: Tn 2 h0; 2tni, Vmax;n 2 h0; 1i and tr;n 2 h0; 1:5tni.

The non-dominated solutions found by MOSOMA are depicted in Fig. 9. The
selected trade-off solution is depicted as a green cross here. The values of corre-
sponding variables for the trade-off solution are: x ¼ 0:50; 1:00; 2:00; 2:00;f
1:00; 1:00; 1:00; 1:00; 1:00; 1:50; 1:44; 1:50; 1:50; 1:35g.

EM fields time evolution is depicted in Fig. 10. For the sake of place, just four
steps for times n = 2, 3, 7 and 10 are depicted here. As can be seen here, at the time
n = 10, the radiated energy is focused to the region of Pmax (devoted in the figure as
green rectangle), while the energy in point Pmin is minimal. Thanks to the formu-
lation of the objective functions, the radiated field needs to be computed only in two
points at one time of the computational domain D, which decreases the computa-
tional demands of this approach.

Now, if we apply the feeding scheme found by MOSOMA periodically, the
selected part of irradiated body will absorb much more energy than the rest of it. As
a result of that, the temperature of the tissue should increase in the region of
interest.

Table 5 MOSOMA settings for control of adaptive beamforming of slot antennas array

Parameter FFC PL ST jP1j T Nex,min

45,000 1.3 5 30 50 30

−6 −5 −4 −3 −2 −1 0 1
−0.5

0

0.5

1

1.5

2

2.5

3

F
1
 (−)

F
2
 (

−
)

all researched
non−dominated
trade−off

Fig. 9 The Pareto front of the
adaptive beamfoming
problem found by MOSOMA
[2]
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Utilization of Parallel Computing
for Discrete Self-organizing Migration
Algorithm

Marek Běhálek, Petr Gajdoš and Donald Davendra

Abstract Evolutionary algorithms can take advantage of parallel computing,
because it decreases the computational time and increases the size of processable
instances. In this chapter, various options for a parallelization of DISCRETE SELF-
ORGANISING MIGRATING ALGORITHM are described, with three implemented parallel
variants described in greater detail. They covers the most frequently used hardware
and software technologies, namely: parallel computing with threads and shared
memory; general purpose programming on GPUs with CUDA; and distributed
computing with MPI. The first two implementations speed up the computation, the
last one moreover changes the original algorithm. It adds a new layer that simplifies
its usage in the distributed environment.

1 Introduction

DISCRETE SELF-ORGANISING MIGRATING ALGORITHM (DSOMA) [7, 8] is one of the
newer meta-heuristic algorithms. It has been developed to solve (NP-hard) com-
binatorial optimization problems. For such problems (it is believed), that there is no
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exact method to get a solution in a reasonable period of time. Still, computer
scientists and programmers frequently encounter such problems and they are often
addressed by heuristic methods or approximation algorithms. But even if we use
these algorithms, the solution remains still very computationally demanding.
Parallel/distributed computing in this aspect can be a great asset. It can decrease the
computational time or increase the size of processable instances.

In this chapter, different options how to take advantage of the parallel computing
for DSOMA are explored. Firstly, approaches that are frequently used in this area
are described. Then various options how to parallelize DSOMA are analyzed.
Finally, three selected variants that were implemented are introduced. The last
section briefly summarizes results of various experiments that were performed.

2 Levels of Parallelization

Various meta-heuristics have been introduced in the last years. There are articles
(for example [1, 21]) that try to categorize the most frequently used approaches,
how to extend these algorithms to take advantage from the parallel/distributed
computing architecture. DSOMA is a population based meta-heuristic, that itera-
tively searches for better solutions. Iterations in DSOMA are called migrations.
The DSOMA population composes of individuals. In each migration, selected pairs
of individuals are used to produce new trial individuals. If a better solution is found
among the trial individuals, then the successful trial individual replaces the original
individual in the population.

From the algorithm point of view, we can define different levels, where we can
apply parallel computing.

• Fitness function—usually the most time consuming function is the computation
of the fitness function. It is frequently used in every step of DSOMA. First
option how to speed up the computation is to speed up this function. On the
other hand, used fitness function depends on the solved problem and some
fitness functions may be easier to parallelize then others.

• Constructing trial individuals—Trial individuals in DSOMA are computed
based on two individuals from the population. After the trial individuals are
generated, they are repaired and their fitness values are computed. These last
two operations are more time consuming then generating the trial individuals,
moreover for a given set of trial individuals they are independent and thus
suitable to be performed in parallel.

• Computing a migration—a common strategy is to select pairs of individuals and
construct trial individuals by combining the current best individual in the
population with the remaining individuals. Computing the trial individuals for a
given pair does not depend on other pairs and it can be performed in parallel.

To improve the obtained results, DSOMA (similarly to other evolutionary
algorithms) utilizes some local search algorithm. In [8], the 2-Opt local search is
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utilised. Because an application of such local search algorithm on a single indi-
vidual can be even more time consuming then the whole DSOMA computations, its
parallelization can be crucial, if we want to speed up the computation.

Moreover, similarly to other population based evolution algorithms, we can add
some new layers to improve the overall parallel behaviour. For example, if we want
to use a computer (cluster) with the distributed memory architecture (they represent
a majority between current supercomputers) then none of the previously described
levels may be appropriate. The reason is the communication bottleneck, which can
outweigh the speed up achieved by the parallel execution.

The most popular and simplest model in the distributed environment is the so
called island model [1, 2]. In this model, the population is partitioned in a small set
of sub-populations (islands, colonies). These islands execute the original algorithm
and then some (sparse) individuals exchange algorithm is applied to exchange
information between such islands. It was shown, that sparse information exchange
between such islands brings diversity into the population and thus prevents con-
vergence in local optima. Moreover, the overall parallel behaviour is affected by the
used communication topology or exchange data rate [14, 22].

In practical applications, some hybrid approaches that combine more than one
level of parallelization are used (see Sect. 4.2). In general, the higher level of
parallelization is coarse-grain implementation (for example the mentioned set of
islands) and then each of these islands integrates other parallel model (or models).

3 Hardware and Software Options for Parallelization

In Sect. 2, different levels of parallelization for DSOMA were mentioned. But the
appropriate level (or levels) of parallelization depends also on the target hardware
and used software technologies.

The following paragraphs summarize the most distinguishing options that are
state-of-the art in the world of high performance computing (HPC). The first such
choice, that greatly affects the solution especially from a programmer’s perspective,
is a target device that will be used for computing. There are two main options:

• general purpose processors—current (super)computers used for HPC contains
up to hundreds of thousands of computational cores. Even current mainstream
desktop processors contain between 4 and 8 cores. Considering the usage of
general purpose processors, the parallelization usually implements a model—
Multiple Program–Multiple Data (MPMD). In this model, each core runs
independently of others and can perform a different program with its own data.

• many-core (or massively multi-core) coprocessors—the most common devices
from this category are graphics processing units (GPUs) that allows general
purpose programming. However, recently INTEL has also introduced their XEON
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PHI,1 a coprocessor for HPC. These coprocessors usually contain many (tens or
hundreds) lightweight cores and frequently implement Single Instruction—
Multiple Data (SIMD) model. It describes devices with multiple processing
elements that perform the same operation on multiple data simultaneously.

Considering the many-core coprocessors, usually the computation is divided
between general purpose processor and many-core coprocessor. Such SIMD
coprocessors successfully exploit data level parallelism, but not concurrency.
A common approach is to use the coprocessor when appropriate and for remaining
computations use the general purpose processors. Moreover, most applications do
not use the coprocessor and CPU at the same time [13, 16]. Some effort has been
made to exploit the full computation power of CPUs and coprocessors at the same
time for evolutionary algorithms [26], but this idea is not explored in this chapter
any further.

Current computers used in HPC frequently combine both type of devices. For
example a computer named TITAN (from the Top 500 list2) is a cluster composed
from 18.688 nodes where each node contains a traditional general purpose pro-
cessor with 16 cores and the NVIDIA TESLA K20 GPU accelerator.

Considering general purpose processors, there are two main memory
architectures.

• Shared memory architecture—in this architecture, all processors share the same
memory and this memory is used to exchange data and for synchronization. This
architecture is frequently used for smaller HPC computers with tenths or hun-
dreds computing cores.

• Distributed memory architecture—it is the main model in todays supercom-
puters. In this architecture, a computer (usually a cluster) composes from
interconnected nodes. Each of these nodes usually contains multiple computa-
tional cores with the shared memory. Nodes can exchange some kind of mes-
sages, but they cannot directly access a memory in a different node. Thus the
memory is in fact distributed among the nodes.

Considering HPC, the most widely used programming languages are C, C++ or
FORTRAN. In this chapter, we will focus on C++, as our original sequential imple-
mentation of DSOMA is also in C++.

Concurrent programming with threads is the simplest way as to how to create a
parallel application in the shared memory environment. Nearly every programming
language supports this programming paradigm. Also C++ contains libraries for
concurrent programming with threads.3 Moreover, there are technologies that
simplify the development of such applications. Like an example we can list OPEN

1http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.
2http://www.top500.org/system/177975.
3http://www.cplusplus.com/reference/thread/thread/.
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MULTI-PROCESSING (OPENMP),4 CILK and CILK++.5 For the distributed memory
model, the de facto standard is MESSAGE PASSING INTERFACE (MPI).6

The technologies for programming on GPUs have quickly evolved in last ten
years. Currently, there are various approaches and technologies. Earlier, general
purpose computing on graphics processing units was primarily based on modifi-
cation of graphics pipeline, e.g. in OPEN GRAPHICS LIBRARY (OPENGL) where pro-
grammable shaders are used for time consuming BASIC LINEAR ALGEBRA

SUBPROGRAMS (BLAS). Nowadays, OPEN COMPUTING LANGUAGE (OPENCL) is the
currently dominant open general-purpose GPU computing language. It is an open
standard defined by the Khronos Group.7 The dominant proprietary framework is
NVIDIA’s COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA) that was launched in
2006 as an SDK and API that allows using the C programming language to code
algorithms executable on GPUs. MICROSOFT

8 also introduced its own API called
DIRECTCOMPUTE that supports general-purpose computing on GPUs, this time with
full support of DIRECTX.

In the following subsections, technologies that are later used for parallelization
of DSOMA are introduced in more detail.

3.1 OpenMP

OPENMP is maybe the most widely used technology considering shared memory
architecture. Moreover, it is also frequently used in combination with MPI for
distributed memory systems. OPENMP is an API that supports multi-platform shared
memory programming in C, C++, and FORTRAN. Its support is implemented on most
processor architectures and operating systems. It consists of a set of compiler
directives, library routines, and environment variables that influence run-time
behavior.

The simplest example of the OPENMP usage is the automatic parallelization of
for cycles. Listing 1 demonstrates a simple for cycle. The pragma directive
defines, that this cycle should be parallelized by OPENMP. OPENMP is supported by
a wide range of compilers. For example, its support is built in widely used GNU
COMPILER COLECTION (GCC).9 This directive is ignored by a compiler, if there is no
OPENMP support or if it is switched off.

4http://openmp.org/.
5https://www.cilkplus.org/.
6http://www.mpi-forum.org/.
7http://www.khronos.org.
8http://www.microsoft.com.
9https://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html.
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Listing 2 shows how to enable OPENMP with GCC g++ compiler (parameter
-fopenmp). Using the environment variable OMP_NUM_THREADS, it is possible
to define the number of threads that are used during the execution.

Even if OPENMP automatically parallelize annotated for cycles, other issues
like a concurrent modification of shared data, must be solved by a programmer.
OPENMP provides additional constructs controlling data sharing or synchronization.

3.2 Message Passing Interface

MPI is a language-independent communications protocol used to program parallel
computers or clusters with distributed memory architecture. It defines a
message-passing interface, together with protocol and semantic specifications for
how its features must behave in any implementation. The MPI applications com-
pose from independent processes where the MPI messages and constructs are the
only communication mechanisms. It is used to exchange data and also to solve
synchronization issues.

The primary functionality is a point-to-point and collective communication.
Listing 3 shows a simple example of a point-to-point communication in MPI.
Similarly to OPENMP, a user specifies the number of processes when the application
starts. Each process is uniquely identified by its rank (a number from 0 to the
number of processes). In the following example, two processes are expected.
Process ranked as 0 sends some data and the process 1 is waiting until the data
arrives.
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Even though MPI is relatively simple to use, it represents a quite low-level
interface. Hence development of applications directly in C++ with MPI can be
laborious and time-consuming. Furthermore, the complexity of creating parallel
applications lies also in other supportive activities like debugging and profiling.
Even an experienced programmer of sequential applications can spend a lot of time
learning a new set of complex tools. Therefore, for many non-experts in the area of
parallel computing, it can be difficult to create, debug, and analyze their distributed
applications.

To overcome the described issues, the tool KAIRA [3, 4] was used for the
development of a distributed variant of DSOMA KAIRA is a complete development
environment for MPI C++ applications. It provide an environment in which a user
can implement and experiment with his or her ideas in a short time; create a real
running program; and verify its performance, scalability, and correctness.

KAIRA is an open source application and it is freely available at: http://verif.cs.
vsb.cz/kaira/.

3.2.1 Brief Introduction into KAIRA

The key aspect of KAIRA is its usage of a visual program. A user specifies com-
munication and parallel aspects in a visual way. However, the application is not
completely programmed visually. Sequential parts of the developed application are
written in C++ in a textual form and they are inserted into the visual program. So
for real applications, the visual program is usually relatively small. The visual
representation serves also as a natural unifying element for supportive activities like
debugging and performance analysis. The used visual programming language is
inspired by COLORED PETRI NETS (CPNs) [10].
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From the combination of the visual program (that captures parallel aspects) and
inserted sequential codes, KAIRA is able to generate a stand-alone MPI application in
a fully automatic way. Such a generated program can be run directly on a cluster
computer. For debugging purposes, multi-threaded and sequential versions of the
application can be generated. It is important to mention that KAIRA is not an
automatic parallelization tool. It does not discover parallelisms in applications. The
user has to explicitly define them, however they are defined in a high-level way and
the tool derives the implementation details.

In Sect. 4.2, a KAIRA’s visual program is used to present a parallel behaviour of
an implemented distributed variant of DSOMA. The basic notation is the same as
that of CPNs, hence circles (places) represent memory spaces and boxes (transi-
tions) represent actions. Places have its types defined in lower right corner. In the
upper right corner, there is an initial marking. Moreover, transitions can have
priorities (a number in a upper right corner). Transitions with higher priorities are
executed (fired) before transitions with lower priorities.

Figure 1 shows a simple example—Ping-Pong in KAIRA.10 This net is executed
on each (MPI) process. An enriched C++ is used as an inscription language on arcs.
When fired, every transition takes values (tokens) from its input places and pro-
duces tokens into its output places. The expression in the form expr@target
means that created tokens (by evaluating expr) are sent to another process
determined by its evaluating target. It allows communication between
(MPI) processes.

In this example, first two processes exchange an integer token. Transition ping
takes a value (named x in a scope of this transition), increments this value (by the
expression (x + 1)) and sends it to the process 1 (@1 on its output arc). Similarly,
transition pong takes a value, it increments this value and sends it to the process 0.
While the initial marking is used only for process 0, there is just one token 0 at
process 0 at the beginning of the computation and the only enabled transition is the
transition ping on process 0 (it is detonated by green elements in Fig. 2). After it is

Fig. 1 The ping-pong
example’s visual program

10The example is a part of Kaira’s distribution.
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fired, there is just one token with a value 1 on process 1 and only the transition
pong is enabled (see Fig. 3). After the transition pong is fired, the token returns to
process 0 and the exchange can start again (Fig. 4).

The double bordered transition contains a C++ code that is executed whenever
the transition is fired. This code is in fact a simple function with predefined defi-
nition. This definition is automatically derived from the net.

Figure 5 contains an initial marking as an example, where a C++ code is inserted
into the transition Compute. This code is present in Listing 4. The structure Vars
and the function’s header are generated automatically. Arcs detonated with
[bulk] construct take not only one token but all tokens during the transition’s
firing. The transition Compute takes all numbers from place p1 and it multiplies

Fig. 2 Initial marking

Fig. 3 First step in the
computation

Fig. 4 Second step in
computation
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them by a value from p2. The results are inserted into the vector result. The first
step in computation is captured by Fig. 6.

Fig. 5 An example with
inserted C++ code

Fig. 6 A marking after the
transition compute was fired
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3.3 GPU Computing with CUDA

COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA) [5, 28] was introduced by
NVIDIA as a general parallel programming and computing platform in 2006.
Although utilization of CUDA was very limited at the beginning and the first GPU
chips based on G80 TESLA ARCHITECTURE were too expensive, it became very
popular after a few years. NVIDIA developed their own hardware architecture that
enables solving known problems in shorter time due to massive parallelism. The
GPUs were well-suited to address real problems that could be expressed as
data-parallel computations. Except for the gaming community that still plays a very
important role for hardware producers and vendors, NVIDIA decided to focus on
research and computational areas as well. Nowadays, CUDA is the most popular
and supported architecture running on GPUs [6, 12, 25] and its environment allows
a heterogeneous programming approach.

Simply stated, a part of program pipeline can be processed by GPU, whereas
another part by CPU. Moreover, current design patterns for parallel programming
[13, 15, 16, 27] strongly suggest to distinguish between CPU and GPU parts to
achieve the best application performance. A good program structuring itself does
not ensure expected results. Memory arrangement and data alignment belong to the
most important tasks that the programmer has to solve. CUDA ready graphic cards
have basically five types of memory. The biggest is a global memory, which serves
as a communication point between GPU and CPU and a primary storage if the data
can not be given somewhere else. Since global memory is too slow, a shared
memory (shared by all threads in one thread-block) is often employed to achieve
better performance. Registers represent the fastest memory. Constant and texture
memory are used in such cases where the read-only data structures can be used. The
most important functions performed on GPUs are called kernels. Every kernel
needs its runtime configuration that consists at least of CUDA grid and block
settings. Both grid and blocks can have up to three dimensions. The grid consists of
blocks and every block encapsulates a set of threads. The computation is performed
on several streaming multi-processors independently (MAXWELL MULTIPROCESSOR

SMM on MAXWELL architecture). The maximum number of blocks, threads and
SMMs depends on GPU specification. We refer to [5, 20, 23, 28] for more details
on CUDA programming since it is out of scope of this chapter.

Internal architecture of GPUs is suitable for vector and matrix algebra opera-
tions. That leads to the wide usage of GPUs in the area of information retrieval, data
mining, image processing, data compression, etc. Nowadays, programmers usually
choose between OPENCL which is supported by all hardware producers, and CUDA
which is supported by NVIDIA only. An important benefit of OPENCL is its plat-
form independence; however, CUDA still sets the trends in GPU programming.
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CUDA kernels are usually relatively complex and particular implementation can
require suitable data arrangement and indexing. Listing 5 represents an illustrative
kernel implementation of the same loop as can be seen in Listing 1.

4 Parallelization of DSOMA

In this section, three implemented parallel versions of DSOMA are introduced. All
these variants are implemented in C++. First two solutions use general purpose
processors. First is an OPENMP solution that uses the shared memory. OPENMP was
chosen because it is relatively easy and it provides a meaningful speedup even on a
common desktop computer. Second solution uses the distributed memory archi-
tecture. From the programmer’s perspective, it combines the usage of MPI with
OPENMP. This solution can meaningfully use a computational power of hundreds of
processors. Finally, the last solution uses the CUDA technology for the general
purpose programing on NVIDIA GPUs.

4.1 OPENMP Implementation of DSOMA

OPENMP is a relatively easy to use technology. It is usually easy to identify time
consuming for cycles that are suitable for the parallelization with OPENMP. Still,
to get a meaningful speed up and at least modes scalability, it requires additional
work and a programmer’s insight.

Simplified main method from our original sequential DSOMA implementation
is captured in Listing 6. The most important class is Soma. The instance of this
class allocates a memory space for storing the DSOMA population, information as
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to which individual represents the current best solution and also it contains a
memory space for computing the fitness function and constructing trial individuals.

What remains are in fact two for cycles. The outer one is not suitable for a
parallelization, because the current best solution is used during the construction of
trial individuals. So, each step depends on results of the previous steps. In contrary,
the inner cycle computes trial individuals for selected pairs from the population.
Each of these computations is in fact independent and the trial individuals for every
pair can be computed in parallel.

So, the basic idea is to add the OPENMP pragma to parallelize the inner cycle.
Still, there are some issues. First of all, there are some memory issues that can lead
to incorrect results. To compute the fitness function or the trial individuals in
parallel, each of the involved threads needs its own memory to store data for
ongoing computations. Moreover, while the population changes during the com-
putation of a migration (new better individuals are included into the population), it
is easier to prepare the whole migration before its computation starts. These
modifications along with OPENMP clauses are captured in Listing 7.
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After the mentioned memory issues were removed, the parallel implementation
computed correct results. Still, the resulting application worked even slower than
the original sequential implementation. The reason was due to some functions from
the C++ API. For an example the function rand11 can be named. It is frequently
called while repairing trial individuals. An access to this function is restricted to a
single thread, because it modifies internal state objects and thus its usage slows the
whole computation. As a solution, the function rand was replaced by the functions
rand_r.

After such issues were solved, we got the desired OPENMP parallel implemen-
tation. Its performance (scalability and speedup) is summarized in Sect. 5.

11http://www.cplusplus.com/reference/cstdlib/rand/.
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4.2 Distributed Island Model Implementation of DSOMA

As was mentioned in Sect. 3.2.1, a distributed MPI implementation of DSOMA was
implemented in KAIRA. The visual program capturing the communication aspects is
shown in Fig. 7.

By default, initial marking is used only for process 0. The blue area is used for
initialization in KAIRA, defining processes where the initial marking is applied. In
our case, it is applied to all processes (the range is defined by the expression: ca::
range(0, ctx.process_count())). So, every process has its migration
counter and an instance of a class Soma. It is the same class as in Listing 7. It stores
the DSOMA population and functions necessary to compute new migrations. It
represents an island in the mentioned island model.

The most important transition is Compute migration. It computes one
migration. The same code as in Listing 7 is used. Also for this variant, the same
OPENMP constructs are used to speed up the computation of a single migration.
Moreover, it optionally sends the current best result to a neighbouring process. In
our implementation, islands are connected in a ring configuration, where a process
with rank x sends its results to a process ranked as x + 1. The last process sends
results to process 0. Results are exchanged every n-th migration (it is set as a
command line parameter when starting). An index −1 is used to define empty
solutions, which are not exchanged between processes.

After the desired number of migration is computed (or a wall-time is reached), the
best results from all processes are gathered and the overall best results is obtained.

4.3 GPU Implementation

In case of GPU utilization, the emphasis is put on the partial subtask that must be
solved in advance, e.g. data transfers, memory allocations, the blocks and grids

Fig. 7 A visual program in Kaira defining communication for the distributed implementation
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settings, etc. Finally, all implementation must cover individual hardware specifi-
cation to achieve the best performance. This can be illustrated on data alignment
and arrangement of thread blocks.

4.3.1 Data Storage, Transfers and Alignment

Searching for the best parallel implementation usually starts with the design of data
storage and analysis of all data transfers. There are several kinds of memory on
CUDA devices, each with different scope, lifetime, and caching behaviour. The
global memory, which resides in the device DRAM, is used for transfers between
the host and device as well as for the data input to and output from kernels. Usually,
dynamic and/or large data is stored in the global memory. However, the best
approach is often based on pre-cached data model, where all static data is copied
into fast memory to avoid higher latency of I/O operations. Texture memory meets
these requirements. It is much more faster than the global memory due to texture
cache and supports enough space for allocation. Moreover, MAXWELL architecture
brings a new model that combines unified L1/texture cache. The unified L1/texture
cache acts as a coalescing buffer for memory accesses, gathering up the data
requested by the threads of a warp prior to delivery of that data to the warp. This
function was previously served by separated L1 cache in Fermi and Kepler. Texture
memory was used to store a static timetable represented by a matrix A½M � J�,
where M is a number of machines, J is a number of jobs and A½m; j� is a time
demanded by a machine m 2 h0; 1; . . .;MÞ to process a job j 2 h0; 1; . . .; JÞ. Other
data such as vectors of machines or jobs permutations are stored in the global
memory and can be transferred into shared memory within individual CUDA
kernels. This data is modified very often when DSOMA is running and the only
chance to increase I/O accesses is to use some inner CUDA optimization mecha-
nism, such as __restricts__ pointers.

In case of DSOMA, all jobs permutations are stored in form of vectors in the
global memory. Although accessing global memory is quite slow, the data align-
ment plays an important role as well and has a significant influence on final
computation time.

Let x 2 N
N
0 represents a single jobs permutation of dimension N. An element of

such permutation is represented by zero-based index of a job (jobID) in DSOMA.
Then the permutation xi is the i-th individual of the population P, where jPj ¼ b
and i 2 h0; . . .; bÞ. Then the i-th individual can be written as N dimensional vector
xi ¼ hx0i ; x1i ; x2i ; . . .; xN�1

i i, where x ji is an individual’s element represented by jobID,
where j 2 h0; . . .;NÞ.

In case of Row-Major Format (RMF), all individuals are stored as a single vector
v such that the first N elements of the vector v represent the individual x0, the second
N-tuple represents the second individual x1 etc. Then
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v ¼ hx00; x10; . . .; xN�1
0 ; x01; x

1
1; . . .; x

N�1
1 ; . . .; x0b�1; x

1
b�1; . . .; x

N�1
b�1 i:

In case of Column-Major Format (CMF), all individuals are stored as a single
vector v such that the first β elements of the vector v represent all the first elements
of all individuals x 2 P, the second β-tuple represents all the second elements of all
individual x 2 P etc. Then

v ¼ hx00; x01; . . .; x0b�1; x
1
0; x

1
1; . . .; x

1
b�1; . . .; x

N�1
0 ; xN�1

1 ; . . .; xN�1
b�1 i:

The RMF or CMF is selected according to inner implementation of CUDA
kernels [6]. Figures 8 and 9 illustrate the successive computation of the same
schedule in three different ways. In every table (index matrix M), the header row
represents a job permutation, and the header column is a vector of indices of
machines. Both vectors are indexed from zero in order to simplify this example.
Next, all values M½i; j� represent iteration numbers in which the real schedule times
½i; j� were computed, e.g. M½1; 0� and M½0; 1� in Fig. 9 were computed in the second
iteration indexed by 1 (zero-based indexing). Finally, Fig. 9 illustrates parallel
accesses into matrices by four CUDA threads (4 threads in a block), whereas Fig. 8
shows a sequential computation processed by a single thread which will be
described in more detail in the following section.

Having regard to the alignment of the memory, RMF was used in Fig. 9 which
ensures required coalesced access into global memory [5, 6, 16]. Contrariwise,
CMF must be used in the case of Fig. 8, because it is expected that every thread of

Fig. 8 Single thread
computation

Fig. 9 Block/Warp
computation
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the CUDA block will process a single schedule, thus the values M½i; j� of all
schedules have to be aligned close to each other.

4.3.2 Data Level Prallelism

The above described memory alignment plays an important role for kernel design as
well as arrangement of threads in blocks [15].

Obtaining schedules is the most time consuming part of DSOMA, especially in
the case of local search, where a huge number of job permutations must be eval-
uated. Standard many-core architectures based on latest CPUs solve this problem by
data division and distribution among several CPU cores. This is the first level of
Data Parallelism (DLP) managed by SIMD architectures. In case of GPU utiliza-
tion, this kind of data processing can be distributed to the level of individual
computation threads. The number of active threads that run in parallel will result in
the number of processed schedules. Nevertheless, modern GPUs with support of
OPENCL [11, 18, 24] or CUDA [5, 28] enable deeper and more complex data
decomposition. Threads within a thread block can cooperate on a single schedule
processing, they can share some intermediate data and reduce global memory
accesses. Finally, better data parallelism enables higher occupancy of GPU chips
that leads to the better computation performance.

Two CUDA kernels that compute individual schedules will be briefly introduced
in the following text.

1. Single Thread Computation
2. Block/Warp Computation

NVIDIA Kepler architecture [19] introduced several new features that can sig-
nificantly decrease kernel run-time. Shuffle instructions brought another way of
sharing data among threads within the same warp, in addition to shared memory
utilization. Using these instructions however has its limits, e.g. at most 32 threads
(=warp size) can be affected by the shuffle instruction call, the number of used
registers increases, thread/lane indexing can make some code parts more complex,
etc. On the other hand, shuffle instructions can reduce the amount of utilized share
memory, eliminate thread synchronization barriers, or reduce total number of
instructions with respect to thread data processing and warp data transfers. This can
keep CUDA cores busy with memory accesses that have low latency and high
bandwidth. The shuffle instructions were primarily used in case of Block/Warp
Computation.

4.3.3 Single Thread Computation

In case of single thread computation (see Fig. 8), it is supposed that a single thread
will subsequently process one or more schedules. CUDA blocks can be designed to
fit inner limits of a device, such as an optimal number of threads with respect to the
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number of used registers or amount of shared memory. This implementation is
suitable especially during the 2OPT search because N2 schedules must be computed
in the worst case.

4.3.4 Block/Warp Computation

Such implementation represents the next level of parallelism, where a set of threads
cooperates and computes a single schedule. Figure 9 illustrates a successive eval-
uation of cells in the grid of a schedule marked by zero-based indices. The same
indices mark the cells that are processed in parallel. Let the number of jobs be
J. Then there is an inner loop of ðJþB� 1Þ=B steps, where B is a block size; a
block of 4 threads was used in this illustrative example. In every step, a strip of at
most B columns is computed, such that all values in the last active column are
called border values and are stored in the shared memory for the next step. If
t 2 f0; 1; 2; 3g is a thread index and s is the zero-based step index, then a thread
t computes the whole column s � Bþ t in every step. In case of B\32, where 32 is
the warp size [19], threads can store intermediate data in registers and share them by
shuffle instructions to achieve the best performance.

A strip of B columns is computed in a loop of MþB� 1 iterations. If a thread
computes a single value (cell of a schedule), then it moves down and evaluates a
new cell in the following iteration reusing previously computed value that was
shuffled to subsequent thread simultaneously. The cells marked by number 3 were
evaluated in the 4-th iteration, which is the first one, where all threads run the same
instructions in parallel. Until then, only iþ 1 threads were active, where i 2
h0; 1; . . .;MþB� 1Þ is the zero-based iteration index. Next, all threads run parallel
while ðB� 1Þ� i\M. Finally, the threads subsequently finish their computations
during the last B iterations. After that, the thread block shift right and process the
next column strip.

This strategy is suitable for faster processing of schedules with respects to GPU
limits. As it was mentioned above, the usage of shuffle instructions needs CUDA
blocks of at most 32 threads. Moreover, this number of threads limits the total
number of active blocks. Although such implementation is more complicated, it
finally brings significant performance improvement and it is more suitable for
DSOMA in general.

5 Experiments

During the experiments, a fixed set of parameters was used. There are 1000 indi-
viduals in the DSOMA population, 300 migrations are computed, and the maxi-
mum number of trial individuals is 32. A 2-opt variant that stops after a better
solution is found is used as a local search algorithm and it is applied to the current
best solution, if it is not improved in 5 consecutive migrations. These setting may
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not be optimal for all problems. But in our experiments, we do not evaluate the
DSOMA itself, but only its parallel behavior. Moreover, while randomness is a
crucial part of the DSOMA execution, runs in our experiments are repeated 10
times and average numbers are presented as results. The experiments were per-
formed on a flow shop instances from the extended TAILLARD SETS [17].

5.1 OPENMP Experiments

In the first experiment, the performance of the OPENMP solution that was described
in Sect. 4.1 is evaluated. For this experiment, problems with varying size were used
as an input. The varying size is important, because the size of the solved instance
can affect the overall parallel performance. The measurements were performed on a
computer with 84 cores (14 times 6 core Intel Xeon E5-4610 2.40 GHz) and 1 TB
of shared memory.

The average execution times for chosen problems (along with their sizes) are
summarized in Table 1. The relative speedup and relative efficiency are captured in
Fig. 10. As defined in [9], the relative speedup on p processes (threads in our case)
is a ratio between the execution time on one processor and the execution time on
p processors. Similarly relative efficiency is the relative speedup divided by the
number of processes. From the experiment results, it can be observed, that the
parallel implementation is suitable for larger instances, where the amount of
computation overcomes the overhead introduced by parallel execution. The main
parallel bottleneck in our solution is the concurrent memory access. To further
optimize the memory usage, some fundamental changes to the current implemen-
tation needs to be made. Considering the used hardware, it is very hard to achieve
the efficiency close to 1 with growing number of threads. Still, for larger instances,
the efficiency remained close to 50 % even for 32 threads. In absolute numbers, the
computational time for the largest instance was reduced by nearly 600 s from 634 s
to 40 s.

Table 1 Execution times (measured in seconds) for the OpenMP implementation of DSOMA

Problem Number of used OPENMP threads

Name Machines Jobs 1 2 4 8 16 32

ta100 10 200 23.22 16.95 14.01 10.51 6.44 5.98

ta110 20 200 45.61 23.93 16.27 10.85 7.72 6.34

ta120 20 500 108.9 59.14 38.61 22.00 12.57 10.67

ta130 50 500 243.56 146.28 76.78 35.98 23.01 15.98

ta140 20 700 287.15 170.40 83.92 44.91 25.57 18.31

ta150 50 700 443.92 233.48 128.95 72.04 39.65 23.97

ta160 20 1000 329.37 182.93 116.36 70.80 34.25 21.24

ta170 50 1000 633.93 368.64 213.18 114.96 64.09 39.26
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5.2 CUDA Experiments

The second set of experiments was focused on the CUDA implementation of
DSOMA. The measurements were performed on a computer with the following
specification: AMD FX(tm)-8150 Eight-Core Processor, 3.61 GHz, 32 GB RAM,
Windows 64-bit and a single GPU NVIDIA GeForce GTX 970, 4 GB
GDDR5 RAM, 13 SMx, Maxwell architecture with CUDA compute capability 5.2.

As it was aforementioned, the data alignment and Single or Warp/Block com-
putation strategy plays an important role in the process of evaluation of time
schedules. Hence the first GPU results (see Table 2) illustrate performances of
different computation strategies only as a part of the whole DSOMA algorithm.
300 schedules were evaluated in parallel for every input data (row in the Table 2).
According to expectations, the greater is the number of jobs, the Block/Warp
computation gives better results with comparison to Single Thread Strategy. Then
the Column Major Format (CMF) data alignment providing coalesced memory
access enables the computation time reduction.

Fig. 10 Relative speedup and relative efficiency graphs

Table 2 Execution times (measured in milli-seconds) for the CUDA implementation of different
schedulers

Problem Single Thread Block/Warp

Name Machines Jobs CMF RMF CMF RMF

ta100 10 200 1.90 1.98 2.79 3.00

ta110 20 200 4.11 3.95 3.51 4.18

ta120 20 500 10.04 9.99 8.46 10.12

ta130 50 500 23.08 23.95 13.37 24.49

ta140 20 700 14.08 13.97 11.74 14.30

ta150 50 700 32.28 33.56 18.53 34.31

ta160 20 1000 20.27 19.73 16.75 20.06

ta170 50 1000 46.19 47.66 16.55 53.89

Bold indicates fastest solution for each problem instance
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The next experiments were focused on the total computation time with the same
settings as in the case of Table 1. The Block/Warp strategy was used to evaluate all
individual schedules, whereas Single Thread strategy was used during 2Opt local
search phase. Nevertheless, the computation time covers the whole DSOMA run-
time, i.e. generating individuals and trials, repairing trials, 2Opt search, searing for
leader, etc. All partial steps were implemented with the usage of CUDA in the form
of individual kernels, and no additional data transfers between host and device were
needed. All runtimes are given in Table 3.

