Use Case Analysis Based on Formal Methods:
An Empirical Study

Marcos Oliveira Jr.(®9 | Leila Ribeiro, Erika Cota, Lucio Mauro Duarte,
Ingrid Nunes, and Filipe Reis

PPGC — Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS),
PO Box 15.064, Porto Alegre, RS 91.501-970, Brazil
{marcos .oliveira,leila,erika,lmduarte,
ingridnunes,freis}@inf.ufrgs.br

Abstract. Use Cases (UC) are a popular way of describing system
behavior and represent important artifacts for system design, analysis,
and evolution. Hence, UC quality impacts the overall system quality and
defect rates. However, they are presented in natural language, which is
usually the cause of issues related to imprecision, ambiguity, and incom-
pleteness. We present the results of an empirical study on the formal-
ization of UCs as Graph Transformation models (GTs) with the goal of
running tool-supported analyses on them and revealing possible errors
(treated as open issues). We describe initial steps for a translation from a
UC to a GT, how to use an existing tool to analyze the produced GT, and
present some diagnostic feedback based on the results of these analyses
and the possible level of severity of the detected problems. To evaluate
the effectiveness of the translation and of the analyses in identifying prob-
lems in UCs, we applied our approach on a set of real UC descriptions
obtained from a software developer company and measured the results
using a well-known metric. The final results demonstrate that this app-
roach can reveal real problems that could otherwise go undetected and,
thus, help improve the quality of the UCs.

Keywords: Use cases - Graph transformation - Empirical study - Model
analysis

1 Introduction

Use Cases (UC) [3] are a popular model for documenting software expected
behavior. They are used in different software processes, not only for requirement
documentation and validation, but also as specifications for system design, ver-
ification, and evolution. Hence, they are important reference points within the
software development process. In current practice, UC descriptions are typically
informally documented using, in most cases, natural language in a predefined
structure. Being informal descriptions, UCs might be ambiguous and imprecise.

This work is partially supported by the VeriTeS project (FAPERGS and CNPq).

© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 110-130, 2015.
DOI: 10.1007/978-3-319-28114-8_7

Use Case Analysis Based on Formal Methods: An Empirical Study 111

This may result in a number of specification problems that can be propagated
to later development phases and jeopardize the overall system quality [1]. In
fact, it is well-known that most software faults are introduced during the spec-
ification phase [12]. Nevertheless, it is important to keep UC descriptions in a
format familiar to the stakeholders, since they must be involved in the UC defin-
ition. Thus, the verification of UCs normally corresponds to manual inspections
and walkthroughs [11]. Because the analysis is manual, detecting incompleteness
and recognizing ambiguities is not a trivial task. Since software quality is highly
dependent on the quality of the specification, cost-effective strategies to decrease
the number of errors in UCs are crucial.

Strategies for the formalization of UCs have already been proposed, such as
[7,8,10,15]. Many of them assume a particular syntax for UC description tai-
lored for their particular formalisms. This limits the expression of requirements
in terms of the stakeholders language and, in some cases, also restrains the
semantics of the UC. Moreover, whereas current design techniques are mostly
data-driven, which delays control-flow decisions until later phases, many of the
used formalisms model UCs as sequences of actions, which may neglect data-
related issues. Our aim is to keep the expressiveness of a description in natural
language and use a formalism for modeling/analysing UCs that is flexible enough
to represent the semantics defined by stakeholders at a very abstract level. More-
over, we advocate that the translation from a UC to a formal model should be
performed in a systematic way, guided by well-defined steps (possibly aided by
tools), such that the model can be obtained without an expert in the formalism
(because the expertise is embedded in the predefined translation process). This
is fundamental for the adoption of formal methods in practice.

In this paper, we investigate the suitability of Graph Transformation (GT)
[5,14] as a formal model to describe and analyze UCs. Some reasons for choos-
ing GT are: the elements of a UC can be naturally represented as graphs; it is a
visual language; the semantics is very simple yet expressive; GT is data-driven;
there are various static and dynamic analysis techniques available for GT, as
well as tools to support them. We work towards an approach that integrates
UC formalization and tool-supported analysis, with the objective of improving
the quality of UCs. As the formalization requires a precise description of the
behavior described in the UC, the process of translating it into a formal model
may already reveal errors. The goal is to define a sequence of steps to guide
the process of building the formal model, executing analyses, and evaluating the
results in terms of the level of severity of errors. Diagnostic feedback should also
be provided, indicating possible actions to solve the detected problems through
modification of the original UC. Hence, the process should, iteratively and grad-
ually, improve an initial UC and generate, as result, not only a more precise
UC, which can still be presented to non-technical stakeholders and be readily
used without affecting the usual development process, but also a corresponding
formal model that can be refined and used in subsequent design activities. This
paper presents the first steps towards such a process, presenting an outline of
the idea and an empirical evaluation of the effectiveness of the translation and

112 M. Oliveira Jr. et al.

of the analyses in identifying problems in UCs. We applied our approach on a
set of real UC descriptions obtained from a software development company and
measured the results using a well-known metric. The final results demonstrate
that this approach can reveal real problems that could otherwise go undetected
and, thus, help improve the quality of the UCs.

This paper is organized as follows: Sect. 2 presents the necessary background
information and details of the translation from UCs to GTs, as well as a detailed
description of each step of our approach applied to a running a example; Sect. 3
presents the settings of the conducted empirical study; Sect. 4 presents an analy-
sis and discussion of results; Sect. 5 discusses threats to the validity of our work;
Sect. 6 presents a comparative analysis of our technique in relation to some sim-
ilar techniques; and Sect. 7 concludes the paper and discusses future work.

