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Abstract. We advance an institutional formalisation of the logical sys-
tems that underlie the K semantic framework and are used to capture
both structural properties of program configurations through pattern
matching, and changes of configurations through reachability rules. By
defining encodings of matching and reachability logic into the institution
of first-order logic, we set the foundation for integrating K into logic
graphs of heterogeneous institution-based specification languages such
as HetCasl. This will further enable the use of the K tool with other
existing formal specification and verification tools associated with Hets.

1 Introduction

The K framework [19] is an executable semantic framework based on rewrit-
ing and used for defining programming languages, computational calculi, type
systems and formal-analysis tools. It was developed as an alternative to the exist-
ing operational-semantics frameworks and over the years has been employed to
define actual programming languages, to study runtime verification methods and
to develop analysis tools such as type checkers, type inferencers, model checkers
and verifiers based on Hoare-style assertions. A comprehensive overview of the
framework can be found in [20]. Its associated tool [6] enables the development
of modular and executable definitions of languages, and moreover, it allows the
user to test programs and to explore their behaviour in an exhaustive manner,
facilitating in this way the design of new languages. Driven by recent develop-
ments on the theoretical foundations of the K semantic framework [18,21] and on
the established connections with other semantic frameworks and formal systems
such as reduction semantics, Hoare logic and separation logic, we propose an
institutional formalisation [10] of the logical systems on which the K framework
is based: matching and reachability logic. This would allow us to extend the
usage of K by focusing on its potential as a formal specification language, and
furthermore, through its underlying logics, to establish rigorous mathematical
relationships between K and other similar languages, enabling the integration of
their verification tools and techniques.
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Matching logic [18] is a formal system used to express properties about the
structure of mathematical objects and language constructs, and to reason about
them by means of pattern matching. Its sentences, called patterns, are built in
an inductive manner, similar to the terms of first-order logic, using operation
symbols provided by a many-sorted signature, as well as Boolean connectives and
quantifiers. The semantics is defined in terms of multialgebras, which interpret
patterns as subsets of their carriers. This leads to a ternary satisfaction relation
between patterns, multialgebras and elements (or states) of multialgebras.

Unlike first-order logic, matching logic is difficult to formalise faithfully as an
institution due to the ternary nature of its satisfaction relation and to the fact
that patterns are classified by sorts, much in the way the sentences of branch-
ing temporal logics are classified into state or path sentences and evaluated
accordingly. We overcome these limitations by relying on the concept of stratified
institution developed in [2], which extends institutions with an abstract notion
of model state and defines a parameterised satisfaction relation that takes into
account the states of models. We further develop this concept by adding classes,
which are determined by signatures, associated with sentences, and parameterise
both the stratification of models and the satisfaction relation. We show that both
matching and computation-tree logic can be described as stratified institutions
with classes, and we adapt the canonical construction of an ordinary institution
from a stratified one presented in [2] to take into consideration the role of classes.

The main advantage of using stratified institutions with classes to formalise
matching logic is that we can extend the construction of reachability logic
described in [21] from matching to other logical systems. Reachability logic is a
formalism for program verification through which transition systems that corre-
spond to the operational semantics of programming languages can be described
using reachability rules; these rules rely on patterns and generalise Hoare triples
in order to specify transitions between program configurations (similarly to
term-rewrite rules). Therefore, reachability logic can be seen as a language-
independent alternative to the axiomatic semantics and proof systems particular
to each language. We define an abstract institution of reachability logic over an
arbitrary stratified institution with classes such that by instantiating this para-
meter with matching logic we recover the original notion of reachability.

This paper is based on the Master’s thesis of the first author [5], which
additionally contains detailed proofs of the results presented herein.

2 Preliminaries

2.1 Institution Theory

The concept of institution [10] formalises the intuitive notion of logic by abstract-
ing the alphabet, syntax, semantics and satisfaction relation. In the following,
we assume familiarity with the basics of category theory. The reader is referred
to the book [14] of Mac Lane and Eilenberg for further reading.

Definition 1. An institution I = (SigI,SenI,ModI, |=I) consists of

– a category SigI whose objects are called signatures,
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– a sentence functor SenI : SigI → Set giving for every signature Σ the set
SenI(Σ) of Σ-sentences and for every signature morphism φ : Σ → Σ′ the
sentence translation map SenI(φ) : SenI(Σ) → SenI(Σ′),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the
category ModI(Σ) of Σ-models and Σ-model homomorphisms, and for every
signature morphism φ the reduct functor ModI(φ) : ModI(Σ′) → ModI(Σ),

– a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for every signature Σ,

such that the satisfaction condition

M ′ |=I
Σ′ SenI(φ)(ρ) iff ModI(φ)(M ′) |=I

Σ ρ

holds for any signature morphism φ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ρ.

We may omit the sub/superscripts in the notations of institutions when there
is no risk of confusion: for example, |=I

Σ may be denoted by |= if the institution
I and the signature Σ are clear. The sentence translation SenI(φ) and the reduct
functor ModI(φ) may also be denoted by φ( ) and �φ. When M = M ′�φ we say
that M is a φ-reduct of M ′ and that M ′ is a φ-expansion of M .

First-order logic constitutes a long-established example of an institution [10].

Example (Many-sorted first-order logic with equality(FOL)). Signa-
tures. A (many-sorted) first-order signature (S, F, P ) consists of a set S of
sorts, a family F of sets Fw→s, for w ∈ S∗ and s ∈ S, of operation symbols with
arity w and sort s (when the arity is empty, Fλ→s denotes the set of constants
of sort s), and a family P of sets Pw, for w ∈ S∗, of relation symbols with arity
w indexed by arities. A signature (S, F, P ) is algebraic when P is empty.

Signature Morphisms. The morphisms of signatures φ : (S, F, P ) →
(S′, F ′, P ′) consist of functions φst : S → S′ between the sets of sorts,
φop

w→s : Fw→s → F ′
φst(w)→φst(s), for w ∈ S∗ and s ∈ S, between the sets of

operation symbols, and φrel
w : Pw → P ′

φst(w), for w ∈ S∗, between the sets of
relation symbols.

Models. For every signature (S, F, P ), a model M interprets every sort symbol
s as a set Ms, called the carrier set of sorts, every operation symbol σ ∈ Fw→s

as a function Mσ : Mw → Ms, where Mw = Ms1 × · · · × Msn
for w = s1 . . . sn,

with s1, . . . , sn ∈ S, and every relation symbol π ∈ Pw as a subset Mπ ⊆ Mw.
A homomorphism of (S, F, P )-models h : M → N is an indexed family of

functions {hs : Ms → Ns | s ∈ S} such that

– h is an (S, F )-algebra homomorphism, that is hs(Mσ(m)) = Nσ(hw(m)),
for every σ ∈ Fw→s and m ∈ Mw, where hw : Mw → Nw is the canonical
component-wise extension of h to tuples, and

– hw(m) ∈ Nπ if m ∈ Mπ, i.e., hw(Mπ) ⊆ Nπ, for every π ∈ Pw.

