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Preface

This volume contains one invited paper and eight selected papers from the 22nd
International Workshop on Algebraic Development Techniques (WADT 2014), which
took place in Sinaia, Romania, during September 4–7, 2014. The event was dedicated
to the memory of Joseph A. Goguen – one of the founding members of the ADT
community – who visited Sinaia many times with great pleasure in order to meet with
his former student and close friend Răzvan Diaconescu, the local chair of WADT 2014.
Sinaia is a beautiful mountain resort that has become a traditional Romanian venue for
mathematical and theoretical computer science events, from the second edition of the
International Mathematical Olympiad, which was held in 1960, to the more recent
Sinaia School on Formal Verification of Software Systems, the Romanian–Japanese
Algebraic Specification Workshops, and the Summer School on Language Frame-
works, which discussed some of the latest developments related to algebraic specifi-
cation and in particular to the CafeOBJ language and the K semantic framework.

The algebraic approach to system specification encompasses many aspects of the
formal design of software systems. Originally born as formal method for reasoning
about abstract data types, it now covers new specification frameworks and program-
ming paradigms (such as object-oriented, aspect-oriented, agent-oriented, logic, and
higher-order functional programming) as well as a wide range of application areas
(including information systems, concurrent, distributed, and mobile systems). The
workshop provided an opportunity to present recent and ongoing work, to meet col-
leagues, and to discuss new ideas and future trends. Typical topics of interest are:

– Foundations of algebraic specification
– Other approaches to formal specification, including process calculi and models of

concurrent, distributed and mobile computing
– Specification languages, methods, and environments
– Semantics of conceptual modeling methods and techniques
– Model-driven development
– Graph transformations, term rewriting, and proof systems
– Integration of formal specification techniques
– Formal testing, quality assurance, validation, and verification

As 22 occurrences of the ADT Workshop can be considered as something note-
worthy, a short look back may be allowed. The first workshop took place in 1982 in
Sorpesee, followed by Passau (1983), Bremen (1984), Braunschweig (1986), Gullane
(1987), Berlin (1988), Wusterhausen (1990), Dourdan (1991), Caldes de Malavella
(1992), S. Margherita (1994), Oslo (1995), Tarquinia (1997), Lisbon (1998), Chateau
de Bonas (1999), Genoa (2001), Frauenchiemsee (2002), Barcelona (2004), La Roche
en Ardenne (2006), Pisa (2008), Etelsen (2010), and Salamanca (2012). With only a
few exceptions at the beginning, it also became a tradition to publish selected papers
after each workshop in dedicated volumes of Springer’s Lecture Notes in Computer



Science (LNCS 332, 534, 655, 785, 906, 1130, 1376, 1589, 1827, 2267, 2755, 3423,
4409, 5486, 7137, and 7841) under the title Recent Trends in Algebraic Development
Techniques. This speaks to the stability of the ADT community and the continuity
of the topics of interest. One should realize, however, that some significant transfor-
mations took place from 1982 to today. While ADT stood initially for Abstract Data
Types, it is now (since 1997) the acronym for Algebraic Development Techniques, and
the list of topics has broadened accordingly in an amazing way.

The scientific program of WADT 2014 consisted of two invited talks by K. Rus-
tan M. Leino (from Microsoft Research, USA) and Christoph Benzmüller (from Freie
Universität Berlin, Germany), and of 32 presentations based on selected abstracts of
ongoing research. The abstracts were compiled in a technical report made available
during the meeting and later published in the Preprint Series of the Institute of Math-
ematics of the Romanian Academy. As with previous ADT workshops, the authors were
invited to submit full papers, which underwent a thorough review process that was
managed using EasyChair. Each paper was reviewed by at least two referees. We would
like to thank all the authors who submitted papers and who generally showed interest in
the subject, as well as the members of the Program Committee and the external referees
appointed by them for their work in completing the reviewing process.

The workshop took place under the auspices of IFIP WG1.3, and was organized by
former lecturers and students at the Postgraduate Academic Studies School Şcoala
Normală Superioară Bucureşti (SNSB). We gratefully acknowledge the support
offered by IFIP TC1 and the Simion Stoilow Institute of Mathematics of the Romanian
Academy (IMAR).

June 2015 Mihai Codescu
Răzvan Diaconescu

Ionuţ Ţuţu

VIII Preface
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On Logic Embeddings and Gödel’s God

Christoph Benzmüller1(B) and Bruno Woltzenlogel Paleo2

1 Freie Universität Berlin, Berlin, Germany
c.benzmueller@fu-berlin.de

2 Vienna Technical University, Vienna, Austria
bruno@logic.at

Abstract. We have applied an elegant and flexible logic embedding app-
roach to verify and automate a prominent philosophical argument: the
ontological argument for the existence of God. In our ongoing computer-
assisted study, higher-order automated reasoning tools have made some
interesting observations, some of which were previously unknown.

Logic embeddings provide an elegant means to formalize sophisticated non-
classical logics in classical higher-order logic (HOL, Church’s simple type the-
ory [14]). In previous work (cf. [4] and the references therein) the embeddings
approach has been successfully applied to automate object-level and meta-level
reasoning for a range of logics and logic combinations with off-the-shelf HOL the-
orem provers. This also includes quantified modal logics (QML) [9] and quantified
conditional logics (QCL) [3]. For many of the embedded logics few or no auto-
mated theorem provers did exist before. HOL is exploited in this approach to
encode the semantics of the logics to be embedded, for example, Kripke seman-
tics for QMLs [15] or selection function semantics for QCLs [26].

The embeddings approach is related to labelled deductive systems [18], which
employ meta-level (world-)labeling techniques for the modeling and implemen-
tation of non-classical proof systems. In our embeddings approach such labels
are instead encoded in the HOL logic.

The embedding approach is flexible, because various modal logics (even with
multiple modalities or a mix of varying/cumulative domain quantifiers) can be
easily supported by stating their characteristic axioms. Moreover, it is relatively
simple to implement, because it does not require any modification in the source
code of the higher-order prover. A minimal encoding of second-order modal
logic KB in TPTP THF syntax [27] — this syntax is accepted by a range of
HOL automated theorem provers (ATPs) — is exemplarily provided in Fig. 1.1

C. Benzmüller—This work has been supported by the German Research Foundation
DFG under grants BE2501/9-1,2 and BE2501/11-1.

1 Some Notes on THF, which is a concrete syntax for HOL: $i and $o repre-
sent the HOL base types i and o (Booleans). $i>$o encodes a function (pred-
icate) type. Predicate application as in A(X, W ) is encoded as ((A@X)@W) or
simply as (A@X@W), i.e., function/predicate application is represented by @; universal
quantification and λ-abstraction as in λAi→o∀Wi(A W ) and are represented as in
[̂X:$i>$o]:![W:$i]:(A@W); comments begin with %.

c© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 3–6, 2015.
DOI: 10.1007/978-3-319-28114-8 1



4 C. Benzmüller and B.W. Paleo

Fig. 1. HOL encoding of second-order modal logic KB in THF syntax. Modal formulas
are mapped to HOL predicates (with type $i>$o); type $i now stands for possible
worlds. The modal connectives ¬ (mnot), ∨ (mor) and � (mbox), universal quantification
for individuals (mall ind) and for sets of individuals (mall indset) are introduced in
lines 7–18. Validity of lifted modal formulas is defined in the standard way (lines 20–21).
Symmetry of accessibility relation r is postulated in lines 23–26. Hence, second-order
KB is realized here; for logic K the symmetry axiom can be dropped.

The given set of axioms turns any TPTP THF compliant HOL-ATP in a rea-
soning tool for second-order modal logic. A Henkin-style semantics is thereby
assumed for both logics: HOL and second-order modal logic.

In recent work [5,6,8] we have applied the embedding approach to verify and
automate a philosophical argument that has fascinated philosophers and theolo-
gians for about 1000 years: the ontological argument for the existence of God [25].
We have thereby concentrated on Gödel’s [19] modern version of this argument
and on Scott’s [24] modification, which employ a second-order modal logic (S5)
for which, until now, no theorem provers were available. In our computer-assisted
study of the argument, the HOL provers LEO-II [10], Satallax [13] and Nitpick
[12] have made some interesting observations, some of which were unknown so
far. This is a landmark result, with media repercussion in a global scale, and
yet it is only a glimpse of what can be achieved by combining computer science,
philosophy and theology.

We briefly summarize some of these observations: Nitpick confirms that
Scott’s axioms are consistent, while LEO-II and Satallax demonstrate that
Gödel’s original, slightly different axioms are inconsistent. As far as we are aware,
this is a new result. As experiments with LEO-II revealed, the problem lies in
a subtle difference in the definitions of the predicate essence (characterizinghe
essential properties of an entity) between Gödel and Scott. In recent papers
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on the ontological argument (see e.g. below), some authors speak of an over-
sight/flaw by Gödel, some silently replace Gödel’s definition without comment-
ing and some simply stay with it. Moreover, instead of using modal logic S5,
LEO-II and Satallax can prove the final theorem (that is, �∃x.G(x), necessarily
there exists God) already for modal logic KB. This is highly relevant since some
philosophers have criticized Gödel’s argument for the use of logic S5. Axiom B
(symmetry), however, cannot be dropped, which in turn is confirmed by Nitpick.
LEO-II and Satallax can also show that Gödel’s and Scott’s axioms imply what is
called the modal collapse: φ ⊃ �φ. This expresses that contingent truth implies
necessary truth (which can even be interpreted as an argument against free will;
cf. [25]) and is probably the most fundamental criticism put forward against
Gödel’s and Scott’s versions of the argument. Other theorems that can be shown
by LEO-II and Satallax include flawlessness of God and monotheism.

Ongoing and future work concentrates on the systematic study of Gödel’s and
Scott’s proofs. We have also begun to study more recent variants of the argu-
ment [1,2,11,16,17,20,21], which claim to remedy some fundamental problems
of Gödel’s and Scott’s proofs, especially the modal collapse [7]. One interesting
and very encouraging observation from these studies is, that the argumentation
granularity typical of these philosophy papers is already within reach of the
capabilities of our higher-order automated theorem provers. This provides good
evidence for the potential relevance of the embedding approach (not only) w.r.t.
other similar applications in metaphysics.

The long-term goal is to methodically determine the range of logical para-
meters (e.g., constant vs. varying domains, rigid vs. non-rigid terms, logics KB
vs. S4 vs. S5, etc.) under which the proposed variants of the modern ontological
argument hold or fail.

There have been few related works [22,23], and they have focused solely on
the comparably simpler, original ontological argument by Anselm of Canterbury.
These works do not achieve the close correspondence between the original for-
mulations and the formal encodings that can be found in our approach and they
also do not reach the same degree of proof automation.

Our work attests the maturity of contemporary interactive and automated
deduction tools for HOL and demonstrates the elegance and practical relevance
of the embeddings-based approach. Most importantly, our work opens new per-
spectives towards computational metaphysics.
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An Institutional Foundation for the K Semantic
Framework

Claudia Elena Chiriţă1(B) and Traian Florin Şerbănuţă2

1 Department of Computer Science, Royal Holloway University of London,
Egham, UK

claudia.elena.chirita@gmail.com
2 Faculty of Mathematics and Computer Science, University of Bucharest,

Bucharest, Romania
traian.serbanuta@fmi.unibuc.ro

Abstract. We advance an institutional formalisation of the logical sys-
tems that underlie the K semantic framework and are used to capture
both structural properties of program configurations through pattern
matching, and changes of configurations through reachability rules. By
defining encodings of matching and reachability logic into the institution
of first-order logic, we set the foundation for integrating K into logic
graphs of heterogeneous institution-based specification languages such
as HetCasl. This will further enable the use of the K tool with other
existing formal specification and verification tools associated with Hets.

1 Introduction

The K framework [19] is an executable semantic framework based on rewrit-
ing and used for defining programming languages, computational calculi, type
systems and formal-analysis tools. It was developed as an alternative to the exist-
ing operational-semantics frameworks and over the years has been employed to
define actual programming languages, to study runtime verification methods and
to develop analysis tools such as type checkers, type inferencers, model checkers
and verifiers based on Hoare-style assertions. A comprehensive overview of the
framework can be found in [20]. Its associated tool [6] enables the development
of modular and executable definitions of languages, and moreover, it allows the
user to test programs and to explore their behaviour in an exhaustive manner,
facilitating in this way the design of new languages. Driven by recent develop-
ments on the theoretical foundations of the K semantic framework [18,21] and on
the established connections with other semantic frameworks and formal systems
such as reduction semantics, Hoare logic and separation logic, we propose an
institutional formalisation [10] of the logical systems on which the K framework
is based: matching and reachability logic. This would allow us to extend the
usage of K by focusing on its potential as a formal specification language, and
furthermore, through its underlying logics, to establish rigorous mathematical
relationships between K and other similar languages, enabling the integration of
their verification tools and techniques.
c© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 9–29, 2015.
DOI: 10.1007/978-3-319-28114-8 2
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Matching logic [18] is a formal system used to express properties about the
structure of mathematical objects and language constructs, and to reason about
them by means of pattern matching. Its sentences, called patterns, are built in
an inductive manner, similar to the terms of first-order logic, using operation
symbols provided by a many-sorted signature, as well as Boolean connectives and
quantifiers. The semantics is defined in terms of multialgebras, which interpret
patterns as subsets of their carriers. This leads to a ternary satisfaction relation
between patterns, multialgebras and elements (or states) of multialgebras.

Unlike first-order logic, matching logic is difficult to formalise faithfully as an
institution due to the ternary nature of its satisfaction relation and to the fact
that patterns are classified by sorts, much in the way the sentences of branch-
ing temporal logics are classified into state or path sentences and evaluated
accordingly. We overcome these limitations by relying on the concept of stratified
institution developed in [2], which extends institutions with an abstract notion
of model state and defines a parameterised satisfaction relation that takes into
account the states of models. We further develop this concept by adding classes,
which are determined by signatures, associated with sentences, and parameterise
both the stratification of models and the satisfaction relation. We show that both
matching and computation-tree logic can be described as stratified institutions
with classes, and we adapt the canonical construction of an ordinary institution
from a stratified one presented in [2] to take into consideration the role of classes.

The main advantage of using stratified institutions with classes to formalise
matching logic is that we can extend the construction of reachability logic
described in [21] from matching to other logical systems. Reachability logic is a
formalism for program verification through which transition systems that corre-
spond to the operational semantics of programming languages can be described
using reachability rules; these rules rely on patterns and generalise Hoare triples
in order to specify transitions between program configurations (similarly to
term-rewrite rules). Therefore, reachability logic can be seen as a language-
independent alternative to the axiomatic semantics and proof systems particular
to each language. We define an abstract institution of reachability logic over an
arbitrary stratified institution with classes such that by instantiating this para-
meter with matching logic we recover the original notion of reachability.

This paper is based on the Master’s thesis of the first author [5], which
additionally contains detailed proofs of the results presented herein.

2 Preliminaries

2.1 Institution Theory

The concept of institution [10] formalises the intuitive notion of logic by abstract-
ing the alphabet, syntax, semantics and satisfaction relation. In the following,
we assume familiarity with the basics of category theory. The reader is referred
to the book [14] of Mac Lane and Eilenberg for further reading.

Definition 1. An institution I = (SigI,SenI,ModI, |=I) consists of

– a category SigI whose objects are called signatures,
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– a sentence functor SenI : SigI → Set giving for every signature Σ the set
SenI(Σ) of Σ-sentences and for every signature morphism φ : Σ → Σ′ the
sentence translation map SenI(φ) : SenI(Σ) → SenI(Σ′),

– a model functor ModI : (SigI)op → Cat defining for every signature Σ the
category ModI(Σ) of Σ-models and Σ-model homomorphisms, and for every
signature morphism φ the reduct functor ModI(φ) : ModI(Σ′) → ModI(Σ),

– a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for every signature Σ,

such that the satisfaction condition

M ′ |=I
Σ′ SenI(φ)(ρ) iff ModI(φ)(M ′) |=I

Σ ρ

holds for any signature morphism φ : Σ → Σ′, Σ′-model M ′ and Σ-sentence ρ.

We may omit the sub/superscripts in the notations of institutions when there
is no risk of confusion: for example, |=I

Σ may be denoted by |= if the institution
I and the signature Σ are clear. The sentence translation SenI(φ) and the reduct
functor ModI(φ) may also be denoted by φ( ) and �φ. When M = M ′�φ we say
that M is a φ-reduct of M ′ and that M ′ is a φ-expansion of M .

First-order logic constitutes a long-established example of an institution [10].

Example (Many-sorted first-order logic with equality(FOL)). Signa-
tures. A (many-sorted) first-order signature (S, F, P ) consists of a set S of
sorts, a family F of sets Fw→s, for w ∈ S∗ and s ∈ S, of operation symbols with
arity w and sort s (when the arity is empty, Fλ→s denotes the set of constants
of sort s), and a family P of sets Pw, for w ∈ S∗, of relation symbols with arity
w indexed by arities. A signature (S, F, P ) is algebraic when P is empty.

Signature Morphisms. The morphisms of signatures φ : (S, F, P ) →
(S′, F ′, P ′) consist of functions φst : S → S′ between the sets of sorts,
φop

w→s : Fw→s → F ′
φst(w)→φst(s), for w ∈ S∗ and s ∈ S, between the sets of

operation symbols, and φrel
w : Pw → P ′

φst(w), for w ∈ S∗, between the sets of
relation symbols.

Models. For every signature (S, F, P ), a model M interprets every sort symbol
s as a set Ms, called the carrier set of sorts, every operation symbol σ ∈ Fw→s

as a function Mσ : Mw → Ms, where Mw = Ms1 × · · · × Msn
for w = s1 . . . sn,

with s1, . . . , sn ∈ S, and every relation symbol π ∈ Pw as a subset Mπ ⊆ Mw.
A homomorphism of (S, F, P )-models h : M → N is an indexed family of

functions {hs : Ms → Ns | s ∈ S} such that

– h is an (S, F )-algebra homomorphism, that is hs(Mσ(m)) = Nσ(hw(m)),
for every σ ∈ Fw→s and m ∈ Mw, where hw : Mw → Nw is the canonical
component-wise extension of h to tuples, and

– hw(m) ∈ Nπ if m ∈ Mπ, i.e., hw(Mπ) ⊆ Nπ, for every π ∈ Pw.

Model Reducts. For every signature morphism φ : Σ → Σ′, the reduct M ′�φ

of a Σ′-model M ′ is defined by (M ′�φ)
α

= M ′
φ(α) for every sort, function, or

relation symbol α from Σ. The reducts of homomorphisms are defined likewise.
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Sentences. The sentences are usual first-order sentences built from equational
and relational atoms by applying in an iterative manner Boolean connectives and
first-order quantifiers. The existential and universal quantification are over sets of
first-order variables, which are triples 〈x, s(S, F, P )〉 sometimes denoted by x : s,
where x is the name of the variable and s ∈ S is its sort: for any (S, F � X,P )-
sentence ρ, ∃X.ρ and ∀X.ρ are (S, F, P )-sentences, where (S, F � X,P ) denotes
the extension of (S, F, P ) with the elements of X as new symbols of constants.
Note that different variables in X should have different names.

Sentence Translations. Every signature morphism φ : (S, F, P ) → (S′, F ′, P ′)
induces a sentence translation Sen(φ) : Sen(S, F, P ) → Sen(S′, F ′, P ′) that is
defined inductively on the structure of sentences and renames the symbols of
(S, F, P ) according to φ. For instance, the translation of an existentially quan-
tified sentence is Sen(φ)(∃X.ρ) = ∃Xφ.Sen(φX)(ρ), where Xφ = {x : φst(s) |
x : s ∈ X} and φX : (S, F � X,P ) → (S′, F ′ � Xφ, P ′) extends φ canonically.

Satisfaction. The satisfaction relation between models and sentences is the
usual Tarskian satisfaction defined inductively on the structure of sentences. For
existentially quantified sentences, for example, given a model M of a signature
(S, F, P ), M |= ∃X.ρ if and only if there exists an expansion M ′ of M along the
signature inclusion (S, F, P ) ↪→ (S, F � X,P ) such that M ′ |= ρ.

Model Amalgamation. Model amalgamation will prove to be crucial in adding
quantifiers over an arbitrary institution. Essentially, it allows us to combine
models of different signatures whenever they are compatible with respect to a
common sub-signature. Many logical systems of interest for specification theory
have model amalgamation, including the examples considered in this paper.

Definition 2. In any institution, a commuting square of signature morphisms

is a weak amalgamation square if, for each Σ1-model M1 and Σ2-model M2

such that Mod(ϕ1)(M1) = Mod(ϕ2)(M2), there exists a Σ′-model M ′, called an
amalgamation of M1 and M2, such that Mod(θ1)(M ′) = M1 and Mod(θ2)(M ′) =
M2. When M ′ is unique, the above square is called an amalgamation square.

We say that an institution has (weak) model amalgamation if and only if
each pushout square of signature morphisms is a (weak) amalgamation square.

Therefore, in order to have model amalgamation, the square of signature
morphisms must not identify entities of Σ1 and Σ2 that do not come from Σ via
the signature morphisms ϕ1 and ϕ2. Moreover, to guarantee the uniqueness of
the amalgamation, Σ′ must contain only entities that come from Σ1 or Σ2.
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Presentations. The presentations over an institution represent one of the sim-
plest forms of specifications over that logic being formed merely of a signature
and a (usually finite) set of its sentences. We will use presentations in our paper
to encode reachability logic into first-order logic.

Definition 3. The presentations of an institution I = (Sig,Sen,Mod, |=) are
pairs (Σ,E) consisting of a signature Σ and a set E of Σ-sentences. They form
a category Pres whose arrows φ : (Σ,E) → (Σ′, E′) are signature morphisms
φ : Σ → Σ′ such that E′ |= φ(E). By extending the sentence functor, the model
functor and the satisfaction relation from the signatures of I to presentations we
obtain an institution Ipres = (Pres,Senpres,Modpres, |=pres) of I presentations.

Moving Between Institutions. In order to use institutions as formalisations
of logical systems in a heterogeneous setting, one needs to define formally a
notion of map between institutions. Several concepts have been defined over
the years, including semi-morphisms, morphisms, and comorphisms, some of
which can be found in [23]. In our work, we focus only on comorphisms [15,24],
which reflect the intuition of embedding simpler institutions into more complex
ones.

Definition 4. Given two institutions I and I′, a comorphism (Φ,α, β) : I → I′

consists of

– a signature functor Φ : Sig → Sig′,
– a natural transformation α : Sen ⇒ Φ ; Sen′, and
– a natural transformation β : Φop ; Mod′ ⇒ Mod

such that the following satisfaction condition holds for any I-signature Σ, Φ(Σ)-
model M ′, and Σ-sentence ρ: M ′ |=I′

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=I
Σ ρ.

2.2 K Semantic Framework

The K framework [20] is an executable semantic framework based on rewriting
and used for defining programming languages, computational calculi, type sys-
tems and formal analysis tools. It was developed as an alternative to the existing
operational-semantics (SOS) frameworks and has been employed to define actual
programming languages such as C [9], Python [12], and Java [3].

In defining semantics for programming languages, K handles cell-like struc-
tures named configurations and relies on computational structures – compu-
tations – to model transitions between these configurations by applying local
rewriting rules. To illustrate how language specifications can be written in the
K semantic framework, we consider the following running example of the (par-
tial) definition of IMP [1], an elementary imperative programming language.
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In the following sections we introduce two logics in order to formalize the
K framework. Matching logic will be used to define the syntactic constructs –
the syntax of the specified programming languages – and the patterns matched
in the semantic rules, and to partially capture the semantics of the program-
ming languages by defining the states of the running programs. Subsequently,
we build reachability logic upon matching logic to capture the semantic rules. Its
sentences, defined over the signatures of matching logic, correspond to the rules
in the K modules, while the models represent implementations of programming
languages. The language definitions written in K will thus be seen, leaving aside
some parsing instructions without logical interpretation, as formal specifications
over reachability logic.
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3 Matching Logic

The generality of institutions allows them to accommodate a great variety of
logical systems. As a downside however, and as it would be expected for such
an abstract notion, certain logics cannot be captured in full detail by institu-
tions; that is, by considering them only as institutions we lose precious infor-
mation. An example is computation-tree logic, for which we lose the distinction
between state and path sentences (which, in fact, do not belong to the sentences
of computation-tree logic formalised as an institution).

Matching logic falls into the same category, but this time, we lose the sorts
of patterns and the states of models. To palliate this, we extend institutions
with notions of classes (for sorts) and stratification of models (for states). The
end result – the concept of stratified institution with classes – is obtained as a
combination of the institutions with classes described in Definition 5 with the
stratified institutions introduced in [2].

3.1 Stratified Institutions with Classes

Definition 5. An institution with classes is a tuple (Sig,Cls,Sen, κ,Mod, |=),
where

– (Sig,Sen,Mod, |=) is an institution,
– Cls : Sig → Set is a functor giving for each signature a set whose elements are

called classes of that signature, and
– κ : Sen ⇒ Cls is a natural transformation giving a class for each sentence.

We will use the notation Sen(Σ)c for κ−1(c), c ∈ Cls(Σ) to denote the set of
Σ-sentences of class c.

Example. An immediate example of an institution with classes is the atomic
fragment of equational first-order logic. In this case, Cls is the forgetful functor
that maps every signature (S, F ) to its underlying set of sorts S, and κ(S,F ) is
the function that assigns to each atom t = t′ the common sort of t and t′.

Definition 6. A stratified institution with classes is a tuple I =
(Sig,Cls,Sen, κ,Mod, [[ ]], |=) consisting of:

– a category Sig of signatures and signature morphisms,
– a class functor Cls : Sig → Set, giving for every signature a set of classes,
– a sentence functor Sen: Sig → Set, defining for every signature a set of sen-

tences,
– a natural transformation κ : Sen ⇒ Cls, associating a class to each sentence,
– a model functor Mod: Sigop → Cat, defining a category of models for every

signature,
– a stratification [[ ]] giving

• for every signature Σ, a family of functors [[ ]]Σ,c : Mod(Σ) → Set, indexed
by classes c ∈ Cls(Σ), and
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• for every signature morphism φ : Σ → Σ′, a functorial family of natural
transformations [[ ]]φ,c : [[ ]]Σ′,Cls(φ)(c) ⇒ Mod(φ) ; [[ ]]Σ,c, indexed by classes
c ∈ Cls(Σ), such that [[M ′]]φ,c is surjective for every M ′ ∈ |Mod(Σ′)|, and

– a satisfaction relation between models and sentences, parameterised by model
states and classes: M |=m

Σ,c ρ, where Σ is a signature, c ∈ Cls(Σ), M ∈
|Mod(Σ)|, m ∈ [[M ]]Σ,c, and ρ ∈ Sen(Σ)c

such that the following properties are equivalent:

i. Mod(φ)(M ′) |=[[M ′]]φ,c(m
′)

Σ,c ρ

ii. M ′ |=m′
Σ′,Cls(φ)(c) Sen(φ)(ρ),

for every signature morphism φ : Σ → Σ′, every class c ∈ Cls(Σ), every model
M ′ ∈ |Mod(Σ′)|, every state m′ ∈ [[M ′]]Σ′,Cls(φ)(c), and every ρ ∈ Sen(Σ)c.

The functoriality of [[ ]]φ,c : [[ ]]Σ′,Cls(φ)(c) ⇒ Mod(φ) ; [[ ]]Σ,c means that for
every signature morphisms φ : Σ → Σ′, φ′ : Σ′ → Σ′′, every Σ′′-model M ′′, and
every class c ∈ Cls(Σ), [[M ′′]]φ;φ′,c = [[M ′′]]φ′,φ(c) ; [[M ′′�φ′ ]]φ,c.

Proposition 1. Every stratified institution with classes I = (Sig,Cls,Sen, κ,
Mod, [[ ]], |=) determines an institution denoted �I whose category of signatures
is Sig, sentence functor is Sen, model functor is Mod, and satisfaction relation
|=Σ ⊆ |Mod(Σ)| × Sen(Σ) is defined, for every signature Σ ∈ |Sig|, as follows:

M |=Σ ρ iff M |=m
Σ,c ρ for every m ∈ [[M ]]Σ,c, where c = κΣ(ρ).

Computation-Tree Logic (CTL). We formalise computation-tree logic as a
first example of a stratified institution with classes. Similarly to other temporal
logics, the usual presentation of CTL is based on propositional logic. CTL inher-
its the signatures of propositional logic, and thus, the category of its signatures
is Set.

CTL formulae can express properties of a state or a path (i.e. an infinite
sequence of states) of a transition system (defined below), being classified into
state and path formulae: Cls(Σ) = {state, path}, for every Σ ∈ |Sig| = |Set|.

