
Coalgebraic Semantics of Heavy-Weighted
Automata

Marie Fortin1,3, Marcello M. Bonsangue2,3(B), and Jan Rutten3,4

1 École Normale Supérieure de Cachan, Cachan, France
2 LIACS – Leiden University, Leiden, The Netherlands

m.m.bonsangue@liacs.leidenuniv.nl
3 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
4 ICIS – Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. In this paper we study heavy-weighted automata, a general-
ization of weighted automata in which the weights of the transitions can
be formal power series. As for ordinary weighted automata, the behaviour
of heavy-weighted automata is expressed in terms of formal power series.
We propose several equivalent definitions for their semantics, including
a system of behavioural differential equations (following the approach of
coinductive calculus), or an embedding into a coalgebra for the functor
S × (−)A, for which the set of formal power series is a final coalgebra.
Using techniques based on bisimulations and coinductive calculus, we
study how ordinary weighted automata can be transformed into more
compact heavy-weighted ones.

1 Introduction

Weighted automata are a generalization of non-deterministic automata in which
each transition carries a weight [5]. This weight is an element of a semiring, rep-
resenting, for example, the cost or probability of taking the transition. Weighted
automata have many different areas of application. Recently, for example, they
have been used to solve counting problems, first in [10] with a procedure called
coinductive counting, then in [4] with the counting automata methodology.

Whereas non-deterministic automata either accept or reject a word, weighted
automata associate with each word the cost of its execution. Their semantics is
thus defined in terms of weighted languages, also called formal power series,
which are functions mapping words to weights.

Formal power series form themselves a semiring, and thus can be used as
weights of transitions, yielding what we call heavy-weighted automata. In [4],
such automata are used to give a compact representation of some combinato-
rial problems. One of our motivation here is to extend the coalgebraic setting
existing for ordinary weighted automata [1,10] to study equivalence between
heavy-weighted automata. In particular, we are interested in producing a more
compact representation of some well-shaped infinite weighted automata, gener-
alizing the examples given in [4].

c© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 48–68, 2015.
DOI: 10.1007/978-3-319-28114-8 4

Coalgebraic Semantics of Heavy-Weighted Automata 49

A second motivation for the introduction of heavy-weighted automata is to
provide something similar to what generalized automata (where transitions are
labeled by regular expressions) are to ordinary automata. In particular, we will
see that Brzozowski-McCluskey’s state elimination method [3,14] to compute the
regular expression associated with a finite automaton also works for weighted
automata. The method is not new, but is a nice application of our definition of
heavy-weighted automata.

Though heavy-weighted automata can be seen as classic weighted automata
over the semiring of weighted languages, their standard semantics as such (given
in terms of power series over the semiring of power series) is not so interest-
ing. Instead, we define the semantics of heavy-weighted automata in terms of
(ordinary) power series, in three equivalent ways:

– by a system of equations linking the semantics of the different states.
– in terms of the final homomorphism. Here the set of weighted languages is

the final coalgebra for the functor S × (−)A, which means that from any
S × (−)A-coalgebra, there is a unique coalgebra homomorphism to the set
of all weighted languages. Heavy-weighted automata are not themselves S ×
(−)A-coalgebras, but they can be embedded into one, using some kind of
determinization procedure (as introduced in [13]).

– by giving a procedure that transforms a heavy-weighted automaton into an
ordinary weighted automaton. This is done by composing ordinary weighted
automata that recognize the weighted languages labeling the transitions of the
heavy-weighted automaton.

We proceed as follows. First we briefly discuss some related work. Then,
in Sect. 2 we recall the basic notions on formal power series, coinductive cal-
culus and (ordinary) weighted automata. In Sect. 3, we define heavy-weighted
automata and their behaviour, first in terms of behavioural differential equa-
tions and then in terms of a final homomorphism of coalgebras. In Sect. 4, we
give a new interpretation to the behaviour of heavy-weighted automata, by giv-
ing a procedure that transforms a heavy-weighted automata into an ordinary
weighted automata. In Sect. 5.1, we recall the state elimination method, and in
Sect. 5.2, we show how heavy-weighted automata can be used to give a more
compact representation for certain well-shaped infinite weighted automata.

Missing proof details can be found in the extended technical report [6].

Related Work

Our study of heavy-weighted automata is motivated by the work done in [4].
Counting automata, which are also automata having power series as weights, are
used to model combinatorial problems. Some examples of reductions of infinite
weighted automata to finite ones are given; yet there is no general format for
such reductions. In Sect. 5.2 we describe a generalization of these reductions to
a particular class of well-shaped, infinite weighted automata.

Automata in which transitions are labeled by power series were already
present in [12]. The state elimination method (see Sect. 5.1) is also mentioned,

50 M. Fortin et al.

though rather as the resolution of a system of equations. Apart from that, our
work has no real intersection with what is done in [12]. A first difference is
that we are interested in both finite and infinite atomata, whereas [12] focuses
mostly on the finite case. Furthermore, no real separation is made in [12] between
automata with ordinary weights and automata with power series as weights; as a
consequence, the question of the transformation of a heavy-weighted automaton
into an ordinary weighted automaton (see Sect. 4) is not raised.

Our definition of heavy-weighted automata present some differences with
both [4,12]. In particular, we choose to define heavy-weighted automata in such
a way that their behaviour is always defined, by requiring finite branching and
not allowing ε-transitions. Thus we do not investigate the convergence issues
that are given some importance in [4,12].

Our coalgebraic approach to heavy-weighted automata is new, and follows
previous work on (ordinary) weighted automata, see e.g. [1,9,10]. Our construc-
tion in Sect. 3 can be seen as an instance of the generalized determinization
construction described in [13]. Finally, our work relies largely on coinductive
calculus for streams and power series, see e.g. [9,11].

2 Preliminaries

2.1 Coalgebras

We recall some basic definitions about coalgebras. Given a functor F : Set → Set,
an F-coalgebra is a pair (X , f) consisting of a set X and a function f : X → FX .

X

FX

Y

FY

f g

h

Fh

An F-homomorphism from an F-coalgebra (X , f) to
another F-coalgebra (Y , g) is a function h : X → Y
such that diagram to the right commutes, i.e. such that
g ◦ h = Fh ◦ f . An F-coalgebra (Y , g) is called final if
for any F-coalgebra (X , f) there exists a unique F-
homomorphism �−� : X → Y .

2.2 Formal Power Series

Throughout the paper, A denotes a nonempty finite alphabet.
Weighted automata associate to each input word a certain weight: their

behaviour is defined in terms of weighted languages, also called formal power
series, which are functions mapping words to elements of a semiring.

