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Abstract. Most existing location prediction techniques for moving
objects on road network are mainly short-term prediction methods. In
order to accurately predict the long-term trajectory, this paper first pro-
poses a hierarchical road network model, to reduce the intersection ver-
texes of road network, which not only avoids unnecessary data storage
and reduces complexity, but also improves the efficiency of the trajec-
tory prediction algorithm. Based on this model, this paper proposes a
detection backtracking algorithm, which deliberately selects the highest
probability road fragment to improve the accuracy and efficiency of the
prediction. Experiments show that this method is more efficient than
other existing prediction methods.

1 Introduction

At present, most of the holistic trajectory prediction algorithms focus on free
spaces solution [1,2], only few of them are based on moving objects in a real road
network. And for those ones, they mostly just focus on the short-term predictions
[3,4]. However, existing long-term prediction algorithms also fail to consider
contextual information, which leads to a lot less accurate results especially at
certain turning points.

To go beyond short-term prediction, this paper formulates a road network
hierarchical model by analyzing a large number of historical trajectory data
of moving objects. The model aims to reduce network complexity and capture
the turning patterns at intersections. Based on the model, this paper presents
a detection-backtracking algorithm to improve the accuracy and efficiency. It
applies to both the short-term and long-term predictions even if the destination
remains unknown, which also deals with dead ends and overlapping trajectories.

The rest of this paper is organized as follows. Section 2 discusses the related
work. Section 3 formally introduces our prediction model. Section 4 introduces
the prediction algorithm. Section 5 presents the experimental results of perfor-
mance evaluation. Our conclusions are contained in Sect. 6.
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2 Preliminaries

The existing methods of location prediction for moving objects are roughly cat-
egorized to linear predictions [1,2] and non-linear predictions [3,5,6]. Usually,
linear predictions are based on constant speeds and linear functions of time,
while their variants may assume the constant speed at first but calculate the
trajectories by factors such as edges or paths. And for those who combine edges
with vectors [7], they surely perform well in predicting trajectories of moving
objects with constant speeds in free spaces, but they might all readily break as
they can’t fit objects who are subject to real road networks which turn out to
be much more perplexing.

Non-linear predictions use more complex mathematical equations than lin-
ear predictions do. Chen et al. [8] introduces SP method, which depends on
Generalized Cellular Automata (GCA), using simulation and linear regression
to predict the borders of future trajectories. Tao et al. [3] introduces a predic-
tion model based on recursively-moving functions for those moving with uncer-
tainty. Gaussian process regression model is also applied in trajectory predictions
[5,6]. Those methods can only apply to non-linear movements instead of sudden
turnings.

Karimi and Liu [9] introduce a Predictive Location Model (PLM), which
applies a probability matrix to each intersection for calculating the probability
of objects’ turning each upcoming edge by analyzing their historical trajectories,
and then uses a depth-wise algorithm to get new trajectories. However, Depth-
wise search doesn’t consider the probability of each turning, and the search
range is based on the Euclidean Distance, namely, the object’s current speed is
multiplied by the time. That is might not accurate because the objects in real
networks are always changing.

Kim et al. [10] comes up with a method that is similar to ours, but under their
consideration, the destination is already known, while we assume it is not. Jeung
et al. [11] introduces a PLM-based model as well as two prediction algorithms-
Maximum Likelihood Algorithm (MLA) and Greedy Algorithm (GA). MLA is
able to predict long trajectories, but once the duration is long enough to some
level, it will need a lot more sub-trajectories to support its predictions, which
drastically degrades the efficiency of the program. GA, in comparison, has a
better performance on long-term predictions, but still, hasn’t covered contex-
tual information and leaves the problem of overlapping trajectories. Besides, it
will be terminated as soon as a dead end comes up. A. Houenou et al. [4] com-
bines CYRA with MRM, to predict vehicles’ trajectories. The method tends to
avoid collisions, but only in a very short period of time (namely, a few seconds),
certainly not appealing to our interests of long-term predictions.