We define the functor Sen, and the natural transformation κ simultaneously,
describing the sentences of a signature and their classes:

– the atomic propositions a ∈ Σ are sentences of class state,
– init is a proposition of class state,
– ϕ1 ∧ ϕ2 is a sentence of class state, for every ϕ1, ϕ2 sentences of class state,
– ¬ϕ is a sentence of class state, for every sentence ϕ of class state,
– ∃π,∀π are sentences of class state, for every sentence π of class path,
– ©ϕ is a sentence of class path, for every sentence ϕ of class state,
– ϕ1Uϕ2 is a sentence of class path, for every ϕ1, ϕ2 sentences of class state.
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The models of a CTL signature Σ are transition systems TS = (S,→, I, L),
where S is a set of states, → ⊆ S × S is a transition relation, I ⊆ S is a set
of initial states, and L : S → 2Σ is a labelling function. We define a transition
system morphism h : (S,→, I, L) → (S′,→′, I ′, L′) as a function h : S → S′ such
that h(I) ⊆ I ′, h(→) ⊆ →′, and L(s) = L′(h(s)), for every s ∈ S.

The stratification of models is defined as follows:

– [[TS]]Σ,state is the set S of states of TS,
– [[TS]]Σ,path is the set of paths of TS, that is sequences s0, s1, . . . ∈ Sω, such

that si → si+1 for i ∈ ω.

For every signature morphism φ : Σ → Σ′, the components of the natural trans-
formations [[ ]]φ,c are identity functions:

[[TS′]]φ,state(s′) = s′, [[TS′]]φ,path(p′) = p′,

for every s′ ∈ [[TS′]]Σ′,state, p′ ∈ [[TS′]]Σ′,path, and TS′ ∈ |Mod(Σ′)|.
The satisfaction relation between models and sentences is given by:

– TS |=s
Σ,state ρ iff

• ρ ∈ L(s), for ρ ∈ Σ
• s ∈ I, for ρ = init
• TS |=s

Σ,state ϕ, for ρ = ¬ϕ
• TS |=s

Σ,state ϕ1 and TS |=s
Σ,state ϕ2, for ρ = ϕ1 ∧ ϕ2

– there is p = s0, s1, . . . ∈ [[TS]]Σ,path with s0 = s such that TS |=p
Σ,path π, for

ρ = ∃π,
– TS |=p

Σ,path ρ iff
• TS |=s1

Σ,state ϕ, for ρ = ©ϕ

• there exists an index j such that TS |=sj

Σ,state ϕ2, and for all i < j,
TS |=si

Σ,state ϕ1, for ρ = ϕ1Uϕ2,

for every signature Σ, every state s ∈ S, every path p = s0, s1, . . ., every sentence
ρ and every model TS ∈ |Mod(Σ)|.

3.2 Matching Logic

The original notion of matching logic developed in [18] can be described as a
stratified institution with classes ML as follows.

Signatures. The signatures of ML are algebraic signatures.

Example. Let us consider the specification of the IMP programming language
exemplified in Listing 1.1. The signature of the IMP-SYNTAX module is
obtained by adding to the built-in syntactic categories and their corresponding
semantic operations new sorts and operation symbols introduced by the syntax
keyword. For example, in the fragment of the syntax module below, the AExp
sort is introduced as a supersort of the Int and Id sorts.1 Addition and division
1 For simplicity, the formalism we used in this paper does not take into account the
subsorting relation. We could further include subsorts following ideas developed for
order-sorted equational logic [11].
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are defined as binary operations with arguments and results of sort AExp, while
bracketing is defined as a unary operation of the same sort. We note that only
the bracket attribute has an effect on the signature of the specification as it
determines the removal of its corresponding symbol of operation from the sig-
nature. The left and strict attributes are only used in parsing programs and in
refining the evaluation strategy (by sequencing computational tasks), and thus,
they do not play a role in defining the signature.

The signature of the fragment above is AExpSig = (S ∪ SBUILT-IN, F ∪
FBUILT-IN), where SBUILT-IN and FBUILT-IN are the built-in sorts and operations,
S = {AExp} and FAExp AExp→AExp = { + , / }. Similarly, the signa-
ture of the IMP module is obtained from the signature of the imported module
IMP-SYNTAX, extending its signature through the addition of the sorts T, K,
State and KResult and the operations 〈k〉 〈/k〉 ∈ FPgm→K,2 〈state〉 〈/state〉 ∈
FMap→State and 〈t〉 〈/t〉 ∈ FKState→T introduced by the keyword configuration.

Classes of a Signature. Every algebraic signature (S, F ) determines (through
the functor Cls) the set of classes S, that is the set of its sorts. Similarly, every
morphism φ : (S, F ) → (S′, F ′) determines a translation of classes φst : S → S′.

Sentences. The sentences (or patterns) in ML of given sorts are defined as
follows: for every signature Σ, Sen(Σ) is the least set that contains basic patterns
(terms over Σ, see [18]) and that is closed under the Boolean connectives ¬,∧,
and the existential quantifier ∃.

– For each s ∈ S, the basic patterns of sort s are first-order Σ-terms of sort s.
– For every pattern π of sort s, ¬π is a pattern of sort s.
– For every two patterns π1, π2 of sort s, π1 ∧ π2 is a pattern of sort s.
– For every variable x of sort s (defined formally as a tuple 〈x, s,Σ〉, where x is

the name of the variable, and s is its sort), and every pattern π ∈ Sen(S, F �
{x : s}), ∃x : s.π is a pattern in Sen(Σ).

The sentence translation along a signature morphism φ : Σ → Σ′ is defined simi-
larly to the translation of first-order sentences. For instance, for basic patterns π
of sort s, Sen(φ)(π) = φtm

s (π), where φtm is the extension of φ to terms that maps
σ(t1, . . . , tn) : s to φop(σ)(φtm(t1), . . . , φtm(tn)) : φst(s), for every σ ∈ Fs1...sn→s,
and term ti of sort si.

Example. We can give as examples of sentences of an ML-signature, the pat-
terns matched in the K rules corresponding to the IMP programming language
specification presented in Listing 1.1: I1:Int + I2:Int, I1:Int/I2:Int ∧ I2=/=0.
2 Pgm is the sort defined in Listing 1.1 for capturing the syntax of an IMP program.
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Classes of Sentences. The class of a pattern is given by its sort through the
natural transformation κ : Sen ⇒ Cls that is defined inductively on the structure
of sentences:

– κ(S,F )(π) = s, for every basic pattern π ∈ (TΣ)s,
– κ(S,F )(¬π) = κ(S,F )(π), for every pattern π,
– κ(S,F )(π1 ∧ π2) = κ(S,F )(π1) = κ(S,F )(π2), for every two patterns π1, π2,
– κ(S,F )(∃x : s.π) = κ(S,F�{x : s})(π), for every pattern π.

Models. The models of ML are multialgebras [13]. These are generalisations of
algebras having non-deterministic operations that return sets of possible values;
that is, multialgebras interpret operation symbols from the carrier set of their
arity to the powerset of the carrier set of their sort. For a signature Σ = (S, F ),
a multialgebra homomorphism h : M → N is a family of functions indexed by
the signature’s sorts {hs : Ms → Ns | s ∈ S}, such that hs(Mσ(m1, . . . , mn)) ⊆
Nσ(hs1(m1), . . . , hsn

(mn)), for every σ ∈ Fs1...sn→s and every mi ∈ Msi
.

Stratification. The stratification of models is given, for every signature Σ and
class s of Σ, by [[M ]]Σ,s = Ms, and for every signature morphism φ : Σ → Σ′,
class s of Σ and model M ′ of Σ′, by [[M ′]]φ,s(m′) = m′, where m′ ∈ M ′

φst(s) .

Satisfaction Relation. The satisfaction relation is based on the interpretation
of patterns in models. For any multialgebra M , we define Mπ, the interpretation
of a pattern π in M , inductively, as follows:

– for every pattern π ∈ Fλ→s, Mπ is the interpretation of the constant π,
– Mπ =

⋃{Mσ(m1, . . . , mn) | mi ∈ Mti
}, for every basic pattern σ(t1, . . . , tn),

– Mπ = Ms \ Mπ1 , for every pattern π = ¬π1, where π1 is a pattern of sort s,
– Mπ = Mπ1 ∩ Mπ2 , for every pattern π = π1 ∧ π2,
– Mπ =

⋃{(M,X)π1 | X ⊆ Mt}, for every pattern π = ∃x : t.π1, where π1 is
a pattern of sort s, and (M,X) is the expansion of M along the inclusion
(S, F ) ⊆ (S, F � {x : t}) given by (M,X)x = X.

We now have all the necessary concepts for defining the satisfaction relation:

M |=m
Σ,s π iff m ∈ Mπ.

Proposition 2. For every signature morphism φ : Σ → Σ′, sort s ∈ Cls(Σ),
multialgebra M ′ ∈ Mod(Σ′), state m′ ∈ [[M ′]]Σ′,Cls(φ)(s), and pattern π of sort s

Mod(φ)(M ′) |=[[M ′]]φ,s(m
′)

Σ,s π iff M ′ |=m′
Σ′,Cls(φ)(s) Sen(φ)(π).

In order to formalise the K framework we should interpret the variables in
a deterministic manner. For example, in the specification of the IMP language,
the variables in the patterns matched by the semantic rules have a deterministic
interpretation: the variables I1, I2 and T of the patterns I1 : Int + I2 : Int,
! T : Bool are interpreted as sole elements of sort Int or Bool respectively, as
opposed to the interpretation of variables in ML as sets of elements.
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Matching Logic with Deterministic Variables (ML+). We refine the above
definition of matching logic ML = (Sig,Cls,Sen, κ,Mod, [[ ]], |=), by interpreting
the variables in a deterministic way, as presented in [18].

ML+ is defined as a stratified institution with classes, whose category of
signatures is denoted by Sig+. Its objects are tuples (S, F,D), where (S, F )
and (S,D) are algebraic signatures of ML, such that Fw→s ∩ Dw→s = ∅ for
every w ∈ S∗, and s ∈ S. For signatures Σ = (S, F,D) and Σ′ = (S′, F ′,D′),
a signature morphism φ : Σ → Σ′ is a tuple (φst, φop, φdet), where the pairs
(φst, φop) and (φst, φdet) are signature morphisms in Sig.

We define the functor U: Sig+ → Sig by U(S, F,D) = (S, F ∪ D) for signa-
tures, and by U(φ) = (φst, φop ∪ φdet) for signature morphisms. The classes and
the sentences of a signature are given by the functor compositions Cls+ = U;Cls,
and Sen+ = U;Sen3 respectively. The classes of sentences are determined by the
composition U·κ : Sen+ → Cls+ of the functor U with the natural transformation
κ, that is, (U · κ)Σ = κU(Σ), for every signature Σ.

The models of ML+ are determined by the functor Mod+ : (Sig+)op → Cat,
that assigns to each signature Σ = (S, F,D) the full subcategory of Mod(U(Σ))
consisting of the models M in which every operation symbol in D is interpreted
in a deterministic way. For every signature morphism φ : Σ → Σ′ and every
model M ′ ∈ |Mod+(Σ′)|, we define Mod+(φ)(M ′) as Mod(U(φ))(M ′). Notice
that the functor Mod+ is well-defined, as |Mod(U(φ))(M ′)σ(m1, . . . , mn)| =
|M ′

φdet(σ)(m1, . . . , mn)| = 1 for every operation symbol σ of D.
The stratification of models is defined just as in the case of ML:

– [[ ]]+Σ,c : Mod+(Σ) → Set maps every model M to [[M ]]U(Σ),c

– [[M ]]+φ,c : [[M ]]+
Σ′,Cls+(φ)(c)

→ Mod+(φ) ; [[M ]]+Σ,c maps every state m to the state
[[M ]]U(φ),c(m), for every morphism φ : Σ → Σ′ and class c of Σ.

Finally, the satisfaction relation between models and sentences is defined
analogously to the satisfaction relation of ML. As a result, it holds for example,
that for any basic pattern π, any signature Σ ∈ Sig+, any class c ∈ Cls+(Σ),
and any model M ∈ |Mod+(Σ)|, M(|=ML+

)m
Σ,cπ iff M(|=ML)m

U(Σ),cπ. We
note, however, that the satisfaction relation of ML+ is not a restriction of the
satisfaction relation of ML. For example, if π were an existentially quantified
pattern ∃x : t.π1, then only the converse implication of the above equivalence
would be ensured to hold. This follows because in ML every expansion of M
may interpret in a non-deterministic manner the variable x : t; in order words,
there is no guarantee that there exists an expansion of M in ML that satisfies π
and is also a model of ML+.

3 Technically, the quantification in ML+ is done only over variables that are interpreted
in a deterministic manner. This means that every extension with variables over
signature U(Σ) (in ML) corresponds to a deterministic extension of Σ in ML+.
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3.3 Encoding Matching Logic into First-Order Logic

There exists a comorphism of institutions between �ML+, the institution
obtained from ML+ following Proposition 1, and FOL, the institution of first-
order logic. In short, the deterministic operations of any given �ML+-signature
are preserved by the signature-translation component of the comorphism, while
each non-deterministic operation is transformed into a new predicate. In this
manner, the interpretation of first-order predicates corresponds to the interpre-
tation of non-deterministic operations in multialgebras. Furthermore, the under-
lying sentence-translation map of the comorphism encodes each matching pat-
tern to a corresponding universally quantified sentence over states having the
same class as the pattern. We define (Φ,α, β) : �ML+ → FOL as follows:

For Signatures: The underlying signature functor Φ : Sig
ML+ → SigFOL maps

– every �ML+ signature Σ = (S, F,D) to the FOL signature Σ′ = (S′, F ′, P ′)
where S′ = S, F ′

w→s = Dw→s, P ′
λ = ∅, and P ′

ws = Fw→s for ws = λ.
– every �ML+-signature morphism φ : Σ1 → Σ2 to the FOL-signature mor-

phism φ′ = (φ′st, φ′op, φ′rel), where φ′st = φst, φ′op = φdet, and φ′rel
ws =

φop
w→s, for ws = λ.

For Models: The model functor βΣ : ModFOL(Φ(Σ)) → Mod
ML+
(Σ) given

by a signature Σ = (S, F,D) maps

– every first-order structure M ′ for Φ(Σ) to the multialgebra M whose car-
rier sets Ms are defined as M ′

s for every sort s ∈ S, whose interpretations
Mσ : Ms1 × . . . × Msn

→ 2Ms of function symbols σ ∈ Fs1...sn→s are defined
as Mσ(m1, . . . , mn) = {m ∈ Ms | (m1, . . . , mn,m) ∈ M ′

σ}, and whose inter-
pretations Mσ of function symbols σ ∈ Dw→s are given by the composition of
M ′

σ with the singleton-forming map { } : Ms → 2Ms , and
– every morphism of first-order structures h′ : M ′ → N ′ in ModFOL(Φ(Σ)) to

a multialgebra morphism h : βΣ(M ′) → βΣ(N ′) given by hs = h′
s, for every

s ∈ S. We note that the fact that h′ commutes with the interpretation of oper-
ation symbols suits the deterministic nature of the morphism h for the inter-
pretation of operations in D, while its compatibility with the interpretation of
predicate symbols guarantees the satisfaction of the morphism condition for
multialgebras.

For Sentences: The sentence translation αΣ : Sen
ML+
(Σ) → SenFOL(Φ(Σ))

given by a signature Σ = (S, F,D) maps every Σ-pattern π to the sentence
αΣ(π) = ∀m : s.FOLm : s

Σ (π), where s = κΣ(π), m is a first-order variable of sort
s for the signature Φ(Σ), and FOLm : s

Σ : κ−1
Σ (s) → SenFOL(Φ(Σ)�{m : s}) is the

sorted translation of sentences defined as follows:

We begin with a notation: for every operation symbol σ ∈ (F ∪ D)s1,...,sn→s,
and every variables mi : si and m : s, we denote by σ=(m1, . . . , mn,m) either
the relational atom σ(m1, . . . , mn,m) if σ ∈ F , or the equational atom
σ(m1, . . . , mn) = m if σ ∈ D.
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– for every basic pattern π ∈ (F ∪ D)λ→s, FOLm : s
Σ (π) = π=(m),

– for every basic pattern π = σ(t1, . . . , tn), with σ ∈ (F ∪ D)s1,...,sn→s,

FOLm : s
Σ (π) = ∃m1 : s1 . . . ∃mn : sn.FOLm1 : s1

Σ (t1) ∧ . . . ∧ FOLmn : sn

Σ (tn)
∧ σ=(m1, . . . , mn,m),

– for every pattern π = ¬π1, FOLm : s
Σ (¬π1) = ¬FOLm : s

Σ (π1),
– for every pattern π = π1∧π2, FOLm : s

Σ (π1∧π2) = FOLm : s
Σ (π1)∧FOLm : s

Σ (π2),
– for every pattern π = ∃x : t.π1, where π1 ∈ Sen
ML+

(Σ � {x : t}), we have
FOLm : s

Σ (∃x : t.π1) = ∃x : t.ξΣ(FOLm : s
Σ�{x : t}(π1)), where ξΣ is a first-order sig-

nature morphism from Φ(Σ�{x : t})�{m : s} to Φ(Σ)�{m : s}�{x : t} defined
as the extension of 1Φ(Σ) that maps the matching-logic variable x : t for the
signature Σ to the first-order variable x : t for the signature Φ(Σ)�{m : s}, and
the first-order variable m : s for the signature Φ(Σ � {x : t}) to the first-order
variable m : s but for the signature Φ(Σ).4

The naturality of α results from an analogous property for FOLm : s
Σ .

Proposition 3. For every two �ML+ signatures Σ1, Σ2, signature morphism
φ : Σ1 → Σ2, and variable m : s for Σ1, the following diagram commutes.

Satisfaction Condition. In order to show that the definitions of the compo-
nents of the comorphism given above guarantee that the satisfaction condition
holds, it suffices to know that Proposition 4 holds.

Proposition 4. For every �ML+ signature Σ, every first-order structure M for
Φ(Σ), and every Σ-pattern π of sort s, MFOLm : s

Σ (π) = βΣ(M)π.

This can be easily shown by induction on the structure of π, starting with the
base case of patterns π ∈ Fλ→s, for which MFOLm : s

Σ (π) is the set of states m ∈ Ms

such that (M,m) |= π(m), that is Mπ, and, by definition, βΣ(M)π = Mπ.

4 Reachability Logic

In order to capture reachability logic [21] as an institution, we first define an
abstract, parameterised institution over an arbitrary stratified institution with
classes, which necessarily has to enjoy properties such as the existence of a
4 We recall from the definitions of the institutions of matching and first-order logic
that from a technical point of view, variables are triples, consisting of name, sort,
and signature over which they are defined. Consequently, the signature morphism
ξΣ maps 〈x, t, Σ〉 to 〈x, t, Φ(Σ)�〈m, s, Φ(Σ)〉〉, and 〈m, s, Φ(Σ �x)〉 to 〈m, s, Φ(Σ)〉.
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quantification space, model amalgamation, and preservation of pushouts by the
class functor. We then obtain the concrete version of reachability logic that
underlies the K framework by instantiating the parameter of the abstract version
with ML+, the stratified institution with classes of matching logic, which we show
to satisfy the desired properties.

4.1 Abstract Reachability Logic

We formalise reachability logic in two steps: we begin by describing a sub-
institution of reachability logic whose sentences are all atomic (reachability
atoms), and we subsequently extend it by adding logical connectives and quan-
tifiers through a general universal-quantification construction.

To define atomic abstract reachability logic we first describe it as a pre-
institution [22] whose construction is based upon a stratified institution with
classes. This amounts to defining the same elements as those comprised by an
institution but without imposing the requirement of the satisfaction condition.

Throughout this section we assume an arbitrary, but fixed stratified insti-
tution with classes M = (SigM,ClsM,SenM,ModM, [[ ]]M, |=M). This serves as a
parameter for all the constructions below.

Signatures. The category of signatures of atomic abstract reachability logic,
denoted by SigARL(M), is the same as the category of signatures of M.

Sentences. For every signature Σ, SenARL(M)(Σ) is the set of pairs of sen-
tences of the stratified institution with classes, denoted by π1 ⇒ π2, where
π1, π2 ∈ SenM(Σ). The translation of such a sentence π1 ⇒ π2 along a signa-
ture morphism φ : Σ → Σ′ is defined as the pair of its translated components
according to SenM(φ): SenARL(M)(φ)(π1 ⇒ π2) = SenM(φ)(π1) ⇒ SenM(φ)(π2).

Example. If we instantiate the parameter M with the stratified institution with
classes ML+, the sentences of ARL(ML+) will only capture atomic K semantic
rules, i.e. without quantification and side conditions. This means we could only
express atomic rules in the specification of the simple imperative programming
language IMP, like rule ! true => notBool true.

Models. The reachability models of a signature Σ, given by the ModARL(M)

functor, are pairs (M,�) of Σ-models M of the underlying stratified institution
with classes, and families of preorders �c ⊆ [[M ]]Σ,c × [[M ]]Σ,c indexed by the
classes of the signature. The model homomorphisms h : (M1,�1) → (M2,�2)
are defined as the morphisms between the M-models M1 and M2 that preserve
the preorders: for every c ∈ Cls(Σ), the function [[h]]Σ,c from ([[M1]]Σ,c,�1) to
([[M2]]Σ,c,�2) is monotone. This allows ModARL(M)(Σ) to inherit the identities
and the composition of model homomorphisms of ModM(Σ).

The model reduct ModARL(M)(φ) : ModARL(M)(Σ′) → ModARL(M)(Σ)
given by a signature morphism φ : Σ → Σ′ is defined as

– ModARL(M)(φ)(M ′,�′) = (ModM(φ)(M ′),�) for every Σ′-model (M ′,�′),
where �c⊆ [[M ′�φ]]Σ,c × [[M ′�φ]]Σ,c is the reflexive and transitive closure of
[[M ′]]φ,c(�′

φ(c)), which will be further denoted by →c,
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– ModARL(M)(φ)(h′) is simply ModM(φ)(h′) for every two Σ′-models M ′
1,M

′
2,

and every model homomorphism h′ : (M ′
1,�′

1) → (M ′
2,�′

2).

Satisfaction Relation. The satisfaction relation between any model (M,�)
and any sentence π1 ⇒ π2 is defined as follows: (M,�) |=ARL(M)

Σ π1 ⇒ π2 if and
only if for every m ∈ [[M ]]Σ,c such that M(|=M)m

Σ,cπ1, there exists n ∈ [[M ]]Σ,c

such that M(|=M)n
Σ,cπ2, and m �c n.

Corollary 1. ARL(M) = (SigARL(M),SenARL(M),ModARL(M), |=ARL(M)) is
a pre-institution.

The direct implication of the satisfaction condition holds unconditionally.

Proposition 5. For every signature morphism φ : Σ → Σ′, every class c ∈
Cls(Σ), every model (M ′,�′) ∈ |ModARL(M)(Σ′)|, and every sentence π1 ⇒ π2,

(M ′,�′) |=ARL(M)
Σ′ φ(π1 ⇒ π2) implies (M ′,�′)�φ |=ARL(M)

Σ π1 ⇒ π2.

The converse of Proposition 5 holds if the stratification of the underlying insti-
tution of ARL(M) satisfies a property similar to that of lifting relations from [7,
Chapter 9].

Proposition 6. If in ARL(M), for every signature morphism φ : Σ → Σ′,
every class c ∈ Cls(Σ), every Σ′-model (M ′,�′), and every states m′ ∈
[[M ′]]Σ′,φ(c) and n ∈ [[M ′�φ]]Σ,c such that [[M ′]]φ,c(m′) �c n, there exists
n′ ∈ [[M ′]]Σ′,φ(c) such that m′ �′

φ(c) n′ and [[M ′]]φ,c(n′) = n, then

(M ′,�′)�φ |=ARL(M)
Σ π1 ⇒ π2 implies (M ′,�′) |=ARL(M)

Σ′ φ(π1 ⇒ π2),

for every sentence π1 ⇒ π2.

Corollary 2. If the stratified institution with classes M satisfies the hypothesis
of Proposition 6, then ARL(M) is an institution.

In most concrete examples of stratified institutions with classes the natural
transformations [[M ′]]φ,c of the stratification are bijective, or even identities (see
for example the definitions of ML+ and CTL). Therefore, the hypothesis of
Proposition 6 is usually satisfied, entailing that ARL(M) is an institution.

We have hitherto defined only an atomic fragment of the desired institution
of abstract reachability logic. To describe the construction of the institution
with universally quantified Horn-clause sentences over the atomic sentences of
ARL(M), we use the notion of quantification space originating from [8].

Definition 7. For any category Sig a class of arrows D ⊆ Sig is called a quan-
tification space if, for any χ : Σ → Σ′ ∈ D and ϕ : Σ → Σ1 there exists a
designated pushout
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with χ(ϕ) ∈ D and such that the horizontal composition of these designated
pushouts is also a designated pushout, i.e. for the pushouts in the diagram below

ϕ[χ] ; θ[χ(ϕ)] = (ϕ ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ ; θ), and such that χ(1Σ) = χ
and 1Σ [χ] = 1Σ′ . A quantification space D for Sig is adequate for a functor
Mod: Sigop → Cat when the aforementioned designated pushouts are weak amal-
gamation squares for Mod. A quantification space D for Sig is called adequate
for an institution if it is adequate for its model functor.

Proposition 7. For any institution I with an adequate quantification space D,
the following data defines an institution, called the institution of universally D-
quantified Horn clauses over I, and denoted HCL(I):

– SigHCL(I) = SigI,
– ModHCL(I) = ModI,
– SenHCL(I)(Σ)

= {∀χ.ρ′
1 ∧ . . . ∧ ρ′

n → ρ′ | (χ : Σ → Σ′) ∈ D and ρ′
i, ρ

′ ∈ SenI(Σ′)},

for every signature Σ

– SenHCL(I)(ϕ)(∀χ.ρ′
1 ∧ . . . ∧ ρ′

n → ρ′)

= ∀χ(ϕ).SenI(ϕ[χ])(ρ′
1) ∧ . . . ∧ SenI(ϕ[χ])(ρ′

n) → SenI(ϕ[χ])(ρ′),
for every signature morphism ϕ : Σ → Σ1

– M |=HCL(I)
Σ ∀χ.ρ′

1 ∧ . . . ∧ ρ′
n → ρ′

iff for all χ-expansions M ′ of M,M ′ |=I
Σ′ ρ′ if M ′ |=I

Σ′ ρ′
i for i = 1, n.

To build an institution with universally quantified sentences over ARL(M) as
described in Proposition 7, we need to ensure that ARL(M) satisfies its hypoth-
esis. This cannot be guaranteed in general, because M is abstract. Nevertheless,
we can obtain an appropriate set of hypotheses for the underlying stratified
institution M that allow us to apply Proposition 7:

– the existence of a quantification space for ARL(M) is guaranteed by the exis-
tence of a quantification space for M, as the categories SigARL(M) and SigM

are equal,
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– the fact that ARL(M) has weak model amalgamation follows from the weak
model amalgamation property of M (see Definition 8 below) and the preserva-
tion of pushouts by the class functor of M (see Proposition 8 below).

Definition 8. A stratified institution with classes M has (weak) model amalga-
mation whenever its corresponding institution �M has this property.

Proposition 8. For every stratified institution with classes M having (weak)
model amalgamation such that its class functor Cls preserves pushouts, ARL(M)
has (weak) model amalgamation.

Corollary 3. If M has an adequate quantification space and a pushout preserv-
ing class functor, then HCL(ARL(M)) is an institution.

4.2 Defining Reachability over Matching Logic

In order to capture reachability logic in its original, concrete form, we must
instantiate the parameter of the institution HCL(ARL(M)) defined above, with
the stratified institution ML+. To this end, we first point out that by adding
variables as deterministic constants to the signatures of ML+ we obtain a quan-
tification space. Furthermore, to show that the quantification space is adequate,
we use the property of model amalgamation of the comorphism (Φ,α, β) between
�ML+ and FOL defined in Sect. 3.3.

Proposition 9. ML+ has pushouts of signatures. Moreover, its class functor
preserves pushouts.

Example. Let us consider the K definition of the IMP programming language.
By splitting the syntax module into three modules, AExp, BExp and IMP-
SYNTAX importing the two expressions modules, we have an immediate and
natural example of a pushout of signatures: as both the AExp and BExp modules
import the BUILT-IN module containing the built-in sorts and corresponding
operations of K, we need to construct the pushout of their signatures in order
to obtain the signature of the module IMP-SYNTAX.

Proposition 10. In ML+, the family of extensions with deterministic constants
forms a quantification space.

The following definition originates from [4].

Definition 9. An institution comorphism (Φ,α, β) : I → I′ has weak model
amalgamation if for every I-signature morphism ϕ : Σ → Σ′, every Σ′-model
M ′, and every Φ(Σ)-model N such that βΣ(N) = M ′�ϕ, there exists a Φ(Σ′)-
model N ′ such that βΣ′(N ′) = M ′ and N ′�Φ(ϕ) = N . We say that (Φ,α, β) : I →
I′ has model amalgamation when N ′ is required to be unique.
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Remark 1. ML+ has model amalgamation. Let us first note that the comor-
phism (Φ,α, β) between the institution �ML+ and FOL defined in the previous
section has model amalgamation. This property holds trivially since the model
reduction functors βΣ are isomorphisms of categories, for every signature Σ. As
the institution of FOL also has model amalgamation, we can use a general result
of institution theory to deduce that �ML+ has model amalgamation.

Corollary 4. HCL(ARL(ML+)) is an institution.

