
A SOC-Based Formal Specification
and Verification of Hybrid Systems

Ning Yu(B) and Martin Wirsing

Programmierung und Softwaretechnik, Institut für informatik,
Ludwig-Maximilians-Universität München, Oettingenstrasse 67,

80538 Munich, Germany
{yu,wirsing}@pst.ifi.lmu.de

Abstract. In order to specify hybrid systems in a SOC paradigm, we
define Hybrid Doubly Labeled Transition Systems and the hybrid trace
of it. Then we extend SRML notations with a set of differential equation-
based expressions and hybrid programs and interpret the notations over
Hybrid Doubly Labeled Transition Systems. By redefining the dynamic
temporal logic dTL, we provide a logic basis for reasoning about the
behavior of hybrid transition systems. We illustrate our approach by a
case study about the control of a moving train, in which the movement
of the train is regulated by ordinary differential equations.

Keywords: Hybrid transition systems · SRML · Differential equations ·
dTL

1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that utilizes ser-
vices as fundamental elements to support rapid, low-cost development of dis-
tributed applications in heterogeneous environments [1]. In SOC, a service is
defined as an independent and autonomous piece of functionality which can be
described, published, discovered and used in a uniform way. Within the devel-
opment of SOC, complex systems are more and more involved. A typical type of
complex systems are the hybrid systems, which arise in embedded control where
discrete components are coupled with continuous components. In an abstract
point of view, hybrid systems are mixtures of real-time (continuous) dynamics
and discrete events [2]. In order to address these two aspects into SOC para-
digm, we make our approach by giving a SOC-based formal specification and
verification to hybrid systems.

The SOC-based specification of hybrid systems are realized by giving a hybrid
extension to the SENSORIA Reference Modeling Language (SRML). SRML is a
modeling language that can address the higher levels of abstraction of “business
modeling”[3], developed in the project SENSORIA – the IST-FET Integrated
Project that develops methodologies and tools such as Web Services [10] for
dealing with the challenges arose in Service-Oriented Computing. To make this
c© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 151–169, 2015.
DOI: 10.1007/978-3-319-28114-8 9

152 N. Yu and M. Wirsing

approach, we first define: Hybrid Doubly Labeled Transition System (HL2TSs),
which extends the semantic domain of UCTL [11]; hybrid traces of HL2TSs,
which represent traces of the system evolution; and service-oriented Hybrid Dou-
bly Labeled Transition Systems (SO-HL2TSs), which extends HL2TSs, as the
SRML semantic domain. Then we extend SRML by extending the language of
business role and the language of business protocol. The language of business role
is extended by defining formulas and differential equation-based terms for tran-
sition specifications, and interpreting them over SO-HL2TSs. The language of
business protocol is extended by redefining hybrid programs and formulas of the
dynamic logic temporal logic dTL [12], which provides modalities for quantifying
over traces of hybrid systems, for behaviour constraints.

We illustrate our approach though a case study of a Train-Control system
verification. The Train-Control system abstracts the European Train Control
System (ETCS)[19], which is a a signalling, control and train protection system
designed to replace the many incompatible safety systems currently used by
European railways. In such a system the displacement of the train is continuous
on time within the system evolution and is governed by ordinary differential
equations. On specifying the system with extended SRML, we verify a safety
constraint of it with a set of sequent calculus provided in [12] for verifying hybrid
systems.

2 A General Introduction to SRML

In this section we give an overview of SRML composition model and each element
of the composition introduced in [5].

SRML is designed for modeling composite services, whose business logic
involves a number of interactions among more elementary service components
within services and among different services via interfaces. This idea comes from
the concepts proposed in Service Component Architectures (SCA)[4]. The basic
units of business logic are called service modules, which are composed of service
components and external interfaces, and are orchestrated by control and data
flows. Service components are computational units central to the composite ser-
vices. Each service component is modeled by means of the execution pattern
that involves a set of interactions and orchestrations related to them. In a ser-
vice module, external interfaces are used for modeling external parties that either
provide services to or require services from this module. Each interface specifies
a set of interactions internal to this module and some constraints to which the
module expect the external parties to adhere. Service components and external
interfaces of the same module are connected to each other through internal wires
that are used to support and coordinate the interactions among them. Figure 1
shows an example of a service module.

The orchestrations of services components can be seen static, since they are
pre-define at design time and do not invoke services of any external party. While
the constraints of the external interfaces are dynamically configured at each
run time, when modules are discovered and bound to different external parties.

A SOC-Based Formal Specification and Verification 153

Fig. 1. Service composition

In this paper, we only discuss the way of defining the module, but not the runtime
configuration. Next we show in detail the composition of a service module.

