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Abstract. The present paper sets the foundation of logic programming
in hybridised logics. The basic logic programming semantic concepts such
as query and solutions, and the fundamental results such as the existence
of initial models and Herbrand’s theorem, are developed over a very gen-
eral hybrid logical system. We employ the hybridisation process proposed
by Diaconescu over an arbitrary logical system captured as an institution
to define the logic programming framework.

1 Introduction

Hybrid logics [1] are a brand of modal logics that allows direct reference to the
possible worlds/states in a simple and very natural way through the so-called
nominals. This feature has several advantages from the point of view of logic
and formal specification. For example, it becomes considerably simpler to define
proof systems in hybrid logics [2], and one can prove results of a generality that
is not available in non-hybrid modal logic. In specifications of dynamic systems
the possibility of explicit reference to specific states of the model is an essential
feature.

The hybridisation of a logic is the process of developing the features of hybrid
logic on top of the base logic both at the syntactic level (i.e. modalities, nom-
inals, etc.) and semantics (i.e. possible worlds). By a hybridised institution (or
hybrid institution) we mean the result of this process when logics are treated
abstractly as institutions [7]. The hybridisation development in [6,13] abstracts
away the details, both at the syntactic and semantic levels, that are indepen-
dent of the very essence of the hybrid logic idea. One great advantage of this
approach is the clarity of the theoretical developments that are not hindered
by the irrelevant details of the concrete logics. Another practical benefit is the
applicability of the results to a wide variety of concrete instances.

In this paper we investigate a series of model-theoretic properties of hybrid
logics in an institution-independent setting such as basic set of sentences [3],
substitution [4] and reachable model [10,11]. While the definition of basic set
of sentences is a straightforward extension from a base institution to its hybrid
counterpart, the notion of substitution needs much consideration. Establishing
an appropriate concept of substitution is the most difficult part of the whole
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enterprise of constructing an initial model of a given hybrid theory and proving
a variant of Herbrand’s theorem. The notion of substitution is closely related
to quantification. Our abstract results are applicable to hybrid logical systems
where the variables may be interpreted differently across distinct worlds, which
amounts to the world-line semantics of [14]. Our paper does not cover the rigid
quantification of [2] when the possible worlds share the same domain and the
variables are interpreted the same in all worlds.

Initial semantics [8] is closely related to good computational properties of log-
ical systems and it plays a crucial role for the semantics of abstract data types.
For example, initiality supports the execution of specification languages through
rewriting, thus integrating efficiently formal verification of software systems into
modelling. The initial semantics methodology has spread much beyond its orig-
inal context, that of traditional equational specification, to a variety of mod-
ern and more sophisticated logical contexts. Moreover, initial semantics plays a
foundational role in logic programming. For example, in [12], initial models are
known as “least Herbrand models”. Our approach to initiality is layered and is
intimately linked to the structure of sentences, in the style of [9]. The existence
of initial models of sets of atomic sentences is assumed in abstract setting but
is developed in concrete examples; then the initiality property is shown to be
closed under certain sentence building operators.

The second main contribution of the paper is a variant of Herbrand’s theorem
for hybrid institutions, which reduces the satisfiability of a query with respect
to a hybrid theory to the search of a suitable substitution. The logic program-
ming paradigm [12], in its classical form, can be described as follows: Given a
program (Σ,Γ ) (that consists of a signature Σ and a set of Horn clauses Γ ) and
a query (∃Y )ρ (that consists of an existentially quantified conjunction of atoms)
find a solution θ, i.e. values for the variables Y such that the corresponding
instance θ(ρ) of ρ is satisfied by (Σ,Γ ). The essence of this paradigm is how-
ever independent of any logical system of choice. The basic logic programming
concepts, query, solutions, and the fundamental results, such as Herbrand’s the-
orem, are developed over an arbitrary institution (satisfying certain hypotheses)
in [4] by employing institution-independent concepts of variables, substitution,
quantifiers and atomic formulas. Our work sets foundation for a uniform devel-
opment of logic programming over a large variety of hybrid logics as we employ
the hybridisation process over an arbitrary institution [6,13] to prove the desired
results.

The institution-independent status of the present study makes the results
applicable to a multitude of concrete hybrid logics including those obtained from
hybridisation of non-conventional logics used in computer science.

The paper is organised as follows: in Sect. 2 we recall the definition of institu-
tion and the related notions such as substitution, reachable model and basic set of
sentences. In Sect. 3 we recall the institution-indepedent process of hybridisation
of a logical system and we lift the notions discussed in the previous section to the
hybrid setting. Section 4 is dedicated to the development of the layered initiality
result. In Sect. 5 we present an institution-independent version of Herbrand’s
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theorem and its applications to concrete hybrid logics. Section 6 concludes the
paper and discusses the future work.

2 Institutions

The concept of institution formalises the intuitive notion of logical system, and
has been defined by Goguen and Burstall in the seminal paper [7].

Definition 1. An institution I = (SigI, SenI, ModI, |=I) consists of

(1) a category SigI, whose objects are called signatures,
(2) a functor SenI : SigI → Set, providing for each signature Σ a set whose

elements are called (Σ-)sentences,
(3) a functor ModI : (SigI)op → CAT, providing for each signature Σ a cat-

egory whose objects are called (Σ-)models and whose arrows are called
(Σ-)morphisms,

(4) a relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each signature Σ ∈ |SigI|, called

(Σ-)satisfaction, such that for each morphism ϕ : Σ → Σ′ in SigI, the
following satisfaction condition holds:

M ′ |=I
Σ′ SenI(ϕ)(e) iff ModI(ϕ)(M ′) |=I

Σ e

for all M ′ ∈ |ModI(Σ′)| and e ∈ SenI(Σ).

When there is no danger of confusion, we omit the superscript from the notations
of the institution components; for example SigI may be simply denoted by Sig.
We denote the reduct functor Mod(ϕ) by � ϕ and the sentence translation
Sen(ϕ) by ϕ( ). When M = M ′ � ϕ we say that M is the ϕ-reduct of M ′ and
M ′ is a ϕ-expansion of M . We say that ϕ is conservative if each Σ-model has
a ϕ-expansion. Given a signature Σ and two sets of Σ-sentences E1 and E2, we
write E1 |=| E2 whenever E1 |= E2 and E2 |= E1.

The literature shows myriads of logical systems from computing or mathe-
matical logic captured as institutions (see, for example, [5]).

Example 1 (First-Order Logic (FOL) [7]). The signatures are triplets (S, F, P ),
where S is the set of sorts, F = {Far→s)}(ar,s)∈S∗×S is the (S∗×S -indexed) set
of operation symbols, and P = {Par}ar∈S∗ is the (S∗-indexed) set of relation
symbols. If ar = ε, where ε denotes the empty arity, an element of Far→s is
called a constant symbol, or a constant. By a slight notational abuse, we let F
and P also denote

⋃
(ar,s)∈S∗×S Far→s and

⋃
ar∈S∗ Par, respectively. A signature

morphism between (S, F, P ) and (S′, F ′, P ′) is a triplet ϕ = (ϕst, ϕop, ϕrl), where
ϕst : S → S′, ϕop : F → F ′, ϕrl : P → P ′ such that for all (ar, s) ∈ S∗ × S
we have ϕop(Far→s) ⊆ F ′

ϕst(ar)→ϕst(s), and for all ar ∈ S∗ we have ϕrl(Par) ⊆
P ′

ϕst(ar). When there is no danger of confusion, we may let ϕ denote each of
ϕst, ϕop, ϕrl. Given a signature Σ = (S, F, P ), a Σ-model is a triplet M =
({sM}s∈S , {σM}(ar,s)∈S∗×S,σ∈Far→s

, {πM}ar∈S∗,π∈Par
) interpreting each sort s

as a set sM , each operation symbol σ ∈ Far→s as a function σM : arM →
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sM (where arM stands for (s1)M × . . . × (sn)M if ar = s1 . . . sn), and each
relation symbol π ∈ Par as a relation πM ⊆ arM . Morphisms between models
are the usual Σ-morphisms, i.e., S-sorted functions that preserve the structure.
The Σ-algebra of terms is denoted by TΣ . The Σ-sentences are obtained from
(a) equality atoms (e.g. t1 = t2, where t1, t2 ∈ sTΣ

, s ∈ S) or (b) relational atoms
(e.g. π(t1, . . . , tn), where π ∈ Ps1...sn

, ti ∈ (si)TΣ
, si ∈ S and i ∈ {1, . . . , n})

by applying for a finite number of times Boolean connectives and quantification
over finite sets of variables. Satisfaction is the usual first-order satisfaction and
is defined using the natural interpretations of ground terms t as elements tM
in models M . The definitions of functors Sen and Mod on morphisms are the
natural ones: for any signature morphism ϕ : Σ → Σ′, Sen(ϕ) : Sen(Σ) →
Sen(Σ′) translates sentences symbol-wise, and Mod(ϕ) : Mod(Σ′) → Mod(Σ) is
the forgetful functor.