5.3 Distributed DSOMA Experiment

The final experiment was performed with the distributed variant of DSOMA (de-
scribed in Sect. 4.2). ANSELM, a supercomputer from IT4INNOVATIONS12 was used for
this experiment. ANSLEM

13 is a cluster composed from 209 computing nodes, where
each node contains two Intel Sandy Bridge E5-2665, 8-core, 2.4 GHz processors
and 64 GB of physical memory.

In this experiment, 16 islands were used. On every 5-th migration, these islands
exchanged their current best solutions with their neighbours. Figure 11 captures the
progress in computation and shows the fitness values of the current best solution for
every island in time (time is measured in seconds).

Table 3 Execution times
(measured in seconds) for the
CUDA implementation
DSOMA

Problem Time (s)

Name Machines Jobs

ta100 10 200 3.68

ta110 20 200 4.75

ta120 20 500 10.03

ta130 50 500 12.79

ta140 20 700 13.60

ta150 50 700 16.14

ta160 20 1000 24.64

ta170 50 1000 22.68

12http://www.it4i.cz/.
13https://docs.it4i.cz/anselm-cluster-documentation/hardware-overview.
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6 Conclusion

In this chapter, different approaches as to how to take advantage of the parallel
computing for DSOMA were explored. From all possible variants, three distin-
guished options were chosen and implemented. For the first variant, OPENMP which
is a relatively easy to use technology at it is suitable even for common desktop
computers with a multi-core processor was used. Based on performed experiments,
we can conclude that it is possible to achieve meaningful speedup, but the efficiency
drops down with growing number of processors. While it was relatively easy to get
the first parallel solution with this technology, it still requires a lot of tuning to get a
good parallel behaviour for a larger number of processors.

The second implemented solution uses the general purpose programming on
GPUs supporting CUDA. This technology can be successfully applied to speed up
the computation of tasks like evolutionary algorithms. Also for DSOMA, we were
able to significantly reduce the overall computational time. Still, it requires a lot of
additional work to use this technology and it requires a skilled CUDA programmer.
In our case, the original sequential solution was in fact completely rewritten.
Furthermore, it is closely tied to the used hardware and it can be hard to use it on a
different GPU.

Previous solutions implement the original DSOMA, where the parallel beha-
viour is added to the architecture. The last solution adds a new layer (a set of
distributed islands) that makes the algorithm suitable for distributed computing.
This chapter focuses on parallelization of DSOMA. It does not argue about the
quality of obtained results. This is especially true for the distributed variant. It adds

Fig. 11 Progress of fitness values of current best solutions in time in a single run
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new parameters like exchange rate or a number of islands and these parameters can
affect the quality of obtained results. Such solution can be executed on hundreds of
processors, but to use them meaningfully, it still requires a lot of testing and tuning.
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C-SOMAQI: Self Organizing Migrating
Algorithm with Quadratic Interpolation
Crossover Operator for Constrained
Global Optimization

Dipti Singh, Seema Agrawal and Kusum Deep

Abstract SOMAQI is a variant of Self Organizing Migrating Algorithm (SOMA)
in which SOMA is hybridized with Quadratic Interpolation crossover operator,
presented by Singh et al. (Advances in intelligent and soft computing. Springer,
India, pp. 225–234, 2014). The algorithm SOMAQI has been designed to solve
unconstrained nonlinear optimization problems. Earlier it has been tested on several
benchmark problems and the results obtained by this technique outperform the
results taken by several other techniques in terms of population size and function
evaluations. In this chapter SOMAQI has been extended for solving constrained
nonlinear optimization problems (C-SOMAQI) by including a penalty parameter
free approach to select the feasible solutions. This algorithm also works with small
population size and converges very fast. A set of 10 constrained optimization
problems has been used to test the performance of the proposed algorithm. These
problems are varying in complexity. To validate the efficiency of the proposed
algorithm results are compared with the results obtained by C-SOMGA and
C-SOMA. On the basis of the comparison it has been concluded that C-SOMAQI is
efficient to solve constrained nonlinear optimization problems.
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1 Introduction

Many real life problems arising in various disciplines of engineering, economics,
decision science, operations research and social system come out to be nonlinear
constrained optimization problems. The main aim of the proposed work is to
develop an efficient approach to find the global optimal solution of these kinds of
problems.

A general single criterion constrained non linear global optimization problem
can be described as follows:

Minimize f xð Þ
Subject to: gi xð Þ� 0; i ¼ 1; . . .;m

hj xð Þ ¼ 0; j ¼ 1; . . .; l
x 2 X

where f :Rn ! R; gi:Rn ! R; i ¼ 1; . . .; m and hj:Rn ! R; j ¼ 1; . . .; l are non-
linear continuous functions defined on the search space X�Rn,
where X ¼ x ¼ x1; x2; . . .; xnð Þjai � xi � bi; i ¼ 1; . . .; nf g:

A large number of design optimization problems can be modeled as single
criterion nonlinear programming problems and they are usually highly constrained.
In contrast to conventional optimization methods, evolutionary algorithm methods
for single criterion optimization have following two advantages:

• They impose no restriction on the optimization problem. The objective function
can be multimodal and noncontinuous.

• They can be used to solve any optimization models i.e., models with continuous,
integer discrete and mixed continuous-integer and continuous-discrete decision
variables.

A variety of constraint handling techniques has appeared in literature for solving
nonlinear constrained optimization problems. The main problem in applying evo-
lutionary algorithms to solve a constrained problem is how to deal with constraints
because evolutionary operators used for manipulating chromosomes may yield
infeasible solutions. Quite a large number of methods have been developed to
handle constraints when evolutionary algorithms are used [1–4]). These methods
can be classified as follows: (i) Rejecting method accept only the feasible solutions
and discard the infeasible solutions during the search process. (ii) Repairing
method Repairs infeasible solutions to feasible solutions using some repair pro-
cedure. (iii) Modifying genetic operator method modifies the genetic operators
according to the requirement of the problem to maintain the feasibility of solutions.
(iv) Penalty function method penalizes infeasible solutions using a penalty
parameter. Before applying this strategy, first the constrained problem is trans-
formed to an unconstrained problem in which the function to be minimized has the
following form:

148 D. Singh et al.



ø x; kð Þ ¼ f xð Þþ k
Xl

j¼1

hj xð Þ� �2 þ k
Xm
i¼1

Gi gi xð Þ½ �2; ð1Þ

where Gi is the Heaviside operator such that Gi ¼ 0 for gi xð Þ� 0 and Gi ¼
1 for gi xð Þ\0; and k is a positive multiplier that controls the magnitude of penalty
terms.

Among the above mentioned methods penalty function method is considered to
be the most effective tool to produce the feasible solutions of constrained opti-
mization problems. Many attempts have been made in literature to improve the
efficiency of these penalty function methods which can be found in [5–7]. One
major drawback of penalty function method is that the penalty parameter has to be
fine tuned. Small value of penalty parameter leads to infeasible solution [8, 9] and
on the other hand large value of penalty parameter may generate an alternate
feasible solution and fails to converge to the optimal solution. To overcome the
above mentioned drawbacks. Deb [10] proposed a penalty parameter free approach
to handle the constraints. Coella and Mezura-Montes [11] proposed a
dominance-based selection scheme to handle the constraints which does not require
the fine tuning of a penalty function. Deb and Agarwal [12] developed a
niched-penalty approach for constraint handling which does not require any penalty
parameter. Akhtar et al. [13] proposed a socio-behavioral simulation based
approach to solve engineering optimization problems. Though the results obtained
by this technique are taking lesser function evaluations but the success rate was not
good and also the implementation of this approach is not easy. Eskandar et al. [14,
15] proposed two algorithms, water cycle algorithm and mine blast algorithm for
solving constrained engineering design optimization algorithms.

Besides this many attempt has been made in literature to hybridize evolutionary
algorithms with other approaches to improve its efficiency and has been used to
solve nonlinear constrained optimization problems. Millie et al. proposed a new
PSO algorithm with crossover operator for finding the solution of global nonlinear
optimization problems [16]. Deep and Dipti [17] proposed a self organizing
migrating genetic algorithm for constrained optimization, in which Genetic
Algorithm (GA) has been hybridized with Self Organizing Migrating Algorithm
(SOMA). Pant et al. [18] proposed new mutation schemes for Differential Evolution
Algorithm (DE) and applied them to find the relay time and plug setting arising in
the optimization of directional over-current relay settings. Deep and Bansal [19]
developed quadratic approximation based Particle Swarm Optimization Algorithm
(PSO) for solving economic dispatch problems with valve-point effects. Deep and
Das [20] proposed hybrid binary coded Genetic Algorithm for constrained opti-
mization. Recently Singh et al. [21] proposed an algorithm SOMAQI which is
hybridization of SOMA and quadratic interpolation crossover operator. SOMAQI
inspired by the features of SOMA works with very less population size and out-
performs standard particle swarm optimization (PSO) and SOMA in terms of

C-SOMAQI: Self Organizing Migrating Algorithm … 149



population size, function evaluations, mean best and success rate. This algorithm
has been proposed to solve unconstrained optimization problems only. Its perfor-
mance over other methods inspire author to extend it for solving constrained
optimization problems.

In this chapter a novel penalty parameter free hybrid approach C-SOMAQI has
been presented to solve nonlinear constrained optimization problems. It does not
require any penalty parameter to be fine tuned for constraint handling and is very
easy to implement. Another advantage of this approach is that it works with very
less population size. To validate the efficiency of the proposed algorithm, it is tested
on ten constrained benchmark test problems taken from Deep and Dipti [17] and the
results are compared with the results of constrained SOMA (C-SOMA) and con-
strained SOMGA (C-SOMGA) (2008).

The rest of the paper is organized as follows. In Sect. 2, preliminaries are given.
In Sect. 3, the proposed Algorithm C-SOMAQI is presented. In Sect. 4, the
numerical results are discussed. Finally, the paper concludes with Sect. 5 drawing
the conclusions of the present study.

2 Preliminaries

The proposed algorithm (C-SOMAQI) is extended form of hybridized algorithm
SOMAQI. To know more about this algorithm, the working of SOMA, QI cross-
over and SOMAQI has been discussed in this section.

2.1 Self Organizing Migrating Algorithm

The Self Organizing Migrating Algorithm is a general-purpose, population based
stochastic optimization algorithm refer [22–26]. The approach is similar to that of
other evolutionary algorithms but working is different. Like other evolutionary
algorithms, SOMA does not create any new individuals to process the algorithm. It
changes only the position of individuals from current position to better position. In
the working of SOMA, first of all the population is initialized randomly using
uniform distribution over the search space. In each loop called the migration loop
the population is evaluated and the individual with highest fitness value is known as
leader and the worst is known as active. Rather than competing with each other, the
active individual proceeds in the direction of the leader and travels a certain dis-
tance (called the path length) towards the leader in n (pathlength/step size) steps of
defined length (step size). This path is perturbed randomly by a parameter.
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2.1.1 Mutation: Perturbation

In SOMA, mutation is replaced by perturbation. Perturbation of individuals ensures
the diversity among the individuals. When the active individual moves towards the
leader, its path is perturbed randomly by perturbation (PRT) parameter.
Perturbation vector (PRT vector) is created before an individual proceeds towards
leader. This parameter has the same effect as mutation in genetic algorithm (GA).
For each individual’s parameter, the algorithm generates a random number from the
interval (0, 1). Then the following expression is used:

if rndj\PRT then

PRTVectorj ¼ 1;

else

PRTVectorj ¼ 0;

end if ;

The randomly generated binary perturbation vector controls the allowed dimensions
for an individual of population. If an element of the perturbation vector is set to
zero, then the individual is not allowed to change its position in the corresponding
dimension.

2.1.2 Crossover Operator: Generation of New Positions of Individuals

In GA, new individuals are created as a result of combination of two or more
parents. But SOMA does not create any new individual. Here crossover means to
explore for the better solution during the movement of the active individual towards
the leader. The movement of an individual is given as follows:

xMLnew
i;j ¼ xML

i;j;start þðxML
L;j � xML

i;j;startÞ � t � PRTVectorj ð2Þ

where t 2 0; by step to; PathLengthh i and ML is actual migration loop

xMLnew
i;j is the new positions of an individual:

xML
i;j;start is the positions of active individual:

xML
L;j is the positions of leader:

The pseudo code of SOMA is given as follows:

Begin
define parameters
while termination criterion is not satisfied do
generate PRT Vector
evaluate the objective function value of all individuals of the population
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select leader and active individual of the population
for active individual in population do
for k = 1 to n do
move active individual towards the position of the leader
evaluate objective function value at the new position
if objective function value at the new position is better than objective function value
at the position of active individual
position of active individual = new position
end if
end for
move active individual to best new position
end for
end while
report the best individual as the final optimal solution
end

2.2 Quadratic Interpolation (QI) Crossover Operator

The central idea of Quadratic Approximation is to fit a quadratic curve passing
through three points and to find the minimum of this curve. Quadratic
Approximation works as follows:

1. Select three distinct points R1 (with best fitness value), R2 and R3

2. A new trial point of minima x0 ¼ x01; x
0
2; . . .; x

0
n

� �
is given as

x0 ¼ 1
2
½ R2

2 � R2
3

� � � f R1ð Þþ R2
3 � R2

1

� � � f R2ð Þþ R2
1 � R2

2

� � � f R3ð Þ�
ðR2 � R3½ Þ � f R1ð Þþ ðR3 � R1Þ � f R2ð Þþ ðR1 � R2Þ � f R3ð Þ� ð3Þ

where f(R1), f(R2) and f(R3) are the objective function values at R1, R2 and R3

respectively.

2.3 Methodology of SOMAQI

SOMAQI is the combination of SOMA and QI crossover operator. In SOMAQI
both the algorithms are used in series. First SOMA is used to explore the solution
search space, after that QI crossover operator is applied to exploit the search space
in order to find the better optimal solution.
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Methodology
First the individuals are generated randomly. At each generation the individual with
highest fitness value is selected as leader and the worst one as active individual. For
active individual a new population of size n is created. Where n = (Path Length/step
size). This population is nothing but the new positions of the active individual, The
movement of this individual is given in Eq. (2). Now the best individual of the new
population is selected and the active individual is replaced with this best individual
if new individual is better than the active individual. Then we again select the best
and worst individual from the population. A new point is created using quadratic
interpolation at the end of each generation using Eq. (3). For this we choose three
particles R1, R2 and R3, where R1 is the leader and R2 and R3 are randomly
chosen particles from the remaining population. This new point is accepted only if
it is better than active individual and is replaced with active individual.

The computational steps of SOMAQI are given as follows:

Step 1: generate initial population;
Step 2: evaluate all individuals in the population;
Step 3: generate PRT vector for all individuals;
Step 4: sort all of them;
Step 5: select the best fitness individual as leader and worst as active;
Step 6: for active individual new positions are created using Eq. (2). Then the

best position is selected. It replaces the active individual if it is better
than active individual;

Step 7: sort the population and select the best fitness individual as leader and
worst as active;

Step 8: create new point by QI from R1, R2 and R3 using Eq. (3);
Step 9: if new point is better than active individual replace active individual with

new one;
Step 10: if termination criterion is satisfied stop else go to step 2;
Step 11: report the best individual as the optimal solution.

3 Proposed Hybrid C-SOMAQI Algorithm

Singh et al. [21] have presented a novel variant of SOMA, (SOMAQI) for
unconstrained optimization which combines QI crossover operator with SOMA for
creating the new solution member in the search space and maintains the diversity of
the solution in the search space. This paper is an extension of SOMAQI to solve
constraints optimization problems. The methodology of C-SOMAQI is given as
follows:
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Methodology
The constraint violation function can be evaluated as follows:

w xð Þ ¼
Xm
i¼1

Gi gi xð Þ½ �2 þ
Xl

j¼1

hj xð Þ� �2
; ð4Þ

where Gi is the Heaviside operator such that
Gi ¼ 0 for gi xð Þ� 0 and Gi ¼ 1 for gi xð Þ\0:

Value of constraint violation function w xð Þ is 0 for the individuals which are
feasible in the region and for the individuals which are out of feasible region the
value of w xð Þ indicates how far the solutions are from the feasible region. The
proposed algorithm works iteratively in two phases. In the first phase, also called
the global phase, the objective function is evaluated at a number of randomly
sampled feasible points. In the second phase, also called the local phase, these
points are manipulated by local searches to yield a possible candidate for global
optima. In the global phase algorithm generates feasible points randomly. At each
generation the individual with highest fitness value is selected as leader and the
worst one as active individual. Now the active individual moves towards leader in n
steps of defined length, where n is the ratio of path length and step size. For each
active individual a new population of size n is created. This population is nothing
but the new positions of the active individual. The movement of this individual is
given in Eq. (2). Then this population according to the fitness value is sorted. Now
starting from the best position of the new population constraint violation function is
evaluated. If w xð Þ ¼ 0; replace the active individual with the current position and if
w xð Þ[ 0 then move to next best position of the sorted new population. If no
feasible solution is available then active individual remains the same. We again
select the best and worst individual from the population. Now in the local phase a
new point is created using QI crossover operator using Eq. (3). If this point satisfies
constraint violation function, then this point is accepted only if it is better than
active individual and is replaced with active individual. This process is continued
till the termination criterion is satisfied. The computational steps of C-SOMAQI are
given as follows:

Step 1: generate the initial feasible population;
Step 2: evaluate all individuals in the population;
Step 3: generate PRT vector for all individuals;
Step 4: sort all of them;
Step 5: select the best fitness individual as leader and worst as active;
Step 6: for active individual a new population of size n is created. This

population is nothing but the new positions of the active individual
towards the leader in n steps of defined length. The movement of this
individual is given in Eq. (2);

Step 7: sort new population with respect to fitness;
Step 8: for each individual in the sorted population, check feasibility criterion;
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Step 9: if feasibility criterion is satisfied replace the active individual with the new
position, else move to next position in the sort order and go to step 8;

Step 10: create new point by crossover operator using Eq. (3);
Step 11: if feasibility criterion is satisfied replace the active individual with the

new position, else go to step 9 until prescribed number of iterations are
exhausted;

Step 12: if new point is better than active replace active with the new one;
Step 13: if termination criterion is satisfied stop else go to step 5;
Step 14: report the best individual as the final optimal solution.

4 Numerical Results on Benchmark Problems

The proposed algorithm is coded in C++ and run on a Pentium III 2.20 GHz with
2 GB RAM. The efficiency of the proposed algorithm C-SOMAQI has been tested
on a set of 10 constrained test problems taken from literature which are given in
appendix.

These test problems include objective functions with decision variables and
equality and inequality constraints. The maximization problems were transformed
into minimization ones by changing objective function f(x) into −f(x). All equality
constraints problems were converted into inequality constraints as |h(x)| − ϵ ≤ 0,
where ϵ is a degree of violation. Since C-SOMAQI is probabilistic technique and
rely heavily on the generation of random numbers, therefore 100 trials of each are
carried out, each time using a different seed for the generation of random numbers.
A run is considered to be a success if the optimum solution obtained falls within
1 % accuracy of the known global optimal solution. The stopping criterion is either
a run is a success or a fixed number of function calls (1, 50,000) are performed. The
value of parameters related to C-SOMAQI is presented in Table 1.

The comparative performance of C-SOMAQI, C-SOMGA and C-SOMA are
measured in terms of three criteria, namely accuracy, efficiency and reliability. They
are described as follows:

Table 1 Parameters of
C-SOMAQI

Population size 10

PRT 0.3, 0.5 and 0.9

Step 0.11

Pathlength 3

Total number of function calls allowed 150,000
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1. Accuracy: Accuracy of an algorithm totally depends on its closeness to the
global optimum.

2. Efficiency: Efficiency of an algorithm is based on average number of function
calls (ANFC) required to converge to the global minima.

3. Reliability: Reliability of an algorithm depends on number of successful runs.

The information regarding number of successful runs, average number of
function evaluations required in successful runs and mean of optimal objective
function values, are given in Tables 2, 3 and 4.

The number of successful runs of a total of 100 runs, corresponding to
C-SOMAQI, C-SOMGA and C-SOMA are presented in Table 2. Results show that
C-SOMAQI gives 100 % success in five problems and 99 % in one problem, also
the success obtained by C-SOMGA is 100 % in five problems and 90 % in one
problem but C-SOMA does not give 100 % in any problem. Same results are shown

Table 2 Percentage of success of C-SOMAQI, C-SOMGA and C-SOMA

Problem
no.

No. of successful runs out of 100 Best amongst C-SOMAQI,
C-SOMGA and C-SOMAC-SOMA C-SOMGA C-SOMAQI

1 50 100 100 C-SOMGA and C-SOMAQI

2 10 100 100 C-SOMGA and C-SOMAQI

3 0 100 100 C-SOMGA and C-SOMAQI

4 0 87 96 C-SOMAQI

5 0 100 100 C-SOMGA and C-SOMAQI

6 0 100 97 C-SOMGA

7 50 90 99 C-SOMAQI

8 0 50 100 C-SOMAQI

9 0 70 94 C-SOMAQI

10 0 17 39 C-SOMAQI

Table 3 Average number of function evaluations amongst C-SOMAQI, C-SOMGA and
C-SOMA

Problem
no.

Average no. of function evaluations Best amongst C-SOMAQI,
C-SOMGA and C-SOMAC-SOMA C-SOMGA C-SOMAQI

1 2070 590 361 C-SOMAQI

2 18090 4368 133 C-SOMAQI

3 * 4115 1299 C-SOMAQI

4 * 24,592 568 C-SOMAQI

5 * 18,783 2785 C-SOMAQI

6 * 30,922 7000 C-SOMAQI

7 1598 605 186 C-SOMAQI

8 * 559 48 C-SOMAQI

9 * 3603 377 C-SOMAQI

10 * 135,468 1463 C-SOMAQI
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through bar graph in Fig. 1. C-SOMA failed to solve problems 3, 4, 5, 6, 8, 9
and 10. Based on these results ranking of all the algorithms is
C-SOMA < C-SOMGA < C-SOMAQI requires. Hence C-SOMAQI is most
reliable.

The ANFC corresponding to C-SOMAQI, C-SOMGA and C-SOMA are reported
in Table 3. Results show that the ANFC taken by C-SOMA are 5–136 times than
C-SOMAQI and the ANFC taken by C-SOMGA are 1.5–92 times than C-SOMAQI.
The ranking of all the algorithms is C- SOMA < C-SOMGA < C-SOMAQI.
C-SOMAQI requires least function evaluations among all the algorithms. Hence
C-SOMAQI is most efficient.

The mean objective function value corresponding to C-SOMAQI, C-SOMGA
and C-SOMA is given in Table 4. Results show that the optimal value obtained by
C-SOMAQI is better than C-SOMA and C-SOMGA in all the 10 problems except
problem 3. Ranking of all the algorithms is C-SOMA < C-SOMGA < C-SOMAQI.
Hence C-SOMAQI is most reliable.

The problems which could not be solved by the particular algorithm is given the
symbol (*) at the corresponding entries.

Table 4 Mean objective function value amongst C-SOMAQI, C-SOMGA and C-SOMA

Problem
no.

Mean objective function value Best amongst C-SOMAQI,
C-SOMGA and C-SOMAC-SOMA C-SOMGA C-SOMAQI

1 −1.87228 −1.86839 −1.87264 C-SOMAQI

2 −311.601 −319.9927 −320 C-SOMAQI

3 0.26864 0.01531 0.0156381 C-SOMGA

4 −234.964 −309.150 −310 C-SOMAQI

5 6.73079 13.5960 13.5915 C-SOMAQI

6 −230.519 −14.99225 −14.99926 C-SOMAQI

7 −7.09413 −0.08816 −0.095565 C-SOMAQI

8 0.14079 0.82519 0.749792 C-SOMAQI

9 −0.23646 −0.88794 −1.000248 C-SOMAQI

10 −0.24275 −0.77542 −0.803374 C-SOMAQI

Fig. 1 Graph showing
percentage of success among
C-SOMA, C-SOMGA and
C-SOMAQI
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In order to reconfirm our results, we compare the relative performance of all the
algorithms simultaneously. We use a Performance Index (PI). The relative per-
formance of an algorithm using this modified PI is calculated in the following
manner.

PI ¼ 1
Np

XNp

i¼1

k1a
i
1 þ k2a

i
2 þ k3a

i
3

� � ð4Þ

where

ai1 ¼
Sri

Tri
;

ai2 ¼
Moi
Aoi ; if Sri [ 0

0; if Sri ¼ 0

(
and

ai3 ¼
Mti
Ati ; if Sri [ 0

0; if Sri ¼ 0

(
and

where

Sri = Number of successful runs of ith problem
Tri = Total number of runs of ith problem
Aoi = Mean objective function value obtained by an algorithm of ith problem
Moi = Minimum of Mean objective function value obtained by all algorithms of ith
problem
Ati =Mean execution time of successful runs taken by an algorithm in obtaining the
solution of ith problem
Mti = Minimum of mean execution time of successful runs taken by all algorithms
in obtaining the solution of ith problem
Np = Total number of problems analyzed.

k1; k2 and k3 ðk1 þ k2 þ k3 ¼ 1 and 0� k1; k2; k3 � 1Þ are the weights assigned to
percentage of success, mean objective function value and mean execution time of
successful runs, respectively.

From the above definition it is clear that modified PI is a function of
k1; k2 and k3 since k1 þ k2 þ k3 ¼ 1; one of ki; i ¼ 1; 2; 3 could be eliminated to
reduce the number of variables from the expression of PI. But it is still difficult to
analyze the behavior of this PI, because the surface of PI for all the algorithms are
overlapping and it is difficult to visualize them. Hence equal weights are assigned to
two terms at a time in the PI expression. This way PI becomes a function of one
variable. The resultant cases are as follows:

158 D. Singh et al.



ðiÞ k1 ¼ w; k2 ¼ k3 ¼ 1� w
2

; 0�w� 1

ðiiÞ k2 ¼ w; k1 ¼ k3 ¼ 1� w
2

; 0�w� 1

ðiiiÞ k3 ¼ w; k1 ¼ k2 ¼ 1� w
2

; 0�w� 1

The graphs corresponding to each of case (i), (ii) and (iii) are shown in Figs. 2, 3
and 4. The horizontal axis represents the weight w and the vertical axis represents
the performance index PI.

Fig. 2 PI for combination of
C-SOMAQI, C-SOMGA and
C-SOMA for case 1

Fig. 3 PI for combination of
C-SOMAQI, C-SOMGA and
C-SOMA for case 2

Fig. 4 PI for combination of
C-SOMAQI, C-SOMGA and
C-SOMA for case 3

C-SOMAQI: Self Organizing Migrating Algorithm … 159



In case (i), the mean objective function value and average no. of function
evaluations of successful runs are given equal weights. PI’s of C-SOMAQI,
C-SOMGA and C-SOMA are superimposed in the Fig. 2. It is observed that the
value of PI for C-SOMAQI is more than C-SOMGA and C-SOMA.

In case (ii), equal weights are assigned to the numbers of successful runs and mean
objective function value of successful runs. PI’s of C-SOMAQI, C-SOMGA and
C-SOMA are superimposed in the Fig. 3. It is clear that C-SOMAQI has the highest PI.

In case (iii), equal weights are assigned to mean objective function value and
average number of successful runs. PI’s of C-SOMAQI, C-SOMGA and C-SOMA
are superimposed in the Fig. 4. It is clear that C-SOMAQI has the highest PI.

5 Conclusions

In this chapter, a variant of self organizing migrating algorithm SOMAQI has been
extended to solve constrained nonlinear optimization problems and called as
C-SOMAQI. In the proposed approach a penalty parameter free approach has been
used for dealing the feasibility of solutions with quadratic interpolation crossover
operator. This technique requires very less population size to work with and hence
requires lesser number of function evaluations. To evaluate the performance of this
algorithm it has been tested on ten benchmark test problems. C-SOMAQI is a
variant of SOMA, so results have been compared with the results taken by
C-SOMA itself and with one more variant of SOMA that is C-SOMGA. For this
purpose a performance index graph has been plotted on the basis of percentage of
success, mean objective function value, average number of function evaluations.
The numerical and graphical results clearly indicate that C-SOMAQI can be con-
sidered to be robust for solving constrained optimization problem.

Appendix

Problem 1

min
x

f xð Þ ¼ �x1 � x2;

Subject to:

g1 xð Þ ¼ x1 � 1ð Þ2 þ x2 � 1ð Þ
h i

1
�
2a2 � 1

�
2b2

� �
þ x1 � 1ð Þ x2 � 1ð Þ 1

�
a2 � 1

�
b2

� �� 1� 0:

where a = 2, b = 0.25.
This problem has two global minima one of which is at (1, 0.8729) with

fmin = −1.8729. The feasible domain of the problem is disconnected. The bounds on
the variables are 0 ≤ x1, x2 ≤ 1.
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Problem 2

min
x

f xð Þ ¼ 3x1 þ x2 þ 2x3 þ x4 � x5;

Subject to:

g1 xð Þ ¼ 25x1 � 40x2 þ 16x3 þ 21x4 þ x5 � 300;

g2 xð Þ ¼ x1 þ 20x2 � 50x3 þ x4 � x5 � 200;

g3 xð Þ ¼ 60x1 þ x2 � x3 þ 2x4 þ x5 � 600;

g4 xð Þ ¼ �7x1 þ 4x2 þ 15x3 � x4 þ 65x5 � 700:

This problem has global minima at (4, 88, 35, 150, 0) with fmin = 320. The
bounds on the variables are 1 ≤ x1 ≤ 4, 80 ≤ x2 ≤ 88, 30 ≤ x3 ≤ 35, 145 ≤ x4 ≤ 150,
0 ≤ x5 ≤ 2.
Problem 3

min
x

f xð Þ ¼ 4:3x1 þ 31:8x2 þ 63:3x3 þ 15:8x4 þ 68:5x5 þ 4:7x6;

Subject to:

g1 xð Þ ¼ 17:1x1 þ 38:2x2 þ 204:2x3 þ 212:3x4 þ 623:4x5 þ 1495:5x6 � 169x1x3 � 3580x3x5
� 3810x4x5 � 18500x4x6 � 24300x5x6 � 4:97� 0;

g2 xð Þ ¼ 1:88þ 17:9x1 þ 36:8x2 þ 113:9x3 þ 169:7x4 þ 337:8x5 þ 1385:2x6 � 139x1x3
� 2450x4x5 � 600x4x6 � 17200x5x6 � 0;

g3 xð Þ ¼ 429:08� 273x2 � 70x4 � 819x5 þ 26000x4x5 � 0;

g4 xð Þ ¼ 159:9x1 � 311x2 þ 587x4 þ 391x5 þ 2198x6 � 14000x1x6 þ 78:02� 0:

This problem has global minima at (0, 0, 0, 0, 0, 0.00333) with fmin = 0.0156. The
bounds on the variables are 0 ≤ x1 ≤ 0.31, 0 ≤ x2 ≤ 0.046, 0 ≤ x3 ≤ 0.068, 0 ≤ x4 ≤
0.042, 0 ≤ x5 ≤ 0.028, 0 ≤ x6 ≤ 0.0134.
Problem 4

max
x

f xð Þ ¼ 25 x1 � 2ð Þ2 þ x2 � 2ð Þ2 þ x3 � 1ð Þ2 þ x4 � 4ð Þ2 þ x5 � 1ð Þ2 þ x6 � 4ð Þ2;
Subject to:

g1 xð Þ ¼ x1 þ x2 � 2� 0;

g2 xð Þ ¼ �x1 þ x2 þ 6� 0;

g3 xð Þ ¼ x1 � x2 þ 2� 0;

g4 xð Þ ¼ �x1 þ 3x2 þ 2� 0;

g5 xð Þ ¼ x3 � 3ð Þ2 þ x4 � 4� 0;

g6 xð Þ ¼ x5 � 3ð Þ2 þ x6 � 4� 0;

This problem has 18 global maxima and one global maxima at (5, 1, 5, 0, 5, 10)
with fmax = 310. The bounds on the variables are 0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤ 5,
0 ≤ x4 ≤ 6, 0 ≤ x5 ≤ 5, 0 ≤ x6 ≤ 10.
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Problem 5

min
x

f xð Þ ¼ x21 þ x2 � 11
� �2 þ x1 þ x22 � 7

� �2
;

Subject to:

g1 xð Þ ¼ 4:84� x1 � 0:05ð Þ2� x2 � 2:5ð Þ2 � 0;

g2 xð Þ ¼ x21 þ x2 � 2:5ð Þ2�4:84� 0:

This problem has two decision variables. It has global minima at x� ¼
2:246826; 2:381865ð Þ with fmin = 13.59085. The bounds on the variables are
0� xi � 6; for i ¼ 1; 2:
Problem 6

min
x

f xð Þ ¼ 5
X4
i¼1

xi � 5
X4
i¼1

x2i �
X13
i¼5

xi;

g1 xð Þ ¼ 10� ð2x1 þ 2x2 þ x10 þ x11Þ� 0;

g2 xð Þ ¼ 10� ð2x1 þ 2x3 þ x10 þ x12Þ� 0;

g3 xð Þ ¼ 10� ð2x2 þ 2x3 þ x11 þ x12Þ� 0;

g4 xð Þ ¼ 8x1 � x10 � 0;

g5 xð Þ ¼ 8x2 � x11 � 0;

g6 xð Þ ¼ 8x3 � x12 � 0;

g7 xð Þ ¼ 2x4 þ x5 � x10 � 0;

g8 xð Þ ¼ 2x6 þ x7 � x11 � 0;

g9 xð Þ ¼ 2x8 þ x9 � x12 � 0;

xi � 0; i ¼ 1; . . .; 13;

xi � 1; i ¼ 1; . . .9; 13:

This problem has global minima at x� ¼ 1; 1; . . .1; 3; 3; 3; 1ð Þ with fmin = −15.
The bounds on the variables are 0� xi � ui; i ¼ 1; 2; . . .; n; where
u ¼ 1; 1; . . .; 1; 100; 100; 100; 1ð Þ:
Problem 7

max
x

f xð Þ ¼ sin3 2px1ð Þ sin 2px2ð Þ
x31 x1 þ x2ð Þ ;

Subject to:

g1 xð Þ ¼ �x21 þ x2 � 1� 0;

g2 xð Þ ¼ �1þ x1 � x2 � 4ð Þ2 � 0:

This problem has global maxima at x� ¼ 1:2279713; 4:2453733ð Þ; f x�ð Þ ¼
0:095 with fmax = 0.095. The bounds on the variables are 0� xi � 10; i ¼ 1; 2:
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Problem 8

min
x

f xð Þ ¼ x21 þ x2 � 1ð Þ2

Subject to:

h1 xð Þ ¼ x2 � x21 ¼ 0:

This problem has global minima at x� ¼ 	 1�
20:5;

1=2
� �

; f x�ð Þ ¼ 0:75 with

fmin = 0.75. The bounds on the variables are: �1� xi � 1; i ¼ 1; 2:
Problem 9

max
x

f xð Þ ¼ ffiffiffi
n

p� �nYn
i¼1

xi;

Subject to:

h1 xð Þ ¼
Xn
i¼1

x2i � 1 ¼ 0:

\!endaligned[

This problem has global maxima at x� ¼ 1�
n0:5; . . .