2 Modeling UCs Using GTs

2.1 Background

Use Cases a Use Case (UC) defines a contract between stakeholders of a system,
describing part of the system behavior [3]. The main purpose of a UC descrip-
tion is the documentation of the expected system behavior and to ease the com-
munication between stakeholders, often including non-technical people, about
required system functionalities. For this reason, the most usual UC description
is the textual form. A general format of a UC contains a unique name, a pri-
mary actor, a primary goal, and a set of sequential steps describing the successful
interaction between the primary actor and the system towards the primary goal.
A sequence of alternative steps are often included to represent exception flows.
Pre- and post-conditions are also listed to indicate, respectively, conditions that
must hold before and after the UC execution.

Figure 1 depicts an example of UC of a bank system in a typical textual
format, describing the log in operation executed by a bank client. We explain
our approach using this UC as example.

Graph Transformations. The formalism of Graph Transformations (GT) [5,14]
is based on defining states of a system as graphs and state changes as rules that
transform these graphs. Due to space limitations, in this section, we only provide
an informal overview of the notions used in this paper. For formal definitions,
see e.g. [14]. Examples of graphs, rules and their analysis are presented in the
following subsections.

Graphs are structures that consist of a set of nodes and a set of edges. Each
edge connects two nodes of the graph, one representing a source and another
representing a target. A total homomorphism between graphs is a mapping of
nodes and edges that is compatible with sources and targets of edges. Intuitively,
a total homomorphism from a graph GI to a graph G2 means that all items
(nodes and edges) of G1 can be found in G2 (but distinct nodes/edges of G1
are not necessarily distinct in G2). If we have a graph, say TG, that represents
all possible (graphical) types that are needed to describe a system, a total homo-
morphism A from any graph G to TG would associate a (graphical) type to each

Use Case Analysis Based on Formal Methods: An Empirical Study 113

Use Case Specification (original)

Number 1

Name Log into ATM

Summary User logs into ATM

Priority 5

Preconditions User has bank card and registered password
Postconditions User receives menu of available ATM operations

Primary Actor(s) Bank Customer

Secondary Customer Accounts Database
Actor(s)
Trigger Only option on ATM
Main Scenario Step Action
1 System asks for a Bank card
2 User inserts card
3 System asks for password
4 User enters password
5 System validates user’s card and
password and display menu of
operations
Extensions Step Branching Action
5a System notifies user that password is
invalid
5b System exits option

Open Issues

Fig. 1. Login Use Case description.

item of G. We call this triple (G, h, TG) a typed graph, and TG is called a type
graph (that is, nodes of TG describe all possible types of nodes of a system, and
edges of TG describe possible relationships between these types).

A Graph Rule describes a relationship between two graphs. It consists of: a
left-hand side (LHS), which describes items that must be present for this rule to
be applied; a right-hand side (RHS), describing items that will be present after
the application of the rule; and a mapping from LHS to RHS, which describes
items that will be preserved by the application of the rule. This mapping must
be compatible with the structure of the graphs (i.e., a morphism between typed
graphs) and may be partial. Ttems that are in the LHS and are not mapped
to the RHS are deleted, whereas items that are in the RHS and are not in the
image of the mapping from the LHS are created. We also assume that rules do
not merge items, that is, they are injective.

A GT System consists of a type graph, specifying the (graphical) types of the
system, and a set of rules over this type graph that define the system behavior.
The application of a rule r to a graph G is possible if an image of the LHS of r
is found in G (that is, there is a total typed-graph morphism from the LHS of

114 M. Oliveira Jr. et al.

r to G). The result of a rule application deletes from G all items that are not
mapped in 7 and adds the ones created by r.

Our analysis of GTs is based on concurrent rules and critical pairs, two
methods of analysis independent from the initial state of the system and, thus,
they are complementary to any other verification strategy based on initial states
(such as testing), detailed further ahead.

2.2 UC Formalization and Verification Strategy

Figure 2 depicts the proposed UC formalization and verification strategy, which
is divided into four main phases. Starting from a textual description of the UC,
the first phase (UC Data Extraction phase) is to identify entities (Step 1) and
actions (Step 2) that will be part of the formal model. Then, basic verifications
can be performed regarding the consistency of the extracted information (Pri-
mary Verifications phase). We look for inconsistencies that might affect or even
prevent the construction of the GT model such as entities or conditions that are
mentioned but never used, actions or effects of an action that are not clearly
defined, and so on. If inconsistencies are detected, the UC must be rewritten
to eliminate them or the analyst can annotate the problem as an open issue to
be resolved later on. When no basic inconsistencies are found, the GT can then
be generated (GT Generation phase). In this process, conditions and effects of
actions are modeled as states (graphs) in Step 3. Then, in Step 4, a type graph
is built through the definition of a graphical representation of the artifacts gen-
erated in Steps 1 and 3. After that (Step 5), each UC step is modeled as a
transition rule from one state (graph) to another, using the structures defined
in Steps 3 and 4.

Having the GT, a series of automatic verifications (based on concurrent rules,
conflict analysis, and dependency analysis) can be performed to detect possible
problems (UC Analysis phase). We use the AGG tool [18] to perform the auto-
matic analyses on the GT model. All detected issues are annotated as open
issues (OIs) along with the solutions (when applicable). With this approach,
any design decision made over an OI can be documented and tracked back to
the original UC. Through analysis, it is possible to verify whether the pre- and
post-conditions were correctly included in the model, whether there are con-
flicting and/or dependent rules, what is the semantics of a detected conflict or
dependency, and whether these results were expected or not. One important
point is that, during the process of representing the UC in the formal model,
clarifications and decisions about the semantics of the textual description must
be made. Annotated Ols force the stakeholders to be more precise and explicit
about tacit knowledge and unexpressed assumptions about system invariants
and expected behavior.