3 Prediction Model

In this section, we first define a hierarchical sketch on road network. Next we
give some basic concepts and definitions for trajectory prediction based on the
model. Then we describe our establishment of turning patterns at intersections.
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3.1 Road Network Diagram and Sketch

Definition 1. Road Network Diagram
Road network diagram can be described as an undirected graph G =< V,E >,

where V is the vertex set (the size is |V |) and E is the edge set (the size is |E|).
Each vertex v (v ∈ V ) represents an intersection, also a coordinate point p = x, y
in a two-dimensional space. Each edge e = (vi, vj) (vi, vj ∈ V, e ∈ E) represents
the edge between two intersections. Figure 1 illustrates the idea.
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Fig. 1. Road network diagram

e1

e2

e4

e3

e6

e7

e5

e11

e10

e12

e9

e8

v1

v2

v3

v5

v6

v4

v7

v8

Fig. 2. Road network sketch

Definition 2. Vertex Degree and Connection Vertex
Given road network diagram G =< V,E >, vi ∈ V , deg(vi) is equal to the

number of edges connected to vi. Vertex vi is a connection vertex if deg(vi) ≥ 2.

Definition 3. Side Chain
Given a sequence of edges S =< ei, ei+1, · · · , ei+k >, S is a side chain if

each vertex between two adjacent edges is a connection vertex.

Definition 4. Road Network Sketch
G′ =< V ′, E′ > is the road network sketch, where V ′ is the vertex set after

the removal of all the connection vertexes from V and E′ is the edge set of side
chains as well as those non-adjacent edges.

As shown in Fig. 1, the size of vertex set V (|V |) is 13 and that of edge set E
(|E|) is 17. In Fig. 2, |V ′| is only 8 and |E′| is 12. Note that by transferring G into
G′, we will be able to reduce the amount of vertexes and edges to simplify the
whole model. The following discussions will all based on road network sketch. If
not specified, We replace G′ =< V ′, E′ > with G =< V,E > for convenience.

3.2 Road Network Hierarchy

Given a large-scale network, trajectories of each moving object only cover rel-
atively small part, leaving many roads and intersections unvisited. To further
reduce the road network complexity and narrow down the search range, we
adopt hierarchical strategy by observing the visit of an edge or an intersection.

Figure 2 contains 8 vertexes and 12 edges. Given Ev as the edge set of the
visited trajectories, we divide the network into two layers-G1 =< V1, E1 > and
G2 =< V2, E2 >. Details about major steps of the process are as follows:
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– Step1. Randomly select an ei =< vi, vj > (ei ∈ G), where deg(vi) = 1. If ei

is already in Ev, store (ei, vi, vj) into G1. Otherwise, store them into G2.
– Step2. Get the adjacent edge set of vj as En. If En is not empty, iterate each

edge en =< vj , vk >∈ En. If en ∈ Ev, store (en, vj , vk) into G1. Otherwise,
store them into G2. So far, if ei is not in the same layer as en, connect
corresponding vertex vj in both G1 and G2 and establish a virtual edge ven.

– Step3. Repeat Step 2 until iterate all the vertexes in G, and formulate the
hierarchical road network model.

Figure 3(a) shows part of a road network, where thick lines denote the his-
torical trajectories. We first pick up e1 =< v1, v2 > as the starting edge. Since
e1 has been visited, we store (e1, v1, v2) into G1. Then we get En = e2, e7 as the
adjacent edge set of v2. As e2 has been visited but e7 has not, we store (e2, v2, v3)
and (e7, v2, v6) into G1 and G2 respectively. Note that e1 and e7 are not in the
same layer, so we establish a virtual edge ve1 to connect the corresponding ver-
tex v2 in both G1 and G2. Similarly, e3 and e6 go to G1, while e4, e5, e8 and
e9 go to G2. So we establish ve2 and ve3. Figure 3(b) shows the network model
after hierarchy.
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Fig. 3. Example of hierarchical road network processing

3.3 Concepts and Definitions for Trajectory Predictions

Suppose e = (vi, vj)(e ∈ G), then the position of a moving object on this edge
can be expressed as L = (e, d, p, t), with direction heading to vertex vj , where e
represents the current edge of the object, d is the distance between the object
and vi, p is the object’s coordinate, t is the current time. The prediction duration
T represents a time period as the object is moving from the current time tc to
a future time tf . Given L and T , we can narrow down the trajectory prediction
problem to analyzing the trajectory in [tc, tc+T ].