1�
n0:5

� �
with fmax = 1. The

bounds on the variables are: 0� xi � 1; i ¼ 1; 2; . . .; n:
Problem 10

max
x

f xð Þ ¼
Pn

i¼1 cos
4 xið Þ � 2

Qn
i¼1 cos

2 xið ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ix

2
i

p












 ;
Subject to:

g1 xð Þ ¼
Yn
i¼1

xi � 0:75� 0;

g2 xð Þ ¼ 7:5n�
Xn
i¼1

xi � 0;

This problem has global maxima at fmax = 0.803619 for n = 20. The bounds on
the variables are: 0� xi � 10; i ¼ 1; 2; . . .; n:
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Optimization of Directional Overcurrent
Relay Times Using C-SOMGA

Kusum Deep and Dipti Singh

Abstract An important problem in electrical engineering is to determine the opti-
mal directional overcurrent relay times. The problem is modeled as a constrained
nonlinear optimization problem in which the decision variables are the devices that
control the act of isolation of faulty lines from the system without disturbing the
healthy lines. Three models are considered namely IEEE-3 bus system, IEEE-4 bus
system and IEEE-6 bus system. The problem is solved using self organizing
migrating genetic algorithm for constrained optimization (C-SOMGA) which is a
genetic algorithm hybridized with self organizing migrating algorithm. The results
obtained by C-SOMGA are compared with the results obtained by C-GA, C-SOMA,
RST2 and MATLAB TOOL BOX. It is shown that C-SOMGA is able to provide
superior results in terms of optimality and feasibility in comparison to other methods
considered. The main purpose of this chapter is to show the efficiency and robustness
of the algorithm C-SOMGA to solve real life problem with very small population
size.

1 Introduction

The problem considered in this chapter has its origin in electrical power systems. It
requires finding the optimal values of decision variables subject to intricately
interconnected non-linear inequality constraints. The problem is about computing
the values of the decision variables of the devices called “Relays”, which control
the act of isolation of faulty lines from the system without disturbing the healthy
lines.
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Directional Overcurrent Relays (DOCRs) are provided in electrical power sys-
tems to isolate only the faulty lines, in the event of the faults in the system. These
relays are placed at both ends of each line. Thus, number of directional overcurrent
relays in an electrical power system is twice the number of the lines. To maintain
the continuity of supply to healthy sections and to isolate the faulty section only,
relays are coordinated. This ensures that minimum lines are disrupted when fault
occurs. This is done in DOCRs by properly fixing the two adjustable parameters of
each relay called “settings”. The two settings of each relay are plug setting (PS) and
time dial setting (TDS). There can be many relays in the system depending on the
size of the system. Thus, each relay introduces two decision variables (one TDS and
one PS) in the problem. The above stated problem of coordinating each DOCR with
one another in electrical power systems can be modeled as a non-linear constrained
optimization problem. Objective function for this problem is the sum of the oper-
ating times of all the primary relays, which are expected to operate in order to clear
the faults of their corresponding zones. The constraints of this problem are bounds
on all decision variables, complexly interrelated times of the various relays (called
selectivity constraints) and restrictions on each term of the objective function to be
within the specified limits.

In Sect. 1 the introduction to the problem is given. In Sect. 2 review of the
literature for this problem is given. In Sect. 3, the methodology of the technique
used to solve this problem is given. The general formulation of the problem is stated
in Sect. 4. The formulation of the optimization problem is given in Sect. 5. In
Sects. 6–8 the IEEE 3-bus, IEEE 4-bus and IEEE 6-bus models are given,
respectively. The method of solution and discussion of results are given in Sect. 9.
Finally the conclusions are given in Sect. 10.

2 Previous Work

As the dimension of the problem increases for the modern interconnected power
systems, the complexity of the problem increases. Also, due to the complexities of
non-linear programming techniques, most of the researchers have solved the
problem in linear environment by presuming the values of decision variables (all
plug settings), which make the problem non-linear. This presumption is made based
on the basis of engineering experience (e.g. Irving and Elrafie [13], Chattopadhyay
et al. [5], Urdaneta et al. [23, 26], etc.).

Not many non-linear approaches have been applied in this area due to the
complexities of large dimension of the problem. However, linear approaches cannot
ensure correct settings of the relays [15]. These approaches cannot consider all
possible operating conditions of the system. The results obtained may be trapped in
local optimum relay settings [23]. Non-linear methods can produce optimal results
by optimizing all settings of relays and thus, avoid undesired tripping of those
relays, which are not supposed to operate for a fault under consideration. First
optimization attempt in this area used simplex-based linear approach for optimizing
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TDS settings for presumed PS settings and Generalized Reduced Gradient
non-linear technique to optimize the PS settings for already optimized TDS [25].
This procedure was iterated till convergence was achieved.

The use of optimization techniques in relay coordination was first suggested by
Urdaneta et al. [25]. Irving and Elrafie [13] used Sparse Dual Revised Simplex
method of linear programming suggested by Irving and Sterling [14] to optimize
TDS settings for preassumed non-linear PS settings. Laway and Gupta [15] applied
Simplex and Rosenbrock-Hillclimb methods to optimize TDS and PS settings
respectively, in a similar way, as used by Urdaneta et al. [25]. These approaches
were further followed by simplex-based approaches with more and more sophisti-
cations about finer aspects of the relays Urdaneta et al. [26], Chattopadhyay et al. [5],
Urdaneta and Perez [24], Abdelaziz et al. [1]. So and Li [22] used evolutionary
programming. A survey of all coordination philosophies used by various researchers
in the past has been presented recently by Birla et al. [4].

Recently, Birla et al. [2] made an attempt to use “MATLAB Toolbox” and
“Numeric Algorithm Group” Sequential Quadratic Programming routines Birla et al.
[3]. Deep et al. [10] used RST2 of Shanker and Mohan (now Deep) [21] to solve the
relay coordination problem for a IEEE 3 bus and IEEE 4 bus models. The results
obtained by RST2 are compared with the results obtained by MATLAB Toolbox.
(MATLAB Toolbox uses Sequential Quadratic Programming (SQP) method to
solve the constrained non-linear optimization problems.) It is observed that although
MATLAB Toolbox gives a lower value of the objective function its quality is
inferior to the one obtained by RST2 because the solution obtained by MATLAB
Toolbox violates some constraints whereas the solution obtained by RST2 does not
violate any constraint at all.

3 Methodology

The technique used in this paper to solve this problem is a hybridized genetic
algorithm for constrained optimization problems (C-SOMGA) which is extended
version of Self Organizing Migrating Genetic Algorithm (SOMGA). SOMGA is a
hybridized variant of GA for solving unconstrained nonlinear optimization prob-
lems, Deep and Dipti [6], which is inspired by the features of Self Organizing
Migrating Algorithm (SOMA). SOMA is a population based stochastic search
technique which is based on the social behavior of group of individuals. This
algorithm is presented by Zelinka and Lampinen [27]. The more detail about this
technique can be found in many research papers and books Oplatkova and Zelinka
[19], Zelinka [28], Nolle and Zelinka [17], Nolle et al. [18], Nolle [16], Zelinka
et al. [29, 30], Godfrey and Babu [11], etc. The main features that motivate us to
incorporate this technique in GA are that it works with very low population size and
it has more exploration capabilities than other low population based approaches.
The selection operator used in C-SOMGA approach is well known tournament
selection method developed by Osyczka and Krenich [20] for constrained
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optimization. This method is very effective while solving highly constrained single
criterion optimization problems as well as the problems with computationally
expensive objective function. In this selection the tournament between two chro-
mosomes is carried out in the following way:

1. If both chromosomes are not in the feasible region the one which is closer to the
feasible region is taken to the next generation. The values of the objective
function are not calculated for either of chromosomes.

2. If one chromosome is in the feasible region and the other one is out of the
feasible region the one which is in the feasible region is taken to the next
generation. The values of the objective function are not calculated for either
chromosome.

3. If both chromosomes are in the feasible region, the values of the objective
function are calculated for both chromosomes and the one, which has a better
value of the objective function, is taken to the next generation.

3.1 Methodology of C-SOMGA

As discussed earlier C-SOMGA presented by Deep and Dipti [7], is an extended
version of SOMGA. Earlier C-SOMGA has been used to solve many real life
problems Deep and Dipti [8, 9] and the success of this approach over these
problems motivates us to use this approach to solve this problem. The methodology
of this approach is almost similar to the methodology of SOMGA only difference is
in the constraints handling for which tournament selection method as discussed
above is used. The working steps of C-SOMGA is as follows:

First the individuals are generated randomly. These individuals compete with
each other through well known constraint tournament selection method. Create new
individuals via single point crossover and bitwise mutation. Then the best indi-
vidual among them is considered as leader and all others are considered as active.
For each active individual a new population of size N is created. Where N = path
length/step size. This population is nothing but the new positions of the active
individual, proceeds in the direction of the leader in n steps of the defined length.
This path is perturbed randomly by a parameter called as PRT parameter. It is
defined in the range 〈0, 1〉. A PRT vector is created using PRT parameter value,
before an individual proceeds towards leader. The movement of an individual is
given as follows:

xMLnew
i; j ¼ xML

i; j;start þ xML
L; j � xML

i; j;start

� �
tPRTVectorj

where t 2 h0; by Step to; PathLengthi;
ML is actual migration loop:

ð1Þ
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xMLnew
i;j is the new positions of an individual.

xML
i;j;start is the positions of active individual.

xML
L;j is the positions of leader.

Then sort this population according to the fitness value in decreasing order.
Starting from the best one of the new population, evaluates the constraint violation
function described below:

wðxÞ ¼
XM
m¼1

½hmðxÞ�2 þ
XK
k¼1

Gk½gkðxÞ�2 ð2Þ

If w xð Þ = 0, replace the active individual with the current position and move to the
next active individual. And If w xð Þ > 0 then move to the next best position of the
sorted new population. In this way, all the active individuals are replaced by the
new updated feasible position. If no feasible solution is available then active
individual remains the same. At last the best individuals (number equal to popu-
lation size) from the previous and current generations are selected for the next
generation. The computational steps of this approach are given below:

Step 1 Generate the initial population.
Step 2 Evaluate all individuals.
Step 3 Apply tournament selection for constrained optimization on all individ-

uals to select the better individuals for the next generation.
Step 4 Apply crossover operator on all individuals with crossover probability Pc

to produce new individuals.
Step 5 Evaluate the new individuals.
Step 6 Apply mutation operator on every bit of every individual of the

population with mutation probability Pm.
Step 7 Evaluate the mutated individuals.
Step 8 Find leader (best fitted individual) of the population and consider all

others as active individuals of the population.
Step 9 For each active individual a new population of size N is created. This

population is nothing but the new positions of the active individual
towards the leader in n steps of the defined length. The movement of this
individual is given in Eq. (1).

Step 9.1 Sort new population with respect to fitness in decreasing order.
Step 9.2 For each individual in the sorted population, check feasibility criterion.
Step 9.3 If feasibility criterion is satisfied replace the active individual with the

new position, else move to next position in sort order and go to step 9.2.
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Step 10 Select the best individuals (in fitness) of previous and current generation
for the next generation via tournament selection.

Step 11 If termination criterion is satisfied go to step 12 else go to step 3.
Step 12 Report the best chromosome as the final optimal solution.

4 General form of the Problem

The operatings time (T) of a DOCR is non-linear function of the relay settings
(Time Dial Settings (TDS) and Plug Settings (PS) and the fault current (I) seen by
the relay). Therefore, Relay operating-time equation for a directional overcurrent
relay is given by a non-linear equation as given below:

T ¼ a � TDS
I

PS�CTpri�rating

� �b
�c

ð3Þ

* denotes the multiplication. Only TDS and PS are unknown variables in the above
equation. These are the “decision variables” of the problem. α, β and γ are the
constants representing the behavior of characteristic in a mathematical way, in
which operating time of the DOCR varies and are given as 0.14, 0.02 and 1.0
respectively as per IEEE std. [12]. Value of CTpri_rating depends upon the number
of turns in the equipment CT (Current Transformer). CT is used to reduce the level
of the current so that relay can withstand it. With each relay one “Current
Transformer” is used and thus, CTpri_rating is known in the problem. Value of
I (Fault current passing through the relay) is also known, as it is a system dependent
parameter and continuously measured by measuring instruments.

Number of constraints for systems of bigger sizes will be dependent upon the
number of lines in the system (see Table 1). In practice, electrical engineering
power systems may be of even bigger sizes and there are other types of relays also
besides DOCRs. Coordinating DOCRs with other types of relays generates even
larger number of constraints than shown in Table 1. It is evident from Table 1 that
simultaneous optimization of both the settings (TDS and PS) of each DOCR of the
system is a complex problem.

Table 1 The complexity of the DOCR problem as the bus size increases

IEEE 3-bus IEEE 4-bus IEEE 6-bus

No. of lines 3 4 7

No. of DOCRs (relays) 6 8 14

No. of decision variables 12 16 28

No. of selectivity constraints 8 9 38
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5 The Optimization Problem

The relay, which is supposed to operate first to clear the fault, is called primary
relay. A fault close to relay is known as the close-in fault for the relay and a fault at
the other end of the line is known as a far-bus fault for this relay. Conventionally,
objective function in coordination studies is constituted as the summation of
operating-times of all primary relays, responding to clear all close-in and far-bus
faults. The objective function is as follows:

Minimize OBJ ¼
XNcl

i¼1

Ti
pri�cl�in þ

XNfar

j¼1

T j
pri�far�bus ð4Þ

where,

Ncl is number of relays responding for close-in fault.
Nfar is number of relays responding for far-bus fault.
Tpri-cl-in is primary relay operating-time for close-in fault.
Tpri-far-bus is primary relay operating-time for far-bus fault.

The constraints are:

(a) Bounds on variables TDSs

TDSimin � TDSi �TDSimax

where, i varies from 1 to Ncl.
TDSimin is lower limit and TDSimax is upper limit of TDSi. These limits are 0.05
and 1.1, respectively.

(b) Bounds on variables PSs

PSjmin � PSj � PSjmax

where, j varies from 1 to Ncl.
PSjmin is lower limit and PSjmax is upper limit of PSj. These are 1.25 and 1.50,
respectively.

(c) Limits on primary operation times: This constraint imposes constraint on each
term of objective function to lie between 0.05 and 1.0.

(d) Selectivity constraints for all relay pairs:

Tbackup � Tprimary � CTI� 0

Tbackup is operating time of backup relay and Tprimary is operating time of
primary relay. Value of CTI is known.
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6 Model I (The IEEE 3-Bus Model)

For the coordination problem of IEEE 3 bus model, value of each of Ncl and Nfar is
6 (equal to number of relays or twice the lines). Accordingly, there are 12 decision
variables (two for each relay) in this problem i.e. TDS1 to TDS6 and PS1 to PS6. The
3 bus system can be visualized as shown in Fig. 1.

Objective function (OBJ) to be minimized as given by Eq. (4) is:

OBJ ¼
XNcl

i¼1

Ti
pri�cl�in þ

XNfar

j¼1

T j
pri�far�bus

Here,

Ti
pri�cl�in ¼

0:14 � TDSi
ai

PSi�bi
� �0:02�1

; Ti
pri�far�bus ¼

0:14 � TDS j

ci
PSi�di
� �0:02�1

;

The values of constants ai, bi, ci and di are given in Table 2.

Constraints
Constraints for the modeI will be as under:

Bounds on variables TDSs (Time dial setting of each relay)

TDSimin � TDSi � TDSimax where; i ¼ 1; 2; . . .; Ncl

DOCR Line

Generato

Fig. 1 A typical IEEE 3-bus
DOCR coordination problem
model

Table 2 Values of constants ai, bi, ci and di for model-I

Ti
pri�cl� in Ti

pri� far�bus

TDSi ai bi TDS j ci di

TDS1 9.4600 2.0600 TDS2 100.6300 2.0600

TDS2 26.9100 2.0600 TDS1 14.0800 2.0600

TDS3 8.8100 2.2300 TDS4 136.2300 2.2300

TDS4 37.6800 2.2300 TDS3 12.0700 2.2300

TDS5 17.9300 0.8000 TDS6 19.2000 0.8000

TDS6 14.3500 0.8000 TDS5 25.9000 0.8000
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TDSimin is lower limit and TDSimax is upper limit of TDSi. These limits are 0.05 and
1.1, respectively.

Bounds on variables PSs (Plug setting of each relay)

PS j
min � PS j � PS j

max; Where; j ¼ 1; 2; . . .; Ncl

PS j
min is lower limit and PS j

max is upper limit of PS j. These are 1.25 and 1.50,
respectively.

Limits on primary operation times: This constraint imposes constraint on each
term of objective function to lie between 0.05 and 1.0.

Selectivity constraints for all relay pairs:

Tbackup � Tprimary � CTI� 0

Tbackup is operating time of backup relay and Tprimary is operating time of primary
relay. Value of CTI is 0.3. Here,

Ti
backup

¼ 0:14 � TDSp
ei

PSp�f i
� �0:02

� 1
and Ti

primary
¼ 0:14 � TDSq

gi

PSq�hi
� �0:02

� 1

The values of constants ei, f i, gi and hi are given in Table 3.

7 Model II (The IEEE 4-Bus Model)

The next coordination problem is of IEEE 4 bus model, value of each of Ncl and
Nfar is 8 (equal to number of relays or twice the lines). Accordingly, there are 16
decision variables (two for each relay) in this problem i.e. TDS1 to TDS8 and PS1 to
PS8. The value of CTI in 4 bus model is 0.3. The 4 bus system can be visualized as
shown in Fig. 2.

Table 3 Values of constants
ei, f i, gi and hi for model-I

Ti
backup

Ti
primary

p ei f i q gi hi

5 14.0800 0.8000 1 14.0800 2.0600

6 12.0700 0.8000 3 12.0700 2.2300

4 25.9000 2.2300 5 25.9000 0.8000

2 14.3500 0.8000 6 14.3500 2.0600

5 9.4600 0.8000 1 9.4600 2.0600

6 8.8100 0.8000 3 8.8100 2.2300

2 19.2000 2.0600 6 19.2000 0.8000

4 17.9300 2.2300 5 17.9300 0.8000
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The objective function and constraints for the model will be of same form as in
the case of Model-I problem (with Ncl = 8) described in Sect. 5. The values of
constants ai; bi; ci; di and ei; f i; gi; hi for Model-II are given in Tables 4 and 5
respectively.

  X
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  D
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  X 

XX
  2   1 
  4   6 

4

2
1
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Fig. 2 A typical IEEE 4-bus
DOCR coordination problem
model

Table 4 Values of constants
ai, bi, ci and di for model II

Ti
pri�cl� in Ti

pri� far�bus

TDSi ai bi TDS j ci di

TDS1 20.3200 0.4800 TDS2 23.7500 0.4800

TDS2 88.8500 0.4800 TDS1 12.4800 0.4800

TDS3 13.6100 1.1789 TDS4 31.9200 1.1789

TDS4 116.8100 1.1789 TDS3 10.3800 1.1789

TDS5 116.7000 1.5259 TDS6 12.0700 1.5259

TDS6 16.6700 1.5259 TDS5 31.9200 1.5259

TDS7 71.7000 1.2018 TDS8 11.0000 1.2018

TDS8 19.2700 1.2018 TDS7 18.9100 1.2018

Table 5 Values of constants
ei, f i, gi and hi for model II

Ti
backup

Ti
primary

p ei f i q gi hi

5 20.3200 1.5259 1 20.3200 0.4800

5 12.4800 1.5259 1 12.4800 0.4800

7 13.6100 1.2018 3 13.6100 1.1789

7 10.3800 1.2018 3 10.3800 1.1789

1 1.1600 0.4800 4 116.8100 1.1789

2 12.0700 0.4800 6 12.0700 1.1789

2 16.6700 0.4800 6 16.6700 1.5259

4 11.0000 1.1789 8 11.0000 1.2018

4 19.2700 1.1789 8 19.2700 1.2018
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8 Model III (The IEEE 6-Bus Model)

The third coordination problem is of IEEE 6 bus model, value of each of Ncl and
Nfar is 14 (equal to number of relays or twice the lines). Accordingly, there are 28
decision variables (two for each relay) in this problem i.e. TDS1 to TDS14 and PS1

to PS14. The 6 bus system can be visualized as shown in Fig. 3.

Fig. 3 A typical IEEE 6-bus
DOCR coordination problem
model

Table 6 Values of constants
ai, bi, ci and di for model III

Ti
pri�cl� in Ti

pri� far�bus

TDSi ai bi TDS j ci di

TDS1 2.5311 0.2585 TDS2 5.9495 0.2585

TDS2 2.7376 0.2585 TDS1 5.3752 0.2585

TDS3 2.9723 0.4863 TDS4 6.6641 0.4863

TDS4 4.1477 0.4863 TDS3 4.5897 0.4863

TDS5 1.9545 0.7138 TDS6 6.2345 0.7138

TDS6 2.7678 0.7138 TDS5 4.2573 0.7138

TDS7 3.8423 1.746 TDS8 6.3694 1.746

TDS8 5.618 1.746 TDS7 4.1783 1.746

TDS9 4.6538 1.0424 TDS10 3.87 1.0424

TDS10 3.5261 1.0424 TDS9 5.2696 1.0424

TDS11 2.584 0.7729 TDS12 6.1144 0.7729

TDS12 3.8006 0.7729 TDS11 3.9005 0.7729

TDS13 2.4143 0.5879 TDS14 2.9011 0.5879

TDS14 2.9011 0.5879 TDS13 4.335 0.5879
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The objective function and constraints for the model will be of same form as in
the case of Model-I problem (with Ncl = 14) described in Sect. 5. The values of
constants ai; bi; ci; di and ei; f i; gi; hi for Model-III are given in Tables 6 and 7
respectively.

Table 7 Values of constants
ei, f i, gi and hi for model III

Ti
backup

Ti
primary

p ei f i q gi hi

8 4.0909 1.746 1 5.3752 0.2585

8 2.9323 1.746 1 2.5311 0.2585

3 0.6213 0.4863 2 2.7376 0.2585

3 1.6658 0.4863 2 5.9495 0.2585

10 3.0923 1.0424 3 4.5897 0.4863

10 2.561 1.0424 3 2.9723 0.4863

1 0.8869 0.2585 4 4.1477 0.4863

1 1.5243 0.2585 4 6.6641 0.4863

12 2.5444 0.7729 5 4.2573 0.7138

12 1.4549 0.7729 5 1.9545 0.7138

13 1.8321 0.5879 9 5.2696 1.0424

13 1.618 0.5879 9 4.6538 1.0424

11 2.1436 0.7729 7 4.1783 1.746

11 1.9712 0.7729 7 3.8423 1.746

10 2.7784 1.0424 14 5.3541 0.5879

10 2.026 1.0424 14 2.9011 0.5879

2 1.8718 0.2585 7 3.8423 1.746

2 2.0355 0.2585 7 4.1783 1.746

14 2.0871 0.5879 11 3.9005 0.7729

14 1.4744 0.5879 11 2.584 0.7729

6 1.8138 0.7138 11 3.9005 0.7729

6 1.1099 0.7138 11 2.584 0.7729

4 3.4386 0.4863 9 5.2696 1.0424

4 3.0368 0.4863 9 4.6538 1.0424

2 0.4734 0.2585 12 3.8006 0.7729

2 1.5432 0.2585 12 6.1144 0.7729

8 4.5736 1.746 12 6.1144 0.7729

8 3.3286 1.746 12 3.8006 0.7729

4 0.8757 0.4863 14 2.9011 0.5879

4 2.5823 0.4863 14 5.3541 0.5879

12 2.7269 0.7729 13 4.335 0.5879

12 1.836 0.7729 13 2.4143 0.5879

1 1.1231 0.2585 6 6.2345 0.7138

6 1.6085 0.7138 13 4.335 0.5879

14 1.7142 0.5879 5 4.2573 0.7138

11 1.2886 0.7729 1 5.3752 0.2585

13 1.4995 0.5879 3 4.5897 0.4863

3 1.4658 0.4863 6 6.2345 0.7138
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9 Method of Solution and Discussion of Results

The technique used to solve these IEEE bus model problems is C-SOMGA. The
experimental set up for solving these three problems is given in Table 8. Each
problem has been run 5 times and the best solution obtained out of 5 is reported as
the global optimal solution. For comparison, previously quoted results by
MATLAB Tool Box and RST2 of Shanker and Mohan [21] are used. The results
are also compared with C-GA and C-SOMA. For fair comparison in C-GA same
selection, crossover and mutation operators and in C-SOMA same tournament
selection method are used as in C-SOMGA. Other parameter values are also kept
same in all the three algorithms.

In Table 9, the results obtained by C-SOMGA for IEEE 3-Bus model are
reported. These results are compared with C-GA, C-SOMA, MATLAB Tool
Box and RST2. It can be observed in Table 9 that MATLAB Tool Box achieved the
best minimum value, C-SOMGA second best, RST2 third best, C-GA is at fourth
place and C-SOMA is at last position. Since it is a constrained optimization
problem, it is necessary that the solution must be in the feasible domain. In
Table 10, it is observed that the solution obtained by MATLAB Tool Box and
C-SOMA are infeasible. Hence the solution obtained by these two algorithms
cannot be accepted for this problem. Therefore C-SOMGA provides best feasible
solution of this problem which is better than C-GA and RST2.

This problem has been run five times and the best and worst results of each run
are plotted in Fig. 4 with the results of MATLAB Tool Box and RST2. It can be
seen that in all the five runs the best and worst results obtained by C-SOMGA are
better than that obtained by RST2. It is also better than MATLAB Tool Box since
the result by MATLAB Tool Box is infeasible.

In Table 11, the results for IEEE 4-Bus problem obtained by all the five tech-
niques are given. Again the results obtained by MATLAB Tool Box is the best
minimum solution but infeasible also. For infeasibility see Table 12. The second
best minimum is obtained by C-SOMGA which is feasible. RST2, SOMA and
C-GA also provide feasible solution at third, fourth and fifth rank. On the ranking
basis of providing feasible solutions C-SOMGA is the best. In Fig. 5 the best and

Table 8 Experimental setup

IEEE 3-Bus IEEE 4-Bus IEEE 6-Bus

Population size 20 20 30

Pc 0.95 0.95 0.95

Pm 0.005 0.005 0.005

Step size 0.21 0.21 0.21

Path length 3 3 3

String length 30 30 30

Total function evaluations allowed 500,000 500,000 500,000
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worst solutions of the five runs of C-SOMGA are plotted. In all the runs, results
obtained by C-SOMGA are better than RST2 and MATLAB Tool Box.

Table 13 contains the best results obtained by C-SOMGA out of five runs and
compared with other four techniques for 6-bus model. The result obtained by
MATLAB Tool Box is the best but reported infeasible in Birla et al. [2].
C-SOMGA provides second best minimum which is feasible also. RST2 and C-GA

Table 9 Optimal decision variables and objective function optimal values for IEEE 3-bus model

Decision
variables

Value by
C-GA
algorithm

Value by
C-SOMA
algorithm

Value by
MATLAB
Tool Box

Value by
RST2
Algorithm

Value by
C-SOMGA
algorithm

TDS1 0.0500000000 0.1296280000 0.0500000000 0.0500620000 0.0500000000

TDS2 0.2468750000 0.5477830000 0.1976466710 0.2107300000 0.2002870000

TDS3 0.0500000000 0.0999874000 0.0500000000 0.0500210000 0.0500000000

TDS4 0.2468750000 0.2058190000 0.2090317120 0.2188270000 0.2092140000

TDS5 0.1935550000 0.0835336000 0.1812052361 0.1881400000 0.1813980000

TDS6 0.1976560000 0.2777830000 0.1806755223 0.1953780000 0.1860030000

PS1 1.2500000000 1.3921900000 1.2500000000 1.2512340000 1.2500100000

PS2 1.2500000000 1.4880500000 1.5000000000 1.3534360000 1.4719700000

PS3 1.2500000000 1.4465400000 1.2500000000 1.2500000000 1.2500000000

PS4 1.2500000000 1.3838900000 1.5000000000 1.3817690000 1.4978300000

PS5 1.2739300000 1.3544100000 1.5000000000 1.3743430000 1.4962000000

PS6 1.2500000000 1.3489200000 1.5000000000 1.2501860000 1.4035300000

Optimal
value of
objective
function

5.0761600000 8.0101600000 4.7806507047 4.8354270193 4.7898900000

Table 10 Value of each selectivity constraint for IEEE 3-bus model

Constraint
No.

Constraint values in second

Value by
C-GA
algorithm

Value by
C-SOMA
algorithm

MATLAB tool box
allows tolerance
1.0e−08 in constraints

RST2 algorithm C-SOMGA
algorithm

1 0.0291460000 −0.7872000 0.00000000000000 0.00051468116110 0.0361232000

2 0.0000259000 −0.6390300 0.00000000000001 0.00013627506057 0.0000030909

3 0.0214740000 −0.0829000 −0.00000000000002 0.00050754672332 0.0184409000

4 0.0064460000 −0.0374200 0.09008111400397 0.08576410572325 0.0000000851

5 0.0884650000 1.09562000 0.04221324579101 0.03879991683310 0.0000021494

6 0.1521860000 0.30189700 0.02117707464442 0.01422080195843 0.1003800000

7 0.0527230000 0.18450000 −0.0000000000000 0.00050469099876 0.0000201169

8 0.1830670000 1.41382000 0.10042972713526 0.09584778802172 0.0898825000

Feasible Infeasible Infeasible Feasible Feasible
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are at the third and fourth place respectively. The result obtained by C-SOMA is
infeasible. In Fig. 6, best and worst solution of the five runs of C-SOMGA is
plotted. In this case the best solution in all five runs is better that RST2 and
MATLAB Tool Box. But the worst solution is inferior to RST2.
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Fig. 4 Comparative results of C-SOMGA and previously quoted results for 3-Bus system

Table 11 Optimal decision variables and objective function optimal values for IEEE 4-bus model

Decision
variables

Value by
C-GA
algorithm

Value by
C-SOMA
algorithm

Value by
MATLAB
Tool Box

Value by
RST2
Algorithm

Value by
C-SOMGA
algorithm

TDS1 0.0500000000 0.0500000000 0.0500000000 0.0500260000 0.0500570000

TDS2 0.2281250000 0.2166920000 0.2121687898 0.2242050000 0.2155220000

TDS3 0.0500000000 0.0500000000 0.0500000000 0.0500070000 0.0500000000

TDS4 0.1687500000 0.1641810000 0.1515761615 0.1586850000 0.1516590000

TDS5 0.1390630000 0.1377150000 0.1264004560 0.1366540000 0.1284240000

TDS6 0.0500000000 0.0500000000 0.0500000000 0.0500170000 0.0500000000

TDS7 0.1687500000 0.1563940000 0.1337862054 0.1387680000 0.1340360000

TDS8 0.0500000000 0.0500004000 0.0500000000 0.0500380000 0.0500000000

PS1 1.3750000000 1.3464000000 1.2733272654 1.2910100000 1.2724900000

PS2 1.2500000000 1.4057700000 1.5000000000 1.2645400000 1.4295500000

PS3 1.2500000000 1.2500000000 1.2500000000 1.2500000000 1.2500000000

PS4 1.2500000000 1.2500300000 1.5000000000 1.3460040000 1.4980900000

PS5 1.2500000000 1.2510700000 1.5000000000 1.2669120000 1.4503100000

PS6 1.2500000000 1.2500000000 1.2500000000 1.2512300000 1.2500000000

PS7 1.2500000000 1.3769800000 1.5000000000 1.3937230000 1.4944700000

PS8 1.2500000000 1.2500000000 1.2500000000 1.2507740000 1.2500000000

Optimal
value of
objective
function

3.8587400000 3.7892200000 3.6697457859 3.7050183128 3.6745300000
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Main advantage of using C-SOMGA is that it requires very less population size
for solving these kinds of problems. Another advantage of using C-SOMGA is that
for solving such a highly constrained non linear optimization problem, it takes only
2–4 min (1 run for 1 model). On the basis of the results for IEEE 3-Bus, IEEE
4-Bus and IEEE 6-Bus, it is concluded that C-SOMGA provides better solutions
than other techniques.

Table 12 Value of each selectivity constraint for IEEE 4-bus model (Constraint values in second)

Constraint
No.

Value by
C-GA

Value by
C-SOMA

MATLAB Tool
Box Allows tolerance
1.0e−08 in constraints

RST2
algorithm

C-SOMGA
algorithm

1 0.0031260000 0.0000010400 −0.0000000000 0.0002684130 0.0000010955

2 0.0929590000 0.0891080000 0.1003129217 0.0902582981 0.0980991000

3 0.0703050000 0.0547230000 0.0000000000 0.0000299943 0.0000012618

4 0.1235750000 0.1095270000 0.0498406752 0.0470376507 0.0496938000

5 0.0586510000 0.0433470000 -0.0000000000 0.0075951410 0.0000022420

6 0.0299840000 0.0246850000 0.0258683209 0.0229711095 0.0249862000

7 0.0065800000 0.0000004550 -0.0000000000 0.0001173834 0.0000003936

8 0.1035830000 0.0879960000 0.0976159913 0.0901641137 0.0975229000

9 0.0140720000 0.0019520000 0.0000000000 0.0000327579 0.0000000932

Feasible Feasible Infeasible Feasible Feasible
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Fig. 5 Comparative results of C-SOMGA and previously quoted results for 4-Bus system
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10 Conclusions

In this paper, electrical engineering power system DOCR coordination problem is
solved by modeling it as constrained non-linear optimization problem using
C-SOMGA. The problem is to determine the optimal value of Time dial setting and
Plug setting so that the relay time can be minimized. Three models of this problem
namely IEEE 3-Bus, IEEE 4-Bus and IEEE 6-Bus are solved using C-SOMGA.
The complexities of all the three models are different due to different decision
variables and constraints.

The results obtained by C-SOMGA are compared with C-GA, C-SOMA and
MATLAB Tool Box and RST2 algorithm. In all the three models, C-SOMGA
outperforms C-GA, C-SOMA, MATLAB Tool Box and RST2. The advantage of
using C-SOMGA is that for such a complex problem it requires very less popu-
lation size and computation time. C-SOMGA is found to be a robust technique for
such type of constrained nonlinear optimization problems.
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SOMGA for Large Scale Function
Optimization and Its Application

Dipti Singh and Kusum Deep

Abstract Self Organizing Migrating Genetic Algorithm (SOMGA) is a hybridized
variant of Genetic Algorithm (GA) inspired by the features of Self Organizing
Migrating Algorithm, presented by Deep and Dipti (IEEE Congr Evol Comput,
pp 2796–2803, 2007) [1]. SOMGA extracts the features of binary coded GA and
real coded SOMA in such a way that diversity of the solution space can be
maintained and thoroughly exploited keeping function evaluation low. It works
with very less population size and tries to achieve global optimal solution faster in
less number of function evaluations. Earlier SOMGA has been used to solve
problems up to 10 dimensions with population size 10 only. This chapter is brake
into three sections. In first section a possibility of using SOMGA to solve large
scale problem (dimension up to 200) has been analyzed with the help of 13 test
problems. The reason behind extension is that SOMGA works with very small
population size and to solve large scale problems (dimension 200) only 20 popu-
lation size is required. On the basis of results it has been concluded that SOMGA is
efficient to solve large scale global optimization problems with small population
size and hence required lesser function evaluations. In second section, two real life
problems from the field of engineering as an application have been solved using
SOMGA. In third section, a comparison between two ways of hybridization has
been analyzed. There can be two approaches to hybridize a population based
technique. Either by incorporating a deterministic local search in it or by merging it
with other population based technique. To see the effect of both the approaches on
GA, the results of SOMGA on five test problems are compared with the results of
MA (GA+ deterministic local search). Results clearly indicates that SOMGA is less
expensive and effective to solve these problems.
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1 Introduction

A variety of computational techniques have appeared in literature for solving
nonlinear optimization problems. However, there is no single technique that can
claim to efficiently solve each and every nonlinear optimization problem. In fact, a
technique, which is efficient for one type of nonlinear optimization problem, may be
inefficient for solving other types of nonlinear optimization problems. Moreover,
the computational time and memory space requirements of most of these techniques
are quite large. Keeping this in view, it is desirable to develop more efficient and
reliable computational techniques for solving a large variety of nonlinear real life
optimization problems of practical interest which require less memory space so that
these can be easily implemented on personal computers. Some of the general
requirements of a computational algorithm for solving global optimization prob-
lems are: (i) wide applicability i.e., it should be applicable to a wide class of real life
problems (ii) simplicity in structure, which would allow it to be easily implemented
on a computer system (iii) minimum mathematical complexities, so that it can be
used conveniently, even by non expert users.