A semiring (S ,+,×, 0, 1) consists of a set S together with two binary oper-
ations + and × and two constants 0, 1 ∈ S , such that:

(1) (S ,+, 0) is a commutative monoid and (S ,×, 1) is a monoid;
(2) × distributes over + : ∀x , y , z ∈ S , x × (y + z) = x × y + x × z and

(x + y) × z = x × z + y × z ;
(3) 0 is an annihilator for ×: ∀x ∈ S , x × 0 = 0 × x = 0.

Coalgebraic Semantics of Heavy-Weighted Automata 51

Given a semiring S and a finite alphabet A, a formal power series with
coefficients in S and variables in A is a function σ : A∗ → S . We denote by
S 〈〈A〉〉 the set of all formal power series with coefficients in S and variables in A.

Examples:

(1) Taking S = B, where B denotes the boolean semiring, B〈〈A〉〉 is isomorphic
to the set of all formal languages over the alphabet A.

(2) S 〈〈{X }〉〉 is isomorphic to the set of all streams with values in S (that is, the
set of all functions N → S). We denote this set by Sω, and we sometimes
write (s0, s1, . . .) for the stream i �→ si .

The support of a formal power series σ is the set {w ∈ A∗ | σ(w) 	= 0}. A
polynomial is a power series with finite support. The set of all polynomials with
coefficients in S and variables in A is denoted by S 〈A〉.

Finally, a power series σ ∈ S 〈〈A〉〉 is called proper when σ(ε) = 0 (where ε is
the empty word). We denote by S 〈〈A〉〉p the set of all proper power series.

S 〈〈A〉〉 can be given a S × (−)A-coalgebra structure using a generalization of
the notion of Brzozowski derivatives. Given a ∈ A, the a-derivative σa ∈ S 〈〈A〉〉
of a power series σ is defined by σa(w) = σ(aw) and the output of σ is defined
as O(σ) = σ(ε). When A is a singleton, we write σ′ for the derivative of σ.

We define Δ : S 〈〈A〉〉 → S 〈〈A〉〉A by Δ(σ)(a) = σa , and 〈O ,Δ〉 : S 〈〈A〉〉 → S ×
S 〈〈A〉〉A as the function σ �→ (O(σ),Δ(σ)). Then (S 〈〈A〉〉, 〈O ,Δ〉) is a coalgebra
for the functor S × (−)A. Moreover, we have the following theorem [9].

Theorem 1. (S 〈〈A〉〉, 〈O ,Δ〉) is a final coalgebra for the functor S × (−)A.

2.3 A Coinductive Calculus for Power Series

We now present some basic facts from the coinductive calculus for streams and
power series developed in [9,11].

First we recall the coinduction proof principle, which will be one of our
main proof techniques. A bisimulation on formal power series is a relation R ⊆
S 〈〈A〉〉 × S 〈〈A〉〉 such that, for all σ and τ in S 〈〈A〉〉, if σ R τ then

(1) O(σ) = O(τ);
(2) for all a ∈ A, σa R τa .

The union of all bisimulation relations is called bisimilarity, and is denoted by ∼.
A relation R ⊆ S 〈〈A〉〉 × S 〈〈A〉〉 is a bisimulation-up-to if its closure under linear
combination is a bisimulation relation [8].

Theorem 2 (Coinduction). For all σ, τ ∈ S 〈〈A〉〉, if σ ∼ τ then σ = τ .

Note that the converse trivially holds, since {(σ, σ) | σ ∈ S 〈〈A〉〉} is a bisimu-
lation. The consequence of Theorem 2 is that to prove the equality of two power
series σ and τ , it is sufficient to establish the existence of a bisimulation R such
that σ R τ .

52 M. Fortin et al.

Next, various operators on power series are defined coinductively. Coinductive
definitions are given as behavioural differential equations, which have a unique
solution. In particular, there exist a unique binary operator +, a unique binary
operator ×, and for all s ∈ S and b ∈ A, a unique [s] ∈ S 〈〈A〉〉 and [b] ∈ S 〈〈A〉〉
satisfying the following system of behavioural differential equations:

a-derivative (for all a ∈ A) Initial value

[s]a = [0] O([s]) = s

[b]b = [1], [b]a = [0] for a �= b O([b]) = 0

(σ + τ)a = σa + τa O(σ + τ) = O(σ) + O(τ)

(σ × τ)a = (σa × τ) + ([O(σ)] × τa) O(σ × τ) = O(σ) × O(τ)

We then have for all s ∈ S , [s](ε) = s and [s](w) = 0 if w 	= ε. For b ∈ A,
b = 1 and [b](w) = 0 if w 	= b. The coinductive definitions given for the
sum and convolution product coincide with the classic pointwise definitions: for
all σ, τ ∈ S 〈〈A〉〉 and w ∈ A∗,

(σ + τ)(w) = σ(w) + τ(w) and (σ × τ)(w) =
∑

uv=w

σ(u)τ(v) .

When S is a ring, we also define the inverse σ−1 of series σ such that O(σ)
is invertible in S , as the unique solution to (σ−1)a = −[O(σ)−1]×σa ×σ−1 and
O(σ−1) = O(σ)−1. We then have σ × σ−1 = [1] = σ−1 × σ.

Theorem 3 (Fundamental Theorem). For all σ ∈ S 〈〈A〉〉,

σ = [O(σ)] +
∑

a∈A

[a] × σa .

As a notational convenience, we will write s for [s] and b for [b] whenever it
is clear from the context whether we intend elements of S and A or formal power
series. Similarly, we will identify a word w = a1 . . . an ∈ A∗ with the product
[a1] × . . . × [an].

With these conventions, for all σ ∈ S 〈〈A〉〉, σ =
∑

w∈A∗
σ(w) × w .

2.4 Rational Power Series

A family {σi | i ∈ I } of power series is called locally finite when for all w ∈ A∗,
the set Iw = {i | σi(w) 	= 0} is finite. In this case, we define the sum

∑
i∈I σi by(∑

i∈I σi

)
(w) =

∑
i∈Iw

σi(w).
Let σ be a proper power series. For all n ∈ N, we denote by σn the n-fold

product of σ with itself: σ0 = 1, and σn+1 = σ × σn . Then for all w ∈ A∗ and
n > |w |, σn(w) = 0. Hence {σn | n ∈ N} is locally finite. We can thus define the
star of a proper power series σ as the sum σ∗ =

∑
n∈N

σn .

Coalgebraic Semantics of Heavy-Weighted Automata 53

We define the set RatES (A) of all rational S-expressions E as follows:

E ::=s ∈ S | a ∈ A | (E + E) | (E × E) | E∗ .