Model Reducts. For every signature morphism φ : Σ → Σ′, the reduct M ′�φ

of a Σ′-model M ′ is defined by (M ′�φ)
α

= M ′
φ(α) for every sort, function, or

relation symbol α from Σ. The reducts of homomorphisms are defined likewise.
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Sentences. The sentences are usual first-order sentences built from equational
and relational atoms by applying in an iterative manner Boolean connectives and
first-order quantifiers. The existential and universal quantification are over sets of
first-order variables, which are triples 〈x, s(S, F, P )〉 sometimes denoted by x : s,
where x is the name of the variable and s ∈ S is its sort: for any (S, F � X,P )-
sentence ρ, ∃X.ρ and ∀X.ρ are (S, F, P )-sentences, where (S, F � X,P ) denotes
the extension of (S, F, P ) with the elements of X as new symbols of constants.
Note that different variables in X should have different names.

Sentence Translations. Every signature morphism φ : (S, F, P ) → (S′, F ′, P ′)
induces a sentence translation Sen(φ) : Sen(S, F, P ) → Sen(S′, F ′, P ′) that is
defined inductively on the structure of sentences and renames the symbols of
(S, F, P ) according to φ. For instance, the translation of an existentially quan-
tified sentence is Sen(φ)(∃X.ρ) = ∃Xφ.Sen(φX)(ρ), where Xφ = {x : φst(s) |
x : s ∈ X} and φX : (S, F � X,P ) → (S′, F ′ � Xφ, P ′) extends φ canonically.

Satisfaction. The satisfaction relation between models and sentences is the
usual Tarskian satisfaction defined inductively on the structure of sentences. For
existentially quantified sentences, for example, given a model M of a signature
(S, F, P ), M |= ∃X.ρ if and only if there exists an expansion M ′ of M along the
signature inclusion (S, F, P ) ↪→ (S, F � X,P ) such that M ′ |= ρ.

Model Amalgamation. Model amalgamation will prove to be crucial in adding
quantifiers over an arbitrary institution. Essentially, it allows us to combine
models of different signatures whenever they are compatible with respect to a
common sub-signature. Many logical systems of interest for specification theory
have model amalgamation, including the examples considered in this paper.

Definition 2. In any institution, a commuting square of signature morphisms

is a weak amalgamation square if, for each Σ1-model M1 and Σ2-model M2

such that Mod(ϕ1)(M1) = Mod(ϕ2)(M2), there exists a Σ′-model M ′, called an
amalgamation of M1 and M2, such that Mod(θ1)(M ′) = M1 and Mod(θ2)(M ′) =
M2. When M ′ is unique, the above square is called an amalgamation square.

We say that an institution has (weak) model amalgamation if and only if
each pushout square of signature morphisms is a (weak) amalgamation square.

Therefore, in order to have model amalgamation, the square of signature
morphisms must not identify entities of Σ1 and Σ2 that do not come from Σ via
the signature morphisms ϕ1 and ϕ2. Moreover, to guarantee the uniqueness of
the amalgamation, Σ′ must contain only entities that come from Σ1 or Σ2.
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Presentations. The presentations over an institution represent one of the sim-
plest forms of specifications over that logic being formed merely of a signature
and a (usually finite) set of its sentences. We will use presentations in our paper
to encode reachability logic into first-order logic.

Definition 3. The presentations of an institution I = (Sig,Sen,Mod, |=) are
pairs (Σ,E) consisting of a signature Σ and a set E of Σ-sentences. They form
a category Pres whose arrows φ : (Σ,E) → (Σ′, E′) are signature morphisms
φ : Σ → Σ′ such that E′ |= φ(E). By extending the sentence functor, the model
functor and the satisfaction relation from the signatures of I to presentations we
obtain an institution Ipres = (Pres,Senpres,Modpres, |=pres) of I presentations.

Moving Between Institutions. In order to use institutions as formalisations
of logical systems in a heterogeneous setting, one needs to define formally a
notion of map between institutions. Several concepts have been defined over
the years, including semi-morphisms, morphisms, and comorphisms, some of
which can be found in [23]. In our work, we focus only on comorphisms [15,24],
which reflect the intuition of embedding simpler institutions into more complex
ones.

Definition 4. Given two institutions I and I′, a comorphism (Φ,α, β) : I → I′

consists of

– a signature functor Φ : Sig → Sig′,
– a natural transformation α : Sen ⇒ Φ ; Sen′, and
– a natural transformation β : Φop ; Mod′ ⇒ Mod

such that the following satisfaction condition holds for any I-signature Σ, Φ(Σ)-
model M ′, and Σ-sentence ρ: M ′ |=I′

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=I
Σ ρ.

2.2 K Semantic Framework

The K framework [20] is an executable semantic framework based on rewriting
and used for defining programming languages, computational calculi, type sys-
tems and formal analysis tools. It was developed as an alternative to the existing
operational-semantics (SOS) frameworks and has been employed to define actual
programming languages such as C [9], Python [12], and Java [3].

In defining semantics for programming languages, K handles cell-like struc-
tures named configurations and relies on computational structures – compu-
tations – to model transitions between these configurations by applying local
rewriting rules. To illustrate how language specifications can be written in the
K semantic framework, we consider the following running example of the (par-
tial) definition of IMP [1], an elementary imperative programming language.
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In the following sections we introduce two logics in order to formalize the
K framework. Matching logic will be used to define the syntactic constructs –
the syntax of the specified programming languages – and the patterns matched
in the semantic rules, and to partially capture the semantics of the program-
ming languages by defining the states of the running programs. Subsequently,
we build reachability logic upon matching logic to capture the semantic rules. Its
sentences, defined over the signatures of matching logic, correspond to the rules
in the K modules, while the models represent implementations of programming
languages. The language definitions written in K will thus be seen, leaving aside
some parsing instructions without logical interpretation, as formal specifications
over reachability logic.
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3 Matching Logic

The generality of institutions allows them to accommodate a great variety of
logical systems. As a downside however, and as it would be expected for such
an abstract notion, certain logics cannot be captured in full detail by institu-
tions; that is, by considering them only as institutions we lose precious infor-
mation. An example is computation-tree logic, for which we lose the distinction
between state and path sentences (which, in fact, do not belong to the sentences
of computation-tree logic formalised as an institution).