Optimization problems arise in several fields such as system engineering,
telecommunication and manufacturing systems etc. In fact the newly developed
optimization techniques are now being extensively used in various spheres of human
activity where decisions have to be taken in some complex situations that can be
represented by mathematical models. A real life optimization problem may have a
number of local as well as global optimal solutions. It is desired by most of the users
to design optimization techniques which determine the global optimal solution rather
than the local optimal solution of nonlinear optimization problems. With the advent
of computers, population based heuristics are becoming popular day by day, not only
because of their ease of implementation, but also due to their wide applicability.
Population based stochastic search methods have been frequently used in the liter-
ature to solve real life global optimization problems. Although these probabilistic
search algorithms do not give absolute guarantee to determine the global optimum
solution, these methods are preferred over traditional methods. Evolutionary
Algorithms, particularly Genetic Algorithms (GAs) are the most commonly used
heuristics for solving real life problems. Though GAs are efficient to solve global
optimization problem but usually converges very slow and generally required large
population size also. Many attempts have been made in literature to improve the
efficiency of Genetic algorithms either by designing new operators or by incorpo-
rating the features of other techniques. Grefensette [2] introduced a hybrid variant of
GA which uses a traditional hill climbing routine for improving the fitness of newly
generated points known as Fawwin and Lamarckian evolution approach and then the
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new offspring compete with their parents for selection as a member of the next
population. Kasprzyk and Jasku [3] developed a variant of GA which is
hybridization of GA and simplex method known as genetic—simplex algorithm, in
this approach first the solution area is explored by GA operators and then simplex
method uses starting points provided by the GA to determine an optimum solution.
Chelouah and Siarry [4] also proposed a hybrid method by combining the features of
continuous Tabu search and Nelder-Mead simplex algorithm. This approach is used
to find the global minima of nonlinear optimization problems. Wang et al. [5] apply
quantum computing to GAs to develop a class of quantum-inspired GAs.

Javadi et al. [6] presented a neural-network based genetic algorithm which uses
neural network to improve solution quality and convergence speed of GAs. Fan et al.
[7] integrate the Nelder–Mead Simplex search method with genetic algorithm and
particle swarm optimization in an attempt to locate the global optimal solution of
nonlinear continuous variable functions focusing mainly on response surface
methodology. Comparative performance on ten test problems is demonstrated.
Hwang and Song [8] present a novel adaptive real-parameter simulated annealing
genetic algorithm which maintain the merits of GAs and simulated annealing. Zhang
and Lu [9] define a new real valued mutation operator and use it to design a hybrid
real coded GA with quasi-simplex technique. A nitche hybrid genetic algorithm is
proposed by Wei and Zhao [10] and results are reported on 3 benchmark functions.
Premalatha and Nataranjan [11] established hybrid PSO which proposes the modi-
fication strategies in PSO using GA to solve the optimization problems. Khosravi
et al. [12] proposes a novel hybrid algorithm that uses the abilities of evolutionary
and conventional algorithm simultaneously. Ghatei et al. [13] designed a new variant
of particle swarm optimization by including Great Deluge Algorithm (GDA) as local
search factor. Esmin and Matwin [14] presented a hybrid approach of using the
features of PSO and GA known as HPSOM algorithm. The main idea of this
approach is to integrate the PSO with genetic algorithm mutation method.

It is clear from the literature that several variants of GA are available in literature
to improve the efficiency of these algorithms. Deep and Dipti [1] presented a variant
of GA named as SOMGA in which GA has been hybridized with a new emerging
population based technique, Self Organizing Migrating Algorithm (SOMA).
SOMA is an emergent search technique in the field of population based techniques,
developed by Zelinka and Lampinen [15]. This algorithm is based on the self
organizing behavior of group of individuals looking for food. For this all indi-
viduals follow the path of one individual known as Leader selected among them
based on the best fitness value. In the whole process of this algorithm, no new
solutions are created during the search. Instead, only the positions of the solutions
are changed during a generation, called a migration loop and it works with small
population size. The details of this algorithm can be found in many research papers
and books Oplatkova and Zelinka [16], Zelinka [17], Nolle and Zelinka [18], Nolle
et al. [19], Nolle [20], Zelinka et al. [21, 22], Onwubolu and Babu [23], etc. The
common feature between GA and SOMA is that both are population based
stochastic search heuristics. Mutation and crossover is done (but the way in which
they are applied is different). Some differences of the two algorithms are as follows:
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• In GA new points are generated, whereas in SOMA no new points are gener-
ated, but instead their positions are updated.

• Individuals can proceed in any direction in GA, whereas in SOMA individuals
proceed only in the direction of the leader.

• GA has a competitive behavior, but SOMA has competitive-cooperative
behavior.

• GA works with a large population size, whereas SOMA works with a small
population size.

2 Previous Work Done

The algorithm SOMGA has been designed to solve the unconstrained non-linear
optimization problems of the type:

Min f Xð Þ;X ¼ x1; x2; . . .xnð Þ
ai � xi � bi; i ¼ 1; 2; . . .n:

)
ð1Þ

where ai and bi are the lower and upper bounds on the variables.
As discussed above several variants of population based techniques are available

in literature, for improving the convergence of these algorithms. The main reason of
slow convergence and premature convergence of these algorithms is considered as
diversity mechanism. If one algorithm fails to maintain the diversity during the
search then there are more chances to be converging premature. SOMGA is an
effort to improve the efficiency of both the algorithms GA and SOMA by extracting
the best features of these algorithms. In the hybridization of SOMGA, binary coded
GA and real coded SOMA has been used. It derives the features of selection,
crossover and mutation from binary coded GA and derives the features of small
population size, organization and migration from real coded SOMA. The features of
GA and SOMA are combined in such a way that solution search space can be
thoroughly exploited and diversity of the search domain can be preserved by
generating new points in solution space. The methodology of this algorithm is:

Methodology

First the individuals are generated randomly. These individuals compete with each
other through tournament selection; create new individuals via single point cross-
over and bitwise mutation. Then the best individual among them is considered as
leader and the worst individual is considered as active. The active individual pro-
ceeds in the direction of the leader in n steps of the defined length. This path is
perturbed randomly by a parameter known as PRT parameter. It is defined in the
range 0; 1h i: Using this PRT parameter value, PRT vector is created before an
individual proceeds towards leader. This parameter has the same effect as mutation
in GA. The movement of an individual is given as follows:
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xMLnew
i;j ¼ xML

i;j;start þ xML
L;j � xML

i;j;start

� �
tPRTVectorj ð2Þ

where t 2 0; by Step to;PathLengthh i;
ML is actual migration loop.
xMLnew
i;j is the new positions of an individual.

xML
i;j;start is the positions of active individual.

xML
L;j is the positions of leader.

At last the best individuals (number equal to population size) from the previous
and current generations are selected for the next generation. The computational
steps of this approach are given below:

Step 1: Generate the initial population.
Step 2: Evaluate all individuals
Step 3: Apply tournament selection on all individuals to select the better

individuals for the next generation.
Step 4: Apply crossover operator on all individuals with crossover probability

Pc to produce new individuals.
Step 5: Evaluate the new individuals.
Step 6: Apply mutation operator on every bit of every individual of the

population with mutation probability Pm.
Step 7: Evaluate the mutated individuals.
Step 8: Find leader (best fitted individual) and active (worst fitted individual) of

the population.
Step 9: For active individual a new population of size N is created. where

N = (Path Length/step size). This population is nothing but the new
positions of the active individual towards the leader in n steps of the
defined length. The movement of this individual is given in Eq. (2).

Step 9.1: Select the best individual of the new population and replace the active
individual with this best individual.

Step 10: Select the best individuals (in fitness) of previous and current generation
for the next generation via tournament selection.

Step 11: If termination criterion is satisfied stop else go to Step 3.
Step 12: Report the best chromosome as the final optimal solution.

Salient Features of SOMGA

The salient features of the SOMGA are:

1. SOMGA attempts to determine the global optimal solution of nonlinear
unconstrained optimization problems.

2. SOMGA does not require the continuity and/or differentiability conditions of the
objective function.
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3. SOMGA works on purely function evaluations and hence can be used in situa-
tions where the objective function is discontinuous in nature.

4. SOMGA does not require an initial guess value to start, but instead SOMGA
requires a lower and upper bound for the unknown variables.

3 Section 1

3.1 Solution of Large Scale Problems Using SOMGA

Now a days, to solve large scale optimization problems using evolutionary algo-
rithms has become the new field of research. In large scale problems, where the
number of unknown variables vary up to 200 not only the computational time but
also the memory space requirements becomes very large. Besides this the com-
plexity of the problem also increases significantly that many algorithms fails to
reach the optimal solution. One algorithm able to reach optimal solution requires
large population size as well as functional evaluations. The possibility of using
SOMGA for solving large scale problems is considered in this section. One possible
way to reduce the computational time and also to reduce the memory space is to
reduce the population size. Since SOMGA already works with less population size
hence there is no need of reducing population size. Reduction in memory space is
also not required because the population generated for the active individuals takes
memory space only for short time. After choosing the best one of the generated
population, active individual gets replaced by this best individual and other indi-
viduals release the memory space. So here the chances for using it to solve large
scale problems are very strong. The problems up to 200 variables can be solved on
Pentium IV normally configured system.

3.2 Results and Discussion

In order to observe the performance of SOMGA on large scale problems a set of
thirteen test problems have been selected given in appendix. These problems are
scalable in nature that is their size can be increased or decreased as per the user’s
choice. In general, the complexity of the problem increases as the dimension of the
problem increases. Here in Griewank function the complexity at dimension 10 is
maximum. The complexity of this function decreases as the dimension increases
above 10.

The parameters of SOMGA used to solve 100 and 200 dimension are same and
are given in Table 1. These parameters are population size, crossover rate, mutation
rate, string length, PRT, step size, path length and total number of function calls
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allowed. Main thing to notice in Table 1 is that for solving 100 and 200 dimensional
problems, only 20 population size is required. The results for problem size 10 are
given in Table 2 taken from Deep and Dipti [1].

Here, first we apply SOMGA for problem size 100. The percentage of success,
average function evaluations, mean and standard deviation of the objective function
values of 30 runs are recorded in Table 3. The same information for problem size
200 is shown in Table 4. These values are also shown graphically in Figs. 1 and 2.
It can be observed in Table 3 that SOMGA gives 100 % success in 11 problems out
of thirteen. In Griewank problem the success rate is 40 % and Rosenbrock could not
be solved at all.

In Table 4, the results for a problem size of 200 are presented. It is notable that
SOMGA gives 100 % success in 10 problems out of thirteen. In Griewank problem,

Table 1 Parameters of SOMGA for problem size 100 and 200

Population size 20

Crossover rate 0.95

Mutation rate 0.0001

String length 30

PRT 1

Step 0.091

Path length 3

Total number of function calls allowed 350,000

Table 2 Results of large scale problems for problem size 10

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function 0.996 0.003 100 4336

Exponential function 0.994 0.003 100 2028

Ackley function 0.007 0.002 100 9644

Sphere function 0.007 0.003 100 3790

Griewank function 0.068 0.036 20 13,639

Axis parallel hyper ellipsoid
function

0.006 0.003 100 4137

Schwefel’s double sum
function

0.007 0.003 100 7324

Restrigin’s function 0.003 0.003 100 16,895

Rosenbrock function 4.699 1.889 0 NA

Schwefel’s function 0.004 0.003 100 11,660

Zakhrov’s function 0.005 0.003 100 4939

Ellipsoidal function 0.006 0.003 100 3468

Schwefel’s problem 4 function 0.005 0.003 100 310
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the success rate is 60 % for problem size 200 where as for problem size 100 it is
40 %. The success rate in Griewank problem increases as the dimension of the
problem increases. This shows the behavior of Griewank problem on increasing the

Table 3 Results of large scale problems for problem size 100

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function −9.99544 0.003721 100 66,865

Exponential function −0.99245 0.002478 100 35,523

Ackley function 0.008684 0.00129 100 126,121

Sphere function 0.0077 0.002573 100 75,449

Griewank function 0.050896 0.071455 40 259,559

Axis parallel hyper ellipsoid
function

0.008083 0.001724 100 85,889

Schwefel’s double sum
function

0.006285 0.002476 100 126,078

Restrigin’s function 0.004288 0.004288 100 185,626

Rosenbrock function 95.24293 1.177368 0 NA

Schwefel’s function 0.009224 0.000703 100 248,930

Zakhrov’s function 0.006024 0.002964 100 156,021

Ellipsoidal function 0.008618 0.002317 100 118,629

Schwefel’s problem 4
function

0.004494 0.002769 100 521

Table 4 Results of large scale problems for problem size 200

Problem Mean Standard
deviation

%
Success

Function
evaluations

Cosine mixture function −19.9926 0.003517 100 114,165

Exponential function −0.99016 0.00015 100 61,248

Ackley function 0.008969 0.001514 100 203,392

Sphere function 0.009564 0.000559 100 115,071

Griewank function 0.05995 0.109189 60 257,840

Axis parallel hyper ellipsoid
function

0.00962 0.000466 100 180,245

Schwefel’s double sum
function

0.008717 0.002257 100 246,508

Restrigin’s function 0.005262 0.004334 100 272,246

Rosenbrock function 221.4295 35.95709 0 NA

Schwefel’s function 4159.555 166.9408 0 NA

Zakhrov’s function 0.009576 0.000521 100 255,085

Ellipsoidal function 0.008911 0.001696 100 311,626

Schwefel’s problem 4
function

0.004653 0.003564 100 527
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dimension that is, the complexity of the Griewank problem decreases as the
dimension increases. In Rosenbrock problem SOMGA fails. Schwefel problem
gives 100 % success for problem size 100, but could not be solved at all for
problem size 200. This shows that the complexity of the schewefel problem
increases as the dimension increases.

In Fig. 1, the success rate obtained by SOMGA in 10 dimension, 100 dimension
and 200 dimension problems is plotted. Since the complexity of the Griewank
function decreases as the dimension of the problem increases. Same kind of
behavior can be seen in Fig. 2 problem number 5. In Fig. 2, the function evaluations
required by SOMGA in 10 dimension, 100 dimension and 200 dimension problems
are plotted. The behavior is obvious. Function evaluations are increasing as the
dimension of the problem is increasing. In Griewank problem the function evalu-
ations in 100 dimesion and 200 dimensions are almost same.
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Fig. 1 Performance of SOMGA in terms of success for 100 dimension and 200 dimension
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Fig. 2 Performance of SOMGA in terms of function evaluations for 100 dimension and 200
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4 Section 2

Solution of Two Real Life Problems

To show the efficiency of algorithm SOMGA, it has been tested to solve two real
life problems from the field of engineering. The problems and their solutions are
described as follows.

4.1 Optimal Thermohydraulic Performance
of an Artificially Roughened Air Heater

This problem is taken from Prasad and Saini [24]. In this problem the optimal
thermo hydraulic performance of an artificially roughened solar air heater is con-
sidered. Optimization of the roughness and flow parameters (p/e, e/D, Re) is con-
sidered to maximize the heat transfer while keeping the friction losses to be
minimum. This is an unconstrained optimization problem. It has three decision
variables. The mathematical model of the problem, as given in Prasad and Saini
[24] is:

Maximize L ¼ 2:5log eþ þ 5:5� 0:1RM � GH

where

RM ¼ 0:95x0:532

GH ¼ 4:5 eþð Þ0:28 0:7ð Þ0:57

eþ ¼ x1x3 f=2
� �1=2

�f ¼ fs þ frð Þ=2
fs ¼ 0:079x�0:25

3

fr ¼ 2 0:95x0:533 þ 2:5 log 1=2x1ð Þ2 � 3:75
h i�2

The notations used are as follows:

e+ roughness height.
p pitch of the roughness element.
D the hydraulic diameter of solar heater.
x1 = e/D relative roughness height.
x2 = p/e relative roughness pitch.
x3 = Re Reynolds number.
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The bounds on the variables are:

0:02� x1 � 0:8; 10� x2 � 40; 3000� x3 � 20;000

This is an unconstrained problem and has been solved by SOMGA. It is earlier
solved by Prasad and Saini [24] and Pant [25]. The results obtained by SOMGA are
compared with the available results and are presented in Table 5. It is clear from the
Table 5 that the solution obtained by SOMGA is better than previously quoted
results.

4.2 Frequency Modulation Sounds Parameter Identification
Problem

This problem has been taken from Tsutsui and Fujimoto [26]. It is an unconstrained
optimization problem. This problem is to determine the six parameters
a1; x1; a2; x2; a3; x3 of the Frequency Modulation Sound model represented by

y tð Þ ¼ a1 � sin x1 � t � hþ a2 � sin x2 � t � hþ a3 � sin x3 � t � hð Þð Þð Þ;

with h ¼ 2�p
100. An evaluation function Pfms is defined as the summation of 101 square

errors between the evolved data and the model data as follows:

Pfms a1;x1; a2;x2; a3;x3ð Þ ¼
X100
t¼0

y tð Þ � y0 tð Þð Þ2;

where the model data are given by the following equation:

y0 tð Þ ¼ 1:0 � sin 5:0 � t � h� 1:5 � sin 4:8 � t � hþ 2:0 � sin 4:9 � t � hð Þð Þð Þ:

Each parameter is in the range −6.40 to 6.35. In this problem, a generated sound
wave and its evaluation function Pfms are extremely sensitive to some of these
parameters a1, w1, a2, w2, a3, w3. This makes the problem difficult to reach the
optimal point. This problem is a highly complex multimodal one having strong
epistasis, with minimum value Pfms(x

*) = 0. Empirical results are shown in Table 6.

Table 5 Optimal thermo hydraulic performance of an artificially roughened air heater

Value of objective Values of variables

Solution obtained by SOMGA 4.18241 x1 = 0.10558676, x2 = 10.000276,
x3 = 4567.99

Solution given in Pant [25] 4.182 x1 = 0.052, x2 = 10.00, x3 = 10258.46

Solution given in Prasad and
Saini [24]

�4:18 x1 � 0.0205, x2 � 10.00
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Tsutsui and Fujimoto [26] have used this problem for the testing of their technique
that is Phenotypic Forking Genetic Algorithm (p-fGA). This technique takes 22621
generations on average to solve this problem. On the other hand SOMGA solves
this problem in 156 generation or 7207 function evaluation only.

5 Section 3

5.1 Comparison with the Memetic Algorithm

Generally two kinds of local search methods can be used in GAs to improve the
efficiency of these algorithms. One is the deterministic method and the other is to use
another population based stochastic search strategies as local searches. Although
deterministic methods have less exploration capabilities but they converges very
fast in small neighborhood. In this section a comparison has been made between the
two approaches of hybridization. One approach is SOMGA described in Sect. 2,
Previous work done, in which GA is hybridized with another population based
technique SOMA. Another approach is hybridization of GA with a deterministic
local search method. This approach is based on the idea that first let the population
evolve using GA and when the search domain become narrow and convergence slow
down after certain number of generations apply local search on selected individual
to faster the convergence of it. The methodology of this approach is as follows:

Step 1: Generate the initial population.
Step 2: Evaluate all individuals.
Step 3: Apply selection operator on all individuals to select the better individuals

for the next generation.
Step 4: Apply crossover operator on all individuals with crossover probability Pc

to produce new individuals.
Step 5: Evaluate the new individuals.
Step 6: Apply mutation operator on every bit of every individual of the

population with mutation probability Pm.
Step 7: Evaluate the mutated individuals.
Step 8: If generation is less than the specified generations go to Step 3 else go to

Step 9.
Step 9: Select best q% individuals and apply LS.
Step 10: If termination criterion is satisfied stop else go to Step 3.

Table 6 Solution of Frequency modulation sounds parameter identification problem

Method Result obtained Total runs required # Evaluation

SOMGA 0.00941009 156 7207

p-fGA – 22621 –

198 D. Singh and K. Deep



The algorithm terminates as soon as the best fit solution is obtained within 1 %
accuracy of the known global optimum solution or it crosses the allowed number of
function evaluations. Any derivative free local search method can be used in this
approach. We use the well known Hooke and Jeeves direct search method described
in Bazaraa et al. [27]. It is multidimensional search method with discrete steps and
works without using derivatives. Hence it is able to solve a wide range of problems.
It is also very quick and robust at finding the local optimal solution of a problem. It
is tested on five well-known benchmark test problems, namely, Ackley function,
Schwefel’s function, Griewank’s function, Restrigin’s function, Rosenbrock’s
function taken from Ali et al. [28]. These five test problems are most commonly
used for evaluating the performance of evolutionary algorithms. The parameters
used in this approach namely population size, probability of crossover (Pc), prob-
ability of mutation (Pm), specified number of generations (taken in our experiments
after fine-tuning) after which LS has to be activated and total number of function
calls allowed are given in Table 7 and the results obtained by this approach are
presented in Table 8.

5.2 Results and Discussion

For this approach, it is suggested that for solving an n dimensional problem,
population size 5 * n should be taken and LS should be applied after 10 * n
generations. But minimum population size 100 is required for 10 or more than 10

Table 7 Parameters of MA

Dimension n = 10

Population size 100

Crossover rate pc 0.95

Mutation rate pm 0.001

Specified number of generations 100

Total number of function calls allowed 40,000

Table 8 Comparative results of SOMGA and MA

Problem SOMGA MA

Mean S.D. # of
success

# of
evaluation

Mean S.D. # of
success

# of
evaluation

Ackley 0.007 0.002 30 9644 0.06023 0.30033 28 22,521

Schwefel 0.004 0.003 30 11,660 0.00013 0 30 21,634

Griewank 0.068 0.036 6 13,639 0.04943 0.04123 5 33,143

Restrigin 0.003 0.003 30 16,895 0.09532 0.26137 26 32,465

Rosenbrock 4.699 1.889 0 – 0.00103 0.00167 30 21,012
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dimensional problem. All the results have been taken using these specifications.
Figure 3 shows the success attained by MA and SOMGA. The greater the portion
covered by an algorithm in a column, the better the method is, in that problem. It is
clear from the graph that the portion covered by both the algorithms GA and
SOMGA is almost equal, except in one problem. The main difference between the
two is that MA is providing success at 100 population size for 10 variable problem
and SOMGA is providing the same success at 10 population size for 10 variable
problem. Hence on the basis of population size SOMGA is better than MA.

Figure 4 shows the function evaluations taken by MA and SOMGA in successful
runs. In this graph, the lesser the portion covered by an algorithm in a column, the
better the method is in that problem. It is evident from the graph that the portion
covered by SOMGA is much lesser than MA. This means SOMGA required less
number of function evaluations than MA for obtaining the global optimal solution
of unconstrained optimization problems. Hence SOMGA is more efficient than MA.

On the basis of these results, it is concluded that SOMGA is far more superior to
MA in terms of function evaluations. Hence SOMGA is recommended for solving
the unconstrained nonlinear optimization problems.
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6 Conclusions

In this chapter a variant of GA and SOMA known as SOMGA has been used to
solve large scale optimization problems. From the discussion part of results for
large scale optimization it is clear that for solving up to 200 dimension problem
SOMGA requires very less population size as well as function evaluations. Later
two real life problems from the field of engineering have been solved using the
same technique and SOMGA proves its efficiency to solve these problems. At last a
comparison between two variants of GA i.e. SOMGA and MA has been made.
Though MA is able to solve all the test problems with good success rate but it is
expensive in terms of function evaluations. One drawback of using deterministic
methods is that they are usually problem specific hence restricted to solve some
specific classes of problems. Another drawback of using these traditional local
searches is that if LS is not implemented properly, the chances of getting trapped in
local minima is more because these methods have less exploration qualities. It
means that these hybridized algorithms demand careful fine tuning of local search
parameters. On the other hand population based stochastic search techniques are not
problem specific and are applicable to solve a wide range of problems. Another
advantage of using these techniques is that they use multiple guesses to improve a
solution. Hence have more exploration qualities.

Appendix

This Appendix contains the list of 13 benchmark test problems taken from litera-
ture, which are used to evaluate the performance of the algorithm. These problems
are unconstrained nonlinear optimization problems having a number of local as well
as global optimal solutions. All the problems have varying difficulty level and
contain unimodal as well as multi modal problems.

Problem 1: (Cosine Mixture Problem)
This problem is Cosine Mixture Function. The global optimum of this function is at
(0, 0,…, 0) with fmin = −0.1n. where n is the dimension of the problem. The
functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i � 0:1
Xn
i¼1

cos 5pxið Þ; for xi 2 �1; 1½ �:

Problem 2: (Exponential Problem)
This problem is Exponential Function. The global optimum of this function is at
(0, 0,…, 0) with fmin = −1. The functional form is as follows:
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min
x

f xð Þ ¼ exp �0:5
Xn
i¼1

x2i

 !
; for xi 2 �1; 1½ �:

Problem 3: (Ackley Function)
This problem is the Ackley function. The surface of the Ackley function has
numerous local minima due to its exponential terms. Any search algorithm based on
the gradient information will be trapped in local optima, but any search strategy that
analyzes a wider region will be able to cross the valley among the optima and
achieve better results. Its global minimum is at (0, 0,…, 0) with fmin = 0. The
functional form is as follows:

f xð Þ ¼ 20þ e� 20e
� 1

5

ffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

x2i

r� �
� e

� i
n

Pn
i¼1

cos 2pxið Þ
� �

; for xi 2 �15; 30½ �:
Problem 4: (Sphere Function Problem)
The next problem is Sphere Function. This problem is continuous convex and
unimodal. Its global minimum is at (0, 0,…, 0) with fmin = 0. The functional form is
as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i ; for xi 2 �5:12; 5:12½ �:

Problem 5: (Griewank Function)
This problem is a widely employed test function for global optimization, the
Griewank function. While this function has an exponentially increasing number of
local minima as its dimension increases, it turns out that a simple Multistart
algorithm is able to detect its global minimum more and more easily as the
dimension increases. The optima of this function are regularly distributed. Number
of local minima for arbitrary n is unknown, but in two dimensional case there are
some 500 local minima. Its global minimum is at (0, 0,…, 0) with fmin = 0. The
functional form is as follows:

f ðxÞ ¼
Xn
i¼1

x2i
4000

�
Yn
i¼1

cos
xiffiffi
i

p
� �

� 1; for xi 2 �5:12; 5:12½ �:

Problem 6: (Axis Parallel Hyper Ellipsoid)
This problem is Axis Parallel Hyper Ellipsoid Function. This test problem is similar
to sphere problem function. It is also known as the weighted sphere model. It is
continuous convex and unimodal. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:
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min
x

f xð Þ ¼
Xn
i¼1

ix2i ; for xi 2 �5:12; 5:12½ �:

Problem 7: (Schwefel’s Double Sum)
This problem is Schwefel’s double sum Function. This function is an extension of
axis parallel hyper ellipsoid function. It produces a rotated hype-ellipsoid. It is
continuous convex and unimodal. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

Xi
j¼1

xj

 !2

; for xi 2 �65:536; 65:536½ �:

Problem 8: (Rastrigin Function)
This problem is the Rastrigin Function. It is the extended form of the sphere
function with a modulator term α · cos(2πxi). This function consists of a large
number of local minima (not exactly known) whose value increases with the dis-
tance to the global minimum. Its global minimum is at (0, 0,…, 0) with fmin = 0.
The functional form is as follows:

f xð Þ ¼ 10nþ
Xn
i¼1

x2i � 10 cos 2pxið Þ� �
; for xi 2 �5:12; 5:12½ �:

Problem 9: (Rosenbrock Function)
This problem is the Rosenbrock function, also known as the banana function. It is a
continuous, differentiable, unimodal and non separable function. Its difficulty arises
due to nonlinear interaction between parameters. The global optimum is inside a
long narrow parabolic shaped flat valley. Its global minimum is at (1, 1,…, 1) with
fmin = 0. The functional form is as follows:

f xð Þ ¼
Xn�1

i¼1

ð100ðxiþ 1 � x2i Þ2 þ xi � 1
� �2Þ; for xi 2 �2:048; 2:048½ �:

Problem 10: (Schwefel Function)
This problem is Schwefel Function. The contour of this function is made up of a
great number of peaks and valleys. This function has a second best minimum far
from the global minimum, so it is difficult for many algorithms to locate the global
optimum of this function. Its global minimum is at (1, 1,…, 1) with fmin = 0. The
functional form is as follows:

f xð Þ ¼ 418:9829n�
Xn
i¼1

xi sin
ffiffiffiffiffiffi
xij j

p� �
; for xi 2 �500; 500½ �:
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Problem 11: (Zakharov’s Problem)
This problem is Zakharov Function. Its global minimum is at (0, 0,…, 0) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

x2i þ
Xn
i¼1

i
2
xi

 !2

þ
Xn
i¼1

i
2
xi

 !4

; for xi 2 �5:12; 5:12½ �:

Problem 12: (Ellipsoidal Function)
This problem is Ellipsoidal Function. Its global minimum is at (1, 2,…, n) with
fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼
Xn
i¼1

xi � ið Þ2; for xi 2 �n; n½ �:

Problem 13: (Schwefel Problem 4)
This problem is Schwefel Problem 4 Function. Its global minimum is at (0, 0,…, 0)
with fmin = 0. The functional form is as follows:

min
x

f xð Þ ¼ max xij j; 1� i� nf g
i

; for xi 2 �100; 100½ �:
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Solving the Routing Problems with Time
Windows

Zuzana Čičková, Ivan Brezina and Juraj Pekár

Abstract The routing problems are considered to be a very important part in the
field of transportation that can be applied to solve a wide variety of real problems.
The economic impact of optimization of these problems can lead to considerable
savings in logistics costs and in that way to increase the competitive advantage of
many companies. In general, the importance of routing problems follows not only
from many practical applications but also from its computational complexity (im-
portance for theoretical research). The corresponding problems have long been
solved by classical mathematical apparatus and standard methods, but such a
solution is sometimes impossible or complicated and lengthy, therefore the
increasing interest in “non-traditional” methods of solution is evident in the past
decade. This chapter deals with self-organizing migrating algorithm (SOMA) for
solving the routing problems, focused on the traveling salesman problem, capaci-
tated vehicle routing problem and its modifications based on time restrictions. Our
interest in time restricted routing problems arises from a real-life distribution
problem in one of the regions of Slovakia (individual customers’ commodities
delivering times were restricted by their available service time), where the previous
distribution was realized on the base of solution derived with heuristic Clarke &
Wright’s savings algorithm with time windows.
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1 Introduction

Nowadays, the threat of depletion of non-renewable resources which are necessary
for car propulsion is the reason for development and utilization of instruments that
take advantage of the optimization. The efficiency may be increased by force of
quantitative approaches that are aimed at optimization of physical distribution of the
commodities. Related optimization problems are known as routing problems.

The traveling salesman problem (TSP) is one of the most popular routing
problems. In its simplest form it asks the following: given a list of cities and the
known distances between each pair of cities. The aim is to find the shortest circular
route, which visits each city exactly once. Despite its relatively simple verbal
formulation, this is one of the most famous problems of discrete mathematics,
which is fascinating in that there is generally no known polynomial algorithm that
would allow an optimal solution of large instances in real time. Thus, this issue
remains at the heart of further research. That argument is supported by lots of
algorithms developed, created computer programs and published scientific papers.
And if it is not realistic to obtain the optimal solution of specific instance, it still can
be satisfied with the techniques that provide “good” solution “almost always” and
thus prioritize “good” and relatively fast heuristic solution before slowly algorithm
that ensures returning of optimal solution.

The basic formulation of the traveling salesman problem considers only one
vehicle with unlimited capacity. This problem may be modified by various addi-
tional conditions and thus take into account the real constraints of practical issues.
The routing problems generally involve the assignment of vehicle (fleet of vehicles)
to trips such that corresponding costs are as low as possible. The capacitated vehicle
routing problem (CVRP) is one of the most intensively studied problems in opti-
mization. The standard CVRP is the generalization of travelling salesman problem,
where we consider that the capacity of vehicle (fleet of vehicles) is limited and that
the non-negative demands of customers (cities) are known. The vehicle (vehicles) is
(are) located in the central depot. This problem consists in designing the optimal set
of routes for a vehicle in order to serve a given set of customers (the vehicle
(vehicles) needs (need) to be returned to a depot). The practical problems of
physical distribution often include the need to respect the time restriction.
Frequently used time restrictions are considered as the earliest possible time of
service, the possible time of service or the need to serve during the given time
interval. The above mentioned terms are known as time windows and the corre-
sponding problems are known as routing problems with time windows.

The theoretical attractiveness of the traveling salesman problem is evident from a
number of published works. The first successful solutions are associated with the
names of Dantzig, Fulkerson and Johnson [23]. Their results were followed by
Robacker [45], who described the cheapest-insertion heuristic. Croes in [22] used a
heuristic local search algorithm called 2-opt. method. The use of dynamic pro-
gramming to solve the traveling salesman problem is presented in [3]. Formulation
of TSP as an integer programming problem demonstrated Miller et al. [35].
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The frequently used methods for solving TSP include branch and bound method
described in [32]. Popular heuristic algorithm for solving a traveling salesman
problem is presented in [31] and another well-known heuristic in Christofides [10].
Improved Lin-Kernighan heuristics is presented in [29] as Lin-Kernighan-Helsgaun
algorithm. Despite the large number of published works until the 90s of the 20th
century, presented experiments included only small instances. To date, currently
reported isolated cases of optimal solutions of big instances [19, 27, 38] required
using large computer networks (calculations often require tens of years of CPU
time). It is obvious that using one computer to solve big instances will likely con-
tinue the necessity to use heuristic methods to find sub-optimal solutions. The
popular heuristics include, e.g. Clarke & Wright’s savings heuristics, which is also
used to solve the vehicle routing problem instances. Improving it using Holmer and
Parker’s perturbation scheme can be found in [39]. Interesting traveling salesman
problem solution using a graph pyramid algorithm is described in [40]. Various
traditional heuristics include e.g. savings-insertion methods, improvement-exchange
heuristics etc. (e.g. [39]).

Classical mathematical apparatus and standard methods have long been used to
solve TSP or other routing problems. Such a solution is sometimes impossible or
complicated and lengthy; therefore the increasing interest in “non-traditional”
methods of solution is evident in the past decade. For all it can be mentioned: the
application of principle of differential evolution [37] or [41], using the self-
organizing migration algorithm [5, 16], the possibility of using neural network [12],
ants colony algorithm [30].