Business Role. Service components are specified through business roles, each
of which is specified by declaring a set of interactions and the way they are
orchestrated. We give the following introduction to each part:

Interactions involve two parties and can be in both directions. They are
defined from the point of view of the party in which they are defined. Local
specifies the variables that provide an abstract view of the state of the local
component.

Initialization designates a specific initial state.
Transitions model the activities performed by the component. A transition

has an optional name and some possible features. These features are classified as
follows: (i) A trigger is a condition that specifies the occurrence of an event or
a state condition; (ii) A guard is a condition that identifies the states in which
the transition can take place; (iii) Each sentence in effects specifies the effects
of the transition in the local state.

Business Protocol. External interfaces are specified through business proto-
cols. They declare similar interactions to those in business roles, but from the
external parties’ point of view. Instead of an orchestration, a business protocol
provide a set of properties that the external party is expected to follow.

Behaviour models the behaviors that users can expect form a service. Based
on temporal logic [14], they specify which message exchange sequences are sup-
ported by the service via a number of behaviour constraints.

Interaction Protocol. Wires that connect service components and external
interfaces are specified through interaction protocols, and are labeled by connec-
tors that coordinate the interactions in which the parties are jointly involved.
Our work doesn’t relate to this part, so it is not introduced in details.

3 Hybrid Extension of SRML

3.1 A Hybrid Extension of SRML Semantic Domain

Since SRML is a control/data flow driven modeling language, the following data
signature is adopted as a basic semantic domain:

Ω = 〈D,F 〉 (1)

154 N. Yu and M. Wirsing

where D is a set of data sorts and F is a D∗ × D-indexed family of sets of
operations over the sorts. We assume that time ∈ D is a datatype that represents
the usual concept of time. And a fixed algebra U denotes the interpretation of Ω.

SRML is interpreted over Service-oriented Doubly Labeled Transition Sys-
tems (SO-L2TSs), whose structure bases on the UCTL [11] semantic domain –
L2TS. In order to extend SRML over the combination of hybrid systems and
transition systems, we define Hybrid L2TSs (HL2TS) by extending L2TSs with
a set of continuous functions Σ, and define the trace of a HL2TS to describe
the system evolution. Then we define SO-HL2TS over which extended SRML
could be interpreted.

Definition 1 (Hybrid Doubly Labeled Transition System). A hybrid
doubly Labelled Transition System (HL2TS) is a tuple

〈S, s0, Act,R,Σ,AP,L〉

where:

– S is a set of states;
– s0 ∈ S is the initial state;
– Act is a finite set of observable actions;
– R ⊆ S × 2Act × S is the transition relation. A transition (s, α, s′) ∈ R is

denoted by s
α−→ s′;

– Σ is a set of functions and for every function σ ∈ Σ, σ : [0, rσ] → S with
rσ ∈ R and rσ ≥ 0, σ is continuous on the interval [0, rσ];

– AP is a set of atomic propositions;
– L : S → 2AP is a labelling function such that L(s) is the subset of all atomic

propositions that are true in state s.

The evolution of a HL2TS is described by traces, which represent sequences
of pieces of continuous functions and discrete jumps in the HL2TS evolution.

Definition 2 (Trace). Let 〈S, s0, Act,R,Σ,AP,L〉 be a HL2TS then:

– For every σ ∈ Σ, σ[0, rσ] denotes the trace of infinitely many states σ(0), . . . ,
σ(rσ) along σ over the interval [0, rσ];

– ρ is a hybrid trace from s0 if ρ = (s0
α0−→ σ1, σ1[0, rσ1], σ1(rσ1)

α1−→ σ2(0),
σ2[0, rσ2], . . .) where (s0, α0, σ1(0)) ∈ R and σi(rσi

), αi, σi+1(0)) ∈ R with
i ∈ N;

– A position of ρ is a pair (i, ζ) with i ∈ N and ζ in the interval [0, rσi
]; the state

or transition of ρ at (i, ζ) is σi(ζ). Positions of ρ are ordered lexicographically
by (i, ζ) ≺ (j, ξ) iff either i < j, or i = j and ζ < ξ;

– A trace ρ starting from the initial state s0 terminates if it is a finite sequence
(ρ = (s0

α−→ σ1, σ1[0, rσ1], σ1(rσ1)
α1−→ σ2(0), σ2[0, rσ2], . . . , σn[0, rσn

]), and
the first state of the trace s0 is denoted by firstρ, the last state of the trace
σn(rσn

) is denoted by lastρ;

A SOC-Based Formal Specification and Verification 155

– The concatenation of traces ρ1 = (s1
α0−→ σ1(0), σ1[0, rσ1], . . .) and ρ2 =

(s2
α′

0−→ ς1(0), ς1[0, rς1], . . .), denoted by ρ1 ◦ ρ2, is defined as follows:

ρ1 ◦ ρ2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s0
α0−→ σ1(0), . . . , if ρ1 terminates at σn(rσn

)

σn[0, rσn
], s′

0

α′
0−→ ς1(0), . . .) and σn(rσn

) = s′
0

ρ1 if ρ1 does not terminate
not defined otherwise

SO-HL2TSs extends HL2TSs and Service-Oriented Transition Systems (SO-
TSs). SO-TSs are defined in [6]. By combining these two types of transition
systems, we get the semantic domain for SRML extension.