Definition 5. Trajectory
If we map each p to its corresponding position Li(i = 1, 2, 3 · · · n), then a tra-

jectory can be considered as an ascending time sequence with series of positions,
which can be expressed as Traj =< Li, L2 · · · Ln >.
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Definition 6. Position Distance
Suppose Li and Lj are two different positions of the same edge (both can be

endpoints), then the distance between Li and Lj is Dist(Li, Lj).

In order to evaluate the trajectory prediction query, consider two erroneous
measurements: mean absolute error [12] and trajectory matching degree. As the
position is described in two dimensional coordinate, we adopts L2 norm.

Definition 7. Mean Absolute Error (MAE)
Suppose {Lact1, Lact2, · · · , LactN} is the trajectory of a moving object in time

period [tc, tc+T ], while {Lpre1, Lpre2, · · · , LpreN} is the predicted trajectory, we
can calculate MAE as follows:

MAE =
∑N

i=1 |Lprei − Lacti|
N

=

∑N
i=1

[

(xprei − xacti)2 + (yprei − yacti)2
]1/2

N
(1)

Definition 8. Trajectory Matching Degree (TMD)
Assume Eact is the actual trajectory edges set in between Lc and Lact, and

Epre is the predicted trajectory edges set in between Lc and Lpre, the precision
and recall of the prediction can be described as precision = |Eact∩Epre|

|Epre| and

recall = |Eact∩Epre|
|Eact| . Thus we adopts F1-score [13] as TMD:

F1 =
2 · precision · recall

precision + recall
(2)

3.4 Turning Pattern at Intersections

The turning pattern problem of moving objects is the decisive factor to the
prediction accuracy. In fact, many turning scenarios come with certainties, e.g.,
a car will make a specific turn when entering the highway and a man’s daily drive
usually follows a fixed route (home-company-home). We will take advantage of
these information to find turning patterns for trajectory prediction.

Figure 4 shows part of a user’s historical trajectories at an intersection. Each
line represents a certain trajectory with an arrow pointing the direction and
a label showing the class it belongs to. As during different time periods, the
trajectories are different. Hence N number of time periods can divide trajectories
into N classes, labeled as 0, 1, 2, ...N . To simplify, we only use 1 and 0 as our
class labels, which represents workday and weekend respectively.

Suppose the object has a state at every edge, when its current trajectory
covers a new edge, we name it state transition. To illustrate state transition, we
define O as the historical trajectory set, Trajo as the visited trajectory, ecur as
the current edge, ei as the upcoming edge, c as the class label and Ev as the
edge set connected to the vertex v.

So Trajo → ei is a state transition. If Traj → ei is already covered in O and
with a class c, we define SPo(Trajo → ei)[c] as its support degree. So we give
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the state transition probability (STP) of Trajo with a class c that is turning to
ei from v:

STP (v, Trajo → ei)[c] =
SPα

o (Trajo → ei, c) × φβ(ei)∑
ej /∈ TrajoSPα

o (Trajo → ej , c) × φβ(ej)
(3)

We also define the STP of ecur:

STP (v, ecur → ei)[c] =
SPα

o (ecur → ei, c) × φβ(ei)∑
ej /∈ TrajoSPα

o (ecur → ej , c) × φβ(ej)
(4)

φ(ei) in Eqs. 3 and 4 represents offset factor on ei, which is usually considered
to be the reciprocal of offset angle θi (see Eq. 6). For a moving object, the smaller
θi it has, the bigger φ(ei) it gets, so is STP. α and β are the support degree and
offset factor weight, respectively.