Different approaches of constrained optimization can be found, e.g. in [21, 28,
33, 34, 49, 53] etc. The TSP Challenge Centre of Rutgers University1 page provides
summary the results obtained from the classical solution heuristics, as well as some
metaheuristic approaches.

As was mentioned before, the routing problems often include the need to respect
time restrictions. Here are many ways to define time windows. In general, the
problem is known as the problem with soft delivery time windows consider only the
earliest possible service time or the last possible service time and problems with
hard delivery time windows consider the time restriction given by time interval with
lower and upper limit. Some models include waiting [20], or the violation of time
restriction is allowed, although incurring some cost [47]. In [24] is a time window
understood only as the time interval during which the vehicle must arrive at their
service (while not intending to limit service time or completion of service). The
most popular corresponding routing problems are named traveling salesman
problem with time windows (TSPTW) and capacitated vehicle routing problems
with time windows (CVRPTW) regardless of the type of the time window.
Furthermore, some other works dealing with the solution of the corresponding
problems with time windows in classical and alternative ways will be presented.

1http://www2.research.att.com/*dsj/chtsp/ (1.1.2014).
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In [48] is proposed heuristic method for addressing related problems based on
the 2 and 3-exchange procedures. Example of exact solution based on dynamic
programming and branch and bound method can be found in [2] or [11], which both
solved instances with dimensions up to 50 nodes. Solomon’s heuristics [50] and
Potvin and Rousseau’s heuristics [44] can be mentioned as representatives of
classical methods. Other applications can be found in [6, 42, 54] or in [52].
A representative of classical heuristics includes Solomon’s heuristics [50] and
Potvin and Rousseau’s heuristics [44]. Widely used metaheurics include e.g. Tabu
search [7, 46], simulated annealing [51], particle swarm optimization [1], ants
colony [47], genetic algorithms [9, 26, 36], self-organizing migrating algorithm
[4, 14, 18], neural networks [57].

This chapter is focused on self-organizing migrating algorithm (SOMA) for
solving the capacitated vehicle routing problem with time windows (CVRPTW).
Our interest in CVRPTW arises from a real-life distribution problem in one of the
regions of Slovakia (individual customers’ commodities delivering times were
restricted by their available service time).

The chapter consists of two main parts. First, the brief view on basic types of
routing problems (traveling salesman problem, vehicle routing problem and their
modification considering time restriction), as well as literature overview aimed on
solving possibilities, is given in the introduction. Generally, that problem can be
easy formulated in the terms of binary programming. The corresponding models are
introduced in the second part of the chapter. Such formulation allows the use of
standard software to solve specific instances. The possibility to obtain optimal
solution is rather limited taking into account the size of instance. Thus, the other
way is the use of evolutionary techniques. Following this idea, the next part of the
chapter is focused on application of self-organizing migrating algorithm (SOMA) to
routing problems and it is divided as following: some modification of basic version
of SOMA that takes into account the specificity of routing problems is presented
and its efficiency is validated on the basis of publicly available instances.

Second, the real-life vehicle routing problem with time windows that has
appeared in Slovakia is solved. Solution obtained was compared with solution that
was derived with heuristic Clarke & Wright’s savings algorithm with time windows
that belong to the group of classical heuristics.

2 Mathematical Models of Selected Routing Problems

The classical versions of routing problems can be described in terms of graph theory.
Further on, the following notation is implemented: Let N ¼ 1; 2; . . .nf g be the set of
served nodes (customers) and let N0 ¼ N [ 0f g be a set of nodes that represents the
customers together with the initial node (origin). The routing problems can be
formulated on finite connected directed and weighted graph G = (V, H), where
V ¼ VS [VZ represents set of all nodes (n + 1 elements) and the set VS = {v0}
represents the origin and VZ = {vi, i 2 N} represents the set of customers. Let the
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set H � V � V be the arc set hij ¼ vi; vj
� �

considered to be directed from the node vi
to node vj, i; j 2 N0: A number or weight o(hij) is assigned to each edge. Let C ¼
cij

� �
be a matrix of size n + 1, while its elements are defined as follows:

cij ¼
o hij
� �

; if there exists the edge hij
0; if i ¼ j
M; if there is no edge hij

8<
: ð1Þ

where M represents a big positive number.
The routing problems are often described on complete weighted directed graph

G ¼ V ;H
� �

in which every pair of distinct vertices is connected by a pair of unique
edges (one in each direction), so that H represents the set of edges. The weight of
each edge is equal to minimal distance between nodes vi a vj in the original graph.
Let dij be a shortest distance between the nodes vi and vj; i; j 2 N0; than a matrix
D ¼ dij

� �
of size n + 1 can be named the matrix of shortest distances.

Mathematical models of selected routing problems are easy to formulate in the
terms of binary programming. Further on, the models involve binary xij i; j 2 N0ð ;
i 6¼ jÞ with the following notation:

xij ¼ 1; if the final route goes from vi to vj
0; otherwise

�
ð2Þ

Next, the mathematical models of traveling salesman problem, vehicle routing
problem, traveling salesman problem with time windows and vehicle routing
problem with time windows are introduced.

2.1 Traveling Salesman Problem (TSP)

The mathematical formulation of TSP is based on formulation of the assignment
problem with addition of sub-tour elimination constraints. So that formulation is
known as Miller-Tucker-Zemlin’s formulation [35].

min f ðX; uÞ ¼
X
i2N0

X
j2N0
i6¼j

dijxij ð3Þ

X
j2N0

xij ¼ 1; j 2 N0; i 6¼ j ð4Þ

X
j2N0

xij ¼ 1; i 2 N0; i 6¼ j ð5Þ
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ui � uj þ nþ 1ð Þxij � n; i 2 N0; j 2 N; i 6¼ j ð6Þ

1� ui � n; i 2 N ð7Þ

u0 ¼ 0 ð8Þ

xij 2 0; 1f g; i; j 2 N0; i 6¼ j ð9Þ

The objective function (3) minimizes the total travelled distance. Equations (4)
and (5) ensure that a vehicle leaves each node and vehicle enters each node exactly
ones. The model considers new set of variables ui, i 2 N0 representing the sequence
in which nodes are being visited (6) and (7). For convenience one may add (8)
ensuring the node indexed 0 is required to be the origin.

2.2 Traveling Salesman Problem with Time Windows
(TSPTW)

Next, it will be discussed the possibility of taking into account the time restrictions
in the formulation of the traveling salesman problem. The time window of each
customer vi, i 2 N is considered as the earliest possible start of service in different
nodes (ei, i 2 N) and the last acceptable time of service in different nodes (li, i 2 N).
Further on, there is the known service duration oi, i 2 N; while the parameter o0 is
set to 0. Let the variables si; i 2 N represent the real starting service time of
corresponding customer, so that ei ≤ si and si + oi ≤ li, i 2 Nð Þ: Let the elements of
the matrix D represent shortest time distance between all nodes dij, i; j 2 N0: The
model takes into account the waiting time so that the vehicle is allowed to wait for
service if it arrives before the earliest possible start of service. Denote the wj be the
waiting time at the j-served customer, so it is considered that after operating the ith
customer it is immediately followed by service of jth customer, which will start in
the time ej.

Thus, mathematical model of TSPTW could be formulated as follows:

min f X;w; sð Þ ¼
X
i2N0

X
j2N0
i 6¼j

xij þ
X
i2N

oi þ
X
j2N

wj ð10Þ

X
i2N0

xij ¼ 1; j 2 N0; i 6¼ j ð11Þ

X
j2N0

xij ¼ 1; i 2 N0; i 6¼ j ð12Þ
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si þ oi þ dij �M 1� xij
� �� sj; i 2 N0; j 2 N ð13Þ

wj � sj � si � oi � dij �M 1� xij
� �

; i 2 N0; j 2 N; i 6¼ j ð14Þ

ei � si; i 2 N ð15Þ

si þ oi � li; i 2 N ð16Þ

s0 ¼ 0 ð17Þ

xij 2 0; 1f g; i; j 2 N0; i 6¼ j ð18Þ

wi � 0; i 2 N ð19Þ

Objective function (10) ensures the minimization of the total time required for
transfer, the total service time and the total waiting time. Equations (11) and (12)
ensure that each final route goes through every node exactly ones. However, the
anti-cyclical conditions (6) are replaced by conditions (13), whose meaning is as
follows: if the edge (i, j) is used, then the real beginning time of the service of jth
customer is greater than or equal to the starting time of the previous service
increased by its operating and transit time between customers. In the case of waiting
it is also increased by the value of the waiting time at the jth customer [calculated
by Eq. (14)]. Equations (15) and (16) ensure that the time windows of all nodes on
the route are met.

2.3 Capacitated Vehicle Routing Problem (CVRP)

As it was mentioned before, the CVRP is one of the famous generalizations of
traveling salesman problem, which importance is undoubtedly conditioned also by
practical utility. Main difference follows from a presumption that each customer
located at the node vi i 2 N has a certain demand gi, which have to be met from the
initial node (i = 0)—origin. The operation is performed using a vehicle with
a certain capacity (g). The goal is to identify those routes of vehicle so that the total
travelled distance is as low as possible (we suppose that shortest distances between
all nodes dij, i; j 2 N0 are known) with respect to the following restrictions: the
origin represents initial node and also the final node of every route, from the
origin the demands qi, i 2 N of all the other nodes are met (in full), each node
(except central node) is visited exactly once and total demand on route must not
exceed the capacity of the vehicle (g). The model implicitly assumes that qi ≤ g for
all i 2 N; i.e. the demand of each customer does not exceed the capacity of the
vehicle. Based on this assumption, the model can be stated as follows:
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min f X; uð Þ ¼
X
i2N0

X
j2N0
i6¼j

dijxij ð20Þ

X
i2N0

xij ¼ 1; j 2 N; i 6¼ j ð21Þ

X
j2N0

xij ¼ 1; i 2 N; i 6¼ j ð22Þ

ui þ qj � gð1� xijÞ� uj; i 2 N0; j 2 N; i 6¼ j ð23Þ

qi � ui � g; i 2 N ð24Þ

u0 ¼ 0 ð25Þ

xij 2 0; 1f g; i; j 2 N0; i 6¼ j ð26Þ

Objective function (20) determines the total distance traveled. Meaning of the
Eqs. (21) and (22) is analogous to the previous models, namely ensure that each
customer (except the origin) is visited exactly ones. Equation (23) are anti-cyclical
conditions that prevent the formation of such sub-cycles which do not contain a
starting node v0. The set of variables ui, i 2 N ensures the calculation of current
load of vehicles in its route to ith customer (including) (23). Equation (25) ensures
that load of the vehicle is set to zero in the origin. Equation (24) ensure that all
demands on the route must not exceed the capacity of the vehicle.

2.4 Capacitated Vehicle Routing Problem with Time
Windows (CVRPTW)

Formulation of vehicle routing problem with time windows takes into account the
same assumption as mentioned in the part 2.3 as well as the time restrictions (part
2.2). Mathematical formulation combining these assumptions is given below:

min f X; u;w; sð Þ ¼
X
i2N0

X
j2N0
i6¼j

dijxij þ
X
i2N

oi þ
X
j2N

wj ð27Þ

X
i2N0

xij ¼ 1; j 2 N; i 6¼ j ð28Þ

X
j2N0

xij ¼ 1; i 2 N; i 6¼ j ð29Þ
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ui þ qj � gð1� xijÞ� uj; i 2 N0; j 2 N; i 6¼ j ð30Þ

qi � ui � g; i 2 N ð31Þ

u0 ¼ 0 ð32Þ

si þ oi þ dij �M 1� xij
� �� sj; i 2 N0; j 2 N ð33Þ

wj � sj � si � oi � dij �M 1� xij
� �

; i 2 N0; j 2 N; i 6¼ j ð34Þ

ei � si; i 2 N ð35Þ

si þ oi � li; i 2 N ð36Þ

s0 ¼ 0 ð37Þ

xij 2 0; 1f g; i; j 2 N0; i 6¼ j ð38Þ

wi � 0; i 2 N ð39Þ

Objective function (27) minimizes the sum of the total time needed to move the
vehicle, the total service time of customers and the total waiting time. Meaning of
the Eqs. (28) and (29) is analogous to the previous models. Each vertex are
simultaneously assigned to two variables ui, which represent the load of the vehicle,
and ui, which return the real starting service time of corresponding customer. There
are also two types of anti-cycling Eqs. (30) and (33). Equations (30), (31) and (32)
reflect the load the vehicle and also ensure that the capacity restriction of the vehicle
is satisfied. Equations (33)–(37) provide the calculation of the real starting time of
service of the corresponding customer within a given time window.

3 Self-organizing Migrating Algorithm for the Routing
Problems

Self-organizing migrating algorithm (SOMA) was originally designed to solve
non-constrained problems with continuous variables [56], so if one wants to apply it
for solving routing problems, it is necessary to consider the following factors:

• selection of an appropriate representation of individual,
• formulation of objective function,
• transformation of parameters of individual to the real numbers,
• transformation of unfeasible solutions,
• setting of the control parameters.

Selection of an appropriate representation of individual. One way of repre-
senting solutions (individuals) is the use of natural representation of individual. In
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response to the vehicle routing problem, each node (city) except initial node (origin)
is assigned with integer from 1 to n (n represents the number of nodes except
origin), which clearly represents corresponding node in an individual. Each indi-
vidual is then represented by n-dimensional vector of integers, representing the
sequence of nodes visits. Parameters on individual in the initial population can be
established as a random permutation of n integers, so it is the random permutation
of the sequence of nodes. Each individual in the population is also assigned with its
fitness that represents total cost of the route.

Formulation of objective function. Formulation of objective function is illus-
trated for these routing problems: TSP, TSPTW, CVRP, and CVRPTW.

The objective for traveling salesman problem (TSP) takes into account only the
fact that different nodes are connected in one circular route in order given by
parameters of an individual. The fitness can be presented in the following
pseudocode:

Procedure Fitness TSP
Input:
D matrix of shortest distances (of size n+1) between all the nodes (first row and first
column are associated with the origin)
Output:
fitness (total route traveled)
s total distance needed to serve corresponding supply nodes
s= d(x[0], x[1])
For i=1 to n-1

s=s+d(x[i], x[i+1])
EndFor
s=s+ d(x[n], x[0])
Fitness = s
EndProcedure

Formulation of objective function for traveling salesman with time windows
(TSPTW) requires to ensure the limits given by time windows so that all nodes
except the origin must be served within the time window (earliest possible start of
service and no later than the end of the permissible service). In doing so, each node
(except the origin) is associated with its service time at the same time. The service is
provided including waiting, so in the event of early arrival of the vehicle it is
possible to wait until the opening of the time window. The fitness calculation can be
presented by the pseudocode:

Procedure Fitness TSPTW
Input:
D matrix of shortest time distances (of size n+1) between all the nodes (first row
and first column are associated with the origin)
o vector of service time of each customer (of size n)
e vector of earliest possible time of service of each customer (of size n)
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l vector of last possible time of service of each customer (of size n)
p penalty constant
Output:
fitness (total duration of the route)
s total time needed to serve corresponding customer
s = d(x[0], x[1])
If s < e[x[1]], then s = e[x[1]]
EndIf
s = s + o[x[1]]
For i = 1 to n-1

s = s + d(x[i], x[i+1])
If s ≥ e[x[i+1]] ∧ s+ o[x[i+1]] ≤ l[x[i+1]], then s = s + o[x[i+1]]
ElseIf s < e[x[i+1]], then s = e[x[i+1]] +o[x[i+1]]
ElseIf s + o[x[i+1]] > l[x[i+1]] , then s = s+p
EndIf

EndFor
s=s+ d(x[n], x[0])
Fitness = s
EndProcedure

Formulation of objective function for capacitated vehicle routing problem
(CVRP), requires to take into account the demand of the nodes as well as the
capacity of the vehicle in that way, the total demand on route must not exceed the
capacity of the vehicle. Considering the goal to find the shortest route, the nodes are
connected to one route only if non-zero savings (calculated using the Clarke &
Wright’s algorithm, it is thus possible to avoid the route preference associated
solely on the basis of the vehicle’s capacity compared with the shortest routes).

Procedure Fitness CVRP
Input:
D matrix of shortest distances (of size n+1) between all the nodes (first row and first
column are associated with the origin)
q vector of customers demand (of size n)
g capacity of the vehicle
Output:
fitness (total route traveled)
k current load of vehicle (sum of the demands that are served up to the moment)
s total distance needed to serve corresponding customer
U matrix (of size n) of savings based on Clarke & Wright’s algorithm
Calculate U
s= d(x[0], x[1])
k= q[1]
For i=1 to n-1

If k+ q[i+1]≤g ∧ u(x[i], x[i+1]) ≠0, then s=s+d(x[i], x[i+1]), k=k+ g[i+1]
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Else s=s+d(x[i], x[0])+ d(x[0],x[i+1],), k= q[i+1]
EndIf

EndFor
s=s+ d(x[n], x[0])
Fitness = s
EndProcedure

Formulation of objective function for capacitated vehicle routing problem with
time windows (CVRPTW) must respect previous capacity and time constraints.

Procedure Fitness CVRPTW
Input:
D matrix of shortest time distances (of size n+1) between all the nodes (first row
and first column are associated with the origin)
q vector of customers demand (of size n)
o vector of service time of each customer (of size n)
e vector of earliest possible time of service of each customer (of size n)
l vector of last possible time of service of each customer (of size n)
g capacity of the vehicle
Output:
fitness (total duration of the route)
k current load of vehicle (sum of the demands that are served up to the moment)
s total time needed to serve corresponding customer
j total time needed to serve corresponding customer in corresponding route
U matrix of savings (of size n) based on Clarke & Wright’s heuristics
Calculate U
j = d(x[0], x[1])
k = q[1]
If j < e[x[1]], then j = e[x[1]]
EndIf
j = j + o[x[1]]
For i = 1 to n -1
j = j + d(x[i], x[i+1])
k = k + q[i+1]
If j ≥ e[x[i+1]] ∧ j + o[x[i+1]] ≤ l[x[i+1]] ∧ k ≤ g ∧ u[x[i],x[i+1]] ≠ 0 then j = j +
o[x[i+1]]
ElseIf j < e[x[i+1]] ∧ k ≤ g ∧ u[x[i],x[i+1]] ≠ 0 then j = e[x[i+1]] + o[x[i+1]]
ElseIf k >g ∨ u[x[i],x[i+1]]=0 ∨ j + o[x[i]]>l[x[i]], then j = j- d(x[i], x[i+1])+d(x[i],
x[0]), s=s+j, j = d(x[0], x[i+1])

If j > e[x[i+1]], then j = e[x[i+1]]
Endif

j = j + o[x[i+1]]
k = q[i+1],
EndIf
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j=j+ d(x[n], x[0])
s=s+j
Fitness = s
EndProcedure

Transformation of parameters of individual to the real numbers. Because
SOMA was originally designed to solve problems with continuous variables and
the used natural representation consists of integer variables, it is desirable to
transform integers to real numbers. The used method for transformation was pre-
sented in [37] for solving travelling salesman problem.

Transformation of unfeasible solutions. The use of SOMA for routing problems
does not require the formation of feasible solution in case of natural representation
of individual; therefore it is necessary to choose an appropriate method of trans-
formation of the unfeasible solutions [17]. The problem of infeasibility occurs in
two cases:

(a) Parameter of individual after the transformation from real numbers to integers
is less than 1 or greater then n, in this case the relevant parameter is replaced by
new randomly generated parameters in range h1; ni:

(b) Created individual does not comprise a permutation of n integers. In this case,
the correction approach that was presented in [4] was used.

(1) Let m be the vector of parameters of the individual (of size n) containing
k different elements. If n − k = 0, go to step (4). Otherwise, go to step (2).

(2) Create the vector p (dimension n − k) of random permutation of such
elements, which are not included in the vector m. If the number of
non-zero components of the vector p = 0, go to step (4). Otherwise, find
the first repeated element of vector m. Let this element be mc and let the
first nonzero element of vector p be pk. Set mc = pk and go to step (3).

(3) Set pk = 0 and return to the step (2).
(4) Return m.

Setting of the control parameters of SOMA. The control parameters can be set on
the base of the article [13], which describes the possibility of setting the parameters
with the help some statistical methods e.g. Kruskal-Wallis test, Bartlett’s test,
Cochran-Hartley’s test.

The success of using SOMA and other evolutionary techniques generally can be
greatly affected by selecting an appropriate method which ensures the feasibility of
solutions. Generally applicable methods usually tolerate the presence of infeasible
individuals in the population, which can radically affect the processing time of
algorithm. In general, the use of evolutionary techniques also requires a priori
parameters settings, for which there is no a deeper theoretical base. Use specialized
methods may limit their complex proposal (normally applicable only for specific
type of problem), and is also associated with the detailed knowledge of research
problems. The difference in efficiency approaches is visible from e.g. [16], which
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compares penalization approach for solving the traveling salesman problem with
algorithm of differential evolution as well as with self-organizing migration algo-
rithm. The compared approaches are: penalty approach and an approach based on
the transformation of infeasible solutions.

4 Computational Experiments

The computational experiments were conducted to analyze the possibility of
solving traveling salesman problem, as well as vehicle routing problem compared to
their modifications containing time restrictions. The experiments were carried out in
exact way and also by self-organizing migration algorithm (SOMA). The experi-
ments were performed on PC with Intel® Core™ i7-3770 CPU with a frequency of
3.40 GHz and 8 GB of RAM under MS Windows 8. Since it was desirable that the
calculations were made in a sufficiently short time, the selected instances contains
up to 26 nodes.

Exact solution [using mathematical formulations (3)–(41)] have been imple-
mented using software GAMS (solver Cplex 12.2.0.0). The self-organizing migra-
tion algorithm (based on the methodology described in Sect. 3) was implemented in
MatLab 8.3.

The primary aim of the experiments was to compare the quality of the obtained
solution and the time needed to solve the instances for traveling salesman problem
with time windows (TSPTW) from [43]. Data were derived from Solomon’s
RC2 VRPTW instances [50].

SOMA was run with the following settings of control parameters:
PopSize = 500n (where n represents the set of nodes excluding depot),
Migrations = 300, Step = 0.91 and PRT = 0.7. Parameters were set on the basis of
the procedure described in [16]. Due to the computational limits of software GAMS
were instances with time (TSPTW, CVRPTW) with size 19 and 20 solved only by
SOMA and the quality of the results was compared with known published optimal
solution.2 Instances of traveling salesman problem with time windows (TSPTW)
were based on [25], in which individual instances difference is mainly based on the
“length” of time windows.

The instances for capacitated vehicle routing problem (CVRP) and for capaci-
tated vehicle routing problem with time windows (CVRPTW) were also set
according to [43]. SOMA was also applied to VRPTW instances (of size 26) from
[50]. In this case, solving was realized for a time window of type “soft”, i.e. in the
formulation is only considered starting of service within a given time window
(because of the known optimal solution for this type of time window).

The quality of solution obtained by SOMA compared to optimal solution is
evident from Tables 1, 2, 3 and 4 Solution obtained using GAMS (Cplex) is

2http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm (1.1.2014).
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evaluated in terms of time that was needed to achieve optimal solution, solution
obtained by SOMA is analyzed in terms of average performance (10 simulations
were conducted for each instance)—avg. time and also it was evaluated the best
result achieved from the realized simulations in terms of time—best solution,
respectively percentage deviation from the optimal solution provided by GAMS
system or known from other sources—% deviation.

The experiments on instances for TSP are listed on Table 1. From the presented
results it is clear that for all the instances the optimal solution (by GAMS) was
achieved relatively quickly (up to about 39 s.). The percent accuracy by SOMA
was, on average, from 0 to 4.37 %. In 9 cases, the value of the best obtained
solution was identical to the optimal solution, in one case, the best solution differs
from the optimum by 2.25 %. In terms of time consumption better achievement of
GAMS before SOMA is apparent.

Table 1 Traveling salesman problem (TSP)

TSP GAMS SOMA

Instance Size Time (s) Avg. time (s) % deviation Best solution (s) % deviation

rc206_1 4 0.01 0.04 0 0.7 0

rc207_4 6 0.02 0.03 0 0.03 0

rc205_1 14 0.09 12.51 0.9 38.13 0

rc202_2 14 0.94 7.48 0 3.9 0

rc203_4 15 0.11 4.58 0 2.03 0

rc203_1 19 38.72 226.04 0.27 182 0

rc201_1 20 4.14 635.75 4.31 643.76 0

n20w120_1 20 0.14 195.08 0 30.64 0

n20w140_1 20 0.13 129.08 0.61 65.74 0

n20w160_1 20 2.17 1394.12 4.37 1729.32 2.25

Table 2 Traveling salesman problem with time windows (TSPTW)

TSPTW GAMS SOMA

Instance Size Time (s) Avg. time (s) % deviation Best solution (s) % deviation

rc206_1 4 0.01 1.85 0 1 0

rc207_4 6 0.02 0.02 0 0.01 0

rc205_1 14 1.34 1279.71 0.9 208.13 0

rc202_2 14 1.53 94.98 0 50.29 0

rc203_4 15 1.09 12.29 0 5.42 0

rc203_1 19 – 2070.21 3.97 515.3 3.11

rc201_1 20 – 528.41 6.84 365.98 0

n20w120_1 20 659.19 3427.94 0.14 3414.51 0

n20w140_1 20 54.41 1333.61 6.59 187.51 0

n20w160_1 20 – 423.33 0 388.33 0
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Extension of TSP by time windows (Table 2) caused a slight increase in the time
required to identify the optimal solution by GAMS. Even, the computational limits
were insufficient in some case of instances with size 19 and 20. The solutions
obtained by SOMA showed an average deviation from 0 to 6.6 %, the best solution
deviation from the optimum showed 0 in 9 cases, in one case, the deviation showed
3.11 %.

The results for CVRP instances are presented in Table 3 Based on the results
presented, it can be stated that although GAMS identifies the optimal solution in all
cases, time consumed by calculations was significantly increased in case of
instances of classes C and RC (of dimension 26). The quality of solutions identified
by SOMA was in range to 6.35 % in the average case and to 3.84 % in the best case
(such solutions are achieved in a reasonable time).

Table 3 Capacitated vehicle routing problem (CVRP)

CVRP GAMS SOMA

Instance Size Time (s) Avg. time (s) % deviation Best solution (s) % deviation

rc206_1 4 0.01 0.5 0 0.8 0

rc207_4 6 0.13 1 0 0.03 0

rc205_1 14 208.59 21.62 0 12.31 0

rc202_2 14 92.25 25.02 0.7 7.2 0.7

rc203_4 15 36.73 400.67 0 73.05 0

r101_25 26 1365.81 1029.74 4.64 711 0

r201_25 26 1526.87 1714.36 5.2 2124.91 0.8

c101_25 26 292,115.52 1023.41 6.35 1532.43 3.84

c201_25 26 229,634.87 9533.96 4.57 15,149.12 0

rc101_25 26 200,681.34 6585.2 0.26 5976.97 0

rc201_25 26 127,563.22 5829.53 4.15 4169.53 0

Table 4 Capacitated vehicle routing problem with time windows (CVRPTW)

CVRPTW GAMS SOMA

Instance Size Time (s) Avg. time (s) % deviation Best solution (s) % deviation

rc206_1 4 0.08 1 0 0.5 0

rc207_4 6 0.05 0.92 0 0.8 0

rc205_1 14 104.98 172.62 0 73.12 0

rc202_2 14 3316.27 102.18 0 41.51 0

rc203_4 15 45,572.67 41.12 0.01 22.28 0.01

r101_25 26 – 5032.89 1.08 5157.19 0.3

r201_25 26 – 3055.44 5.12 3255.08 3.27

c101_25 26 – 3315.36 7.8 6251.18 0.27

c201_25 26 – 4646.82 6.21 5261.12 0.8

rc101_25 26 – 1270.35 7.83 1725.33 4.41

rc201_25 26 – 7409.74 9.19 1826.33 5.11
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Extension of CVRP by delivery time windows (CVRPTW) caused not only an
increase in the time required for identification of the optimal solution by GAMS,
also pointed out the impossibility of obtaining the optimal solution for instances
with dimension 26 (Table 4). A mean deviation of the average solution from
optimal solution by SOMA was from 0 to 9.19 % and the difference between
optimal solution and the best identified solution was to 5.11 %.

5 Solving the Real-Life Vehicle Routing Problem
with Time Windows

The aforementioned models provide the base for other modifications that allow
implicitly take into account many possible limitations encountered in solving
practical problems.

Next, the real-life vehicle routing problem with time windows is presented. The
problem deals with the real distribution scheduling in the region of BanskáBystrica in
Slovakia. Distribution center was situated in the city of Banská Bystrica and distri-
bution was made to 29 municipalities, in which the stores were situated with a daily
calling for certain number of crates of merchandise. Also, there are known earliest
possible start and latest acceptable end of service (between 6:00 and 9:00) for each
customer, i.e. start and end time when it was possible to realize the supply. Further on,
service time (unloading time of vehicle) in certain municipalities was also estimated.
The input data for each customer i, i 2 N;with the demand gi, earliest possible start of
service ei, last acceptable end of service li, and estimated service duration oiwere set as
follows [in structure (i name—qi, ei, li, oi)]: (1 Kyncečová—5, 0, 120, 3); (2 Nemce—
4, 60, 180, 3); (3 Malachov—6, 0, 120, 3); (4 Tajov—10, 0, 180, 5); (5 Riečka—4, 0,
120, 3); (6 Selce—12, 30, 180, 5); (7 Š. Dolina—4, 60, 120, 3); (8 H. Mičiná—10,
0, 180, 5); (9 Vlkanová—6, 60, 120, 3); (10 Horné Pršany—4, 30, 180, 3);
(11 S. Ľupča—15, 0, 180, 8); (12 Badín—11, 0, 180, 5); (13 Králiky—3, 60, 180, 3);
(14 Harmanec—17, 0, 180, 8); (15Môlča—4, 120, 180, 3); (16 Kordíky—6, 60, 180,
3); (17 Hronsek—5, 30, 90, 3); (18 Sielnica—5, 120, 180, 3); (19 Priechod—4, 60,
150, 3); (20 Staré Hory—9, 0, 180, 5); (21 Lučatín—7, 30, 150, 3); (22 D. Mičiná—
10, 0, 180, 5); (23 D. Harmanec—12, 0, 180, 5); (24 Sliač—18, 0, 180, 8);
(25 Kováčová—16, 0, 180, 8); (26 Medzibrod—4, 120, 180, 3); (27 Čerín—5, 60,
180, 3); (28 Podkonice—7, 0, 180, 3); (29 Brusno—11, 0, 180, 5).

The capacity of the available vehicles was set to 80 crates and service duration in
the distribution center 0 Banská Bystrica is estimated as 30 min. Further on, time
distances in minutes between the center and individual customers themselves were
known (matrix D with elements dij, i; j 2 N0—Table 5).

The objective is to minimize the total service time (transfer time, waiting time,
service time), as well as the minimization of the number of vehicles, i.e. the
determination of minimal number of vehicles which must be used daily (the limit on
driving time of a vehicle is also considered −180 min). At the same time it is
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Table 5 Input data: time distances in minutes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0.0 4.7 5.4 6.0 6.3 7.1 7.7 7.9 8.2 8.3 8.4 8.8 9.1 9.3 9.9

1 4.7 0.0 0.8 10.7 10.9 11.7 3.0 12.6 12.8 13.0 13.0 8.7 13.7 13.9 14.6

2 5.4 0.8 0.0 11.4 11.7 12.5 3.8 13.3 13.6 13.7 13.8 9.4 14.5 14.7 15.3

3 6.0 10.7 11.4 0.0 12.3 13.1 13.7 13.9 14.2 14.3 14.4 14.8 15.1 15.3 15.9

4 6.3 10.9 11.7 12.3 0.0 5.2 13.9 12.6 14.4 14.6 14.6 15.1 15.3 3.0 14.6

5 7.1 11.7 12.5 13.1 5.2 0.0 14.7 13.4 15.3 15.4 15.4 15.9 16.1 8.2 15.4

6 7.7 3.0 3.8 13.7 13.9 14.7 0.0 15.6 15.8 16.0 16.0 11.7 16.7 16.9 17.6

7 7.9 12.6 13.3 13.9 12.6 13.4 15.6 0.0 16.1 16.2 16.3 16.7 17.0 15.6 5.0

8 8.2 12.8 13.6 14.2 14.4 15.3 15.8 16.1 0.0 16.5 16.5 15.7 17.3 17.4 18.1

9 8.3 13.0 13.7 14.3 14.6 15.4 16.0 16.2 16.5 0.0 13.5 17.1 2.3 17.6 18.2

10 8.4 13.0 13.8 14.4 14.6 15.4 16.0 16.3 16.5 13.5 0.0 17.2 14.2 17.6 18.3

11 8.8 8.7 9.4 14.8 15.1 15.9 11.7 16.7 15.7 17.1 17.2 0.0 17.9 18.1 18.7

12 9.1 13.7 14.5 15.1 15.3 16.1 16.7 17.0 17.3 2.3 14.2 17.9 0.0 18.3 19.0

13 9.3 13.9 14.7 15.3 3.0 8.2 16.9 15.6 17.4 17.6 17.6 18.1 18.3 0.0 17.6

14 9.9 14.6 15.3 15.9 14.6 15.4 17.6 5.0 18.1 18.2 18.3 18.7 19.0 17.6 0.0

15 10.4 10.3 11.0 16.4 16.7 17.5 13.3 18.3 5.3 18.7 18.8 10.4 19.5 19.7 20.3

16 11.2 15.8 16.6 17.2 4.9 10.1 18.8 17.5 19.4 19.5 19.5 20.0 20.2 7.9 19.5

17 11.3 16.0 16.7 17.3 17.6 18.4 19.0 19.2 18.6 3.0 16.5 20.1 5.3 20.6 21.2

18 11.3 16.0 16.7 17.3 17.6 18.4 19.0 19.2 19.5 10.7 16.5 20.1 11.5 20.6 21.2

19 12.2 7.5 8.3 18.2 18.4 19.2 4.5 20.1 20.3 20.5 20.5 16.2 21.2 21.4 22.1

20 12.4 17.1 17.8 18.4 17.1 17.9 20.1 7.5 20.6 20.7 20.8 21.2 21.5 20.1 7.9

21 12.4 12.3 13.0 18.4 18.7 19.5 15.3 20.3 19.3 20.7 20.8 3.6 21.5 21.7 22.3

22 12.6 17.2 18.0 18.6 18.8 19.6 20.2 20.5 4.4 17.3 20.9 20.0 19.5 21.8 22.5

23 12.7 17.3 18.1 18.7 17.3 18.1 20.3 7.8 20.8 21.0 21.0 21.5 21.7 20.3 2.7

24 14.1 18.8 19.5 20.1 20.4 21.2 21.8 22.0 18.6 7.3 19.3 22.9 8.1 23.4 24.0

25 14.1 18.8 19.5 20.1 20.4 21.2 21.8 22.0 21.3 10.0 19.3 22.9 10.7 23.4 24.1

26 14.4 14.3 15.0 20.4 20.7 21.5 17.3 22.3 21.3 22.7 22.8 5.6 23.5 23.7 24.3

27 14.7 19.4 20.1 20.7 21.0 21.8 22.4 22.6 6.6 19.4 23.1 22.2 21.7 24.0 24.7

28 14.8 14.7 15.4 20.8 21.1 21.9 17.7 22.7 21.7 23.1 23.2 6.0 23.9 24.1 24.7

29 15.6 15.5 16.2 21.6 21.9 22.7 18.5 23.5 22.5 23.9 24.0 6.8 24.7 24.9 25.5

1 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 10.4 11.2 11.3 11.3 12.2 12.4 12.4 12.6 12.7 14.1 14.1 14.4 14.7 14.8 15.6

1 10.3 15.8 16.0 16.0 7.5 17.1 12.3 17.2 17.3 18.8 18.8 14.3 19.4 14.7 15.5

2 11.0 16.6 16.7 16.7 8.3 17.8 13.0 18.0 18.1 19.5 19.5 15.0 20.1 15.4 16.2

3 16.4 17.2 17.3 17.3 18.2 18.4 18.4 18.6 18.7 20.1 20.1 20.4 20.7 20.8 21.6

4 16.7 4.9 17.6 17.6 18.4 17.1 18.7 18.8 17.3 20.4 20.4 20.7 21.0 21.1 21.9

5 17.5 10.1 18.4 18.4 19.2 17.9 19.5 19.6 18.1 21.2 21.2 21.5 21.8 21.9 22.7

6 13.3 18.8 19.0 19.0 4.5 20.1 15.3 20.2 20.3 21.8 21.8 17.3 22.4 17.7 18.5

7 18.3 17.5 19.2 19.2 20.1 7.5 20.3 20.5 7.8 22.0 22.0 22.3 22.6 22.7 23.5

8 5.3 19.4 18.6 19.5 20.3 20.6 19.3 4.4 20.8 18.6 21.3 21.3 6.6 21.7 22.5

9 18.7 19.5 3.0 10.7 20.5 20.7 20.7 17.3 21.0 7.3 10.0 22.7 19.4 23.1 23.9

10 18.8 19.5 16.5 16.5 20.5 20.8 20.8 20.9 21.0 19.3 19.3 22.8 23.1 23.2 24.0

11 10.4 20.0 20.1 20.1 16.2 21.2 3.6 20.0 21.5 22.9 22.9 5.6 22.2 6.0 6.8

12 19.5 20.2 5.3 11.5 21.2 21.5 21.5 19.5 21.7 8.1 10.7 23.5 21.7 23.9 24.7

(continued)
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necessary to distinguish two facts: (1) if the vehicle returns to the origin when the
capacity of a vehicle is exceeded, then the service time in the origin (time to
re-loaded) is added to the total time of the corresponding route and the next route
will be realized with the same vehicle, (2) if the vehicle returns to the origin because
of the last possible service time violation, the service time in the origin is not added
to the total time of the route and the next route is realized by another vehicle.