4.3 Encoding Reachability Logic into First-Order Logic

For any institution ARL(M) defined over a stratified institution with classes
M , there exists a comorphism of institutions between ARL(M) and FOLpres,
the institution of presentations over first-order logic, whenever there exists a
comorphism of institutions (Φ,α, β) between �M and FOL such that:

– the classes of a signature in Sig
M are given by the sorts of its translation to
FOL: Cls = Φ ; St, where St is the forgetful functor St : SigFOL → Set,

– for every signature Σ, αΣ(π) = ∀m : s.FOLm : s
Σ (π), for every π of class s,5

– for every N ∈ |ModFOL(Φ(Σ))|, and every s ∈ Cls(Σ), Ns = [[βΣ(N)]]Σ,s.

The signature-translation component of the comorphism encodes the reacha-
bility relation through the addition of new preorder predicates and corresponding
axioms for each class of the signature. The new predicates determine relations
on reachable states that define the preorder-family component of a reachability
model. The sentence component of the comorphism translates each reachability
statement between two patterns to a sentence that expresses the existence of a
reachable state for the target pattern for every state of the source pattern. We
define the comorphism (ΦR, αR, βR) : ARL(M) → FOLpres as follows:

For Signatures: The signature functor ΦR : SigARL(M) → SigFOLpres
maps

every signature Σ of ARL(M) to ΦR(Σ) = (Reach(Σ), E), where

– Reach(Σ) denotes the first-order signature obtained by adding to Φ(Σ) =
(S′, F ′, P ′) a predicate reach of arity s s for every sort s ∈ S′, and

– E is a set of axioms that define the predicates reach as preorders:
{∀x : s.reach(x, x),∀x, y, z : s.reach(x, y) ∧ reach(y, z) → reach(x, z) | s ∈ S′}.

For Sentences: For every signature Σ of ARL(M), the sentence transla-
tion function αR

Σ : SenARL(M)(Σ) → SenFOL(Reach(Σ)) maps every Σ-sentence
π1 ⇒ π2 to αR

Σ(π1 ⇒ π2) = ∀m : s.FOLm : s
Σ (π1) → ∃n : s.FOLn : s

Σ (π2) ∧
reach(m,n).

For Models: For every signature Σ of ARL(M), βR
Σ : ModFOL(Reach(Σ), E) →

ModARL(M)(Σ) is the model functor that maps every first-order structure N ∈
5 Note that, in this case, FOLm : s

Σ (π) is just a notation, and it should not be confused
with the first-order sentence described in the previous section, for which we would
need to instantiate M with ML+.
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|ModFOL(Reach(Σ), E)| to the model (M,�) ∈ |ModARL(M)(Σ)|, given by
M = βΣ(N) ∈ |ModM(Σ)| and �s = {(m,n) | (N,m, n) |= reach(x, y)}, for
every sort s. Note that �s is well-defined as Cls = Φ ; St and Ns = [[M ]]Σ,s.

To encode the Horn-clause reachability logic of Corollary 4 (defined over
ML+) into first-order logic, it suffices to notice that the comorphism considered
in Sect. 3.3, (Φ,α, β) : �ML+ → FOL, satisfies all of the above requirements, and
thus can be extended to a comorphism (ΦR, αR, βR) : ARL(ML+) → FOLpres.
This can be further extended to an encoding of HCL(ARL(ML+)) into FOLpres

through the use of a general result about Horn-clause institutions.

Proposition 11. Let I and I′ be institutions equipped with quantification spaces.
Every comorphism of institutions (Φ,α, β) : I → I′ that has weak model amalga-
mation, and for which Φ preserves the quantification space of I, can be extended
to a comorphism of institutions between HCL(I) and HCL(I′).

5 Conclusions and Future Research

In this work, we proposed an institutional formalisation of the logical systems
that underlie the K semantic framework. These logical systems account for the
structural properties of program configurations (through matching logic), and
changes of these configurations (through reachability logic).

Our work sets the foundation for integrating the K semantic framework into
heterogeneous institution-based toolsets, allowing us to exploit the combined
potential of the K tool and of other software tools such as the MiniSat solver,
the SPASS automated prover or the Isabelle interactive proof assistant. Hav-
ing both matching and reachability logic defined as institutions allows us to
integrate them into the logic graphs of institution-based heterogeneous specifi-
cation languages such as HetCasl [16]. As an immediate result, the K frame-
work can inherit the powerful module systems developed for specifications built
over arbitrary institutions, with dedicated operators for aggregating, renaming,
extending, hiding and parameterising modules. In addition, this will enable us
to combine reachability logic and the tool support provided by K with other
logical systems and tools. Towards that end, as a preliminary effort to integrate
the K framework into Hets [17], we described comorphisms from matching and
reachability logic to the institution of first-order logic.

Another line of research concerns the development of K from a purely formal-
specification perspective, including for example, studies on modularisation and
initial semantics. Within this context, verification can be performed based on
the proof systems that have already been defined for K.
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5. Chiriţă, C.E.: An institutional foundation for the K semantic framework. Master’s
thesis, University of Bucharest (2014)
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1 “Alexandru Ioan Cuza” University, Iaşi, Romania
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Abstract. Programming languages should be formally specified in order
to reason about programs written in them. We show that, given two for-
mally specified programming languages, it is possible to construct the
formal semantics of an aggregated language, in which programs consist
of pairs of programs from the initial languages. The construction is based
on algebraic techniques and it can be used to reduce relational proper-
ties (such as equivalence of programs) to reachability properties (in the
aggregated language).

1 Introduction

In this paper we are concerned with the problem of language aggregation: given
two programming languages (in some formalism), construct a new language in
which programs consist of pairs of programs from the original languages. Fur-
thermore, a program (P,Q) in the aggregated language should behave as if the
programs P and Q (in the initial languages) would run interleaved or in parallel.

The main motivation behind the construction of the aggregated language is to
be able to reduce reasoning about relational properties of programs (such as the
equivalence of two programs P and Q) to reasoning about a single program (the
aggregated program (P,Q)). We have shown [4] for example that partial equiv-
alence of programs reduces to partial correctness in an aggregated language. In
general, aggregation is important because there are fewer results and tools for
relational properties (e.g. equivalence of programs) than single program properties
(e.g. partial correctness). All of our constructions are effective and therefore aggre-
gation can be implemented as a module in a language framework such as K [15].

The main difficulty in aggregating two languages is making sure that there is
a link between the datatypes being shared by the two languages. For example, if
both languages have variables of type natural numbers, it is important that the
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naturals be interpreted consistently in the aggregated language in order to be able
to express properties such as the equality of a variable in the first language with
a variable in the second language. We use known results like pushouts of first-
order signatures and amalgamation of first-order models in order to formalize the
sharing of information between the two languages. In order to show that the lan-
guage resulting from the construction is indeed the language we want (i.e. that
is has the desirable properties), we have to show several non-trivial results about
aggregated configurations (Lemmas 1 and 3) and about the aggregated semantics
(Theorems 3, 4 and 5) that were not known before.

In this paper, we show that if the two languages are formalized by their
matching logic semantics [11], then the matching logic semantics of the aggre-
gated language can also be constructed. The main advantage of a matching logic
semantics is that it allows to faithfully express several operational semantics
([18]) and that a Hoare-like proof system can be obtained for free directly from
the semantics [8,14]. Therefore, our method allows one to reason about relational
properties (such as equivalence) of programs written in two potentially different
programming languages “for free”, starting from the matching logic semantics
of the languages.

2 Topmost Matching Logic

Matching logic was introduced by Roşu et al. ([11,12]) for specifying program-
ming languages and reasoning about programs. In this section, we recall topmost
matching logic, a subset of the full matching logic theory described in [13]. For
simplicity, we use “matching logic” instead of “topmost matching logic” in this
paper.

2.1 Signature

A matching logic signature (Cfg , S,Σ,Π) extends a many-sorted first order sig-
nature (S,Σ,Π) (where S is the set of sorts, Σ is the many-sorted set of function
symbols and Π is the many-sorted set of predicate symbols) with a sort Cfg ∈ S
of configurations. By Var we denote the (sorted) set of variables. By Ts(Var) we
denote the set of (well-sorted) terms of sort s built from function symbols in Σ
and variables in Var . Matching logic signatures are used to define the abstract
syntax of programming languages.

Example 1. The signatures (CfgI, SI , ΣI ,ΠI) and (CfgF, SF , ΣF ,ΠF ) in Fig. 1
model the syntax of an imperative and, respectively, of a functional programming
language, with sorts SI = {Int, Id, Exp, ExpI, Stmt, Code, CfgI} in IMP and sorts
SF = {Id, Int, Exp, ExpF, Val, CfgF} in FUN, and function symbols

Σ0 = { + , - , * , / , < , == } ∪
{ + Int, - Int, * Int, / Int, < Int, <= Int, == Int}

ΣI = Σ0 ∪ { := , skip, ; , if then else , while do , 〈 , 〉}
ΣF = Σ0 ∪ { , letrec = in , if then else , μ . , λ . , 〈 〉}.
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Exp::= Id | Int | ExpI + ExpI | ExpI - ExpI | ExpI * ExpI | ExpI / ExpI

| ExpI < ExpI | ExpI <= ExpI | ExpI == ExpI

ExpI ::= Exp

Stmt ::= Id := ExpI

| skip | Stmt ; Stmt

| if ExpI then Stmt else Stmt

| while ExpI do Stmt

Code ::= ExpI | Stmt

CfgI ::= 〈Code, Map{Id, Int}〉

ExpF ::= Exp

| letrec Id Id = ExpF in ExpF

| if ExpF then ExpF else ExpF

| μ Id . ExpF

| ExpF ExpF

Val ::= Int | λ Id . ExpF

CfgF ::= 〈ExpF〉

Fig. 1. (CfgI, SI , ΣI , ΠI) and (CfgF, SF , ΣF , ΠF ), the signatures of IMP and FUN,
detailed in Example 1. Only the function symbols are detailed in the figure; the pred-
icates consist of the arithmetic comparison operators: ΠI = ΠF = {=Int, <Int, ≤Int}.
The difference between the operators + , * , etc. and their correspondants + Int,
∗ Int, etc. is that the former are the syntactic language constructs for addition, etc.,

while the latter are the actual function symbols denoting integer addition, etc.

The functions above are written in Maude-like notation [7], the underscore ( )
denoting the position of an argument. Althought not written explicitly above,
the signatures also include the one-argument injections needed to inject sorts
like Int and Id into ExpI.

2.2 Syntax

Given a matching logic signature (Cfg , S,Σ,Π), the set of matching logic for-
mulae is given by the following grammar:

ϕ ::= P (t1, . . . , tn),¬ϕ,ϕ ∧ ϕ,∃x.ϕ, π,

where P ranges over Π, t1, . . . , tn are terms of the appropriate sort for the
predicate P , x ∈ Var is a variable and π ∈ TCfg(Var) is a term of sort Cfg .

Matching logic formulae include the classical constructs in first-order logic
(predicates P (t1, . . . , tn), negation, conjunction and existential quantifier) and
also a new construct π, called basic pattern, which allows to use terms of sort
Cfg as atomic formulae. We also assume that the other first-order connectives
(disjunction - ∨, implication - →, universal quantifier - ∀) are available and
interpreted as usual as syntactic sugar over the existing connectives.

Example 2. The expression

〈while (E) S, x �→ a y �→ b〉 ∧ a <Int b

is a (CfgI, SI , ΣI ,ΠI)-matching logic formula, where (CfgI, SI , ΣI ,ΠI) is that
given in Fig. 1.

We distinguish two particular types of matching logic formulae:
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Definition 1. A matching logic formula is patternless if it conforms to the
following grammar:

ϕpless ::= P (t1, . . . , tn),¬ϕpless, ϕpless ∧ ϕpless,∃x.ϕpless.

Patternless matching logic formulae simply do not contain basic patterns.
Therefore they can be identified with FOL formulae. The second particular

type of formulae we consider are pure formulae:

Definition 2. A matching logic formula is pure if it conforms to the following
grammar:

ϕpure ::= π, ϕpure ∧ ϕpless,∃x.ϕpure.

Pure formulae contain at least one basic pattern and no basic pattern appears
under negation.

2.3 Semantics

We denote by T a first-order model for the many-sorted first-order signature
(S,Σ,Π) that assigns sets to sorts, functions to function symbols and predicates
to predicate symbols. By To we denote the interpretation of the object o in the
model T . Well-sorted valuations are denoted by ρ : Var → T . Elements of TCfg

(the set interpreting the sort of configurations) are denoted by the greek letter
γ ∈ TCfg and are called configurations.

Matching logic formulae are interpreted in the presence of a (first-order)
model T , a (well-sorted) valuation ρ and an element γ ∈ TCfg .

Definition 3. The satisfaction relation |= for matching logic is defined as
follows:

1. T , γ, ρ |= P (t1, . . . , tn) if (ρ(t1), . . . , ρ(tn)) ∈ TP ;
2. T , γ, ρ |= ¬ϕ if T , γ, ρ �|= ϕ;
3. T , γ, ρ |= ϕ1 ∧ ϕ2 if T , γ, ρ |= ϕ1 and T , γ, ρ |= ϕ2;
4. T , γ, ρ |= ∃x.ϕ, where x is a variable of sort s, if there exists an element

u ∈ Ts such that T , γ, ρ[x �→ u] |= ϕ;
5. T , γ, ρ |= π for a basic pattern π ∈ TCfg(Var) if ρ(π) = γ.

The first four cases are as in first-order logic and the last case (for basic
patterns) is new. The semantics of basic patterns is given by matching the ele-
ment γ in the presence of which matching logic formulae are evaluated. This
is where the name of matching logic comes from. When two basic patterns are
connected by a logical and (∧) in the formula, the element γ has to match both
basic patterns, hence ∧ plays the role of intersection. Using basic patterns under
implications, logical or and existential/universal quantifiers makes it possible to
express several interesting properties, but this is outside the scope of the current
article.
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Example 3. Let TI denote the model for ΣI that interprets Int as the set of
integers, the function and the predicate symbols over Int with the usual func-
tions and predicates, respectively, and the function symbols corresponding to
the BNF productions as term constructors. If

γ = 〈while (x<y) x := x+1;, x �→ 2 y �→ 5〉

and ρ(E) = x<y, ρ(S) = x := x+1;, ρ(a) = 2, ρ(b) = 5 then

TI , γ, ρ |= 〈while (E) S, x �→ a y �→ b〉 ∧ a <Int b.

The ΣF -model TF is defined in a similar way. If

γ′ = 〈letrec f x = if (x<1) then 1 else x*f(x-1) in f(5)〉

and ρ′(F ) = f, ρ′(X) = x and

ρ′(E1) = if (x<1) then 1 else x*f(x-1), ρ′(E2) = f(5),

then
TF , γ′, ρ′ |= 〈letrec F X = E1 in E2〉 ∧ true.

3 Reachability Logic

While matching logic allows to reason about individual configurations (of a pro-
gram), reachability logic builds on matching logic to allow to reason and define
the dynamic behaviour of programs.

3.1 Syntax

Reachability logic formulae are constructed in the presence of a matching logic
signature (Cfg , S,Σ,Π) as pairs of matching logic formulae:

Definition 4. A reachability logic formula (or equivalently, a reachability rule)
ϕ ⇒ ϕ′ is a pair of matching logic formulae.

The intuition behind reachability formulae is that a configuration matching
ϕ advances into a configuration matching ϕ′.

Example 4. The set of reachability logic formulas AI given in Fig. 2 are specify-
ing the semantics of IMP and the set of reachability logic formulas AF given in
Fig. 3 are specifying the semantics of FUN. The specification

〈C[code], σ〉 ⇒ 〈C[code ′], σ′〉 if〈code, σ〉 ⇒ 〈code ′, σ′〉, (1)

(resp. 〈C[c]〉 ⇒ 〈C[c′]〉if〈c〉 ⇒ 〈c′〉 ) is a rule schemata that defines an infinite
set of reachability logic formulas.
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〈x, σ〉 ⇒ 〈eval(σ, x), σ〉
〈i1 op i2, σ〉 ⇒ 〈i1 opInt i2, σ〉
〈X := I, σ〉 ⇒ 〈skip, σ[I/X]〉
〈skip;S, σ〉 ⇒ 〈S, σ〉
〈if I then S1 else S2, σ〉 ∧ I �= 0 ⇒ 〈S1, σ〉
〈if 0 then S1 else S2, σ〉 ⇒ 〈S2, σ〉
〈while E do S, σ〉 ⇒ 〈if E then S; while E do S else skip, σ〉
〈C[code], σ〉 ⇒ 〈C[code ′], σ′〉 if 〈code, σ〉 ⇒ 〈code ′, σ′〉
where C ::= | C op E | i op C | if C then S1 else S2 | v := C | C; S

Fig. 2. Specifying the semantics of IMP as a set AI of reachability rules (schemata).
op ranges over the binary function symbols and opInt is their denotation in TI .

〈I1op I2〉 ⇒ 〈I1opIntI2〉
〈if I then E1 else E2〉 ∧ i �= 0 ⇒ 〈E1〉
〈if 0 then E1 else E2〉 ⇒ 〈E2〉
〈letrec F X = E in E′〉 ⇒ 〈E′[f 	→ (μF.λX.E)]〉
〈(λX.E) V 〉 ⇒ 〈E[V/X]〉
〈μX.E〉 ⇒ 〈E[X 	→ (μX.E)]〉
〈C[c]〉 ⇒ 〈C[c′]〉 if 〈c〉 ⇒ 〈c′〉
where C ::= | C op e | if C then e1 else e2 | C e | v C

Fig. 3. Specifying the semantics of FUN as a set AF of reachability rules schemata. op
ranges over the binary function symbols and opInt is their denotation in TF

3.2 Semantics

Reachability logic formulae are interpreted in the presence of a first-order model
T and a (well-sorted) valuation ρ : Var → T as in the case of matching logic,
and also in the presence of a transition relation −→ ⊆ TCfg × TCfg over the set
of configurations TCfg .

Intuitively, a reachability logic formula ϕ ⇒ ϕ′ holds if any configuration
matched by ϕ reaches (in one step) a configuration matched by the formula
ϕ′. Note that the one-step requirement we work with in this article defines a
satisfaction relation that is different from the ones used in the previous pre-
sentations [8,14] of reachability logic. The satisfaction relation defined here is
mainly used to specify transition systems.

Definition 5. Formally, the satisfaction relation |= of reachability logic is defined
as follows:

T ,−→, ρ |= ϕ ⇒ ϕ′

if for any γ ∈ TCfg such that T , γ, ρ |= ϕ there exists a γ′ ∈ TCfg such that
γ−→γ′ and T , γ′, ρ |= ϕ′.
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Note that the free variables of ϕ and the free variables of ϕ′ are “shared”
in the reachability formula, in the sense that both are interpreted by the same
valuation.

Example 5. If

〈if (1) then x=x+y else x := 0, x �→ 2 y �→ 5〉 ⇒ 〈x=x+y, x �→ 2 y �→ 5〉

and ϕ ⇒ ϕ′ is

〈if (I) then S1 else S2, σ〉 ∧ I �=Int 0 ⇒ 〈S1, σ〉,

then we have TI ,−→, ρ |= ϕ ⇒ ϕ′, where ρ(I) = 1, ρ(S1) = x := x+y, ρ(S2) =
x := 0, and ρ(σ) = x �→ 2 y �→ 5.

If the valuation ρ is missing, the free variables of reachability rules are inter-
preted universally:

Definition 6. Given a first-order model T and a transition relation −→, we
say that the pair (T ,−→) is a model of ϕ ⇒ ϕ′, written

T ,−→ |= ϕ ⇒ ϕ′

if, for all (well-sorted) valuations ρ : Var → T , we have that T ,−→, ρ |= ϕ ⇒ ϕ′.

The universal interpretation of the free variables is justified in the following
section, but note that it is not unusual to do so: for example, the same happens
with first-oder clauses, where the variables are (implicitly) universally quantified.

4 Language Semantics

In this section, we show that reachability formulae can be used to formally
define the operational semantics of a programming language. We consider that
a matching logic signature (Cfg , S,Σ,Π) is fixed.

Definition 7. A (Cfg , S,Σ,Π)-programming language is a pair (T ,−→) of a
first-order model T of (Cfg , S,Σ,Π) and a transition relation −→ ⊆ TCfg ×TCfg .

When (Cfg , S,Σ,Π) is understood from the context, we omit it and write
programming language instead of (Cfg , S,Σ,Π)-programming language.

The matching logic signature defines the syntax of the language, the model T
mainly defines program configurations and −→ defines the (one-step) transition
relation between configurations. Let A be a set of reachability formulae (the
axioms of the language).

Definition 8. We say that (T ,−→) is a model of A, and we write (T ,−→) |= A
if (T ,−→) |= ϕ ⇒ ϕ′ for every reachability formula ϕ ⇒ ϕ′ ∈ A.
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Example 6. If (TI ,−→I) gives the semantics of IMP, then we have (TI ,−→I) |=
AI , i.e., (TI ,−→I) is a model of AI . Similarly, if (TF ,−→F ) gives the semantics
of FUN, then we must have (TF ,−→F ) |= AF , i.e., (TF ,−→F ) is a model of AF .

Therefore, the set A of reachability rules are considered to be the specification
(the formal semantics) of any language (T ,−→) that is a model of the rules.
In [18] it is shown that any operational semantics (small-step SOS, big-step
SOS, reduction contexts, etc.) can be faithfully captured by a (possibly infinite)
set of reachability rules. Moreover, all such reachability rules from the semantics
are pure:

Definition 9. A reachability formula ϕ ⇒ ϕ′ is pure if both ϕ and ϕ′ are pure.

From here on, we assume that the formal semantics of any language is given
as a (possibly infinite) set of pure reachability formulae.

5 Language Aggregation

We assume two signatures (Cfg1, S1, Σ1,Π1) and (Cfg2, S2, Σ2,Π2) for two lan-
guages (T1,−→1) and (T2,−→2) specified by the sets A1 and A2 of reachability
rules.

In this section, we construct the aggregated signature (Cfg , S,Σ,Π) of the
aggregated language from the signature of the first language and the signature of
the second language. Also, we define the aggregated language (T ,−→) itself and
show how to constructively give the aggregated axioms A of the new language
from the initial languages.

5.1 Signature Aggregation

This subsection is dedicated to showing how to construct the aggregated signa-
ture (Cfg , S,Σ,Π) from the individual signature (Cfg1, S1, Σ1,Π1) (of the first
language) and (Cfg2, S2, Σ2,Π2) (of the second language).

The most delicate part is to make sure that the sorts, function and predicate
symbols “shared” between the two language are identified in the aggregated
configuration, even if their names are not the same in the first and in the second
language.

Therefore, we assume that there exists a first-order signature (S0, Σ0,Π0)
that the two languages have in common. This means there exist two morphisms
h1 : (S0, Σ0,Π0) → (S1, Σ1,Π1) and h2 : (S0, Σ0,Π0) → (S2, Σ2,Π2).

Example 7. For the signatures of the two languages, IMP and FUN, we have
S0 = {Int, Id, Exp}, Σ0 that was defined on Page 1, and Π0 = Π1,Π2. The
morphisms h1 and h2 are given by the component inclusions.

The following theorem (the pushout theorem) allows us to combine the two
signatures into a single signature, while identifying the objects shared between
them. This result is not new, see, for example, [9].
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Theorem 1 (Pushout of Signatures). Let (S1, Σ1,Π1), (S2, Σ2,Π2) and
(S0, Σ0,Π0) be many-sorted FOL signatures, h1 a morphism from (S0, Σ0,Π0)
to (S1, Σ1,Π1) and h2 a morphism from (S0, Σ0,Π0) to (S2, Σ2,Π2).

Then the diagram (S1, Σ1,Π1)
h1←− (S0, Σ0,Π0)

h2−→ (S2, Σ2,Π2) admits a
pushout, i.e., there exists a tuple (h′

1, (S
′, Σ′,Π ′), h′

2) with h′
1 a morphism from

(S1, Σ1,Π1) to (S′, Σ′,Π ′) and h′
2 a morphism from (S2, Σ2,Π2) to (S′, Σ′,Π ′)

such that:

1. (commutativity) h′
1(h1(x)) = h′

2(h2(x)) for any object x from the signature
(S0, Σ0,Π0) and

2. (minimality) if there exist (S′′, Σ′′,Π ′′) and morphisms h′′
1 from (S1, Σ1,Π1)

to (S′′, Σ′′,Π ′′) and h′′
2 from (S2, Σ2,Π2) to (S′′, Σ′′,Π ′′) with h′′

1(h1(x)) =
h′′
2(h2(x)) for all x ∈ S0,∪Σ0 ∪ Π0, then there exists a morphism h from

(S′, Σ′,Π ′) to (S′′, Σ′′,Π ′′).

Furthermore, the pushout is unique (up to isomorphisms). The push-out is
summarised in Fig. 4.

(S0, Σ0, Π0) (S2, Σ2, Π2)

(S1, Σ1, Π1) (S′, Σ′, Π ′)

h2

h1
h′
1

h′
2

Fig. 4. Push-out diagram assumed throughout the paper.

The first step to obtain the aggregated signature is to apply the push-out
theorem in order to obtain the intermediate signature (S′, Σ′,Π ′) and the two
morphisms h′

1 : (S1, Σ1,Π1) → (S′, Σ′,Π ′) and h′
2 : (S2, Σ2,Π2) → (S′, Σ′,Π ′).

The first-order signature (S′, Σ′,Π ′) contains all of the objects from the
initial signatures (properly renamed to account for shared objects), but it does
not yet have a sort for aggregated configurations. Let Cfg ′ = h1(Cfg1) and
Cfg ′

2 = h2(Cfg2) be the names of the sorts of configurations in the new signature.
We therefore choose a fresh sort Cfg for aggregated configurations and we

let S = S′ � {Cfg} be the set of sorts. The signature Σ contains, in addition to
the symbols in Σ′, a pairing symbol and the respective projections. Formally,

Σ = Σ′ � {〈 , 〉 : Cfg ′
1 × Cfg ′

2 → Cfg , pr1 : Cfg → Cfg ′
1, pr2 : Cfg → Cfg ′

2}.

The pairing symbol 〈 , 〉 takes as input two configurations of the initial lan-
guages and returns a configuration of the aggregated language. The projection
operations pr1 and pr2 take an aggregated configuration and deconstruct it into
the initial configurations. Finally, we let Π = Π ′.

The signature (Cfg , S,Σ,Π) is the aggregated signature of the language and
its construction is summarised in Fig. 5.
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(S0, Σ0, Π0)(Cfg1, S1, Σ1, Π1) (Cfg2, S2, Σ2, Π2)

(S1, Σ1, Π1) (S2, Σ2, Π2)

(S′, Σ′, Π ′)

(S, Σ, Π)

(Cfg , S, Σ, Π)

h2h1

h′
1 h′

2

add Cfg , 〈 , 〉, pr1, pr2

“forget” Cfg

“forget” Cfg1 “forget” Cfg2

Fig. 5. The aggregation of the two signatures.

If h : (S,Σ,Π) → (S′, Σ′,Π ′) is a morphism between the two first order
signatures, we extend h to terms as expected: if t ∈ Ts(Σ), then h(t) ∈
Th(s)(Σ′). We also extend h to transform matching logic formula in the signature
(Cfg , S,Σ,Π) to matching logic formula in the signature (h(Cfg), S′, Σ′,Π ′) as
follows:

1. h(ϕ1 ∧ ϕ2) = h(ϕ1) ∧ h(ϕ2),
2. h(∃x.ϕ1) = ∃x.h(ϕ1),
3. h(¬ϕ1) = ¬h(ϕ1) and
4. h(P (t1, . . . , tn)) = P (h(t1), . . . , h(tn))).

Note that there is no need to have a case for computing h(π), since a basic
pattern π is nothing but a term. Therefore h(π) is already defined. We also
extend h to transform reachability formulae over the signature (Cfg , S,Σ,Π)
into reachability formulae over the signature (h(Cfg), S′, Σ′,Π ′):

h(ϕ ⇒ ϕ′) = h(ϕ) ⇒ h(ϕ′).

5.2 Model Amalgamation

In this subsection, given two models T1 and T2 for the matching logic signatures
(Cfg1, S1, Σ1,Π1) and (Cfg2, S2, Σ2,Π2), we show how to construct a model T
for the aggregated signature (Cfg , S,Σ,Π) above.

In order to construct such a model, we need to make sure that the two
models T1 and T2 agree on the common part of the signature. Formally, we
assume that there exists a model T0 of the signature (S0, Σ0,Π0) such that
T1�h1

= T0 = T2�h2
(i.e. the reduct of T1 through h1 is the same as the reduct

of T2 through h2). Figure 6 below summarizes the construction of T .
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(S0, Σ0, Π0)T0

T2(S1, Σ1, Π1)T1 (S2, Σ2, Π2)

(Cfg1, S1, Σ1, Π1) (Cfg2, S2, Σ2, Π2)

(S′, Σ′, Π ′)T ′

(S, Σ, Π)

(Cfg , S, Σ, Π)

T

h2h1

h′
1 h′

2

add Cfg , 〈 , 〉, pr1, pr2

h1 h2

h′
1 h′

2

“forget” Cfg

“forget” Cfg1 “forget” Cfg2

Fig. 6. Construction of amalgamated model

We can combine the two languages through the model amalgamation theo-
rem. The theorem is not new (see for example [17]). A proof can also be found
in our technical report [5].

