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Abstract
Polycystina (~400–800 living species and several thousand extinct forms) and
Phaeodaria (~400–500 living species) are exclusively marine, open-ocean plank-
tonic protists, most of which possess elaborate siliceous skeletons. The cytoplasm
is divided into an internal part (endoplasm) separated from the external, more
vacuolated one (ectoplasm) by a perforated membrane – the central capsule. The
Polycystina protrude long and slender cytoplasmic projections (axopodia)
supported internally by a rigid central rod (axoneme); while the Phaeodria have
a network of peripheral finely interconnected pseudopodia. A few Polycystina are
colonial, but most, as well as all Phaeodaria, are solitary, around 40 μm to almost
2 mm in size. Most polycystine species peak in abundance between 0 and 100 m,
whereas phaeodarians tend to live deeper, often below 300 m. Polycystines have a
rich fossil record dating from the Cambrian and are important for stratigraphic,
paleoecologic, and evolutionary studies. The world-wide biogeography and
diversity of radiolarians is chiefly governed by water temperature. Radiolarian
prey includes bacteria, algae, protozoa, and microinvertebrates. Many surface-
dwelling species of Polycystina possess symbiotic algae and photosynthetic
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cyanobacteria that provide nourishment to the host. Some colonial radiolaria
reproduce by binary fission of the central capsules. Sexual reproduction of
polycystines or Phaeodaria has not been confirmed, but the release of motile
swarmers, likely gametes, has been widely documented. In species with a radial
symmetry (Spumellaria) shell-growth is centrifugal, whereas in the Nassellaria
the internal cephalic elements and the cephalis appear first. Individual longevity is
estimated to range between 2 and 3 weeks and 1–2 months.
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Summary Classification

●Rhizaria
●●Cercozoa
●●●Thecofilosea
●●●●Phaeodaria (=Tripylea)
●●●●●Phaeoconchia
●●●●●Phaeocystina
●●●●●Phaeogromia
●●●●●Phaeosphaeria
●●Retaria
●●●Polycystinea
●●●●Collodaria (skeletonless, or with isolated spicules)
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●●●●Spumellaria
●●●●Nassellaria
●●●●Archaeospicularia (extinct)
●●●●Albaillellaria (extinct)
●●●●Latenfistularia (extinct)
●●●●Entactiniaria (extinct)

Introduction

General Characteristics

Polycystines and phaeodarians (Fig. 1) are marine protists, previously assigned to
the phylum Actinopoda because they both possess elaborate siliceous skeletons
surrounding an organic central capsule with pores, from which axopodia emerge in
most members of the phylum. However, the phylum Actinopoda is no longer
accepted as a valid taxonomic category, and Polycystinea are assigned to the
higher-level group Retaria, and Phaeodaria are now assigned to the higher-level
group Thecofilosea (Adl et al. 2012). Axopodia are long and slender cytoplasmic
projections that protrude radially from the cell and are supported internally by a
rigid central rod composed of a shaft of microtubules. Axopodia support a web-like
network of sticky cytoplasmic strands of pseudopodia that aid in the capture of
prey. Presently, we know that only polycystines possess typical axopodia, whereas
Phaeodaria characteristically produce a network of peripheral finely
interconnected pseudopodia that arise from two, specialized protoplasmic strands
(parapylae) emerging from two pores in the central capsule. In addition there is a
more massive cytoplasmic mass that emanates from an aperature (astropyle)
resembling the oral aperture of some testate amoebae. Neither the astropyle nor
the accessory openings parapylae exhibit structures resembling axopodia or
fusules (Anderson 1983). All Phaeodaria are solitary, but Polycystinea include
some colonial forms. Single cells vary in size from below 40 μm to almost 2 mm
(Phaeodaria are usually larger than Polycystinea), but colonies may exceptionally
be as long as 3 m (Swanberg 1979).

Occurrence

Radiolarians are present in all major oceans but absent from some marginal seas,
such as the White Sea (Bjørklund and Kruglikova 2003). Different species have
different depth preferences; polycystines usually peak in abundance between 0 and
100 m and have secondary peaks at various other depths, whereas phaeodarians tend
to live deeper, often below 300 m. Both groups are almost entirely restricted to
waters with normal open-ocean salinity levels.
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Literature

The cornerstone of radiolarian studies, including Phaeodaria, is Haeckel’s 1887
monograph based on planktonic and sedimentary materials collected by the Chal-
lenger Expedition (Haeckel 1887). Kling (1978), Anderson (1983), Petrushevskaya
(1986), Anderson et al. (2000), Takahashi and Anderson (2000), De Wever et al.
(2001), Afanasieva et al. (2005), Boltovskoy and Pujana (2008), and Nakamura and
Suzuki (2015) produced general accounts on radiolarian knowledge. The catalogue
assembled by Nigrini and Moore (1979) is still one of the most widely used references
for the identification and distribution of the ca. 100 most common recent polycystine
species. Other salient references are the works of Petrushevskaya (1967, 1971b)
(profusely illustrated descriptions of practically all extant nassellarians and all Antarc-
tic spumellarians); Sanfilippo et al. (1985) (a detailed guide for Cenozoic stratigraphy
based on polycystines); Riedel and Foreman (1995) (a catalogue of all the polycystine
species described up to 1930); and Boltovskoy et al. (2010) (a compilation of all the
distributional data available on Recent polycystines up to 2008).

History of Knowledge

The first description of a living radiolarian is ascribed to Meyen (1834), whereas the
first fossil one was recorded by Ehrenberg (1838), who also coined the term
“Polycystina”. The name “Radiolaria” was first proposed by Müller (1858) to
designate planktonic protists with radiating skeletal elements and subsequently
used by Haeckel as an informal term encompassing acantharians, polycystines,
and phaeodarians (De Wever et al. 2001). The foundation of modern radiolarian
studies is Haeckel’s (1887) exquisitely illustrated monograph; around the same years
several important publications were produced, but interest in the group was limited
until the 1950s, when William Riedel and coworkers showed that polycystines could
be used for stratigraphic purposes. First stratigraphy, and later paleoecology, fostered
radiolarian research, which was particularly active in the 1970s and 1980s (Lazarus
2005; Suzuki and Aita 2011). At present there are about 150–200 specialists that are
partially or entirely dedicated to radiolarian studies, over 90% of them with
geological-paleontological backgrounds and centered on fossil materials. However,
with the advent of modern biological techniques such as electron microscopy and
molecular phylogenetic analyses, an increasing number of biologists have begun to
elucidate the natural affinities among major groups of radiolaria toward clarifying their
taxonomic relations (e.g., Amaral Zettler et al. 1998, 1999; Anderson et al. 1999;
Biard et al. 2015; López-García et al. 2002; Polet et al. 2004; Suzuki and Aita 2011).