Modeling such a situation is only possible with considerable modification of
mentioned models of routing problems. Further on, following notation is used: Let
N ¼ 1; 2; . . .nf g be the set representing customers and let N0 ¼ N [ 0f g be the set
of all nodes (including origin). Let H ¼ 1; 2; . . .f g be the set of vehicles, where
r represents number of vehicles, while each vehicle h 2 H is the same capacity
g and let the set K ¼ 1; 2; . . .kf g represents order of arc in sequence of hth vehicle,
where 2n represents maximal number of arcs in a sequence. Then variables xijkh;
i; j 2 N0; i 6¼ j; h 2 H; k 2 K can be defined as follows:

xijkh ¼
1, if the edge between nodes i and j is used

by vehicle h as kth in sequence
0, otherwise

8<
: ð40Þ

Each customer has certain demand (gi, i 2 N) and a service duration (oi, i 2 N).
Further on, there is the known time window of each customer: as the earliest possible
start of service in different nodes (ei, i 2 N) and the last acceptable time of service in
different nodes (li, i 2 N). The demand is fulfilled from initial node (i = 0)—origin.
We suppose that the service time at the origin is set to o0 (this time is added to the
total time only when the vehicle returns to the origin due to violation of capacity
limit, and it is not able to serve the nodes on the next route).

Table 5 (continued)

1 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

13 19.7 7.9 20.6 20.6 21.4 20.1 21.7 21.8 20.3 23.4 23.4 23.7 24.0 24.1 24.9

14 20.3 19.5 21.2 21.2 22.1 7.9 22.3 22.5 2.7 24.0 24.1 24.3 24.7 24.7 25.5

15 0.0 21.6 21.7 21.7 17.8 22.8 14.0 9.6 23.1 23.9 24.5 16.0 11.8 16.4 17.2

16 21.6 0.0 22.5 22.5 23.3 22.0 23.6 23.7 22.2 25.3 25.3 25.6 25.9 26.0 26.8

17 21.7 22.5 0.0 12.4 23.5 23.7 23.7 14.3 24.0 9.0 11.7 25.7 16.4 26.1 26.9

18 21.7 22.5 12.4 0.0 23.5 23.7 23.7 17.7 24.0 3.4 2.8 25.7 19.8 26.1 26.9

19 17.8 23.3 23.5 23.5 0.0 24.6 19.8 24.7 24.8 26.3 26.3 21.8 26.9 22.2 23.0

20 22.8 22.0 23.7 23.7 24.6 0.0 24.8 25.0 10.7 26.5 26.5 26.8 27.1 27.2 28.0

21 14.0 23.6 23.7 23.7 19.8 24.8 0.0 23.6 25.1 26.5 26.5 2.0 25.8 9.6 3.2

22 9.6 23.7 14.3 17.7 24.7 25.0 23.6 0.0 25.2 14.3 17.0 25.6 2.2 26.0 26.8

23 23.1 22.2 24.0 24.0 24.8 10.7 25.1 25.2 0.0 26.8 26.8 27.1 27.4 27.5 28.3

24 23.9 25.3 9.0 3.4 26.3 26.5 26.5 14.3 26.8 0.0 2.7 28.5 16.4 28.9 29.7

25 24.5 25.3 11.7 2.8 26.3 26.5 26.5 17.0 26.8 2.7 0.0 28.5 19.1 28.9 29.7

26 16.0 25.6 25.7 25.7 21.8 26.8 2.0 25.6 27.1 28.5 28.5 0.0 27.8 11.6 1.2

27 11.8 25.9 16.4 19.8 26.9 27.1 25.8 2.2 27.4 16.4 19.1 27.8 0.0 28.2 29.0

28 16.4 26.0 26.1 26.1 22.2 27.2 9.6 26.0 27.5 28.9 28.9 11.6 28.2 0.0 12.8

29 17.2 26.8 26.9 26.9 23.0 28.0 3.2 26.8 28.3 29.7 29.7 1.2 29.0 12.8 0.0
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The goal is to determine the minimal number of vehicles so that the total
travelled time or distance is as low as possible (we suppose that there is known the
shortest time distance between all nodes dij, i; j 2 N0) with respect to the following
restrictions: the origin represents initial node and also the final node of every route,
from the origin the demand gi, i 2 N of all the other nodes is met within their time
windows (the earliest possible start of service ei, i 2 N; the last acceptable time of
service li, i 2 N; each node (except central node) is visited exactly once and total
demand on route must not exceed the capacity of the vehicle (g). The total time of
the route of a vehicle could not exceed the given time (l0).

The model takes into account the waiting time so that the vehicle is allowed to
wait for service if it arrives before the earliest possible start of service.

The following decision variables will be used (besides the binary variables xijkh):

wj—nonnegative variables that indicates waiting time at node j, j 2 N;
sj—variables that indicates real starting time of service at node j, j 2 N0;

uj—variables that represents remaining capacity of vehicle at the node j, j 2 N:
Mathematical formulation of the model is given below [18]:

minf X; u;w; sð Þ ¼
X
i2N0

X
j2N0
i6¼j

X
h2H

X
k2K

dijxijkh þ
X
i2N

wi þ
X
i2N

oi

þ
X
j2N

X
k2K� 1f g

X
h2H

o0x0jkh þ p
X
i2N

X
h2H

x0j1h ð41Þ

X
j2N0

X
k2K

X
h2H

xijkh ¼ 1; i 2 N; i 6¼ j ð42Þ

X
i2N0

X
k2K

X
h2H

xijkh ¼ 1; j 2 N; i 6¼ j ð43Þ

X
i2N0

xijðk�1Þh ¼
X
i2N0

xjikh; j 2 N; h 2 H; k 2 K � 1f g; i 6¼ j ð44Þ

si þ oi þ dij � sj þM 1� xijkh
� �

; i; j 2 N; h 2 H; k 2 K; i 6¼ j ð45Þ

wj � sj � si � oi �M 1� xijkh
� �

; i; j 2 N; h 2 H; k 2 K; i 6¼ j ð46Þ

si þ oi þ di0 þ o0 þ d0j � sj þM 1� xi0ðk�1Þh
� �þ 1� x0jkh

� �� �
;

i; j 2 N; h 2 H; k 2 K � 1f g; i 6¼ j;
ð47Þ

wj � sj � si � oi � di0 � o0 � d0j �M 1� xi0ðk�1Þh
� �� 1� x0jkh

� �� �
;

i; j 2 N; h 2 H; k 2 K � 1f g; i 6¼ j;
ð48Þ
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d0j � sj þM 1� x0j1h
� �

; j 2 N; h 2 H ð49Þ

sj þ oj þ d0j � l0 þ 1� xj0kh
� �

; j 2 N; h 2 H; k 2 K ð50Þ

ui þ qj � uj �M 1� xijkh
� �

; i 2 N0; j 2 N; h 2 H; k 2 K; i 6¼ j ð51Þ
X
i2N

x0jkh �
X
i2N

xj0ðk�1Þh; j 2 N; k 2 K � 1f g ð52Þ

X
j2N

x0j1h � 1; h 2 H ð53Þ

x0j1h � x0jkh j 2 N; h 2 H; k 2 H ð54Þ

u0 ¼ 0 ð55Þ

ui � g; i 2 N ð56Þ

s0 ¼ 0 ð57Þ

ei � si; i 2 N ð58Þ

si þ oi � li; i 2 N ð59Þ

xijh 2 0; 1f g; i; j 2 N0; i 6¼ j; h 2 H; k 2 K ð60Þ

wi � 0; ui � 0; si � 0; i 2 N ð61Þ

The objective function (41) minimizes the total duration travelled and also the
number of vehicles (p represents the penalty constant). Equations (42) and (43)
ensure that a vehicle leaves each node and vehicle enters each node except the
origin exactly ones. Equations (44) and (52) ensure the connectivity of the route.
Equations (45) and (46) calculate the real starting time of service for the next node
on the route (except the origin) on the base of previous node. Equations (47) and
(48) ensure the calculation of starting time of service for the next node on the route,
in case that the route goes through origin. Equation (49) calculate the real starting
time of service of the first node on the route of the vehicle. Equation (50) ensures
that the total vehicle time travelled must not exceed the given time (T).
Equations (51), (55) and (56) ensure that all demands on the route must not exceed
the capacity of the vehicle. Equations (53) and (54) ensure that each route starts at
the origin exactly once. Equations (57), (58) and (59) ensure that the time windows
of all nodes on the route are met.

The use of SOMA requires the formulation of objective function (fitness) with
respect to the following facts:
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(1) if the vehicle returns to the origin when the capacity of a vehicle is exceeded,
then the service time in the origin (time to re-loaded) is added to the total time of the
corresponding route (in practice, the next route will be realized with the same
vehicle), (2) if the vehicle returns to the origin when last possible service time is
violated, the objective function is penalized by penalty constant, which represents
the fact that the next route is realized by another vehicle and the real duration of
distribution is calculated by subtracting the total of these penalties.
Goal: to minimize number of vehicles, so that the total distance travelled by
vehicles is as low as possible.

The fitness calculation can be presented by the pseudocode:

Procedure Fitness VRPTW2
Input:
D matrix of shortest time distances (of size n+1) between all the nodes (first row
and first column are associated with the origin)
q vector of customers demand (of size n)
o vector of service time of each customer including depot (of size n+1)
e vector of earliest possible time of service of each customer (of size n)
l vector of last possible time of service of each customer including depot (of size n+1)
g capacity of the vehicles
p penalty constant
Output:
fitness (total duration of the route)
k current load of vehicle (sum of the demands that are served up to the moment)
s total time needed to serve corresponding customer
j total time needed to serve corresponding customer in the route of corresponding
vehicle
U matrix of savings (of size n) based on Clarke & Wright’s heuristics
Calculate U
j = d(x[0], x[1])
k = g[1]
If j<e[x[1]], then j=e[x[1]]
EndIf
j=j+o[x[1]]
For i=1 to n -1
j=j+d(x[i],x[i+1])
k=k+q[i+1]
If j≥e[x[i+1]] ∧ j+o[x[i+1]]≤l[x[i+1]] ∧ k≤g ∧ u[x[i],x[i+1]]≠0 ∧
j+o[x[i+1]]+d(x[i+1],x[0])≤l[0], then j = j + o[x[i+1]]
ElseIf j < e[x[i+1]] ∧ k ≤ g ∧ u[x[i],x[i+1]] ≠ 0, then v = j, j = e[x[i+1]]+
o[x[i+1]]

If j + d(x[i+1], x[0]) > l[0], then j = v - d(x[i], x[i+1])+ d(x[i], x[0]), s=s
+j+p, j= d(x[0], x[i+1]), k = q[i+1]
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If j < e[x[i+1]], then j = e[x[i+1]]+ o[x[i+1]]
EndIf

EndIf

ElseIf k > g ∨ u[x[i],x[i+1]] = 0∧ j+o[x[i+1]] +d(x[i+1], x[0]) ≤ l[0], then k =
q[i+1], j = j - d(x[i], x[i+1]), v = j, j =j+d(x[i], x[0]) +o[0]+d(x[0], x[i+1])

If j < e[x[i+1]] ,then j = e[x[i+1]]+ o[x[i+1]]
EndIf
If j + d(x[i+1], x[0]) > l[0], then j = v + d(x[i], x[0]), s=s +j+p, j=
d(x[0], x[i+1])

If j < e[x[i+1]], then j = e[x[i+1]]+ o[x[i+1]]
EndIf

Endif
ElseIf j + o[x[i+1]] > l[x[i+1]] ∨ j + d(x[i+1],x[0])+o[x[i+1]] > l[0], then
j = j-d(x[i],x[i+1])+d(x[i],x[0]), s=s +j+p, j= d(x[0], x[i+1], k = q[i+1]

If j < e[x[i+1]], then j = e[x[i+1]]+ o[x[i+1]]
EndIf

EndIf
EndFor
s=s+ d(x[n], x[0])
Fitness = s
EndProcedure

Our solution by SOMA is based on same principles as was mentioned above
with the setting of control parameters (PathLength, Step and PRT) with
PopSize = 3000 and Migrations = 5000.

The best result obtained from 10 realized simulations allows the use of 3
vehicles with the total duration 465.76 min.

Route A Customer sequence: 0; 20; 5; 4; 13; 7; 28; 11; 21; 26; 29; 0 (Banská
Bystrica; Staré Hory; Riečka; Tajov; Králiky; Špania Dolina; Podkonice;
Slovenská Ľupča; Lučatín; Medzibrod; Brusno; Banská Bystrica), total
capacity 74, return due to upper time limit of a window, total time of
route 154.65 min, objective value 154.65 min ⇒ the next route will be
realized by another vehicle.

Route B Customer sequence: 0; 23; 14; 0 (Banská Bystrica; Dolný Harmanec;
Harmanec; Banská Bystrica), total capacity 29, return due to savings = 0,
total time of route 38.30 min, objective value 192.95 min ⇒ the route C
will be realized with the same vehicle, service time at the centre is 30 min.

Route C Customer sequence: 0; 1; 2; 6; 19; 15; 22; 27; 8; 0 (Banská Bystrica;
Kynceľová; Nemce; Selce; Priechod; Môlča; Dolná Mičiná; Čerín;
Horná Mičiná; Banská Bystrica), total capacity 54, return due to upper
time limit, total time of route C 94.22 min, objective value
317.17 min ⇒ the next route will be realized by another vehicle.
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Route D Customer sequence: 0; 3; 17; 12; 16; 10; 9; 24; 25; 18; 0 (Banská
Bystrica; Malachov; Hronsek; Badín; Kordíky; Horné Pršany; Vlkanová;
Sliač; Kováčová; Sielnica; Banská Bystrica), total capacity 77, total time
of route 148.59 min, objective value 465.76 min

The distribution was previously made on the basis of the solution that was
derived with heuristic Clarke & Wright’s savings algorithm with time windows3

with the use of four vehicles and the total duration was 555.7 min. Individual routes
were: Route 1: 0–8–22–27–15–0, duration 133.4; Route 2: 0–3–10–12–9–17–24–
25–18–0, duration 134.3; Route 3: 0–1–6–19–2–11–28–21–26–29–0, duration
144.8; Route 4: 0–5–4–13–16–7–14–23–20–0, duration 143.2 min.

Table 7 Route B

Index 23 14

D. Harmanec Harmanec

Demand qi 12 17

Saving ti 5 8

Earliest limit li 0 0

Latest limit ui 180 180

Arrival 12.65 20.38

Start of service 12.65 20.38

End of service 17.65 28.38

Capacity 12 29

Table 8 Route C

Index 1 2 6 19 15 22 27 8

Kynceľová Nemce Selce Priechod Môlča D. Mičiná Čerín H. Mičiná

Demand qi 5 4 12 4 4 10 5 10

Saving ti 3 3 5 3 3 5 3 5

Earliest
limit li

0 60 30 60 120 0 60 0

Latest
limit ui

120 180 180 150 180 180 180 180

Arrival 72.96 76.71 83.46 92.96 113.71 132.61 139.79 149.34

Start of
service

72.96 76.71 83.46 92.96 120 132.61 139.79 149.34

End of
service

75.96 79.71 88.46 95.96 123 137.61 142.79 154.34

Capacity 5 9 21 25 29 39 44 54

3http://www.ise.ncsu.edu/kay/matlog/ (1.2.2012).
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Based on those results it can be stated that presented approach allows decreasing
the number of vehicles simultaneously with the savings in the total time (the saving
is 16.2 %).

The routes are detailed described in Tables 6, 7, 8 and 9.

6 Conclusion

Delivery is decisive for business operations of many companies. Logistic costs
constitute a significant share of the total costs of every organization. This amount
varies from 10 to 25 % of the total costs depending on the given industry and
country; that’s why many managers start to pay attention to optimization techniques
that involves the reduction of logistic cost. Many variants of routing problems that
can be very rewarding are known in the field of logistics. This chapter deals with
some basic routing problems (traveling salesman problem, vehicle routing problem)
and its variants, which take into account time restrictions, as well as the real-data
vehicle routing problem with time windows is presented. The vehicle routing
problem with time windows belongs to NP-hard problems, so no algorithm has
been known to solve it in the polynomial time, even though with the development
of information technology the number of problems that can be solved by exact
algorithms has been increased. The alternative is, except for classical heuristics, the
use of evolutionary algorithm, which can give after finite number of iteration an
“effective” solution.

Nowadays, we follow the increased interest in methods, which are inspired by
different biological evolutionary processes in nature. This technology is covered by
the common name of “evolutionary algorithms”. But their application to con-
strained problems requires some additional modifications of theirs basic versions.
The chapter was focused on application of self-organizing migrating algorithm
(SOMA) to routing problems. The special factors that involve the use of that
algorithm were presented and the efficiency of calculations has been validated on
the basis of publicly available instances. The presented approach was also used to
solve real-life vehicle routing problem with time windows in Slovakia. The result
was also compared with the known solution based on heuristic Clarke & Wright’s
savings algorithm with time windows. Based on these results the following can be
stated: the number of vehicles was decreased (from 4 to 3) and the total time of
distribution was improved by 16.2 %.
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SOMA in Financial Modeling

Juraj Pekár, Zuzana Čičková and Ivan Brezina

Abstract The basic problem in portfolio theory (based on Markowitz theory) is the
selection of an appropriate mix of assets in a portfolio in order to maximize port-
folio expected return and subsequently to minimize portfolio risk. Another
approach takes into account portfolio performance expressed by various measure-
ment techniques e.g. Sharpe ratio, Treynor ratio, Jensen’s alpha, Information ratio,
Sortino ratio, Omega function and the Sharpe Omega ratio that are focused to
determine the allocation of the available resources in the selected group of assets.
This chapter presents an alternative approach to the computation of weights of
assets in portfolio based on the nonlinear measure techniques: Sortino ratio and
Omega function. The proposed alternative includes principle of self-organizing
migrating algorithm (SOMA). The experiments are set up on assets included in
Dow Jones Industrial Index. Presented original approach lends itself also to other
evolutionary techniques in the area of portfolio selection based on different mea-
surement techniques.

1 Introduction

Strategic planning surely includes the process of deciding how to commit resources
across lines of business. The financial side of strategic planning allocates a par-
ticular resource, capital. Finance theory has made major advances in understanding
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how capital markets work and how risky financial assets are valued and many tools
derived from finance theory are widely used in practice.

The important part of finance theory is a process of portfolio selection. The basic
model in portfolio theory is known as Markowitz model focused on selection of an
appropriate mix of assets in a portfolio in order to maximize portfolio expected
return and subsequently to minimize investment risk [16]. Decision process on the
selection of the portfolio assets can be also supported by various mathematical
models e.g. [1, 10, 28]. Other group of approaches is based on maximizing the
portfolio performance by using various measurement techniques [20] e.g. Sharpe
ratio [24], Treynor ratio [27], Jensen’s alpha [11], Information ratio [9], Sortino
ratio [25], or Omega function [13]. This chapter presents the possibility of portfolio
selection based on computing the Sortino ratio and Omega function. In general their
computability can be difficult due to substandard structures of performance level
(the nature of objective function) and therefore the use of standard techniques seems
to be relatively complicated. Alternative procedures may include the principle of
evolutionary algorithm that can be generally considered to be effective tool used for
maximizing different performance measures in financial modeling [21].

The chapter is divided into the following interrelated parts. The brief view on
finance theory as well as the motivation for the use of alternative computational
techniques for determining the portfolio selection based on performance measure-
ment is presented in the introduction. In the second part the authors present the
basic lines in finance theory, namely Markowitz model used to determine effective
portfolio selection and also the well-known performance measurement techniques
aimed to identify the most valued portfolio. This part is mainly devoted to the wide
used non-linear measurement techniques known as Sortino ratio and Omega
function. Core part of the chapter is devoted to the modification of self-organizing
migrating algorithm (SOMA) to solve the portfolio selection problem based on
before mentioned measures. The empirical analysis is provided on the Dow Jones
Industrial Index base, one of the major market indexes, as well as one of the most
popular indicators of the U.S. market. The historical data published in period from
January 2nd 2013 to March 31st 2014 on weekly basis were used. The experiments
were divided in two parts. At first, the simulations were generated on the basis of
exogenously given levels of parameters and some statistical methods were applied
in order to provide analysis to determine the impact of control parameters of
algorithm. At second, the best identified values of parameters are used for further
experiments. Verification of presented considerations is performed based on cal-
culation using professional system for mathematical modeling.

2 Portfolio Theory

As the cornerstone of portfolio theory may be mentioned Markowitz model created
in 1952 [16], which is considered the beginning of modern portfolio theory.
Markowitz contributed to the theory of financial markets, namely to portfolio
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selection under conditions of uncertainty. His approach has shown how it is pos-
sible to reduce multidimensional problem of investment to a large number of assets
(each of different characteristics) under conditions of uncertainty to the problem of
the relationship between only two elements: the expected portfolio return and its
variance. The model allows determining the portfolio diversification that should
maximize the expected return subsequently with minimization of its variance.

2.1 Markowitz Model

The classical Markowitz model has been widely recognized. Its general formulation
allows determining of portfolio selection based on expected portfolio return and its
variance based on the quadratic programming problem formulation. The problem
can be briefly described as follows: Consider a portfolio of n assets. Let wi, i = 1, 2,
… n be the variables indicating weights or units of funds that an investor allocates
to the ith asset in the portfolio, so that

Pn
i¼1 wi ¼ 1. Let Ei, i = 1, 2, … n be the

expected return of the ith asset in the portfolio and let parameters σij, i, j = 1, 2,… n,
represents the covariance between the ith and jth assets, if i ≠ j (respectively
variance when i = j). It is also required that no asset return is perfectly correlated
with the return of the portfolio constructed from the remaining assets and that none
of the assets nor portfolios are risk-free. Then the variance of portfolio return r2P can
be defined as r2P ¼ Pn

i¼1

Pn
j¼1 wirijwj and the expected return of portfolio Ep can

be characterized by formula Ep ¼
Pn

i¼1 Eiwi.
Markowitz formulation can be written as a multi-criteria programming problem,

where the objective is to achieve maximal expected return with the minimal risk:

min r2P ¼
Xn
i¼1

Xn
j¼1

wirijwj ð1Þ

maxEp ¼
Xn
i¼1

Eiwi ð2Þ

Xn
i¼1

wi ¼ 1 ð3Þ

The use of presented model allows generating the set of effective portfolios from
the set of feasible portfolios that are called efficient portfolios in the space of
expected return and its variance.

To obtain efficient portfolios it is necessary to solve sub-problems that can be
formulated in the terms of quadratic programming (quadratic programming prob-
lems [8] can be addressed effectively by using appropriate software for optimization
calculations). Each of them can be formulated as follows: finding the portfolio with
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the minimal risk successively for different values of the expected return of the
portfolio Ep, formally:

min r2P ¼
Xn
i¼1

Xn
j¼1

wirijwj ð4Þ

Xn
i¼1

Eiwi ¼ Ep ð5Þ

Xn
i¼1

wi ¼ 1 ð6Þ

Equation (5) defines the search reaches the specified portfolio return, the second
equation require investing just full amount of investment. The objective (4) is to
minimize the risk of the portfolio.

Markowitz theory from 1952 was criticized, mainly the use of the concept of risk
through investment variance and covariance between investments due to the fact
that the variance is measured as dispersion of expected asset returns and deemed
income below and above the expected return for the same [16]. Markowitz admitted
the limitations of the model and in 1959 he has proposed a new rate lower partial
risk, which measures the risk under the expected return [17]. He called it a
semi-variance. His work was followed up many authors who deal with finding the
appropriate level of risk, e.g. [14, 22].

2.2 Portfolio Performance Measurement Techniques

Investment performance measurement is the quantification of the results obtained
by the chosen strategy. It is basically statistical recapitulation of rate of return and
the estimation of the risk incurred. Portfolio performance measurement techniques
can be considered to be a tool capable of capturing various risk characteristics
unlike Markowitz’s theories.

The relevant literature aimed on measuring portfolio performance goes back to
the beginning of the Capital Asset Pricing Model (CAPM) developed by Sharpe in
1964 [23]. Its basis is one of the first performance techniques known as the Sharpe
Ratio. Since the first measurement techniques, also called classical performance
techniques (Jensen, Treynor, Sharpe), a number of other portfolio performance
techniques have been proposed. One of the main disadvantages of those techniques
is that they are not able to capture all characteristics of the time series of returns.
Alternative performance techniques addressing this lack are essentially modifica-
tions of classical performance techniques. One of the first modifications is a Sortino
ratio, which is an alternative to the Sharpe ratio [26]. Omega function is included
among the latest and most progressive performance techniques. This level of
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performance technique is considered to be a new tool for financial analysis utilizing
full information that time series of returns provides [13].

Sharpe ratio

Consider investment with known expected return and known amount of risk (mea-
sured e.g. by standard deviation). Sharpe ratio (SP) is determined as a proportion of
the asset return less the risk-free rate and standard deviation of the returns [24]:

SP ¼ Ep � RF

rp
ð7Þ

where

Ep denotes portfolio expected return,
RF denotes risk-free rate,
σp denotes standard deviation of portfolio return.

Sharpe ratio is a measurement technique that takes into account the risk profile of
the investment, namely the average performance of the asset above the risk-free
asset return. The higher the value of the indicator returned is, the higher perfor-
mance of the portfolio is (relative to its risk).

Treynor ratio

Treynor ratio (TP) is essentially similar to the Sharpe ratio. The relative perfor-
mance of the portfolio is in contrast to the Sharpe ratio measured as the share of the
additional expected return and risk (βp) [27]:

TP ¼ EP � RF

bP
ð8Þ

where

RF denotes return of risk-free asset,
Ep denotes expected return of portfolio,
βp is the riskiness of the return measured by systematic risk [24].

Treynor ratio is thus achieved rate of return over the risk-free investment with
respect to the unit of risk. The higher the value is, the better investment is.

Sortino ratio

The Sortino ratio [25] is based on the known Sharpe ratio, but though both ratios
measure an investment’s risk-adjusted returns, they do so in significantly different
ways. The formula for the Sharpe ratio based on standard deviation (simply the
square root of variance) allows to measure a non-directionally-biased measurement
of volatility to adjust the risk and therefore penalizes both upside and downside
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volatility equally. This concept has been criticized and many investors prefer its
modification known as Sortino ratio. Instead of using standard deviation, the
Sortino ratio uses downside semi-variance and penalizes only those returns falling
below a user-specified rate. This is a measurement of return deviation below a
minimal acceptable rate. By utilizing this value, the Sortino ratio only penalizes for
“harmful” volatility.

Sortino ratio calculation assumes the existence of historical data on portfolio
return for T periods, so that for each period t (t = 1, 2,… T) the portfolio return Rt is
known. The principle of the calculation is similar to the variance calculation except
the fact that only returns below the expected return are taken into account. Lower
semi-variance is calculated as follows [26]:

1
T

XT
t¼1

max ðEp � Rt; 0Þ
� �2 ð9Þ

where

Rt denotes the portfolio return in corresponding sub-period t (t = 1, 2, … T),
Ep denotes expected return of portfolio,
T denotes number of sub-periods.

Sortino ratio uses specified value of minimal expected return (MAR) that is
exogenously set by investor. Thus, Sortino ratio (SR) is calculated by the formula
[25]:

SR MARð Þ ¼ Ep �MARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1 max MAR� Rt; 0ð Þð Þ2

q ð10Þ

where

T represents the number of periods,
MAR denotes the minimum acceptable return,
Rt denotes the return of portfolio in tth period, where t = 1, 2, … T,
Ep denotes the expected return of portfolio.

Omega function

Omega function is measurement which incorporates all the distributional charac-
teristics of a return series. The measurement is a function of the returns leveled and
requires non parametric assumption on the distribution. Precisely, it considers the
returns below and above a specific minimum acceptable return and provides a ratio
of total probability weighted losses and gains that fully describe the risk reward
properties of the distribution [13]:

242 J. Pekár et al.



XðMARÞ ¼
R1
MAR ð1� FðxÞÞdxRMAR

�1 FðxÞdx
ð11Þ

where

MAR denotes the minimum acceptable return,
x variable represents asset returns,
F(x) represents the cumulative distribution function of asset returns.

Example of cumulative distribution function of IBM asset is given in Fig. 1,
specifically its historical data published from January 2nd 2013 to March 31st 2014
on weekly basis were used.

Before mentioned formula involves also the use of discrete data (historical time
series) [12]:

X MARð Þ ¼
PT

t¼1 max Rt �MAR; 0ð ÞPT
t¼1 max MAR� Rt; 0ð Þ ð12Þ

where

T represents the number of periods,
MAR denotes the minimum acceptable return,
Rt denotes the return of asset in tth period, where t = 1, 2, … T.

2.2.1 Portfolio Selection by Maximizing Sortino Ratio

The formulation of the portfolio selection problem based on Sortino ratio includes
the maximization of performance measurement function (10). The model deals with
the variables wi, i = 1, 2, … n (where n represents the number of assets) that

Fig. 1 Example of cumulative distribution function based on IBM asset
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represent the weights of each asset in the portfolio. Corresponding problem can be
formulated as follows [26]:

max SRðwÞ ¼
Pn

i¼1 Eiwi �MARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

PT
t¼1 max MAR�Pn

i¼1 rtiwi; 0
� �� �2q ð13Þ

Xn
i¼1

wi ¼ 1 ð14Þ

wi � 0; i ¼ 1; 2; . . . n ð15Þ

where

T represents the number of periods,
MAR denotes the minimum acceptable return,
rti denotes the return of ith portfolio asset in tth period, where t = 1, 2, … T,

i = 1, 2, … n,
Ei denotes the expected returns of ith portfolio asset, i = 1, 2, … n.

2.2.2 Portfolio Selection by Maximizing Omega Function

As it was mentioned, the Omega function involves consideration of all the infor-
mation contained in the time series of returns. The aim of portfolio selection problem
is to maximize the level of Omega performance measurement, where the variables
wi, i = 1, 2, … n (where n represents the number of assets) represent the weights of
each asset in the portfolio. Corresponding problem can be formulated as follows [3]:

max XðwÞ ¼
PT

t¼1 max
Pn

i¼1 rtiwi �MAR; 0
� �

PT
t¼1 max MAR�Pn

i¼1 rtiwi; 0
� � ð16Þ

Xn
i¼1

wi ¼ 1 ð17Þ

wi � 0; i ¼ 1; 2; . . . n ð18Þ

where

T represents the number of periods,
MAR denotes the minimum acceptable return,
rti denotes the return of ith portfolio asset in tth period, where t = 1, 2, … T,

i = 1, 2, … n.
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3 SOMA for Maximizing Performance Measurement

The computational complexity of the problems based on presented performance
measurement arises from its non-linear structure. Therefore, evolutionary algo-
rithms seem to be a suitable alternative to standard techniques, due to their ability to
achieve the suboptimal solutions in relatively short time.

Nowadays evolutionary algorithms are considered to be effective tools which
can be used to search for solutions of a wide variety of optimization problems (e.g.
[2, 4, 7, 18, 19, 29]). The big advantage over traditional methods is that they are
designed to find global extremes (with built-in stochastic component) and that their
use does not require a priori knowledge of optimized function (convexity, differ-
ential etc.), and in that way they work well to solve continuous non-linear problems,
where is hard to use traditional mathematic methods.

In order to apply SOMA for solving problems of the portfolio selection based on
performance measurement, it is necessary to consider the following factors: se-
lection of an appropriate representation of individual, transformation of unfeasible
solutions, setting of the control parameters.

Self-organizing migrating algorithm (SOMA) involves a search on population of
individuals (PopSize—number of individuals), where each individual represents
one candidate solution for the given problem. Particular candidate solution is
represented by parameters of individual (Dim—number of parameters of individ-
ual). Also the fitness representing the relevant value of objective function (fcost) is
associated with each individual. Every step of the algorithm involves a competitive
selection that carried out poor solutions. The steps of the algorithm are described in
e.g. [18, 30].

Selection of an appropriate representation of individual. Considering problem
of portfolio selection it could be appropriate to use following representation: let ml
be the index corresponded with number of migrating loops, so that ml = 0, 1, …
Migrations, where the parameter Migrations represents the maximum number of
iterations. Each population is represented by matrix WðmlÞ, which consist of
PopSize individuals (the parameter PopSize represents the number of individuals in

the population) represented by vectors wðmlÞ
i , i ¼ 1; 2; . . . PopSize: Each parameter

of individual represents the corresponding weight of the asset in the portfolio wðmlÞ
i;j ,

i ¼ 1; 2; . . . PopSize; j ¼ 1; 2; . . .Dim (the parameter Dim represents the number of
assets). The use of mentioned representation involves the easy calculation of fitness

(fcostðwðmlÞ
i Þ, i = 1, 2, … PopSize), on the base of Sortino ratio (13)–(15) as well as

Omega function (16)–(18).
The population Wð0Þ can be randomly initialized at the beginning of evolu-

tionary process according to the rule:

wbegin
ij ¼ rnd 0; 1h i; i ¼ 1; 2; . . . Popsize, j ¼ 1; 2; . . .Dim,
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wð0Þ
ij ¼ wbegin

ijPDim
l¼1 wbegin

il

; i ¼ 1; 2; . . . PopSize; j ¼ 1; 2; . . .Dim;

that ensure that the total weights of portfolio (for each individual) is equal to one.