Definition 3 (Service-Oriented HL2TSs). The Service-Oriented HL2TS
(denoted SO-HL2TS) that abstracts a SO-TS 〈S,→, s0, G〉 is the tuple

〈S, s0, Act,R,Σ,AP,L, TIME,Π〉
where:

– 〈S, s0, Act,R,Σ,AP,L〉 is the corresponding HL2TS;
– Act = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪ {e¿ : e ∈ E};
– R ⊆ S × 2ActS is such that:

• s
α−→ s′ iff (s, α, s′ ∈ R for some α ∈ Act2;

• For every (s), α, s′) ∈ R:

α ={e! : e ∈ PUBs
α−→s′ ∪ {e¡ : e ∈ ADLV s

α−→s′}∪
{e? : e ∈ EXCs

α−→s′} ∪ {e¿ : e ∈ DSCs
α−→s′}

– AP = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪
{e¿ : e ∈ E} ∪ {a.pledge : a ∈ 2WAY };

– L : S → 2AP is such that:

L(s) ={e! : e ∈ HST !s} ∪ {e¡ : e ∈ HST ¡s}∪
{e? : e ∈ HST?s} ∪ {e¿ : e ∈ HST¿s}
∪ PLGs

with s ∈ S;
– TIME assigns to each state s ∈ S the instant TIMEs;
– Π assigns to each state s ∈ S the parameter interpretation Πs.

In Definition 3, E is the set of all events of a configuration defined in [6]. a
is an interaction and a.pledge is the pledge that is associated with that inter-
action in the configuration. 2WAY is the set of interactions that take place in
both directions in the configuration. HST !,HST ¡,HST? and HST¿ are subsets
of events in a computation state, PLG is the set of pledges that holds in the
computation state and TIME ∈ timeU . PUB,ADLV,EXC and DSC are sub-
sets of events in a computation step, where computation state and computation

156 N. Yu and M. Wirsing

step are used to describe the computation of a configuration and they are also
defined in [6].

In the rest of this section, we present the semantics of SRML extension
interpreted over SO-HL2TSs defined in Sect. 2.2. The SRML extension consists
of two parts: the extension of business role and the extension of business protocol.
The latter includes an extension of dTL formulas which is used to specify and
verify behaviours specified by the new extended behaviour constraint in business
protocol.

In order to define the SRML extension, throughout the remaining of this
section we consider:

– sig = 〈NAME,PARAM〉 (defined in [6]) to be an interaction signature where
Act is the set of actions associated with sig;

– V AR (defined in [6]) to be an attribute declaration.
– Ξ = 〈N,W,PLL, Ψ, 2WAY, 1WAY 〉 (defined in [6]) to be a configuration;
– II (defined in [6]) to be an interaction interpretation for sig over 2WAY ∪

1WAY local to some node n ∈ N ;
– tr = 〈S, s0, Act,R,Σ,AP,L, TIME,Π〉 to be a SO-HL2TS for Ξ;
– Δ (defined in [6]) to be an attribute interpretation for V AR over m;
– m = 〈N,W,C, client, spec, prov〉 (defined in [6]) to be a service module.

3.2 Business Role Extension

Business role is defined over sig and V AR. We extend it by introducing new for-
mulas and predicates into transitions (see Fig. 3). These formulas and predicates
are defined based on a set of terms.

State terms denote the values of the variables and parameters of events in
states. They are interpreted over states.

Definition 4 (State Terms). The D − indexed family of sets STERM of
state terms is defined as follows:

– If c ∈ Fd, then c ∈ STERMd for every d ∈ D;
– If f ∈ F<d1,...,dn+1> and −→p ∈ STERM<d1,...,dn>, then f(−→p) ∈ STERMdn+1

for every d1, . . . , dn, dn+1 ∈ D;
– If a ∈ NAME and param ∈ PARAM(a)d, then a.param ∈ STERMd for

every d ∈ D;
– If t ∈ V ARtime, then t ∈ STERMtime;
– If v ∈ V ARd, then v ∈ STERMd for every d ∈ D and d �= time.

For example in Fig. 2, in the guard of transition negotiation, terms “m”,
“currentDis” and “ST” are state terms.