We then define simultaneously the set of valid rational S -expressions, and the
power series val(E) denoted by a valid expression, by induction:

– for all s ∈ S , s is valid and val(s) = s;
– For all a ∈ A, a is valid and val(a) = a;
– if E1 and E2 are valid, (E1 + E2) is valid and val(E1 + E2) = val(E1)

+ val(E2);
– if E1 and E2 are valid, (E1 × E2) is valid and val(E1 × E2) = val(E1)×

val(E2);
– if E is valid and val(E) is proper, E∗ is valid and val(E∗) = val(E)∗.

A power series σ ∈ S 〈〈A〉〉 is called rational if there exists a valid rational
S -expression E such that val(E) = σ. We denote by Srat〈〈A〉〉 the set of all
rational power series.

2.5 Weighted Automata

Weighted automata are a generalisation of automata, where each transition has a
weight in addition to the input letter. We associate a weight with each path in the
automaton by multiplying the weights of all taken transitions; and we associate
a weight with each word by adding the weights of all paths accepting it.

Let S be a semiring and A a finite alphabet. For any set X , we denote by
X →f S the set of all functions g : X → S such that {x ∈ X | g(x) 	= 0} is finite.

Formally, a weighted automaton (or wa, for short) with input alphabet A
and weights in the semiring S consists of a pair (Q , 〈o, t〉), where:

– Q is a set of states.
– o : Q → S is the output function.
– t : Q → (Q →f S)A is the transition function.

We will write p
a,s−−→ q for t(p)(a)(q) = s, and p s−→ for o(p) = s. A state q ∈ Q

is called final when o(q) 	= 0.
The behaviour S(q) of a state q ∈ Q , or weighted language recognized by

state q , is classically defined as follows: for all w = a1 . . . an ∈ A∗,

S(q)(w) =
∑

q1,...,qn∈Q

t(q)(a1)(q1)× t(q1)(a2)(q2)× · · · × t(qn−1)(an)(qn)×o(qn).

Note that this is a finite sum, since for all qi ∈ Q there are only finitely many
qi +1 ∈ Q such that t(qi)(ai +1)(qi +1) 	= 0. This follows the intuitive definition
we gave before: an accepting path for w starting at state q is of the form q =
q0

a1,s1−−−→ q1
a2,s2−−−→ · · · an ,sn−−−→ qn

s−→, with si 	= 0 and s 	= 0. Taking the sum of
s1 . . . sns for all such paths, we obtain the given expression. However, we will
mostly use the following equivalent coinductive definition: S : Q → S 〈〈A〉〉 is

54 M. Fortin et al.

defined as the unique solution to the following system of behavioural differential
equations: for all q ∈ Q and a ∈ A,

S(q)a =
∑

r∈Q

t(q)(a)(r) × S(r) O(S(q)) = o(q) .

Using the fundamental theorem of coinductive calculus, this is equivalent to

S(q) = o(q) +
∑

r∈Q

(
∑

a∈A

a × t(q)(a)(r)

)
× S(r) .

q0 q1

1

1

1

1

Example. Take A = {X }, S = (R,+,×) and the automa-
ton defined to the right. We have S(q0) = X × S(q1)
and S(q1) = 1 + X × S(q0) + X × S(q1). Recall that,
as defined in Sect. 2.3, X is the stream (0, 1, 0, 0, . . .).
These equations lead to S (q0) = X × (1 − X − X 2)−1 =
(0, 1, 1, 2, 3, . . .), which corresponds to the Fibonacci
sequence.

A weighted automaton is called finite when its set of states is finite. A power
series σ ∈ S 〈〈A〉〉 is recognizable when there exist a finite weighted automaton
A = (Q , 〈o, t〉) and q0 ∈ Q such that S(q0) = σ. We denote by Srec〈〈A〉〉 the set
of all recognizable power series.

Theorem 4 (Kleene-Schutzenberger). Srat〈〈A〉〉 = Srec〈〈A〉〉.
Note that when we don’t require the set of states to be finite, for any power

series σ ∈ S 〈〈A〉〉, there exist a weighted automaton (Q , 〈o, t〉) and q0 ∈ Q such
that S(q0) = σ. For instance, take Q = A∗, o = σ, t(w)(a)(aw) = 1, and
t(w)(a)(v) = 0 in all other cases. Then S(ε) = σ.

3 Heavy-Weighted Automata

We generalize weighted automata to heavy-weighted automata, by allowing the
weights of the transitions to be any power series rather than an element of the
semiring S .

name output function transition function

Weighted automaton (wa) o : Q → S t : Q → (Q →f S)A

Heavy-weighted automaton (hwa) o : Q → S t : Q → (Q →f S〈〈A〉〉)A

Fig. 1. Definitions of was and hwas

A heavy-weighted automaton (or hwa, for short) over the semiring S and the
alphabet A consists of a pair (Q , 〈o, t〉), where:

Coalgebraic Semantics of Heavy-Weighted Automata 55

– Q is a set of states.
– o : Q → S is the output function.
– t : Q → (Q →f S 〈〈A〉〉)A is the transition function.

For any p, q ∈ Q , we also define the cumulated weight between p and q as

w(p)(q) =
∑

a∈A

a × t(p)(a)(q).

Note that for any p, q ∈ Q , a ∈ A, w(p)(q) is proper and t(p)(a)(q) = w(p)(q)a .
As for ordinary weighted automata, we write p

a,σ−−→ q for t(p)(a)(q) = σ, or
p τ−→ q for w(p)(q) = τ .

Remark. The transition function t is uniquely determined by w . Thus a hwa
can equivalently be defined by giving its set of states Q , its output function o :
Q → S , and its cumulated weights, that is, a function w : Q → (Q →f S 〈〈A〉〉p).
(Recall that here S 〈〈A〉〉p denotes the set of all proper series.) Indeed, given
any w : Q → (Q →f S 〈〈A〉〉p), define t : Q → (Q →f S 〈〈A〉〉)A by t(p)(a)(q) =
w(p)(q)a . The fundamental theorem then gives w(p)(q) =

∑
a∈A a × t(p)(a)(q).

Let A = (Q , 〈o, t〉) a hwa. The behaviour of a state q ∈ Q is defined as a
power series S(q) ∈ S 〈〈A〉〉, and satisfies the same equations as we had for was.
More precisely, S : Q → S 〈〈A〉〉 is defined as the unique solution to the following
system of behavioural differential equations: for all q ∈ Q and a ∈ A,

S(q)a =
∑

r∈Q

t(q)(a)(r) × S(r) O(S(q)) = o(q) .

hwas are indeed a generalization of was, in the sense that any wa can be seen
as a hwa, by identifying the weights in S with power series in S 〈〈A〉〉. Since the
behaviour of was and hwas are defined by the same system of equations, the
behaviour of a wa is unchanged when we consider it as a hwa.