Each individual is then evaluated with the fcostðwð0Þ
i Þ; i = 1, 2, … PopSize.

Transformation of unfeasible solutions. The following rule can be used to ensure

the feasibility of solution: Let wtestðmlÞ
ij represent the jth parameter of ith individual

after one jump in the process of moving in mlth migration loop, i = 1, 2, …
PopSize, j = 1, 2, … Dim, ml = 1, 2, … Migrations, test ¼ ð0; by step to; massi:
Then, the following rule can be applied: if wtestðmlÞ

ij \0, then wtestðmlÞ
ij ¼ rndh0; 1i

and then wðmlÞ
ij ¼ wtestðmlÞ

ijPn

l¼1
wtestðmlÞ
il

.

Setting of the control parameters. Recommended values for the parameters are
usually derived empirically from experiments [15, 18, 30], or one can apply some
statistical methods [6].

4 Empirical Results

The portfolio analysis was based on Dow Jones Industrial Average (DJIA), which is
one of the major market indexes, as well as one of the most popular indicators of the
U.S. market. It is a stock market index, and one of several indices created by Wall
Street Journal editor and Dow Jones & Company co-founder Charles Dow. It was
founded on May 26, 1896. It is an index that shows how 30 large publicly owned
companies based in the United States have traded during a standard trading session
in the stock market (so called Large-Cap companies—companies with market
capitalization above 10 billion USD). Data1 are processed weekly for the period
January 2nd 2013 to March 31st 2014. Time series consist of 65 data set (for each
company in Table 1).

The input parameter of MAR (the target of required rate of return) was set to
0.005.

The algorithms were implemented in MatLab 8.3. All the experiments were run
on PC with Intel® Core™ i7-3770 CPU with a frequency of 3.40 GHz and 8 GB of
RAM under MS Windows 8.

1http://finance.yahoo.com/ (2014).
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Empirical results—Portfolio Selection by Maximizing Sortino ratio and Omega
Function using SOMA

A disadvantage of SOMA, as well as of other evolutionary approaches, is that it has
a dependence on the control parameter setting. Due to this fact, the tests were done
on above mentioned data in effort to determine effective settings of the parameters.
The tested values of parameters PRT and Step were set as sequence of levels 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 (PopSize = 250, Migrations = 100,
PathLength = 3). The interval limits were not considered during testing (purely
deterministic and purely stochastic nature of the algorithm). Twenty experiments
were conducted for each combination of pairs. The average values of Sortino ratio E

Table 1 Company overview DJIA

No. Company
name

Symbol No. Company
name

Symbol No. Company
name

Symbol

1. 3M MMM 11. Goldman
Sachs

GS 21. Pfizer PFE

2. American
Express

AXP 12. Chevron CVX 22. Procter &
Gamble

PG

3. AT&T T 13. IBM IBM 23. The Home
Depot

HD

4. Boeing BA 14. Intel INTC 24. Travelers TRV

5. Caterpillar CAT 15. Johnson &
Johnson

JNJ 25. United
Technologies

UTX

6. Cisco
Systems

CSCO 16. JPMorgan
Chase

JPM 26. UnitedHealth
Group

UNH

7. Coca-Cola KO 17. McDonald’s MCD 27. Verizon VZ

8. DuPont DD 18. Merck MRK 28. Visa V

9. ExxonMobil XOM 19. Microsoft MSFT 29. Wal-Mart WMT

10. General
Electric

GE 20. Nike NKE 30. Walt Disney DIS

E(SR(w))

Step Step
PRT PRT

E( (w)) 

Fig. 2 Average value of SR(w) and Ω(w) depending on different levels of parameters PRT and step
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(SR(w)) and Omega function E(Ω(w)) depended on the combination of parameters
PRT and Step are illustrated in Fig. 2.

The aim of the simulation was to determine the influence of parameters PRT and
Step on the value of functions SR(w) and Ω(w). This simulation study is set up in
accordance with work [6], which describes the possibility of identify the effective
parameters setting applying some statistical methods e.g. Kruskal-Wallis test,
Bartlett’s test, Cochran-Hartley’s test [5].

All statistical tests (at the 95.0 % confidence level) indicate statistically signif-
icant differences between groups, so the levels of function SR(w) are statistically
different depended on levels of parameters PRT and Step. The descriptive statistics
(Table 2) demonstrated the effectiveness of the Step on the level 0.1 (the groups
with Step = 0.1, 0.2, 0.3 and 0.6 are considered to be homogeneous groups). The
effective setting of parameter PRT is on 0.9 level (Table 3), while the homogeneous
groups are groups with PRT = 0.6, 0.7, 0.8, 0.9.

Table 2 Summary statistics for SR(w) for parameter step

Step Count Average Standard
deviation

Minimum Maximum Stnd.
skewness

Stnd.
kurtosis

0.1 180 0.221941 0.0456411 −0.0149 0.2413 −20.875 40.3173

0.2 180 0.215258 0.0536906 −0.0147 0.2412 −16.29 23.4428

0.3 180 0.210797 0.0603353 −0.009 0.2412 −14.1648 15.8944

0.4 180 0.205605 0.0613185 −0.0246 0.2411 −12.4814 12.0825

0.5 180 0.207647 0.059782 −0.0159 0.2411 −13.3403 13.961

0.6 180 0.209214 0.05022 −0.0185 0.241 −12.4675 14.0676

0.7 180 0.199938 0.0667196 −0.2211 0.241 −14.7371 26.826

0.8 180 0.189333 0.0734058 −0.0299 0.2412 −8.46233 3.20589

0.9 180 0.187365 0.0768724 −0.0172 0.241 −8.10041 2.3545

Total 1620 0.205233 0.0624281 −0.2211 0.2413 −38.0527 41.073

Table 3 Summary statistics for SR(w) for parameter PRT

PRT Count Average Standard
deviation

Minimum Maximum Stnd.
skewness

Stnd.
kurtosis

0.1 180 0.106288 0.0898629 −0.2211 0.2299 −2.00703 −2.10431

0.2 180 0.152956 0.0719439 0.0001 0.2333 −4.39469 −2.06396

0.3 180 0.18937 0.0490171 0.0167 0.2403 −8.74919 5.5263

0.4 180 0.211805 0.0345809 0.0397 0.2404 −14.6493 22.1466

0.5 180 0.228938 0.0139682 0.1375 0.241 −13.9828 28.1789

0.6 180 0.236603 0.00549319 0.1981 0.2412 −18.4169 44.6871

0.7 180 0.239544 0.00158376 0.2308 0.2412 −11.4224 17.9189

0.8 180 0.240688 0.000444162 0.2381 0.2412 −12.3945 24.0851

0.9 180 0.240906 0.000201437 0.2404 0.2413 −2.27972 −0.54334

Total 1620 0.205233 0.0624281 −0.2211 0.2413 −38.0527 41.073
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The statistical tests also indicate statistically significant differences of the levels
of function Ω(w) between the groups given by levels of parameters PRT and
Step. The descriptive statistics (Table 4) demonstrated the effectiveness of the Step
also on the level 0.1 (the groups with Step = 0.1, 0.2, 0.3 and 0.4 are considered to
be homogeneous groups). The effective level of parameter PRT can be set to 0.9
(Table 5), while the homogeneous groups are groups with PRT = 0.6, 0.7, 0.8, 0.9.

Further simulation study was provided with the following settings of control
parameters: Step = 0.1, PRT = 0.9, PathLength = 3, PopSize = 3000 and
Migrations = 2000 in both of cases. Based on the testing parameters the problems
were ten times re-solved. The results are shown in Table 6. The best obtained value
of Sortino ratio was 0.24128962 and of Omega functions was 1.47687412 (con-
vergence of the solutions can be seen in Fig. 3).

Table 4 Summary statistics for Ω(w) for parameter step

Step Count Average Standard
deviation

Minimum Maximum Stnd.
skewness

Stnd.
kurtosis

0.1 180 1.43933 0.0832021 0.9629 1.4767 −21.7065 46.5103

0.2 180 1.42408 0.105525 0.9604 1.4767 −16.7791 24.8935

0.3 180 1.42857 0.0804901 0.9797 1.4766 −16.2926 28.3195

0.4 180 1.41827 0.0987719 0.9913 1.4764 −14.7539 19.683

0.5 180 1.40544 0.122302 0.9691 1.476 −13.0857 13.0265

0.6 180 1.41021 0.0938492 1.0006 1.4763 −11.4204 11.7889

0.7 180 1.39128 0.126901 0.9405 1.4759 −10.2244 7.17148

0.8 180 1.37422 0.142082 0.9559 1.4759 −8.49313 3.52962

0.9 180 1.38442 0.128613 0.9352 1.4762 −9.78758 6.60925

Total 1620 1.40842 0.112596 0.9352 1.4767 −38.513 40.723

Table 5 Summary statistics for Ω(w) for parameter PRT

PRT Count Average Standard
deviation

Minimum Maximum Stnd.
skewness

Stnd.
kurtosis

0.1 180 1.22368 0.164366 0.9352 1.4525 −1.58435 −3.97309

0.2 180 1.31918 0.123977 0.9818 1.4647 −5.43922 −0.440709

0.3 180 1.3776 0.0859898 1.0638 1.467 −9.81702 8.17111

0.4 180 1.41895 0.0541002 1.1684 1.4753 −12.198 14.9324

0.5 180 1.44959 0.0238172 1.3154 1.4762 −13.9346 25.5765

0.6 180 1.46468 0.00976054 1.4075 1.4762 −11.0862 19.4977

0.7 180 1.47174 0.00346256 1.4581 1.4766 −7.7651 7.92555

0.8 180 1.47482 0.00159083 1.4608 1.4767 −23.4348 90.8334

0.9 180 1.47559 0.000639299 1.4714 1.4767 −9.9662 25.1603

Total 1620 1.40842 0.112596 0.9352 1.4767 −38.513 40.723
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The rapid convergence to the final solution at the beginning of evolutionary
process is evidently seen from the Fig. 3.

The problem on the base its mathematical programming formulations (13)–(15)
and (16)–(18) were also solved by software GAMS (solver CONOPT 3, version
3.14U). The best solution (from Table 6) using self-organizing migrating algorithm
(SOMA) is compared to the result obtained by GAMS. Both of solutions are
presented in Table 7 in detail (value of weight of corresponding asset).

According to presented results it is recommended to invest in assets of American
Express (AXP), Boeing (BA), Walt Disney (DIS), Microsoft (MSFT), UnitedHealth
Group (UNH) at rates presented in Table 7. The values of weights of others
companies are equal to 0 %. The value of Sortino ratio and Omega function of that
portfolio diversification is provided in the last row of Table 7.

Fig. 3 Convergence of SR(w) and Ω(w)

Table 6 Solutions values fcost(w) SR(w) Ω(w)

Solution 1 0.24128374 1.47683268

Solution 2 0.24128374 1.47682676

Solution 3 0.24128041 1.47679080

Solution 4 0.24128319 1.47685126

Solution 5 0.24128368 1.47679642

Solution 6 0.24128374 1.47686187

Solution 7 0.24128041 1.47684886

Solution 8 0.24128319 1.47685277

Solution 9 0.24128368 1.47685322

Solution 10 0.24128374 1.47681222

MAX 0.24128374 1.47686187

MIN 0.24128041 1.47679080

Average 0.24128295 1.47683269
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5 Conclusions

Various sets of performance measurement tools can be used to assist the investor to
allocate capital over the number of assets. The chapter is mainly focused on
techniques known as Sortino ratio and Omega function with difficult computability

Table 7 Final portfolio diversification

Sortino ratio SR(w) Omega function Ω(w)

Symbol of co. GAMS/CONOPT SOMA GAMS/CONOPT SOMA

AXP 0.0499 0.0498 0.2304 0.2295

BA 0.4029 0.4029 0.3840 0.3754

CAT 0 0 0 0

CSCO 0 0 0 0

CVX 0 0 0 0

DD 0 0 0 0

DIS 0.0165 0.0165 0.0168 0.0218

GE 0 0 0 0

GS 0 0 0 0

HD 0 0 0 0

IBM 0 0 0 0

INTC 0 0 0 0

JNJ 0 0 0 0

JPM 0 0 0 0

KO 0 0 0 0

MCD 0 0 0 0

MMM 0 0 0 0

MRK 0 0 0 0

MSFT 0.2327 0.2327 0.1167 0.1150

NKE 0 0 0 0

PFE 0 0 0 0

PG 0 0 0 0

T 0 0 0 0

TRV 0 0 0 0

UNH 0.2981 0.2980 0.2521 0.2584

UTX 0 0 0 0

V 0 0 0 0

VZ 0 0 0 0

WMT 0 0 0 0

XOM 0 0 0 0

Function values 0.24128962 0.24128374 1.47669447 1.47686187
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due to non-linear structure. The chapter presents original approach enables the use
of self-organizing migrating algorithm (SOMA) to maximize mentioned perfor-
mance measures.

Except the presented overview of the literature devoted to the finance theory and
portfolio performance measurement in the first part of article, the core part is
focused on SOMA. The basic version of SOMA should provide good performance
in the case of a wide variety of functions (e.g. [18, 19]), but on the other hand, if one
wants to apply it for solving problem of portfolio selection, it is necessary to
consider some additional factors i.e. selection of an appropriate representation of
individual, setting of the control parameters, and transformation of unfeasible
solutions, therefore the core of article is focused on an approach that enables
solving proposed models of portfolio selection. Moreover, the algorithm depends
on setting of its control parameters. Their specification could differ depended on
solved problem. To discover their effective setting some statistical methods are
employed.

The empirical analysis is provided on the base of the known Dow Jones
Industrial index, which is one of the major market indexes (its historical data
published from January 2nd 2013 to March 31st 2014 on weekly basis were used).
The experiments have shown that proposed heuristics gives very good solutions in a
reasonable computational time and in that way can help investor to manage the
portfolio diversification. Verification of presented considerations is conducted on
the base of calculation using professional modeling system GAMS (solver
CONOPT 3). Due to authors meaning, presented approach offers effective tool to
solve mentioned problems and can be also applied to a wide variety of portfolio
selection problems based on different performance measurement.
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Setting of Control Parameters of SOMA
on the Base of Statistics

Zuzana Čičková and Martin Lukáčik

Abstract Evolutionary techniques are generally considered to be effective tool for
solving a wide range of optimization problems. However, those algorithms are
controlled by a special set of parameters according to their type. Control parameters
of self-organizing migrating algorithm (SOMA) can be divided into several groups:
the stopping parameters, parameters which depended on the type of problem to be
solved and finally, parameters that are responsible for the quality of the results. The
values of some parameters are directly evident from the nature of the algorithm, but
the values of some may vary based on the problem and their efficient settings may
significantly affect the quality of the calculation. This chapter focuses on the pos-
sibility of using some statistical methods to determine the effective values of some
parameters of SOMA. The use of statistical methods is elucidated by an illustrative
example.

1 Introduction

Evolutionary algorithms are successfully used for solving optimization problems of
different types. Their limitation is caused by the fact that they are controlled by
special set of parameters. Some of these parameters can be successfully set
exogenously based on the philosophy of the algorithm, however, there is a no
deeper theoretical base to adjust certain parameters (e.g. parameters determining the
rate stochastics), whilst (im)proper setting can radically affect the quality of
obtained results.
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Based on the various tests one can conclude that SOMA is even more sensitive
to the parameters setting than other algorithms [3]. The control parameters are
usually set on the basis of experimental results [3, 5]. Some of the control
parameters are given directly by the nature of the problem and can be changed only
by its reformulation. An example of such a parameter is the dimensionality (Dim).
Setting other parameter can be derived from simple geometric interpretation of
SOMA. Such parameter is the parameter PathLength, where its recommended
setting is 3–5. Parameters PopSize and Migrations determine “the size and length”
of simulation and their settings can use philosophy “more is better” (however,
increasing these parameters affect the time needed to calculation and thus is
dependent on the user’s hardware). The parameter MinDiv can be set to e.g.
negative value if it is desired to reach all iterations, or to positive number if one
want to watch the convergence of the calculation. Parameters Step and PRT are also
responsible for the quality of the results. This chapter is devoted to some statistical
methods that may be helpful in clarifying their settings. To adjust the control
parameters it can be suitable before final calculating to carry out several simulations
with e.g. smaller population size and lower number of iterations (which are not time
consuming) with different values of the other control parameters. Further on, except
basic descriptive statistics (e.g. average, mode, median), which allow to acquire the
initial idea of the parameters settings, also various statistical methods can be used,
e.g. single and multiple-factor analysis of variance.

The chapter is divided as follows. The first part is devoted to the theoretical
description of some statistical methods. The second part gives an illustrative
example of setting of control parameters.

2 Single and Multiple-Factor Analysis
of Variance—Theory

Analysis of variance (ANOVA) is a technique, which enables to identify if there is
any difference between groups on some variable (so called factor). When two or
more groups are being compared, the characteristic that distinguishes the group
from one another is called the factor under investigation. Consider the evolutionary
techniques; an experiment might be carried out to compare different values of
control parameters of algorithm from the perspective of obtained value of the fitness
of the best individual (usually value of objective function).

Further on, the following notation will be used: a population is the set of all
observations of interest and a sample is any subset of observations selected from the
population. Let N be the total number of observation in the data set. Consider
k levels of factor under investigation and a sample for each factor level, so that the
sample size by jth factor level, j = 1, 2, …k is designate as nj,

Pk
j¼1 nj ¼ N. Then,

the ith observation for each jth factor level can be designated as xij, j = 1, 2, …k,
i = 1, 2, … nj. Whether the null hypothesis of a single-factor analysis of variance
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should be rejected depends on how substantially the samples from the different
populations differ from one another. Let µj, j = 1, 2, …k be a mean of population
group on corresponding factor level.

A single-factor analysis of variance problem involves a comparison of all
k group means. The objective is to test the null hypothesis (H0):

H0: l1 ¼ l2 ¼ � � � ¼ lk ð1Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
j

;s; j ¼ 1; 2; . . .k; are different ð2Þ

A measure of disparity among the sample means is the between-group sum of
squares, denoted by SSB and given by

SSB ¼
Xk
j¼1

nj �xj � ��x
� �2 ð3Þ

where �xj is the sample mean of jth group and ��x is the overall mean (ratio of sum of
all observations to the total number of observations in the data set). SSB has an
associated degree of freedom (df1 = k − 1).

A measure of variation within the k samples, called error sum of squares and
denoted by SSE, is given by

SSE ¼
Xk
j¼1

nj � 1
� �

s2j ð4Þ

where s2j is the sample variance of jth group. SSE has an associated degree of
freedom (df2 = N − k).

Total sum of squares, denoted by SST, is given by

SST ¼
Xk
j¼1

Xnj
i¼1

xij � ��x
� �2 ð5Þ

with associated degree of freedom (df = N − 1).
The relationship between those three sums of squares is called the fundamental

identity and for single-factor analysis of variance is SST = SSB + SSE.
A mean square is a sum of squares divided by its degree of freedom. In

particular:

between-group mean square: MSB ¼ SSB
k � 1

within-group mean square: MSE ¼ SSE
N � k

.
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The test statistic (F) of the single-factor analysis of variance has a Fisher dis-
tribution and it is given by the formula: F ¼ MSB

MSE.
The validity of the analysis of variance test requires some assumptions. Peck

et al. [4] present these ones:

1. Each of the k group or population distributions is normal.
2. The k normal distributions have identical standard deviations.
3. The observations in the sample from any particular one of the k groups or

populations are independent of one another.
4. When comparing group or population means, k random samples are selected

independently of one another.

The statistical significance of the F ratio is most easily judged by its P-value. If
the P-value is less than 0.05, the null hypothesis of equal means is rejected at the
5 % significance level. This does not imply that every mean is significantly different
from every other mean. It only implies that the means are not all the same.

All the sums of squares, degrees of freedom, mean squares and F ratio with its P-
value are entered in a general format of an analysis of variance table (Table 1).

Peck, Olsen and Devore also claim that in practice, the test based on these
assumptions works well as long as the assumptions are not too badly violated. If the
sample sizes are reasonably large, normal probability plots or boxplots of the data in
each sample are helpful in checking the assumption of normality. Often, however,
sample sizes are so small, that they suggest that the F test can safely be used if the
largest of the sample standard deviations is at most twice the smallest one.

When null hypothesis is rejected by the F test, it can be stated that there are
differences among the k group or population means. Several procedures called
multiple-comparison procedures exist to determine which sample means are sig-
nificantly different from others. Dowdy et al. [2] discuss five different approaches:
Fisher’s least significant difference, Duncan’s new multiple-range test, Student–
Newman–Keuls’ procedure, Tukey’s honestly significant difference and Scheffé’s
method.

Next, Fisher’s least significant difference (LSD) procedure will be performed.
Fisher’s LSD procedure could be based on the t test statistic used for the two-
population case. It could be easier to determine how large the difference between
the sample means must be to reject null hypothesis.

In this case the test statistic by Anderson et al. [1] is the difference �xj � �xl, where
j, l = 1, 2, …k, so that j ≠ l and the objective is to test the null hypothesis (H0):

Table 1 General format for an analysis of variance table

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups SSB k – 1 MSB F P

Within groups SSE N – k MSE

Total SST N – 1
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H0: lj ¼ ll; j; l ¼ 1; 2; . . .k; j 6¼ l ð6Þ

against alternative hypothesis (Ha):

H0: lj 6¼ ll; j; l ¼ 1; 2; . . .k; j 6¼ l ð7Þ

The null hypothesis should be rejected if �xj � �xl
�� ��� LSD, where least significant

difference is given by

LSD ¼ ta=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSE

1
nj

þ 1
nl

� �s
; j; l ¼ 1; 2; . . .k; j 6¼ l ð8Þ

where α denotes the significance level and t denotes critical value of Student’s
distribution.

Dowdy, Weardon and Chilko recall, that Fisher’s test has a drawback; it requires
that the null hypothesis be rejected in the analysis of variance procedure by the
F test. These authors also discuss presented assumptions. At first, the normality of
the treatment groups can be roughly checked by constructing histograms of the
sample from each group. The analysis of variance by them leads to valid conclu-
sions in some cases where there are departures from normality. For small sample
sizes the treatment groups should be symmetric and unimodal. For large samples,
more radical departures are acceptable due to the central limit theorem. Dowdy,
Weardon and Chilko assume that conditions on independence are usually satisfied
if the experimental units are randomly chosen and randomly assigned to the
treatments. If the treatment groups already exist the experimenter by them does not
have the opportunity to assign the subjects at random to the treatments. In such
cases he uses random samples from each treatment group.

The last one of the assumptions underlying the analysis of variance is that the
variances of the populations from which the samples come are the same. Dowdy,
Weardon and Chilko state that the F tests are robust with respect to departures from
homogeneity; that is, moderate departures from equality of variances do not greatly
affect the F statistic. If the experimenter fears a large departure from homogeneity,
several procedures are available to test equality of variances.

The Fmax test was developed by Hartley. Hartley’s test may be used when all
treatment groups are the same size n and involves comparing the largest sample
variance with the smallest sample variance. The null hypothesis (H0) of test (where
σj
2 is the population variance of jth group, j = 1, 2, …k) is:

H0: r
2
1 ¼ r22 ¼ � � � ¼ r2k ð9Þ
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against alternative hypothesis (Ha):

Ha: at least two of the rj
;s, j¼ 1; 2;. . .k; are different ð10Þ

when each of the k populations is normal and there is a random sample of size
n from each population. Then sample variances s2j , j = 1,2…k can be computed and
it is possible to calculate

Fmax ¼
max s2j ; j ¼ 1; 2; . . .k

n o
min s2j ; j ¼ 1; 2; . . .k
n o ð11Þ

Statistics Fmax is significant if it exceeds the value given in the Fisher’s table
with degrees of freedom df1 = k and df2 = n − 1. Dowdy, Weardon and Chilko state,
that because of the sensitivity of Hartley’s test to departures from normality, if
statistics Fmax is significant, it indicates either unequal variances or a lack of
normality.

Two other commonly used tests of homogeneity of variances are those of
Cochran and Bartlett. In most situations, Cochran’s test is equivalent to Hartley’s.
Cochran’s test compares the maximum within-sample variance to the average
within-sample variance. After computing of sample variances s2j , j = 1,2…k, it is
calculated

C ¼
max s2j ; j ¼ 1; 2; . . .k

n o
Pk

j¼1 s
2
j

ð12Þ

and statistics C is significant if value

A ¼ k � 1ð Þ C
1� C

ð13Þ

exceeds the Fisher’s table value with degrees of freedom df1 ¼ n
k � 1 and

df2 ¼ n
k � 1
� �

k � 1ð Þ.
Bartlett’s test has a more complicated test statistic but has two advantages over

the other two: It can be applied to groups of unequal sample sizes, and it is more
powerful. Bartlett’s test: compares a weighted average of the within-sample vari-
ances to their geometric mean. The test statistics is

B ¼ 1
D

Xk
j¼1

nj � 1
� � !

ln
1Pk

j¼1 nj � 1
� �Xk

j¼1

nj � 1
� �

s2j

 !
�
Xk
j¼1

nj � 1
� �

ln s2j
� 	" #

ð14Þ
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where

D ¼ 1þ 1
3 k � 1ð Þ

Xk
j¼1

1
nj � 1

� �
� 1Pk

j¼1 nj � 1
� �

" #
ð15Þ

Statistics B is significant if it exceeds the value given in the chi-squared dis-
tribution with (k – 1) degrees of freedom.

The last presented statistics of homogeneity of variances is Levene’s test. This
test performs a one-way analysis of variance on the variables zij ¼ xij � �xj

�� ��,
j = 1,2…k, where �xj is either a mean of jth group or a median of jth group. At first
variables zij are computed and the F statistic of the single-factor analysis of variance
for these variables is obtained. Levene’s statistics is significant if it exceeds the
Fisher’s table value with degrees of freedom df1 = k − 1 and df2 = N − k.

Some statistical software also presents the results of a set of two-sample F tests
that compare the standard deviations for each pair of levels. This makes sense only
if the initial overall test shows significant differences amongst the variances (and
standard deviations). Any pair with a small P value would be a pair whose standard
deviations were significantly different.

An alternative to the standard analysis of variance that compares level medians
instead of means is the Kruskal-Wallis test. This test is much less sensitive to the
presence of outliers than a standard one-way analysis of variance and should be
used whenever the assumption of normality within levels is not reasonable. Dowdy,
Weardon and Chilko indicate this procedure.

First, it is necessary to rank the data from 1 (the smallest observation) to N (the
largest observation), irrespective of the group in which they are found. If two or
more observations are tied for the same numerical value, the average rank for which
they are tied is assigned. Then for every group, when all treatment groups are the
same size n, the average rank of group denoted by �rj is computed. Finally, the test
statistic is:

H ¼ n

Pk
j¼1 �rj � Nþ 1

2

� �2h i
N Nþ 1ð Þ

12

ð16Þ

The null hypothesis (H0) of test is

H0:E �rj
� � ¼ N þ 1

2
for all j ð17Þ

against alternative hypothesis (Hα):

H0:E �rj
� � 6¼ Nþ 1

2
for some j ð18Þ

where E �rj
� �

denotes the expected value by �rj.
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Statistics H is significant if it exceeds the value given in the chi-squared dis-
tribution with (k – 1) degrees of freedom and it indicates that there are significant
differences amongst the level medians.

However, in some experiments it is desirable to draw conclusions about more
than one variable or factor. The term factorial is used because the experimental
conditions include all possible combinations of the factors. For example, for
a levels of factor A and b levels of factor B, the experiment will involve collecting
data on ab combinations. In experimental design terminology, the sample size of
r for each group combination indicates that there are r replications, so abr obser-
vations are needed. Additional replications (2r, 3r) and larger sample size put
statistical conclusions in more precise terms.

This situation brings new effect—interaction effect. If the interaction effect has a
significant impact, it can be concluded that the effect of the type of factor A depends
on the factor B. There are three sets of hypothesis with the two-way ANOVA.

At first, the objective is to test the null hypothesis of comparison of a group
means µAi, i = 1, 2, …a by different values of factor A (H0):

H0: lA1 ¼ lA2 ¼ � � � ¼ lAa ð19Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
Aj

;s, j ¼ 1; 2;. . .a; are different ð20Þ

and also comparison of b group means µBi, j = 1, 2, …b by different values of factor
B:

H0: lB1 ¼ lB2 ¼ � � � ¼ lBb ð21Þ

against alternative hypothesis (Ha):

Ha: at least two of the l
Bj

;s, j ¼ 1; 2;. . .b; are different ð22Þ

Second objective is comparison of ab group means µAiBj, i = 1, 2, …a, j = 1, 2,
…b by different values of A and B:

H0: lA1B1 ¼ lA2B2 ¼ � � � ¼ lAaBb ð23Þ

against the alternative (Ha):

Ha:There is no interaction between the factors A and B ð24Þ

The analysis of variance procedure for the two-factor factorial experiment
requires us to partition the total sum of squares into sum of squares for factor A,
sum of squares for factor B, sum of squares for interaction and sum of squares due
to error.
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Sum of squares for factor A is denoted by SSA and given by

SSA ¼ br
Xa
i¼1

�xi � ��xð Þ2 ð25Þ

where b is number of levels of factor B, a is number of levels of factor A, ��x is the
overall mean and r is the number of replications.

Sum of squares for factor B is denoted by SSB and given by

SSB ¼ ar
Xb
i¼1

�xi � ��xð Þ2 ð26Þ

Sum of squares for interaction is denoted by SSAB and given by

SSAB ¼ r
Xa
i¼1

Xb
j¼1

�xij � �xi � �xj þ��x
� �2 ð27Þ

where xij is the sample mean for the observations corresponding to the combination
of group i (factor A) and group j (factor B).

Error sum of squares (SSE) and total sum of squares (SST) are given by the same
relations as in the case of single-factor analysis of variance (4) and (5). All the sums
of squares, degrees of freedom, mean squares and F ratios with their P-values are
presented in the analysis of variance table (Table 2).

3 Parameters Setting of SOMA

Next, the setting of control parameters of SOMA will be presented based on an
illustrative example of solving traveling salesman problem. Consider the matrix of
shortest distances between eight cities (Table 3).

The traveling salesman needs to find the shortest route between all the cities so
that each city is visited exactly once. The solving was provided with the use of
natural representation (the city was represented directly with its index in an

Table 2 General format for an analysis of variance table

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Factor A SSA a − 1 MSA FA PA

Factor B SSB b − 1 MSB FB PB

Interaction SSAB (a − 1)(b − 1) MSAB FAB PAB

Error SSE ab(r − 1) MSE

Total SST N − 1
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individual). A simple penalty approach was used if the unfeasible solutions
appeared. Some of the control and termination parameters were set as follows:
Parameter PopSize was set to 80 and parameter Migrations was set to 300. The
parameter MinDiv was set to negative value to reach all iterations (the small size of
instance enables to reach all iteration in a relative short time). The parameter
PathLength was set to the value 3. The settings of parameters Step and PRT was
provided on the base of before mentioned statistical methods. Let the value of the
shortest route (denoted as fc) be the response variable. Further on, we can specify
the impact of factors’ level (levels of parameters Step and PRT) on the variability of
the response variable.

Parameter PRT can take values from 0 (purely stochastic behavior of algorithm)
to 1 (purely deterministic behavior). At first, the levels of parameters PRT were set
to 0.2, 0.4, 0.6 and 0.8. Parameter Step can take values from 0.1 to value of
parameter PathLength, which equals 3. Following the previous simulations it was
found that the value of the Step >1, increased probability of getting extremely “bad”
outcome. So, the values 0.3, 0.5, 0.7 and 0.9 were used as the levels of parameter
Step in testing.

First tested hypothesis is comparison of 4 group means fc1; fc2; fc3; fc4 by dif-
ferent values of parameter PRT (0.2, 0.4, 0.6 and 0.8) according to (1) and (2). The
experiment is balancing—for each pair PRT-Step the same number of simulations
was realized—eight replications. It was thus implemented the first phase of a total
of 128 simulations (Table 4).

The summary of the descriptive statistics for every value of parameter PRT is
given in Table 5.

There is big difference between the smallest and the largest standard deviation.
This may cause problems since the analysis of variance assumes that the standard
deviations at all levels are equal. The results are also presented by the box and
whisker plot (Fig. 1).

There is evident some significant non-normality in the data, which violates the
assumption that the data come from normal distributions. Someone may wish to
transform the values of fc to remove any dependence of the standard deviation on

Table 3 Matrix of shortest distances between eight cities

City 1 City 2 City 3 City 4 City 5 City 6 City 7 City 8

City 1 – 202 197 115 191 123 161 86

City 2 202 – 389 85 393 121 48 195

City 3 197 389 – 304 35 317 351 241

City 4 115 85 304 – 308 84 46 138

City 5 191 393 35 308 – 297 355 221

City 6 123 121 317 84 297 – 73 74

City 7 161 48 351 46 355 73 – 147

City 8 86 195 241 138 221 74 147 –
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the mean. The analysis of variance decomposes the variance of fc into two com-
ponents: a between-group component and a within-group component (Table 6).

The F ratio, which equals 33.0788, is a ratio of the between-group estimate to
the within-group estimate. Since the P-value of the F test is less than 0.05, there is a
statistically significant difference between the mean fc from one level of PRT to
another at the 5.0 % significance level. Then, Fisher’s least significant difference
was used to determine which means are significantly different from which others
(Table 7).