Matching logic falls into the same category, but this time, we lose the sorts
of patterns and the states of models. To palliate this, we extend institutions
with notions of classes (for sorts) and stratification of models (for states). The
end result – the concept of stratified institution with classes – is obtained as a
combination of the institutions with classes described in Definition 5 with the
stratified institutions introduced in [2].

3.1 Stratified Institutions with Classes

Definition 5. An institution with classes is a tuple (Sig,Cls,Sen, κ,Mod, |=),
where

– (Sig,Sen,Mod, |=) is an institution,
– Cls : Sig → Set is a functor giving for each signature a set whose elements are

called classes of that signature, and
– κ : Sen ⇒ Cls is a natural transformation giving a class for each sentence.

We will use the notation Sen(Σ)c for κ−1(c), c ∈ Cls(Σ) to denote the set of
Σ-sentences of class c.

Example. An immediate example of an institution with classes is the atomic
fragment of equational first-order logic. In this case, Cls is the forgetful functor
that maps every signature (S, F ) to its underlying set of sorts S, and κ(S,F ) is
the function that assigns to each atom t = t′ the common sort of t and t′.

Definition 6. A stratified institution with classes is a tuple I =
(Sig,Cls,Sen, κ,Mod, [[ ]], |=) consisting of:

– a category Sig of signatures and signature morphisms,
– a class functor Cls : Sig → Set, giving for every signature a set of classes,
– a sentence functor Sen: Sig → Set, defining for every signature a set of sen-

tences,
– a natural transformation κ : Sen ⇒ Cls, associating a class to each sentence,
– a model functor Mod: Sigop → Cat, defining a category of models for every

signature,
– a stratification [[ ]] giving

• for every signature Σ, a family of functors [[ ]]Σ,c : Mod(Σ) → Set, indexed
by classes c ∈ Cls(Σ), and
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• for every signature morphism φ : Σ → Σ′, a functorial family of natural
transformations [[ ]]φ,c : [[ ]]Σ′,Cls(φ)(c) ⇒ Mod(φ) ; [[ ]]Σ,c, indexed by classes
c ∈ Cls(Σ), such that [[M ′]]φ,c is surjective for every M ′ ∈ |Mod(Σ′)|, and

– a satisfaction relation between models and sentences, parameterised by model
states and classes: M |=m

Σ,c ρ, where Σ is a signature, c ∈ Cls(Σ), M ∈
|Mod(Σ)|, m ∈ [[M ]]Σ,c, and ρ ∈ Sen(Σ)c

such that the following properties are equivalent:

i. Mod(φ)(M ′) |=[[M ′]]φ,c(m
′)

Σ,c ρ

ii. M ′ |=m′
Σ′,Cls(φ)(c) Sen(φ)(ρ),

for every signature morphism φ : Σ → Σ′, every class c ∈ Cls(Σ), every model
M ′ ∈ |Mod(Σ′)|, every state m′ ∈ [[M ′]]Σ′,Cls(φ)(c), and every ρ ∈ Sen(Σ)c.

The functoriality of [[ ]]φ,c : [[ ]]Σ′,Cls(φ)(c) ⇒ Mod(φ) ; [[ ]]Σ,c means that for
every signature morphisms φ : Σ → Σ′, φ′ : Σ′ → Σ′′, every Σ′′-model M ′′, and
every class c ∈ Cls(Σ), [[M ′′]]φ;φ′,c = [[M ′′]]φ′,φ(c) ; [[M ′′�φ′ ]]φ,c.

Proposition 1. Every stratified institution with classes I = (Sig,Cls,Sen, κ,
Mod, [[ ]], |=) determines an institution denoted �I whose category of signatures
is Sig, sentence functor is Sen, model functor is Mod, and satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ) is defined, for every signature Σ ∈ |Sig|, as follows:

M |=Σ ρ iff M |=m
Σ,c ρ for every m ∈ [[M ]]Σ,c, where c = κΣ(ρ).

Computation-Tree Logic (CTL). We formalise computation-tree logic as a
first example of a stratified institution with classes. Similarly to other temporal
logics, the usual presentation of CTL is based on propositional logic. CTL inher-
its the signatures of propositional logic, and thus, the category of its signatures
is Set.

CTL formulae can express properties of a state or a path (i.e. an infinite
sequence of states) of a transition system (defined below), being classified into
state and path formulae: Cls(Σ) = {state, path}, for every Σ ∈ |Sig| = |Set|.

We define the functor Sen, and the natural transformation κ simultaneously,
describing the sentences of a signature and their classes:

– the atomic propositions a ∈ Σ are sentences of class state,
– init is a proposition of class state,
– ϕ1 ∧ ϕ2 is a sentence of class state, for every ϕ1, ϕ2 sentences of class state,
– ¬ϕ is a sentence of class state, for every sentence ϕ of class state,
– ∃π,∀π are sentences of class state, for every sentence π of class path,
– ©ϕ is a sentence of class path, for every sentence ϕ of class state,
– ϕ1Uϕ2 is a sentence of class path, for every ϕ1, ϕ2 sentences of class state.
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The models of a CTL signature Σ are transition systems TS = (S,→, I, L),
where S is a set of states, → ⊆ S × S is a transition relation, I ⊆ S is a set
of initial states, and L : S → 2Σ is a labelling function. We define a transition
system morphism h : (S,→, I, L) → (S′,→′, I ′, L′) as a function h : S → S′ such
that h(I) ⊆ I ′, h(→) ⊆ →′, and L(s) = L′(h(s)), for every s ∈ S.

The stratification of models is defined as follows:

– [[TS]]Σ,state is the set S of states of TS,
– [[TS]]Σ,path is the set of paths of TS, that is sequences s0, s1, . . . ∈ Sω, such

that si → si+1 for i ∈ ω.

For every signature morphism φ : Σ → Σ′, the components of the natural trans-
formations [[ ]]φ,c are identity functions:

[[TS′]]φ,state(s′) = s′, [[TS′]]φ,path(p′) = p′,

for every s′ ∈ [[TS′]]Σ′,state, p′ ∈ [[TS′]]Σ′,path, and TS′ ∈ |Mod(Σ′)|.
The satisfaction relation between models and sentences is given by:

– TS |=s
Σ,state ρ iff

• ρ ∈ L(s), for ρ ∈ Σ
• s ∈ I, for ρ = init
• TS |=s

Σ,state ϕ, for ρ = ¬ϕ
• TS |=s

Σ,state ϕ1 and TS |=s
Σ,state ϕ2, for ρ = ϕ1 ∧ ϕ2

– there is p = s0, s1, . . . ∈ [[TS]]Σ,path with s0 = s such that TS |=p
Σ,path π, for

ρ = ∃π,
– TS |=p

Σ,path ρ iff
• TS |=s1

Σ,state ϕ, for ρ = ©ϕ

• there exists an index j such that TS |=sj

Σ,state ϕ2, and for all i < j,
TS |=si

Σ,state ϕ1, for ρ = ϕ1Uϕ2,

for every signature Σ, every state s ∈ S, every path p = s0, s1, . . ., every sentence
ρ and every model TS ∈ |Mod(Σ)|.