According to Eqs. 3 and 4, we can predict the next edge enext that the object
is about to turn:

enext =
{

argei
max(STP (vcur, T rajo → ei)[c]) if Trajo → eiexist

argei
max(STP (vcur, ecur → ei)[c]) else

(5)

In the lack of historical trajectories, driving directions become the decisive
factor to predict enext. As shown in Fig. 5, θ is the offset angle between direction
vector n and edge vector e, Lc is the initial position of a moving object, Ls is the
intersection the object currently in, Ea is the set of unvisited edges connected to
the vertex, we choose the edge as our enext with the smallest θ by using cosine
formula:

enext = argei∈Eamin(θei) =

⎧
⎪⎪⎨

⎪⎪⎩

θi ∈ (0◦, 180◦)
n = (xc − xs, yc − ys)
ei = (xi − xc, yi − yc)
argei∈Eamax(cosθei) = argei∈Eamax( n·ei

|n|·|ei| )

(6)
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4 Prediction Algorithm

4.1 Algorithm Design

This paper presents a detection backtracking algorithm (DBT). Algorithm 1
searches the edge with maximum STP and Algorithm 2 is the detailed pseudo
code of DBT.

Algorithm 1. maxSTP(state, c, v, V , G, α, β)
Input: state state, class c, current vertex v, set of vertexes visited V , road network

diagram G, α and β are the support degree and the offset factor weight, respectively.
Output: the edge with maximum STP
1: total=[]; theta=[]; states={}
2: for edge in G do
3: get all state transition trajectory of class c at vertex v, and save to states, their

value is initialized to 0
4: end for
5: for trajectory in G do
6: for state in states do
7: calculate the total number of every state trajectory of class c and their offset

angle(see Eq. 6), and save them to total and theta respectively
8: end for
9: if every value is empty in total then

10: return 0
11: end if
12: end for
13: for state in states do
14: calculate state transition probability of each state by the Eq. 3 and Eq. 4, and

covering saved to states
15: end for
16: sort(state)

In reality, a single factor sometimes can lead to a very complex prediction
model, so most existing algorithms exclude the factors we mentioned in Sect. 1
(e.g. contextual information, loop and etc.). We list four cases below:

– Arrest point. Moving objects are not moving all the time. For example, in sit-
uations like buying coffee when heading off to work or going shopping on the
way home, it usually takes several minutes or hours to stay at a certain spot,
which referred as arrest point. Given the current trajectory’s class, by analyz-
ing historical trajectories and calculating the gathering numbers of spots, we
are able to tell which case the arrest point belongs to.

– Loop. In most cases, it is not possible to form a loop, because moving objects
usually head toward their designated places, which is closely related to human
behaviors. However, there are some exceptions. For example, a driver has to
go home for some important documents even though he or she is half way to
work. But these are small probability events, so we leave them out.
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Algorithm 2. DBT(G, L, λstop, T )
Input: road network diagram after hierarchy G, moving object’s current position L =

(e, d, p, t), time threshold of arrest points λstop, class c, prediction duration T
Output: Trajectory Traj
1: ecur=L[’e’]
2: vcur = mobile object being approach to end vertex of ecur
3: t = Dist(L, vcur)/Speed(ecur)
4: Evisted = []; Vvisited = []; Traj = []
5: while t < T do
5: Vvisited.append(vcur); Evisited.apppend(ecur)
5: Traj.append((ecur, Dist(L,vcur) , vcur.get(p), vcur.get(t)))
6: if deg(vcur)==1 then
7: if ecur==L. get(e) then
8: return Traj.append(’e’:ecur, ’d’:Dist(ecur,ebefore)-L.get(d), ’t’:p,T )
9: else

10: backtrack to previous vertex and go on
11: end if
12: else
13: enext=maxSTP(Traj, c, vcur, Vvisited, G, α, β)
14: if not enext then
15: enext=the offset angle of edge is smallset
16: if not enext then
17: popEdge = Traj.pop()
18: Vstate.append(vcur)
19: backtrack to previous vertex and go on
20: end if
21: end if
22: end if
23: end while
24: vbefore=vcur; ebefore=ecur
25: vcur = another vertex of enext, don’t visited
26: ecur=enext

27: t=t+Dist(vbefore,vcur) / Speed(ecur)
28: if abs(Dist(p, vbefore)/Speed(ecur))-time)≥λstop then
29: vcur=vbefore; ecur=ebefore
30: end if
31: Traj.append((ecur, Dist(L,vcur), vcur.get(p), vcur.get(t)))
32: return Traj

– Partially overlapping trajectories will lead to turning errors. In Fig. 6, if we
use probability matrix [9] and mobile transferring probabilistic method [11],
e2 → e4 → e6 will increase the probability of turning e6 at intersection v2 to
2/3, the predicted trajectory will be e1 → e4 → e6, which is obviously wrong.
As the trajectories partially overlapped in some edges might lead to wrong
trajectory, we gave enext in Eq. 5 at first to avoid the problem.