Definition 5 (Interpretation of State Terms). The interpretation of a state
term T ∈ STERM in a state s ∈ S, written �T �s, is defined as follows, where
view is the function that defines how the parameter is observed:

A SOC-Based Formal Specification and Verification 157

Fig. 2. Business role: train

– �c�s = cU
– �f(T1, . . . , Tn)�s = fU (�T1�s, . . . , �Tn�s)

158 N. Yu and M. Wirsing

– �a.param�s = view(II(a).param′Πs

)
– �t�s = TIMEs

– �v�s = vΔ(s)

State predicates are defined based on state terms, and specify the properties
of states. The satisfaction of state predicates is defined for states.

Definition 6 (State Predicates). The state predicates SP is defined as
follows:

χ ::= T1 = (>,<, �=)T2 | χ ∧ χ′ | ¬χ | χ → χ′

with T1, T2 ∈ TERMd for some d ∈ D.

For example in Fig. 2, guard m − currentDIS ≥ ST of transition negotiation
is a state predicate.

Definition 7 (Satisfaction of State Predicates). The satisfaction relation
of state predicates is defined for every state s ∈ S follows:

– s |= T1 = (>,<, �=)T2 iff �T1�s = (>,<, �=)�T2�s

– s |= χ ∧ χ′ iff s |= χ and s |= χ′

– s |= ¬χ iff not s |= χ
– s |= χ → χ′ iff s |= χ → s |= χ′

Effect terms denote the values of the variables and parameters of events in
transitions, so terms denoting variable values in the source state(v, time) and
in the target state (v′, time′) within a transition are included. Effect terms are
interpreted over transitions.

Definition 8 (Effect Terms). The D-indexed family of sets ETERM of effect
terms is defined inductively as follows:

– The effect terms c, f(−→p) and a.param are defined the same way as state terms;
– If t ∈ V ARtime then t, t′ ∈ ETERMtime;
– If v ∈ V ARd, then v, v′ ∈ ETERMd for every d ∈ D and d �= time.

For example in Fig. 2, in effect1 of transition pointPosition, terms “C0”,
“currentDis”, are effect terms.

Definition 9 (Interpretation of Effect Terms). The interpretation of an
effect term T ∈ ETERM over a transition s

α−→ s′ written �T �
s

α−→s′ is defined
as follows, where: II(param) = 〈param′, view〉:
– �c�

s
α−→s′ = cU

– �f(T1, . . . , Tn)�
s

α−→s′ = fU (�T1�s
α−→s′ , . . . , �Tn�

s
α−→s′)

– �a.param�
s

α−→s′ = view(II(a).param′Πσ′(0)
)

– �v�
s

α−→s′ = vΔ(s)

– �v′�
s

α−→s′ = vΔ(s′)

A SOC-Based Formal Specification and Verification 159

– �t�
s

α−→s′ = TIMEσ(s)

– �t′�
s

α−→s′ = TIMEs′

Effect formulas are defined based on effect terms, and specify the effects
of state transitions. The satisfaction relation of effect formulas is defined for
transitions.

Definition 10 (Effect Formulas). The Effects Formulas EF is defined as fol-
lows:

– χ ::= true | T1 = T2 | ini | χ ∧ χ′ | ¬χ

where T1, T2 ∈ ETERMd for some d ∈ D, and ini ∈ EnINI .

For example in Fig. 2, in effect1 of transition
pointPosition is an effect formula.

Definition 11 (Satisfaction of Effect Formulas). The satisfaction relation
of effect formulas EF is defined for every transition s

α−→ s′ as follows:

– s
α−→ s′ |= true

– s
α−→ s′ |= T1 = T2 iff �T1�s

α−→s′ = �T2�s
α−→s′

– s
α−→ s′ |= ini iff II(ini) ∈ PUBs

α−→s′

– s
α−→ s′ |= χ ∧ χ′ iff s

α−→ s′ |= χ and s
α−→ s′ |= χ′

– s
α−→ s′ |= ¬χ iff not s

α−→ s′ |= χ

Extended effect terms denote the values of variables along a trace of state
σ[0, rσ]; They extend effect terms by introducing the term vtime, which is used
to denote the time derivative of variable v at any time point TIMEσ(ζ). Where
σ ∈ Σ and ζ ∈ [0, rσ]. They are interpreted along traces.

Definition 12 (Extended Effect Terms). The D-indexed family E-ETERM
of sets of extended effect terms is defined inductively as follows:

– The extended effect terms c, f(−→p), t, t′, v and v′ are defined the same way as
effect terms;

– If v ∈ V ARd, then vtime ∈ E-ETERMd′ .

For example in Fig. 2, in effect2 of transition correction, terms “Ctime”,
“V ”, “Vtime” and “−b” are extended effect terms.