Example 2 (REL). The institution REL is the sub-institution of single-sorted
first-order logic with signatures having only constants and relational symbols.

Example 3 (Propositional Logic (PL)). The institution PL is the fragment of
FOL determined by signatures with empty sets of sort symbols.

Example 4 (Constrained Institutions). Let I = (SigI, SenI, ModI, |=I) be an
institution. A constrained model functor ModCI : (SigCI)op → CAT is a sub-
functor of ModI : (SigI)op → CAT, i.e. SigCI ⊆ SigI, for each Σ ∈ |SigCI|
we have ModCI(Σ) ⊆ ModI(Σ), and for each Σ

ϕ→ Σ ∈ SigCI the functor
ModCI(ϕ) : ModCI(Σ′) → ModCI(Σ) is defined by ModCI(ϕ)(h) = ModI(ϕ)(h)
for all h ∈ ModCI(Σ′). We say that CI = (SigCI, SenCI, ModCI, |=CI) is a
constrained institution, where (a) SenCI : SigCI → Set is the restriction of
SenI : SigI → Set to SigCI, and (b) |=CI

Σ ⊆ |ModCI(Σ)|×SenI(Σ) is the restriction
of |=I

Σ⊆ |ModI(Σ)| × SenI(Σ) to |ModCI(Σ)| for all Σ ∈ |SigCI|.

2.1 Quantification Subcategory

Let I = (Sig, Sen, Mod, |=) be an institution. A broad subcategory1 Q ⊆ Sig

is called quantification subcategory [6] when for each Σ
χ→ Σ′ ∈ Q and

Σ
ϕ→ Σ1 ∈ Sig there is a designated pushout Σ′ ϕ[χ] �� Σ′

1

Σ

χ

��

ϕ
�� Σ1

χ(ϕ)

��
with χ(ϕ) ∈ Q

which is a weak amalgamation square2 and such that the horizontal composi-
tion of such designated pushouts is again a designated pushout, i.e. χ(1Σ) = χ,

1 A category C is a broad subcategory of C′ if C is a subcategory of C′ and C contains
all objects of C′, i.e. |C| = |C′|.

2 For all M ′ ∈ |Mod(Σ′)| and M1 ∈ |Mod(Σ1)| such that M ′ �χ = M1 �ϕ there exists
M ′

1 ∈ |Mod(Σ′
1)| such that M ′

1 �ϕ[χ] = M ′ and M ′
1 �χ(ϕ) = M1.



Foundations of Logic Programming in Hybridised Logics 73

1Σ [χ] = 1Σ′ , and for the following pushouts Σ′ ϕ[χ] �� Σ′
1

θ[χ(ϕ)]�� Σ′
2

Σ

χ

��

ϕ
�� Σ1

χ(ϕ)

��

θ
�� Σ2

χ(ϕ)(θ)

��
we

have ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ).
A variable for a FOL signature Σ = (S, F, P ) is a triple (x, s,Σ), where x is

the name of the variable and s ∈ S is the sort of the variable. Let χ : Σ ↪→ Σ[X]
be a signature extension with variables from X, where X = {Xs}s∈S is a S-
sorted set of variables, Σ[X] = (S, F ∪ X,P ) and for all (ar, s) ∈ S∗ × S we

have (F ∪ X)ar→s =
{

Far→s if ar ∈ S+,
Far→s ∪ Xs if ar = ε.

The quantification subcategory

QFOL for FOL consists of signature extensions with a finite set of variables.
Given a signature morphism ϕ : Σ → Σ1, where Σ1 = (S1, F1, P1), then

– χ(ϕ) : Σ1 ↪→ Σ1[Xϕ], where Xϕ = {(x, ϕ(s), Σ1) | (x, s,Σ) ∈ X},
– ϕ[χ] is the canonical extension of ϕ that maps each (x, s,Σ) to (x, ϕ(s), Σ1).

It is straightforward to check that QFOL defined above is a quantification sub-
category.

2.2 Substitutions

We recall the notion of substitution in institutions.

Definition 2 [4]. Let I = (Sig, Sen, Mod, |=) be an institution and Σ ∈ |Sig|.
For any signature morphisms χ1 : Σ → Σ1 and χ2 : Σ → Σ2, a Σ-substitution
θ : χ1 → χ2 consists of a pair (Sen(θ), Mod(θ)), where

– Sen(θ) : Sen(Σ1) → Sen(Σ2) is a function and
– Mod(θ) : Mod(Σ2) → Mod(Σ1) is a functor.

such that both of them preserve Σ, i.e. the following diagrams commute:

Sen(Σ1)
Sen(θ) �� Sen(Σ2) Mod(Σ1)

Mod(χ1) ������������
Mod(Σ2)

Mod(θ)��

Mod(χ2)

��
Sen(Σ)

Sen(χ1)

��

Sen(χ2)

������������
Mod(Σ)

and such that the following satisfaction condition holds:

Mod(θ)(M2) |= ρ1 iff M2 |= Sen(θ)(ρ1)

for each Σ2-model M2 and each Σ1-sentence ρ1.

Note that a substitution θ : χ1 → χ2 is uniquely identified by its domain χ1,
codomain χ2 and the pair (Sen(θ), Mod(θ)). We sometimes let � θ denote the
functor Mod(θ), and let θ denote the sentence translation Sen(θ).
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Example 5 (FOL substitutions [4]). Consider two signature extensions with con-
stants χ1 : Σ↪→Σ[C1] and χ2 : Σ ↪→ Σ[C2], where Σ = (S, F, P ) ∈ |SigFOL|, Ci

is a set of constant symbols different from the symbols in Σ. A function θ : C1 →
TΣ(C2) represents a substitution between χ1 and χ2. On the syntactic side, θ
can be canonically extended to a function Sen(θ) : Sen(Σ[C1]) → Sen(Σ[C2]) as
follows:

– Sen(θ)(t1 = t2) is defined as θterm(t) = θterm(t′) for each Σ[C1]-equation
t1 = t2, where θterm : TΣ(C1) → TΣ(C2) is the unique extension of θ to a
Σ-morphism.

– Sen(θ)(π(t1, . . . , tn)) is defined as π(θterm(t1), . . . , θterm(tn)) for each Σ[C1]-
relational atom π(t1, . . . , tn).

– Sen(θ)(
∧

E) is defined as
∧

Sen(θ)(E) for each conjuction
∧

E of Σ[C1]-
sentences, and similarly for the case of any other Boolean connectives.

– Sen(θ)((∀X)ρ) is defined as (∀Xθ)Sen(θ′)(ρ) for each Σ[C1]-sentence (∀X)ρ,
where Xθ = {(x, s,Σ[C2]) | (x, s,Σ[C1]) ∈ X} and the substitution θ′ :
C1 ∪X → TΣ(C2 ∪Xθ) extends θ by mapping each variable (x, s,Σ[C1]) ∈ X
to (x, s,Σ[C2]) ∈ Xθ.