– No historical trajectory exists. Refer to Eq. 6, it will help to pick the right
edge to turn to by calculating deviation angle θ of a moving object.
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4.2 Time Complexity Analysis

Suppose the number of traversed vertexes during one prediction is |V ′|, then
O(|V ′|) is the time complexity for one traversal. But we also have to calculate
the highest STP at each vertex and query the historical time spent on the current
edge. In this paper, we use binary search algorithm, the time complexity is O(2 ·
log|V |). Together, the total time complexity of our algorithm is O(2·|V ′|·log|V |).
In fact, we only count O(log|V |) because |V ′| can be taken as a constant since
our algorithm usually only traverse a few vertexes. As k increases, it needs more
time to do pruning, also has to compute more MBRs, leading to the increasing
time consumption of the algorithm.

5 Experimental Evaluation

We compare our algorithm with OLM [9] and Greedy [11] on calculating MAE
and F1-score. The data set used covers trajectories of 182 individuals in 5 years
of Beijing traffic, with total 18,670 trajectories and 24,876,978 positions. And
our road network data consist of 433,391 edges and 171,504 intersections.

Since all the trajectories are GPS records, the presence of sampling error is
inevitable. Besides, the trajectories in experiment need to be generated from real
road network. Therefore, we preprocess the data set by analyzing the trajectory
similarity [14] and using trajectory interpolation and map-matching [15]. In the
paper, we use simple linear interpolation [16] and ST-Matching algorithm [17],
more specifically in [14,16,17].

We randomly select 1, 000 processed trajectories as the test set. α and β are
set to 4 and 1, respectively. For each trajectory, we choose an initial position,
then predict under different prediction duration (increments by 5 min).

Figure 7 compares different methods by MAE under different predicted dura-
tion with total 2000 trajectories, where MAE values of DBT are about 2km and
14km lower than those of Greedy and PLM on average. In Fig. 7, DBT algorithm
is more accurate in predicting destinations than the other two methods.

We also consider the F1-score in Fig. 8. By comparison, even though the
F1-score of DBT is falling with the rising predicted time, it still maintains a
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relatively high and stable performance better than Greedy algorithm, while PLM
turns out to be the worst.

By observing Figs. 7 and 8, we can conclude that DBT performs better in
shorter period of time, namely, 10 min. This is because when running into an
intersection, DBT only calculates the STP of Trajo, not the STP of ecur, avoid-
ing the presence of turning errors caused by overlapping trajectories. Note that
PLM performs very bad in both cases, because the calculating errors of finding
the exit point tend to be pretty large in PLM. Also seen from Figs. 9 and 10, as
data scale grows, MAE becomes lower, but Fl-score gets higher, which means
more information can be obtained to improve our predictions.
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Next, we compare our algorithm performance by analyzing the average com-
putation time. We use Python to implement the algorithms. All experiments
are run on a PC with 2.60 GHz CPU and 4 GB of main memory. As shown in
Fig. 11, DBT maintains its high performance due to the road network hierarchy.
Greedy also has a good performance, but not as well as DBT, since it doesn’t
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consider contextual information at all. Meanwhile, as PLM always has to tra-
verse all the trajectories from current position to find the exit point, when the
length of prediction increases, PLM’s efficiency will significantly decrease.

We compare the CPU processing time under different circumstances in
Fig. 12. The results are pretty clear that both the hierarchy of road network
and the removal of vertexes with degree 2 have discernible effects on efficiency
improvement, especially the hierarchy.

6 Conclusion

This paper presents a hierarchical road network model to reduce complexity
and improve the efficiency of prediction algorithm. We propose BDT to deal
with contextual information and trajectories’ overlapping problems that most
existing algorithms haven’t covered yet. Our experiments show that BDT is more
accurate with high performance in both short-term and long-term predictions.
Our future work will take more context information [18] into account to further
improve the accuracy.
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