Definition 13 (Interpretation of Extended Effect Terms). An extended
semantics of an effect term T ∈ E-ETERM is interpreted along a trace σ(0, rσ),
written �T �σ(0,rσ) is defined as follows:

– �c�σ(0,rσ) = c
σ(0,rσ)
U

– �f(T1, . . . , Tn)�σ(0,rσ) = fU (�T1�σ(0,rσ), . . . , �Tn�σ(0,rσ)

– �vtime�σ(0,rσ) = v
Δ(σ(0,rσ′))
time

– �v�σ(0,rσ) = vΔ(σ(0,rσ′))

160 N. Yu and M. Wirsing

– �t�σ(0,rσ) = TIMEσ(0,rσ′)

Extended effect formulas are defined based on extended effect terms, and
specify the first order differential equations about certain variables and time (in
Fig. 3 for example, in transition negotiation, Ctime = v0 is a differential equation
about the displacement of a train C and time, where C is a globally defined
variable). The satisfaction relation of extended effect formulas is defined for
traces of states.

Definition 14 (Extended Effect Formulas). The Extend Effects Formulas
E-EF is defined as follows:

– χ ::= true | vtime = T | χ ∧ χ′ | ¬χ

where vtime, T ∈ E-ETERM.

For example in Fig. 2, Ctime = V in effect2 of transition correction is an
extended effect formula.

Definition 15 (Satisfaction for Extended Effect Formulas). The satis-
faction relation for the extended effect formulas E-EF is defined for every trace
σ[0, rσ] as follows:

– σ[0, rσ] |= true
– σ[0, rσ] |= vtime = T iff v is continuous over TIMEσ[0,rσ] and has a time

derivative of value �T �σ(ζ) at each state σ(ζ) with ζ ∈ (0, rσ);
– σ[0, rσ] |= χ ∧ χ′ iff σ[0, rσ] |= χ and σ[0, rσ] |= χ′

– σ[0, rσ] |= ¬χ iff not σ[0, rσ] |= χ

Using state predicates, effect formulas and extended effect formulas, we can
specify a transition of a business role component in a SO-HL2TS.

Definition 16 (Transition Specification). A transition specification is a
triple

〈trigger, guard, effect1, effect2〉
where trigger ∈ Act, guard ∈ SP , effect1 ∈ EF and effect2 ∈ E-EF.

The satisfaction relation of transitions is defined for SO-HL2TSs.

Definition 17 (Transition Satisfaction). The SO-HL2TS m satisfies a tran-
sition specification

r = 〈trigger, guard, effects1, effect2〉

written m |= r, iff for every transition s
α−→ σ(0)the following property hold:

If II(trigger) ∈ α, s |= guard, then

s
α−→ σ(0) |= effect1 and σ[0, rσ] |= effect2.

A SOC-Based Formal Specification and Verification 161

3.3 Business Protocol Extensions

As introduced in Sect. 2.1, the behaviors of business protocols are specified
through a set of behavior constraints. We introduce a new behavior constraint
(see Fig. 4: always l ≤ L → C < m) by defining hybrid programs and dTL
formulas. The behavior constraint captures common requirements along all the
traces of a system run.

Fig. 3. Business protocol: RadioBlockCentre

Hybrid programs [8] generalize real-time programs [9] to hybrid change and
are used to describe the behaviour of hybrid systems. They provide uniform
discrete jumps and continuous evolutions along differential equations. In [12],
hybrid programs are defined over a set variables and terms and used to specify
dTL formulas. In this paper, we define hybrid programs with transitions specified
in last section, and interpret them along hybrid traces.

Definition 18 (Redefined Hybrid Programs). The set of hybrid programs
HP of a SO-HL2TSs m is inductively defined as follows:

– If a transition r = 〈trigger, guard, effect1, effect2〉 over m has the satisfac-
tion relation m |= r, then r ∈ HP ;

– If β ∈ HP , then firstβ ∈ HP ;
– If β, γ ∈ HP , then (β ∪ γ) ∈ HP ;
– If β, γ ∈ HP , then (β; γ) ∈ HP ;
– If β ∈ HP , then (β∗) ∈ HP ;

Definition 19 (Trace Semantics of Redefined Hybrid Program). The
trace semantics of a redefined hybrid program β, written �β�, is defined as follows:

– �trigger, guard, effect1, effect2� = {s
α−→ σ(0), σ[0, rσ] : trigger ∈ α, s |=

guard, s
α−→ σ(0) |= effect1 and σ[0, rσ] |= effect2};

162 N. Yu and M. Wirsing

– �firstβ� = {s
α−→ σ(0), σ[0, 0] : (s α−→ σ(0), σ[0, rσ]) ∈ �β�}

– �β ∪ γ� = �β� ∪ �γ�;
– �β; γ� = {σ ◦ ς : σ ∈ �β�, ς ∈ �γ� when σ ◦ ς is defined};
– �β∗� =

⋃
n∈N�βn�, where βn+1 = (βn;β) for n ≥ 1.