On the semantics side, θ determines a functor Mod(θ) between Mod(Σ[C2]) and
Mod(Σ[C1]) such that for all Σ[C2]-models M we have

– Mod(θ)(M)x = Mx, for each sort x ∈ S, or operation symbol x ∈ F , or
relation symbol x ∈ P , and

– Mod(θ)(M)x = Mθ(x) for each x ∈ C1.

Category of Substitutions. Let I = (Sig, Sen, Mod, |=) be an institution and
Σ ∈ |Sig| a signature. Σ-substitutions form a category SubstI(Σ), where the
objects are signature morphisms Σ

χ→ Σ′ ∈ |Σ/Sig|, and the arrows are substitu-
tions θ : χ1 → χ2 as described in Definition 2. For any substitutions θ : χ1 → χ2

and θ′ : χ2 → χ3 the composition θ; θ′ consists of the pair (Sen(θ; θ′), Mod(θ; θ′)),
where Sen(θ; θ′) = Sen(θ); Sen(θ′) and Mod(θ; θ′) = Mod(θ′); Mod(θ).

Given a signature morphism ϕ : Σ0 → Σ there exists a reduct func-
tor SubstI(ϕ) : SubstI(Σ) → SubstI(Σ0) that maps any Σ-substitution θ :
χ1 → χ2 to the Σ0-substitution Subst(ϕ)(θ) : ϕ;χ1 → ϕ;χ2 such that
Sen(SubstI(ϕ)(θ)) = Sen(θ) and Mod(SubstI(ϕ)(θ)) = Mod(θ). It follows that
SubstI : Sigop → CAT is a functor. In applications not all substitutions are of
interest, and it is often assumed a substitution sub-functor SubI : Dop → CAT of
SubstI : Sigop → CAT to work with, where D ⊆ Sig is a subcategory of signature
morphisms. When there is no danger of confusion we may drop the superscript
I from the notations; for example SubI may be simply denoted by Sub.

Example 6 (FOL substitution functor). Given a signature Σ ∈ |SigFOL|, only
Σ-substitutions represented by functions θ : C1 → TΣ(C2) are relevant for the
present study, where C1 and C2 are finite sets of new constants for Σ. Let
SubFOL : (DFOL)op → CAT denote the substitution functor which maps each
signature Σ to the subcategory of Σ-substitutions represented by functions of
the form θ : C1 → TΣ(C2) as above.
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Example 7. (PL substitution functor) Let DPL be the subcategory of PL signa-
ture morphisms consisting of identities, and SubPL : (DPL)op → CAT the trivial
substitution functor consisting also of identities.

2.3 Reachable Models

This subsection is devoted to the institution-independent characterisation of the
models that consist of interpretations of terms.

Definition 3. Let I = (Sig, Sen, Mod, |=) be an institution, D ⊆ Sig a broad
subcategory of signature morphisms, and Sub : Dop → CAT a substitution func-
tor. A model M ∈ |Mod(Σ)|, where Σ ∈ |Sig|, is Sub-reachable if for every
signature morphism Σ

χ→ Σ′ ∈ D and each χ-expansion M ′ of M there exists a
substitution θ : χ → 1Σ ∈ Sub(Σ) such that M �θ = M ′.

This notion of reachable model is the parametrisation of the one in [10] with
substitutions.

Proposition 1. In FOL, a model is SubFOL-reachable iff its elements consist
of interpretations of terms.

The proof of Proposition 1 is a slight generalisation of the one in [10]. Note that
in PL, all models are SubPL-reachable.

2.4 Basic Sentences

A set of sentences B ⊆ Sen(Σ) is basic [3] if there exists a Σ-model MB such
that, for all Σ-models M , M |= B iff there exists a morphism MB → M . We say
that MB is a basic model of B. If in addition the morphism MB → M is unique
then the set B is called epi basic; in this case, MB is the initial model of B.

Lemma 1. Any set of atoms in FOL is epi basic and the corresponding basic
models consist of interpretations of terms, i.e. are SubFOL-reachable.

Proof. Let B be a set of atomic (S, F, P )-sentences in FOL. The basic model
MB is the initial model of B and it is constructed as follows: on the quo-
tient T(S,F )/≡B

of the term model T(S,F ) by the congruence generated by
the equational atoms of B, we interpret each relation symbol π ∈ P by
πMB = {(t̂1, . . . , t̂n) | π(t1, . . . , tn) ∈ B}, where t̂ is the congruence class of
t for all terms t ∈ T(S,F ). �	
The proof of Lemma 1 is well known, and it can be found, for example, in [3] or [5],
but since it constitutes the foundation of the initiality property, we include it
for the convenience of the reader. Since PL is obtained from FOL by restricting
the category of signatures, every set of PL atoms is epi basic.
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3 Hybrid Institutions

We recall the institution-independent process of hybridisation that has been
introduced in [6,13]. Consider an institution I = (Sig, Sen, Mod, |=) with a quan-
tification subcategory Q ⊆ Sig.

The Category of HI Signatures. The category of hybrid signatures of Sig is
defined as the following cartesian product of categories: SigHI = SigI × SigREL.
The REL signatures are denoted by (Nom,Λ), where Nom is a set of con-
stants called nominals and Λ is a set of relational symbols called modalities;
Λn stands for the set of modalities of arity n. Hybrid signatures morphisms
ϕ = (ϕSig, ϕNom, ϕRel) : (Σ,Nom,Λ) → (Σ′, Nom,Λ′) are triples such that
ϕSig : Σ → Σ′ ∈ SigI and (ϕNom, ϕRel) : (Nom,Λ) → (Nom′, Λ′) ∈ SigREL.
When there is no danger of confusion we may drop the subscripts from notations
and denote ϕSig, ϕNom and ϕRel simply by ϕ.

HI Sentences. Let us denote by QHI the subcategory QHI ⊆ SigHI which consists
of signature morphisms of the form χ : (Σ,Nom,Λ) → (Σ′, Nom,Λ) such that
χSig ∈ Q, χNom = 1Nom and χRel = 1Λ.

Theorem 1 [6,13]. If Q is a quantification subcategory for I then QHI is a
quantification subcategory for HI.

The satisfaction condition for hybridised institutions relies upon Theorem1.
A nominal variable for a hybrid signature Δ = (Σ,Nom,Λ) is a pair of the
form (x,Δ), where x is the name of the variable and Δ is the qualification of
the variable. Given a hybrid signature Δ = (Σ,Nom,Λ), the set of sentences
SenHI(Δ) is the least set such that

– Nom ⊆ SenHI(Δ),
– λ(k1, . . . , kn) ∈ SenHI(Δ) for any λ ∈ Λn+1, ki ∈ Nom, i ∈ {1, . . . , n};
– SenI ⊆ Sen(Δ);
– ρ1 � ρ2 ∈ SenHI(Δ) for any ρ1, ρ2 ∈ SenHI(Δ) and � ∈ {∧,⇒};
– ¬ρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ);
– @kρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ) and k ∈ Nom;
– [λ](ρ1, . . . , ρn) for any λ ∈ Λn+1, ρi ∈ SenHI(Δ) and i ∈ {1, . . . , n};
– (∀χ)ρ′ ∈ SenHI(Δ) for any χ : (Σ,Nom,Λ) → (Σ′, Nom,Λ) ∈ QHI and

ρ′ ∈ SenHI(Σ′, Nom,Λ);
– (∀J)ρ for any set J of nominal variables for Δ and ρ ∈ SenHI(Σ,Nom∪J,Λ);
– (↓ j)ρ for any nominal variable j for Δ and ρ ∈ SenHI(Σ,Nom ∪ {j}, Λ).