Table 4 Results of simulations

Step PRT fc Step PRT fc Step PRT fc Step PRT fc

0.3 0.2 862 0.3 0.2 862 0.3 0.2 921 0.3 0.2 906

0.3 0.4 862 0.3 0.4 848 0.3 0.4 848 0.3 0.4 848

0.3 0.6 848 0.3 0.6 848 0.3 0.6 848 0.3 0.6 848

0.3 0.8 848 0.3 0.8 848 0.3 0.8 848 0.3 0.8 848

0.5 0.2 896 0.5 0.2 857 0.5 0.2 1072 0.5 0.2 896

0.5 0.4 906 0.5 0.4 896 0.5 0.4 842 0.5 0.4 848

0.5 0.6 848 0.5 0.6 848 0.5 0.6 848 0.5 0.6 848

0.5 0.8 848 0.5 0.8 848 0.5 0.8 848 0.5 0.8 848

0.7 0.2 848 0.7 0.2 907 0.7 0.2 979 0.7 0.2 963

0.7 0.4 848 0.7 0.4 871 0.7 0.4 848 0.7 0.4 857

0.7 0.6 848 0.7 0.6 905 0.7 0.6 848 0.7 0.6 848

0.7 0.8 857 0.7 0.8 848 0.7 0.8 848 0.7 0.8 848

0.9 0.2 980 0.9 0.2 848 0.9 0.2 857 0.9 0.2 905

0.9 0.4 848 0.9 0.4 857 0.9 0.4 848 0.9 0.4 848

0.9 0.6 848 0.9 0.6 848 0.9 0.6 848 0.9 0.6 848

0.9 0.8 848 0.9 0.8 857 0.9 0.8 857 0.9 0.8 848

0.3 0.2 919 0.3 0.2 988 0.3 0.2 871 0.3 0.2 954

0.3 0.4 848 0.3 0.4 848 0.3 0.4 857 0.3 0.4 848

0.3 0.6 848 0.3 0.6 848 0.3 0.6 848 0.3 0.6 848

0.3 0.8 848 0.3 0.8 848 0.3 0.8 848 0.3 0.8 848

0.5 0.2 905 0.5 0.2 919 0.5 0.2 857 0.5 0.2 896

0.5 0.4 848 0.5 0.4 848 0.5 0.4 857 0.5 0.4 848

0.5 0.6 848 0.5 0.6 848 0.5 0.6 848 0.5 0.6 848

0.5 0.8 848 0.5 0.8 848 0.5 0.8 848 0.5 0.8 848

0.7 0.2 907 0.7 0.2 919 0.7 0.2 848 0.7 0.2 862

0.7 0.4 848 0.7 0.4 848 0.7 0.4 862 0.7 0.4 848

0.7 0.6 848 0.7 0.6 857 0.7 0.6 857 0.7 0.6 857

0.7 0.8 862 0.7 0.8 848 0.7 0.8 848 0.7 0.8 848

0.9 0.2 862 0.9 0.2 907 0.9 0.2 919 0.9 0.2 1003

0.9 0.4 848 0.9 0.4 848 0.9 0.4 848 0.9 0.4 905

0.9 0.6 848 0.9 0.6 848 0.9 0.6 848 0.9 0.6 848

0.9 0.8 848 0.9 0.8 848 0.9 0.8 848 0.9 0.8 857
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Table 5 Summary statistics—data grouped by PRT

PRT Count Average Standard
deviation

Coefficient of
variation (%)

Minimum Maximum Range Median

0.2 32 909.219 53.0324 5.83274 848.0 1072.0 224.0 905.5

0.4 32 855.625 16.3997 1.9167 842.0 906.0 64.0 848.0

0.6 32 850.625 10.2729 1.20769 848.0 905.0 57.0 848.0

0.8 32 849.563 3.77545 0.444399 848.0 862.0 14.0 848.0

Total 128 866.258 37.5064 4.3297 842.0 1072.0 230.0 848.0
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Fig. 1 Box and whisker plot—data grouped by PRT

Table 6 Analysis of variance table—data grouped by PRT

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 79418.1 3 26472.7 33.08 0.0000

Within groups 99236.3 124 800.293

Total 178654.4 127

Table 7 Comparison procedure of Fisher’s least significant difference—data grouped by PRT

Contrast Difference of means LSD Significant differences

0.2–0.4 53.5938 13.9982 Yes

0.2–0.6 58.5938 13.9982 Yes

0.2–0.8 59.6563 13.9982 Yes

0.4–0.6 5.0 13.9982 No

0.4–0.8 6.0625 13.9982 No

0.6–0.8 1.0625 13.9982 No
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Now, one can see significant difference for group of simulations where PRT
equals 0.2 to other groups. It can be stated that there is a large departure from
homogeneity, so all the equality of variances’ tests are used (Table 8).

The statistics displayed in the Table 8 and also the P-values show, that there is a
statistically significant difference amongst the standard deviations of groups. This
violates one of the important assumptions underlying the analysis of variance.

The comparison of the standard deviations for each pair of samples is given in
Table 9. All P-Values below 0.05 indicate statistically significant differences
between standard deviations of every pair of groups.

The situation is clear; statistically different values of averages and standard
deviations for groups of values fc by different values of parameter PRT were
obtained. Due to failure of assumptions, the results of the analysis of variance
cannot be taken into account. Finally, despite all the previous conclusions, the
decision is to use the Kruskal-Wallis test as alternative to the standard analysis of
variance to compare the medians instead of the means (Table 10).

Table 8 Tests of homogeneity of variances—data grouped by PRT

Test P-value

Levene’s 23.1283 5.87053E−12

Cochran’s 0.878564 0

Bartlett’s 4.35742 0

Hartley’s 197.308

Table 9 Comparison of the standard deviations for each pair of groups—data grouped by PRT

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.2/0.4 53.0324 16.3997 10.457 0.0000

0.2/0.6 53.0324 10.2729 26.65 0.0000

0.2/0.8 53.0324 3.77545 197.308 0.0000

0.4/0.6 16.3997 10.2729 2.54853 0.0111

0.4/0.8 16.3997 3.77545 18.8685 0.0000

0.6/0.8 10.2729 3.77545 7.40368 0.0000

Table 10 Kruskal-Wallis test
—data grouped by PRT

PRT Sample size Average rank

0.2 32 104.469

0.4 32 57.4375

0.6 32 47.5

0.8 32 48.5938

Test statistic 66.7 P-value = 0
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The null hypothesis of Kruskal-Wallis test is that the medians of fc within each
of the four levels of PRT are the same (17). Since the P-value is less than 0.05, there
is a statistically significant difference amongst the medians.

It is evident (from the results of tests and also from box and whisker plot) that
median of group where PRT equals 0.2 is significantly different from others. It
seems that values 0.6 or 0.8 for the parameter PRT are the appropriate choice. More
preferred alternative is a latter value in order to eliminate possible outliers.

Second tested hypothesis is comparison of 4 group means fc1; fc2; fc3; fc4 by
different values of parameter Step (0.3, 0.5, 0.7 and 0.9) according to (1) and (2).

The summary of the descriptive statistics by every value of Step is given in the
Table 11.

In this case there is not so big difference between the smallest and the largest
standard deviation as in previous case. From the box and whisker plot (Fig. 2) it is
seen some significant non-normality in the data, which again violates the
assumption that the data come from normal distributions. Recall that the normal
distribution is symmetric with a median in the middle of the box bounded by the

Table 11 Summary statistics—data grouped by Step

Step Count Average Standard
dev.

Coef. of
variation (%)

Minimum Maximum Range Median

0.3 32 864.313 34.6656 4.01077 848.0 988.0 140.0 848.0

0.5 32 867.469 43.6984 5.03746 842.0 1072.0 230.0 848.0

0.7 32 866.813 33.9995 3.92236 848.0 979.0 131.0 848.0

0.9 32 866.438 38.6013 4.45517 848.0 1003.0 155.0 848.0

Total 128 866.258 37.5064 4.3297 842.0 1072.0 230.0 848.0
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Fig. 2 Box and whisker plot—data grouped by Step
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first and the third quartile. This is not the case, because the median is the smallest
value in three cases and for the last one is typical outlier.

The analysis of variance decomposes the variance of fc once again into two
components: a between-group component and a within-group component, but now
data are grouped by parameter Step (Table 12).

The F ratio, which equals 0.0414313, is a ratio of the between-group estimate to
the within-group estimate. Since the P-value of the F test is greater than 0.05, there
is not a statistically significant difference amongst the mean fc from one level of
Step to another at the 5.0 % significance level. Fisher’s test requires that the null
hypothesis could be rejected in the analysis of variance procedure by the F test,
what is not the case; nevertheless its results are shown (Table 13).

Evidently, there is not a significant difference in means between groups.
The all statistics displayed in the Table 14 and also the P-values greater than or

equal to 0.05 show, that there is not a statistically significant difference amongst the
standard deviations of groups.

The comparison of the standard deviations for each pair of samples is given in
Table 15. It can be stated there are no statistically significant differences between
any pair of means.

Table 12 Analysis of variance table—data grouped by Step

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 178.898 3 59.6328 0.04 0.9887

Within groups 178476.6 124 1439.32

Total 178654.4 127

Table 13 Comparison procedure of Fisher’s least significant difference—data grouped by Step

Contrast Difference of means LSD Significant differences

0.3–0.5 −3.15625 18.7727 No

0.3–0.7 −2.5 18.7727 No

0.3–0.9 −2.125 18.7727 No

0.5–0.7 0.65625 18.7727 No

0.5–0.9 1.03125 18.7727 No

0.7–0.9 0.375 18.7727 No

Table 14 Tests of
homogeneity of variances—
data grouped by Step

Test P-value

Levene’s 0.0490732 0.985551

Cochran’s C 0.331675 0.298469

Bartlett’s 1.02079 0.472019

Hartley’s 1.65191
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The situation is different from the previous case; we didn’t obtain statistically
different values of averages and standard deviations for groups of values fc by
different values of parameter Step. Again, we decided to use alternative to the
standard analysis of variance—the Kruskal-Wallis test—to compare the medians
instead of the means (Table 16).

The null hypothesis of Kruskal-Wallis test is that the medians of fc within each
of the four levels of Step are the same (17). Since the P-value is greater than 0.05,
there is not a statistically significant difference amongst the medians.

Hence, the results of tests and also from box and whisker plot show the means,
medians and standard deviations of all four samples are equal. It is not a difference
between arbitrary values of the parameter Step from a statistical point of view.
Despite the results, it seems that values 0.7 or 0.9 for the parameter Step is the
appropriate choice, since calculations are usually faster for bigger values of
Step. These values generate the equivalent results with similar outliers. More
preferred alternative is a latter value because of smaller interquartile range.

Last tested hypothesis is comparison of 4 group means fcA1; fcA2; fcA3; fcA4 by
different values of parameter Step (factor A) according the test (19) and (20), where
the levels of Step were set to 0.3, 0.5, 0.7 and 0.9 and also comparison of 4 group
means fcB1; fcB2; fcB3; fcB4 by different values of parameter PRT (factor B) according
the test (21) and (22), where the levels of PRT were set to 0.2, 0.4, 0.6 and 0.8, as
well as the comparison of 16 group means fcA1B1; fcA2B1; . . .; fcA4B4 by mentioned
different values of Step and PRT (23) and (24).

The ANOVA table (Table 17) decomposes the variability of fc into contributions
due to both factors Step and PRT. The contribution of each factor is measured
having removed the effect of another factor. Since P-value of factor PRT is less than
0.05, this factor has a statistically significant effect on fc at the 5.0 % significance

Table 15 Comparison of the standard deviations for each pair of groups—data grouped by Step

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.3/0.5 34.6656 43.6984 0.629314 0.2029

0.3/0.7 34.6656 33.9995 1.03957 0.9147

0.3/0.9 34.6656 38.6013 0.806481 0.5529

0.5/0.7 43.6984 33.9995 1.65191 0.1679

0.5/0.9 43.6984 38.6013 1.28152 0.4939

0.7/0.9 33.9995 38.6013 0.775783 0.4838

Table 16 Kruskal-Wallis test
—data grouped by Step

Step Sample size Average rank

0.3 32 62.0625

0.5 32 61.6875

0.7 32 69.875

0.9 32 64.375

Test statistic 1.30262 P-value = 0.728508
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level. Significant interaction effects between analysed factors have not been con-
firmed. The results of multiple factor analysis of variance confirmed the conclusions
that were obtained using a single factor analysis of variance. Different values of
parameter Step didn’t result to statistically different values of function fc. Contrary,
different values of parameter PRT resulted to statistically different values of func-
tion fc.

It is evident (Fig. 3) that the small values of PRT (0.2 and 0.4) results to big
variability of values fc regardless of the value of Step. The interaction plot (Fig. 4)
gives the mean values of fc depending on combination of mentioned factors. Based
on that, it seems to be an appropriate choice to set the parameter PRT to 0.6 or 0.8.

Further on, one more analysis was realized in order to choose between the two
values of parameter PRT and one way factor analysis for parameter PRT was
conducted. Tested hypothesis is comparison of 5 group means fc1; fc2; fc3; fc4; fc5
by different values of parameter PRT on levels 0.5, 0.6, 0.7, 0.8 and 0.9 according
to (1) and (2). Parameter Step was set to value 0.9. The experiment is balancing—
for each value of PRT the same number of simulations was realized—eight repli-
cations. It was thus implemented a total of 40 simulations, which results are
summarized in Table 18.

The summary of the descriptive statistics by every value of parameter PRT can
be seen in the Table 19.

Table 17 Multiple analysis of variance table

Source Sum of squares Df Mean square F-ratio P-value

Factor A: step 178.898 3 59.6328 0.07 0.9766

Factor B: prt 79418.1 3 26472.7 30.35 0.0000

Interactions AB 1359.82 9 151.091 0.17 0.9964

Error 97697.6 112 872.3

Total 178654 127
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Fig. 3 Box and whisker plot—data grouped by interaction of Step and PRT
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There is again big difference between the smallest and the largest standard
deviation. Remember, that this may cause problems since the analysis of variance
assumes that the standard deviations at all levels are equal. It is evident also from
the box and whisker plot of results (Fig. 5).

It is evident there is some significant non-normality in the data, which violates
the assumption that the data come from normal distributions. The analysis of
variance decomposes the variance of fc into two components: a between-group
component and a within-group component (Table 20).
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Fig. 4 Interaction plot

Table 18 Results of simulations

PRT fc PRT fc PRT fc PRT fc PRT fc

0.5 848 0.6 857 0.7 848 0.8 848 0.9 848

0.5 857 0.6 848 0.7 848 0.8 848 0.9 848

0.5 862 0.6 921 0.7 857 0.8 857 0.9 848

0.5 862 0.6 848 0.7 848 0.8 848 0.9 848

0.5 959 0.6 896 0.7 857 0.8 848 0.9 848

0.5 905 0.6 871 0.7 848 0.8 857 0.9 848

0.5 1007 0.6 857 0.7 848 0.8 857 0.9 848

0.5 848 0.6 848 0.7 857 0.8 848 0.9 848

Table 19 Summary statistics—data grouped by PRT

prt Count Average Standard
dev.

Coef. of
variation (%)

Minimum Maximum Range Median

0.5 8 893.5 59.4763 6.65655 848.0 1007.0 159.0 862.5

0.6 8 868.25 26.8421 3.09152 848.0 921.0 73.0 857.0

0.7 8 851.375 4.65794 0.547108 848.0 857.0 9.0 848.0

0.8 8 851.375 4.65794 0.547108 848.0 857.0 9.0 848.0

0.9 8 848.0 0 0 848.0 848.0 0 848.0

Total 40 862.5 32.7085 3.79229 848.0 1007.0 159.0 848.0
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The F ratio, which equals 3.3753, is a ratio of the between-group estimate to the
within-group estimate. Since the P-value of the F test is less than 0.05, there is a
statistically significant difference between the mean fc from one level of PRT to
another at the 5.0 % significance level. Fisher’s least significant difference is used to
determine which means are significantly different from which others (Table 21).

It is seen significant difference for group of simulations where PRT equals 0.5 to
groups where PRT equal to 0.7, 0.8 and 0.9. It is evident a large departure from
homogeneity, so next all the equality of variances’ tests are used (Table 22).

The statistics displayed in this table and also the P-values show, that there is a
statistically significant difference amongst the standard deviations of groups. This
violates one of the important assumptions underlying the analysis of variance.

The comparison of the standard deviations for each pair of samples is given in
Table 23. P-Values below 0.05 indicate statistically significant differences between
standard deviations of these pair of groups.

The situation is such as in the first analysis of parameter PRT; there are statis-
tically different values of averages and standard deviations for groups of values fc
by different values of parameter PRT. Due to failure of assumptions, the results of
the analysis of variance cannot be taken into account. Finally, despite all the pre-
vious conclusions, we decided to use the Kruskal-Wallis test to compare the
medians instead of the means (Table 24).
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Fig. 5 Box and whisker plot—data grouped by PRT

Table 20 Analysis of variance table—data grouped by PRT

Source of variation Sum of squares Degree of freedom Mean square F-ratio P-value

Between groups 11614.8 4 2903.69 3.3753 0.01946

Within groups 30109.3 35 860.264

Total 41724.0 39
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The null hypothesis of Kruskal-Wallis test (17) is that the medians of fc within
each of the fiver levels of PRT are the same. Since the P-value is less than 0.05,
there is a statistically significant difference amongst the medians. It seems that
median of group where PRT equals 0.5 and 0.6 are significantly different from
others. Based on mentioned above the values 0.7–0.9 for the parameter PRT are
considered as the appropriate choice.

Table 21 Comparison procedure of Fisher’s least significant difference—data grouped by PRT

Contrast Difference of means LSD Significant differences

0.5–0.6 25.25 29.7719 No

0.5–0.7 42.125 29.7719 Yes

0.5–0.8 42.125 29.7719 Yes

0.5–0.9 45.5 29.7719 Yes

0.6–0.7 16.875 29.7719 No

0.6–0.8 16.875 29.7719 No

0.6–0.9 20.25 29.7719 No

0.7–0.8 0 29.7719 No

0.7–0.9 3.375 29.7719 No

0.8–0.9 3.375 29.7719 No

Table 22 Tests of homogeneity of variances—data grouped by PRT

Test P-value

Levene’s 3.2163 0.023823

Cochran’s 0.822405 0.00000532605

Bartlett’s 5.77786 4.76942E−10

Hartley’s 163.042

Table 23 Comparison of the standard deviations for each pair of groups – data grouped by PRT

Comparison Standard deviation 1 Standard deviation 2 F-ratio P-value

0.5/0.6 59.4763 26.8421 4.90969 0.0523

0.5/0.7 59.4763 4.65794 163.042 0.0000

0.5/0.8 59.4763 4.65794 163.042 0.0000

0.5/0.9 59.4763 0 – –

0.6/0.7 26.8421 4.65794 33.2082 0.0002

0.6/0.8 26.8421 4.65794 33.2082 0.0002

0.6/0.9 26.8421 0 – –

0.7/0.8 4.65794 4.65794 1.0 1.0000

0.7/0.9 4.65794 0 – –

0.8/0.9 4.65794 0 – –
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4 Conclusions

Evolutionary algorithms are considered to be universal and effective tool for solving
various optimization problems. Their effectiveness is limited by fact they are
generally controlled by special set of parameters. Although some of parameters can
be successfully set exogenously based on the philosophy of the algorithm or
according to type of solved problem, there is a no deeper theoretical base to adjust
all the parameters. This chapter focuses on the possibility of using some statistical
methods that may be helpful to determine the effective values of some parameters of
SOMA.

Based on the various tests one can conclude that SOMA is even more sensitive
on the parameters setting than other algorithms [3, 5], thus the efficient setting may
significantly affect the quality of the results. The setting of control parameter can be
supported by statistical methods especially aimed at determining whether the level
of some parameter brings the difference in results. A brief view to corresponding
statistical methods (single factor analyze of variance, Levene’s test, Cochran’s test,
Bartlett’s test, Hartley’s test, two-way analyze of variance) is given in the first half
of the chapter. The second half is aimed on example of practical use based on
illustrative data of traveling salesman problem.
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Table 24 Kruskal-Wallis test
—data grouped by PRT

PRT Sample size Average rank

0.5 8 29.375

0.6 8 25.125

0.7 8 18.0

0.8 8 18.0

0.9 8 12.0

Test statistic 10.844 P-value = 0.0283745
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Inspired in SOMA: Perturbation Vector
Embedded into the Chaotic PSO
Algorithm Driven by Lozi Chaotic Map

Michal Pluhacek, Ivan Zelinka, Roman Senkerik
and Donald Davendra

Abstract In this chapter a new approach for Particle Swarm Optimization
(PSO) algorithm driven by chaotic pseudorandom number generator based on
chaotic Lozi map is presented. This research represents the continuation of the
satisfactory results obtained by means of chaos embedded (driven) swarm based
algorithms, which utilize the chaotic dynamics in the place of pseudorandom number
generators. The perturbation vector, which is introduced here, was inspired by the
swarm based Self-organizing Migrating Algorithm (SOMA). It was embedded into
the PSO algorithm to help overcome the issue of premature convergence.

Keywords Particle swarm optimization � Chaos � PSO � SOMA hybrid

1 Introduction

The Particle Swarm Optimization Algorithm (PSO) [1–4] is probably the most
prominent representative of swarm inspired algorithms alongside Ant Colony
Optimization [5] and SOMA [6]. The PSO is the subject of intensive research for
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more than two decades now. As many other Evolutionary Optimization Techniques
(ECTs) the PSO is being intensively studied, modified and re-designed.

Some studies indicated that using chaotic systems in the place of pseudorandom
number generators (PRNG) might improve the quality of results, convergence
speed or other performance indicators of various ECTs [7–14]. The chaotic
approach causes the heuristic to map unique regions, since the chaotic map iterates
to new regions. Several studies have already dealt with the possibilities of
embedding of chaotic dynamics into the PSO algorithm and have investigated the
influence to the performance of PSO [9–12]. Recently a novel approach that utilizes
alternating of two different chaotic systems within one run of the algorithm was
proposed [13, 14]. This paper presents a novel approach for PSO algorithm driven
by Lozi chaotic map [11, 12, 15], that was developed as a response to the satis-
factory results of the previous research [11–14].

Inspired by SOMA algorithm it is implemented the perturbation vector into the
PSO.The perturbation vector is designed to help prevent premature convergence of the
swarm—one of the biggest issues of PSO especially embeddedwith chaotic Lozimap.

The chapter is structured as follows: Firstly, the motivation for this research and
the definition of PSO algorithm is given, followed by the basic principles of Self-
organizing Migrating Algorithm (SOMA) that served as an inspiration for this novel
approach. The Lozi chaotic map is described in Sect. 5. Used benchmark functions
are detailed in the sixth section and experiments set up in the following section
number seven. Finally the results are presented and discussed in the last two sections.

2 Motivation

In the previous research [11–14] the chaotic pseudorandom number generator
(CPRNG) based on Lozi chaotic map was implemented into the PSO algorithm. It
was observed that there was a significant improvement in the convergence speed of
the algorithm and it was possible to obtain good solutions within less iterations of
the algorithm. However the final precision of the solution was not as good because
the solutions stopped improving very shortly (the issue of premature convergence).

The Self-organizing Migrating Algorithm (SOMA) [6] deals with the issue of
premature convergence by means of so called PRTVector (or Perturbation Vector),
that limits the movement of particles to certain dimensions only. The aim of this
work is to investigate whether this tool can be successfully implemented into the
concept of PSO driven by Lozi chaotic map and improve its performance.

3 Particle Swarm Optimization Algorithm

The PSO algorithm is inspired by the natural swarm behavior of animals (such as
birds and fish). It was firstly introduced by Eberhart and Kennedy in 1995 [1].
The PSO became popular method for global optimization. Each particle in the
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population represents a possible solution of the optimization problem which is
defined by the cost function (CF). In each iteration of the algorithm, a new location
(combination of CF parameters) of the particle is calculated based on its previous
location and velocity vector (velocity vector contains particle velocity for each
dimension).

According to the method of selection of the swarm or subswarm for best solution
information spreading, the PSO algorithms are noted as global PSO (GPSO) or
local PSO (LPSO). Within this research the PSO algorithm with global topology
(GPSO) [6] was utilized. The CPRNG is used in the main GPSO formula (1), which
determines a new “velocity”, thus directly affects the position of each particle in the
next iteration.

vtþ 1
ij ¼ w � vtij þ c1 � Rand � pBestij � xtij

� �
þ c2 � Rand � gBestj � xtij

� �
ð1Þ

where
vi
t+1 New velocity of the ith particle in iteration t + 1

w Inertia weight value
vi
t Current velocity of the ith particle in iteration t

c1, c2 Priority factors
pBesti Local (personal) best solution found by the ith particle
gBest Best solution found in a population
xij
t Current position of the ith particle (component j of the dimension D) in

iteration t
Rand Pseudorandom number, interval 〈0, 1〉. CPRNG is applied only here.

The maximum velocity was limited to 0.2 times the range as it is usual. The new
position of each particle is then given by (2), where xi

t+1 is the new particle position:

xtþ 1
i ¼ xti þ vtþ 1

i ð2Þ

Finally the linear decreasing inertia weight [6, 7] strategy was used in this work.
The dynamic inertia weight is meant to slow the particles over time thus to improve
the local search capability in the later phase of the optimization. The inertia weight
has two control parameters wstart and wend. A new w for each iteration is given by (3),
where t stands for current iteration number and n stands for the total number of
iterations. The values used in this study were wstart = 0.9 and wend = 0.4.

w ¼ wstart � wstart � wendð Þ � tð Þ
n

ð3Þ
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4 Self-organizing Migrating Algorithm (SOMA)

SOMA [4] works with groups of individuals (population) whose behavior can be
described as a competitive—cooperative strategy. The construction of a new pop-
ulation of individuals is not based on evolutionary principles (two parents produce
offspring) but on the behavior of social group, e.g. a herd of animals looking for
food. This algorithm can be classified as an algorithm of a social environment. To
the same group of algorithms, PSO algorithm [1] can also be put in. In the case of
SOMA, there is no velocity vector as in PSO, only the position of individuals in the
search space is changed during one generation, here called ‘migration loop’ (ML).

The rules are as follows: In every migration loop the best individual is chosen,
i.e. individual with the minimum cost value, which is called the Leader. An active
individual from the population moves in the direction towards the Leader in the
search space. The movement consists of jumps determined by the Step parameter
until the individual reaches the final position given by the PathLength parameter.
For each step, the cost function for the actual position is evaluated and the best
value is saved. At the end of the crossover, the position of the individual with
minimum cost value is chosen. If the cost value of the new position is better than
the cost value of an individual from the old population, the new one appears in new
population. Otherwise the old one remains there. The main principle is depicted in
Fig. 1 and the crossover is described by Eq. (4):

xMLþ 1
i;j ¼ xML

i;j;START þ xML
L;j � xML

i;j;START

� �
� t � PRTVectorj ð4Þ

Fig. 1 The basic principle of
crossover in SOMA
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where

xMLþ 1
i;j value of ith individual’s jth parameter, in step t in

migration loop ML + 1,
xML
i;j;START value of ith individual’s jth parameter, Start position in

actual ML,
xML
L;j value of Leader’s jth parameter in migration loop ML,

t step 2 < 0, by step to, PathLength >,
PRTVector
(Perturbation Vector)

vector of ones and zeros dependent on PRT value. The
PRT value is a predefined constant. If random number
from interval 〈0, 1〉 is less than PRT, then 1 is saved to
PRTVector, otherwise it is 0. The value of PRT is typically
set to 0.8.

5 Lozi Chaotic Map

This section contains the description of discrete chaotic Lozi map that was used as
the CPRNG for PSO algorithm. Direct output iterations of variable x were trans-
ferred into the typical pseudorandom number range 〈0, 1〉. The initial concept of
embedding chaotic dynamics into evolutionary algorithms is given in [7].

The Lozi map is a simple discrete two-dimensional chaotic map. The map
equations are given in (5). The parameters used in this work are: a = 1.7 and b = 0.5
with respect to [15].

The Lozi map is depicted in Fig. 2. The distribution of the output sequence
transformed into the range 〈0, 1〉 for the purposes of CPRNG (15,000 iterations) is
depicted in Fig. 3.

Fig. 2 Left x, y plot of the
Lozi map
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Xnþ 1 ¼ 1� a Xnj j þ bYn
Ynþ 1 ¼ Xn

ð5Þ

6 Test Functions

Within this research following seven well-known and frequently used benchmark
functions were utilized. The dimension (D) was set to 30 for all experiments. The
global optimum value is 0 for the all used functions.

Sphere function.

f1ðxÞ ¼
XD
i¼1

x2i ð6Þ

Search Range: [−100, 100]D; Init. Range: [−100, 50]D; Glob. Opt. Pos.: [0]D

Schwefel’s P2.22 function

f2ðxÞ ¼
XD
i¼1

xij j þ
YD
i¼1

xij j ð7Þ

Search Range: [−10, 10]D; Init. Range: [−10, 5]D; Glob. Opt. Pos.: [0]D

Rosenbrock’s function.

f3 xð Þ ¼
XD�1

i¼1

100 x2i � xiþ 1
� �2 þ 1� xið Þ2

h i
ð8Þ

Search Range: [−10, 10]D; Init. Range: [−10, 10]D; Glob. Opt. Pos.: [0]D

Noise function.

f4ðxÞ ¼
XD
i¼1

x4i þ random½0; 1Þ ð9Þ

Search Range: [−1.28, 1.28]D; Init. Range: [−1.28, 50]D; Glob. Opt. Pos.: [0]D

Schwefel’s function.

f5 xð Þ ¼ 418:9829 � D�
XD
i¼1

�xi sin
ffiffiffiffiffi
xj j

p� �
ð10Þ

Search Range: [−500, 500]D; Init. Range: [−500, 500]D; Glob. Opt. Pos.:
[420.96]D
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Rastrigin’s function.

f6 xð Þ ¼
XD
i¼1

x2i � 10 cos 2pxið Þþ 10
� � ð11Þ

Search Range: [−5.12, 5.12]D; Init. Range: [−5.12, 2]D; Glob. Opt. Pos.: [0]D

Ackley’s function.

f7ðxÞ ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD
i¼1

x2i

vuut
0
@

1
A� exp

1
D

XD
i¼1

x2i cos 2pxi

 !
þ 20þ e ð12Þ

Search Range: [−32, 32]D; Init. Range: [−32, 16]D; Glob. Opt. Pos.: [0]D

7 Experiment Setup

The control parameters of PSO algorithm were set following way:
Population size 40
Iterations 5000

The PRTVector (Perturbation Vector), as described in section four, was used to
multiply the velocity vector (1) in the GPSO algorithm. Therefore the movement
was limited only to certain dimensions. The PRT value was set to 0.8 and 0.9 with
respect to literature [6]. These two different setting were compared to original
GPSO and GPSO driven by Lozi map without a PRTVector (technically the same as
PRT = 1).

7.1 Notation

Totally four versions of GPSO algorithm were used. The notation is as follows:

• GPSO—with canonical PRNG.
• GPSO Lozi—CPRNG based on Lozi map.
• GPSO Lozi 0.8—CPRNG based on Lozi map. PRT set to 0.8.
• GPSO Lozi 0.9—CPRNG based on Lozi map. PRT set to 0.9.

As aforementioned in Sect. 2, the chaotic pseudorandom number generator was
applied only in the main formula of PSO (2). For other purposes (generating of
initial population etc.) default C language built-in pseudorandom number generator
was used for all four described versions of PSO.
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8 Results

In this section, the results for each test function are summarized into the simple
statistical overview (Tables 1, 2, 3, 4, 5, 6 and 7). The best result (Cost Function—
CF value) and the best mean result are highlighted by bold numbers. The brief
results analysis follows in the next section. Furthermore the mean gBest history is
depicted in Figs. 4, 5, 6, 7, 8, 9 and 10.

Table 1 Results—Sphere function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 3.91E−31 1.59E−110 3.90E−125 2.73E−119

Std. Dev. 1.30E−30 6.77E−110 1.53E−124 9.91E−119

CF value median 8.23E−33 3.90E−113 3.58E−128 6.05E−121

Max. CF value 6.49E−30 3.67E−109 7.48E−124 5.37E−118

Min. CF value 1.02E−35 6.57E−119 4.17E−133 1.42E−126

Table 2 Results—Schwefel’s p2.22 function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 1.10E−21 1.11E−29 7.53E−30 2.92E−31
Std. Dev. 2.22E−21 4.40E−29 3.02E−29 1.58E−30

CF value median 3.32E−22 2.81E−40 2.41E−36 5.36E−38

Max. CF value 1.09E−20 2.13E−28 1.49E−28 8.67E−30

Min. CF value 5.38E−23 7.71E−49 1.38E−44 1.15E−44

Table 3 Results—Rosenbrock’s function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 2.78E+01 1.40E+01 1.73E+01 1.67E+01

Std. Dev. 2.35E+01 2.06E+01 1.98E+01 2.14E+01

CF value median 2.26E+01 8.80E+00 1.50E+01 1.18E+01

Max. CF value 7.96E+01 7.31E+01 7.39E+01 7.08E+01

Min. CF value 5.42E−02 2.06E−07 4.50E−03 3.72E−03

Table 4 Results—Noise function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 6.96E−03 3.02E−03 2.45E−03 2.96E−03

Std. Dev. 2.31E−03 1.23E−03 9.22E−04 1.11E−03

CF value median 6.90E−03 2.60E−03 2.42E−03 2.87E−03

Max. CF value 1.25E−02 5.89E−03 4.92E−03 5.01E−03

Min. CF value 3.31E−03 1.45E−03 6.52E−04 9.06E−04
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Fig. 3 CPRNG based on Lozi map—distribution histogram transferred into the range 〈0, 1〉
(15,000 samples)

Table 5 Results—Schwefel’s function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 3.72E+03 4.09E+03 3.17E+03 3.28E+03

Std. Dev. 3.93E+02 4.00E+02 4.03E+02 3.72E+02

CF Value median 3.70E+03 4.05E+03 3.15E+03 3.37E+03

Max. CF value 4.46E+03 5.07E+03 4.11E+03 3.95E+03

Min. CF value 3.06E+03 3.02E+03 2.27E+03 2.33E+03

Table 6 Results—Rastrigin’s function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 2.70E+01 3.22E+01 3.62E+01 3.11E+01

Std. Dev. 7.40E+00 8.00E+00 1.04E+01 8.72E+00

CF Value median 2.69E+01 3.13E+01 3.63E+01 2.98E+01

Max. CF value 4.18E+01 5.47E+01 5.27E+01 4.68E+01

Min. CF value 1.39E+01 1.79E+01 1.89E+01 1.39E+01

Table 7 Results—Ackley’s function

GPSO GPSO Lozi GPSO Lozi 0.8 GPSO Lozi 0.9

Mean CF value 1.24E−14 6.84E−15 6.37E−15 7.08E−15

Std. Dev. 3.67E−15 1.45E−15 1.70E−15 1.23E−15

CF Value median 1.47E−14 7.55E−15 7.55E−15 7.55E−15

Max. CF value 2.18E−14 7.55E−15 7.55E−15 7.55E−15

Min. CF value 7.55E−15 4.00E−15 4.00E−15 4.00E−15
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Fig. 4 History of the mean gBest value for Sphere function
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Fig. 5 History of the mean gBest value for Schwefel’s p2.22 function
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Fig. 6 History of the mean gBest value for Rosenbrock’s function
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Fig. 7 History of the mean gBest value for Noise function
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Fig. 8 History of the mean gBest value for Schwefel’s function

1000 2000 3000 4000 5000
Iteration

50

100

150

200

gBest Value

GPSO Lozi 0.9
GPSO Lozi 0.8
GPSO Lozi
GPSO

Fig. 9 History of the mean gBest value for Rastrigin’s function
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9 Analysis of the Results

The results presented in Tables 1, 2, 3, 4, 5, 6 and 7 indicate that it is possible to
noticeably improve the performance of PSO algorithm driven by Lozi chaotic map
through the implementation of the PRTVector mechanism from SOMA algorithm.
In 5 cases (Tables 1, 2, 4, 5 and 7) the newly designed chaos embedded GPSO with
PRTVector managed to obtain the best mean result over the 50 runs. Furthermore
also in many cases the best overall result was found (min. CF value).

However as it is depicted in Fig. 4 the influence to the algorithm is very different
than what was originally anticipated. It seems that the initial speed of the con-
vergence is increased even further. Thus it is possible to find better solutions even
faster than with the original design of either GPSO or Chaos GPSO driven by Lozi
map.

10 Conclusion

In this research a new approach improving the performance of chaos driven PSO
algorithm was investigated. The inspiration came from the SOMA algorithm The
Perturbation Vector mechanism was implemented into the GPSO. It was observed
that it is possible to noticeably improve the performance of GPSO with Lozi map
based CPRNG in many cases utilizing different test problems. The Lozi map
remains a very intense subject of research in the area of chaos driven ECTs thanks
to its unique sequencing and other unique attributes. The future research will focus
on deeper understanding of the inner dynamic of GPSO driven by Lozi map based
CPRNG either with or without the PRTVector mechanism embedded.
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Fig. 10 History of the mean gBest value for Ackley’s function
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