Given a service module m = 〈N,W,C, client, spec, prov〉, the function hp :
m → HP maps SRML specifications into hybrid programs. hp is constructed
similar to the method provided in [6] (for details see [7]). For example, the
hybrid program of the business role component Train in module Train-Control
(see Fig. 2) is: hp(Train) = [pointPosition∗] ∪ [pointPosition∗;negotiation]
∪[pointPosition∗;negotiation; correction].

Based on the definition of hybrid programs, we redefine dTL formulas as
follows:

Definition 20 (Redefined dTL Formulas). The sets Fml of dTL state for-
mulas and FmlT of dTL trace formulas are inductively defined as the smallest
set such that (φ ∈ Fml and π ∈ FmlT):

φ ::= true | sp | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | ∀tφ | ∃tφ | [β]π | 〈β〉π
π ::= φ | �φ | ♦φ

with sp ∈ SP , t ∈ V ARtime and β ∈ HP .

Formulas without � and ♦ are called non-temporal dL formulas [8]. Unlike
in UCTL, state formulas are true on a trace if they hold for the last state of
that trace but not for the first. Thus, [β]φ expresses that φ is true at the end of
each trace of β. In contrast, [β]�φ expresses that φ is true all along all states of
every trace of β. According to the valuation of dTL formulas defined in [12], we
define the semantics of dTL formulas as follows:

Definition 21 (Satisfaction of dTL Formulas). Let 〈S, s0, Act,R,Σ,AP,L,
TIME,Π〉 be a SO-HL2TS. The satisfaction relation for dTL state formulas on
each state s ∈ S is defined as follows, where s[t �→ t̃] denotes the modification
that agrees with state s on all variables except for variable t ∈ V ARtime:

– s |= true;
– s |= sp iff sp ∈ L(s)
– s |= ¬φ iff not s |= φ;
– s |= φ ∧ φ′ iff s |= φ and s |= φ′;
– s |= φ ∨ φ′ iff s |= φ or s |= φ′;
– s |= φ → φ′ iff s |= φ → s |= φ′;
– s |= ∀tφ iff s[t �→ t̃] |= φ for all t̃ ∈ V ARtime;
– s |= ∃tφ iff s[t �→ t̃] |= φ for some t̃ ∈ V ARtime;
– s |= [β]π iff for each trace ρ ∈ �β� with firstρ = s, if the satisfaction relation

between ρ and π is defined then ρ |= π;
– s |= 〈β〉π iff there is a trace ρ ∈ �β� with firstρ = s, if the satisfaction

relation between ρ and π is defined then ρ |= π.

A SOC-Based Formal Specification and Verification 163

The satisfaction relation for dTL trace formulas with respect to trace ρ =
(s α−→ σ1, σ1[0, rσ1], σ1(rσ1)

α1−→ σ2(0), σ2[0, rσ2], . . .) is defined as follows where
φ is a state formula and Λ denotes the failure of a system run:

– ρ |= φ iff ρ terminates and lastρ |= φ, whereas the satisfaction relation
between ρ and φ is not defined if ρ does not terminates;

– ρ |= �φ iff σi(ζ) |= φ for all positions (i, ζ) of ρ with σi(ζ) �= Λ;
– ρ |= ♦φ iff σi(ζ) |= φ for some positions (i, ζ) of ρ with σi(ζ) �= Λ;

In the end we can define the new behaviour constraint always s for extending
business protocol:

Definition 22 (Hybrid Behaviour Constraint). For any service module m
with the corresponding sets C and WW ∈ W :

– “always sp” stands for

[hp(C,WW)]�sp

(sp is true in each state along every trace of hybrid program hp(C,WW)
starting from the initial state, where sp ∈ SP).

For example in Fig. 3, the behaviour “alwalys l < L → C < m” stands for
[hp(Train)]�(l ≤ L → C < m).

4 Case Study: The Verification of Train-Control System

The model of Train-Control System is inspired by the European Train Con-
trol System(ETCS). As shown in Fig. 4, the system is composed by three com-
ponents: Train, Radio Block Centers (RBC) and Balise which is melded with
the railway. RBC grant or deny movement authorities (MA) to individual train
by wireless communication. A train can not exceed the current MA (say m)
in order to guarantee safety driving. The balise reports to the train its cur-
rent position periodically, so the train knows how far it still is from the end of
MA. Before entering negotiation at some point ST (in the “far” region), the
train has sufficient distance to MA and can regulate its speed freely. When
the train enters the region “neg”, it sends a request to the RBC to apply
for the MA extension and proceed with a constant speed v0. If the train
receives negative response from the RBC, it enters the “cor” region and pro-
ceed with acceleration −b. With the restriction of the scenario above, we have
the hybrid program hp(Train − ControlSystem(Train)) = [pointPosition∗] ∪
[pointPosition∗;negotiation] ∪ [pointPosition∗;negotiation; correction].