Translation of HI Sentences. Let ϕ : (Σ,Nom,Λ) → (Σ′, Nom′, Λ′) be a
morphism of HI signatures. The translation SenHI(ϕ) is defined as follows:

– SenHI(ϕ)(k) = ϕNom(k);
– SenHI(ϕ)(λ(k1, . . . , kn)) = ϕRel(λ)(ϕNom(k1), . . . , ϕNom(kn)) for λ ∈ Λn+1,

ki ∈ Nom, i ∈ {1, . . . , n};
– SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(ρ1 � ρ2) = SenHI(ρ1) � SenHI(ρ2), where � ∈ {∧,⇒};
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– SenHI(¬ρ) = ¬SenHI(ρ) ;
– SenHI(@kρ) = @ϕNom(k)SenHI(ρ);
– SenHI([λ](ρ1, . . . , ρn)) = [ϕRel(λ)](SenHI(ρ1), . . . , SenHI(ρn));
– SenHI((∀χ)ρ′) = (∀χ(ϕ))SenHI(ϕ[χ])(ρ′), where the signature morphisms χ :

(Σ,Nom,Λ) → (Σ′, Nom,Λ) is in QHI, χ(ϕ) = (χSig(ϕSig), 1Nom′ , 1Λ′) and
ϕ[χ] = (ϕSig[χSig], ϕNom, ϕRel);

– SenHI((∀J)ρ) = (∀Jϕ)SenHI(ϕ[J ])(ρ), where Jϕ = {(x, (Σ′, Nom′, Λ′)) |
(x, (Σ,Nom,Λ)) ∈ J} and ϕ[J ] : (Σ,Nom ∪ J,Λ) → (Σ,Nom′ ∪ Jϕ, Λ′)
is canonical extension of ϕ that maps each variable (x, (Σ,Nom,Λ)) ∈ J to
(x, (Σ′, Nom′, Λ′));

– SenHI((↓ j)ρ) = (↓ jϕ)SenHI(ϕ[j])(ρ), where jϕ = (x, (Σ′, Nom′, Λ′)) and
ϕj : (Σ,Nom ∪ {j}, Λ) → (Σ′, Nom′ ∪ {jϕ}, Λ′) is the canonical extension of
ϕ mapping each j to jϕ.

HI Models. The (Σ,Nom,Λ)-models are paris (M, R) where

– R is a (Nom,Λ)-model in REL. The carrier set |R| forms the set of states
of the model (M, R). The relations {λR | λ ∈ Λn, n ∈ N} represent the
interpretation of the modalities Λ.

– M is a function |R| → ModI(Σ). For each s ∈ |R|, we denote M(s) simply
by Ms.

A (Σ,Nom,Λ)-homomorphism h : (M, R) → (M′, R′) consists of

– a (Nom,Λ)-homomorphism in REL, hst : R → R′, and
– a natural transformation hmod : M ⇒ M′ ◦ hst.3

When there is no danger of confusion we may drop the superscripts st and mod
from the notations hst and hmod, respectively. The composition of HI homomor-
phisms is defined canonically as h1;h2 = ((hst

1 ;hst
2 ), hmod

1 ; (hmod
2 ◦ hst

1 )).

Reducts of HI Models. Let Δ = (Σ,Nom,Λ) and Δ′ = (Σ′, Nom′, Λ′) be two
HI signatures, Δ

ϕ→ Δ′ a HI signature morphism, and (M′, R′) a Δ′-model. The
reduct (M, R) = ModHI(ϕ)(M′, R′) of (M′, R′) along ϕ denoted by (M′, R′)�ϕ,
is the Δ-model such that |R| = |R′|, kR = ϕNom(k)R′ for all k ∈ Nom, λR =
ϕRel(λ)R′ for all λ ∈ Λ, and Ms = ModI(ϕSig)(M′

s) for all s ∈ |R|.
Satisfaction Relation. For any signaturel Δ = (Σ,Nom,Λ), model (M, R) ∈
|ModHI(Δ)| and state s ∈ |R| we define:

– (M, R) |=s k iff kR = s, for any k ∈ Nom;
– (M, R) |=s λ(k1, . . . , kn) iff (s, (k1)R, . . . , (kn)R) ∈ λR, for any λ ∈ Λn+1,

ki ∈ Nom, i ∈ {1, . . . , n};
– (M, R) |=s ρ iff Ms |=I ρ for any ρ ∈ SenI(Σ);
– (M, R) |=s ρ1 ∧ ρ2 iff (M, R) |=s ρ1 and (M, R) |=s ρ2;
– (M, R) |=s ρ1 ⇒ ρ2 iff (M, R) |=s ρ1 implies (M, R) |=s ρ2;

3 hmod is a |R|-indexed family of Σ-homomorphisms hmod = {hmod
s : Ms →

M′
hst(s)}s∈|R|.
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– (M, R) |=s ¬ρ iff (M, R) �|=s ρ;
– (M, R) |=s @kρ iff (M, R) |=kR ρ;
– (M, R) |=s [λ](ρ1, . . . , ρn) iff for every (s, s1, . . . , sn) ∈ λR, (M, R) |=si ρi for

some i ∈ {1, . . . , n};
– (M, R) |=s (∀χ)ρ iff for every expansion (M′, R) along χ : (Σ,Nom,Λ) →

(Σ′, Nom,Λ) we have (M′, R) |=s ρ;
– (M, R) |=s (∀J)ρ iff for every expansion (M, R′) along ιJ : (Σ,Nom,Λ) ↪→

(Σ,Nom ∪ J,Λ) we have (M, R′) |=s ρ;
– (M, R) |=s (↓ j)ρ iff (M, R′) |=s ρ, where (M R′) is the expansion of (M, R)

along ιj : (Σ,Nom,Λ) → (Σ,Nom ∪ {j}, Λ) such that jR = s.

λ(k1, . . . , kn) is introduced in this paper but a semantically equivalent sentence
can be obtained by combining the remaining sentence operators. However, in
certain fragments of hybrid logics the sentence operators are restricted making
the present approach more useful. The sentence building operator @ is called
retrieve since it changes the point of evaluation in the model. The sentence
building operator ↓ is called store since it gives a name to the current state and
it allows a reference to it. The global satisfaction holds when the satisfaction
holds locally in all states, i.e. (M, R) |=HI ρ iff (M, R) |=s ρ for all s ∈ |R|.
Given a signature Δ ∈ |SigHI| and two sets of sentences Γ,E ∈ SenHI(Δ), we
write Γ |=HI E iff for all models (M, R) ∈ |ModHI(Δ)| such that (M, R) |=HI Γ
we have (M, R) |=HI E. Note that variables may be interpreted differently across
distinct worlds, which amounts to the world-line semantics of [14].

Satisfaction Condition. The satisfaction condition for hybrid institutions is a
direct consequence of the following local satisfaction condition.

Theorem 2 [6]. Let Δ = (Σ,Nom,Λ) and Δ′ = (Sig′, Nom′, Λ′) be two HI
signatures and ϕ : Δ → Δ′ a signature morphism. For any ρ ∈ SenHI(Δ),
(M, R′) ∈ ModHI(Δ′) and s ∈ |R′| we have

ModHI(ϕ)(M′, R′) |=s ρ iff (M′, R′) |=s
SenHI(ϕ)(ρ)

The result of the hybridisation process is an institution.

Corollary 1 [6]. HI = (SigHI, SenHI, ModHI, |=HI) is an institution.

A myriad of examples of hybrid institutions may be generated by applying the
construction described above to various parameters: (1) the base institution I
together with the quantification category Q, and (2) by considering different
constrained model functors (ModCHI : SigCHI → CAT) for HI.

Example 8 (Hybrid first-order logic (HFOL)). This institution is obtained by
applying the hybridisation process to FOL with the quantification subcategory
consisting of signature extensions with a finite number of variables.

Example 9 (Hybrid Propositional Logic (HPL)). This institution is obtained
by applying the hybridisation process to PL with the quantification cate-
gory consisting only of identity signature morphisms. In applications, the cat-
egory SigHPL is restricted to the full subcategory4

SigHPL′
which consists of

4 A category C is a full subcategory of C′ if C is a subcategory of C′ and for all objects
A, B ∈ |C| we have C(A, B) = C′(A, B).
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signatures (P,Nom,Λ), where P is a set of propositional variables, Nom is
a set of nominals and Λ is the family of modalities such that Λ2 = {λ}
and Λn = ∅ for all n �= 2. In this case we denote [Λ] simply by �. Let
HPL′ = (SigHPL′

, SenHPL, ModHPL, |=HPL).