Open issues are classified according to their severity level: code Yellow (A\)
indicates a warning, meaning a minor problem that can probably be solved by a
single person; code Orange () indicates a problem that requires more attention
and probably a definition/confirmation from the stakeholders; code Red ()
indicates a serious issue that requires a modification in the UC description.

Use Case Analysis Based on Formal Methods: An Empirical Study 115

UC textual
description

OPEN ISSUES
UC data extraction
Step 1: Identification of entities
v Possible omission or fi}
Step 2: Identification of actions inconsistency
l Errors of omission or [0\
Primary Verifications incompleteness
| Branches consistency? | ‘ |
| Actions/Effects completely defined? | i

(R N .. A
GT generation / Err.ors of omission or
= incompleteness

Step 3: characterize conditions &

effects as states Possible errors of
i omission

Step 4: Construct type graph Possible super ﬁ
v specification
Step 5: Construct rules for each UC step

Possible errors of
. o omission or wrong @
-

v modeling

Step 6: UC Analysis Error of incorrect fact @

Concurrent rules Errors of omission or {4

*7‘}‘— wrong modeling _)
o N

Error of ambiguity @\

Dependencies Analysis Possible error of @

y, K ambiguity

Conflict Analysis

-Jil

Fig. 2. Overview of the UC formalization and verification strategy.

'Artifacts List of Entities: User, ATM, System, Bank card, Password

UcC 1
Step 1

Fig. 3. UC1 - Step 1

Below, we describe the steps of our UC formalization and verification approach

and the possible Ols that can be derived from them, illustrating the results for
the login UC (UC1 - Fig. 1).

Step 1 - Identification of entities: The analyst manually identifies in the UC
text all the entities involved in UC. Figure 3 shows the result for the example.

116 M. Oliveira Jr. et al.
Table 1. Primary verification steps
Open |Verification Problem Severity |Possible action
issue level
OL1 |An entity listed in |Different names for the Analyze whether this
Step 1 is not us'ed same en.tlty or entities A Yellow | actually what is in-
(as actor or in-|used in pre-/post- tended,
volved) in any ac- |conditions are not used
tion in the steps of the UC
OL2 |A branching con- |The description of the Analyze whether this
fllthIl is th used |actions may be too ab- A Yellow | actually what is in-
in any action stract tended
OL3 |The effect of |Ambiguous description Provide more details
an action is not |or omission © Red in the UC description
clearly defined
Table of Actions UC1
Action Actor Involved Conditions Effect
askCard System IO — Display msg ask-
ing card
insertCard User System, 1.System asks for Card becomes
Arti- Card card connected to
~ facts 2.User has card system
—
o
8 9 Table of Branch Conditions UC1
2 Step Condition Value: Step
5 User’s card and password are validated true: 5.
false: Sa
A ATM never appeared in the actions table (OI.1)
Open | @ oyt option” - step 5b - not clear (OL.3)
Issues
A Branching conditions was not used : nothing was said about how
validation should be carried out. (OI.2)

Fig. 4. UCI - Step 2

Step 2 - Identification of actions: This step defines a Table of Actions, containing
an entry for each action in the UC.

Actions that perform input/output operations involve a special entity called
I0. Considering the possibility of alternative paths described in the UC, a Table
of Branch Conditions is also defined.

Based on these two tables, three basic verifications can be performed and
may raise open issues, as detailed in Table 1. Figure4 shows the result of this
step to the example UC. Only part of the Table of Actions is presented. As a
result, three open issues were raised.

Step 3 - Modeling conditions and effects as states: In this step, it must be
explicitly defined how to describe the conditions and effects listed in the Table

Use Case Analysis Based on Formal Methods: An Empirical Study 117

of Actions, as well as the pre- and post-conditions of the UC in terms of nodes and
edges of a graph. The resulting table is called Table of Conditions/Effects. At the
same time, we build a Table of Operations that is used in these formal definitions,
with two predefined operations Input and Output. The tables resulting from this
step are illustrated in Fig. 5.

(Part of) Table of Conditions Effects UCI
Action Condition/Effect Characterization
User has bank card
pre and registered pass-
word [Password peu User s Card
insertCard,System displays msg
askCard asking for card / Sys- EEEN

UC 1
Step 3

Arti- tem asks for card
facts ||...
Table of Operations UC1
OPN Src Tgt RetVal Pars UsedIn
Output System — — type: String askCard, askPwd,
validate&display,
validate¬iy
Input — System — type: String enterPwd

pwd: Password

Fig.5. UC1 - Step 3

Step 4 - Construction of the Type graph: The nodes of the type graph are the
entities (Step 1) and operations (Step 3). The arcs are the relationships that
were necessary to characterize the conditions/effects. If attributes of nodes were
used to characterise the conditions/effects, they must also be part of the type
graph. Figure 6 shows the type graph for our running example.

TypeGraph of UseCasel

Arti-
facts

UcC 1
Step 4

System

Fig. 6. UCI - Step 4

Step 5 - Construction of rules: Rules that formally describe the behavior of
the UC are constructed. For each action listed in the Table of Actions, we build

118 M. Oliveira Jr. et al.

Set of Rules

askCard of UseCasel =]

1:System

insertCard of UseCasel

Arti-
facts || >N

C
Step 5

pwd

Input

Qutput
type="Password”

type="Menu"

2:Password

Fig.7. UC1 - Step 5

a rule having as left-hand side (LHS) the graph that describes the conditions
that must be true for this action to occur. The graphs corresponding to each
condition are already described in the Table of Conditions/Effects, hence it is
only necessary to merge them appropriately. Analogously, the right-hand side
(RHS) of the rule is built using the effects of each action. Some rules of the
example UC are shown in Fig. 7.