Practical Importance

During the second half of the twentieth century, studies of polycystines from contin-
uous, well-preserved, mostly Cenozoic sections retrieved by the Deep Sea Drilling
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Project (later Ocean Drilling Program, now the Intergrated Ocean Drilling Program)
proved the usefulness of these organisms for stratigraphic purposes. By the mid-1970s,
a relatively stable tropical zonation had been developed for the Cenozoic (Sanfilippo
et al. 1985), and somewhat later several schemes for the polar oceans were proposed
(Lazarus 2005). Polycystines are particularly important in Neogene Polar sediments
and in red clay bottoms, where carbonate microfossils are largely absent. Polycystine
faunas have also been instrumental to the development of paleoenvironmental studies
(paleotemperature, paleoceanography, and paleoproductivity), chiefly of open-ocean
areas (CLIMAP 1976). Polycystines offer major advantages as material for evolution
research: the preservation of almost all species in fossil form, high-resolution
chronology, the possibility to sample the entire geographic and chronologic span
of the populations, etc. Evolutionary studies of these organisms, in particular
speciation and phyletic evolution, have made significant contributions to under-
standing evolutionary processes in pelagic animals in general. A major limitation
in the use of polycystines in all these fields is the problematic species-level taxon-
omy of the group (Lazarus et al. 2015).

Habitats and Ecology

Geographic Distribution and Biogeography

Horizontal distribution and biogeography. Radiolarians are present in all oceans
from the surface to bathypelagic depths, but, with the only known exception of
Lophophaena rioplatensis, which thrives in the brackish waters of the Río de la Plata
estuary at salinities as low as 15.4 PSU (Boltovskoy et al. 2003), they do not tolerate
salinities below ca. 30 PSU and are therefore absent from most shelf areas and many
inner and marginal seas (e.g., Black Sea, Azov Sea, Caspian Sea, White Sea, Baltic
Sea). However, in areas with a narrow shelf where oceanic waters impinge on the
shore (e.g. off California, in Norwegian fjords), radiolarians can be collected from
the coast. Polycystine densities are usually around 1 cell per liter of water, whereas
phaeodarians are normally 15–100 times less abundant (Boltovskoy et al. 1993).
Productive, upwelling waters can host 5–10 and up to 70–80 cells/L (Caron and
Swanberg 1990). Interestingly, the highest concentrations so far reported (394 cells/L)
are those of the monospecific, brackish population of Lophophaena rioplatensis in the
South American Río de la Plata estuary (Boltovskoy et al. 2003). Polycystine ende-
micity is generally low, as specific composition changes little with oceanic basin. Even
the Arctic and the Antarctic share most of their species (Stepanjants et al. 2004).
According to data from 4774 plankton, sediment trap and surface sediment samples
compiled by (Boltovskoy et al. 2010), only Artobotrys borealis consistently occurs in
Arctic and Subarctic waters and has not been recorded in the Antarctic or Subantarctic,
but several species are here much more common and abundant than in cold waters of
the Southern Hemisphere (Amphimelissa setosa, Artostrobus annulatus, Artostrobus
jorgenseni, Lithomelissa setosa, Phormacantha hystrix, Plectacantha oikiskos,
Pseudocubus obeliscus, Rhizoplegma boreale, Saccospyris conithorax, and
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Siphocampe lineata) (Boltovskoy and Correa 2016a). Species probably restricted to –
or at least much more abundant in – the Southern Ocean, include Actinomma
antarcticum, Antarctissa denticulata-strelkovi, Saccospyris antarctica, and Tri-
ceraspyris antarctica (Boltovskoy and Correa 2016a). The other major oceanic
climatic belts, defined chiefly by their different water temperature regimes, host
dissimilar radiolarian assemblages (Fig. 2), but most of the species occur, albeit
sparsely, in more than one area. Within the ranges of normal oceanic conditions
(basically salinity), temperature is by far the most important factor in defining poly-
cystine distribution patterns (Boltovskoy and Correa 2016a), followed by nutrients and
primary productivity. At ocean basin scales, temperature is also most probably respon-
sible for the fact that polycystine assemblages off the Pacific coasts of Central America
differ from the tropical-subtropical ones elsewhere (Fig. 2). In contrast to many open-
ocean organisms, whose diversity has been reported to peak at intermediate latitudes
(~15–30�N) and drop at the equator (e.g., Foraminifera, Tintinnina, Euphausiacea, and
Copepoda), polycystine species numbers are tightly coupled with temperature
throughout the entire thermal range of marine waters peaking at the equator (Fig. 3;
Boltovskoy and Correa 2016b). In high-latitude assemblages, numerical dominance of
a few species is very high, with 1–2 radiolarians often accounting for up to 90% of all
the individuals (e.g., Amphimelissa setosa in the Atlantic sector of the Arctic and
Antarctissa denticulata-strelkovi in the Southern Ocean). In warm waters, dominance
is much less marked, the most abundant species normally accounting for <5% of the
overall inventories in each sample. Throughout the World Ocean, occurrence and
abundance of the species are highly correlated: radiolarians recorded in more samples
also account for larger proportions of the taxocoenoses analyzed.

Phaeodarian biogeography is still very insufficiently known, but the scarce avail-
able evidences suggest that their world-wide patterns are less clearly associated with
latitudinal climatic belts. This may be due to the fact that many phaeodarian species
are deep-living forms, especially in warm water areas (Nakamura and Suzuki 2015;
see below) that inhabit large areas where water temperature is more uniform (Fig. 4).