Example 10 (Constrained Hybridisation). Let I = (Sig, Sen, Mod, |=) be a base
institution, and ModCHI : SigCHI → CAT a constrained model functor for HI.
The constrained hybridised institution CHI = (SigCHI, SenCHI, ModCHI, |=CHI) is
obtained similarly to the case of base institutions:

(a) SenCHI : SigCHI → Set is the restriction of SenHI : SigHI → Set to SigCHI,
(b) for each signature Δ ∈ |SigCHI| and model (M, R) ∈ |ModCHI(Δ)|,

(M, R) |=CHI ρ iff (M, R) |=s ρ for all s ∈ |R|.
Note that (M, R) |=HI ρ iff (M, R) |=CHI ρ. Given a signature Δ ∈ |SigCHI| and
two sets of sentences Γ,E ∈ SenCHI(Δ), we write Γ |=CHI E iff for each model
(M, R) ∈ |ModCHI(Δ)| such that (M, R) |=CHI Γ we have (M, R) |=CHI E.

Remark 1. Γ |=HI E implies Γ |=CHI E but the converse implication may not
hold.

Example 11 (Injective Hybridisation). Let I = (SigI, SenI, ModI, |=I) be a base
institution. The injective hybridisation IHI = (SigIHI, SenIHI, ModIHI, |=IHI) of
the base institution I is a constrained hybridised institution obtained from
HI = (SigHI, SenHI, ModHI, |=HI) and its constrained model functor ModIHI :
SigIHI → CAT that do not allow confusion among nominals: (a) SigIHI is the
broad subcategory of SigHI consisting of signature morphisms injective on nom-
inals, i.e. ϕNom is injective for all ϕ ∈ SigIHI, and (b) ModIHI(Σ,Nom,Λ) is the
full subcategory of ModHI(Σ,Nom,Λ) consisting of models that do not allow
confusion among nominals, i.e. jR = kR implies j = k for all j, k ∈ Nom.

Our results are not applicable directly to hybrid institutions but rather to their
restriction to models that do not allow confusion among nominals. The following
results can be instantiated, for example, to the injective hybridisation of FOL.
However, when the quantification subcategory Q consists of identities (take for
example PL) then the semantic restriction of the hybridised logic is no longer
required. This means that the following results are applicable to HPL.

Example 12 (Quantifier-free Injective Hybridisation). The quantifier-free injec-
tive hybridisation QIHI = (SigIHI, SenQIHI, ModIHI, |=IHI) of a base institution
I = (SigI, SenI, ModI, |=I) is obtained from the injective hybridisation IHI =
(SigIHI, SenIHI, ModIHI, |=IHI) by restricting the syntax to quantifier-free sen-
tences, i.e. for each (Σ,Nom,Λ) ∈ |SigIHI| the set SenQIHI(Σ,Nom,Λ) consists
of sentences obtained from nominal sentences (e.g. k ∈ Nom), hybrid relational
atoms (e.g. λ(k1, . . . , kn) ∈ SenIHI(Σ,Nom,Λ)) and the sentences in Sen(Σ) by
applying Boolean connectives and the operator @. This institution is useful for
defining hybrid substitutions that do not involve any form of quantification (see
Sect. 3.1).
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3.1 Hybrid Substitutions

We extend the notion of substitution from a base institution to its hybridisation.
In this subsection we assume a base institution I = (Sig, Sen, Mod, |=), a broad
subcategory of signature morphisms D ⊆ Sig, and a substitution functor Sub :
Dop → CAT for the base institution I. Let DHI ⊆ SigHI be the broad subcategory
of hybrid signature morphisms of the form ϕ : (Σ,Nom,Λ) → (Σ1, Nom,Λ) such
that Σ

ϕSig→ Σ1 ∈ D, ϕNom = 1Nom and ϕRel = 1Λ.

Inherited Substitutions. Hybrid substitutions can be obtained from combi-
nations of substitutions in the base institution. Let (Σ,Nom,Λ) ∈ |SigIHI| be a
signature and Θ = {θk : (Σ

ϕ1→ Σ1) → (Σ
ϕ2→ Σ2)}k∈Nom a family of substitu-

tions in Sub. On the syntactic side, Θ determines a function

Θk : SenQIHI(Σ1, Nom,Λ) → SenQIHI(Σ2, Nom,Λ)

for each nominal k ∈ Nom:

– Θk(j) = j, for all j ∈ Nom;
– Θk(λ(k1, . . . , kn)) = λ(k1, . . . , kn) for all λ ∈ Λn+1 and ki ∈ Nom;
– Θk(ρ) = θk(ρ) for any ρ ∈ SenI(Σ);
– Θk(ρ � ρ′) = Θk(ρ) � Θk(ρ′), � ∈ {∧,⇒};
– Θk(¬ρ) = ¬Θk(ρ);
– Θk(@jρ) = Θj(ρ);

Since SenI(ϕ1); Sen(θk) = SenI(ϕ2) for all nominals k ∈ Nom, the following
result holds.

Lemma 2. The diagram below is commutative

SenQIHI(Σ1, Nom, Λ)
Θk

�� SenQIHI(Σ2, Nom, Λ)

SenQIHI(Σ, Nom, Λ)

SenQIHI(ϕ1)

����������������� SenQIHI(ϕ2)

		���������������

for all nominals k ∈ Nom.

On the semantic side, Θ determines a functor

ModIHI(Θk) : ModIHI(Σ2, Nom,Λ) → ModIHI(Σ1, Nom,Λ)

often denoted by �Θk for all nominals k ∈ Nom:

– for every (M2, R) ∈ |ModIHI(Σ2, Nom,Λ)|, (M2, R) � Θk = (M2 � Θk , R),
where M2 �Θk is defined by
• (M2 �Θk)jR

= M2
jR

�θj
for all nominals j ∈ Nom, and

• (M2 �Θk)s = M2
s �θk

for all s ∈ (|R| − NomR).
– for every h2 : (M2, R) → (N 2, P ) ∈ ModIHI(Σ2, Nom,Λ) we have
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• (h2 �Θk)jR
= h2

jR
�θj

for all nominals j ∈ Nom, and
• (h2 �Θk)s = h2

s �θk
for all s ∈ (|R| − NomR).

The definition of �Θk is consistent because no confusion of nominals is allowed
inside of the models (M2, R). Since Mod(θk); ModI(ϕ1) = ModI(ϕ2) for all
nominals k ∈ Nom, the following result holds.

Lemma 3. The diagram below is commutative

ModIHI(Σ1, Nom, Λ)

ModIHI(ϕ1) 

���������������
ModIHI(Σ2, Nom, Λ)

�
Θk��

ModIHI(ϕ2)�����������������

ModIHI(Σ, Nom, Λ)

for all nominals k ∈ Nom.

Next result can be regarded as the satisfaction condition for the substitutions
inherited from the base institution.

Proposition 2 (Satisfaction Condition). Given a signature (Σ,Nom,Λ) ∈
|SigHI|, for every model (M2, R) ∈ ModIHI(Σ2, Nom,Λ) and each sentence ρ ∈
SenQIHI(Σ,Nom,Λ)

(M2, R) |=kR Θk(ρ) iff (M2, R)�Θj |=kR ρ

for all nominals j, k ∈ Nom.

Proposition 2 stands at the basis of proving initiality and Herbrand’s theorem in
hybrid logics where the variables may be interpreted differently across distinct
worlds. The following is a corollary of Proposition 2 which allows one to infer
new sentences from initial axioms by applying substitutions inherited from the
base institution.

Corollary 2. Assume a signature Δ = (Σ,Nom,Λ) ∈ |SigIHI| and a hybrid
substitution Θ = {θj : (Σ

ϕ1→ Σ1) → (Σ
ϕ2→ Σ2)}j∈Nom. For all sentences

ρ ∈ SenQIHI(Δ) ρ we have

(∀ϕ1)ρ |=IHI @k(∀ϕ2)Θk(ρ)

for all nominals k ∈ Nom.