Step 6 - Use case analysis: The following analysis techniques may be performed
in any order. The result from these analyses are usually complementary.

6.1. Use Case Effect: We first define rule sequences (RSs) that represent the
execution of each possible path of the UC. RSs are just sequences of rules (defined
in Step 5) that implement the execution of each scenario of the UC. Based on
each RS, we build a single rule, called concurrent rule, which shows the effect of
the whole UC in one step. This concurrent rule allows us to check whether the
overall effect is really the desired one. Table 2 presents the analysis performed
on the RSs and possible resulting open issues.

This analysis makes it explicit: (i) everything that is required for the UC
to execute (LHS of the rule); and, (ii) the overall effect of the UC (RHS of the
rule). To build the concurrent rule, the rules of the UC are joint by dependencies
and, therefore, if some items are forgotten, this might lead to the impossibility
of building the concurrent rule using all rules of the UC (and, thus, we might
discover errors in the description of the UC steps as rules). Figure 8 shows the
result of this step for our UC example.

6.2. Conflict Analysis (critical pairs): This type of analysis technique tells us
which steps are mutually exclusive, that is, it pinpoints the choice points of the
system. Table 3 presents the verifications based on critical pairs analysis and the
possible resulting open issues. The result of the conflict critical-pair analysis is a
Conflict Matriz, having rules as rows and columns, where each cell is filled with
a number indicating how many items of a rule (row) are in conflict with items
of another rule (column).

Use Case Analysis Based on Formal Methods: An Empirical Study

119

Table 2. Verification steps on rules sequences

Open | Verification Problem Severity |Possible action

issue level

OL.4 |A concurrent rule [Items generated by Review the rules
(for any alternative [some rule and used © Red
path in the UC) |by another one may
cannot be built us- |be missing by omis-
ing all the rules|sion or modeling er-
in the correspond- |ror
ing RSs

OL5 |Multiple concur- |[Multiple instances of Check dependencies between
rent rules are built |one or more entities © Red rules to find unexpected sub-
for a single UC |are possible, leading paths in the UC behavior
scenario to different (possibly

unexpected) ways of
combining the rules
of the UC

0OI.6 |UC pre-conditions |Pre-conditions may Remove unused pre-conditions
are not a subgraph |include unnecessary from the UC text
of the LHSs of the |items A Yellow
concurrent rules

OL.7 |The LHS of a con- |[UC requires some- Identify the RS in problem-
current rule is not [thing that is not ex- |,) o atic concurrent rule and check
a subgraph of the |plicitly stated in the |~ ¢ |whether all actions in this
UC pre-conditions |pre-conditions path were correctly modeled. If

model is correct, check for miss-
ing pre-conditions.

OIL.8 |Post-conditions of [Some rule 1is not Check the rules. If all rules
an alternative path |generating a required O Red | to be correct, post-
of the UC are not |item (by UC omis- conditions might be too strong.
contained in the |sion or modeling mis-

RHS of the cor- |take)
responding concur-
rent rule

0OI.9 |The RHS of a con- [Some rule is not If the rules seem to correctly
current rule is not |deleting a required © Red describe each action, post-
contained in the |item (by UC omis- conditions might be too weak
corresponding UC [sion or modeling mis-
post-condition take)

A value Zero in a cell means there is no conflict between two rules. The
conflicts are only between items of the LHSs of the rules. The results of this step
for our example are presented in Fig.9.

6.3. Dependency Analysis (critical pairs): Similarly to critical pair analysis,
(potential) dependency analysis is independent of an initial situation and is per-
formed by building a Dependency Matriz. It shows relationships between rules
and can be used to check whether the dependencies that we intuitively expected
to occur are actually there. The verifications based on this matrix are presented
in Table4.

120 M. Oliveira Jr. et al.
Concurrent Rules
askCard ard +askPwd Pwd lid: display of UseCasel =]
Arti-
g facts |[askcan ard +askPwd Pwd +valid, of UseCasel =1
© :
= (o} 5 6
09 3-Password i 4-User B 2 Card | E
)
@Missing preconditions: System must exist (OL.7)
Open 0o System did not release card in error execution: review UC and
Issues
rule (O1.9)
Fig. 8. UC1 - Step 6.1
Table 3. Verification steps based on critical pairs analysis
Open |Verification Problem Severity |Possible action
issue level
OL.10 |[A rule is not conflict- |The rule could be ap- Analyze whether this
ing with itself plied an arbitrary num- A is actually the in-
Yell
ber of times ROV tended behavior
OL.11 [There is no conflict |Non-deterministic — be- Revise the conditions
between rules that [havior: any alternative O Red (LHSs) associated
represent the branch- [path can be taken no € with rules represent-
ing points of the UC |matter the condition ing alternative paths
behavior in the UC
OL.12 |Conflicts between | These conflicts repre- Revise the conflicting
rules other than [sent branches in system |,)0 rules
the ones described |execution that must be | @ 2"8€
above (with itself |explicitly stated in the
and branch points) |UC (and in the model)
as an alternative path
Table 4. Verification steps based on dependencies analysis
Open | Verification Problem Severity |Possible action
issue level
0OI.13 |Dependencies listed do [Possible omission in Check the RHS of a
not represent depen- [the UC description or rule and the LHS of
. . . A Yellow
dencies that are desired |a modeling error the other rule that de-
in the system pends on the first one
OI.14 |An expected depen- |Possible omission in Check the rules in-
dency between rules [the UC (.1escr1pt10n OF | A Yellow volved
does not appear a modeling error.