Vertical distribution. In tropical and subtropical waters polycystines are usually
concentrated in the upper 50–100 m (Boltovskoy et al. 2010). Sometimes several
discrete maxima are recorded, one at or near the surface and a second one between
50 and 100 m (Kling and Boltovskoy 1995) (Fig. 5). In polar waters, however, peak
abundances seem to be associated with deeper and warmer layers, at around
200–400 m and overall polycystine abundances are much lower than in the tropics
(Boltovskoy and Alder 1992; Nimmergut and Abelmann 2002; Petrushevskaya
1967) (Fig. 5).

The vertical ranges of most polycystines can be described by the following four
patterns: (1) surface (with at least one peak above 100 m), (2) subsurface (around
100 m), (3) intermediate (between 100 and 300 m), and (4) deep (below 300 m)
(Fig. 6) (Boltovskoy et al. 2010; Kling 1979; Kling and Boltovskoy 1995). However,
worldwide depth zonations cannot be defined in terms of fixed depths because the
distribution of radiolarian species is related to water masses which move vertically as
well as horizontally. As a result, the same radiolarian species can occupy quite different
depth intervals at different locations (Kling 1976). Many cold water radiolarians that
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inhabit the upper layers at high latitudes submerge with their corresponding water
masses and can be found at depth in mid- and low-latitude areas (Boltovskoy 1988;
Boltovskoy and Correa 2016b; Casey et al. 1982; Kling 1976).

Vertical changes in radiolarian diversity are more difficult to assess because the
living (in situ populations) and dead individuals (i.e., settling shells exported from
the upper strata) are seldom adequately differentiated in plankton collections. It is
highly probable that protoplasm staining techniques, which are usually applied for
these estimates, strongly overestimate the living depth ranges of the species because
of the time it takes for the protists’ protoplasm to decompose and disappear
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(Bernhard 1988). The widespread occurrence of large numbers of healthy diatoms,
dinoflagellates, and Cyanobacteria at depth >4000 m (Agusti et al. 2015) confirms
the assumption that radiolarian sedimentation velocities are fast enough to yield
large proportions of stained individuals well below their living depth range. Thus,
raw data often show little species richness variation with depth (Fig. 7, left panel).
On the other hand, when raw numbers are reinterpreted taking this artifact into
account, highest diversities are clearly associated with the uppermost levels (Fig. 7,
right panel).

Unlike most other sarcodines, phaeodarians are typically deep-water organisms
usually peaking in both abundance and diversity below 200 m (Nakamura and
Suzuki 2015), although high concentrations near the surface are not uncommon
(Fig. 5). A detailed depth zonation for the area of the Kurile-Kamchatka trench was
produced by Reshetnjak (1955, 1966). She concluded that only two (of the 103 spe-
cies recorded) inhabit the upper 50 m; approximately 30 more have restricted vertical
ranges at various depths, while over 50% of the taxa were retrieved from the broad
depth interval of 50 to 2000–8000 m. These vertical patterns at a given locale,
however, may change significantly because of the dynamics of deep ocean circula-
tion, with species exhibiting quite variable depth ranges over oceanic distances.
Vertical profiles in the North Pacific (Kling 1966, 1976) illustrate that species
dwelling in near surface water (25 m depth) at high latitudes, are distributed
gradually toward lower depths in decreasing latitudes, and dwell at depths
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Fig. 7 Total number of
polycystine species recorded
per sample (left) and number
of new species added to the
inventory of the overlying
waters (right) in a set of
vertical plankton tows
performed in the eastern
subtropical Pacific. The
absence of significant vertical
diversity changes (left panel)
is attributed to the presence at
depth of dead, sedimenting
skeletons of species whose
living ranges are restricted to
the upper layers (Adapted
from Kling and Boltovskoy
(1995))
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>300 m closer to the equator. Thus, as with the polycystines, depth distributions of
phaeodarians on regional scales are not describable in terms of fixed ranges.

Equatorward submergence may account for so-called bipolar distributional pat-
terns characteristic of many radiolarians. High-latitude species could pass under
equatorial waters via the Intermediate Water or the Deep Water, to reappear near the
surface in the opposite polar or subpolar seas where the adequately colder water
temperatures support their growth (Aita et al. 2009; Stepanjants et al. 2006). In the
Pacific Ocean, the Intermediate Water circulates in anti-cyclonic gyres that mimic
the surface circulation (Reid 1965), thus providing continuity for the water masses
and their biological contents. Such bipolar patterns have been described for a number
of zooplanktonic species in both the Atlantic (Darling et al. 2000; Pierrot-Bults
1974) and the Pacific Ocean (Alvariño 1965), whereby the north and south polar or
subpolar near-surface populations are joined at depths of 800–1000 m across the
equator. The fact that these apparently disjoint populations interbreed through their
deep-water, tropical and subtropical representatives has been suggested for some
protists (Darling et al. 2000).

Radiolarian studies based on sedimentary materials. Because their skeletons
preserve in the geological record, studies of extant polycystines have been chiefly
based on sedimentary – rather than on planktonic – samples (phaeodarian skeletons
very seldom preserve in the sediments). Sediment samples present some advantages
but also several important shortcomings (Fig. 8) (Boltovskoy 1994). Whereas
polycystine abundances seldom exceed 5 cells per liter in the plankton (Caron and
Swanberg 1990), one gram of surface sediments can contain thousands to hundreds
of thousands of radiolarian skeletons. Plankton samples yield a snapshot-type image
of the composition of the assemblages, which does not necessarily adequately reflect
long-term trends. The daily, seasonal, and interannual variability involved is
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Fig. 8 Schematic diagram of the mechanisms that can distort the sedimentary imprint of the
planktonic pattern of fossilizable microplankton in general, and of polycystine radiolarians in
particular
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smoothed out in the sedimentary record, which may be a welcome trait when general
patterns are sought. Further, sedimentary materials are more readily available from
the various repositories around the globe than plankton samples. On the other hand,
interpretation of the geographic distribution of extant radiolarians on the basis of
sediment samples presents several important drawbacks. On their way to the
sea-floor and after settling, radiolarian remains dissolve and are grazed upon by
various consumers thus breaking their skeletons into unidentifiable fragments.
Because more delicate shells are destroyed more readily than the more robust
ones, specific skeletal compositions on the bottom and at mid-depths can differ
significantly from the living assemblage in the upper water-column. Bottom mate-
rials can be reworked after deposition (as a result of which non-Recent deposits,
sometimes characteristic of quite dissimilar oceanographic settings, are brought up
to the surface layer, or winnowed by bottom currents dislodging settled skeletons
and carrying them thousands of kilometers away). Sediments integrate the imprint of
near-surface faunas (which are generally associated with surficial environmental
traits, as well as with currents and water masses), with the meso- and bathypelagic
species whose geographic distribution is uncoupled with upper-water oceanography.
The sedimentary distributions of cold-water species tend to show conspicuous
equatorward extensions as compared with their planktonic patterns. This distortion
is most probably due to the fact that extended survival of the cold water taxa that are
expatriated towards lower latitudes is facilitated by submersion (Boltovskoy 1988,
1994; Boltovskoy and Correa 2016a); as a consequence, sediment-derived species-
specific ranges may wrongly suggest an enhanced tolerance to gradients in the
ecological factors.