Final Semantics for Heavy-Weighted Automata

In coalgebra theory, the behaviour of a system is usually defined in terms of final
homorphism: given a functor F with a final coalgebra (Ω,ω), every element of
an F-coalgebra (X , f) is associated to a canonical representative in Ω by the
final F-homomorphism �−� : X → Ω.

Here however, hwas are coalgebras for the functor X �→ S × (X →f

S 〈〈A〉〉)A, whereas their semantics is defined in terms of formal power series,
which is the final coalgebra for the functor X �→ S × XA.

The objective of this subsection is to propose another definition for the
semantics of hwas, equivalent to the previous one, but expressed in terms of
final homomorphisms. For that, we will associate each hwa (Q , 〈o, t〉) to an
S × (−)A-coalgebra, in a construction similar to the determinization procedure
for automata.

For the remainder of this subsection, we fix a hwa A = (Q , 〈o, t〉). Similarly
to the powerset construction, we define a map η : Q → (Q →f S 〈〈A〉〉) by

56 M. Fortin et al.

η(p)(q) =
{

1 if p = q
0 if p 	= q .

Note that every α : Q →f S 〈〈A〉〉 can be expressed as α =
∑

q∈Q α(q) ·
η(q) where, for all σ ∈ S 〈〈A〉〉 and β : Q →f S 〈〈A〉〉, σ · β : Q →f S 〈〈A〉〉
is defined as q �→ σ × β(q).

Q

S × (Q −→f S 〈〈A〉〉)A

Q −→f S 〈〈A〉〉

〈o, t〉

η

〈ô, t̂〉

We want to define an S × (−)A coal-
gebra structure 〈ô, t̂〉 for (Q →f S 〈〈A〉〉)
compatible with 〈o, t〉, meaning that ô ◦
η = o and t̂ ◦ η = t . Moreover, ô and
t̂ should behave as output and derivative
functions, that is, the following equalities
should hold for every α, β ∈ Q →f S 〈〈A〉〉,
σ ∈ S 〈〈A〉〉 and a ∈ A:

ô(α + β) = ô(α) + ô(β) t̂(α + β) = t̂(α) + t̂(β)
ô(σ · α) = O(σ) · ô(α) t̂(σ · α)(a) = σa · α + O(σ) · t̂(α)

This leads to the following definitions for ô and t̂ :

ô(α) =
∑

q∈Q

O(α(q)) · o(q) t̂(α)(a) =
∑

q∈Q

(α(q)a · η(q) + O(α(q)) · t(q)(a))

We are now going to exploit the fact that S 〈〈A〉〉 is a final S × (−)A-coalgebra
to define the semantics of A. Denote by �−� the unique S × (−)A-homomorphism
from (Q →f S 〈〈A〉〉) to S 〈〈A〉〉.

We now define the behaviour of state q ∈ Q as the power series �η(q)� , and
show that it is indeed the same as the behaviour S(q) defined in Fig. 1.

Lemma 1. For all α, β ∈ (Q →f S 〈〈A〉〉) and σ ∈ S 〈〈A〉〉,

�α + β� = �α� + �β� and �σ · α� = σ × �α�.

Proof. It is enough to show that R1 = {(�α + β�, �α� + �β�) | α, β : Q →f

S 〈〈A〉〉} and R2 = {(�σ · α�, σ × �α�) | σ ∈ S 〈〈A〉〉, α : Q →f S 〈〈A〉〉} are a
bisimulation and a bisimulation-up-to, using the fact that O(�α�) = ô(α) and
�α�a = �t̂(α)(a)�. �

Coalgebraic Semantics of Heavy-Weighted Automata 57

Proposition 1. For all q ∈ Q, �η(q)� = S(q).

Proof. We show that q �→ �η(q)� satisfies the system of equations defining S:

– for all q ∈ Q , O(�η(q)�) = ô(η(q)) = o(q).
– for all q ∈ Q and a ∈ A,

[[η(q)]]a =
[[
t̂(η(q))(a)

]]
= �t(q)(a)�

=

⎡

⎣

⎡

⎣
∑

r∈Q

t(q)(a)(r) · η(r)

⎤

⎦

⎤

⎦ =
∑

r∈Q

t(q)(a)(r) × �η(r)�. �

4 From Heavy-Weighted Automata to Weighted
Automata

As we saw in Sect. 3, there is a trivial injection from the set of was to the set
of hwas. Reciprocally, we want to be able to transform any hwa A = (Q , 〈o, t〉)
into a wa Â =

(
Q̂ ,

〈
ô, t̂

〉)
with weights in S and input alphabet A, such that

for all q ∈ Q , there exists q̂ ∈ Q̂ such that q and q̂ have the same behaviour.
(Intuitively, this means that whatever state q we choose as “initial” in A, we
can find a state q̂ in Â having the same behaviour.) There are two motivations
for this construction:

– giving a new interpretation to the semantics of hwas.
– giving a constructive proof that hwas and was have the same expressivity. In

the general case this is trivial since any power series can be recognized both by
a hwa, and a (possibly infinite) wa, as shown in Sect. 2.5. Yet there are other
interesting cases; for instance we can require the set of states to be finite, and
the “heavy-weights” to be rational power series.

p qA0 :
X ,

X
1 − X

X , 1

1

Let us first look at an example. We take
A = {X } and S = R, and consider the
automaton A0 on the right:

First Idea. We compute directly an equivalent
wa by the method of “splitting the deriva-
tives” [11]: we compute the successive derivatives of S(p), and add corresponding
states at each step.

We have S(p)′ = X
1−X S(q), so we add a state with behaviour X

1−X S(q). Then
(

X
1−X S(q)

)′
= 1

1−X S(q), and we add a state with behaviour 1
1−X S(q). Finally,

(
1

1−X S(q)
)′

= 1
1−X S(q) + S(q), so we get the following automaton:

p X
1−X q 1

1−X q q
X , 1 X , 1

X , 1

X , 1

X , 1

1

1

58 M. Fortin et al.

X
1−X

1
1−X

X , 1

X , 1

1

Second Idea. In the automaton on the right, the leftmost
state recognize the stream X

1−X . We can plug it into A0,
in place of the heavy-weighted transition, as follows:

p r1 r2 qX , 1 X , 1

X , 1

ε, 1

X , 1

1

We did not allow ε-transitions in our definition of weighted automata, because
the behaviour of a weighted automaton with ε-transitions is not always well-
defined: for instance if we have a cycle of ε-transitions, we could have infinitely
many paths labeled by the same word, which would lead to an infinite sum when
computing the behaviour of a state. Yet here we don’t add any infinite path
labeled by ε, and in this particular case it is easy to adapt all the definitions.