Theorem 2 (Amalgamation). If T1, T2 and T0 are models of (S1, Σ1,Π1),
(S2, Σ2,Π2) and respectively (S0, Σ0,Π0) such that T1�h1

= T0 = T2�h2
, there

exists a unique model T ′ of (S′, Σ′,Π ′) such that T ′�h′
2

= T2 and T ′�h′
1

= T1.

In order to obtain the model T for the aggregated signature (Cfg , S,Σ,Π),
we need to augment T ′ to interpret the Cfg sort, the pairing symbol 〈 , 〉 and
the projection symbols pr1 and pr2. Formally, we define T as follows:

1. TCfg = T ′
Cfg′

1
× T ′

Cfg′
2
,

2. T〈 , 〉(γ1, γ2) = (γ1, γ2) for any γ1 ∈ T ′
Cfg′

1
and any γ2 ∈ T ′

Cfg′
2
,

3. Tpr1
((γ1, γ2)) = γ1 for any (γ1, γ2) ∈ TCfg = T ′

Cfg′
1
× T ′

Cfg′
2
,

4. Tpr2
((γ1, γ2)) = γ2 for any (γ1, γ2) ∈ TCfg = T ′

Cfg′
1
× T ′

Cfg′
2
, and

5. To = T ′
o for any other object o ∈ S ∪ Σ ∪ Π.

The aggregated signature and model have the following properties:

Lemma 1. For any basic patterns π1 ∈ TCfg1
(Var) and π2 ∈ TCfg2

(Var), for
any aggregated configuration (γ1, γ2) ∈ TCfg , for any (well-sorted) valuation ρ,
we have that

T , (γ1, γ2), ρ |= 〈π1, π2〉 iff T1, γ1, ρ�h′
1(S1) |= π1 and T2, γ2, ρ�h′

2(S2) |= π2.
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Proof. We show the direct implication first. Assume T , (γ1, γ2), ρ |= 〈π1, π2〉. By
definition, we have that ρ(〈π1, π2〉) = (γ1, γ2). By the interpretation of 〈 , 〉 in
the model T , we have that ρ�h′

1(S1)(π1) = γ1 and ρ�h′
2(S2)(π2) = γ2. But this is

equivalent to T1, γ1, ρ�h′
1(S1) |= π1 and T2, γ2, ρ�h′

2(S2) |= π2, which is what we
had to show.

For the reverse direction, we assume that T1, γ1, ρ�h′
1(S1) |= π1 and that

T2, γ2, ρ�h′
2(S2) |= π2. Therefore ρ�h′

1(S1)(π1) = π1 and ρ�h′
2(S2)(π2) = π2, which

implies, by the interpretation of 〈 , 〉 in T , that ρ(〈π1, π2〉) = (γ1, γ2). But this
is equivalent to T , (γ1, γ2), ρ |= 〈π1, π2〉, which is what we had to prove.

5.3 Language Aggregation

Having shown how to construct the matching logic signature (Cfg , S,Σ,Π) and
model T for the aggregated language, we now show how the transition relation
−→ for the aggregated language is defined and how to construct the axioms A
of the aggregated language from the axioms A1 and A2 of the initial languages.

We identify three types of language aggregations, depending on how the −→
transition relation is defined from −→1 and −→2. Each of the three constructions
could be useful in various contexts:

1. −→1 ⊗a −→2 is the asynchronous interleaving product of the two transition
relations, i.e.

(γ1, γ2)−→(γ′
1, γ

′
2) if

γ1 = γ′
1 and γ2−→2γ

′
2 or γ1−→1γ

′
1 and γ2 = γ′

2,

2. −→1 ⊗p −→2 is the parallel product of the two transition relations, i.e.

(γ1, γ2)−→(γ′
1, γ

′
2) if

γ1−→1γ
′
1 and γ2−→2γ

′
2,

3. finally, −→1⊗−→2 = (−→1⊗a−→2)∪(−→1⊗p−→2) is the (general) product
of −→1 and −→2.

The asynchronous product with interleaving semantics means that in one
step of the aggregated language, either the left-hand side takes a step (in the
first language) or the right-hand side takes a step (in the second language). The
parallel product forces both sides to take steps simultaneously. The (general)
product requires at least one side to take a step and it allows (but not requires)
the other side to do the same.

5.4 Constructing the Axioms for the Three Products

We next show how to construct a set of axioms A for the aggregated language
from the set of axioms A1 and A2 of the initial languages, depending on which
of the three constructions is chosen for the aggregated transition relation. The
main result is that, for each of the three constructions, the transition relation is
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a model of the aggregated axioms. This means that we can construct the formal
semantics of the aggregated language directly from the formal semantics of the
initial languages.

Let A1 be a set of pure reachability rules over the signature (Cfg1, S1, Σ1,Π1)
that capture the semantics of the first language (the axioms of the first language):
T1,−→1 |= A1. Let A2 be a set of pure reachability rules over the signature
(Cfg2, S2, Σ2,Π2) that capture the semantics of the second language (the axioms
of the second language): T2,−→2 |= A2.

In order to define the axioms for the aggregated language, we need a way to
transform reachability formulae from the two initial signatures into reachability
formulae of the target signature. This is performed with the help of the following
function:

Definition 10. We define the function ιix (for i ∈ {1, 2} and x a distinguished
variable in Var of sort Cfg i) that takes as input a matching logic formula over
(Cfg1, S1, Σ1,Π1) (respectively (Cfg2, S2, Σ2,Π2)) and changes all basic patterns
π into 〈π, x〉 (respectively 〈x, π〉) in order to obtain a formula over (Cfg , S,Σ,Π):

1. ι1x(π) = 〈h′
1(π), x〉

2. ι2x(π) = 〈x, h′
2(π)〉

3. ιix(ϕ1 ∧ ϕ2) = ιix(ϕ1) ∧ ιix(ϕ2),
4. ιix(∃y.ϕ1) = ∃y.ιix(ϕ1),
5. ιix(¬ϕ1) = ¬ιix(ϕ1) and
6. ιix(P (t1, . . . , tn)) = P (h′

i(t1), . . . , h
′
i(tn)).

Example 8. If ϕ1 is the matching formula 〈while (E)S, σ〉 ∧ eval(σ,E) �=Int 0
and ϕ2 is 〈letrec f x = if (I) then E1 else E2 in f(x)〉 ∧ I <Int 5, then
ιix(ϕ1) is 〈〈while (E) S, σ〉, x〉 ∧ eval(σ,E) �=Int 0 and ιix(ϕ2) is the aggregate
formula 〈x, 〈letrec f x = if (I) then E1 else E2 in f(x)〉〉 ∧ I <Int 5.

Next, we show the link, in terms of matching logic formulae, between the
aggregated model and the initial model.

Lemma 2. Let ϕ1 and ϕ2 be matching logic formulae over (Cfg1, S1, Σ1,Π1)
and respectively (Cfg2, S2, Σ2,Π2). For any aggregated configuration (γ1, γ2) ∈
TCfg , for any (well-sorted) valuation ρ, if x is a fresh variable, we have that

T , (γ1, γ2), ρ |= ιix(ϕi) iff Ti, γi, ρ�h′
i(Si) |= ϕi.

Proof. For simplicity, we assume that i = 1 (since the case with i = 2 is anal-
ogous). We prove the lemma by structural induction on ϕ1. We only show the
case of negation, the other cases being similar:

– if ϕ1 = ¬ϕ′
1, then

T , (γ1, γ2), ρ |= ι1x(ϕ1) iff
T , (γ1, γ2), ρ |= ¬ι1x(ϕ′

1) iff
T , (γ1, γ2), ρ �|= ι1x(ϕ′

1) iff
T1, γ1, ρ�h′

1(S1) �|= ϕ′
1 iff

T1, γ1, ρ�h′
1(S1) |= ¬ϕ′

1
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Lemma 3. For any pure matching logic formulae ϕ1 over (Cfg1, S1, Σ1,Π1)
and ϕ2 over (Cfg2, S2, Σ2,Π2), for any aggregated configuration (γ1, γ2) ∈ TCfg ,
for any (well-sorted) valuation ρ, if x is a fresh variable, we have that

T , (γ1, γ2), ρ |= ιix(ϕi) iff Ti, γi, ρ�h′
i(Si) |= ϕi and ρ(x) = γ3−i.

Proof. For simplicity, we assume that i = 1 (since the case with i = 2 is analo-
gous). We prove the lemma by structural induction on ϕ1, showing that

T , (γ1, γ2), ρ |= ι1x(ϕ1) iff T1, γ1, ρ�h′
1(S1) |= ϕ1 and ρ(x) = γ2.

We distinguish the following cases:

1. if ϕ1 = π, then ι1x(ϕ1) = (h′
1(π), x). We have that

T , (γ1, γ2), ρ |= ι1x(ϕ1) iff
T , (γ1, γ2), ρ |= (h′

1(π), x) iff
(γ1, γ2) = ρ(h′

1(π), x) iff
γ1 = ρ(h′

1(π)) and γ2 = ρ(x) iff
γ1 = ρ�h′

1(S1)(π) and γ2 = ρ(x) iff
T1, γ1, ρ�h′

1(S1) |= π and γ2 = ρ(x).

2. if ϕ1 = ∃y.ϕ′
1 for a variable y of sort s (with y �= x since x is a fresh variable)

then ι1x(ϕ1) = ∃y.ι1x(ϕ′
1). We have that

T , (γ1, γ2), ρ |= ι1x(ϕ1) iff
T , (γ1, γ2), ρ |= ∃y.ι1x(ϕ′

1) iff
there is u ∈ T1s s.t. T , (γ1, γ2), ρ[y �→ u] |= ι1x(ϕ′

1) iff
there is u ∈ T1s s.t. T1, γ1, ρ[y �→ u]�h′

1(S1) |= ϕ′
1 and γ2 = ρ[y �→ u](x) iff

T1, γ1, ρ�h′
1(S1) |= ∃y.ϕ′

1 and γ2 = ρ(x) iff
T1, γ1, ρ�h′

1(S1) |= ϕ1 and γ2 = ρ(x).

3. if ϕ1 = ϕ′
1 ∧ ϕ′

2 for a pure formula ϕ′
1 and a patternless formula ϕ′

2, then
ι1x(ϕ1) = ι1x(ϕ′

1) ∧ ι1x(ϕ′
2). We have that

T , (γ1, γ2), ρ |= ι1x(ϕ1) iff
T , (γ1, γ2), ρ |= ι1x(ϕ′

1) ∧ ι1x(ϕ′
2) iff

T , (γ1, γ2), ρ |= ι1x(ϕ′
1) and T , (γ1, γ2), ρ |= ι1x(ϕ′

2) iff
T1, γ1, ρ�h′

1(S1) |= ϕ′
1 and ρ(x) = γ2 and T1, γ1, ρ�h′

1(S1) |= ϕ′
2 iff

T1, γ1, ρ�h′
1(S1) |= ϕ′

1 ∧ ϕ′
2 and ρ(x) = γ2 iff

T1, γ1, ρ�h′
1(S1) |= ϕ1 and ρ(x) = γ2.

In the following subsections, we define three types of aggregations for these
sets of axioms, for each type of language aggregation.

The Axioms for the Asynchronous Product with Interleaving Seman-
tics. We let

A1 ⊗a A2 = {ι1y(ϕ1) ⇒ ι1y(ϕ
′
1) | ϕ1 ⇒ ϕ′

1 ∈ A1} ∪
{ι2x(ϕ2) ⇒ ι2x(ϕ′

2) | ϕ2 ⇒ ϕ′
2 ∈ A2}
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where x is a fresh variable of sort Cfg ′
1 and y is a fresh variable of sort Cfg ′

2.
The intuition is that x captures any left-hand side and allow the right-hand to
take a step while y captures any right-hand side and allow the left-hand side to
take a step. We show formally that A1 ⊗a A2 is indeed a formal specification of
the language (T ,−→1 ⊗a −→2):

Theorem 3 (correctness for asynchronous product). Let A = A1 ⊗a A2

and −→ = −→1 ⊗a −→2. We have that

(T ,−→) |= A.

Proof. We have to show that (T ,−→) |= A. By definition, (T ,−→) |= A if,
for any reachability rule ϕ ⇒ ϕ′ ∈ A, we have that (T ,−→) |= ϕ ⇒ ϕ′. Let
ϕ ⇒ ϕ′ ∈ A be an arbitrary reachability rule. We show that (T ,−→) |= ϕ ⇒ ϕ′.

As ϕ ⇒ ϕ′ ∈ A = A1 ⊗a A2, it follows that ϕ ⇒ ϕ′ = ι1y(ϕ1) ⇒ ι1y(ϕ
′
1) for

some ϕ1 ⇒ ϕ′
1 ∈ A1 and a fresh variable y or that ϕ ⇒ ϕ′ = ι2x(ϕ2) ⇒ ι2x(ϕ′

2) for
some ϕ2 ⇒ ϕ′

2 ∈ A2 and a fresh variable x. Since the two cases are analogous, we
deal only with the first and we assume therefore that ϕ ⇒ ϕ′ = ι1y(ϕ1) ⇒ ι1y(ϕ

′
1)

for some ϕ1 ⇒ ϕ′
1 ∈ A1 and a fresh variable y. Therefore it remains to show

that (T ,−→) |= ι1y(ϕ1) ⇒ ι1y(ϕ
′
1).

Let ρ be an arbitrary valuation. Let (γ1, γ2) ∈ TCfg be an arbitrary configura-
tion such that T , (γ1, γ2), ρ |= ι1y(ϕ1). By Lemma 3, we have T1, γ1, ρ�h′

1(S1) |= ϕ1

and ρ(x) = γ2. Given that ϕ1 ⇒ ϕ′
1 ∈ A1 and T1,−→1 |= A1, there exists

γ′
1 ∈ T1Cfg such that γ1−→1γ

′
1 and T1, γ

′
1, ρ�h′

1(S1) |= ϕ′
1. By Lemma 3, we have

that T , (γ′
1, γ2), ρ |= ι1y(ϕ

′
1). But, by the definition of −→ (−→ = −→1 ⊗a −→2),

we also have that (γ1, γ2)−→(γ′
1, γ2).

We have shown that for an arbitrary valuation ρ and for an arbitrary config-
uration (γ1, γ2) ∈ TCfg such that T , (γ1, γ2), ρ |= ι1y(ϕ1), there exists a configu-
ration (γ′

1, γ2) such that (γ1, γ2)−→(γ′
1, γ2) and T , (γ′

1, γ2), ρ |= ι1y(ϕ
′
1). But this

means that (T ,−→) |= ι1y(ϕ1) ⇒ ι1y(ϕ
′
1), which is what we had to show.

The Axioms for the Parallel Product. We let

A1 ⊗p A2 = {ι1y(ϕ1) ∧ ι2x(ϕ2) ⇒ ∃x.∃y.(ι1y(ϕ
′
1) ∧ ι2x(ϕ′

2)) |
ϕ1 ⇒ ϕ′

1 ∈ A1, ϕ2 ⇒ ϕ′
2 ∈ A2}

where x is a fresh variable of sort Cfg ′
1 and y is a fresh variable of sort Cfg ′

2. The
intuition is that x captures any left-hand side and y captures any right-hand
side. We show formally that A1 ⊗p A2 is indeed a formal specification of the
language (T ,−→1 ⊗p −→2):

Theorem 4 (correctness for parallel product). Let A = A1 ⊗p A2 and
−→ = −→1 ⊗p −→2. We have that

(T ,−→) |= A.
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Proof. We have to show that (T ,−→) |= A. By definition, (T ,−→) |= A if,
for any reachability rule ϕ ⇒ ϕ′ ∈ A, we have that (T ,−→) |= ϕ ⇒ ϕ′. Let
ϕ ⇒ ϕ′ ∈ A be an arbitrary reachability rule. We show that (T ,−→) |= ϕ ⇒ ϕ′.

As ϕ ⇒ ϕ′ ∈ A = A1 ⊗p A2, it follows that there exist ϕ1 ⇒ ϕ1 ∈ A1,
ϕ2 ⇒ ϕ′

2 ∈ A2, fresh variables x and y such that ϕ ⇒ ϕ′ = ι1y(ϕ1) ∧ ι2x(ϕ2) ⇒
ι1y(ϕ

′
1) ∧ ι2x(ϕ′

2).
Let ρ be an arbitrary valuation. Let (γ1, γ2) be an arbitrary configuration

such that T , (γ1, γ2), ρ |= ι1y(ϕ1) ∧ ι2x(ϕ2). By the semantics of ∧, we have that
T , (γ1, γ2), ρ |= ι1y(ϕ1) and T , (γ1, γ2), ρ |= ι2x(ϕ2). By Lemma 3 it follows that
T1, γ1, ρ�h′

1(S1) |= ϕ1, ρ(y) = γ2, T2, γ2, ρ�h′
2(S2) |= ϕ2 and ρ(x) = γ1.

Because T1, γ1, ρ�h′
1(S1) |= ϕ1, ϕ1 ⇒ ϕ′

1 ∈ A1 and T1,−→1 |= A1, we obtain
that there exists γ′

1 such that γ1−→1γ
′
1 and T1, γ

′
1, ρ�h′

1(S1) |= ϕ′
1. Similarly, there

exists γ′
2 such that γ2−→2γ

′
2 and T2, γ

′
2, ρ�h′

2(S2) |= ϕ′
2.

By Lemma 3, it follows that T , (γ′
1, γ

′
2), ρ[x �→ γ1][y �→ γ2] |= ι1y(ϕ

′
1) and

T , (γ′
1, γ

′
2), ρ[x �→ γ1][y �→ γ2] |= ι2y(ϕ

′
2), which implies that T , (γ′

1, γ
′
2), ρ |=

∃x.∃y.(ι1y(ϕ
′
1)∧ι2y(ϕ

′
2)). By the definition of −→, we also have (γ1, γ2)−→(γ′

1, γ
′
2).

We have started with an arbitrary valuation ρ and an arbitrary configuration
(γ1, γ2) such that T , (γ1, γ2), ρ |= ι1y(ϕ1) ∧ ι2x(ϕ2) and we have shown that there
exists a configuration (γ′

1, γ
′
2) such that (γ1, γ2)−→(γ′

1, γ
′
2) and T , (γ′

1, γ
′
2), ρ |=

∃x.∃y.ι1y(ϕ
′
1) ∧ ι2y(ϕ

′
2). Therefore (T ,−→) |= ι1y(ϕ1) ∧ ι2x(ϕ2) ⇒ ∃x.∃y.ι1y(ϕ

′
1) ∧

ι2y(ϕ
′
2, which is what we had to show.

The Axioms for the General Product. For the general product, which
allows for both interleaving and parallel steps, we define

A1 ⊗ A2 = A1 ⊗a A2 ∪ A1 ⊗p A2.

The correctness result for the general product follows quickly from Theorems 3
and 4.

Theorem 5 (correctness for the general product). Let A = A1 ⊗ A2 and
−→ = −→1 ⊗ −→2. We have that

(T ,−→) |= A.

Proof. Let ϕ ⇒ ϕ′ ∈ A be an arbitrary rule. We show that (T ,−→) |= ϕ ⇒ ϕ′.
Let γ ∈ TCfg be an arbitrary configuration and let ρ be an arbitrary valuation
such that T , γ, ρ |= ϕ.

We distinguish two cases:

1. if ϕ ⇒ ϕ′ ∈ A1⊗aA2, then, by Theorem 3, there exists γ′ such that γ(−→1⊗a

−→2)γ′ and T , γ′, ρ |= ϕ′. But, by definition, −→1 ⊗a −→2 ⊆ −→. Therefore
there exists γ′ such that γ−→γ′ and T , γ′, ρ |= ϕ′, which implies (T ,−→) |=
ϕ ⇒ ϕ′.

2. if ϕ ⇒ ϕ′ ∈ A1⊗pA2, then, by Theorem 4, there exists γ′ such that γ(−→1⊗p

−→2)γ′ and T , γ′, ρ |= ϕ′. But, by definition, −→1 ⊗p −→2 ⊆ −→. Therefore
there exists γ′ such that γ−→γ′ and T , γ′, ρ |= ϕ′, which implies (T ,−→) |=
ϕ ⇒ ϕ′.
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6 Conclusion and Future Work

In this paper we have shown that if two programming languages are defined
using reachability logic axioms and matching-logic based semantics, then we can
effectively construct products of the two languages, such that a pair of programs
belonging to the product can be executed asynchronously with interleaving, in
parallel (synchronised), or a combination of the two. The construction can be
automated in definitional frameworks like K [15].

A programming language definition consists of a signature and a seman-
tics. In our approach, the signature is a many-sorted first-order signature, that
includes both the syntax of the programming languages and the data struc-
tures required by the semantics. The category of the many sorted first-order
signatures has colimits, in particular pushouts. Moreover, this category has the
amalgamation property [9,16]. The semantics of the programming languages is
given by transitions systems. The category of the transition systems has also
several nice constructions [19]. We combine these constructions in order to get
the definition for aggregated languages. The approach is flexible enough to allow
various aggregations. The semantics of a programming language can be specified
with (one-step) reachability logic formulae. We show that the specification of the
aggregated language can be obtained from the specifications of the components.

We used many-sorted first-order signatures in order to make the presentation
easier to follow. However, the syntax of programming languages is usually given
by BNF rules, which correspond to order-sorted first-order signatures. Unfortu-
nately, order-sorted first-order logic does not have pushouts of signatures and
the amalgamation property. There are several approaches dealing with this issue,
see, e.g., [1,10,17]. It is challenging to see which one of these is the best can-
didate for programming languages products and this will be investigated in the
future. It is also interesting to see if the formalisation of the matching logic and
reachability logic as institutions [2,3] could help.

An interesting observation can be made for the case where −→ = −→1⊗−→2.
The transition system (T ,−→) is a product in the category of the transitions
systems [19]. So, the syntax of the aggregation of the language is defined by a
pushout (which is a shared sum) and the semantics by a product.

Language aggregation has uses in proving equivalence properties [4,6]. We
intend to explore its use in proving other kinds of relations and in compiler
verification.

References

1. Alpuente, M., Escobar, S., Meseguer, J., Ojeda, P.: Order-sorted generalization.
Electr. Notes Theor. Comput. Sci. 246, 27–38 (2009)
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logic. In: 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, 25–28 June 2013, New Orleans, LA, USA, pp. 358–367 (2013). http://
dx.doi.org/10.1109/LICS.2013.42
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Abstract. In this paper we study heavy-weighted automata, a general-
ization of weighted automata in which the weights of the transitions can
be formal power series. As for ordinary weighted automata, the behaviour
of heavy-weighted automata is expressed in terms of formal power series.
We propose several equivalent definitions for their semantics, including
a system of behavioural differential equations (following the approach of
coinductive calculus), or an embedding into a coalgebra for the functor
S × (−)A, for which the set of formal power series is a final coalgebra.
Using techniques based on bisimulations and coinductive calculus, we
study how ordinary weighted automata can be transformed into more
compact heavy-weighted ones.

1 Introduction

Weighted automata are a generalization of non-deterministic automata in which
each transition carries a weight [5]. This weight is an element of a semiring, rep-
resenting, for example, the cost or probability of taking the transition. Weighted
automata have many different areas of application. Recently, for example, they
have been used to solve counting problems, first in [10] with a procedure called
coinductive counting, then in [4] with the counting automata methodology.

Whereas non-deterministic automata either accept or reject a word, weighted
automata associate with each word the cost of its execution. Their semantics is
thus defined in terms of weighted languages, also called formal power series,
which are functions mapping words to weights.

Formal power series form themselves a semiring, and thus can be used as
weights of transitions, yielding what we call heavy-weighted automata. In [4],
such automata are used to give a compact representation of some combinato-
rial problems. One of our motivation here is to extend the coalgebraic setting
existing for ordinary weighted automata [1,10] to study equivalence between
heavy-weighted automata. In particular, we are interested in producing a more
compact representation of some well-shaped infinite weighted automata, gener-
alizing the examples given in [4].
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A second motivation for the introduction of heavy-weighted automata is to
provide something similar to what generalized automata (where transitions are
labeled by regular expressions) are to ordinary automata. In particular, we will
see that Brzozowski-McCluskey’s state elimination method [3,14] to compute the
regular expression associated with a finite automaton also works for weighted
automata. The method is not new, but is a nice application of our definition of
heavy-weighted automata.

Though heavy-weighted automata can be seen as classic weighted automata
over the semiring of weighted languages, their standard semantics as such (given
in terms of power series over the semiring of power series) is not so interest-
ing. Instead, we define the semantics of heavy-weighted automata in terms of
(ordinary) power series, in three equivalent ways:

– by a system of equations linking the semantics of the different states.
– in terms of the final homomorphism. Here the set of weighted languages is

the final coalgebra for the functor S × (−)A, which means that from any
S × (−)A-coalgebra, there is a unique coalgebra homomorphism to the set
of all weighted languages. Heavy-weighted automata are not themselves S ×
(−)A-coalgebras, but they can be embedded into one, using some kind of
determinization procedure (as introduced in [13]).

– by giving a procedure that transforms a heavy-weighted automaton into an
ordinary weighted automaton. This is done by composing ordinary weighted
automata that recognize the weighted languages labeling the transitions of the
heavy-weighted automaton.

We proceed as follows. First we briefly discuss some related work. Then,
in Sect. 2 we recall the basic notions on formal power series, coinductive cal-
culus and (ordinary) weighted automata. In Sect. 3, we define heavy-weighted
automata and their behaviour, first in terms of behavioural differential equa-
tions and then in terms of a final homomorphism of coalgebras. In Sect. 4, we
give a new interpretation to the behaviour of heavy-weighted automata, by giv-
ing a procedure that transforms a heavy-weighted automata into an ordinary
weighted automata. In Sect. 5.1, we recall the state elimination method, and in
Sect. 5.2, we show how heavy-weighted automata can be used to give a more
compact representation for certain well-shaped infinite weighted automata.

Missing proof details can be found in the extended technical report [6].

Related Work

Our study of heavy-weighted automata is motivated by the work done in [4].
Counting automata, which are also automata having power series as weights, are
used to model combinatorial problems. Some examples of reductions of infinite
weighted automata to finite ones are given; yet there is no general format for
such reductions. In Sect. 5.2 we describe a generalization of these reductions to
a particular class of well-shaped, infinite weighted automata.

Automata in which transitions are labeled by power series were already
present in [12]. The state elimination method (see Sect. 5.1) is also mentioned,
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though rather as the resolution of a system of equations. Apart from that, our
work has no real intersection with what is done in [12]. A first difference is
that we are interested in both finite and infinite atomata, whereas [12] focuses
mostly on the finite case. Furthermore, no real separation is made in [12] between
automata with ordinary weights and automata with power series as weights; as a
consequence, the question of the transformation of a heavy-weighted automaton
into an ordinary weighted automaton (see Sect. 4) is not raised.

Our definition of heavy-weighted automata present some differences with
both [4,12]. In particular, we choose to define heavy-weighted automata in such
a way that their behaviour is always defined, by requiring finite branching and
not allowing ε-transitions. Thus we do not investigate the convergence issues
that are given some importance in [4,12].

Our coalgebraic approach to heavy-weighted automata is new, and follows
previous work on (ordinary) weighted automata, see e.g. [1,9,10]. Our construc-
tion in Sect. 3 can be seen as an instance of the generalized determinization
construction described in [13]. Finally, our work relies largely on coinductive
calculus for streams and power series, see e.g. [9,11].

2 Preliminaries

2.1 Coalgebras

We recall some basic definitions about coalgebras. Given a functor F : Set → Set,
an F-coalgebra is a pair (X , f ) consisting of a set X and a function f : X → FX .

X

FX

Y

FY

f g

h

Fh

An F-homomorphism from an F-coalgebra (X , f ) to
another F-coalgebra (Y , g) is a function h : X → Y
such that diagram to the right commutes, i.e. such that
g ◦ h = Fh ◦ f . An F-coalgebra (Y , g) is called final if
for any F-coalgebra (X , f ) there exists a unique F-
homomorphism �−� : X → Y .

2.2 Formal Power Series

Throughout the paper, A denotes a nonempty finite alphabet.
Weighted automata associate to each input word a certain weight: their

behaviour is defined in terms of weighted languages, also called formal power
series, which are functions mapping words to elements of a semiring.

A semiring (S ,+,×, 0, 1) consists of a set S together with two binary oper-
ations + and × and two constants 0, 1 ∈ S , such that:

(1) (S ,+, 0) is a commutative monoid and (S ,×, 1) is a monoid;
(2) × distributes over + : ∀x , y , z ∈ S , x × (y + z ) = x × y + x × z and

(x + y) × z = x × z + y × z ;
(3) 0 is an annihilator for ×: ∀x ∈ S , x × 0 = 0 × x = 0.
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Given a semiring S and a finite alphabet A, a formal power series with
coefficients in S and variables in A is a function σ : A∗ → S . We denote by
S 〈〈A〉〉 the set of all formal power series with coefficients in S and variables in A.

Examples:

(1) Taking S = B, where B denotes the boolean semiring, B〈〈A〉〉 is isomorphic
to the set of all formal languages over the alphabet A.