Use Case Analysis Based on Formal Methods: An Empirical Study 121

Conflicts Matrix
800 % Minimal Conflicts
Show
first \ second 2] 3 4 5 6 7
N Arti- ||1askCard ‘ 0) 0 | 0 0 0 0 0
— 2 facts 2 insertCard 5 | 0 0 0 o
O 9 3 askPwd 0 L (. 0 0 0 0
P 0
EER
IOpen A No self-conflicts on rules askCard and askPwd: Add a status at-
SSUES 1t ribute to prevent unexpected applications of these rules (OI.10)
Fig.9. UC1 - Step 6.2
Dependenciess Matriz
8 0o £ Minimal Dependencies
™ Show
- gg' AI‘ti— first | second 1 Fi 3 4 5 6 7
) % facts 1 askCard | 0 1 | 0 0 0 0 [0 |
it EEn
SR |7em ‘0 , o || o 0 0 0 o |
IOpen A askCard does not depend on exit: Rule exit must re-establish the
SSUES linitial conditions (changing the status variable accordingly) (O1.14)

Fig. 10. UC1 - Step 6.3

Figure 10 shows the result of this step for our example UC. If two rules that
we would like to occur always in some specific order are shown to be independent,
then they could actually occur in any order, which represents a possible problem.

As a final result, we obtain a UC textual description more accurate and
complete, as shown in Fig. 11, after all open issues have been analysed.

Currently, most of the steps are manual and some of them are carried out
aided by tools. In steps 1 and 2, the analysis is purely manual, however, in steps
3, 4 and 5, the analyst should use a tool such as AGG, which helps build a formal
model of the system by supporting the visual construction of graph grammars.
This tool is also very useful in step 6 to perform the analysis of critical pairs
and the generation of concurrent rules, which are not trivial processes.

3 Study Settings

Considering the methodology presented in the previous section, we now detail
the study conducted to evaluate its usefulness for UC formalization and its effec-
tiveness for tool-supported analysis of UCs in order to detect real and potential
problems. This empirical study was crucial to obtain concrete evidences that
using GT's in the context of UCs promotes quality.

In order to adequately evaluate our approach, we followed the principles
of experimental software engineering [19]. We first present our study goal in

122 M. Oliveira Jr. et al.

Use Case Specification (after verification)

Number 1

Name Log into System via ATM

Summary User logs into System via ATM

Priority 5

Preconditions User has bank card and registered password and the
system is running

Postconditions User receives menu of available System operations

Primary Actor(s) Bank Customer

Secondary Actor(s) Customer Accounts Database

Trigger Only option on ATM
Main Scenario Step Action
1 System asks for a Bank card
2 User inserts card
5 System asks for password
4 User enters password
5 System validates user’s card and

password and display menu of operations
Extensions Step Branching Action
5a System notifies user that password is
invalid

5b System exits option and goes back to step
1. System releases the card.

Open Issues

Fig. 11. Login Use Case description after verification.

Table 5. Goal definition.

Element Our study goal

Motivation | To understand the usefulness of GTs to improve the quality of UCs

Purpose Evaluate

Object The effectiveness of using GTs to identify problems in UCs

Perspective From a perspective of the researcher

Scope In the context of a single real software development project

Table 5, which follows the GQM template [2]. Based on the definition of our
goal, we derived two research questions, which we aim to answer with our study.

RQ-1. Are system analysts able to detect problems in their own UC descriptions
without additional support?
RQ-2. How effective is our GT-based approach in identifying problems in UCs?

Use Case Analysis Based on Formal Methods: An Empirical Study 123

In order to answer these research questions, we followed the steps detailed
in Sect. 3.1, which describes the study procedure. In Sect. 3.2, we introduce the
software development project that is the target system of our study.

3.1 Procedure

1 - Analysis of UCs by System Analyst. In order to answer RQ-1, we requested
a system analyst responsible for the creation of the UC descriptions, to carefully
revise them, and point out problems, such as ambiguity, imprecision, omission,
incompleteness, and inconsistency. This analyst has more than three years of
experience in software projects with varying lengths (from a few weeks to years)
with documentation describing the entire architecture of the solution, including
artifacts such as class and sequence diagrams and use cases. If the system ana-
lyst found any problem, then such problems should ideally be identified by our
approach. However, there was no guarantee the system analyst would be able
to identify all existing problems. Therefore, the system analyst was a “sound
but not complete” oracle, i.e. all problems identified were real problems but not
necessarily all of the problems that existed in the UCs would be detected.

2 - UC Formalization. Given a set of 5 UCs, we performed the steps detailed in
Sect. 2 to formalize them using GTs and used the AGG tool to analyze them.
As a result, we detected some Ols.

8 - Evaluation of Detected Open Issues. After identifying open issues using our
GT-based approach, we evaluated whether they were real problems in the ana-
lyzed UCs. If a detected OI had been pointed out as a real problem by the
system analyst in the first step of our procedure, then it was definitely a real
problem. Otherwise, the system analyst was requested to analyze the OI and ver-
ify whether it was an actual problem that they were unable to identify during
the manual inspection.