Removing the ε-transitions, we get precisely the same automaton as with
the first method. This is not surprising, since in the first method, computing the
derivative of S(q) amounted to computing the derivative of X

1−X .
We come back to the general case. Both methods can be generalized, and

lead again to the same definition of the equivalent wa.
Let A = (Q , 〈o, t〉) be a hwa. Assume that for all p, q ∈ Q and a ∈ A,

we have a wa Ap,a,q = (Qp,a,q , 〈op,a,q , tp,a,q〉) and a state ip,a,q ∈ Qp,a,q with
behaviour t(p)(a)(q).

We define a wa Â =
(
Q̂ ,

〈
ô, t̂

〉)
by setting:

– Q̂ = Q � ⊎
p,q∈Q
a∈A

Qp,a,q

– ∀q ∈ Q , ô(q) = o(q), and ∀p, q ∈ Q , a ∈ A, r ∈ Qp,a,q , ô(r) = op,a,q(r)o(q)
– ∀p, q ∈ Q , a ∈ A,

t̂(p)(a)(ip,a,q) =
{

1 if t(p)(a)(q) 	= 0
0 otherwise

∀p, q ∈ Q , a, b ∈ A, r , s ∈ Qp,b,q ,

t̂(r)(a)(s) =
{

tp,b,q(r)(a)(s) + op,b,q(r) if p = q , a = b and s = ip,a,p

tp,b,q(r)(a)(s) otherwise

∀a, b ∈ A, p, q , q ′ ∈ Q s.t. (p, b, q) 	= (q , a, q ′),∀r ∈ Qp,b,q ,

t̂(r)(a)(iq,a,q′) = op,b,q(r)

In all other cases, t̂(r)(a)(s) = 0.

This construction corresponds to the intuition we gave before (expressed
as in the “second idea”, though both methods lead to the same automaton).

In fact, consider a transition p
b,σ−−→ q in A. We replace it by connecting Ap,b,q

Coalgebraic Semantics of Heavy-Weighted Automata 59

between p and q as we did in the example, using ε-transitions: we set a transition

p
b,1−−→ ip,b,q and for each final state r ∈ Qp,b,q we set a transition r

ε,op,b,q(r)−−−−−−→ q ,
and set the output of r to 0.

p ip,b,q

r

qAp,b,q
b, 1

ε, op,b,q(r)

(There are no paths labeled by ε of length > 1, hence the semantics of the
new automaton is well-defined.) We can then proceed to the removal of the ε-

transitions : for every transition r
ε,op,b,q(r)−−−−−−→ q , we do the following : we remove

the transition, we set o(r) := o(r) + op,b,q(r)o(q), and for every q
a,s−−→ q ′ we

add a transition r
a,op,b,q(r)·s−−−−−−−−→ q ′. Note that the only such transitions q

a,s−−→ q ′

are transitions of the form q
a,1−−→ iq,a,q′ .

Theorem 5. With the above notations, denote by S the semantics of the
automaton A, and by Ŝ the semantics of Â. Then for all q ∈ Q ,S(q) = Ŝ(q).

Proof. It is enough to show that

R =
{(

Ŝ(q),S(q)
)

| q ∈ Q
}

∪
{(

Ŝ(r),Sp,a,q(r)S (q)
)

| p, q ∈ Q , r ∈ Qp,a,q

}

is a bisimulation-up-to. (For all p, q , Sp,a,q denotes the semantics of Ap,a,q .) �

Remark. Theorem 5 holds without any restriction on A. Now consider the case
where A is finite, and for all p, q ∈ Q , t(p)(a)(q) is a rational power series.
Then we can suppose that all Ap,a,q are also finite, and we obtain for Â a finite
automaton as well. In particular, for all q , Ŝ(q) is rational, i.e. S(q) is rational.
This gives us a proof that (not surprisingly) finite hwas with rational weights
have the same expressivity as was. Yet there are other ways to prove this, for
instance by directly computing S(q) as in Sect. 5.1.

5 Some Applications of Heavy-Weighted Automata

Heavy-weighted automata provide a more compact way of representing power
series than ordinary weighted automata. We give two examples of how this can be
used. First, there is the state elimination method, that describes a way to remove
a state in a weighted automaton. In the case of finite automata, it also leads to
an algorithm to compute a rational expression for the power series recognised by
some state of the automaton. Secondly, we consider the case of infinite weighted
automata representing algebraic power series. Under precise conditions on the
shape of the automaton, we can formulate some contraction rules that lead to
an equivalent, possibly finite, hwa.

60 M. Fortin et al.

5.1 State Elimination Method

Brzozowski and McCluskey’s state elimination method for computing the ratio-
nal expression associated to an (ordinary) finite automaton can easily be adapted
to weighted automata. The only thing new with weighted automata is that we
need to update also the outputs of the remaining states when we remove a state.

For practical reasons, we adopt in this subsection a slightly different definition
of hwas than in the rest of the paper. We now allow not only the weight of the
transitions, but also the outputs of the states to be power series. Furthermore, we
choose to define hwas by giving their cumulated weight function w rather than
t (see Sect. 3). Formally, a heavy-weighted automaton now is a pair (Q , 〈o,w〉),
where Q is a set of states, o : Q → S 〈〈A〉〉 is the output function, and w : Q →
(Q →f S 〈〈A〉〉p).

The behaviours S(q) of each state q ∈ Q are again defined as the unique
solutions of a system of equations: for all q ∈ Q ,

S(q) = o(q) +
∑

r∈Q

w(p)(q) × S(r).

Note that such an automaton can always be transformed into an automaton in
which the output of all states are elements of S : we add one state f , with no
outgoing transitions and output 1. For each other state q ∈ Q , we decompose
o(q) into o(q) = s + σ, with s = O(o(q)) and σ =

∑
a∈A a × o(q)a . Then we

replace the ouptut of q by s, and we add a transition q σ−→ f . (Fig. 2).

p

q

r

o1

o2

σ1

σ2

σ3

σ4

p r

o1 + σ2σ
∗
3o2

σ1 + σ2σ
∗
3σ4

Fig. 2. Elimination of state q

State Elimination. Let A = (Q , 〈o,w〉) be a hwa with at least two states, and
q ∈ A. We define the automaton elimination(q ,A) resulting from the elimination
of state q in A as elimination(q ,A) = (Q \ {q}, 〈ô, ŵ〉), with for all p, r ∈ Q ,

ô(p) = o(p) + w(p)(q) × w(q)(q)∗ × o(q)
ŵ(p)(r) = w(p)(r) + w(p)(q) × w(q)(q)∗ × w(q)(r).

We denote by S(p) the behaviour of a state p ∈ Q in the automaton A, and for
p 	= q , we denote by Ŝ(p) its behaviour in the automaton elimination(q ,A).

Proposition 2. For all p ∈ Q \ {q}, Ŝ(p) = S(p).