(2) S 〈〈{X }〉〉 is isomorphic to the set of all streams with values in S (that is, the
set of all functions N → S ). We denote this set by Sω, and we sometimes
write (s0, s1, . . .) for the stream i �→ si .

The support of a formal power series σ is the set {w ∈ A∗ | σ(w) 	= 0}. A
polynomial is a power series with finite support. The set of all polynomials with
coefficients in S and variables in A is denoted by S 〈A〉.

Finally, a power series σ ∈ S 〈〈A〉〉 is called proper when σ(ε) = 0 (where ε is
the empty word). We denote by S 〈〈A〉〉p the set of all proper power series.

S 〈〈A〉〉 can be given a S × (−)A-coalgebra structure using a generalization of
the notion of Brzozowski derivatives. Given a ∈ A, the a-derivative σa ∈ S 〈〈A〉〉
of a power series σ is defined by σa(w) = σ(aw) and the output of σ is defined
as O(σ) = σ(ε). When A is a singleton, we write σ′ for the derivative of σ.

We define Δ : S 〈〈A〉〉 → S 〈〈A〉〉A by Δ(σ)(a) = σa , and 〈O ,Δ〉 : S 〈〈A〉〉 → S ×
S 〈〈A〉〉A as the function σ �→ (O(σ),Δ(σ)). Then (S 〈〈A〉〉, 〈O ,Δ〉) is a coalgebra
for the functor S × (−)A. Moreover, we have the following theorem [9].

Theorem 1. (S 〈〈A〉〉, 〈O ,Δ〉) is a final coalgebra for the functor S × (−)A.

2.3 A Coinductive Calculus for Power Series

We now present some basic facts from the coinductive calculus for streams and
power series developed in [9,11].

First we recall the coinduction proof principle, which will be one of our
main proof techniques. A bisimulation on formal power series is a relation R ⊆
S 〈〈A〉〉 × S 〈〈A〉〉 such that, for all σ and τ in S 〈〈A〉〉, if σ R τ then

(1) O(σ) = O(τ);
(2) for all a ∈ A, σa R τa .

The union of all bisimulation relations is called bisimilarity, and is denoted by ∼.
A relation R ⊆ S 〈〈A〉〉 × S 〈〈A〉〉 is a bisimulation-up-to if its closure under linear
combination is a bisimulation relation [8].

Theorem 2 (Coinduction). For all σ, τ ∈ S 〈〈A〉〉, if σ ∼ τ then σ = τ .

Note that the converse trivially holds, since {(σ, σ) | σ ∈ S 〈〈A〉〉} is a bisimu-
lation. The consequence of Theorem 2 is that to prove the equality of two power
series σ and τ , it is sufficient to establish the existence of a bisimulation R such
that σ R τ .
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Next, various operators on power series are defined coinductively. Coinductive
definitions are given as behavioural differential equations, which have a unique
solution. In particular, there exist a unique binary operator +, a unique binary
operator ×, and for all s ∈ S and b ∈ A, a unique [s] ∈ S 〈〈A〉〉 and [b] ∈ S 〈〈A〉〉
satisfying the following system of behavioural differential equations:

a-derivative (for all a ∈ A) Initial value

[s]a = [0] O([s]) = s

[b]b = [1], [b]a = [0] for a �= b O([b]) = 0

(σ + τ)a = σa + τa O(σ + τ) = O(σ) + O(τ)

(σ × τ)a = (σa × τ) + ([O(σ)] × τa) O(σ × τ) = O(σ) × O(τ)

We then have for all s ∈ S , [s](ε) = s and [s](w) = 0 if w 	= ε. For b ∈ A,
[b](b) = 1 and [b](w) = 0 if w 	= b. The coinductive definitions given for the
sum and convolution product coincide with the classic pointwise definitions: for
all σ, τ ∈ S 〈〈A〉〉 and w ∈ A∗,

(σ + τ)(w) = σ(w) + τ(w) and (σ × τ)(w) =
∑

uv=w

σ(u)τ(v) .

When S is a ring, we also define the inverse σ−1 of series σ such that O(σ)
is invertible in S , as the unique solution to (σ−1)a = −[O(σ)−1]×σa ×σ−1 and
O(σ−1) = O(σ)−1. We then have σ × σ−1 = [1] = σ−1 × σ.

Theorem 3 (Fundamental Theorem). For all σ ∈ S 〈〈A〉〉,

σ = [O(σ)] +
∑

a∈A

[a] × σa .

As a notational convenience, we will write s for [s] and b for [b] whenever it
is clear from the context whether we intend elements of S and A or formal power
series. Similarly, we will identify a word w = a1 . . . an ∈ A∗ with the product
[a1] × . . . × [an ].

With these conventions, for all σ ∈ S 〈〈A〉〉, σ =
∑

w∈A∗
σ(w) × w .

2.4 Rational Power Series

A family {σi | i ∈ I } of power series is called locally finite when for all w ∈ A∗,
the set Iw = {i | σi(w) 	= 0} is finite. In this case, we define the sum

∑
i∈I σi by(∑

i∈I σi

)
(w) =

∑
i∈Iw

σi(w).
Let σ be a proper power series. For all n ∈ N, we denote by σn the n-fold

product of σ with itself: σ0 = 1, and σn+1 = σ × σn . Then for all w ∈ A∗ and
n > |w |, σn(w) = 0. Hence {σn | n ∈ N} is locally finite. We can thus define the
star of a proper power series σ as the sum σ∗ =

∑
n∈N

σn .
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We define the set RatES (A) of all rational S-expressions E as follows:

E ::=s ∈ S | a ∈ A | (E + E ) | (E × E ) | E∗ .

We then define simultaneously the set of valid rational S -expressions, and the
power series val(E ) denoted by a valid expression, by induction:

– for all s ∈ S , s is valid and val(s) = s;
– For all a ∈ A, a is valid and val(a) = a;
– if E1 and E2 are valid, (E1 + E2) is valid and val(E1 + E2) = val(E1)

+ val(E2);
– if E1 and E2 are valid, (E1 × E2) is valid and val(E1 × E2) = val(E1)×

val(E2);
– if E is valid and val(E ) is proper, E∗ is valid and val(E∗) = val(E )∗.

A power series σ ∈ S 〈〈A〉〉 is called rational if there exists a valid rational
S -expression E such that val(E ) = σ. We denote by Srat〈〈A〉〉 the set of all
rational power series.

2.5 Weighted Automata

Weighted automata are a generalisation of automata, where each transition has a
weight in addition to the input letter. We associate a weight with each path in the
automaton by multiplying the weights of all taken transitions; and we associate
a weight with each word by adding the weights of all paths accepting it.

Let S be a semiring and A a finite alphabet. For any set X , we denote by
X →f S the set of all functions g : X → S such that {x ∈ X | g(x ) 	= 0} is finite.

Formally, a weighted automaton (or wa, for short) with input alphabet A
and weights in the semiring S consists of a pair (Q , 〈o, t〉), where:

– Q is a set of states.
– o : Q → S is the output function.
– t : Q → (Q →f S )A is the transition function.

We will write p
a,s−−→ q for t(p)(a)(q) = s, and p s−→ for o(p) = s. A state q ∈ Q

is called final when o(q) 	= 0.
The behaviour S(q) of a state q ∈ Q , or weighted language recognized by

state q , is classically defined as follows: for all w = a1 . . . an ∈ A∗,

S(q)(w) =
∑

q1,...,qn∈Q

t(q)(a1)(q1)× t(q1)(a2)(q2)× · · · × t(qn−1)(an)(qn)×o(qn).

Note that this is a finite sum, since for all qi ∈ Q there are only finitely many
qi +1 ∈ Q such that t(qi)(ai +1)(qi +1) 	= 0. This follows the intuitive definition
we gave before: an accepting path for w starting at state q is of the form q =
q0

a1,s1−−−→ q1
a2,s2−−−→ · · · an ,sn−−−→ qn

s−→, with si 	= 0 and s 	= 0. Taking the sum of
s1 . . . sns for all such paths, we obtain the given expression. However, we will
mostly use the following equivalent coinductive definition: S : Q → S 〈〈A〉〉 is
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defined as the unique solution to the following system of behavioural differential
equations: for all q ∈ Q and a ∈ A,

S(q)a =
∑

r∈Q

t(q)(a)(r) × S(r) O(S(q)) = o(q) .

Using the fundamental theorem of coinductive calculus, this is equivalent to

S(q) = o(q) +
∑

r∈Q

(
∑

a∈A

a × t(q)(a)(r)

)

× S(r) .

q0 q1

1

1

1

1

Example. Take A = {X }, S = (R,+,×) and the automa-
ton defined to the right. We have S(q0) = X × S(q1)
and S(q1) = 1 + X × S(q0) + X × S(q1). Recall that,
as defined in Sect. 2.3, X is the stream (0, 1, 0, 0, . . .).
These equations lead to S (q0) = X × (1 − X − X 2)−1 =
(0, 1, 1, 2, 3, . . .), which corresponds to the Fibonacci
sequence.

A weighted automaton is called finite when its set of states is finite. A power
series σ ∈ S 〈〈A〉〉 is recognizable when there exist a finite weighted automaton
A = (Q , 〈o, t〉) and q0 ∈ Q such that S(q0) = σ. We denote by Srec〈〈A〉〉 the set
of all recognizable power series.

Theorem 4 (Kleene-Schutzenberger). Srat〈〈A〉〉 = Srec〈〈A〉〉.
Note that when we don’t require the set of states to be finite, for any power

series σ ∈ S 〈〈A〉〉, there exist a weighted automaton (Q , 〈o, t〉) and q0 ∈ Q such
that S(q0) = σ. For instance, take Q = A∗, o = σ, t(w)(a)(aw) = 1, and
t(w)(a)(v) = 0 in all other cases. Then S(ε) = σ.

3 Heavy-Weighted Automata

We generalize weighted automata to heavy-weighted automata, by allowing the
weights of the transitions to be any power series rather than an element of the
semiring S .

name output function transition function

Weighted automaton (wa) o : Q → S t : Q → (Q →f S)A

Heavy-weighted automaton (hwa) o : Q → S t : Q → (Q →f S〈〈A〉〉)A

Fig. 1. Definitions of was and hwas

A heavy-weighted automaton (or hwa, for short) over the semiring S and the
alphabet A consists of a pair (Q , 〈o, t〉), where:
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– Q is a set of states.
– o : Q → S is the output function.
– t : Q → (Q →f S 〈〈A〉〉)A is the transition function.

For any p, q ∈ Q , we also define the cumulated weight between p and q as

w(p)(q) =
∑

a∈A

a × t(p)(a)(q).

Note that for any p, q ∈ Q , a ∈ A, w(p)(q) is proper and t(p)(a)(q) = w(p)(q)a .
As for ordinary weighted automata, we write p

a,σ−−→ q for t(p)(a)(q) = σ, or
p τ−→ q for w(p)(q) = τ .

Remark. The transition function t is uniquely determined by w . Thus a hwa
can equivalently be defined by giving its set of states Q , its output function o :
Q → S , and its cumulated weights, that is, a function w : Q → (Q →f S 〈〈A〉〉p).
(Recall that here S 〈〈A〉〉p denotes the set of all proper series.) Indeed, given
any w : Q → (Q →f S 〈〈A〉〉p), define t : Q → (Q →f S 〈〈A〉〉)A by t(p)(a)(q) =
w(p)(q)a . The fundamental theorem then gives w(p)(q) =

∑
a∈A a × t(p)(a)(q).

Let A = (Q , 〈o, t〉) a hwa. The behaviour of a state q ∈ Q is defined as a
power series S(q) ∈ S 〈〈A〉〉, and satisfies the same equations as we had for was.
More precisely, S : Q → S 〈〈A〉〉 is defined as the unique solution to the following
system of behavioural differential equations: for all q ∈ Q and a ∈ A,

S(q)a =
∑

r∈Q

t(q)(a)(r) × S(r) O(S(q)) = o(q) .

hwas are indeed a generalization of was, in the sense that any wa can be seen
as a hwa, by identifying the weights in S with power series in S 〈〈A〉〉. Since the
behaviour of was and hwas are defined by the same system of equations, the
behaviour of a wa is unchanged when we consider it as a hwa.

Final Semantics for Heavy-Weighted Automata

In coalgebra theory, the behaviour of a system is usually defined in terms of final
homorphism: given a functor F with a final coalgebra (Ω,ω), every element of
an F-coalgebra (X , f ) is associated to a canonical representative in Ω by the
final F-homomorphism �−� : X → Ω.

Here however, hwas are coalgebras for the functor X �→ S × (X →f

S 〈〈A〉〉)A, whereas their semantics is defined in terms of formal power series,
which is the final coalgebra for the functor X �→ S × XA.

The objective of this subsection is to propose another definition for the
semantics of hwas, equivalent to the previous one, but expressed in terms of
final homomorphisms. For that, we will associate each hwa (Q , 〈o, t〉) to an
S × (−)A-coalgebra, in a construction similar to the determinization procedure
for automata.

For the remainder of this subsection, we fix a hwa A = (Q , 〈o, t〉). Similarly
to the powerset construction, we define a map η : Q → (Q →f S 〈〈A〉〉) by
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η(p)(q) =
{

1 if p = q
0 if p 	= q .

Note that every α : Q →f S 〈〈A〉〉 can be expressed as α =
∑

q∈Q α(q) ·
η(q) where, for all σ ∈ S 〈〈A〉〉 and β : Q →f S 〈〈A〉〉, σ · β : Q →f S 〈〈A〉〉
is defined as q �→ σ × β(q).

Q

S × (Q −→f S 〈〈A〉〉)A

Q −→f S 〈〈A〉〉

〈o, t〉

η

〈ô, t̂〉

We want to define an S × (−)A coal-
gebra structure 〈ô, t̂〉 for (Q →f S 〈〈A〉〉)
compatible with 〈o, t〉, meaning that ô ◦
η = o and t̂ ◦ η = t . Moreover, ô and
t̂ should behave as output and derivative
functions, that is, the following equalities
should hold for every α, β ∈ Q →f S 〈〈A〉〉,
σ ∈ S 〈〈A〉〉 and a ∈ A:

ô(α + β) = ô(α) + ô(β) t̂(α + β) = t̂(α) + t̂(β)
ô(σ · α) = O(σ) · ô(α) t̂(σ · α)(a) = σa · α + O(σ) · t̂(α)

This leads to the following definitions for ô and t̂ :

ô(α) =
∑

q∈Q

O(α(q)) · o(q) t̂(α)(a) =
∑

q∈Q

(α(q)a · η(q) + O(α(q)) · t(q)(a))

We are now going to exploit the fact that S 〈〈A〉〉 is a final S × (−)A-coalgebra
to define the semantics of A. Denote by �−� the unique S × (−)A-homomorphism
from (Q →f S 〈〈A〉〉) to S 〈〈A〉〉.

We now define the behaviour of state q ∈ Q as the power series �η(q)� , and
show that it is indeed the same as the behaviour S(q) defined in Fig. 1.

Lemma 1. For all α, β ∈ (Q →f S 〈〈A〉〉) and σ ∈ S 〈〈A〉〉,

�α + β� = �α� + �β� and �σ · α� = σ × �α�.

Proof. It is enough to show that R1 = {(�α + β�, �α� + �β�) | α, β : Q →f

S 〈〈A〉〉} and R2 = {(�σ · α�, σ × �α�) | σ ∈ S 〈〈A〉〉, α : Q →f S 〈〈A〉〉} are a
bisimulation and a bisimulation-up-to, using the fact that O(�α�) = ô(α) and
�α�a = �t̂(α)(a)�. �
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Proposition 1. For all q ∈ Q, �η(q)� = S(q).

Proof. We show that q �→ �η(q)� satisfies the system of equations defining S:

– for all q ∈ Q , O(�η(q)�) = ô(η(q)) = o(q).
– for all q ∈ Q and a ∈ A,

[[η(q)]]a =
[[
t̂(η(q))(a)

]]
= �t(q)(a)�

=

⎡

⎣

⎡

⎣
∑

r∈Q

t(q)(a)(r) · η(r)

⎤

⎦

⎤

⎦ =
∑

r∈Q

t(q)(a)(r) × �η(r)�. �

4 From Heavy-Weighted Automata to Weighted
Automata

As we saw in Sect. 3, there is a trivial injection from the set of was to the set
of hwas. Reciprocally, we want to be able to transform any hwa A = (Q , 〈o, t〉)
into a wa Â =

(
Q̂ ,

〈
ô, t̂

〉 )
with weights in S and input alphabet A, such that

for all q ∈ Q , there exists q̂ ∈ Q̂ such that q and q̂ have the same behaviour.
(Intuitively, this means that whatever state q we choose as “initial” in A, we
can find a state q̂ in Â having the same behaviour.) There are two motivations
for this construction:

– giving a new interpretation to the semantics of hwas.
– giving a constructive proof that hwas and was have the same expressivity. In

the general case this is trivial since any power series can be recognized both by
a hwa, and a (possibly infinite) wa, as shown in Sect. 2.5. Yet there are other
interesting cases; for instance we can require the set of states to be finite, and
the “heavy-weights” to be rational power series.

p qA0 :
X ,

X
1 − X

X , 1

1

Let us first look at an example. We take
A = {X } and S = R, and consider the
automaton A0 on the right:

First Idea. We compute directly an equivalent
wa by the method of “splitting the deriva-
tives” [11]: we compute the successive derivatives of S(p), and add corresponding
states at each step.

We have S(p)′ = X
1−X S(q), so we add a state with behaviour X

1−X S(q). Then
(

X
1−X S(q)

)′
= 1

1−X S(q), and we add a state with behaviour 1
1−X S(q). Finally,

(
1

1−X S(q)
)′

= 1
1−X S(q) + S(q), so we get the following automaton:

p X
1−X q 1

1−X q q
X , 1 X , 1

X , 1

X , 1

X , 1

1

1
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X
1−X

1
1−X

X , 1

X , 1

1

Second Idea. In the automaton on the right, the leftmost
state recognize the stream X

1−X . We can plug it into A0,
in place of the heavy-weighted transition, as follows:

p r1 r2 qX , 1 X , 1

X , 1

ε, 1

X , 1

1

We did not allow ε-transitions in our definition of weighted automata, because
the behaviour of a weighted automaton with ε-transitions is not always well-
defined: for instance if we have a cycle of ε-transitions, we could have infinitely
many paths labeled by the same word, which would lead to an infinite sum when
computing the behaviour of a state. Yet here we don’t add any infinite path
labeled by ε, and in this particular case it is easy to adapt all the definitions.

Removing the ε-transitions, we get precisely the same automaton as with
the first method. This is not surprising, since in the first method, computing the
derivative of S(q) amounted to computing the derivative of X

1−X .
We come back to the general case. Both methods can be generalized, and

lead again to the same definition of the equivalent wa.
Let A = (Q , 〈o, t〉) be a hwa. Assume that for all p, q ∈ Q and a ∈ A,

we have a wa Ap,a,q = (Qp,a,q , 〈op,a,q , tp,a,q〉) and a state ip,a,q ∈ Qp,a,q with
behaviour t(p)(a)(q).

We define a wa Â =
(
Q̂ ,

〈
ô, t̂

〉)
by setting:

– Q̂ = Q � ⊎

p,q∈Q
a∈A

Qp,a,q

– ∀q ∈ Q , ô(q) = o(q), and ∀p, q ∈ Q , a ∈ A, r ∈ Qp,a,q , ô(r) = op,a,q(r)o(q)
– ∀p, q ∈ Q , a ∈ A,

t̂(p)(a)(ip,a,q) =
{

1 if t(p)(a)(q) 	= 0
0 otherwise

∀p, q ∈ Q , a, b ∈ A, r , s ∈ Qp,b,q ,

t̂(r)(a)(s) =
{

tp,b,q(r)(a)(s) + op,b,q(r) if p = q , a = b and s = ip,a,p

tp,b,q(r)(a)(s) otherwise

∀a, b ∈ A, p, q , q ′ ∈ Q s.t. (p, b, q) 	= (q , a, q ′),∀r ∈ Qp,b,q ,

t̂(r)(a)(iq,a,q′) = op,b,q(r)

In all other cases, t̂(r)(a)(s) = 0.

This construction corresponds to the intuition we gave before (expressed
as in the “second idea”, though both methods lead to the same automaton).

In fact, consider a transition p
b,σ−−→ q in A. We replace it by connecting Ap,b,q
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between p and q as we did in the example, using ε-transitions: we set a transition

p
b,1−−→ ip,b,q and for each final state r ∈ Qp,b,q we set a transition r

ε,op,b,q(r)−−−−−−→ q ,
and set the output of r to 0.

p ip,b,q

r

qAp,b,q
b, 1

ε, op,b,q(r)

(There are no paths labeled by ε of length > 1, hence the semantics of the
new automaton is well-defined.) We can then proceed to the removal of the ε-

transitions : for every transition r
ε,op,b,q(r)−−−−−−→ q , we do the following : we remove

the transition, we set o(r) := o(r) + op,b,q(r)o(q), and for every q
a,s−−→ q ′ we

add a transition r
a,op,b,q(r)·s−−−−−−−−→ q ′. Note that the only such transitions q

a,s−−→ q ′

are transitions of the form q
a,1−−→ iq,a,q′ .

Theorem 5. With the above notations, denote by S the semantics of the
automaton A, and by Ŝ the semantics of Â. Then for all q ∈ Q ,S(q) = Ŝ(q).

Proof. It is enough to show that

R =
{(

Ŝ(q),S(q)
)

| q ∈ Q
}

∪
{(

Ŝ(r),Sp,a,q(r)S (q)
)

| p, q ∈ Q , r ∈ Qp,a,q

}

is a bisimulation-up-to. (For all p, q , Sp,a,q denotes the semantics of Ap,a,q .) �
Remark. Theorem 5 holds without any restriction on A. Now consider the case
where A is finite, and for all p, q ∈ Q , t(p)(a)(q) is a rational power series.
Then we can suppose that all Ap,a,q are also finite, and we obtain for Â a finite
automaton as well. In particular, for all q , Ŝ(q) is rational, i.e. S(q) is rational.
This gives us a proof that (not surprisingly) finite hwas with rational weights
have the same expressivity as was. Yet there are other ways to prove this, for
instance by directly computing S(q) as in Sect. 5.1.

5 Some Applications of Heavy-Weighted Automata

Heavy-weighted automata provide a more compact way of representing power
series than ordinary weighted automata. We give two examples of how this can be
used. First, there is the state elimination method, that describes a way to remove
a state in a weighted automaton. In the case of finite automata, it also leads to
an algorithm to compute a rational expression for the power series recognised by
some state of the automaton. Secondly, we consider the case of infinite weighted
automata representing algebraic power series. Under precise conditions on the
shape of the automaton, we can formulate some contraction rules that lead to
an equivalent, possibly finite, hwa.
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5.1 State Elimination Method

Brzozowski and McCluskey’s state elimination method for computing the ratio-
nal expression associated to an (ordinary) finite automaton can easily be adapted
to weighted automata. The only thing new with weighted automata is that we
need to update also the outputs of the remaining states when we remove a state.

For practical reasons, we adopt in this subsection a slightly different definition
of hwas than in the rest of the paper. We now allow not only the weight of the
transitions, but also the outputs of the states to be power series. Furthermore, we
choose to define hwas by giving their cumulated weight function w rather than
t (see Sect. 3). Formally, a heavy-weighted automaton now is a pair (Q , 〈o,w〉),
where Q is a set of states, o : Q → S 〈〈A〉〉 is the output function, and w : Q →
(Q →f S 〈〈A〉〉p).

The behaviours S(q) of each state q ∈ Q are again defined as the unique
solutions of a system of equations: for all q ∈ Q ,

S(q) = o(q) +
∑

r∈Q

w(p)(q) × S(r).

Note that such an automaton can always be transformed into an automaton in
which the output of all states are elements of S : we add one state f , with no
outgoing transitions and output 1. For each other state q ∈ Q , we decompose
o(q) into o(q) = s + σ, with s = O(o(q)) and σ =

∑
a∈A a × o(q)a . Then we

replace the ouptut of q by s, and we add a transition q σ−→ f . (Fig. 2).

p

q

r

o1

o2

σ1

σ2

σ3

σ4

p r

o1 + σ2σ
∗
3o2

σ1 + σ2σ
∗
3σ4

Fig. 2. Elimination of state q

State Elimination. Let A = (Q , 〈o,w〉) be a hwa with at least two states, and
q ∈ A. We define the automaton elimination(q ,A) resulting from the elimination
of state q in A as elimination(q ,A) = (Q \ {q}, 〈ô, ŵ〉), with for all p, r ∈ Q ,

ô(p) = o(p) + w(p)(q) × w(q)(q)∗ × o(q)
ŵ(p)(r) = w(p)(r) + w(p)(q) × w(q)(q)∗ × w(q)(r).

We denote by S(p) the behaviour of a state p ∈ Q in the automaton A, and for
p 	= q , we denote by Ŝ(p) its behaviour in the automaton elimination(q ,A).

Proposition 2. For all p ∈ Q \ {q}, Ŝ(p) = S(p).
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Proof. S is defined by the following system of equations:

∀p ∈ Q S(p) = o(p) +
∑

r∈Q

w(p)(r) × S(r)

The equation for q is equivalent to

S(q) = w(q)(q)∗
(

o(q) +
∑

r∈Q\{q}
w(q)(r)S(r)

)

.

Substituting into the other equations, we get exactly the system defining Ŝ. �
Computing Rational Expressions for Finite Weighted Automata. The previous
result holds without further restriction on A. We now consider the case where Q
is finite, and where all weights and outputs in A are given by rational expressions.
Clearly, the weights and outputs in eliminate(q ,A) can again be given by rational
expressions, so these assumptions are preserved at each elimination of a state. In
what follows, we identify rational expressions and the power series they denote.

Suppose we start from a finite ordinary weighted automaton. To compute
the behaviour of a state q , we can eliminate successively all the other states
of the automaton. We get an automaton with only one state q , the behaviour
of which is given by the equation S(q) = o(q) + w(q)(q)S(q), which leads to
S(q) = w(q)(q)∗×o(q). Since o(q) and w(q)(q) are given by rational expressions,
this gives us a rational expression for S(q).

q0 q1 q2

2
3
X 1

3
X

2
3
X

1
3
X

1
Example. Consider the automaton on the
right. Removing successively q1 and q2
leads to:

q0 q2

2
3
X +

2
9
X 2

1
9
X 2

1 q0

2
3
X +

2
9
X 2

1
9
X 2

Finally, we get S(q0) =
(

2
3
X +

2
9
X 2

)∗
× 1

9
X 2.

5.2 Reduction of Well-Shaped Infinite Weighted Automata

Most of what is known about weighted automata concerns finite automata. Yet
some situations can conveniently be represented by an infinite weighted automa-
ton, in a rather natural way.

For instance, in [4,10], infinite weighted automata are extensively used to
model counting problems. The idea is to give a weighted automata recognizing



62 M. Fortin et al.

the generating function of the family of combinatorial objects studied, that is, the
power series

∑
n∈N

fnX n , where fn denotes the number of objects of size n. Typi-
cally, such a generating function is represented by an infinite weighted automaton
in which most transitions have weight 1, and which is constructed in such a way
that each object of size n correspond precisely to one accepting path of length
n in the automaton.

AM : 0 1 2 3

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

1

Fig. 3. Weighted automaton for Motzkin paths.

Example. One of the main
examples given in [4] is the
study of Motzkin paths. A
Motzkin path of length n
is a lattice path of Z × Z

going from (0, 0) to (n, 0),
that never passes below the
x -axis and whose permitted
steps are the up diagonal step (1, 1), the down diagonal step (1,−1) and the
level step (1, 0).

The number Motzkin paths of length n, called the n-th Motzkin number,
is given by the behaviour of the automaton AM (see Fig. 3); more precisely, it
is equal to S(0)(n). Intuitively, a transition i → (i + 1) corresponds to a step
(1, 1), a transition (i + 1) → i to a step (1,−1), and a transition i → i to a step
(1, 0). A Motzkin path starts and ends at level y = 0, which is why 0 is both the
only initial and final state.

In this example as in many others, the automaton that interests us is con-
structed by repeating the same pattern infinitely often. Our aim is to use these
regularities to contract some part of the automaton, and compute an equivalent
finite hwa when it is possible.

ÂM : 0 1

X , 1

X , 1

X , S(0)1

Fig. 4. Simplified automa-
ton for Motzkin paths.

Example. The automaton in Fig. 3 is equivalent to
the automaton to the right. The idea is the following.
Consider an accepting path starting in state 1, that
is, a path 1 = q0 → q1 → · · · → qn = 0. Let k be the
smallest index strictly greater than 0 such that qk =
0. Necessarily, qk−1 = 1, and q0 → · · · → qk−1 is a
path from 1 to 1 that never passes through 0: there
are as many such paths as there are paths from 0 to
0 of length k −1, i.e. S(0)(k −1) = X ×S(0)(k). This

is what is expressed by 1
X ,S(0)−−−−→ 0 in ÂM .