3.2 Matching Logic

The original notion of matching logic developed in [18] can be described as a
stratified institution with classes ML as follows.

Signatures. The signatures of ML are algebraic signatures.

Example. Let us consider the specification of the IMP programming language
exemplified in Listing 1.1. The signature of the IMP-SYNTAX module is
obtained by adding to the built-in syntactic categories and their corresponding
semantic operations new sorts and operation symbols introduced by the syntax
keyword. For example, in the fragment of the syntax module below, the AExp
sort is introduced as a supersort of the Int and Id sorts.1 Addition and division
1 For simplicity, the formalism we used in this paper does not take into account the
subsorting relation. We could further include subsorts following ideas developed for
order-sorted equational logic [11].
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are defined as binary operations with arguments and results of sort AExp, while
bracketing is defined as a unary operation of the same sort. We note that only
the bracket attribute has an effect on the signature of the specification as it
determines the removal of its corresponding symbol of operation from the sig-
nature. The left and strict attributes are only used in parsing programs and in
refining the evaluation strategy (by sequencing computational tasks), and thus,
they do not play a role in defining the signature.

The signature of the fragment above is AExpSig = (S ∪ SBUILT-IN, F ∪
FBUILT-IN), where SBUILT-IN and FBUILT-IN are the built-in sorts and operations,
S = {AExp} and FAExp AExp→AExp = { + , / }. Similarly, the signa-
ture of the IMP module is obtained from the signature of the imported module
IMP-SYNTAX, extending its signature through the addition of the sorts T, K,
State and KResult and the operations 〈k〉 〈/k〉 ∈ FPgm→K,2 〈state〉 〈/state〉 ∈
FMap→State and 〈t〉 〈/t〉 ∈ FKState→T introduced by the keyword configuration.

Classes of a Signature. Every algebraic signature (S, F ) determines (through
the functor Cls) the set of classes S, that is the set of its sorts. Similarly, every
morphism φ : (S, F ) → (S′, F ′) determines a translation of classes φst : S → S′.

Sentences. The sentences (or patterns) in ML of given sorts are defined as
follows: for every signature Σ, Sen(Σ) is the least set that contains basic patterns
(terms over Σ, see [18]) and that is closed under the Boolean connectives ¬,∧,
and the existential quantifier ∃.

– For each s ∈ S, the basic patterns of sort s are first-order Σ-terms of sort s.
– For every pattern π of sort s, ¬π is a pattern of sort s.
– For every two patterns π1, π2 of sort s, π1 ∧ π2 is a pattern of sort s.
– For every variable x of sort s (defined formally as a tuple 〈x, s,Σ〉, where x is

the name of the variable, and s is its sort), and every pattern π ∈ Sen(S, F �
{x : s}), ∃x : s.π is a pattern in Sen(Σ).

The sentence translation along a signature morphism φ : Σ → Σ′ is defined simi-
larly to the translation of first-order sentences. For instance, for basic patterns π
of sort s, Sen(φ)(π) = φtm

s (π), where φtm is the extension of φ to terms that maps
σ(t1, . . . , tn) : s to φop(σ)(φtm(t1), . . . , φtm(tn)) : φst(s), for every σ ∈ Fs1...sn→s,
and term ti of sort si.

Example. We can give as examples of sentences of an ML-signature, the pat-
terns matched in the K rules corresponding to the IMP programming language
specification presented in Listing 1.1: I1:Int + I2:Int, I1:Int/I2:Int ∧ I2=/=0.
2 Pgm is the sort defined in Listing 1.1 for capturing the syntax of an IMP program.



An Institutional Foundation for the K Semantic Framework 19

Classes of Sentences. The class of a pattern is given by its sort through the
natural transformation κ : Sen ⇒ Cls that is defined inductively on the structure
of sentences:

– κ(S,F )(π) = s, for every basic pattern π ∈ (TΣ)s,
– κ(S,F )(¬π) = κ(S,F )(π), for every pattern π,
– κ(S,F )(π1 ∧ π2) = κ(S,F )(π1) = κ(S,F )(π2), for every two patterns π1, π2,
– κ(S,F )(∃x : s.π) = κ(S,F�{x : s})(π), for every pattern π.

Models. The models of ML are multialgebras [13]. These are generalisations of
algebras having non-deterministic operations that return sets of possible values;
that is, multialgebras interpret operation symbols from the carrier set of their
arity to the powerset of the carrier set of their sort. For a signature Σ = (S, F ),
a multialgebra homomorphism h : M → N is a family of functions indexed by
the signature’s sorts {hs : Ms → Ns | s ∈ S}, such that hs(Mσ(m1, . . . , mn)) ⊆
Nσ(hs1(m1), . . . , hsn

(mn)), for every σ ∈ Fs1...sn→s and every mi ∈ Msi
.

Stratification. The stratification of models is given, for every signature Σ and
class s of Σ, by [[M ]]Σ,s = Ms, and for every signature morphism φ : Σ → Σ′,
class s of Σ and model M ′ of Σ′, by [[M ′]]φ,s(m′) = m′, where m′ ∈ M ′

φst(s) .

Satisfaction Relation. The satisfaction relation is based on the interpretation
of patterns in models. For any multialgebra M , we define Mπ, the interpretation
of a pattern π in M , inductively, as follows:

– for every pattern π ∈ Fλ→s, Mπ is the interpretation of the constant π,
– Mπ =

⋃{Mσ(m1, . . . , mn) | mi ∈ Mti
}, for every basic pattern σ(t1, . . . , tn),

– Mπ = Ms \ Mπ1 , for every pattern π = ¬π1, where π1 is a pattern of sort s,
– Mπ = Mπ1 ∩ Mπ2 , for every pattern π = π1 ∧ π2,
– Mπ =

⋃{(M,X)π1 | X ⊆ Mt}, for every pattern π = ∃x : t.π1, where π1 is
a pattern of sort s, and (M,X) is the expansion of M along the inclusion
(S, F ) ⊆ (S, F � {x : t}) given by (M,X)x = X.

We now have all the necessary concepts for defining the satisfaction relation:

M |=m
Σ,s π iff m ∈ Mπ.