4 - Data Analysis. The previous steps of our procedure produced the following
data: (i) a list of OlIs identified by our approach; and (ii) a list of problems
identified by the system analyst with or without the aid of our approach. Our
aim is that our approach detects all and only real problems (i.e., all Ols are
real problems and all real problems are identified as OIs). This can be seen
as a classification problem, and thus the effectiveness of our approach can be
measured using the metrics widely used in the context of information retrieval
of precision and recall [13], whose formulas are shown below:

true positives

(1)
(2)

Precision = — —
true positives + false positives

Recall = true positives

true positives + false negatives

where true positives are Ols that correspond to real problems; false positives
are Ols that are not real problems; and false negatives are real problems not
identified as Ols.

124 M. Oliveira Jr. et al.

3.2 Target System

The UC descriptions we used in our study are part of the analysis documentation
of an industrial software project. This project involves the development of a
typical system to manage and sell products, and include functional requirements
such as adding new products, changing product information, creating sale orders,
and releasing products in stock. Because our study procedure involves the manual
analysis of UC descriptions, we selected a subset of all available UCs, choosing
those that are not trivial, involving basic and alternative flows. The selected UC
descriptions were written in English and described actions performed by actors
(e.g. user, system, database, etc.) to achieve a particular state of the system or
perform a specific operation. The UC set used has an average of ten sequential
steps and five alternative branches.

Based on the Use Case Points Method [4], the UCs used in the study were
evaluated between average and compler because of the number of transactions
(between 4 and 7 or more than 7) and the type of actors involved (many com-
plex actors) in their descriptions. Figure 12 shows a fragment of a full textual
description of a UC along with two examples of OIs found.

Number 1
Name Create Product Item i
& Same entity?

Summary An user creates a new item for sales

LL L
Preconditions User selects the option to create sales items on the system
Post conditions A new sales item is created

LL L]
Main Scenario Step Action

1 System asks for a product name

2 User inserts the product name
3 System asks for a product quantity
4

User inserts the product quantity
eee How to validate?

11 System validates all input data from user

Fig. 12. Example of Open Issues found in the Use Case textual description.

In the example, the first OI identified is related to the names of the entities
involved in the use case. The first step of the analysis is to identify all existing
entities in the description, and in this situation, since there are three different
names for an entity which is apparently the same, problems such as uncertainty,
inaccuracy or ambiguity may appear in system development. This OI, classified
as a warning, has not been confirmed as real problem because Product Item
and Sales Item have different semantics in the system and are indeed treated as
different entities. The other OI found is more serious, because there is an effect
that is not fully defined in the use case. It is unclear what means the action of
validate the data. Validation can be related to the existence of the data in the

Use Case Analysis Based on Formal Methods: An Empirical Study 125

database, or if the data entered are compatible with the expected type (numbers,
words, dates, etc.), or check the correctness according to some oracle, etc. The
definition of this effect possibly will require a project team’s decision, so it is
rated at a higher level of severity. In this case, the problem was confirmed, since
the analyst was not sure how this validation would be performed. These two
situations exemplify the review process applied to the entire set of UCs used in
this study. We do not provide any further details about our target system and
its UCs due to a confidentiality agreement.

4 Results and Discussion

As result of the execution of the procedure described in the previous section, we
collected the data needed to answer our research questions. The system analyst,
after revising the original UCs, reported that they had no problems whatsoever.
Hence, from the perspective of the analyst who created the UCs, they were cor-
rect. However, after applying our approach to these UCs, 32 OlIs were identified
across the 5 UCs, which gives an average of 6.4 Ols per UC. This is an expres-
sive number, since the system analyst stated that the UCs did not contain any
problem. In order to verify whether the identified OIs were false alarms (false
positives), the system analyst was asked to check each one of them. Out of the
32 Ols, 24 were pointed out by the analyst as real problems and, consequently,
only 8 of the identified OIs were false positives.

Table 6 presents our results in detail. It shows the number of Ols found in each
UC (columns #0I) and how many of these OIs were confirmed as real problems
(columns #P). The rows show the number of detected OIs with respect to their
level of severity (yellow, orange, or red), according to our previously introduced
classification. The table also presents the total number of detected OIs of each
type and the total number of real problems considering all the 5 UCs.

Table 6. Study results

Ol [UC1 [UC2 [UC3 | UC4 | UC5 | Total
Type |[#O1[#P |#O01 [#P |#O1[#P |#O01[#P |#O1[#P |#O01[#P
A [324221421]0]M4]7
> [T [1[1 [t[1[1[ofol2][2]5]5
© [3[3| 1 1|3 [2]3 33/ [3][138]12
Total| 7 | 6| 6 | 4| 6 |4| 7 |5 6 | 53224

|Legend: UC - Use Case; OI - Open Issue; P - Problem. |

The results were then analyzed according to the selected metrics. Because
the system analyst was unable to identify any problem without support (i.e., to
the best of the analyst’s knowledge there was no error in the analyzed UCs),
the number of problems not identified by our approach was equals to 0, leading
to recall = 1.0. However, this result is possibly misleading, as there might be

126 M. Oliveira Jr. et al.

problems not identified by both the system analyst and our approach. This is an
indication that even for a stakeholder (such as a system analyst, or a user) who
knows well the system domain, it is not a trivial task to identify problems. A
possible reason for this is the fact that this knowledge of the domain causes the
stakeholder to understand different names as synonyms as part of this domain-
specific knowledge and overlook omissions in the UCs because they believe some
information is obvious. This is an evidence that support (e.g. techniques or tools)
for the revision process plays a key role in identifying existing UC problems. As
for the Precision, the obtained value was 0.75 (24 true positives and 8 false pos-
itives) — that is, 75% of the OIs identified by our GT-based approach were
real problems in the UC descriptions. Most of the identified issues were actual
problems whereas most of our false alarms (7 of 8) are in the less critical cate-
gories. This means that most of the identified issues not only were real errors not
detected by the person who created the UCs, but also revealed problems that
required attention from the analyst as they could lead to serious consequences
in the actual system.