Formally, we can prove that the two automata are equivalent as follows.
Denote by Ŝ(i) the semantics of state i in ÂM . We can check that the closure
under linear combinations of the relation

R =
{(

S(0), Ŝ(0)
)

,
(
S(1), Ŝ(1)

)}
∪

{(
S(i),X × S(i − 1) × Ŝ(0)

)
| i ≥ 1

}

is a bisimulation; hence S(0) = Ŝ(0) and S(1) = Ŝ(1).
From the automaton ÂM , we then get the following equation for S(0) :

S(0) = 1 + X × S(0) + X 2 × S(0)2.
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A few other examples of such reductions are given in [4]. Our aim here is to
identify specific classes for which such reductions are possible, and to give a few
general rules applicable in these situations. The key point in the reduction we did
for AM was the fact that the sub-automaton consisting of the states {1, 2, . . .}
is isomorphic to AM . Similarly, the rules we will give apply to automata where
some sub-automaton is isomorphic to the whole automaton.

Syntactic Heavy-Weighted Automata. In the automaton ÂM (see Fig. 4),
the stream S(0) appearing in the transition from 1 to 0 refers to the behaviour
of the state 0 of the automaton AM (see Fig. 3), and not ÂM itself. A priori, we
can’t refer to the behaviour of an automaton in the definition of its transition
function, since its behaviour is itself defined using the transition function.

x y

X , 1

X , 1

X , x1

Yet ÂM is precisely constructed so as to have S(0) =
Ŝ(0), and we would like to be able to define ÂM with-
out refering to AM . To allow such definitions, we intro-
duce a new kind of automata: syntactic heavy-weighted
automata. To simplify notations, we will identify the
behaviour of a state with this state itself. For instance,
the syntactic heavy-weighted automaton corresponding to ÂM will be the one
on the right.

A syntactic heavy-weighted automata (or shwa, for short) over a semiring S
and an alphabet A consists of a pair (Q , 〈o, t〉), where Q is the set of states,
o : Q → S is the output function, and t : Q → (Q →f S 〈A ∪ Q〉)A is the
transition function.

The behaviour S(x ) of a state x ∈ Q is defined as the unique solutions to the
following system of behavioural differential equations: for all x ∈ Q and a ∈ A,

O(x ) = o(x ) xa =
∑

y∈Q

t(x )(a)(y) × y . (1)

We extend S : Q → S 〈〈A〉〉 to polynomials and power series as follows. We first
define S inductively on words over (A ∪ Q): for all a ∈ A, x ∈ Q and u ∈ A∗,

S(ε) = 1 S(a · u) = a × S(u) S(x · u) = S(x ) × S(u).

For all σ ∈ S 〈〈A ∪ Q〉〉 and w ∈ A∗, we then define S(σ) =
∑

w∈A∗ σ(w)S(w).
For instance, we have S(3aq + qr) = 3aS(q) + S(q)S(r). The fact that {S(x ) |
x ∈ Q} is the solution to the system of behavioural differential equations in (1)
can then be written as follows: for all x ∈ Q and a ∈ A,

O(S(x )) = o(x ) S(x )a =
∑

y∈Q

S(t(x )(a)(y)) × S(y).

First Reduction Rule. We describe a method to remove a (possibly infinite)
set of states from a shwa A, under precise assumptions. We proceed in two steps:
first, we show how to disconnect a subset Q ′ of the states of A from the rest



64 M. Fortin et al.

of the states (Proposition 3), and then we show that when the sub-automaton
induced by Q ′ is isomorphic to A, we can remove it entirely (Corollary 1).

Let A = (Q , 〈o, t〉) be a shwa, and Q ′
� Q . Let

F ′ = {q ∈ Q ′ | ∃r ∈ Q \ Q ′, ∃a ∈ A, t(q)(a)(r) 	= 0},

and
I ′ = {q ∈ Q ′ | ∃r ∈ Q \ Q ′, ∃a ∈ A, t(r)(a)(q) 	= 0}.

We assume that Q ′ satisfies the following conditions:

(1) For all q ∈ Q ′, o(q) = 0.
(2) For all p, q ∈ Q and a ∈ A, t(p)(a)(q) ∈ S 〈A ∪ (Q \ Q ′)〉.
(3) There exists o′ : Q → S and f : A → S 〈A ∪ (Q \ Q ′)〉Q\Q′

such that:
(a) for all q ∈ Q ′, (o′(q) 	= 0 ⇐⇒ q ′ ∈ F ′).
(b) for all q ∈ Q ′ and r ∈ Q \ Q ′, t(q)(a)(r) = o′(q) × f (a)(r).

If F ′ contains only one state q , condition (3) becomes useless, and we simply set
o′(q) = 1 and f (a)(r) = t(q)(a)(r).

Define Â =
(
Q ,

〈
ô, t̂

〉)
as follows:

– ô(q) =
{

o(q) if q ∈ Q \ Q ′

o′(q) if q ∈ Q ′

– t̂(p)(a)(q) =

⎧
⎪⎪⎨

⎪⎪⎩

t(p)(a)(q) +
∑

r∈Q′ t(p)(a)(r) × r if p, q ∈ Q \ Q ′

× ∑
b∈A b × f (b)(q)

t(p)(a)(q) if p, q ∈ Q ′

0 otherwise.

We denote by Ŝ(q) the behaviour of a state q ∈ Q in automaton Â, and by S(q)
its behaviour in automaton A.

Proposition 3. Under the above assumptions Ŝ(q) = S(q) for all q ∈ Q \ Q ′.

The idea is that this construction is the opposite of the construction that we
did in Sect. 4. We recognize something of the form

p i

r

qQ′ qQ ′a, t(p)(a)(i)

ε, o′(r)

b, f (b)(q)

(∀b)

p qQ′ q
a, t(p)(a)(i) × i b, f (b)(q)

(∀b)
and we contract it into the one on the
right which, after removal of qQ′ (as in
Sect. 5.1), leads for all a ∈ A to a transi-

tion p
a,t(p)(a)(i)×i×∑b bf (b)(q)−−−−−−−−−−−−−−−−−−→ q .
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Proof (of Proposition 3). Let C =
∑

a∈A

∑
r∈Q\Q′ a × S(f (a)(r)) × S(r).

Then
{
(S(q), Ŝ(q)) | q ∈ Q \ Q ′} ∪ {

(S(q), Ŝ(q) × C ) | q ∈ Q ′} is a
bisimulation-up-to. �

Proposition 3 allows us to isolate the sub-automaton of A obtained by keeping
only the states in Q ′, and setting as final those states that have an outgoing
transition leaving Q ′. More interestingly, when this sub-automaton is isomorphic
to A itself, we can remove all the states in Q ′, as follows.

Corollary 1. Assume that there exists a bijection ϕ : Q ′ → Q such that:

– ∀q ∈ Q ′, o′(q) = o(ϕ(q))
– ∀p, q ∈ Q , t(ϕ(p))(a)(ϕ(q)) = t(p)(a)(q)
– ∀q ∈ I ′, ϕ(q) ∈ Q \ Q ′

We define Ā = (Q \ Q ′, 〈ō, t̄〉) as follows: ō is the restriction of o to Q \Q ′, and
for all p, q ∈ Q \ Q ′,

t̄(p)(a)(q) = t(p)(a)(q) +
∑

r∈Q′
t(p)(a)(r) × ϕ(r) ×

∑

b∈A

bf (b)(q).

Then S̄(q) = S(q) for all q ∈ Q \ Q ′.

Proof. t̄ is well-defined, because of condition (2) and the assumption that for
all q ∈ I ′, ϕ(q) ∈ Q \ Q ′. To prove the equality, we show successively that
R1 =

{(
S(ϕ(q)), Ŝ(q)

)
| q ∈ Q ′

}
and R2 =

{(
S̄(q), Ŝ(q)

)
| q ∈ Q \ Q ′

}
are

bisimulations-up-to. Hence S̄(q) = Ŝ(q) = S(q) for all q ∈ Q \ Q ′. �

Example. Consider again the automaton AM . Taking Q ′ = {q1, q2, . . .} and
ϕ(qi) = qi−1, we obtain the automaton ĀM , which can be also be obtained from
ÂM in Fig. 4 by removing state 1.

AM : q0 q1 q2 q3

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1

1

ĀM : q0

X , 1 + q0 × X

1

Fig. 5. Application of the first reduction rule to AM

Second Reduction Rule. Condition (1) in the previous reduction rule is quite
restrictive, even when being interested only in specific, well-shaped automata. To
gain a little more generality, we present a second reduction rule, which consists
not in removing states, but in transforming some final states into non final states.

Let A = (q , 〈o, t〉) be a shwa, and Q ′
� Q . We define as before I ′ = {q ∈ Q ′ |

∃r ∈ Q , ∃a ∈ A, t(r)(a)(q) 	= 0}, but this time we set F ′ = {q ∈ Q ′ | o(q) = 0}.
Suppose that there exists a bijection ψ : Q ′ → Q such that:
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(1) For all q , r ∈ Q ′, a ∈ A, t(p)(a)(q) = t(ψ(p))(a)(ψ(q)) and o(q) = o(ψ(q))
(2) For all i ∈ I ′, ψ(i) ∈ Q \ Q ′.

and that

(3) For all p, q ∈ Q and a ∈ A, t(p)(a)(q) ∈ S 〈A ∪ (Q \ Q ′)〉
We define Â =

(
Q ,

〈
ô, t̂

〉)
as follows: for all p, q ∈ Q and a ∈ A,

ô(q) =
{

o(q) if q ∈ Q \ Q ′

0 if q ∈ Q ′

t̂(p)(a)(q) =
{

t(p)(a)(q) + t(p)(a)(ψ−1(q)) if p, q ∈ Q \ Q ′

t(p)(a)(q) otherwise.

Proposition 4. Under the above assumptions, denote by S the behaviour of A,
and by Ŝ the behaviour of Â. Then Ŝ(q) = S(q) for all q ∈ Q \ Q ′.

Proof.
{
(S(q), Ŝ(q)) | q ∈ Q \ Q ′} ∪ {

(S(q), Ŝ(q) + S(ψ(q))) | q ∈ Q ′} is a
bisimulation-up-to. �

q0 q1 q2 q3 q4

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1Example. Consider the auto-
maton on the right (taken
from [4]), where all final
states have output 1. Tak-
ing Q ′ = {qi | i ≥ 2} and
ψ(qi) = qi−2, we obtain:

q0 q1 q2 q3 q4

X , 1

X , 1

X , 2

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1
X , 1

X , 1

X , 1

q0 q1 q2 q3 q4

X , 1 + 2q1X X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1

X , 1Using Proposition 3, q0
has the same behaviour
in the automaton on the
right. And combining this
with the reduction shown
in Fig. 5, we get:

q0 q1

X , 1 + 2q1X X , 1 + q1X The behaviour of q0 is then described by:

O(S(q0)) = 1 S(q0)′ = S(q0) + 2S(q1)XS(q0)
O(S(q1) = 1 S(q1)′ = S(q1) + S(q1)XS(q1).

Link with Algebraic Power Series. All the examples we treated in this
section are algebraic (or context-free) power series. More generally, shwas can
be seen as a representation of polynomial systems of equations. In the finite case,
the solution to such a system of equations is an algebraic power series.
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A polynomial system of behavioural differential equations over a semiring S ,
an alphabet A, and a set of variables X consists of a set of equations (one for
each x ∈ X ) of the form

xa = t O(x ) = s

where t ∈ S 〈A ∪ X〉 and s ∈ S . A polynomial system of behavioural differential
equations is finite if X is finite.

A polynomial system of behavioural differential equations always has a
unique solution. A formal power series σ ∈ S 〈〈A〉〉 is called algebraic when it
is part of the solution of a finite polynomial system of behavioural differential
equations.

This coinductive characterization of algebraic power series is equivalent to
other notions of algebraic or context-free power series [7], as shown in [2].

Proposition 5. Let σ ∈ S 〈〈A〉〉. Then σ is algebraic if and only if there exists
a finite shwa A = (Q , 〈o, t〉) and q0 ∈ Q such that S(q0) = σ.

6 Conclusion

We studied an extension of weighted automata that allows the weights of the
transitions to be any power series in S 〈〈A〉〉, rather than elements of S . The
semantics of a heavy weighted automaton can be given by a system of behav-
ioural differential equations linking the behaviours of the different states, or
by transforming the automaton into an S × (−)A-coalgebra and applying the
final S × (−)A-homomorphism. Moreover, any heavy weighted automaton can
be transformed into a weighted automaton in a canonical way.

Heavy weighted automata often provide a more compact representation of a
power series than weighted automata. In particular, they can be used to compute
a regular expression associated with a finite weighted automata, or in some
cases to give a finite representation of an infinite weighted automata. The state
elimination method can be used to remove one state at a time, and in some
special cases, see Sect. 5.2, allow to remove an infinite subset of states.
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Abstract. The present paper sets the foundation of logic programming
in hybridised logics. The basic logic programming semantic concepts such
as query and solutions, and the fundamental results such as the existence
of initial models and Herbrand’s theorem, are developed over a very gen-
eral hybrid logical system. We employ the hybridisation process proposed
by Diaconescu over an arbitrary logical system captured as an institution
to define the logic programming framework.

1 Introduction

Hybrid logics [1] are a brand of modal logics that allows direct reference to the
possible worlds/states in a simple and very natural way through the so-called
nominals. This feature has several advantages from the point of view of logic
and formal specification. For example, it becomes considerably simpler to define
proof systems in hybrid logics [2], and one can prove results of a generality that
is not available in non-hybrid modal logic. In specifications of dynamic systems
the possibility of explicit reference to specific states of the model is an essential
feature.

The hybridisation of a logic is the process of developing the features of hybrid
logic on top of the base logic both at the syntactic level (i.e. modalities, nom-
inals, etc.) and semantics (i.e. possible worlds). By a hybridised institution (or
hybrid institution) we mean the result of this process when logics are treated
abstractly as institutions [7]. The hybridisation development in [6,13] abstracts
away the details, both at the syntactic and semantic levels, that are indepen-
dent of the very essence of the hybrid logic idea. One great advantage of this
approach is the clarity of the theoretical developments that are not hindered
by the irrelevant details of the concrete logics. Another practical benefit is the
applicability of the results to a wide variety of concrete instances.

In this paper we investigate a series of model-theoretic properties of hybrid
logics in an institution-independent setting such as basic set of sentences [3],
substitution [4] and reachable model [10,11]. While the definition of basic set
of sentences is a straightforward extension from a base institution to its hybrid
counterpart, the notion of substitution needs much consideration. Establishing
an appropriate concept of substitution is the most difficult part of the whole
c© Springer International Publishing Switzerland 2015
M. Codescu et al. (Eds.): WADT 2014, LNCS 9463, pp. 69–89, 2015.
DOI: 10.1007/978-3-319-28114-8 5
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enterprise of constructing an initial model of a given hybrid theory and proving
a variant of Herbrand’s theorem. The notion of substitution is closely related
to quantification. Our abstract results are applicable to hybrid logical systems
where the variables may be interpreted differently across distinct worlds, which
amounts to the world-line semantics of [14]. Our paper does not cover the rigid
quantification of [2] when the possible worlds share the same domain and the
variables are interpreted the same in all worlds.

Initial semantics [8] is closely related to good computational properties of log-
ical systems and it plays a crucial role for the semantics of abstract data types.
For example, initiality supports the execution of specification languages through
rewriting, thus integrating efficiently formal verification of software systems into
modelling. The initial semantics methodology has spread much beyond its orig-
inal context, that of traditional equational specification, to a variety of mod-
ern and more sophisticated logical contexts. Moreover, initial semantics plays a
foundational role in logic programming. For example, in [12], initial models are
known as “least Herbrand models”. Our approach to initiality is layered and is
intimately linked to the structure of sentences, in the style of [9]. The existence
of initial models of sets of atomic sentences is assumed in abstract setting but
is developed in concrete examples; then the initiality property is shown to be
closed under certain sentence building operators.

The second main contribution of the paper is a variant of Herbrand’s theorem
for hybrid institutions, which reduces the satisfiability of a query with respect
to a hybrid theory to the search of a suitable substitution. The logic program-
ming paradigm [12], in its classical form, can be described as follows: Given a
program (Σ,Γ ) (that consists of a signature Σ and a set of Horn clauses Γ ) and
a query (∃Y )ρ (that consists of an existentially quantified conjunction of atoms)
find a solution θ, i.e. values for the variables Y such that the corresponding
instance θ(ρ) of ρ is satisfied by (Σ,Γ ). The essence of this paradigm is how-
ever independent of any logical system of choice. The basic logic programming
concepts, query, solutions, and the fundamental results, such as Herbrand’s the-
orem, are developed over an arbitrary institution (satisfying certain hypotheses)
in [4] by employing institution-independent concepts of variables, substitution,
quantifiers and atomic formulas. Our work sets foundation for a uniform devel-
opment of logic programming over a large variety of hybrid logics as we employ
the hybridisation process over an arbitrary institution [6,13] to prove the desired
results.

The institution-independent status of the present study makes the results
applicable to a multitude of concrete hybrid logics including those obtained from
hybridisation of non-conventional logics used in computer science.

The paper is organised as follows: in Sect. 2 we recall the definition of institu-
tion and the related notions such as substitution, reachable model and basic set of
sentences. In Sect. 3 we recall the institution-indepedent process of hybridisation
of a logical system and we lift the notions discussed in the previous section to the
hybrid setting. Section 4 is dedicated to the development of the layered initiality
result. In Sect. 5 we present an institution-independent version of Herbrand’s



Foundations of Logic Programming in Hybridised Logics 71

theorem and its applications to concrete hybrid logics. Section 6 concludes the
paper and discusses the future work.

2 Institutions

The concept of institution formalises the intuitive notion of logical system, and
has been defined by Goguen and Burstall in the seminal paper [7].

Definition 1. An institution I = (SigI, SenI, ModI, |=I) consists of

(1) a category SigI, whose objects are called signatures,
(2) a functor SenI : SigI → Set, providing for each signature Σ a set whose

elements are called (Σ-)sentences,
(3) a functor ModI : (SigI)op → CAT, providing for each signature Σ a cat-

egory whose objects are called (Σ-)models and whose arrows are called
(Σ-)morphisms,

(4) a relation |=I
Σ⊆ |ModI(Σ)| × SenI(Σ) for each signature Σ ∈ |SigI|, called

(Σ-)satisfaction, such that for each morphism ϕ : Σ → Σ′ in SigI, the
following satisfaction condition holds:

M ′ |=I
Σ′ SenI(ϕ)(e) iff ModI(ϕ)(M ′) |=I

Σ e

for all M ′ ∈ |ModI(Σ′)| and e ∈ SenI(Σ).

When there is no danger of confusion, we omit the superscript from the notations
of the institution components; for example SigI may be simply denoted by Sig.
We denote the reduct functor Mod(ϕ) by � ϕ and the sentence translation
Sen(ϕ) by ϕ( ). When M = M ′ � ϕ we say that M is the ϕ-reduct of M ′ and
M ′ is a ϕ-expansion of M . We say that ϕ is conservative if each Σ-model has
a ϕ-expansion. Given a signature Σ and two sets of Σ-sentences E1 and E2, we
write E1 |=| E2 whenever E1 |= E2 and E2 |= E1.

The literature shows myriads of logical systems from computing or mathe-
matical logic captured as institutions (see, for example, [5]).

Example 1 (First-Order Logic (FOL) [7]). The signatures are triplets (S, F, P ),
where S is the set of sorts, F = {Far→s)}(ar,s)∈S∗×S is the (S∗×S -indexed) set
of operation symbols, and P = {Par}ar∈S∗ is the (S∗-indexed) set of relation
symbols. If ar = ε, where ε denotes the empty arity, an element of Far→s is
called a constant symbol, or a constant. By a slight notational abuse, we let F
and P also denote

⋃
(ar,s)∈S∗×S Far→s and

⋃
ar∈S∗ Par, respectively. A signature

morphism between (S, F, P ) and (S′, F ′, P ′) is a triplet ϕ = (ϕst, ϕop, ϕrl), where
ϕst : S → S′, ϕop : F → F ′, ϕrl : P → P ′ such that for all (ar, s) ∈ S∗ × S
we have ϕop(Far→s) ⊆ F ′

ϕst(ar)→ϕst(s), and for all ar ∈ S∗ we have ϕrl(Par) ⊆
P ′

ϕst(ar). When there is no danger of confusion, we may let ϕ denote each of
ϕst, ϕop, ϕrl. Given a signature Σ = (S, F, P ), a Σ-model is a triplet M =
({sM}s∈S , {σM}(ar,s)∈S∗×S,σ∈Far→s

, {πM}ar∈S∗,π∈Par
) interpreting each sort s

as a set sM , each operation symbol σ ∈ Far→s as a function σM : arM →
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sM (where arM stands for (s1)M × . . . × (sn)M if ar = s1 . . . sn), and each
relation symbol π ∈ Par as a relation πM ⊆ arM . Morphisms between models
are the usual Σ-morphisms, i.e., S-sorted functions that preserve the structure.
The Σ-algebra of terms is denoted by TΣ . The Σ-sentences are obtained from
(a) equality atoms (e.g. t1 = t2, where t1, t2 ∈ sTΣ

, s ∈ S) or (b) relational atoms
(e.g. π(t1, . . . , tn), where π ∈ Ps1...sn

, ti ∈ (si)TΣ
, si ∈ S and i ∈ {1, . . . , n})

by applying for a finite number of times Boolean connectives and quantification
over finite sets of variables. Satisfaction is the usual first-order satisfaction and
is defined using the natural interpretations of ground terms t as elements tM
in models M . The definitions of functors Sen and Mod on morphisms are the
natural ones: for any signature morphism ϕ : Σ → Σ′, Sen(ϕ) : Sen(Σ) →
Sen(Σ′) translates sentences symbol-wise, and Mod(ϕ) : Mod(Σ′) → Mod(Σ) is
the forgetful functor.

Example 2 (REL). The institution REL is the sub-institution of single-sorted
first-order logic with signatures having only constants and relational symbols.

Example 3 (Propositional Logic (PL)). The institution PL is the fragment of
FOL determined by signatures with empty sets of sort symbols.

Example 4 (Constrained Institutions). Let I = (SigI, SenI, ModI, |=I) be an
institution. A constrained model functor ModCI : (SigCI)op → CAT is a sub-
functor of ModI : (SigI)op → CAT, i.e. SigCI ⊆ SigI, for each Σ ∈ |SigCI|
we have ModCI(Σ) ⊆ ModI(Σ), and for each Σ

ϕ→ Σ ∈ SigCI the functor
ModCI(ϕ) : ModCI(Σ′) → ModCI(Σ) is defined by ModCI(ϕ)(h) = ModI(ϕ)(h)
for all h ∈ ModCI(Σ′). We say that CI = (SigCI, SenCI, ModCI, |=CI) is a
constrained institution, where (a) SenCI : SigCI → Set is the restriction of
SenI : SigI → Set to SigCI, and (b) |=CI

Σ ⊆ |ModCI(Σ)|×SenI(Σ) is the restriction
of |=I

Σ⊆ |ModI(Σ)| × SenI(Σ) to |ModCI(Σ)| for all Σ ∈ |SigCI|.

2.1 Quantification Subcategory

Let I = (Sig, Sen, Mod, |=) be an institution. A broad subcategory1 Q ⊆ Sig

is called quantification subcategory [6] when for each Σ
χ→ Σ′ ∈ Q and

Σ
ϕ→ Σ1 ∈ Sig there is a designated pushout Σ′ ϕ[χ] �� Σ′

1

Σ

χ

��

ϕ
�� Σ1

χ(ϕ)

��
with χ(ϕ) ∈ Q

which is a weak amalgamation square2 and such that the horizontal composi-
tion of such designated pushouts is again a designated pushout, i.e. χ(1Σ) = χ,

1 A category C is a broad subcategory of C′ if C is a subcategory of C′ and C contains
all objects of C′, i.e. |C| = |C′|.

2 For all M ′ ∈ |Mod(Σ′)| and M1 ∈ |Mod(Σ1)| such that M ′ �χ = M1 �ϕ there exists
M ′

1 ∈ |Mod(Σ′
1)| such that M ′

1 �ϕ[χ] = M ′ and M ′
1 �χ(ϕ) = M1.
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1Σ [χ] = 1Σ′ , and for the following pushouts Σ′ ϕ[χ] �� Σ′
1

θ[χ(ϕ)]�� Σ′
2

Σ

χ

��

ϕ
�� Σ1

χ(ϕ)

��

θ
�� Σ2

χ(ϕ)(θ)

��
we

have ϕ[χ]; θ[χ(ϕ)] = (ϕ; θ)[χ] and χ(ϕ)(θ) = χ(ϕ; θ).
A variable for a FOL signature Σ = (S, F, P ) is a triple (x, s,Σ), where x is

the name of the variable and s ∈ S is the sort of the variable. Let χ : Σ ↪→ Σ[X]
be a signature extension with variables from X, where X = {Xs}s∈S is a S-
sorted set of variables, Σ[X] = (S, F ∪ X,P ) and for all (ar, s) ∈ S∗ × S we

have (F ∪ X)ar→s =
{

Far→s if ar ∈ S+,
Far→s ∪ Xs if ar = ε.

The quantification subcategory

QFOL for FOL consists of signature extensions with a finite set of variables.
Given a signature morphism ϕ : Σ → Σ1, where Σ1 = (S1, F1, P1), then

– χ(ϕ) : Σ1 ↪→ Σ1[Xϕ], where Xϕ = {(x, ϕ(s), Σ1) | (x, s,Σ) ∈ X},
– ϕ[χ] is the canonical extension of ϕ that maps each (x, s,Σ) to (x, ϕ(s), Σ1).

It is straightforward to check that QFOL defined above is a quantification sub-
category.

2.2 Substitutions

We recall the notion of substitution in institutions.

Definition 2 [4]. Let I = (Sig, Sen, Mod, |=) be an institution and Σ ∈ |Sig|.
For any signature morphisms χ1 : Σ → Σ1 and χ2 : Σ → Σ2, a Σ-substitution
θ : χ1 → χ2 consists of a pair (Sen(θ), Mod(θ)), where

– Sen(θ) : Sen(Σ1) → Sen(Σ2) is a function and
– Mod(θ) : Mod(Σ2) → Mod(Σ1) is a functor.

such that both of them preserve Σ, i.e. the following diagrams commute:

Sen(Σ1)
Sen(θ) �� Sen(Σ2) Mod(Σ1)

Mod(χ1) ������������
Mod(Σ2)

Mod(θ)��

Mod(χ2)

��
Sen(Σ)

Sen(χ1)

��

Sen(χ2)

������������
Mod(Σ)

and such that the following satisfaction condition holds:

Mod(θ)(M2) |= ρ1 iff M2 |= Sen(θ)(ρ1)

for each Σ2-model M2 and each Σ1-sentence ρ1.

Note that a substitution θ : χ1 → χ2 is uniquely identified by its domain χ1,
codomain χ2 and the pair (Sen(θ), Mod(θ)). We sometimes let � θ denote the
functor Mod(θ), and let θ denote the sentence translation Sen(θ).
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Example 5 (FOL substitutions [4]). Consider two signature extensions with con-
stants χ1 : Σ↪→Σ[C1] and χ2 : Σ ↪→ Σ[C2], where Σ = (S, F, P ) ∈ |SigFOL|, Ci

is a set of constant symbols different from the symbols in Σ. A function θ : C1 →
TΣ(C2) represents a substitution between χ1 and χ2. On the syntactic side, θ
can be canonically extended to a function Sen(θ) : Sen(Σ[C1]) → Sen(Σ[C2]) as
follows:

– Sen(θ)(t1 = t2) is defined as θterm(t) = θterm(t′) for each Σ[C1]-equation
t1 = t2, where θterm : TΣ(C1) → TΣ(C2) is the unique extension of θ to a
Σ-morphism.

– Sen(θ)(π(t1, . . . , tn)) is defined as π(θterm(t1), . . . , θterm(tn)) for each Σ[C1]-
relational atom π(t1, . . . , tn).

– Sen(θ)(
∧

E) is defined as
∧

Sen(θ)(E) for each conjuction
∧

E of Σ[C1]-
sentences, and similarly for the case of any other Boolean connectives.

– Sen(θ)((∀X)ρ) is defined as (∀Xθ)Sen(θ′)(ρ) for each Σ[C1]-sentence (∀X)ρ,
where Xθ = {(x, s,Σ[C2]) | (x, s,Σ[C1]) ∈ X} and the substitution θ′ :
C1 ∪X → TΣ(C2 ∪Xθ) extends θ by mapping each variable (x, s,Σ[C1]) ∈ X
to (x, s,Σ[C2]) ∈ Xθ.

On the semantics side, θ determines a functor Mod(θ) between Mod(Σ[C2]) and
Mod(Σ[C1]) such that for all Σ[C2]-models M we have

– Mod(θ)(M)x = Mx, for each sort x ∈ S, or operation symbol x ∈ F , or
relation symbol x ∈ P , and

– Mod(θ)(M)x = Mθ(x) for each x ∈ C1.