Proposition 2. For every signature morphism φ : Σ → Σ′, sort s ∈ Cls(Σ),
multialgebra M ′ ∈ Mod(Σ′), state m′ ∈ [[M ′]]Σ′,Cls(φ)(s), and pattern π of sort s

Mod(φ)(M ′) |=[[M ′]]φ,s(m
′)

Σ,s π iff M ′ |=m′
Σ′,Cls(φ)(s) Sen(φ)(π).

In order to formalise the K framework we should interpret the variables in
a deterministic manner. For example, in the specification of the IMP language,
the variables in the patterns matched by the semantic rules have a deterministic
interpretation: the variables I1, I2 and T of the patterns I1 : Int + I2 : Int,
! T : Bool are interpreted as sole elements of sort Int or Bool respectively, as
opposed to the interpretation of variables in ML as sets of elements.
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Matching Logic with Deterministic Variables (ML+). We refine the above
definition of matching logic ML = (Sig,Cls,Sen, κ,Mod, [[ ]], |=), by interpreting
the variables in a deterministic way, as presented in [18].

ML+ is defined as a stratified institution with classes, whose category of
signatures is denoted by Sig+. Its objects are tuples (S, F,D), where (S, F )
and (S,D) are algebraic signatures of ML, such that Fw→s ∩ Dw→s = ∅ for
every w ∈ S∗, and s ∈ S. For signatures Σ = (S, F,D) and Σ′ = (S′, F ′,D′),
a signature morphism φ : Σ → Σ′ is a tuple (φst, φop, φdet), where the pairs
(φst, φop) and (φst, φdet) are signature morphisms in Sig.

We define the functor U: Sig+ → Sig by U(S, F,D) = (S, F ∪ D) for signa-
tures, and by U(φ) = (φst, φop ∪ φdet) for signature morphisms. The classes and
the sentences of a signature are given by the functor compositions Cls+ = U;Cls,
and Sen+ = U;Sen3 respectively. The classes of sentences are determined by the
composition U·κ : Sen+ → Cls+ of the functor U with the natural transformation
κ, that is, (U · κ)Σ = κU(Σ), for every signature Σ.

The models of ML+ are determined by the functor Mod+ : (Sig+)op → Cat,
that assigns to each signature Σ = (S, F,D) the full subcategory of Mod(U(Σ))
consisting of the models M in which every operation symbol in D is interpreted
in a deterministic way. For every signature morphism φ : Σ → Σ′ and every
model M ′ ∈ |Mod+(Σ′)|, we define Mod+(φ)(M ′) as Mod(U(φ))(M ′). Notice
that the functor Mod+ is well-defined, as |Mod(U(φ))(M ′)σ(m1, . . . , mn)| =
|M ′

φdet(σ)(m1, . . . , mn)| = 1 for every operation symbol σ of D.
The stratification of models is defined just as in the case of ML:

– [[ ]]+Σ,c : Mod+(Σ) → Set maps every model M to [[M ]]U(Σ),c

– [[M ]]+φ,c : [[M ]]+
Σ′,Cls+(φ)(c)

→ Mod+(φ) ; [[M ]]+Σ,c maps every state m to the state
[[M ]]U(φ),c(m), for every morphism φ : Σ → Σ′ and class c of Σ.

Finally, the satisfaction relation between models and sentences is defined
analogously to the satisfaction relation of ML. As a result, it holds for example,
that for any basic pattern π, any signature Σ ∈ Sig+, any class c ∈ Cls+(Σ),
and any model M ∈ |Mod+(Σ)|, M(|=ML+

)m
Σ,cπ iff M(|=ML)m

U(Σ),cπ. We
note, however, that the satisfaction relation of ML+ is not a restriction of the
satisfaction relation of ML. For example, if π were an existentially quantified
pattern ∃x : t.π1, then only the converse implication of the above equivalence
would be ensured to hold. This follows because in ML every expansion of M
may interpret in a non-deterministic manner the variable x : t; in order words,
there is no guarantee that there exists an expansion of M in ML that satisfies π
and is also a model of ML+.

3 Technically, the quantification in ML+ is done only over variables that are interpreted
in a deterministic manner. This means that every extension with variables over
signature U(Σ) (in ML) corresponds to a deterministic extension of Σ in ML+.
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3.3 Encoding Matching Logic into First-Order Logic

There exists a comorphism of institutions between �ML+, the institution
obtained from ML+ following Proposition 1, and FOL, the institution of first-
order logic. In short, the deterministic operations of any given �ML+-signature
are preserved by the signature-translation component of the comorphism, while
each non-deterministic operation is transformed into a new predicate. In this
manner, the interpretation of first-order predicates corresponds to the interpre-
tation of non-deterministic operations in multialgebras. Furthermore, the under-
lying sentence-translation map of the comorphism encodes each matching pat-
tern to a corresponding universally quantified sentence over states having the
same class as the pattern. We define (Φ,α, β) : �ML+ → FOL as follows:

For Signatures: The underlying signature functor Φ : Sig
ML+ → SigFOL maps

– every �ML+ signature Σ = (S, F,D) to the FOL signature Σ′ = (S′, F ′, P ′)
where S′ = S, F ′

w→s = Dw→s, P ′
λ = ∅, and P ′

ws = Fw→s for ws = λ.
– every �ML+-signature morphism φ : Σ1 → Σ2 to the FOL-signature mor-

phism φ′ = (φ′st, φ′op, φ′rel), where φ′st = φst, φ′op = φdet, and φ′rel
ws =

φop
w→s, for ws = λ.

For Models: The model functor βΣ : ModFOL(Φ(Σ)) → Mod
ML+
(Σ) given

by a signature Σ = (S, F,D) maps

– every first-order structure M ′ for Φ(Σ) to the multialgebra M whose car-
rier sets Ms are defined as M ′

s for every sort s ∈ S, whose interpretations
Mσ : Ms1 × . . . × Msn

→ 2Ms of function symbols σ ∈ Fs1...sn→s are defined
as Mσ(m1, . . . , mn) = {m ∈ Ms | (m1, . . . , mn,m) ∈ M ′

σ}, and whose inter-
pretations Mσ of function symbols σ ∈ Dw→s are given by the composition of
M ′

σ with the singleton-forming map { } : Ms → 2Ms , and
– every morphism of first-order structures h′ : M ′ → N ′ in ModFOL(Φ(Σ)) to

a multialgebra morphism h : βΣ(M ′) → βΣ(N ′) given by hs = h′
s, for every

s ∈ S. We note that the fact that h′ commutes with the interpretation of oper-
ation symbols suits the deterministic nature of the morphism h for the inter-
pretation of operations in D, while its compatibility with the interpretation of
predicate symbols guarantees the satisfaction of the morphism condition for
multialgebras.