Coalgebraic Semantics of Heavy-Weighted Automata 61

Proof. S is defined by the following system of equations:

∀p ∈ Q S(p) = o(p) +
∑

r∈Q

w(p)(r) × S(r)

The equation for q is equivalent to

S(q) = w(q)(q)∗
(

o(q) +
∑

r∈Q\{q}
w(q)(r)S(r)

)
.

Substituting into the other equations, we get exactly the system defining Ŝ. �

Computing Rational Expressions for Finite Weighted Automata. The previous
result holds without further restriction on A. We now consider the case where Q
is finite, and where all weights and outputs in A are given by rational expressions.
Clearly, the weights and outputs in eliminate(q ,A) can again be given by rational
expressions, so these assumptions are preserved at each elimination of a state. In
what follows, we identify rational expressions and the power series they denote.

Suppose we start from a finite ordinary weighted automaton. To compute
the behaviour of a state q , we can eliminate successively all the other states
of the automaton. We get an automaton with only one state q , the behaviour
of which is given by the equation S(q) = o(q) + w(q)(q)S(q), which leads to
S(q) = w(q)(q)∗×o(q). Since o(q) and w(q)(q) are given by rational expressions,
this gives us a rational expression for S(q).

q0 q1 q2

2
3
X 1

3
X

2
3
X

1
3
X

1
Example. Consider the automaton on the
right. Removing successively q1 and q2
leads to:

q0 q2

2
3
X +

2
9
X 2

1
9
X 2

1 q0

2
3
X +

2
9
X 2

1
9
X 2

Finally, we get S(q0) =
(

2
3
X +

2
9
X 2

)∗
× 1

9
X 2.

5.2 Reduction of Well-Shaped Infinite Weighted Automata

Most of what is known about weighted automata concerns finite automata. Yet
some situations can conveniently be represented by an infinite weighted automa-
ton, in a rather natural way.

For instance, in [4,10], infinite weighted automata are extensively used to
model counting problems. The idea is to give a weighted automata recognizing

62 M. Fortin et al.

the generating function of the family of combinatorial objects studied, that is, the
power series

∑
n∈N

fnX n , where fn denotes the number of objects of size n. Typi-
cally, such a generating function is represented by an infinite weighted automaton
in which most transitions have weight 1, and which is constructed in such a way
that each object of size n correspond precisely to one accepting path of length
n in the automaton.

AM : 0 1 2 3

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

1

Fig. 3. Weighted automaton for Motzkin paths.

Example. One of the main
examples given in [4] is the
study of Motzkin paths. A
Motzkin path of length n
is a lattice path of Z × Z

going from (0, 0) to (n, 0),
that never passes below the
x -axis and whose permitted
steps are the up diagonal step (1, 1), the down diagonal step (1,−1) and the
level step (1, 0).

The number Motzkin paths of length n, called the n-th Motzkin number,
is given by the behaviour of the automaton AM (see Fig. 3); more precisely, it
is equal to S(0)(n). Intuitively, a transition i → (i + 1) corresponds to a step
(1, 1), a transition (i + 1) → i to a step (1,−1), and a transition i → i to a step
(1, 0). A Motzkin path starts and ends at level y = 0, which is why 0 is both the
only initial and final state.

In this example as in many others, the automaton that interests us is con-
structed by repeating the same pattern infinitely often. Our aim is to use these
regularities to contract some part of the automaton, and compute an equivalent
finite hwa when it is possible.

ÂM : 0 1

X , 1

X , 1

X , S(0)1

Fig. 4. Simplified automa-
ton for Motzkin paths.

Example. The automaton in Fig. 3 is equivalent to
the automaton to the right. The idea is the following.
Consider an accepting path starting in state 1, that
is, a path 1 = q0 → q1 → · · · → qn = 0. Let k be the
smallest index strictly greater than 0 such that qk =
0. Necessarily, qk−1 = 1, and q0 → · · · → qk−1 is a
path from 1 to 1 that never passes through 0: there
are as many such paths as there are paths from 0 to
0 of length k −1, i.e. S(0)(k −1) = X ×S(0)(k). This

is what is expressed by 1
X ,S(0)−−−−→ 0 in ÂM .

Formally, we can prove that the two automata are equivalent as follows.
Denote by Ŝ(i) the semantics of state i in ÂM . We can check that the closure
under linear combinations of the relation

R =
{(

S(0), Ŝ(0)
)

,
(
S(1), Ŝ(1)

)}
∪

{(
S(i),X × S(i − 1) × Ŝ(0)

)
| i ≥ 1

}

is a bisimulation; hence S(0) = Ŝ(0) and S(1) = Ŝ(1).
From the automaton ÂM , we then get the following equation for S(0) :

S(0) = 1 + X × S(0) + X 2 × S(0)2.

Coalgebraic Semantics of Heavy-Weighted Automata 63

A few other examples of such reductions are given in [4]. Our aim here is to
identify specific classes for which such reductions are possible, and to give a few
general rules applicable in these situations. The key point in the reduction we did
for AM was the fact that the sub-automaton consisting of the states {1, 2, . . .}
is isomorphic to AM . Similarly, the rules we will give apply to automata where
some sub-automaton is isomorphic to the whole automaton.

Syntactic Heavy-Weighted Automata. In the automaton ÂM (see Fig. 4),
the stream S(0) appearing in the transition from 1 to 0 refers to the behaviour
of the state 0 of the automaton AM (see Fig. 3), and not ÂM itself. A priori, we
can’t refer to the behaviour of an automaton in the definition of its transition
function, since its behaviour is itself defined using the transition function.

x y

X , 1

X , 1

X , x1

Yet ÂM is precisely constructed so as to have S(0) =
Ŝ(0), and we would like to be able to define ÂM with-
out refering to AM . To allow such definitions, we intro-
duce a new kind of automata: syntactic heavy-weighted
automata. To simplify notations, we will identify the
behaviour of a state with this state itself. For instance,
the syntactic heavy-weighted automaton corresponding to ÂM will be the one
on the right.

A syntactic heavy-weighted automata (or shwa, for short) over a semiring S
and an alphabet A consists of a pair (Q , 〈o, t〉), where Q is the set of states,
o : Q → S is the output function, and t : Q → (Q →f S 〈A ∪ Q〉)A is the
transition function.

The behaviour S(x) of a state x ∈ Q is defined as the unique solutions to the
following system of behavioural differential equations: for all x ∈ Q and a ∈ A,

O(x) = o(x) xa =
∑

y∈Q

t(x)(a)(y) × y . (1)

We extend S : Q → S 〈〈A〉〉 to polynomials and power series as follows. We first
define S inductively on words over (A ∪ Q): for all a ∈ A, x ∈ Q and u ∈ A∗,

S(ε) = 1 S(a · u) = a × S(u) S(x · u) = S(x) × S(u).