By analyzing Ols not identified as problems, we observed that 6 of them were
not necessarily classified as a false positive by the system analyst. They preferred
to leave such issues as they were and postpone changes to future design decisions,
considering that they alone could not decide what was the best approach to tackle
those issues. The other 2 OIs found, confirmed as false positives by the system
analyst, were related to words (names or concepts) used in the specification and
have been identified as incompleteness or ambiguities due to lack of knowledge
of the modeler about the problem domain and the internal processes of the
company. Considering these results, it was concluded that, in most cases, our
analysis helped the system analyst, even when an OI did not cause an immediate
UC fix, but showed issues that might be considered in future phases of the
project. These observations will be used as input for a refinement of the steps
proposed to formalize UCs using GTs, in order to create a tool-assisted method
to support the UC reviewing process.

Note that OIs were identified without the intervention of any stakeholder.
The only provided input was the software documentation in the form of UC
descriptions and the output was a checklist with Ols to be revised. For the system
analyst, this has great value because the detected problems can be resolved not
only at the UC level, but also at the design and implementation levels, as they are
performed based on UCs. More importantly, had these problems been detected
before the design and implementation, when they should have, development costs
could have been potentially reduced.

5 Threats to Validity

When planning and conducting our study, we carefully considered validity con-
cerns. This section discusses the main threats we identified to validate this study
and how we mitigated them.

Internal Validity. The main threat to internal validity of this study was the
selection of a person responsible for performing the modeling of UCs in the

Use Case Analysis Based on Formal Methods: An Empirical Study 127

formalism of graphs. Being a formalism mainly used in the sub-area of for-
mal methods, it is difficult to find professionals working on software projects
in industry with in-depth knowledge of graph transformations. However, one of
our intentions with this work was to show that, correctly following the steps of
our strategy, the modeler does not need a deep understanding of the formalism.
Moreover, we used the AGG tool to automate the analyses of the generated
model and provide a graphical interface for the manipulation of graphs.

Construct Validity. There are different ways of modeling a system through
the formalism of graphs that can produce some threats to construct validity. The
modeler may not follow correctly the modeling steps, being influenced by their
prior knowledge about the formalism. This means that they could change the
way of building the model based on their own previous knowledge. Consequently,
we cannot guarantee they will obtain similar results to those presented in this
work. The same applies when they have an advanced knowledge of the problem
domain, because the modeler can insert information in the model that is not
documented in the software artifact, hiding a possible omission of information
in the UC description. For these reasons, we proposed a roadmap, step by step,
on how to model UCs as GTs, for both beginners and experts users.

Conclusion Validity. As the main threat to validity of the conclusion of our
study we also highlight potential problems in the generation of the formal model.
Besides different forms of modeling and the issue that the modeler may be influ-
enced by their experience or prior knowledge of the problem domain, the modeler
may build a model inconsistent with the initial documentation due to errors dur-
ing the modeling process. Once again, our step-by-step modeling process should
be followed to prevent the creation of a model that is not consistent with the
UC. Moreover, the tool-supported verifications can also detect some modeling
errors, as shown in Tables 2,3 and 4, thus reducing the risk of this threat.

External Validity. The main threat to the external validity was the selection
of artifacts on which we based our study. We did not use any criteria to select
either the project or the system analyst who participated of our study. As a
consequence of this, the project that was made available for us may not be a
representative sample of a large set of software development projects. We were
aware of this threat during the study. However, we opted for randomly choosing
artifacts to support the applicability of our strategy in different scenarios. This
way, we guaranteed that we were not selecting UCs that would be more tailored
for our approach. We also believe that obtaining good results even in a situation
of a random choice of UCs gives greater confidence on our process.

6 Related Work

Some authors have developed approaches for translating UCs to well-known
formalisms, such as LTS [16], Petri Nets [20], and FSM [9,17]. Unlike these for-
malisms, a GT model is data-driven, hence the focus is on the manipulation

128 M. Oliveira Jr. et al.

of data inside the system. We do not need to explicitly determine the con-
trol flow unless it is necessary to guarantee data consistency. Considering other
approaches that formalize UCs using a GT model, there are two closest to ours.
The approach presented in [21] allows the simulation of the execution of the
system but do not report the use of any type of analysis, which, in our opinion,
reduces the advantage of having a formal model. The work described in [6] con-
siders analyses such as critical pairs and dependencies involving multiple UCs
and provides some ideas on the interpretation of the results. However, we pro-
pose a more structured way of providing diagnostic feedback about single UCs,
which serves as a guide to point out the possible errors as well as their severity
level. As problems in individual UCs can affect the inter-UCs behavior, we chose
to initially study how to improve each UC and then move on to the study of
how to apply similar ideas for inter-UC formalization and analysis.

Although we could find similar approaches regarding the formalization of UCs
as GT models, we could not find any description of an empirical study as the one
described in this paper. We believe that this type of study is important not only
to provide confidence on the proposed approach, encouraging us to develop it
further in terms of its formalization as a validation and verification process, but
also to allow us to quantify how good it is. This type of result is also important
from the stakeholders’ point of view, as they can see in practice and numerically
the benefits of applying formal methods to a usually informal process. Moreover,
unlike most of the other approaches, our work focuses on helping the developers
to construct the formal model by the definition of a systematic translation.