Figure 5 shows the SRML module Train-Control. Each element of the module
is described as follows:

– business role: TR – a component that coordinates the movement process of
the train, of type Train;

164 N. Yu and M. Wirsing

– business protocol: RBC– the external interface of the module which provides
service to the external parties for knowing the current position of the train
and issuing movement authority, of type RadioBlockCentre;

– business protocol: BA – the external interface of the module which requires
service from the external parties for getting the current positioning signal, of
type Balise;

– interaction protocol: RT, TB – two internal wires that make the partner rela-
tionship between RBC and TR, TR and BA explicitly.

Fig. 4. ETCS train coordination

Fig. 5. Train-Control module

The whole SRML specification can be found in Appendix 2. In business role
Train, C : displacement is a global variable of the train displacement which is
continuous in time. Differential equation Ctime = v0 describes the movement of
the train in region “(neg)”; and differential equation set Ctime = V, Vtime = −b
describes the movement of the train in region “cor”.

Next we show the verification of the behaviour, always l < L → C <
m, specified in business protocol RadioBlockCentre. This behaviour expresses
that,under a initial condition φ for parameters, a train will always remain within
its MA m, as long as the accumulated RBC negotiation latency l is at most L.
We assume that every transition σ(tσ) α−→ σ′(0) takes so short time that we
could approximately have CΔ(σ(rσ)) = CΔ(σ′(0)), lΔ(σ(rσ)) = lΔ(σ′(0)).

So we have ψ → [run(Train-Control System)]�(l ≤ L → C < m), where ψ is
the set of initial propositions and run(Train-Control System) = [pointPosition∗]

A SOC-Based Formal Specification and Verification 165

∪ [pointPosition∗;negotiation] ∪ [pointPosition∗;negotiation; correction].
According to the scenario, the train is in region “far” along trace pointPosition∗,
we always have C < m. Thus the proof of this part can be omitted. In the end
we have the following formula:

where C0 is the initial displacement and l0 is the initial negotiation latency. As
shown in Fig. 2, the train first negotiate with RBC while keeping a constant
speed V and the movement is controlled by equation (Ctime = V) in transition
negotiation. Then in transition correction the train brakes with acceleration −b
and the movement is controlled by equations (Ctime = V ∧ Vtime = −b).

We use the rule schema of the dTL calculus provided in [7] for our proof.
The rule schema can be find in Appendix 1 and 〈[·]〉 brackets are used instead of
modalities to visually identify the update prefix. We omit all the events, variables
and parameters that don’t appear in the state predicate l < L → C < m.

The dTL proof of the constraint in (2) splits into two cases as follows:

. . .
ψ � [negotiation]�φ

. . .
ψ � [negotiation][correction]�φ

T1 ψ � [negotiation; correction]�φ
P3 � ψ → [negotiation; correction]�φ

The left branch proves that if φ holds during negotiation, an open condition
Lv0 + C0 < m should be satisfied. The proof is shown as follows:

In the proof above, in the step applying P10, L is replaced by ∀t ≥ 0 to
obtain a general case.In the step applying D3, v0t + C0 is substituted by C and
t is substituted by l. In the step applying D7, C = v0t+C0 and l = t are special
solutions of differential equations Ctime = v0 and ltime = 1 respectively.

The right branch proves that if φ continues to holds after negotiation has
completed when continuing with an adjusted acceleration a, an open condition

166 N. Yu and M. Wirsing

v2
0 < 2b(m − Lv0 − C0) ∧ Lv0 + C0 < m should be satisfied. The proof is shown

as follows:

In the proof above, in the first step applying P10, ∀t̃ ≥ 0 is substituted to obtain
a general case. In the step applying D3, − b

2 t̃2 = v0t̃+C0 is substituted by C. In
the step applying T3 and D7, − b

2 t̃2 = v0t̃+C0 is a special solution of differential
equation set Ctime = V, Vtime = −b.

5 Concluding Remarks and Related Work

In this paper, we extended SRML semantic domain by defining HL2TSs and
it’s hybrid traces which represent the system evolution. Based on this, we made
a formal extension of SRML, which includes the extension of the language of
business role and the language of business protocol. For our case study, we
specified a Train-Control system with SRML and verified a safety constraint
of it.

This work has been done mainly on the basis of [6,12]. In [6] a formal spec-
ification of SRML is provided. In [12], hybrid programs and the logic dTL for
reasoning about the temporal behaviour of hybrid programs are defined, and a
set of calculus for deductive verification is provided. In the SRML extension, we
redefined hybrid programs and dTL formulas over the extended SRML seman-
tic domain, thus enables the evolution of a service-oriented transition system
with continuous traces can be reasoned about with the calculus in [12]. Fur-
thermore, to define the HL2TSs, we referenced [13] for Hybrid Automata; to
redefine hybrid programs and dTL, we referenced [14,15] for Temporal Logic
and Dynamic Logic basis. Different from various approaches for modeling and

A SOC-Based Formal Specification and Verification 167

verifying hybrid systems, such as that provided in [17,18], our approach deals
with hybrid transition systems, which integrate interactions among components
with hybrid systems.