Characterization and Recognition

Cell Ultrastructure

Cellular Organization. In broad view, three categories of pseudopod-producing
protoctista (including amoebae, Foraminifera and Radiolaria) have been described
based on cellular ultrastructure (Anderson 1983): (1) Diffuse, e.g., the naked amoe-
bae without enclosing shells or thecae and a flowing, changeable cell shape,
(2) Transitional, including the testate amoebae and foraminifera with a surrounding
theca or shell that demarcates a more condensed cytoplasm internally from the
web-like, pseudopodial array externally, and (3) Zonal, exemplified by the poly-
cystine Radiolaria with a distinctive porous capsule wall that separates the central,
sometimes lobate, intracapsular cytoplasm from the outer, extracapsular, layer of
cytoplasm where prey is captured and digested. Interestingly, the Phaeodaria are
categorized as transitional since they have a “capsule”with at least one large opening
through which the endoplasm protrudes into the ectoplasm, similar to that of testate
amoebae. Molecular genetic evidence indicates that Phaeodaria are closely related to
testate amoebae within the group Cercozoa (Yuasa et al. 2006) (see below). The

744 D. Boltovskoy et al.



chemical composition of the siliceous skeleton and the test-like capsular wall of
Phaeodaria also are similar to that of testate amoebae.

Polycystine Radiolaria. The polycystine Radiolaria include the Spumellaria and
Nassellaria (See Systematics). The Spumellaria have a spherical body plan with a
centrally located nucleus surrounded by radially arranged lobes of cytoplasm,
enclosed by a porous capsular wall (Figs. 1 and 9a, b), (Anderson 1980, 1983;
Hollande et al. 1971). Axopodia emanate through pores (fusules) in the capsular wall
and protrude radially (Cachon and Cachon 1976a, b). The axopodia support a
web-like network of cytoplasmic strands that are sticky and aid in the capture of
prey. The external cytoplasm encloses or coats the siliceous skeleton, when present.
The Nassellaria have a monoaxial body plan (Anderson 1977), typically an elon-
gated, ovoid, central capsule with a porous plate at the base where the axopodia
emerge through closely spaced fusules (Fig. 9c, d). Shafts of microtubules in the
axopodia emerge from a conical array of microtubules (podoconus) within the
intracapsular cytoplasm (arrow, Fig. 10). Skeletons vary from simple tripods to
elaborate, helmet-shaped structures, often with spines or other ornamentation (e.g.,
Figs. 9c, d and 11). The extracapsular cytoplasm coats the siliceous skeleton, when
present, and extends outward as a halo of axopodia and their associated network of
rhizopodia, including fine, tapered extensions known as filopodia that are present in
Nassellaria and Spumellaria (Fig. 1). In polycystines, digested prey products are
transported in small vesicles through the fusules into the intracapsular cytoplasm
(Anderson 1977).

Phaeodaria. The ultrastructure of Phaeodaria is distinctly different from the
polycystines. The “capsular wall” surrounding the denser endoplasm lacks fusules.
There is one large opening (astropyle) containing an emergent massive strand of
cytoplasm and two smaller openings (parapylae) with finer strands of cytoplasm
(Fig. 9e, f). A large, often darkly colored, mass of partially digested food
(phaeodium) is typically located external to the capsule near the astropyle (Figs. 1
and 9e). The continuous, massive strand of cytoplasm in the astropyle provides a
pathway for digested prey matter to be carried into the endoplasm as occurs with
some testate amoebae and foraminifera (Anderson 1983; Swanberg et al. 1986).

The Skeleton

The skeleton of polycystine Radiolaria, when present, is composed of amorphous
silica and is deposited outside of the cytoplasm, but within an enclosing cytoplas-
mic sheath called the cytokalymma (Anderson 1983). The cytokalymma is a
dynamic, living sheath that molds the shape of the silica deposited within it as
silicification takes place during skeletal growth. Thus, the species-specific shape of
the skeleton is determined by cellular dynamics and undoubtedly is under genetic
control. Skeletal morphology is remarkably diverse (Anderson et al. 2000), but
species specific.

The two major divisions of the Polycystinea, Spumellaria and Nassellaria, differ
in the symmetry of their skeletons. Most spumellarians have a radial or spherical
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Fig. 9 Comparative morphology and cellular organization of Spumellaria (a, b), Nassellaria (c, d),
and Phaeodaria (e, f). (a) A living spumellarian with radiating siliceous spines (Sp) and a halo of
axopodia (Ax) surrounding the cell. (b) A diagram of the cellular organization of a spumellarian
showing the centrally located nucleus (N) surrounded by radial lobes of cytoplasm that extend as
cytoplasmic strands through pores (fusules) in the dense capsular wall and produce an extracapsular
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symmetry, whereas in nassellarians the body plan usually includes an anteroposterior
axis. Figure 11 shows a characteristic, spherical spumellarian whose skeleton com-
prises several concentric shells. Growth in spumellarians starts with the first, inner-
most shell and proceeds centrifugally. Nassellarian shells often comprise several
sections aligned along an axis. Shell growth starts with the inner, often tripodal,
skeleton located inside the first section, or cephalis, and proceeds along the axis to
form the thorax, the abdomen, and the postabdominal segments (when present). The
wealth of skeletal shapes and morphologies is, however, very ample, including
simple spines arranged as a tripod, porous, helmet-shaped skeletons, porous spher-
ical shells, single or multiple concentric geodesic shells composed of rod-like
elements joined at nodes in a framework (with or without radially arranged spines),
spongiose shells of varied shapes ranging from flattened discs to spheres, and a
myriad of other forms, some with ideal geometric shapes (e.g., regular icosahedrons,