For all σ ∈ S 〈〈A ∪ Q〉〉 and w ∈ A∗, we then define S(σ) =
∑

w∈A∗ σ(w)S(w).
For instance, we have S(3aq + qr) = 3aS(q) + S(q)S(r). The fact that {S(x) |
x ∈ Q} is the solution to the system of behavioural differential equations in (1)
can then be written as follows: for all x ∈ Q and a ∈ A,

O(S(x)) = o(x) S(x)a =
∑

y∈Q

S(t(x)(a)(y)) × S(y).

First Reduction Rule. We describe a method to remove a (possibly infinite)
set of states from a shwa A, under precise assumptions. We proceed in two steps:
first, we show how to disconnect a subset Q ′ of the states of A from the rest

64 M. Fortin et al.

of the states (Proposition 3), and then we show that when the sub-automaton
induced by Q ′ is isomorphic to A, we can remove it entirely (Corollary 1).

Let A = (Q , 〈o, t〉) be a shwa, and Q ′
� Q . Let

F ′ = {q ∈ Q ′ | ∃r ∈ Q \ Q ′, ∃a ∈ A, t(q)(a)(r) 	= 0},

and
I ′ = {q ∈ Q ′ | ∃r ∈ Q \ Q ′, ∃a ∈ A, t(r)(a)(q) 	= 0}.

We assume that Q ′ satisfies the following conditions:

(1) For all q ∈ Q ′, o(q) = 0.
(2) For all p, q ∈ Q and a ∈ A, t(p)(a)(q) ∈ S 〈A ∪ (Q \ Q ′)〉.
(3) There exists o′ : Q → S and f : A → S 〈A ∪ (Q \ Q ′)〉Q\Q′

such that:
(a) for all q ∈ Q ′, (o′(q) 	= 0 ⇐⇒ q ′ ∈ F ′).
(b) for all q ∈ Q ′ and r ∈ Q \ Q ′, t(q)(a)(r) = o′(q) × f (a)(r).

If F ′ contains only one state q , condition (3) becomes useless, and we simply set
o′(q) = 1 and f (a)(r) = t(q)(a)(r).

Define Â =
(
Q ,

〈
ô, t̂

〉)
as follows:

– ô(q) =
{

o(q) if q ∈ Q \ Q ′

o′(q) if q ∈ Q ′

– t̂(p)(a)(q) =

⎧
⎪⎪⎨

⎪⎪⎩

t(p)(a)(q) +
∑

r∈Q′ t(p)(a)(r) × r if p, q ∈ Q \ Q ′

× ∑
b∈A b × f (b)(q)

t(p)(a)(q) if p, q ∈ Q ′

0 otherwise.

We denote by Ŝ(q) the behaviour of a state q ∈ Q in automaton Â, and by S(q)
its behaviour in automaton A.

Proposition 3. Under the above assumptions Ŝ(q) = S(q) for all q ∈ Q \ Q ′.

The idea is that this construction is the opposite of the construction that we
did in Sect. 4. We recognize something of the form

p i

r

qQ′ qQ ′a, t(p)(a)(i)

ε, o′(r)

b, f (b)(q)

(∀b)

p qQ′ q
a, t(p)(a)(i) × i b, f (b)(q)

(∀b)
and we contract it into the one on the
right which, after removal of qQ′ (as in
Sect. 5.1), leads for all a ∈ A to a transi-

tion p
a,t(p)(a)(i)×i×∑b bf (b)(q)−−−−−−−−−−−−−−−−−−→ q .

Coalgebraic Semantics of Heavy-Weighted Automata 65

Proof (of Proposition 3). Let C =
∑

a∈A

∑
r∈Q\Q′ a × S(f (a)(r)) × S(r).

Then
{
(S(q), Ŝ(q)) | q ∈ Q \ Q ′} ∪ {

(S(q), Ŝ(q) × C) | q ∈ Q ′} is a
bisimulation-up-to. �

Proposition 3 allows us to isolate the sub-automaton of A obtained by keeping
only the states in Q ′, and setting as final those states that have an outgoing
transition leaving Q ′. More interestingly, when this sub-automaton is isomorphic
to A itself, we can remove all the states in Q ′, as follows.

Corollary 1. Assume that there exists a bijection ϕ : Q ′ → Q such that:

– ∀q ∈ Q ′, o′(q) = o(ϕ(q))
– ∀p, q ∈ Q , t(ϕ(p))(a)(ϕ(q)) = t(p)(a)(q)
– ∀q ∈ I ′, ϕ(q) ∈ Q \ Q ′

We define Ā = (Q \ Q ′, 〈ō, t̄〉) as follows: ō is the restriction of o to Q \Q ′, and
for all p, q ∈ Q \ Q ′,

t̄(p)(a)(q) = t(p)(a)(q) +
∑

r∈Q′
t(p)(a)(r) × ϕ(r) ×

∑

b∈A

bf (b)(q).

Then S̄(q) = S(q) for all q ∈ Q \ Q ′.

Proof. t̄ is well-defined, because of condition (2) and the assumption that for
all q ∈ I ′, ϕ(q) ∈ Q \ Q ′. To prove the equality, we show successively that
R1 =

{(
S(ϕ(q)), Ŝ(q)

)
| q ∈ Q ′

}
and R2 =

{(
S̄(q), Ŝ(q)

)
| q ∈ Q \ Q ′

}
are

bisimulations-up-to. Hence S̄(q) = Ŝ(q) = S(q) for all q ∈ Q \ Q ′. �

Example. Consider again the automaton AM . Taking Q ′ = {q1, q2, . . .} and
ϕ(qi) = qi−1, we obtain the automaton ĀM , which can be also be obtained from
ÂM in Fig. 4 by removing state 1.

AM : q0 q1 q2 q3

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1

1

ĀM : q0

X , 1 + q0 × X

1

Fig. 5. Application of the first reduction rule to AM

Second Reduction Rule. Condition (1) in the previous reduction rule is quite
restrictive, even when being interested only in specific, well-shaped automata. To
gain a little more generality, we present a second reduction rule, which consists
not in removing states, but in transforming some final states into non final states.