Although our work extends SRML, which is defined to specify service-
oriented transition systems, it does not include the content of service discovery
and binding. In [16] a formal operational semantics for service discovery and
binding is brought forward. A prospect of our future work might be applying
continuous time execution to this approach.

Appendix 1: A Rule Schema of the dTL Calculus

A rule schema of the dTL calculus can be found in Table 1. In these rules,
φ, ψ ∈ Fml and π ∈ FmlT ; χ1 ∈ EF and χ2 ∈ E-EF , T1, . . . , Tn ∈ ETERM ,
T ∈ E-ETERM and t ∈ ETERMtime. In D3, M is a first-order formula and the
substitution of M

T ′
1...T ′

n

T1...Tn
, which replaces T1 . . . Tn by T ′

1 . . . T ′
n in M. In D7-D8,

Table 1. Rule schemata of the temporal dynamic dTL verification calculus

168 N. Yu and M. Wirsing

fv0 is the solution of the initial value problem vtime = T, v�(σ(0)) = v0, where
σ(0) is the state in which variable v has the value v0. In P10, Cl∀(F0 → G0) →
Cl∀(F → G) is an instance of a first-order tautology of real arithmetic and Cl∀
is the universal closure.

Appendix 2: SRML Specification of Module Train-Control

The SRML specification of service module Train-Control is shown in Fig. 6.

Fig. 6. Module Train-Control

A SOC-Based Formal Specification and Verification 169

References

1. Georgakopoulos, D., Papazoglou, M.: Service-Oriented Computing. The MIT Press
Cambridge, Massachusetts (2009)

2. van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems.
Springer, London, UK (1999)

3. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interac-
tion protocols for service-oriented system modelling. In: Derrick, J., Vain, J. (eds.)
FORTE 2007. LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007)

4. Building Systems using a Service Oriented Architecture. White paper version 0.9
(2005)

5. Fiadeiro, J., Lopes, A., Bocchi, L., Abreu, J.: The Sensoria reference modelling
language. In: Wirsing, M., Hölzl, M. (eds.) SENSORIA. LNCS, vol. 6582, pp. 61–
114. Springer, Heidelberg (2011)

6. Abreu, J.: Modelling business conversations in service component architectures.
Ph.D thesis, University of Leicester (2009)

7. Yu, N.: Injecting continuous time execution into service-oriented computing. Ph.D
thesis, Ludwig-Maximilians-Universität München (to be appeared)

8. Platzer, A.: Towards a hybrid dynamic logic for hybrid dynamic systems. In:
Blackburn, P., Bolander, T., Braüner, T., de Paiva, V., Villadsen, J. (eds.) LICS
International Workshop on Hybrid Logic 2006, Seattle USA, ENTCS (2007)

9. Henzinger, T., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for
read-time systems. In: LICS, pp. 394–406. IEEE Computer Society (1992)

10. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, New York
(2004)

11. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

12. Platzer, A.: AVACS - Automatic verification and analysis of complex systems.
Technical report No. 12, AVACS (2007)

13. Henzinger, T.A.: The theory of hybrid automata. In: Lnan, M.K., et al. (eds.) LICS
1996, vol. 170, pp. 256–292. Springer, Berlin (2000)

14. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) HTCS, vol.
A, pp. 995–1072. Elsevier, Amsterdam (1995)

15. Harel, D., Kozen, D.: Dynamic Logic. The MIT Press Cambridge, Massachusetts
(2000)

16. Fiadeiro, J., Lopes, A., Bocchi, L.: An abstract model of service discovery and
binding. In: Formal Aspects of Computing, vol. 23, pp. 433–463. Springer, Berlin
(2011)

17. Fadlisyah, M., Ölveczky, P.C., Ábrahám, E.: Formal modeling and analysis of
human body exposure to extreme heat in HI-maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 139–161. Springer, Heidelberg (2012)

18. Quesel, J., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and prove
hybrid systems with KeYmaera: A tutorial on safety. In: STTT (2015)

19. European Train Control System (ETCS) Open Proofs - Open Source. http://
openetcs.org/

http://openetcs.org/
http://openetcs.org/

	A SOC-Based Formal Specification and Verification of Hybrid Systems
	1 Introduction
	2 A General Introduction to SRML
	3 Hybrid Extension of SRML
	3.1 A Hybrid Extension of SRML Semantic Domain
	3.2 Business Role Extension
	3.3 Business Protocol Extensions

	4 Case Study: The Verification of Train-Control System
	5 Concluding Remarks and Related Work
	References