�

Fig. 9 (continued) layer of cytoplasm within a network of rhizopodia. (c) A living small
nassellarian showing the siliceous skeleton (Sk) forming a conical porous shell (cephalis) surround-
ing the ovate central capsule. Algal symbionts (Sy) are distributed within the extracapsular
rhizopodial network. (d) A diagram of the nassellarian cephalis, and a cut-away view of the central
capsule showing the nucleus (N) and conical array of microtubules, forming the podoconus (Pd),
that extend out of the central capsule as axopodia through the aperture (Ap) at the base of the
cephalis. See also Fig. 9. (e) A living phaeodarian showing the geodesic siliceous skeletal frame-
work (Sk) surrounding a network of rhizopodia that emerge from a dense central capsule (CC) and
the morphology of the central capsule (inset) with a major cytoplasmic strand (astropyle) emerging
at the base and two smaller cytoplasmic strands (parapylae) emerging at the opposite pole. (f) A
diagram of a section of the base of a phaeodarian central capsule showing the emergence of the
massive astropyle (As) and smaller parapylae (Pa) projecting outward through openings in the
capsular wall (Adapted from Anderson (1983) and J. Cachon et al. (1990))

SySyFF

4 µm4 µm

Fig. 10 A transmission
electron micrograph of the
lower portion of a
Nassellarian central capsule
showing the shafts of
microtubules in the conical
podoconus (Arrow) that
extend from the intracapsular
cytoplasm through the pore-
like fusules (F) in the capsular
wall and protrude outward as
axopodia surrounding the cell.
Algal symbionts (Sy) are
scattered in the peripheral
axopodial array (Adapted
from Anderson (1983))
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dodecahedrons, and octahedrons; Fig. 12) not found in any other living organism
(Afanasieva 2006, 2007; Anderson 1983).

The skeleton of Phaeodaria is also composed of amorphous silica but may contain
more organic matter than polycystines. The skeletal framework in some species is
composed of hollow tubes (e.g., Fig. 9e), not solid rods as in the polycystines. Other
species of Phaeodaria have ornate spicules scattered in the external cytoplasm or shells
that are either bivalved, resembling small clams or vase-like to pouch-shaped with
ornate protuberances around the opening (Fig. 13). Other species have only much
branched antler-like spines protruding from a central shell (Fig. 13) (Takahashi and
Anderson 2000). However, overall, porous microstructures and basic tubular ultrastruc-
tures appear to be common in most of the taxa examined in plankton and sedimentary
trap samples from several open ocean locations (Takahashi and Hurd 2007).

main
spine

secondary
spine

cortical shell
(third shell)

pore

outer medullary shell
(second shell)

inner medullary shell
(first shell)

apical
spine

cephalis

internal
skeleton

neck

thorax

abdomen

suture

teeth

aperture
or mouth

Spumellaria

Nassellaria

central
capsule

bar

central
sapsule

Fig. 11 Scheme of the skeletal elements of the shell of a typical Spumellaria and Nassellaria
(Adapted from Boltovskoy and Correa (2014))
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Feeding, Symbionts, Necrotrophs, and Predators

Feeding. Considerably more is known about the feeding behavior of polycystine
Radiolaria compared to Phaeodaria, although our knowledge is still rather limited.
Polycystines consume a wide variety of prey including bacteria, algae, protozoa, and
microinvertebrates such as copepods and small larvae of marine arthropods. In a
rather extensive study of prey observed in SCUBA-collected radiolaria from epipe-
lagic plankton, Swanberg and Caron (1991) noted that a relatively small proportion
of captured radiolaria possessed prey (46%), but there was a wide variety of prey
consumed including diatoms, tintinnids, and more frequently copepods and their
nauplii, or mollusc larvae. Smaller radiolarian species prey largely on bacteria and
algae, whereas larger radiolaria also consume small invertebrates (Anderson 1983,
1996; Caron and Swanberg 1990).

Collozoum sp. (colony)
(from Swanberg, 1979)

Thalassoxanthium medusinum
skeleton restricted to loose spicules 
scattered in the cytoplasm
(from Haeckel, 1887)

Callimitra carolotae
(from Haeckel, 1887)

Amphyrhopalum ypsilon
(from Nigrini & Moore, 1979) Larcispira quadrangula

(from Kling, 1978)
Cromyomma circumtextum
(from Haeckel, 1887)

Litharachnium tentorium
(from Paverd, 1995)

Anthocyrtidium ophirense
(from Boltovskoy, 1998)

Acrosphaera spinosa
(from Boltovskoy, 1998)

Eucyrtidium hexagonatum
(from Boltovskoy, 1998)

Fig. 12 Representative examples of polycystine species (figures are not to scale)
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The algal and protozoan prey become snared on the sticky surface of the
axopodial array and is engulfed by invagination of the surface membrane to form
an intracytoplasmic food vacuole. The food vacuole is converted to a digestive
vacuole by secretion of digestive enzymes (Anderson 1996). A much more elaborate
mechanism of predation occurs when small arthropods, such as copepods, are
consumed (Anderson 1978). The prey becomes entangled within the axopodia and
associated rhizopodial network. Eventually, it is surrounded by the rhizopodia that
penetrate through weak zones of the prey exoskeleton. Once inside of the host body,
the rhizopodia engulf large segments of prey tissue, enclosing them within digestive
vacuoles that are carried by cytoplasmic streaming out of the host into the radiolarian

Aulospathis variabilis bifurca
skeleton restricted to loose spicules 

scattered in the cytoplasm
(from Haeckel, 1887)

Castanella maxima
(from Schmidt, 1908)

Lobocella proteus
skeletonless species
(from Borgert, 1913)

Challengeranium diodon
(courtesy of M. Gowing)

Protocystis micropelecus
(courtesy of M. Gowing)

Euphysetta elegans
(courtesy of M. Gowing)

Family Tuscaroridae
(courtesy of S. Haddock)

Auloscena mirabilis
(from Haeckel, 1887)

Conchidium terebratula
(from Heckel, 1887)

Fig. 13 Representative examples of phaeodarian species (figures are not to scale)
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cytoplasm near the central capsule. Small vesicles containing the digestive products
are transported through the fusules into the intracapsular cytoplasm where food
reserves are stored and major metabolic activities take place. Vacuoles containing
undigested, waste material are eventually ejected from the axopodial array by
cytoplasmic streaming (Anderson 1983). Among the limited evidence of
phaeodarian predation, Swanberg et al. (1986) reported that a mesopelagic,
coelographic phaeodarian contained microflagellate and metazoan prey. Copepods
and salps also were snared when introduced in the laboratory cultures.