For Sentences: The sentence translation αΣ : Sen
ML+
(Σ) → SenFOL(Φ(Σ))

given by a signature Σ = (S, F,D) maps every Σ-pattern π to the sentence
αΣ(π) = ∀m : s.FOLm : s

Σ (π), where s = κΣ(π), m is a first-order variable of sort
s for the signature Φ(Σ), and FOLm : s

Σ : κ−1
Σ (s) → SenFOL(Φ(Σ)�{m : s}) is the

sorted translation of sentences defined as follows:

We begin with a notation: for every operation symbol σ ∈ (F ∪ D)s1,...,sn→s,
and every variables mi : si and m : s, we denote by σ=(m1, . . . , mn,m) either
the relational atom σ(m1, . . . , mn,m) if σ ∈ F , or the equational atom
σ(m1, . . . , mn) = m if σ ∈ D.
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– for every basic pattern π ∈ (F ∪ D)λ→s, FOLm : s
Σ (π) = π=(m),

– for every basic pattern π = σ(t1, . . . , tn), with σ ∈ (F ∪ D)s1,...,sn→s,

FOLm : s
Σ (π) = ∃m1 : s1 . . . ∃mn : sn.FOLm1 : s1

Σ (t1) ∧ . . . ∧ FOLmn : sn

Σ (tn)
∧ σ=(m1, . . . , mn,m),

– for every pattern π = ¬π1, FOLm : s
Σ (¬π1) = ¬FOLm : s

Σ (π1),
– for every pattern π = π1∧π2, FOLm : s

Σ (π1∧π2) = FOLm : s
Σ (π1)∧FOLm : s

Σ (π2),
– for every pattern π = ∃x : t.π1, where π1 ∈ Sen
ML+

(Σ � {x : t}), we have
FOLm : s

Σ (∃x : t.π1) = ∃x : t.ξΣ(FOLm : s
Σ�{x : t}(π1)), where ξΣ is a first-order sig-

nature morphism from Φ(Σ�{x : t})�{m : s} to Φ(Σ)�{m : s}�{x : t} defined
as the extension of 1Φ(Σ) that maps the matching-logic variable x : t for the
signature Σ to the first-order variable x : t for the signature Φ(Σ)�{m : s}, and
the first-order variable m : s for the signature Φ(Σ � {x : t}) to the first-order
variable m : s but for the signature Φ(Σ).4

The naturality of α results from an analogous property for FOLm : s
Σ .

Proposition 3. For every two �ML+ signatures Σ1, Σ2, signature morphism
φ : Σ1 → Σ2, and variable m : s for Σ1, the following diagram commutes.

Satisfaction Condition. In order to show that the definitions of the compo-
nents of the comorphism given above guarantee that the satisfaction condition
holds, it suffices to know that Proposition 4 holds.

Proposition 4. For every �ML+ signature Σ, every first-order structure M for
Φ(Σ), and every Σ-pattern π of sort s, MFOLm : s

Σ (π) = βΣ(M)π.

This can be easily shown by induction on the structure of π, starting with the
base case of patterns π ∈ Fλ→s, for which MFOLm : s

Σ (π) is the set of states m ∈ Ms

such that (M,m) |= π(m), that is Mπ, and, by definition, βΣ(M)π = Mπ.

4 Reachability Logic

In order to capture reachability logic [21] as an institution, we first define an
abstract, parameterised institution over an arbitrary stratified institution with
classes, which necessarily has to enjoy properties such as the existence of a
4 We recall from the definitions of the institutions of matching and first-order logic
that from a technical point of view, variables are triples, consisting of name, sort,
and signature over which they are defined. Consequently, the signature morphism
ξΣ maps 〈x, t, Σ〉 to 〈x, t, Φ(Σ)�〈m, s, Φ(Σ)〉〉, and 〈m, s, Φ(Σ �x)〉 to 〈m, s, Φ(Σ)〉.
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quantification space, model amalgamation, and preservation of pushouts by the
class functor. We then obtain the concrete version of reachability logic that
underlies the K framework by instantiating the parameter of the abstract version
with ML+, the stratified institution with classes of matching logic, which we show
to satisfy the desired properties.

4.1 Abstract Reachability Logic

We formalise reachability logic in two steps: we begin by describing a sub-
institution of reachability logic whose sentences are all atomic (reachability
atoms), and we subsequently extend it by adding logical connectives and quan-
tifiers through a general universal-quantification construction.

To define atomic abstract reachability logic we first describe it as a pre-
institution [22] whose construction is based upon a stratified institution with
classes. This amounts to defining the same elements as those comprised by an
institution but without imposing the requirement of the satisfaction condition.

Throughout this section we assume an arbitrary, but fixed stratified insti-
tution with classes M = (SigM,ClsM,SenM,ModM, [[ ]]M, |=M). This serves as a
parameter for all the constructions below.

Signatures. The category of signatures of atomic abstract reachability logic,
denoted by SigARL(M), is the same as the category of signatures of M.

Sentences. For every signature Σ, SenARL(M)(Σ) is the set of pairs of sen-
tences of the stratified institution with classes, denoted by π1 ⇒ π2, where
π1, π2 ∈ SenM(Σ). The translation of such a sentence π1 ⇒ π2 along a signa-
ture morphism φ : Σ → Σ′ is defined as the pair of its translated components
according to SenM(φ): SenARL(M)(φ)(π1 ⇒ π2) = SenM(φ)(π1) ⇒ SenM(φ)(π2).

Example. If we instantiate the parameter M with the stratified institution with
classes ML+, the sentences of ARL(ML+) will only capture atomic K semantic
rules, i.e. without quantification and side conditions. This means we could only
express atomic rules in the specification of the simple imperative programming
language IMP, like rule ! true => notBool true.

Models. The reachability models of a signature Σ, given by the ModARL(M)

functor, are pairs (M,�) of Σ-models M of the underlying stratified institution
with classes, and families of preorders �c ⊆ [[M ]]Σ,c × [[M ]]Σ,c indexed by the
classes of the signature. The model homomorphisms h : (M1,�1) → (M2,�2)
are defined as the morphisms between the M-models M1 and M2 that preserve
the preorders: for every c ∈ Cls(Σ), the function [[h]]Σ,c from ([[M1]]Σ,c,�1) to
([[M2]]Σ,c,�2) is monotone. This allows ModARL(M)(Σ) to inherit the identities
and the composition of model homomorphisms of ModM(Σ).