Category of Substitutions. Let I = (Sig, Sen, Mod, |=) be an institution and
Σ ∈ |Sig| a signature. Σ-substitutions form a category SubstI(Σ), where the
objects are signature morphisms Σ

χ→ Σ′ ∈ |Σ/Sig|, and the arrows are substitu-
tions θ : χ1 → χ2 as described in Definition 2. For any substitutions θ : χ1 → χ2

and θ′ : χ2 → χ3 the composition θ; θ′ consists of the pair (Sen(θ; θ′), Mod(θ; θ′)),
where Sen(θ; θ′) = Sen(θ); Sen(θ′) and Mod(θ; θ′) = Mod(θ′); Mod(θ).

Given a signature morphism ϕ : Σ0 → Σ there exists a reduct func-
tor SubstI(ϕ) : SubstI(Σ) → SubstI(Σ0) that maps any Σ-substitution θ :
χ1 → χ2 to the Σ0-substitution Subst(ϕ)(θ) : ϕ;χ1 → ϕ;χ2 such that
Sen(SubstI(ϕ)(θ)) = Sen(θ) and Mod(SubstI(ϕ)(θ)) = Mod(θ). It follows that
SubstI : Sigop → CAT is a functor. In applications not all substitutions are of
interest, and it is often assumed a substitution sub-functor SubI : Dop → CAT of
SubstI : Sigop → CAT to work with, where D ⊆ Sig is a subcategory of signature
morphisms. When there is no danger of confusion we may drop the superscript
I from the notations; for example SubI may be simply denoted by Sub.

Example 6 (FOL substitution functor). Given a signature Σ ∈ |SigFOL|, only
Σ-substitutions represented by functions θ : C1 → TΣ(C2) are relevant for the
present study, where C1 and C2 are finite sets of new constants for Σ. Let
SubFOL : (DFOL)op → CAT denote the substitution functor which maps each
signature Σ to the subcategory of Σ-substitutions represented by functions of
the form θ : C1 → TΣ(C2) as above.
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Example 7. (PL substitution functor) Let DPL be the subcategory of PL signa-
ture morphisms consisting of identities, and SubPL : (DPL)op → CAT the trivial
substitution functor consisting also of identities.

2.3 Reachable Models

This subsection is devoted to the institution-independent characterisation of the
models that consist of interpretations of terms.

Definition 3. Let I = (Sig, Sen, Mod, |=) be an institution, D ⊆ Sig a broad
subcategory of signature morphisms, and Sub : Dop → CAT a substitution func-
tor. A model M ∈ |Mod(Σ)|, where Σ ∈ |Sig|, is Sub-reachable if for every
signature morphism Σ

χ→ Σ′ ∈ D and each χ-expansion M ′ of M there exists a
substitution θ : χ → 1Σ ∈ Sub(Σ) such that M �θ = M ′.

This notion of reachable model is the parametrisation of the one in [10] with
substitutions.

Proposition 1. In FOL, a model is SubFOL-reachable iff its elements consist
of interpretations of terms.

The proof of Proposition 1 is a slight generalisation of the one in [10]. Note that
in PL, all models are SubPL-reachable.

2.4 Basic Sentences

A set of sentences B ⊆ Sen(Σ) is basic [3] if there exists a Σ-model MB such
that, for all Σ-models M , M |= B iff there exists a morphism MB → M . We say
that MB is a basic model of B. If in addition the morphism MB → M is unique
then the set B is called epi basic; in this case, MB is the initial model of B.

Lemma 1. Any set of atoms in FOL is epi basic and the corresponding basic
models consist of interpretations of terms, i.e. are SubFOL-reachable.

Proof. Let B be a set of atomic (S, F, P )-sentences in FOL. The basic model
MB is the initial model of B and it is constructed as follows: on the quo-
tient T(S,F )/≡B

of the term model T(S,F ) by the congruence generated by
the equational atoms of B, we interpret each relation symbol π ∈ P by
πMB = {(t̂1, . . . , t̂n) | π(t1, . . . , tn) ∈ B}, where t̂ is the congruence class of
t for all terms t ∈ T(S,F ). �	
The proof of Lemma 1 is well known, and it can be found, for example, in [3] or [5],
but since it constitutes the foundation of the initiality property, we include it
for the convenience of the reader. Since PL is obtained from FOL by restricting
the category of signatures, every set of PL atoms is epi basic.
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3 Hybrid Institutions

We recall the institution-independent process of hybridisation that has been
introduced in [6,13]. Consider an institution I = (Sig, Sen, Mod, |=) with a quan-
tification subcategory Q ⊆ Sig.

The Category of HI Signatures. The category of hybrid signatures of Sig is
defined as the following cartesian product of categories: SigHI = SigI × SigREL.
The REL signatures are denoted by (Nom,Λ), where Nom is a set of con-
stants called nominals and Λ is a set of relational symbols called modalities;
Λn stands for the set of modalities of arity n. Hybrid signatures morphisms
ϕ = (ϕSig, ϕNom, ϕRel) : (Σ,Nom,Λ) → (Σ′, Nom,Λ′) are triples such that
ϕSig : Σ → Σ′ ∈ SigI and (ϕNom, ϕRel) : (Nom,Λ) → (Nom′, Λ′) ∈ SigREL.
When there is no danger of confusion we may drop the subscripts from notations
and denote ϕSig, ϕNom and ϕRel simply by ϕ.

HI Sentences. Let us denote by QHI the subcategory QHI ⊆ SigHI which consists
of signature morphisms of the form χ : (Σ,Nom,Λ) → (Σ′, Nom,Λ) such that
χSig ∈ Q, χNom = 1Nom and χRel = 1Λ.

Theorem 1 [6,13]. If Q is a quantification subcategory for I then QHI is a
quantification subcategory for HI.

The satisfaction condition for hybridised institutions relies upon Theorem1.
A nominal variable for a hybrid signature Δ = (Σ,Nom,Λ) is a pair of the
form (x,Δ), where x is the name of the variable and Δ is the qualification of
the variable. Given a hybrid signature Δ = (Σ,Nom,Λ), the set of sentences
SenHI(Δ) is the least set such that

– Nom ⊆ SenHI(Δ),
– λ(k1, . . . , kn) ∈ SenHI(Δ) for any λ ∈ Λn+1, ki ∈ Nom, i ∈ {1, . . . , n};
– SenI ⊆ Sen(Δ);
– ρ1 � ρ2 ∈ SenHI(Δ) for any ρ1, ρ2 ∈ SenHI(Δ) and � ∈ {∧,⇒};
– ¬ρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ);
– @kρ ∈ SenHI(Δ) for any ρ ∈ SenHI(Δ) and k ∈ Nom;
– [λ](ρ1, . . . , ρn) for any λ ∈ Λn+1, ρi ∈ SenHI(Δ) and i ∈ {1, . . . , n};
– (∀χ)ρ′ ∈ SenHI(Δ) for any χ : (Σ,Nom,Λ) → (Σ′, Nom,Λ) ∈ QHI and

ρ′ ∈ SenHI(Σ′, Nom,Λ);
– (∀J)ρ for any set J of nominal variables for Δ and ρ ∈ SenHI(Σ,Nom∪J,Λ);
– (↓ j)ρ for any nominal variable j for Δ and ρ ∈ SenHI(Σ,Nom ∪ {j}, Λ).

Translation of HI Sentences. Let ϕ : (Σ,Nom,Λ) → (Σ′, Nom′, Λ′) be a
morphism of HI signatures. The translation SenHI(ϕ) is defined as follows:

– SenHI(ϕ)(k) = ϕNom(k);
– SenHI(ϕ)(λ(k1, . . . , kn)) = ϕRel(λ)(ϕNom(k1), . . . , ϕNom(kn)) for λ ∈ Λn+1,

ki ∈ Nom, i ∈ {1, . . . , n};
– SenHI(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenI(Σ);
– SenHI(ρ1 � ρ2) = SenHI(ρ1) � SenHI(ρ2), where � ∈ {∧,⇒};
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– SenHI(¬ρ) = ¬SenHI(ρ) ;
– SenHI(@kρ) = @ϕNom(k)SenHI(ρ);
– SenHI([λ](ρ1, . . . , ρn)) = [ϕRel(λ)](SenHI(ρ1), . . . , SenHI(ρn));
– SenHI((∀χ)ρ′) = (∀χ(ϕ))SenHI(ϕ[χ])(ρ′), where the signature morphisms χ :

(Σ,Nom,Λ) → (Σ′, Nom,Λ) is in QHI, χ(ϕ) = (χSig(ϕSig), 1Nom′ , 1Λ′) and
ϕ[χ] = (ϕSig[χSig], ϕNom, ϕRel);

– SenHI((∀J)ρ) = (∀Jϕ)SenHI(ϕ[J ])(ρ), where Jϕ = {(x, (Σ′, Nom′, Λ′)) |
(x, (Σ,Nom,Λ)) ∈ J} and ϕ[J ] : (Σ,Nom ∪ J,Λ) → (Σ,Nom′ ∪ Jϕ, Λ′)
is canonical extension of ϕ that maps each variable (x, (Σ,Nom,Λ)) ∈ J to
(x, (Σ′, Nom′, Λ′));

– SenHI((↓ j)ρ) = (↓ jϕ)SenHI(ϕ[j])(ρ), where jϕ = (x, (Σ′, Nom′, Λ′)) and
ϕj : (Σ,Nom ∪ {j}, Λ) → (Σ′, Nom′ ∪ {jϕ}, Λ′) is the canonical extension of
ϕ mapping each j to jϕ.

HI Models. The (Σ,Nom,Λ)-models are paris (M, R) where

– R is a (Nom,Λ)-model in REL. The carrier set |R| forms the set of states
of the model (M, R). The relations {λR | λ ∈ Λn, n ∈ N} represent the
interpretation of the modalities Λ.

– M is a function |R| → ModI(Σ). For each s ∈ |R|, we denote M(s) simply
by Ms.

A (Σ,Nom,Λ)-homomorphism h : (M, R) → (M′, R′) consists of

– a (Nom,Λ)-homomorphism in REL, hst : R → R′, and
– a natural transformation hmod : M ⇒ M′ ◦ hst.3

When there is no danger of confusion we may drop the superscripts st and mod
from the notations hst and hmod, respectively. The composition of HI homomor-
phisms is defined canonically as h1;h2 = ((hst

1 ;hst
2 ), hmod

1 ; (hmod
2 ◦ hst

1 )).

Reducts of HI Models. Let Δ = (Σ,Nom,Λ) and Δ′ = (Σ′, Nom′, Λ′) be two
HI signatures, Δ

ϕ→ Δ′ a HI signature morphism, and (M′, R′) a Δ′-model. The
reduct (M, R) = ModHI(ϕ)(M′, R′) of (M′, R′) along ϕ denoted by (M′, R′)�ϕ,
is the Δ-model such that |R| = |R′|, kR = ϕNom(k)R′ for all k ∈ Nom, λR =
ϕRel(λ)R′ for all λ ∈ Λ, and Ms = ModI(ϕSig)(M′

s) for all s ∈ |R|.
Satisfaction Relation. For any signaturel Δ = (Σ,Nom,Λ), model (M, R) ∈
|ModHI(Δ)| and state s ∈ |R| we define:

– (M, R) |=s k iff kR = s, for any k ∈ Nom;
– (M, R) |=s λ(k1, . . . , kn) iff (s, (k1)R, . . . , (kn)R) ∈ λR, for any λ ∈ Λn+1,

ki ∈ Nom, i ∈ {1, . . . , n};
– (M, R) |=s ρ iff Ms |=I ρ for any ρ ∈ SenI(Σ);
– (M, R) |=s ρ1 ∧ ρ2 iff (M, R) |=s ρ1 and (M, R) |=s ρ2;
– (M, R) |=s ρ1 ⇒ ρ2 iff (M, R) |=s ρ1 implies (M, R) |=s ρ2;

3 hmod is a |R|-indexed family of Σ-homomorphisms hmod = {hmod
s : Ms →

M′
hst(s)}s∈|R|.
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– (M, R) |=s ¬ρ iff (M, R) �|=s ρ;
– (M, R) |=s @kρ iff (M, R) |=kR ρ;
– (M, R) |=s [λ](ρ1, . . . , ρn) iff for every (s, s1, . . . , sn) ∈ λR, (M, R) |=si ρi for

some i ∈ {1, . . . , n};
– (M, R) |=s (∀χ)ρ iff for every expansion (M′, R) along χ : (Σ,Nom,Λ) →

(Σ′, Nom,Λ) we have (M′, R) |=s ρ;
– (M, R) |=s (∀J)ρ iff for every expansion (M, R′) along ιJ : (Σ,Nom,Λ) ↪→

(Σ,Nom ∪ J,Λ) we have (M, R′) |=s ρ;
– (M, R) |=s (↓ j)ρ iff (M, R′) |=s ρ, where (M R′) is the expansion of (M, R)

along ιj : (Σ,Nom,Λ) → (Σ,Nom ∪ {j}, Λ) such that jR = s.

λ(k1, . . . , kn) is introduced in this paper but a semantically equivalent sentence
can be obtained by combining the remaining sentence operators. However, in
certain fragments of hybrid logics the sentence operators are restricted making
the present approach more useful. The sentence building operator @ is called
retrieve since it changes the point of evaluation in the model. The sentence
building operator ↓ is called store since it gives a name to the current state and
it allows a reference to it. The global satisfaction holds when the satisfaction
holds locally in all states, i.e. (M, R) |=HI ρ iff (M, R) |=s ρ for all s ∈ |R|.
Given a signature Δ ∈ |SigHI| and two sets of sentences Γ,E ∈ SenHI(Δ), we
write Γ |=HI E iff for all models (M, R) ∈ |ModHI(Δ)| such that (M, R) |=HI Γ
we have (M, R) |=HI E. Note that variables may be interpreted differently across
distinct worlds, which amounts to the world-line semantics of [14].

Satisfaction Condition. The satisfaction condition for hybrid institutions is a
direct consequence of the following local satisfaction condition.

Theorem 2 [6]. Let Δ = (Σ,Nom,Λ) and Δ′ = (Sig′, Nom′, Λ′) be two HI
signatures and ϕ : Δ → Δ′ a signature morphism. For any ρ ∈ SenHI(Δ),
(M, R′) ∈ ModHI(Δ′) and s ∈ |R′| we have

ModHI(ϕ)(M′, R′) |=s ρ iff (M′, R′) |=s
SenHI(ϕ)(ρ)

The result of the hybridisation process is an institution.

Corollary 1 [6]. HI = (SigHI, SenHI, ModHI, |=HI) is an institution.

A myriad of examples of hybrid institutions may be generated by applying the
construction described above to various parameters: (1) the base institution I
together with the quantification category Q, and (2) by considering different
constrained model functors (ModCHI : SigCHI → CAT) for HI.

Example 8 (Hybrid first-order logic (HFOL)). This institution is obtained by
applying the hybridisation process to FOL with the quantification subcategory
consisting of signature extensions with a finite number of variables.

Example 9 (Hybrid Propositional Logic (HPL)). This institution is obtained
by applying the hybridisation process to PL with the quantification cate-
gory consisting only of identity signature morphisms. In applications, the cat-
egory SigHPL is restricted to the full subcategory4

SigHPL′
which consists of

4 A category C is a full subcategory of C′ if C is a subcategory of C′ and for all objects
A, B ∈ |C| we have C(A, B) = C′(A, B).
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signatures (P,Nom,Λ), where P is a set of propositional variables, Nom is
a set of nominals and Λ is the family of modalities such that Λ2 = {λ}
and Λn = ∅ for all n �= 2. In this case we denote [Λ] simply by �. Let
HPL′ = (SigHPL′

, SenHPL, ModHPL, |=HPL).

Example 10 (Constrained Hybridisation). Let I = (Sig, Sen, Mod, |=) be a base
institution, and ModCHI : SigCHI → CAT a constrained model functor for HI.
The constrained hybridised institution CHI = (SigCHI, SenCHI, ModCHI, |=CHI) is
obtained similarly to the case of base institutions:

(a) SenCHI : SigCHI → Set is the restriction of SenHI : SigHI → Set to SigCHI,
(b) for each signature Δ ∈ |SigCHI| and model (M, R) ∈ |ModCHI(Δ)|,

(M, R) |=CHI ρ iff (M, R) |=s ρ for all s ∈ |R|.
Note that (M, R) |=HI ρ iff (M, R) |=CHI ρ. Given a signature Δ ∈ |SigCHI| and
two sets of sentences Γ,E ∈ SenCHI(Δ), we write Γ |=CHI E iff for each model
(M, R) ∈ |ModCHI(Δ)| such that (M, R) |=CHI Γ we have (M, R) |=CHI E.

Remark 1. Γ |=HI E implies Γ |=CHI E but the converse implication may not
hold.

Example 11 (Injective Hybridisation). Let I = (SigI, SenI, ModI, |=I) be a base
institution. The injective hybridisation IHI = (SigIHI, SenIHI, ModIHI, |=IHI) of
the base institution I is a constrained hybridised institution obtained from
HI = (SigHI, SenHI, ModHI, |=HI) and its constrained model functor ModIHI :
SigIHI → CAT that do not allow confusion among nominals: (a) SigIHI is the
broad subcategory of SigHI consisting of signature morphisms injective on nom-
inals, i.e. ϕNom is injective for all ϕ ∈ SigIHI, and (b) ModIHI(Σ,Nom,Λ) is the
full subcategory of ModHI(Σ,Nom,Λ) consisting of models that do not allow
confusion among nominals, i.e. jR = kR implies j = k for all j, k ∈ Nom.

Our results are not applicable directly to hybrid institutions but rather to their
restriction to models that do not allow confusion among nominals. The following
results can be instantiated, for example, to the injective hybridisation of FOL.
However, when the quantification subcategory Q consists of identities (take for
example PL) then the semantic restriction of the hybridised logic is no longer
required. This means that the following results are applicable to HPL.

Example 12 (Quantifier-free Injective Hybridisation). The quantifier-free injec-
tive hybridisation QIHI = (SigIHI, SenQIHI, ModIHI, |=IHI) of a base institution
I = (SigI, SenI, ModI, |=I) is obtained from the injective hybridisation IHI =
(SigIHI, SenIHI, ModIHI, |=IHI) by restricting the syntax to quantifier-free sen-
tences, i.e. for each (Σ,Nom,Λ) ∈ |SigIHI| the set SenQIHI(Σ,Nom,Λ) consists
of sentences obtained from nominal sentences (e.g. k ∈ Nom), hybrid relational
atoms (e.g. λ(k1, . . . , kn) ∈ SenIHI(Σ,Nom,Λ)) and the sentences in Sen(Σ) by
applying Boolean connectives and the operator @. This institution is useful for
defining hybrid substitutions that do not involve any form of quantification (see
Sect. 3.1).



80 D. Găină

3.1 Hybrid Substitutions

We extend the notion of substitution from a base institution to its hybridisation.
In this subsection we assume a base institution I = (Sig, Sen, Mod, |=), a broad
subcategory of signature morphisms D ⊆ Sig, and a substitution functor Sub :
Dop → CAT for the base institution I. Let DHI ⊆ SigHI be the broad subcategory
of hybrid signature morphisms of the form ϕ : (Σ,Nom,Λ) → (Σ1, Nom,Λ) such
that Σ

ϕSig→ Σ1 ∈ D, ϕNom = 1Nom and ϕRel = 1Λ.

Inherited Substitutions. Hybrid substitutions can be obtained from combi-
nations of substitutions in the base institution. Let (Σ,Nom,Λ) ∈ |SigIHI| be a
signature and Θ = {θk : (Σ

ϕ1→ Σ1) → (Σ
ϕ2→ Σ2)}k∈Nom a family of substitu-

tions in Sub. On the syntactic side, Θ determines a function

Θk : SenQIHI(Σ1, Nom,Λ) → SenQIHI(Σ2, Nom,Λ)

for each nominal k ∈ Nom:

– Θk(j) = j, for all j ∈ Nom;
– Θk(λ(k1, . . . , kn)) = λ(k1, . . . , kn) for all λ ∈ Λn+1 and ki ∈ Nom;
– Θk(ρ) = θk(ρ) for any ρ ∈ SenI(Σ);
– Θk(ρ � ρ′) = Θk(ρ) � Θk(ρ′), � ∈ {∧,⇒};
– Θk(¬ρ) = ¬Θk(ρ);
– Θk(@jρ) = Θj(ρ);

Since SenI(ϕ1); Sen(θk) = SenI(ϕ2) for all nominals k ∈ Nom, the following
result holds.

Lemma 2. The diagram below is commutative

SenQIHI(Σ1, Nom, Λ)
Θk

�� SenQIHI(Σ2, Nom, Λ)

SenQIHI(Σ, Nom, Λ)

SenQIHI(ϕ1)

����������������� SenQIHI(ϕ2)

		���������������

for all nominals k ∈ Nom.

On the semantic side, Θ determines a functor

ModIHI(Θk) : ModIHI(Σ2, Nom,Λ) → ModIHI(Σ1, Nom,Λ)

often denoted by �Θk for all nominals k ∈ Nom:

– for every (M2, R) ∈ |ModIHI(Σ2, Nom,Λ)|, (M2, R) � Θk = (M2 � Θk , R),
where M2 �Θk is defined by
• (M2 �Θk)jR

= M2
jR

�θj
for all nominals j ∈ Nom, and

• (M2 �Θk)s = M2
s �θk

for all s ∈ (|R| − NomR).
– for every h2 : (M2, R) → (N 2, P ) ∈ ModIHI(Σ2, Nom,Λ) we have
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• (h2 �Θk)jR
= h2

jR
�θj

for all nominals j ∈ Nom, and
• (h2 �Θk)s = h2

s �θk
for all s ∈ (|R| − NomR).

The definition of �Θk is consistent because no confusion of nominals is allowed
inside of the models (M2, R). Since Mod(θk); ModI(ϕ1) = ModI(ϕ2) for all
nominals k ∈ Nom, the following result holds.

Lemma 3. The diagram below is commutative

ModIHI(Σ1, Nom, Λ)

ModIHI(ϕ1) 

���������������
ModIHI(Σ2, Nom, Λ)

�
Θk��

ModIHI(ϕ2)�����������������

ModIHI(Σ, Nom, Λ)

for all nominals k ∈ Nom.

Next result can be regarded as the satisfaction condition for the substitutions
inherited from the base institution.

Proposition 2 (Satisfaction Condition). Given a signature (Σ,Nom,Λ) ∈
|SigHI|, for every model (M2, R) ∈ ModIHI(Σ2, Nom,Λ) and each sentence ρ ∈
SenQIHI(Σ,Nom,Λ)

(M2, R) |=kR Θk(ρ) iff (M2, R)�Θj |=kR ρ

for all nominals j, k ∈ Nom.

Proposition 2 stands at the basis of proving initiality and Herbrand’s theorem in
hybrid logics where the variables may be interpreted differently across distinct
worlds. The following is a corollary of Proposition 2 which allows one to infer
new sentences from initial axioms by applying substitutions inherited from the
base institution.

Corollary 2. Assume a signature Δ = (Σ,Nom,Λ) ∈ |SigIHI| and a hybrid
substitution Θ = {θj : (Σ

ϕ1→ Σ1) → (Σ
ϕ2→ Σ2)}j∈Nom. For all sentences

ρ ∈ SenQIHI(Δ) ρ we have

(∀ϕ1)ρ |=IHI @k(∀ϕ2)Θk(ρ)

for all nominals k ∈ Nom.

Nominal Substitutions. Nominal substitutions are captured by the notion
of signature morphisms in the hybridised institution. Let ιj : (Σ,Nom,Λ) ↪→
(Σ,Nom∪{j}, Λ) be a signature extension with the nominal variable j. A nom-
inal substitution is represented by a function ϕNom : {j} → Nom which can
be canonically extended to a signature morphism ϕ : (Σ,Nom ∪ {j}, Λ) →
(Σ,Nom,Λ). The following result is a consequence of the satisfaction condition
for the hybridised institution.
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Lemma 4. Let (∀j)ρ ∈ SenHI(Σ,Nom,Λ) and k ∈ Nom.

(1) (∀j)ρ |=HI ρ[j ← k]; moreover, (M, R) |=s (∀j)ρ implies (M,R) |=s ρ[j ← k]
for all models (M, R) ∈ |ModHI(Σ,Nom,Λ)| and states s ∈ |R|;

(2) (↓ j)ρ |=HI @kρ[j ← k].5

3.2 Reachable Hybrid Models

In this subsection we extend the notion of reachability to hybrid institutions.
Let I = (Sig, Sen, Mod, |=) be a base institution, D ⊆ Sig a broad subcategory
of signature morphisms, and Sub : Dop → CAT a substitution functor for I.

Definition 4. A model (M, R) ∈ |ModHI(Σ,Nom,Λ)|, where (Σ,Nom,Λ) ∈
|SigHI|, is Sub-reachable if (a) |R| = NomR, where NomR = {kR | k ∈ Nom},
and (b) MkR

is Sub-reachable in I for all nominals k ∈ Nom.

In the injective hybridisation, the expansions of reachable models along signature
morphisms in DHI generate hybrid substitutions.

Proposition 3. Given a signature (Σ,Nom,Λ) ∈ |SigHI| and a Sub-reachable
model (M, R) ∈ |ModIHI(Σ,Nom,Λ)| then for every signature morphism χ :
(Σ,Nom,Λ) → (Σ′, Nom,Λ) with Σ

χ→ Σ′ ∈ D and each χ-expansion (M′, R)
of (M, R) there exists a hybrid substitution Θ = {χ

θk→ 1Σ}k∈Nom such that
(M, R)�Θj = (M′, R) for all nominals j ∈ Nom.

This definition of reachability is used in the context of injective hybridisations
and their constrained sub-institutions.

4 Initiality

The following results on the existence of initial models depend on multiple para-
meters that can be instantiated in the same context in many ways produc-
ing different results. We will focus largely on parameter instantiation of the
abstract theorems to concrete hybrid logical systems to obtain the desired appli-
cations. However, the interested reader may find other useful applications as
well. In this section we assume a base institution I = (SigI, SenI, ModI, |=I), a
broad subcategory D ⊆ Sig of signature morphisms and a substitution functor
Sub : Dop → CAT for the base institution I.

4.1 Basic Hybrid Sentences

In addition to the assumptions made at the beginning of this section, let us
consider a sub-functor (SenI

0 : Sig → Set) of SenI. We define the sentence
functor (SenHI

0 : SigHI → Set) of SenHI for each signature (Σ,Nom,Λ) ∈ |SigHI|,
5 We denote by ρ[j ← k] the sentence ϕ(ρ), where the signature morphism ϕ :
(Σ, Nom ∪ {j}, Λ) → (Σ, Nom, Λ) is the canonical extension of the function
ϕNom : {j} → Nom defined by ϕNom(j) = k.
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(1) @jk ∈ SenHI
0 (Σ,Nom,Λ) for all j, k ∈ Nom,

(2) @jλ(k1, . . . , kn) ∈ SenHI
0 (Σ,Nom,Λ) for all λ ∈ Λn+1, j ∈ Nom and ki ∈

Nom,
(3) @jρ ∈ SenHI

0 (Σ,Nom,Λ) for all j ∈ Nom and ρ ∈ SenI
0(Σ).

In concrete examples of institutions, I0 = (SigI, SenI
0, ModI, |=I) is the restric-

tion of the base institution to atomic sentences, and the institution HI0 =
(SigHI, SenHI

0 , ModHI, |=HI) gives the building bricks for constructing theories that
have initial models in the hybridised institution.

Theorem 3. If every set of sentences of I0 is epi basic then every set of sen-
tences of HI0 is epi basic. Moreover, if each set of sentences of I0 has a basic
model that is Sub-reachable then each set of sentences of HI0 has a basic model
that is Sub-reachable.

We apply Theorem 3 to HFOL. Let SenFOL
0 : SigFOL → Set be the sub-functor

of SenFOL such that for any signature Σ ∈ |SigFOL| the set SenFOL
0 (Σ) consists

of atoms. We define FOL0 = (SigFOL, SenFOL
0 , ModFOL, |=FOL) and HFOL0 =

(SigHFOL, SenHFOL
0 , ModHFOL, |=HFOL) using the general pattern described

above.

Corollary 3. All sets of HFOL0 sentences are epi basic and the corresponding
basic models are SubFOL-reachable.

Proof. By Lemma 1, any set of FOL atoms is epi basic. By Proposition 1, the
corresponding basic models are SubFOL-reachable. By Theorem 3, any set of
HFOL0 sentences is epi basic and the corresponding basic models are SubFOL-
reachable. �	

We return to the general setting and we define the sub-functor (SenIHI
0 :

SigIHI → Set) of SenIHI for each signature (Σ,Nom,Λ) ∈ |SigHI|,
(1) @jλ(k1, . . . , kn) ∈ SenIHI

0 (Σ,Nom,Λ) for any λ ∈ Λn+1, j ∈ Nom and
ki ∈ Nom,

(2) @jρ ∈ SenIHI
0 (Σ,Nom,Λ) for any j ∈ Nom and ρ ∈ SenI

0(Σ).

The institution IHI0 = (SigIHI, SenIHI
0 , ModIHI, |=IHI) gives the building bricks

for constructing theories that have initial models in the injective hybridisation.

Theorem 4. If every set of sentences of I0 is epi basic then every set of sen-
tences of IHI0 is epi basic. Moreover, if each set of sentences of I0 has a basic
model that is Sub-reachable then each set of sentences of IHI0 has a basic model
that is Sub-reachable.