Symbionts. A wide variety of symbionts are sequestered within vacuoles
(symbiosomes) including algae and photosynthetic cyanobacteria (Bråte et al.
2012; Probert et al. 2014; Yuasa et al. 2012). Algal symbionts include dinoflagellates
(golden yellow), prasinophytes (yellow green), and prymnesiophytes (tawny brown)
(Anderson 1978; M. Cachon and Caram 1979; Hollande and Carré 1974). Algal
symbionts are highly productive photosynthetically, fixing more carbon than pri-
mary producers in an equivalent volume of the surrounding seawater of the Sargasso
Sea (Caron et al. 1995). A similar assessment was reported in earlier studies by
Khmeleva (1967) in the Red Sea and Gulf of Aden. The symbionts associated with
radiolaria, however, account for only a small fraction of the total primary production
of the entire water column in the Sargasso Sea studies. The symbionts may provide
substantial nourishment to the host. Cytochemical and 14C isotopic tracer studies
have shown that the symbionts release organic nutrients that are assimilated by the
host and that the host occasionally digests some of them by secretion of enzymes
within the normally benign symbiosome vacuoles (Anderson 1983).

Necrotrophs. Dinoflagellate necrotrophs (e.g.,Meriodinium brandti) infect some
species of spumellaria, including colonial radiolaria.M. brandti invades the nucleus
where it forms a plasmodium (Anderson 1983; Hollande 1974 ; Hollande and
Enjumet 1953). Eventually, the Meriodinium nuclei divide profusely leading to
necrosis of the radiolarian nucleus. The parasite nuclei become segregated from
the plasmodial mass to form swarmers with undulipodia and typical dinoflagellate
morphology including an epicone and hypocone. They escape from the host to
initiate another infective cycle. In other species of Meriodinium, the initial prolifer-
ation in the nucleus is followed by release of plasmodial fragments that invade the
intracapsular cytoplasm and eventually release motile infective swarmers with
characteristic dinoflagellate features. The large, skeletonless radiolarian,
Thalassicolla sp., is parasitized by Solenodinium fallax. This dinoflagellate
invades the nucleus, forms a plasmodium, and produces tubular inclusions that
subsequently emerge from the disintegrating nucleus and protrude into the surround-
ing intracapsular cytoplasm. The tubules eventually give rise to numerous infective
swarmers with typical dinoflagellate morphology. Necrotrophs also have been
reported in Phaeodaria, including Syndinium nucleophaga (Cachon-Enjumet 1961;
Hovasse 1923).

Predators. Our knowledge of radiolarian predators is very limited, but based on
digestive tract samples from diverse geographic locations, radiolaria have been
detected in tunicates (e.g., salps), crustacea such as copepods, euphausids, and in
certain penaeidae, among others. There is some evidence that planktonic
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foraminifera prey occasionally on radiolaria. Amphipods have been reported invad-
ing and ingesting cells of colonial radiolaria (Swanberg 1979). However, much more
detailed analyses of the digestive tract contents of freshly collected predators is
needed to verify predatory pressures on radiolaria.

Reproduction, Growth and Longevity

Reproduction. Reproduction in Polycystinea and Phaeodaria has been observed in
laboratory cultures. Collodarian Radiolaria (e.g., some colonial Radiolaria) repro-
duce by binary fission of the central capsules. Sexual reproduction of Polycystinea or
Phaeodaria has not been confirmed, but numerous instances of the release of motile
swarmers, likely gametes, bearing two undulipodia have been documented (Ander-
son 1983; Kimoto et al. 2011). Among polycystines, impending reproduction is
signaled by contraction of the extracapsular cytoplasm and jettisoning of symbionts
and waste matter. The nucleus undergoes repeated division, eventually filling the
intracapsular cytoplasm. Each nucleus becomes segregated from the cytoplasmic
mass as swarmers that escape through ruptures in the capsule wall. The fate of the
swarmers is unknown. Syngamy (swarmer fusion) has not been observed (Anderson
1983; Cachon et al. 1973). Each swarmer contains a vacuolar-bound strontium
sulfate (celestite) crystal (Anderson 1983; Hollande and Martoja 1974) enclosed
by an organic envelope that appears to control the ultimate shape of the crystal
(Anderson et al. 1990). In the phaeodarian Coelodendrum ramosissimum, reproduc-
tion begins with the disappearance of the phaeodium, followed by degeneration of
the capsule and the appearance of small plasmodial spheres in the ectoplasm. Each of
the spheres produces hundreds of polynucleated amoeboids that eventually form
swarmers with two undulipodia (Borgert 1900, 1909; Cachon-Enjumet 1964).

Growth and Longevity. During the course of maturation, some skeletal-bearing
species exhibit a “stair-step” pattern of growth, undergoing one to several days of
silica deposition and increase in size followed by plateaus for several days before the
next growth phase (Anderson et al. 1989). However, no predictable periodicity of
silica deposition has been observed within a given species, and the stair-step curves
are highly variable. Further research is needed to document patterns of growth
among a wide variety of polycystines. Among the Polycystinea, two processes of
skeletal growth and maturation appear to account for all examples of skeletal
morphology: (1) Rim growth, commonly found in porous shells, with round to
nearly round pores. The pores are formed by deposition of silica on the rims of
larger pores that become increasingly smaller in diameter during maturation.
(2) Bridge growth, producing geodesic frameworks and latticed shells that are
formed by repeated production of rod like elements that grow from one node to
another across an opening in the framework, thus producing a skeleton with increas-
ingly more complex design, and in some cases increasingly smaller openings
(Anderson 1983). Species with concentric spherical shells construct the innermost,
small, primary shell first, typically by bridge growth. Spines elongate from the
primary shell and provide scaffolding for the construction of successive larger
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surrounding shells, also by bridge growth. Some spongiose skeletal species deposit a
small spherical, porous shell initially, followed by very fine bridge growth producing
a surrounding meshwork of silica with the characteristic morphology of the species.
The skeleton provides protection for the delicate cytoplasmic structures and also
supports the axopodia and network of pseudopodial strands radiating from the
central cell body, thus permitting efficient capture of prey, including invertebrates
such as copepods that may be larger than the radiolarian (Anderson 1978).