Let A = (q , 〈o, t〉) be a shwa, and Q ′
� Q . We define as before I ′ = {q ∈ Q ′ |

∃r ∈ Q , ∃a ∈ A, t(r)(a)(q) 	= 0}, but this time we set F ′ = {q ∈ Q ′ | o(q) = 0}.
Suppose that there exists a bijection ψ : Q ′ → Q such that:

66 M. Fortin et al.

(1) For all q , r ∈ Q ′, a ∈ A, t(p)(a)(q) = t(ψ(p))(a)(ψ(q)) and o(q) = o(ψ(q))
(2) For all i ∈ I ′, ψ(i) ∈ Q \ Q ′.

and that

(3) For all p, q ∈ Q and a ∈ A, t(p)(a)(q) ∈ S 〈A ∪ (Q \ Q ′)〉
We define Â =

(
Q ,

〈
ô, t̂

〉)
as follows: for all p, q ∈ Q and a ∈ A,

ô(q) =
{

o(q) if q ∈ Q \ Q ′

0 if q ∈ Q ′

t̂(p)(a)(q) =
{

t(p)(a)(q) + t(p)(a)(ψ−1(q)) if p, q ∈ Q \ Q ′

t(p)(a)(q) otherwise.

Proposition 4. Under the above assumptions, denote by S the behaviour of A,
and by Ŝ the behaviour of Â. Then Ŝ(q) = S(q) for all q ∈ Q \ Q ′.

Proof.
{
(S(q), Ŝ(q)) | q ∈ Q \ Q ′} ∪ {

(S(q), Ŝ(q) + S(ψ(q))) | q ∈ Q ′} is a
bisimulation-up-to. �

q0 q1 q2 q3 q4

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1Example. Consider the auto-
maton on the right (taken
from [4]), where all final
states have output 1. Tak-
ing Q ′ = {qi | i ≥ 2} and
ψ(qi) = qi−2, we obtain:

q0 q1 q2 q3 q4

X , 1

X , 1

X , 2

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1

q0 q1 q2 q3 q4

X , 1 + 2q1X X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1Using Proposition 3, q0
has the same behaviour
in the automaton on the
right. And combining this
with the reduction shown
in Fig. 5, we get:

q0 q1

X , 1 + 2q1X X , 1 + q1X The behaviour of q0 is then described by:

O(S(q0)) = 1 S(q0)′ = S(q0) + 2S(q1)XS(q0)
O(S(q1) = 1 S(q1)′ = S(q1) + S(q1)XS(q1).

Link with Algebraic Power Series. All the examples we treated in this
section are algebraic (or context-free) power series. More generally, shwas can
be seen as a representation of polynomial systems of equations. In the finite case,
the solution to such a system of equations is an algebraic power series.

Coalgebraic Semantics of Heavy-Weighted Automata 67

A polynomial system of behavioural differential equations over a semiring S ,
an alphabet A, and a set of variables X consists of a set of equations (one for
each x ∈ X) of the form

xa = t O(x) = s

where t ∈ S 〈A ∪ X〉 and s ∈ S . A polynomial system of behavioural differential
equations is finite if X is finite.

A polynomial system of behavioural differential equations always has a
unique solution. A formal power series σ ∈ S 〈〈A〉〉 is called algebraic when it
is part of the solution of a finite polynomial system of behavioural differential
equations.

This coinductive characterization of algebraic power series is equivalent to
other notions of algebraic or context-free power series [7], as shown in [2].

Proposition 5. Let σ ∈ S 〈〈A〉〉. Then σ is algebraic if and only if there exists
a finite shwa A = (Q , 〈o, t〉) and q0 ∈ Q such that S(q0) = σ.

6 Conclusion

We studied an extension of weighted automata that allows the weights of the
transitions to be any power series in S 〈〈A〉〉, rather than elements of S . The
semantics of a heavy weighted automaton can be given by a system of behav-
ioural differential equations linking the behaviours of the different states, or
by transforming the automaton into an S × (−)A-coalgebra and applying the
final S × (−)A-homomorphism. Moreover, any heavy weighted automaton can
be transformed into a weighted automaton in a canonical way.

Heavy weighted automata often provide a more compact representation of a
power series than weighted automata. In particular, they can be used to compute
a regular expression associated with a finite weighted automata, or in some
cases to give a finite representation of an infinite weighted automata. The state
elimination method can be used to remove one state at a time, and in some
special cases, see Sect. 5.2, allow to remove an infinite subset of states.

References

1. Bonchi, F., Bonsangue, M.M., Boreale, M., Rutten, J.J.M.M., Silva, A.: A coalge-
braic perspective on linear weighted automata. Inf. Comput. 211, 77–105 (2012)

2. Bonsangue, M.M., Rutten, J., Winter, J.: Defining context-free power series coal-
gebraically. In: Pattinson, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399,
pp. 20–39. Springer, Heidelberg (2012)

3. Brzozowski, J., Mccluskey, E.J.: Signal flow graph techniques for sequential circuit
state diagrams. IEEE Trans. Electron. Comput. 12(2), 67–76 (1963)

4. Castro, R.D., Ramı́rez, A., Ramı́rez, J.L.: Applications in enumerative combina-
torics of infinite weighted automata and graphs. Sci. Annal. Comput. Sci. 24(1),
137–171 (2014)

68 M. Fortin et al.

5. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. An EATCS Series, 1st edn. Springer,
Heidelberg (2009)

6. Fortin, M., Bonsangue, M.M., Rutten, J.J.M.M.: Coalgebraic semantics of heavy-
weighted automata. Technical report FM-1405, CWI - Amsterdam (2014). http://
oai.cwi.nl/oai/asset/22603/22603D.pdf

7. Petre, I., Salomaa, A.: Algebraic systems and pushdown automata. In: Droste, M.,
Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata [5]. Monographs in
Theoretical Computer Science. An EATCS Series, pp. 257–289. Springer, Heidel-
berg (2009)

8. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde
Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369–381. Springer, Heidelberg (2013)

9. Rutten, J.J.M.M.: Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoret. Comput. Sci. 308(1–3), 1–53 (2003)

10. Rutten, J.J.M.M.: Coinductive counting with weighted automata. J. Automata
Lang. Comb. 8(2), 319–352 (2003)

11. Rutten, J.J.M.M.: A coinductive calculus of streams. Math. Struct. Comput. Sci.
15(1), 93–147 (2005)

12. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New
York (2009)

13. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing deter-
minization from automata to coalgebras. Log. Methods Comput. Sci. 9(1) (2013)

14. Wood, D.: Theory of Computation. Harper & Row, New York (1987)

http://oai.cwi.nl/oai/asset/22603/22603D.pdf
http://oai.cwi.nl/oai/asset/22603/22603D.pdf

	Coalgebraic Semantics of Heavy-Weighted Automata
	1 Introduction
	2 Preliminaries
	2.1 Coalgebras
	2.2 Formal Power Series
	2.3 A Coinductive Calculus for Power Series
	2.4 Rational Power Series
	2.5 Weighted Automata

	3 Heavy-Weighted Automata
	4 From Heavy-Weighted Automata to Weighted Automata
	5 Some Applications of Heavy-Weighted Automata
	5.1 State Elimination Method
	5.2 Reduction of Well-Shaped Infinite Weighted Automata

	6 Conclusion
	References