The model reduct ModARL(M)(φ) : ModARL(M)(Σ′) → ModARL(M)(Σ)
given by a signature morphism φ : Σ → Σ′ is defined as

– ModARL(M)(φ)(M ′,�′) = (ModM(φ)(M ′),�) for every Σ′-model (M ′,�′),
where �c⊆ [[M ′�φ]]Σ,c × [[M ′�φ]]Σ,c is the reflexive and transitive closure of
[[M ′]]φ,c(�′

φ(c)), which will be further denoted by →c,
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– ModARL(M)(φ)(h′) is simply ModM(φ)(h′) for every two Σ′-models M ′
1,M

′
2,

and every model homomorphism h′ : (M ′
1,�′

1) → (M ′
2,�′

2).

Satisfaction Relation. The satisfaction relation between any model (M,�)
and any sentence π1 ⇒ π2 is defined as follows: (M,�) |=ARL(M)

Σ π1 ⇒ π2 if and
only if for every m ∈ [[M ]]Σ,c such that M(|=M)m

Σ,cπ1, there exists n ∈ [[M ]]Σ,c

such that M(|=M)n
Σ,cπ2, and m �c n.

Corollary 1. ARL(M) = (SigARL(M),SenARL(M),ModARL(M), |=ARL(M)) is
a pre-institution.

The direct implication of the satisfaction condition holds unconditionally.

Proposition 5. For every signature morphism φ : Σ → Σ′, every class c ∈
Cls(Σ), every model (M ′,�′) ∈ |ModARL(M)(Σ′)|, and every sentence π1 ⇒ π2,

(M ′,�′) |=ARL(M)
Σ′ φ(π1 ⇒ π2) implies (M ′,�′)�φ |=ARL(M)

Σ π1 ⇒ π2.

The converse of Proposition 5 holds if the stratification of the underlying insti-
tution of ARL(M) satisfies a property similar to that of lifting relations from [7,
Chapter 9].

Proposition 6. If in ARL(M), for every signature morphism φ : Σ → Σ′,
every class c ∈ Cls(Σ), every Σ′-model (M ′,�′), and every states m′ ∈
[[M ′]]Σ′,φ(c) and n ∈ [[M ′�φ]]Σ,c such that [[M ′]]φ,c(m′) �c n, there exists
n′ ∈ [[M ′]]Σ′,φ(c) such that m′ �′

φ(c) n′ and [[M ′]]φ,c(n′) = n, then

(M ′,�′)�φ |=ARL(M)
Σ π1 ⇒ π2 implies (M ′,�′) |=ARL(M)

Σ′ φ(π1 ⇒ π2),

for every sentence π1 ⇒ π2.

Corollary 2. If the stratified institution with classes M satisfies the hypothesis
of Proposition 6, then ARL(M) is an institution.

In most concrete examples of stratified institutions with classes the natural
transformations [[M ′]]φ,c of the stratification are bijective, or even identities (see
for example the definitions of ML+ and CTL). Therefore, the hypothesis of
Proposition 6 is usually satisfied, entailing that ARL(M) is an institution.

We have hitherto defined only an atomic fragment of the desired institution
of abstract reachability logic. To describe the construction of the institution
with universally quantified Horn-clause sentences over the atomic sentences of
ARL(M), we use the notion of quantification space originating from [8].

Definition 7. For any category Sig a class of arrows D ⊆ Sig is called a quan-
tification space if, for any χ : Σ → Σ′ ∈ D and ϕ : Σ → Σ1 there exists a
designated pushout



An Institutional Foundation for the K Semantic Framework 25

with χ(ϕ) ∈ D and such that the horizontal composition of these designated
pushouts is also a designated pushout, i.e. for the pushouts in the diagram below

ϕ[χ] ; θ[χ(ϕ)] = (ϕ ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ ; θ), and such that χ(1Σ) = χ
and 1Σ [χ] = 1Σ′ . A quantification space D for Sig is adequate for a functor
Mod: Sigop → Cat when the aforementioned designated pushouts are weak amal-
gamation squares for Mod. A quantification space D for Sig is called adequate
for an institution if it is adequate for its model functor.

Proposition 7. For any institution I with an adequate quantification space D,
the following data defines an institution, called the institution of universally D-
quantified Horn clauses over I, and denoted HCL(I):

– SigHCL(I) = SigI,
– ModHCL(I) = ModI,
– SenHCL(I)(Σ)

= {∀χ.ρ′
1 ∧ . . . ∧ ρ′

n → ρ′ | (χ : Σ → Σ′) ∈ D and ρ′
i, ρ

′ ∈ SenI(Σ′)},

for every signature Σ

– SenHCL(I)(ϕ)(∀χ.ρ′
1 ∧ . . . ∧ ρ′

n → ρ′)

= ∀χ(ϕ).SenI(ϕ[χ])(ρ′
1) ∧ . . . ∧ SenI(ϕ[χ])(ρ′

n) → SenI(ϕ[χ])(ρ′),
for every signature morphism ϕ : Σ → Σ1

– M |=HCL(I)
Σ ∀χ.ρ′

1 ∧ . . . ∧ ρ′
n → ρ′

iff for all χ-expansions M ′ of M,M ′ |=I
Σ′ ρ′ if M ′ |=I

Σ′ ρ′
i for i = 1, n.

To build an institution with universally quantified sentences over ARL(M) as
described in Proposition 7, we need to ensure that ARL(M) satisfies its hypoth-
esis. This cannot be guaranteed in general, because M is abstract. Nevertheless,
we can obtain an appropriate set of hypotheses for the underlying stratified
institution M that allow us to apply Proposition 7:

– the existence of a quantification space for ARL(M) is guaranteed by the exis-
tence of a quantification space for M, as the categories SigARL(M) and SigM

are equal,
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– the fact that ARL(M) has weak model amalgamation follows from the weak
model amalgamation property of M (see Definition 8 below) and the preserva-
tion of pushouts by the class functor of M (see Proposition 8 below).

Definition 8. A stratified institution with classes M has (weak) model amalga-
mation whenever its corresponding institution �M has this property.

Proposition 8. For every stratified institution with classes M having (weak)
model amalgamation such that its class functor Cls preserves pushouts, ARL(M)
has (weak) model amalgamation.

Corollary 3. If M has an adequate quantification space and a pushout preserv-
ing class functor, then HCL(ARL(M)) is an institution.

4.2 Defining Reachability over Matching Logic

In order to capture reachability logic in its original, concrete form, we must
instantiate the parameter of the institution HCL(ARL(M)) defined above, with
the stratified institution ML+. To this end, we first point out that by adding
variables as deterministic constants to the signatures of ML+ we obtain a quan-
tification space. Furthermore, to show that the quantification space is adequate,
we use the property of model amalgamation of the comorphism (Φ,α, β) between
�ML+ and FOL defined in Sect. 3.3.