Our knowledge of the longevity of radiolaria is limited. Evidence from laboratory
maintenance cultures of radiolaria, and inferential data based on environmental
observations of the periodic appearance of juvenile and adult stages of radiolarian
species, indicates that they live for several weeks to several months before
reproducing. Additional research is needed on comparative analyses of life spans
of different species and also on the effects of environmental variables on longevity,
such as abundance of prey, temperature, and other seasonal and biogeographic
factors (Anderson 1983; Casey et al. 1970).

Systematics

Polycystinea. Haeckel (1887) produced one of the earliest comprehensive systems of
radiolarian classification describing over 3000 polycystine species, ~2400 of which
were new to science. Haeckel's work is still a necessary reference guide, but it does
not satisfactorily represent natural relationships because groupings are only based on
morphologic similarities, and because the rigidity of these geometry-based diagno-
ses often ignores the ample intraspecific variability of the radiolarians (Lazarus et al.
2015). Efforts to improve upon the classification schemes inherited from earlier
workers have mainly followed two different approaches: cytological data and evo-
lutionary studies. Several authors (Cachon and Cachon 1972a, b; Hollande and
Enjumet 1960; Petrushevskaya 1981; Petrushevskaya et al. 1976) proposed revi-
sions which rely heavily on cytoplasmic features, in particular the “nucleoaxopodial
complex” (Petrushevskaya 1981). Although these schemes are probably sounder in
biological terms, their application to fossil and subfossil materials lacking the
protoplasm is problematic, which is one of the reasons for their very limited
acceptance among radiolarian workers. Analyses of evolutionary lineages in geo-
logical sequences were used as a basis to assess the taxonomic value of key skeletal
traits; it was concluded that many of them (e.g., number of segments, number of
supplementary concentric spheres, number of feet, number of rays and of equatorial
spines in discoidal Spumellaria, and presence and nature of thoracic wings) have
little or no suprageneric value. In contrast, several others (especially cephalic
structure, but also pore arrangement, shell terminations in Nassellaria, etc.), tradi-
tionally considered as of minor value, are conservative through time, reveal evolu-
tionary lineages and, therefore, are relevant for higher-rank divisions (Riedel and
Sanfilippo 1986). These results are at least partly in disagreement with the conclu-
sions of the major review by De Wever et al. (2001), who based their classification
scheme on the notion that “the farther the skeletal elements are from the first shell, or

19 Radiolaria and Phaeodaria 753



initial skeleton, the less important they are for higher level systematics.” Riedel
(1967, 1971); Petrushevskaya (1971a); (Petrushevskaya 1986); Goll (1968); (Goll
1969); Sanfilippo and Riedel (1970); Dumitrica (1989); DeWever et al. (2001) based
on skeletal features alone worked out alternative classifications, either for the entire
group or for selected parts of it. Of these, Riedel’s (1967, 1971) suprageneric system
has become the most widely accepted for extant and Cenozoic radiolarians and is the
one adopted herewith with slight modifications. Classification of pre-Cenozoic
polycystines follows De Wever et al. (2001).

Phaeodaria. The classification of this group proposed by Haeckel (1862, 1887) has
been used by subsequent students with but minor additions. Generic assignments have
been followed with few modifications, with the exception of some occasional revi-
sions (Korsun 2011; Nakamura et al. 2015; Nakamura and Suzuki 2015; Reshetnjak
1966), but inconsistent usage (particularly among the family Challengeridae) persists
into modern times (Kling and Boltovskoy 1999). The morphology of each family is so
distinctive that there has been essentially no controversy as to their taxonomic identity,
although lack of discrepancy is probably more a reflection of reduced interest and
absence of new research, than of the quality of the information available.

Outline Classification
The classification outlined below incorporates the major higher-order categories
defined on the basis of molecular phylogenetic studies, particularly the results of
Adl et al. (2012). The classification outline proposed by these authors deliberately
omits formal taxonomic categories; for the sake of clarity, we have included them
(in parentheses, after the taxon name), as used in traditional classification systems.
Adl’s divisions within Polycystinea and Phaeodaria are practically identical to those
of traditional taxonomy, which seems to be justified by the very scarce information
available so far (Ishitani et al. 2012a, b). On the other hand, molecular results
obtained with other planktonic protists (e.g., Foraminifera) (Darling and Wade
2008; De Vargas et al. 2004; Seears et al. 2012) suggest that many existing
morphospecies include several genetically different organisms with more or less
distinct distributional patterns. The few data on Polycystinea published in the last
years support this assumption, suggesting that taxonomic assignments based on
morphologic features often conflict with genetic molecular studies (Biard et al.
2015; Sierra et al. 2013) and that genetically defined units can differ both morpho-
logically and distributionally (Ishitani et al. 2012b, 2014). It should be stressed that
these results do not necessarily imply that traditional, morphological classifications
are wrong and those based on molecular data are correct. While molecular studies are
undoubtedly a very powerful tool for evolutionary and taxonomic investigations, as
any other technique they have important limitations (Decelle et al. 2014). Among
other limitations, the use of a single gene to decipher phylogenetic relationships may
bias the results, and use of more than one gene often improves the analyses.
However, the usefulness of molecular analyses as an additional tool is beyond
doubt, not only for addressing taxonomic and phylogenetic issues, including
conflicting identifications based on skeletal features (Yuasa et al. 2009), but also
for addressing distributional, evolutionary and ecologic problems.
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Rhizaria
Cercozoa

Thecofilosea
Phaeodaria (=Tripylea) (Superorder) Siliceous skeleton, when present,

may consist of scattered spicules or a well-developed meshwork, but
skeletal rods are usually hollow and skeletal material is provided with an
organic matrix. Skeletons rarely preserve in sediments. The central
capsule normally with one large and two smaller pores. Around
400–500 extant species.
Phaeoconchia (Order) Skeleton formed by two symmetrical valves that

can be large and conspicuous (family Concharidae) or small, inter-
nal, surrounded by an elaborate meshwork of tubes and spines
(family Coelodendridae) (living representatives only, two families).