Nominal Substitutions. Nominal substitutions are captured by the notion
of signature morphisms in the hybridised institution. Let ιj : (Σ,Nom,Λ) ↪→
(Σ,Nom∪{j}, Λ) be a signature extension with the nominal variable j. A nom-
inal substitution is represented by a function ϕNom : {j} → Nom which can
be canonically extended to a signature morphism ϕ : (Σ,Nom ∪ {j}, Λ) →
(Σ,Nom,Λ). The following result is a consequence of the satisfaction condition
for the hybridised institution.
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Lemma 4. Let (∀j)ρ ∈ SenHI(Σ,Nom,Λ) and k ∈ Nom.

(1) (∀j)ρ |=HI ρ[j ← k]; moreover, (M, R) |=s (∀j)ρ implies (M,R) |=s ρ[j ← k]
for all models (M, R) ∈ |ModHI(Σ,Nom,Λ)| and states s ∈ |R|;

(2) (↓ j)ρ |=HI @kρ[j ← k].5

3.2 Reachable Hybrid Models

In this subsection we extend the notion of reachability to hybrid institutions.
Let I = (Sig, Sen, Mod, |=) be a base institution, D ⊆ Sig a broad subcategory
of signature morphisms, and Sub : Dop → CAT a substitution functor for I.

Definition 4. A model (M, R) ∈ |ModHI(Σ,Nom,Λ)|, where (Σ,Nom,Λ) ∈
|SigHI|, is Sub-reachable if (a) |R| = NomR, where NomR = {kR | k ∈ Nom},
and (b) MkR

is Sub-reachable in I for all nominals k ∈ Nom.

In the injective hybridisation, the expansions of reachable models along signature
morphisms in DHI generate hybrid substitutions.

Proposition 3. Given a signature (Σ,Nom,Λ) ∈ |SigHI| and a Sub-reachable
model (M, R) ∈ |ModIHI(Σ,Nom,Λ)| then for every signature morphism χ :
(Σ,Nom,Λ) → (Σ′, Nom,Λ) with Σ

χ→ Σ′ ∈ D and each χ-expansion (M′, R)
of (M, R) there exists a hybrid substitution Θ = {χ

θk→ 1Σ}k∈Nom such that
(M, R)�Θj = (M′, R) for all nominals j ∈ Nom.

This definition of reachability is used in the context of injective hybridisations
and their constrained sub-institutions.

4 Initiality

The following results on the existence of initial models depend on multiple para-
meters that can be instantiated in the same context in many ways produc-
ing different results. We will focus largely on parameter instantiation of the
abstract theorems to concrete hybrid logical systems to obtain the desired appli-
cations. However, the interested reader may find other useful applications as
well. In this section we assume a base institution I = (SigI, SenI, ModI, |=I), a
broad subcategory D ⊆ Sig of signature morphisms and a substitution functor
Sub : Dop → CAT for the base institution I.

4.1 Basic Hybrid Sentences

In addition to the assumptions made at the beginning of this section, let us
consider a sub-functor (SenI

0 : Sig → Set) of SenI. We define the sentence
functor (SenHI

0 : SigHI → Set) of SenHI for each signature (Σ,Nom,Λ) ∈ |SigHI|,
5 We denote by ρ[j ← k] the sentence ϕ(ρ), where the signature morphism ϕ :
(Σ, Nom ∪ {j}, Λ) → (Σ, Nom, Λ) is the canonical extension of the function
ϕNom : {j} → Nom defined by ϕNom(j) = k.
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(1) @jk ∈ SenHI
0 (Σ,Nom,Λ) for all j, k ∈ Nom,

(2) @jλ(k1, . . . , kn) ∈ SenHI
0 (Σ,Nom,Λ) for all λ ∈ Λn+1, j ∈ Nom and ki ∈

Nom,
(3) @jρ ∈ SenHI

0 (Σ,Nom,Λ) for all j ∈ Nom and ρ ∈ SenI
0(Σ).

In concrete examples of institutions, I0 = (SigI, SenI
0, ModI, |=I) is the restric-

tion of the base institution to atomic sentences, and the institution HI0 =
(SigHI, SenHI

0 , ModHI, |=HI) gives the building bricks for constructing theories that
have initial models in the hybridised institution.

Theorem 3. If every set of sentences of I0 is epi basic then every set of sen-
tences of HI0 is epi basic. Moreover, if each set of sentences of I0 has a basic
model that is Sub-reachable then each set of sentences of HI0 has a basic model
that is Sub-reachable.

We apply Theorem 3 to HFOL. Let SenFOL
0 : SigFOL → Set be the sub-functor

of SenFOL such that for any signature Σ ∈ |SigFOL| the set SenFOL
0 (Σ) consists

of atoms. We define FOL0 = (SigFOL, SenFOL
0 , ModFOL, |=FOL) and HFOL0 =

(SigHFOL, SenHFOL
0 , ModHFOL, |=HFOL) using the general pattern described

above.

Corollary 3. All sets of HFOL0 sentences are epi basic and the corresponding
basic models are SubFOL-reachable.

Proof. By Lemma 1, any set of FOL atoms is epi basic. By Proposition 1, the
corresponding basic models are SubFOL-reachable. By Theorem 3, any set of
HFOL0 sentences is epi basic and the corresponding basic models are SubFOL-
reachable. �	

We return to the general setting and we define the sub-functor (SenIHI
0 :

SigIHI → Set) of SenIHI for each signature (Σ,Nom,Λ) ∈ |SigHI|,
(1) @jλ(k1, . . . , kn) ∈ SenIHI

0 (Σ,Nom,Λ) for any λ ∈ Λn+1, j ∈ Nom and
ki ∈ Nom,

(2) @jρ ∈ SenIHI
0 (Σ,Nom,Λ) for any j ∈ Nom and ρ ∈ SenI

0(Σ).

The institution IHI0 = (SigIHI, SenIHI
0 , ModIHI, |=IHI) gives the building bricks

for constructing theories that have initial models in the injective hybridisation.

Theorem 4. If every set of sentences of I0 is epi basic then every set of sen-
tences of IHI0 is epi basic. Moreover, if each set of sentences of I0 has a basic
model that is Sub-reachable then each set of sentences of IHI0 has a basic model
that is Sub-reachable.

We apply Theorem 4 to IHFOL. Using the general pattern described above, let
us define IHFOL0 = (SigIHFOL, SenIHFOL

0 , ModIHFOL, |=IHFOL) as the injec-
tive hybridisation of FOL.

Corollary 4. All sets of IHFOL0 sentences are epi basic and the corresponding
basic models are SubFOL-reachable.
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Proof. By Lemma 1, any set of atoms in FOL is epi basic. By Proposition 1,
the corresponding basic models are SubFOL-reachable. By Theorem 4, any set
of sentences in HFOL0 is epi basic and the corresponding basic models are
SubFOL-reachable. �	

In the next subsections we prove that the initiality property is closed under
the following sentence building operators: logical implication ⇒, universal quan-
tification ∀, store ↓, and box �.

4.2 Implication

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCHI : SigCHI → CAT for HI, and three
sub-functors (SenCHI

∗ : SigCHI → Set), (SenCHI
• : SigCHI → Set) and (SenCHI

1 :
SigCHI → Set) of SenCHI such that any sentence of SenCHI

1 (Δ), where Δ ∈ |SigCHI|,
is semantically equivalent in CHI to a sentence of the form

∧
H ⇒ C, where

H ⊆ SenCHI
∗ (Δ) and C ∈ SenCHI

• (Δ).

Theorem 5. If for each signature Δ ∈ |SigCHI|,
(1) any set B ⊆ SenCHI

∗ (Δ) is basic in HI,6 and
(2) any set Γ ⊆ SenCHI

• (Δ) has an initial Sub-reachable model (MΓ , RΓ ) ∈
|ModCHI(Δ)|,

then any set of sentences of the institution CHI1 = (SigCHI, SenCHI
1 , ModCHI, |=CHI)

has an initial Sub-reachable model.