7 Conclusions and Future Work

In this paper, was investigated the suitability of GT as a formal basis for UC
description and improvement. Was defined an outline of a translation process
from UCs to GTs in a step-by-step manner, which describes how to use an
existing tool to analyze the generated model and diagnose real and potential
problems. The detection of such problems may cause changes to the UCs and
trigger a new round of analyses, incrementally and iteratively improving the
initial specification. The process also generates a formal model that can be used
for further analyses. The approach was evaluated through an experiment with
real software artifacts, where it was possible to detect existing errors, allowing
an improvement on the original UCs.

Making a general analysis of the experiment, the results were considered
promising, since it was possible to identify a large number of real problems
based on a documentation that was produced at an early stage of a software
development. Considering the proposed strategy, was observed the need for fur-
ther automation of the process, which is the most immediate planned future
work.

In this paper, was discussed the application of the approach to one UC at
a time. Even though this has already shown benefits regarding the software
development process, inter-UC analyses are currently being implemented as well

Use Case Analysis Based on Formal Methods: An Empirical Study 129

as the appropriate diagnostic feedback. Within the same model frame, other
types of validation and verification techniques on GT models, such as test case
generation, model checking, and theorem proving are also subject of current
work. These techniques will be incorporated into a comprehensive methodology
for software quality improvement targeting other types of errors. We also plan
to study how changes in the UCs could be handled by our approach and how
we could reduce the impact and cost of changes by identifying which parts are
effectively affected and which analyses are actually required.

Also, a tool was designed, which is already in the early stages of development,
in order to automate the first steps of the methodology (between steps 1 and 5)
to help the analyst to build a formal model through the graph formalism. This
tool aims to help produce the model data in a format acceptable by the AGG
tool, responsible for the computational analysis of the graphs.

Finally, note that, although was not presented any new formal method or
verification technique here, a considerable amount of expertise in formal methods
was required to define the Ols: they are meant to bridge the gap between the
informal and formal worlds. We believe that this type of work is crucial towards
the industrial adoption of formal methods.

References

1. Alagar, V.S., Periyasamy, K.: Specification of Software Systems. Texts in Computer
Science, 2nd edn. Springer, London (2011)

2. Basili, V., Caldiera, C., Rombach, H.: Goal question metric paradigm. In:
Marciniak, J.J. (ed.) Encyclopedia of Software Engineering, vol. 1. Wiley,
New York (1994)

3. Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley Longman
Publishing Co., Inc., Boston (2000)

4. Diev, S.: Use cases modeling and software estimation: applying use case points.
SIGSOFT Softw. Eng. Notes 31(6), 1-4 (2006)

5. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Applications, lan-
guages, and tools, vol. 2. World Scientific, River Edge (1999)

6. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: Proceedings of the 24th ICSE, pp. 105-115 (2002)

7. Hurlbut, R.R.: A survey of approaches for describing and formalizing use cases.
Technical report XPT-TR-97-03, Expertech, Ltd. (1997)

8. Jin, N., Yang, J.: An approach of inconsistency verification of use case in XML
and the model of verification tool. In: Proceedings of MINES 2010, pp. 757-761
(2010)

9. Klimek, R., Szwed, P.: Formal analysis of use case diagrams. Comp. Sci. 11, 115—
131 (2010)

10. Koters, G., werner Six, H., Winter, M.: Validation and verification of use cases and
class models. In: Proceedings of the 6th REFSQ (2001)

11. Myers, G., Sandler, C., Badgett, T.: The Art of Software Testing. ITPro Collection.
Wiley, New York (2011)

12. Patton, R.: Software Testing, vol. 408, 2nd edn. Sams Publishing, Indianapolis
(2005)

130

13.

14.

15.

16.

17.

18.

19.

20.

21.

M. Oliveira Jr. et al.

Powers, D.M.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness & correlation. Technical Report SIE-07-001, FUSA (2007)
Rozenberg, G. (ed.): Foundations, vol. 1. World Scientific, River Edge (1997)
Shen, W., Liu, S.: Formalization, testing and execution of a use case diagram.
In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 68-85.
Springer, Heidelberg (2003)

Sinnig, D., Chalin, P., Khendek, F.: LTS semantics for use case models. In: Pro-
ceedings of the ACM SAC, pp. 365-370. ACM (2009)

Sinnig, D., Chalin, P., Khendek, F.: Use case and task models: an integrated devel-
opment methodology and its formal foundation. ACM ToSEM 22 (2013)
Taentzer, G.: AGG: a tool environment for algebraic graph transformation. In:
Miinch, M., Nagl, M. (eds.) AGTIVE 1999. LNCS, vol. 1779, pp. 481-488. Springer,
Heidelberg (2000)

Wohlin, C., Runeson, P., Hést, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Berlin (2012)

Zhao, J., Duan, Z.: Verification of use case with petri nets in requirement
analysis. In: Gervasi, O., Taniar, D., Murgante, B., Lagana, A., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2009, Part II. LNCS, vol. 5593, pp. 29-42. Springer,
Heidelberg (2009)

Ziemann, P., Havlscher, K., Gogolla, M.: From UML models to graph transforma-
tion systems. ENTCS 127(4), 17-33 (2005)

	Use Case Analysis Based on Formal Methods: An Empirical Study
	1 Introduction
	2 Modeling UCs Using GTs
	2.1 Background
	2.2 UC Formalization and Verification Strategy

	3 Study Settings
	3.1 Procedure
	3.2 Target System

	4 Results and Discussion
	5 Threats to Validity
	6 Related Work
	7 Conclusions and Future Work
	References