Phaeocystina (Order) Skeleton absent or formed by loose elements
around the central capsule (living representatives only, four
families).

Phaeogromia (Order) Skeleton, when present, represented by a globular
or ovoidal solid structure with one large opening, often with one or
more large radial spines. Very heterogeneous group (a few shelled
forms known since the Eocene, 8 families).

Phaeosphaeria (Order) Skeleton usually represented by a large sphere
with triangular meshes (living representatives only, 3 families).

Retaria
Acantharia (Subclass)
Polycystinea (Subclass/Superorder) Usually endowed with a siliceous skele-

ton with solid bars. Cytoplasm divided into two regions: an inner endo-
plasm and an outer ectoplasm or calymma, separated by a perforated
organic membrane, the central capsule. Probably around 400–800 extant
species and several thousands of fossil forms.
Collodaria (Order) Solitary or colonial polycystines without a siliceous skel-

eton or provided with simple or branched spicules scattered in the calymma.
(Eocene?-Holocene, four families, all with extant representatives).

Spumellaria (Order) Solitary or colonial (one family only:
Collosphaeridae). Shell well developed, with radial symmetry or one
derived from it (spiral, discoidal or lenticular biconvex, triaxonic, qua-
drangular, etc.) or asymmetric. Central capsule with many small pores
(Paleozoic-Holocene, 37 families, eight with extant representatives).

Nassellaria (Order) Solitary. Shell represented by several fused spicules
only, by a D-shaped ring and associated spines, or by more elaborate
mono- or multilocular latticed skeletons. The symmetry of the shell is
characterized by the fact that the two extremes of its major axis define
two morphologically different poles (Devonian- Holocene, 54 families,
seven with extant representatives).

Archaeospicularia, Albaillellaria, Latenfistularia, Entactiniaria
(Orders) Fossil polycystines (Cambrian-Triassic, 37 families).
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Evolutionary History

Polycystines possess some exceptional traits for their use in evolutionary studies:
they appear very early – in the Lower Cambrian (Nazarov 1973; Obut and Iwata
2000), they preserve well in the geological record, they are highly diversified, and
they are often very abundant. However, their potential is seriously hindered by the
generally poor state of their taxonomy, which affects not only the species concept but
also the definition of supraspecific categories and the taxonomic and evolutionary
value of most morphologic traits. Thus, with the exception of a few well-researched
Cenozoic lineages, our understanding of the evolution of the polycystines is still in
an embryonic stage. Modern molecular phylogenetic research, in addition to clari-
fying the taxonomy of polycystines, has provided additional sources of evidence to
trace their origins and divergences during the evolution of this group in relation to
other taxa in the tree of life (Ishitani et al. 2012a; Sierra et al. 2013).

Although some authors have presented debatable evidence of links with benthic
ancestors (Petrushevskaya 1986), the origin of radiolarians is uncertain. Until the
Permian, their diversification was moderate, but in the Triassic, many new families
appeared and from there on the number of extinctions was roughly balanced with
that of new forms. For the Paleozoic, over 600 polycystine species (80 genera) have
been described, suggesting a speciation rate of about 1–2 species per million years
(Vishnevskaya and Kostyuchenko 2000). For the Mesozoic, this rate soars to over
10 species per million years; the total number of Mesozoic species described is
around 2500 (Vishnevskaya and Kostyuchenko 2000), including the first multi-
segmented nassellarians, the appearance of twisted spines in spumellarians, etc. In
agreement with most other organisms, polycystines show a strong diversity drop
around the Cretaceous-Tertiary boundary, recovering in the Eocene (Sanfilippo et al.
1985; Vishnevskaya and Agarkov 1998). In the Cenozoic, the number of polycystine
species varies around 400–800. The skeletons of these species are conspicuously
lighter than those of most pre-Cenozoic forms, presumably due to the competition
for dissolved silica with the diatoms (Lazarus et al. 2009). The longevity of most
Cenozoic species ranges around 1–5 Ma (before going extinct or changing suffi-
ciently to be identified as a different species) (Sanfilippo et al. 1985). Thus, despite
the fact that polycystines represent potentially useful evolutionary and stratigraphic
tools, taxonomic inconsistencies and the scarcity of specialists hinder their extensive
use in these fields.

Maintenance and Cultivation

Continuous, reproducing cultures of radiolaria have not been established in the
laboratory, probably due to the particular environmental requirements of the earliest
growth stages. However, juvenile radiolaria that are collected by gentle drift tows
using nets, or captured in hand-held small jars by SCUBA divers, can be maintained
in laboratory culture (Anderson 1992). Individual radiolaria are retrieved from the
sample using pipettes fitted with a rubber bulb and a tip with a large opening. The
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radiolarian is gently deposited in glass culture dishes or small vials containing
seawater, freshly collected from the sampling site. Symbiont-bearing species are
illuminated by fluorescent lights and temperature is maintained by surrounding the
dishes with recirculating water from a constant temperature bath set at a temperature
equivalent to the sampling site. Algal cultures established in the laboratory, includ-
ing planktonic diatoms, dinoflagellates, and other small protists, provide a source of
protistan prey. Small droplets are introduced into the culture vessels, but only
sparingly and at intervals of several days to avoid fouling the culture dishes with
overgrowth. Small crustacea or young nauplii of brine shrimp (Artemia) reared in the
laboratory are suitable additional prey for larger species. In some cases, the freshly
collected, unfiltered, seawater from the sample site contains sufficient prey to sustain
growth of illuminated radiolarian cultures if the seawater is replaced with freshly
collected seawater every several days. No additional prey are required, especially if
the cultures are illuminated. The larger radiolaria can be observed using a high-
power dissecting microscope. Inverted microscopes with long-distance objective
lenses can be used for more detailed visualization of smaller floating radiolaria,
preferentially maintained in small culture vials with optically clear flat bottoms.
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