We apply Theorem 5 to HFOL. The constrained model functor ModCHI is
ModHFOL : SigHFOL → CAT. The functors SenCHI

∗ and SenCHI
• are both instan-

tiated to SenHFOL
0 : SigHFOL → Set. The institution CHI1 is HFOL1, the

restriction of HFOL to sentences of the form
∧

H ⇒ C, where H ∪{C} is a set
of HFOL0 sentences.

Corollary 5. Any set of HFOL1 sentences has an initial SubFOL-reachable
model.

We apply Theorem 5 to IHFOL. The institution CHI is IHFOL. The func-
tor SenCHI

∗ is the restriction of (SenHFOL
0 : SigHFOL → Set) to SigIHFOL.

The functor SenCHI
• is (SenIHFOL

0 : SigIHFOL → Set). The sentence functor
SenCHI

1 is (SenIHFOL
1 : SigIHFOL → Set) such that for all Δ ∈ |SigIHFOL|

the set SenIHFOL
1 (Δ) consists of sentences of the form

∧
H ⇒ C, where

H ⊆ SenHFOL
0 (Δ) and C ∈ SenIHFOL

0 (Δ).

Corollary 6. Any set of IHFOL1 sentences has an initial SubFOL-reachable
model, where IHFOL1 = (SigIHFOL, SenIHFOL

1 , ModIHFOL, |=IHFOL).

6 This condition implies that there exists a basic model (MB , RB) ∈ |ModHI(Δ)|, but
it is also possible that (MB , RB) �∈ |ModCHI(Δ)|.
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4.3 Nominal Quantification

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCHI : SigCHI → CAT for HI, and two
sub-functors (SenCHI

1 : SigCHI → Set) and (SenCHI
2 : SigCHI → Set) of SenCHI

such that all sentences of CHI2 = (SigCHI, SenCHI
2 , ModCHI, |=CHI) are semantically

equivalent in CHI to a sentence of the form (∀j)ρ, where j is a nominal variable
and ρ is a sentence of CHI1 = (SigCHI, SenCHI

1 , ModCHI, |=CHI).

Theorem 6. If every set of sentences of CHI1 has an initial Sub-reachable model
then each set of sentences of CHI2 has an initial Sub-reachable model.

The following result is essential for applying Theorem6 to concrete examples of
institutions.

Lemma 5. In the institution CHI, any sentence
∧

H ⇒ C is semantically equiv-
alent to (∀j)

∧{@jh | h ∈ H} ⇒ @jC, and any sentence @j@kρ is semantically
equivalent to @kρ.

We apply Theorem 6 on top of HFOL1 defined in Subsect. 4.2. The institu-
tion CHI is HFOL, and the institution CHI1 is HFOL1. The sentence func-
tor SenCHI

2 is (SenHFOL
2 : SigHFOL → Set) which associates to each signature

Δ = (Σ,Nom,Λ) ∈ |SigHFOL| the set of sentences of the form
∧

H ⇒ C, where
H ∪ {C} consists of sentences obtained from nominal sentences (e.g. k ∈ Nom),
hybrid relational atoms (e.g. λ(k1, . . . , kn) ∈ SenIHFOL(Δ)) and FOL atoms
(e.g. t1 = t2 ∈ SenFOL

0 (Σ) and π(t1, . . . , tn) ∈ SenFOL
0 (Σ)) by applying the

sentence building operator @.7

Corollary 7. Any set of sentences in HFOL2 has an initial SubFOL-reachable
model.

Proof. By Lemma 5, any sentence in HFOL2 is semantically equivalent to a
sentence of the form (∀j)ρ, where j is a nominal variable and ρ is a sentence of
HFOL1. By Corollary 6, any set of sentences in HFOL1 has an initial SubFOL-
reachable model. By Theorem 6, any set of sentences in HFOL2 has an initial
SubFOL-reachable model. �	
We apply Theorem 6 on top of HFOL2. Let HFOL3 be the institution obtained
from HFOL by restricting the syntax to sentences of the form (∀J)ρ, where J
is a finite set of nominal variables and ρ is a quantifier-free sentence of HFOL2.

Corollary 8. Any set of HFOL3 sentences has an initial SubFOL-reachable
model.

We call the HFOL3 sentences hybrid Horn clauses of the institution HFOL.
Since PL is obtained from FOL by restricting the category of signatures,
Corollary 8 holds also for HPL. We apply Theorem 6 on top of IHFOL1 defined
7 The institution HFOL2 contains also sentences that are free of @. It follows that

SenHFOL
1 (Δ) � SenHFOL

2 (Δ) for all Δ ∈ |SigHFOL|.
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in Subsect. 4.2. The sentence functor SenCHI
1 is (SenIHFOL

1 : SigIHFOL → Set).
The functor SenCHI

2 is (SenIHFOL
2 : SigIHFOL → Set) which associates to each

signature the set of sentences of the form
∧

H ⇒ C, where

(a) H consists of sentences obtained from nominal sentences, hybrid relational
atoms, and FOL atoms by applying the sentence building operator @, and

(b) C is a sentence obtained from hybrid relational atoms and FOL atoms by
applying @.

Corollary 9. Any set of sentences in IHFOL2 has an initial SubFOL-reachable
model.

Another application of Theorem6 can be found in Subsect. 4.4.

4.4 Inherited Quantification

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCIHI : SigCIHI → CAT for the injective
hybridisation IHI, a quantification subcategory Q ⊆ D, and two sub-functors
(SenCIHI

2 : SigCIHI → Set) and (SenCIHI
3 : SigCIHI → Set) of SenCIHI such that

(1) the sentences of CIHI2 = (SigCIHI, SenCIHI
2 , ModCIHI, |=CIHI) are semantically

closed to @, i.e. for all Δ ∈ |SigCIHI|, k ∈ Nom and ρ ∈ SenCIHI
2 (Δ) there

exists ε ∈ SenCIHI
2 (Δ) such that @kρ |=|CIHI ε,

(2) In CIHI, any sentence of Sen3(Σ,Nom,Λ), where (Σ,Nom,Λ) ∈ |SigCIHI|,
is semantically equivalent to a sentence of (∀χ)ρ, where (Σ,Nom,Λ)

χ→
(Σ′, Nom,Λ) ∈ QHI and ρ ∈ SenCIHI

2 (Σ′, Nom,Λ),
(3) for any (Σ,Nom,Λ) ∈ |SigCIHI| and Σ

χ→ Σ′ ∈ D we have (Σ′, Nom,Λ) ∈
|SigCIHI|, and

(4) for any hybrid substitution Θ = {(Σ
χ1→ Σ1)

θk→ (Σ
χ2→ Σ2)}k∈Nom and

sentence ρ ∈ SenCIHI
2 (Σ1, Nom,Λ) we have Θk(ρ) ∈ SenCIHI

2 (Σ2, Nom,Λ).

Theorem 7. If every set of sentences of CIHI2 has an initial Sub-reachable
model then each set of sentences of CIHI3 has an initial Sub-reachable model.

We apply Theorem 7 on top of IHFOL2 defined in Subsect. 4.3. The institution
CIHI is IHFOL, and the institution CIHI2 is IHFOL2. Note that IHFOL2

is closed to @, which means that assumption (1) of this subsection holds. The
institution CIHI3 is IHFOL3, the restriction of IHFOL to sentences of the
form (∀X)ρ, where X is a finite set of first-order variables and ρ is a sen-
tence in IHFOL2.8 This implies that assumption (2) of this subsection holds.
Since DHI ⊆ SigIHFOL, assumption (3) of this subsection holds. All sentences of
IHFOL2 are quantifier-free and modal-free, and by applying a hybrid substitu-
tion to a IHFOL2 sentence, the result is also a IHFOL2 sentence. It follows
that assumption (4) of this subsection holds.
8 Note that (∀X)ρ is an abbreviation for (∀χ)ρ, where χ : (Σ, Nom, Λ) ↪→
(Σ[X], Nom, Λ) ∈ QHFOL is a signature extension with the finite set of first-order
variables X and ρ ∈ SenIHFOL

2 (Σ[X], Nom, Λ).
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Corollary 10. Any set of IHFOL3 sentences has an initial SubFOL-reachable
model.