Proposition 9. ML+ has pushouts of signatures. Moreover, its class functor
preserves pushouts.

Example. Let us consider the K definition of the IMP programming language.
By splitting the syntax module into three modules, AExp, BExp and IMP-
SYNTAX importing the two expressions modules, we have an immediate and
natural example of a pushout of signatures: as both the AExp and BExp modules
import the BUILT-IN module containing the built-in sorts and corresponding
operations of K, we need to construct the pushout of their signatures in order
to obtain the signature of the module IMP-SYNTAX.

Proposition 10. In ML+, the family of extensions with deterministic constants
forms a quantification space.

The following definition originates from [4].

Definition 9. An institution comorphism (Φ,α, β) : I → I′ has weak model
amalgamation if for every I-signature morphism ϕ : Σ → Σ′, every Σ′-model
M ′, and every Φ(Σ)-model N such that βΣ(N) = M ′�ϕ, there exists a Φ(Σ′)-
model N ′ such that βΣ′(N ′) = M ′ and N ′�Φ(ϕ) = N . We say that (Φ,α, β) : I →
I′ has model amalgamation when N ′ is required to be unique.



An Institutional Foundation for the K Semantic Framework 27

Remark 1. ML+ has model amalgamation. Let us first note that the comor-
phism (Φ,α, β) between the institution �ML+ and FOL defined in the previous
section has model amalgamation. This property holds trivially since the model
reduction functors βΣ are isomorphisms of categories, for every signature Σ. As
the institution of FOL also has model amalgamation, we can use a general result
of institution theory to deduce that �ML+ has model amalgamation.

Corollary 4. HCL(ARL(ML+)) is an institution.

4.3 Encoding Reachability Logic into First-Order Logic

For any institution ARL(M) defined over a stratified institution with classes
M , there exists a comorphism of institutions between ARL(M) and FOLpres,
the institution of presentations over first-order logic, whenever there exists a
comorphism of institutions (Φ,α, β) between �M and FOL such that:

– the classes of a signature in Sig
M are given by the sorts of its translation to
FOL: Cls = Φ ; St, where St is the forgetful functor St : SigFOL → Set,

– for every signature Σ, αΣ(π) = ∀m : s.FOLm : s
Σ (π), for every π of class s,5

– for every N ∈ |ModFOL(Φ(Σ))|, and every s ∈ Cls(Σ), Ns = [[βΣ(N)]]Σ,s.

The signature-translation component of the comorphism encodes the reacha-
bility relation through the addition of new preorder predicates and corresponding
axioms for each class of the signature. The new predicates determine relations
on reachable states that define the preorder-family component of a reachability
model. The sentence component of the comorphism translates each reachability
statement between two patterns to a sentence that expresses the existence of a
reachable state for the target pattern for every state of the source pattern. We
define the comorphism (ΦR, αR, βR) : ARL(M) → FOLpres as follows:

For Signatures: The signature functor ΦR : SigARL(M) → SigFOLpres
maps

every signature Σ of ARL(M) to ΦR(Σ) = (Reach(Σ), E), where

– Reach(Σ) denotes the first-order signature obtained by adding to Φ(Σ) =
(S′, F ′, P ′) a predicate reach of arity s s for every sort s ∈ S′, and

– E is a set of axioms that define the predicates reach as preorders:
{∀x : s.reach(x, x),∀x, y, z : s.reach(x, y) ∧ reach(y, z) → reach(x, z) | s ∈ S′}.

For Sentences: For every signature Σ of ARL(M), the sentence transla-
tion function αR

Σ : SenARL(M)(Σ) → SenFOL(Reach(Σ)) maps every Σ-sentence
π1 ⇒ π2 to αR

Σ(π1 ⇒ π2) = ∀m : s.FOLm : s
Σ (π1) → ∃n : s.FOLn : s

Σ (π2) ∧
reach(m,n).

For Models: For every signature Σ of ARL(M), βR
Σ : ModFOL(Reach(Σ), E) →

ModARL(M)(Σ) is the model functor that maps every first-order structure N ∈
5 Note that, in this case, FOLm : s

Σ (π) is just a notation, and it should not be confused
with the first-order sentence described in the previous section, for which we would
need to instantiate M with ML+.
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|ModFOL(Reach(Σ), E)| to the model (M,�) ∈ |ModARL(M)(Σ)|, given by
M = βΣ(N) ∈ |ModM(Σ)| and �s = {(m,n) | (N,m, n) |= reach(x, y)}, for
every sort s. Note that �s is well-defined as Cls = Φ ; St and Ns = [[M ]]Σ,s.

To encode the Horn-clause reachability logic of Corollary 4 (defined over
ML+) into first-order logic, it suffices to notice that the comorphism considered
in Sect. 3.3, (Φ,α, β) : �ML+ → FOL, satisfies all of the above requirements, and
thus can be extended to a comorphism (ΦR, αR, βR) : ARL(ML+) → FOLpres.
This can be further extended to an encoding of HCL(ARL(ML+)) into FOLpres

through the use of a general result about Horn-clause institutions.

Proposition 11. Let I and I′ be institutions equipped with quantification spaces.
Every comorphism of institutions (Φ,α, β) : I → I′ that has weak model amalga-
mation, and for which Φ preserves the quantification space of I, can be extended
to a comorphism of institutions between HCL(I) and HCL(I′).

5 Conclusions and Future Research

In this work, we proposed an institutional formalisation of the logical systems
that underlie the K semantic framework. These logical systems account for the
structural properties of program configurations (through matching logic), and
changes of these configurations (through reachability logic).

Our work sets the foundation for integrating the K semantic framework into
heterogeneous institution-based toolsets, allowing us to exploit the combined
potential of the K tool and of other software tools such as the MiniSat solver,
the SPASS automated prover or the Isabelle interactive proof assistant. Hav-
ing both matching and reachability logic defined as institutions allows us to
integrate them into the logic graphs of institution-based heterogeneous specifi-
cation languages such as HetCasl [16]. As an immediate result, the K frame-
work can inherit the powerful module systems developed for specifications built
over arbitrary institutions, with dedicated operators for aggregating, renaming,
extending, hiding and parameterising modules. In addition, this will enable us
to combine reachability logic and the tool support provided by K with other
logical systems and tools. Towards that end, as a preliminary effort to integrate
the K framework into Hets [17], we described comorphisms from matching and
reachability logic to the institution of first-order logic.

Another line of research concerns the development of K from a purely formal-
specification perspective, including for example, studies on modularisation and
initial semantics. Within this context, verification can be performed based on
the proof systems that have already been defined for K.
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