We apply Theorem 6 on top of the institution IHFOL3 defined above. Let
IHFOL4 be the institution obtained from IHFOL by restricting the syntax
to sentences of the form (∀J)ρ, where J is a finite set of nominal variables and
ρ is a sentence of IHFOL3.

Corollary 11. Every set of IHFOL4 sentences has an initial SubFOL-reachable
model.

We call the IHFOL4 sentences hybrid Horn clauses of the institution IHFOL.
Defining a paramodulation procedure for IHFOL4 is future research. However,
the results obtained in this paper set the foundation for this direction of research.

Any sentence of the form (↓ j)ρ is semantically equivalent to (∀j)j ⇒ ρ. It
follows that initiality is closed under store ↓. If λ ∈ Λ2 then [λ](ρ) is semantically
equivalent to (∀k)λ(k) ⇒ @kρ. It follows that initiality is closed under box �
when Λn = ∅ for all n �= 2.

5 Herbrand’s Theorem

We prove a version of Herbrand’s theorem in the framework of hybrid
institutions.

Theorem 8. Let I = (Sig, Sen, Mod, |=) be an institution, D ⊆ Sig a broad
subcategory of signature morphisms, Sub : Dop → CAT a substitution functor
for I and Q ⊆ D a quantification subcategory. Consider a constrained model
functor ModCIHI : SigCIHI → CAT for the injective hybridisation IHI such that

(1) for any (Σ,Nom,Λ) ∈ |SigCIHI| and Σ
χ→ Σ′ ∈ D we have (Σ′, Nom,Λ) ∈

|SigCIHI|.
Assume a sub-functor (SenCIHI

b : SigCIHI → Set) of SenCIHI such that

(2) any B ⊆ SenCIHI
b (Σ,Nom,Λ) is basic in HI, where (Σ,Nom,Λ) ∈ |SigCIHI|.

Let Δ = (Σ,Nom,Λ) ∈ |SigCIHI| be a signature, k ∈ Nom a nominal,
Γ ⊆ SenCIHI(Δ) a set of sentences that has an initial Sub-reachable model
(MΓ , RΓ ) ∈ |ModCIHI(Δ)|, and (∃J)(∃χ)ρ ∈ SenCIHI(Δ) a sentence such that
(a) J is a set of nominal variables, (b) Δ

χ→ Δ′ ∈ QHI with Δ′ = (Σ′, Nom,Λ),
and (c) ρ ∈ SenCIHI

b (Δ′[J ]) with Δ′[J ] = (Σ′, Nom ∪ J,Λ). Then the following
statements are equivalent:

(i) Γ |=CIHI @k(∃J)(∃χ)ρ,
(ii) (MΓ , RΓ ) |=k(RΓ ) (∃J)(∃χ)ρ,
(iii) there is a hybrid substitution Θ = {θj : (Σ

χ→ Σ′) → (Σ
ϕ→ Σ′′)}j∈Nom and

a nominal substitution ψ : J → Nom such that Γ |=CIHI @k(∀ϕ)Θk(ψ(ρ))
and ϕ : (Σ,Nom,Λ) → (Σ′′, Nom,Λ) is conservative in CIHI.
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The pair of substitutions 〈ψ,Θ〉 from the statement (iii) of Theorem 8 are called
solutions. The sentence @k(∃J)(∃χ)ρ is a query. The implication (i) ⇒ (iii)
reduces the satisfiability of a query by a program (represented here by a hybrid
theory) to the search of a pair of substitutions, while the converse implication
(iii) ⇒ (i) shows that solutions are sound with respect to the given program.
We apply Theorem 8 to IHFOL. Since DHFOL ⊆ SigIHFOL the second hypoth-
esis holds. The functor SenCIHI

b is (SenIHFOL
b : SigIHFOL → Set) such that for

each (Σ,Nom,Λ) ∈ |SigIHFOL| the set SenIHFOL
b (Σ,Nom,Λ) consists of finite

conjunctions of sentences in SenHFOL
0 (Σ,Nom,Λ). By Corollary 3, any set of

sentences in HFOL0 is epi basic in HFOL, which implies that any conjunction
of sentences in HFOL0 is also epi basic in HFOL. It follows that condition (2)
of Theorem 8 holds. By Corollary 11, any set of hybrid Horn clauses in IHFOL4

has an initial model. Note that for any nominal k, we have (∃J)(∃X)ρ |=|HFOL

@k(∃J)(∃X)ρ, which implies (∃J)(∃X)ρ |=|IHFOL @k(∃J)(∃X)ρ. In IHFOL,
the queries are sentences of the form (∃J)(∃X)ρ, where ρ is a finite conjunction
of HFOL0 sentences.

Corollary 12. For any set of sentences Γ ⊆ SenIHFOL4((S, F, P ), Nom,Λ),
where ((S, F, P ), Nom,Λ) ∈ |SigIHFOL|, and any query (∃J)(∃X)ρ, where ρ is
a finite conjunction of sentences in SenHFOL

0 ((S, F ∪ X,P ), Nom ∪ J,Λ) the
followings are equivalent:

(i) Γ |=IHFOL (∃J)(∃X)ρ,
(ii) (MΓ , RΓ ) |=IHFOL (∃J)(∃X)ρ,
(iii) there exists a hybrid substitution Θ = {θj : X → T(S,F,P )(Y )}j∈Nom and a

nominal substitution ψ : J → Nom such that Γ |=IHFOL (∀Y )Θk(ψ(ρ)) for
some k ∈ Nom and the sorts of variables in Y are inhabited, i.e. for any
sort s ∈ S and variable y ∈ Ys there exists a term t ∈ T(S,F,P ).

The inhabitation requirement for the sorts of the variables in Y means that the
inclusion ιy : ((S, F, P ), Nom,Λ) → ((S, F ∪Y, P ), Nom,Λ) is conservative. The
restriction to injective hybridisations required by Theorem8 is not needed if the
quantification subcategory consists of identities. For example, one can prove a
version of Herbrand’s theorem for hybrid institutions that can be instantiated
to HPL.

6 Conclusions

In this paper we have proved the existence of initial models of hybrid Horn
clauses. Our initiality results are not based on inclusion systems and quasi-
varieties as in [6]. The proof follows the structure of the sentences in the style
of [9]. We assume that the atomic sentences of the base institution are epi basic
and then the initiality property is proved to be closed under certain sentence
building operators. This approach requires less model theoretic infrastructure
than [6] and it can be applied to theories for which the corresponding class of
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models does not form a quasi-variety. We have developed denotational founda-
tions for logic programming in hybrid logics independently of the details of the
underlying base institution by employing institutional concepts of quantifica-
tion, substitution, reachable model and basic set of sentences. In this general
setting we have proved Herbrand’s theorem. A future direction of research is
developing a paramodulation procedure for hybrid logics. The results presented
in this paper which do not involve inherited quantification can be applied to
hybrid logics with model constraints [6], but much work is needed to cover the
rigid quantification [2]. This constitutes another future direction of research.
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Birkhäuser, Basel (2008)

6. Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. J.
Logic Comput. (2014). doi:10.1093/logcom/ext016

7. Goguen, J., Burstall, R.: Institutions: abstract model theory for specification and
programming. J. Assoc. Comput. Mach. 39(1), 95–146 (1992)

8. Goguen, J.A., Thatcher, J.W.: Initial algebra semantics. In: SWAT (FOCS), pp.
63–77. IEEE Computer Society (1974)
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11. Găină, D., Petria, M.: Completeness by Forcing. J. Log. Comput. 20(6), 1165–1186
(2010)

12. Lloyd, J.: Foundation of Logic Programming. Springer, Berlin (1987)
13. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of insti-
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