We apply Theorem 4 to IHFOL. Using the general pattern described above, let
us define IHFOL0 = (SigIHFOL, SenIHFOL

0 , ModIHFOL, |=IHFOL) as the injec-
tive hybridisation of FOL.

Corollary 4. All sets of IHFOL0 sentences are epi basic and the corresponding
basic models are SubFOL-reachable.
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Proof. By Lemma 1, any set of atoms in FOL is epi basic. By Proposition 1,
the corresponding basic models are SubFOL-reachable. By Theorem 4, any set
of sentences in HFOL0 is epi basic and the corresponding basic models are
SubFOL-reachable. �	

In the next subsections we prove that the initiality property is closed under
the following sentence building operators: logical implication ⇒, universal quan-
tification ∀, store ↓, and box �.

4.2 Implication

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCHI : SigCHI → CAT for HI, and three
sub-functors (SenCHI

∗ : SigCHI → Set), (SenCHI
• : SigCHI → Set) and (SenCHI

1 :
SigCHI → Set) of SenCHI such that any sentence of SenCHI

1 (Δ), where Δ ∈ |SigCHI|,
is semantically equivalent in CHI to a sentence of the form

∧
H ⇒ C, where

H ⊆ SenCHI
∗ (Δ) and C ∈ SenCHI

• (Δ).

Theorem 5. If for each signature Δ ∈ |SigCHI|,
(1) any set B ⊆ SenCHI

∗ (Δ) is basic in HI,6 and
(2) any set Γ ⊆ SenCHI

• (Δ) has an initial Sub-reachable model (MΓ , RΓ ) ∈
|ModCHI(Δ)|,

then any set of sentences of the institution CHI1 = (SigCHI, SenCHI
1 , ModCHI, |=CHI)

has an initial Sub-reachable model.

We apply Theorem 5 to HFOL. The constrained model functor ModCHI is
ModHFOL : SigHFOL → CAT. The functors SenCHI

∗ and SenCHI
• are both instan-

tiated to SenHFOL
0 : SigHFOL → Set. The institution CHI1 is HFOL1, the

restriction of HFOL to sentences of the form
∧

H ⇒ C, where H ∪{C} is a set
of HFOL0 sentences.

Corollary 5. Any set of HFOL1 sentences has an initial SubFOL-reachable
model.

We apply Theorem 5 to IHFOL. The institution CHI is IHFOL. The func-
tor SenCHI

∗ is the restriction of (SenHFOL
0 : SigHFOL → Set) to SigIHFOL.

The functor SenCHI
• is (SenIHFOL

0 : SigIHFOL → Set). The sentence functor
SenCHI

1 is (SenIHFOL
1 : SigIHFOL → Set) such that for all Δ ∈ |SigIHFOL|

the set SenIHFOL
1 (Δ) consists of sentences of the form

∧
H ⇒ C, where

H ⊆ SenHFOL
0 (Δ) and C ∈ SenIHFOL

0 (Δ).

Corollary 6. Any set of IHFOL1 sentences has an initial SubFOL-reachable
model, where IHFOL1 = (SigIHFOL, SenIHFOL

1 , ModIHFOL, |=IHFOL).

6 This condition implies that there exists a basic model (MB , RB) ∈ |ModHI(Δ)|, but
it is also possible that (MB , RB) �∈ |ModCHI(Δ)|.
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4.3 Nominal Quantification

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCHI : SigCHI → CAT for HI, and two
sub-functors (SenCHI

1 : SigCHI → Set) and (SenCHI
2 : SigCHI → Set) of SenCHI

such that all sentences of CHI2 = (SigCHI, SenCHI
2 , ModCHI, |=CHI) are semantically

equivalent in CHI to a sentence of the form (∀j)ρ, where j is a nominal variable
and ρ is a sentence of CHI1 = (SigCHI, SenCHI

1 , ModCHI, |=CHI).

Theorem 6. If every set of sentences of CHI1 has an initial Sub-reachable model
then each set of sentences of CHI2 has an initial Sub-reachable model.

The following result is essential for applying Theorem6 to concrete examples of
institutions.

Lemma 5. In the institution CHI, any sentence
∧

H ⇒ C is semantically equiv-
alent to (∀j)

∧{@jh | h ∈ H} ⇒ @jC, and any sentence @j@kρ is semantically
equivalent to @kρ.

We apply Theorem 6 on top of HFOL1 defined in Subsect. 4.2. The institu-
tion CHI is HFOL, and the institution CHI1 is HFOL1. The sentence func-
tor SenCHI

2 is (SenHFOL
2 : SigHFOL → Set) which associates to each signature

Δ = (Σ,Nom,Λ) ∈ |SigHFOL| the set of sentences of the form
∧

H ⇒ C, where
H ∪ {C} consists of sentences obtained from nominal sentences (e.g. k ∈ Nom),
hybrid relational atoms (e.g. λ(k1, . . . , kn) ∈ SenIHFOL(Δ)) and FOL atoms
(e.g. t1 = t2 ∈ SenFOL

0 (Σ) and π(t1, . . . , tn) ∈ SenFOL
0 (Σ)) by applying the

sentence building operator @.7

Corollary 7. Any set of sentences in HFOL2 has an initial SubFOL-reachable
model.

Proof. By Lemma 5, any sentence in HFOL2 is semantically equivalent to a
sentence of the form (∀j)ρ, where j is a nominal variable and ρ is a sentence of
HFOL1. By Corollary 6, any set of sentences in HFOL1 has an initial SubFOL-
reachable model. By Theorem 6, any set of sentences in HFOL2 has an initial
SubFOL-reachable model. �	
We apply Theorem 6 on top of HFOL2. Let HFOL3 be the institution obtained
from HFOL by restricting the syntax to sentences of the form (∀J)ρ, where J
is a finite set of nominal variables and ρ is a quantifier-free sentence of HFOL2.

Corollary 8. Any set of HFOL3 sentences has an initial SubFOL-reachable
model.

We call the HFOL3 sentences hybrid Horn clauses of the institution HFOL.
Since PL is obtained from FOL by restricting the category of signatures,
Corollary 8 holds also for HPL. We apply Theorem 6 on top of IHFOL1 defined
7 The institution HFOL2 contains also sentences that are free of @. It follows that

SenHFOL
1 (Δ) � SenHFOL

2 (Δ) for all Δ ∈ |SigHFOL|.
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in Subsect. 4.2. The sentence functor SenCHI
1 is (SenIHFOL

1 : SigIHFOL → Set).
The functor SenCHI

2 is (SenIHFOL
2 : SigIHFOL → Set) which associates to each

signature the set of sentences of the form
∧

H ⇒ C, where

(a) H consists of sentences obtained from nominal sentences, hybrid relational
atoms, and FOL atoms by applying the sentence building operator @, and

(b) C is a sentence obtained from hybrid relational atoms and FOL atoms by
applying @.

Corollary 9. Any set of sentences in IHFOL2 has an initial SubFOL-reachable
model.

Another application of Theorem6 can be found in Subsect. 4.4.

4.4 Inherited Quantification

In addition to the assumptions made at the beginning of this section, let us
consider a constrained model functor ModCIHI : SigCIHI → CAT for the injective
hybridisation IHI, a quantification subcategory Q ⊆ D, and two sub-functors
(SenCIHI

2 : SigCIHI → Set) and (SenCIHI
3 : SigCIHI → Set) of SenCIHI such that

(1) the sentences of CIHI2 = (SigCIHI, SenCIHI
2 , ModCIHI, |=CIHI) are semantically

closed to @, i.e. for all Δ ∈ |SigCIHI|, k ∈ Nom and ρ ∈ SenCIHI
2 (Δ) there

exists ε ∈ SenCIHI
2 (Δ) such that @kρ |=|CIHI ε,

(2) In CIHI, any sentence of Sen3(Σ,Nom,Λ), where (Σ,Nom,Λ) ∈ |SigCIHI|,
is semantically equivalent to a sentence of (∀χ)ρ, where (Σ,Nom,Λ)

χ→
(Σ′, Nom,Λ) ∈ QHI and ρ ∈ SenCIHI

2 (Σ′, Nom,Λ),
(3) for any (Σ,Nom,Λ) ∈ |SigCIHI| and Σ

χ→ Σ′ ∈ D we have (Σ′, Nom,Λ) ∈
|SigCIHI|, and

(4) for any hybrid substitution Θ = {(Σ
χ1→ Σ1)

θk→ (Σ
χ2→ Σ2)}k∈Nom and

sentence ρ ∈ SenCIHI
2 (Σ1, Nom,Λ) we have Θk(ρ) ∈ SenCIHI

2 (Σ2, Nom,Λ).

Theorem 7. If every set of sentences of CIHI2 has an initial Sub-reachable
model then each set of sentences of CIHI3 has an initial Sub-reachable model.

We apply Theorem 7 on top of IHFOL2 defined in Subsect. 4.3. The institution
CIHI is IHFOL, and the institution CIHI2 is IHFOL2. Note that IHFOL2

is closed to @, which means that assumption (1) of this subsection holds. The
institution CIHI3 is IHFOL3, the restriction of IHFOL to sentences of the
form (∀X)ρ, where X is a finite set of first-order variables and ρ is a sen-
tence in IHFOL2.8 This implies that assumption (2) of this subsection holds.
Since DHI ⊆ SigIHFOL, assumption (3) of this subsection holds. All sentences of
IHFOL2 are quantifier-free and modal-free, and by applying a hybrid substitu-
tion to a IHFOL2 sentence, the result is also a IHFOL2 sentence. It follows
that assumption (4) of this subsection holds.
8 Note that (∀X)ρ is an abbreviation for (∀χ)ρ, where χ : (Σ, Nom, Λ) ↪→
(Σ[X], Nom, Λ) ∈ QHFOL is a signature extension with the finite set of first-order
variables X and ρ ∈ SenIHFOL

2 (Σ[X], Nom, Λ).
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Corollary 10. Any set of IHFOL3 sentences has an initial SubFOL-reachable
model.

We apply Theorem 6 on top of the institution IHFOL3 defined above. Let
IHFOL4 be the institution obtained from IHFOL by restricting the syntax
to sentences of the form (∀J)ρ, where J is a finite set of nominal variables and
ρ is a sentence of IHFOL3.

Corollary 11. Every set of IHFOL4 sentences has an initial SubFOL-reachable
model.

We call the IHFOL4 sentences hybrid Horn clauses of the institution IHFOL.
Defining a paramodulation procedure for IHFOL4 is future research. However,
the results obtained in this paper set the foundation for this direction of research.

Any sentence of the form (↓ j)ρ is semantically equivalent to (∀j)j ⇒ ρ. It
follows that initiality is closed under store ↓. If λ ∈ Λ2 then [λ](ρ) is semantically
equivalent to (∀k)λ(k) ⇒ @kρ. It follows that initiality is closed under box �
when Λn = ∅ for all n �= 2.

5 Herbrand’s Theorem

We prove a version of Herbrand’s theorem in the framework of hybrid
institutions.

Theorem 8. Let I = (Sig, Sen, Mod, |=) be an institution, D ⊆ Sig a broad
subcategory of signature morphisms, Sub : Dop → CAT a substitution functor
for I and Q ⊆ D a quantification subcategory. Consider a constrained model
functor ModCIHI : SigCIHI → CAT for the injective hybridisation IHI such that

(1) for any (Σ,Nom,Λ) ∈ |SigCIHI| and Σ
χ→ Σ′ ∈ D we have (Σ′, Nom,Λ) ∈

|SigCIHI|.
Assume a sub-functor (SenCIHI

b : SigCIHI → Set) of SenCIHI such that

(2) any B ⊆ SenCIHI
b (Σ,Nom,Λ) is basic in HI, where (Σ,Nom,Λ) ∈ |SigCIHI|.

Let Δ = (Σ,Nom,Λ) ∈ |SigCIHI| be a signature, k ∈ Nom a nominal,
Γ ⊆ SenCIHI(Δ) a set of sentences that has an initial Sub-reachable model
(MΓ , RΓ ) ∈ |ModCIHI(Δ)|, and (∃J)(∃χ)ρ ∈ SenCIHI(Δ) a sentence such that
(a) J is a set of nominal variables, (b) Δ

χ→ Δ′ ∈ QHI with Δ′ = (Σ′, Nom,Λ),
and (c) ρ ∈ SenCIHI

b (Δ′[J ]) with Δ′[J ] = (Σ′, Nom ∪ J,Λ). Then the following
statements are equivalent:

(i) Γ |=CIHI @k(∃J)(∃χ)ρ,
(ii) (MΓ , RΓ ) |=k(RΓ ) (∃J)(∃χ)ρ,
(iii) there is a hybrid substitution Θ = {θj : (Σ

χ→ Σ′) → (Σ
ϕ→ Σ′′)}j∈Nom and

a nominal substitution ψ : J → Nom such that Γ |=CIHI @k(∀ϕ)Θk(ψ(ρ))
and ϕ : (Σ,Nom,Λ) → (Σ′′, Nom,Λ) is conservative in CIHI.
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The pair of substitutions 〈ψ,Θ〉 from the statement (iii) of Theorem 8 are called
solutions. The sentence @k(∃J)(∃χ)ρ is a query. The implication (i) ⇒ (iii)
reduces the satisfiability of a query by a program (represented here by a hybrid
theory) to the search of a pair of substitutions, while the converse implication
(iii) ⇒ (i) shows that solutions are sound with respect to the given program.
We apply Theorem 8 to IHFOL. Since DHFOL ⊆ SigIHFOL the second hypoth-
esis holds. The functor SenCIHI

b is (SenIHFOL
b : SigIHFOL → Set) such that for

each (Σ,Nom,Λ) ∈ |SigIHFOL| the set SenIHFOL
b (Σ,Nom,Λ) consists of finite

conjunctions of sentences in SenHFOL
0 (Σ,Nom,Λ). By Corollary 3, any set of

sentences in HFOL0 is epi basic in HFOL, which implies that any conjunction
of sentences in HFOL0 is also epi basic in HFOL. It follows that condition (2)
of Theorem 8 holds. By Corollary 11, any set of hybrid Horn clauses in IHFOL4

has an initial model. Note that for any nominal k, we have (∃J)(∃X)ρ |=|HFOL

@k(∃J)(∃X)ρ, which implies (∃J)(∃X)ρ |=|IHFOL @k(∃J)(∃X)ρ. In IHFOL,
the queries are sentences of the form (∃J)(∃X)ρ, where ρ is a finite conjunction
of HFOL0 sentences.

Corollary 12. For any set of sentences Γ ⊆ SenIHFOL4((S, F, P ), Nom,Λ),
where ((S, F, P ), Nom,Λ) ∈ |SigIHFOL|, and any query (∃J)(∃X)ρ, where ρ is
a finite conjunction of sentences in SenHFOL

0 ((S, F ∪ X,P ), Nom ∪ J,Λ) the
followings are equivalent:

(i) Γ |=IHFOL (∃J)(∃X)ρ,
(ii) (MΓ , RΓ ) |=IHFOL (∃J)(∃X)ρ,
(iii) there exists a hybrid substitution Θ = {θj : X → T(S,F,P )(Y )}j∈Nom and a

nominal substitution ψ : J → Nom such that Γ |=IHFOL (∀Y )Θk(ψ(ρ)) for
some k ∈ Nom and the sorts of variables in Y are inhabited, i.e. for any
sort s ∈ S and variable y ∈ Ys there exists a term t ∈ T(S,F,P ).

The inhabitation requirement for the sorts of the variables in Y means that the
inclusion ιy : ((S, F, P ), Nom,Λ) → ((S, F ∪Y, P ), Nom,Λ) is conservative. The
restriction to injective hybridisations required by Theorem8 is not needed if the
quantification subcategory consists of identities. For example, one can prove a
version of Herbrand’s theorem for hybrid institutions that can be instantiated
to HPL.

6 Conclusions

In this paper we have proved the existence of initial models of hybrid Horn
clauses. Our initiality results are not based on inclusion systems and quasi-
varieties as in [6]. The proof follows the structure of the sentences in the style
of [9]. We assume that the atomic sentences of the base institution are epi basic
and then the initiality property is proved to be closed under certain sentence
building operators. This approach requires less model theoretic infrastructure
than [6] and it can be applied to theories for which the corresponding class of



Foundations of Logic Programming in Hybridised Logics 89

models does not form a quasi-variety. We have developed denotational founda-
tions for logic programming in hybrid logics independently of the details of the
underlying base institution by employing institutional concepts of quantifica-
tion, substitution, reachable model and basic set of sentences. In this general
setting we have proved Herbrand’s theorem. A future direction of research is
developing a paramodulation procedure for hybrid logics. The results presented
in this paper which do not involve inherited quantification can be applied to
hybrid logics with model constraints [6], but much work is needed to cover the
rigid quantification [2]. This constitutes another future direction of research.
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Abstract. The notion of signature morphism is basic to the theory of
institutions. It provides a powerful primitive for the study of specifica-
tions, their modularity and their relations in an abstract setting. The
notion of derived signature morphism generalises signature morphisms
to more complex constructions, where symbols may be mapped not only
to symbols, but to arbitrary terms. The purpose of this work is to study
derived signature morphisms in an institution-independent way. We will
recall and generalize two known approaches to derived signature mor-
phisms, introduce a third one, and discuss their pros and cons. We espe-
cially study the existence of colimits of derived signature morphisms.
The motivation is to give an independent semantics to the notion of
derived signature morphism, query and substitution in the context of
the Distributed Ontology, Modeling and Specification Language DOL.

1 Introduction

The notion of signature morphism is basic to the theory of institutions. It pro-
vides a powerful primitive for the study of specifications, their modularity and
their relations in an abstract setting. The notion of derived signature morphism
generalises signature morphisms to more complex constructions, where symbols
may be mapped not only to symbols, but to arbitrary terms. Derived signature
morphisms have been introduced in [15] and studied in [5,6,16,20,21]. Recently,
the notion of derived signature morphism has gained attention in the field of
model-driven engineering [9], databases [8], analogies [23], and ontologies1.

In this paper we investigate derived signature morphism and their proper-
ties. We recall and generalize two known approaches to derived signature mor-
phisms, and introduce a third one. All current works define derived signature
morphisms in specific institutions. We look for a way to formulate the concept in
an institution-independent way. Especially we look for a semantics of derived sig-
nature morphisms in languages with institution-independent semantics. We also
investigate the question to what extent we can combine systems along derived
signature morphisms (via colimits).

1 Cmp. the work on the new OMG standard. Distributed Ontology, Modeling and
Specification Language (DOL), see http://ontoiop.org.
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The paper is structured as follows: Sect. 2 introduces examples from differ-
ent fields. In Sect. 3 we briefly summarise some relevant notions from institution
theory. The first approach to derived signature morphisms is to consider them
to be ordinary signature morphisms into a definitional extension (Sect. 4). The
second approach is to consider derived signature morphisms to be abstract sub-
stitutions that induce mappings on syntactic and semantic level (Sect. 5). The
third approach is to consider institutional monads, which have derived signature
morphisms as signature morphisms in their Kleisli institution (Sect. 5). We finish
by discussing pros and cons and collecting open questions.

2 Examples

In specification theory derived signature morphisms may map between equivalent
representations:

Example 1 (Boolean rings and algebras). It is well known, that Boolean rings
and algebras are essentially the same thing. However, a mapping between these
specifications has to cope with the fact, that the algebraic ∨ is an inclusive
disjunction while the ring addition is an exclusive disjunction:

interpretation i : BooleanAlgebra to BooleanRing =
∧ �→ λx,y.x·y
∨ �→ λx,y.x+y+x·y
¬ �→ λx.1+x

end

interpretation j : BooleanRing to BooleanAlgebra =
· �→ λx,y.x∧y
+ �→ λx,y.(x∨y)∧¬(x∧y)

end

Note that operation symbols are mapped to λ-terms. The λ-variables open
a context of variables for the subsequent terms. The number of λ-variables (or,
for sorted logics, their sort string) must correspond to the arity of the operation
symbol. further mote that the order λ-variables: λx, y.x is different from λx, y.y.

Derived signature morphisms also play an important role in model-driven
engineering (MDE). A problem that appears in practice when combining multiple
models is that different models specify the same information differently.

Example 2. A related field of application is databases. Suppose we have two
databases that we intend to use to store information about people, which were
designed independently. We now wish to merge the information in the data-
bases, We begin by merging the schema used to define the databases. To define
the merge, we have to identify what the relationships are between the relation
names and attributes of the two schema. Let the signature of DB1 be 〈{Persons},
{Name,Gender ,Age}〉, where Persons is the name of the database relation
(table) intended to contain the information and Name, Gender and Age are
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attributes (columns) of this relation. Ditto DB2, with signature 〈{MaleFemale},
{Name,Bdate,Bplace}〉, where we have two relations, Male and Female, and
they both have attributes Name, B(irth)date and B(irth)place. In order to cre-
ate a suitable merge, we have to decide what matches what in the two schemas.
Clearly the attribute Gender of DB1 and the relations Male and Female are
related, but cannot directly be matched as there is a type mismatch. If in DB1

we define two new (derived) relations Male and Female, i.e., create a view of
DB1, both with attributes Name and Age, we will have “solved” the type mis-
match problem for this aspect of the merge. These two relations can be defined
as an extension of the original DB1 schema by using an appropriate query in,
say SQL. This is analogous to creating a definitional extension in FOL (see
Example 5). So now we have DB′

1 with the three relation names and the same
attribute names.

Similarly, we can extend DB2 with an extra attribute Age derived from Bdate
via an appropriate query and obtain DB′

2 with relations Male ′ and Female ′,
and the extra attribute name Age. Now we define a span between DB′

1 and
DB′

2, on the basis of which we can create the appropriate merged database
schema by computing the colimit of the span. The database scheme DB at the
apex of the span has signature 〈Male,Female,Name,Age〉. The maps connecting
this scheme to DB′

1 connect Male with Male, Female with Female, Name with
Name and Age with Age. This is a Kleisli map between DB and DB1, mapping
DB to a definitional extension of DB1. The maps connecting DB with DB′

2

connect Male with Male ′ of DB′
2, Female with Female ′, Name with Name and

Age with Age. Again, this defines a Kleisli between DB and DB2. Then, the
corresponding pushout will be the “correct” merge of the two database schemas,
avoiding redundancy in the merge and minimising the redundancy of data in the
merged scheme.

Of course, having obtained the merged scheme, we would now want to merge
the corresponding data. Database schemes correspond to theories and database
instances correspond to models of theories. This framework could be used to
derive the datamerge from the schema merge via amalgamation results. An alter-
native approach using a fibrational approach is outlined in [9].

Another field of interest are analogies. An analogy identifies common struc-
tures in the same or two different domains (source and target). In other words,
an analogy basically consists of a common structural core that is instantiated in
both, source and target.

Generalisation
(abstract core)

Source
analogical relation

Target

Hence, in logic an analogy can be formalised by giving a set of generalised for-
mulas together with a pair of mappings, that map these formulas into the source
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and target respectively.2 However, in many cases plain signature morphisms do
not suffice to describe such a mapping, so derived signature morphisms offer a
natural solution:

Example 3 (heat flow).3 The heat flow analogy is well-known from physics edu-
cation. The analogy is intended to introduce the concepts of heat and heat flow
by comparing them to water and water flow. A simple description of this analogy
may consist of the following observations: on the source side there are to vessels,
a beaker and a vial, connected via a pipe. If the height of the water in the beaker
is greater than the height of the water in the vial, water will flow and the height
of the water in the beaker will decrease while the height of the water in the vial
will increase. On the target side a metal bar is put into a cup of hot coffee. An
ice cube is attached to the upper end of the bar. It is observed, that the coffee
cools down while the ice heats up and finally melts. A logic-based representation
of this description may contain the following formulas:

(G1) connected(A,B,C)
(G2) ∀t1 : time, t2 : time : t2 > t1

∧T (A, t1) > T (B, t1)
→ T (A, t2) < T (A, t1) ∧ T (B, t2) > T (B, t1)

(S1) connected(beaker, vial, pipe)
(S2) ∀t1 : time, t2 : time : t2 > t1

∧ height(in(water, beaker), t1)
> height(in(water, vial), t1)

→ height(in(water, beaker), t2)
< height(in(water, beaker), t1)

∧ height(in(water, vial), t2)
> height(in(water, vial), t1)

(T1) connected(in(coffee, cup), ice cube, bar)
(T2) ∀t1, t2 : time : t2 > t1

∧temp(in(coffee, cup), t1)
> temp(ice cube, t1)

→ temp(in(coffee, cup), t2)
< temp(in(coffee, cup), t1)

∧ temp(ice cube, t2)
> temp(ice cube, t1)

Here it is essential, that an object on the target side is matched to a vessel on the
source side (but not to the water in the vessel). Hence, the following (derived)
signature morphisms should be applied:

beaker ←� A �→ in(coffee, cup)
vial ←� B �→ ice cube
pipe ←� C �→ bar

λxλh.height(in(water, x), t) ←� T �→ λxλh.temp(x, t)

3 Institutions

The study of derived signature morphisms can be carried out largely indepen-
dently of the nature of the underlying logical system. We use the notion of
2 Such an approach is used by the HDTP framework, described in [23].
3 Simplified version from [23].
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institution introduced by Goguen and Burstall [13] in the late 1970s (see [6] for
a recent overview). It approaches the notion of logical system from a relativistic
view: rather than treating the concept of logic as eternal and given, it accepts
the need for a large variety of different logical systems, and instead asks about
common principles shared across logical systems. A crucial feature of institu-
tions is that logical structure is indexed by signature, and change of signature
is accounted for by signature morphisms; this is of course what we need as a
prerequisite for the concept of derived signature morphism.

Definition 1. An institution I = (Sign,Sen,Mod, |=) consists of

– a category Sign of signatures and signature morphisms,
– a functor Sen : Sign → Set,4 giving a set Sen(Σ) of Σ-sentences for each

signature Σ ∈ |Sign|, and a function Sen(σ) : Sen(Σ) → Sen(Σ′), denoted
by σ( ), that yields σ-translation of Σ-sentences to Σ′-sentences for each sig-
nature morphism σ : Σ → Σ′;

– a functor Mod : Signop → CAT,5 giving a category Mod(Σ) of Σ-models for
each Σ ∈ |Sign|, and a functor Mod(σ) : Mod(Σ′) → Mod(Σ), denoted by
|σ, that yields σ-reducts of Σ′-models for each signature morphism σ : Σ →

Σ′; and
– for each Σ ∈ |Sign|, a satisfaction relation |=I,Σ ⊆ |Mod(Σ)| × Sen(Σ)

such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ Sen(Σ) and
Σ′-model M ′ ∈ |Mod(Σ′)|:

M ′ |=I,Σ′ σ(ϕ) ⇐⇒ M ′|σ |=I,Σ ϕ [Satisfaction condition]
The satisfaction condition expresses that truth is invariant under change of nota-
tion and context.

Example 4. The institution Prop of propositional logic. Signatures are sets (of
propositional variables), signature morphisms are functions. Models are valua-
tions of propositional variables into {T, F}, model reduct is just composition
of the given model with the corresponding signature morphism. Sentences are
formed inductively from propositional variables by the usual logical connectives.
Sentence translation means replacement of propositional variables along the sig-
nature morphism. Satisfaction is the usual satisfaction of a propositional sentence
under a valuation. �
Example 5. The institution FOL= of many-sorted first-order logic with equal-
ity. Signatures are many-sorted first-order signatures, consisting of a set of sort
and sorted operation and predicate symbols. Signature morphisms map sorts,
operation and predicate symbols in a compatible way. Models are many-sorted
first-order structures. Sentences are first-order formulas. Sentence translation
means replacement of symbols along the signature morphism. A model reduct
interprets a symbol by first translating it along the signature morphism and then
4 The category Set has all sets as objects and all functions as morphisms.
5
CAT is the quasi-category of all categories, where “quasi” means that it lives in a
higher set-theoretic universe.
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interpreting it in the model to be reduced. Satisfaction is the usual satisfaction
of a first-order sentence in a first-order structure. �
Example 6. In [17], we have sketched an institution of database schemas. We
here follow a naive approach: A database schema is essentially a FOL theory
where (some of) the relation symbols correspond to the database relations and
some of the sorts correspond to the database attributes. There may be axioms
of the theory defining concepts like keys and so on. A morphism is simply a
normal theory interpretation. Database instances are then just models over a
fixed universe, with different universes defining different families of instances. An
interesting point to note is that the usual relation algebra operators, like join, can
be seen as patterns for defining endofunctors (in the category of FOL theories and
morphisms) of the theory (database extension) that create definitional extensions
of the database schema to which they are applied. As queries are compositions of
such operators, a query is also an endofunctor defining a definitional extension
of the scheme. �

Semantic entailment in an institution is defined as usual: for Γ ⊆ Sen(Σ)
and ϕ ∈ Sen(Σ), we write Γ |= ϕ, if all models satisfying all sentences in Γ also
satisfy ϕ.

An alternative definition of institution uses so-called ‘rooms’ (in the termi-
nology of [12]), which capture the Tarskian notion of satisfaction of a sentence
in a model:

Definition 2. A room R = (S,M, |=) consists of

– a set of S of sentences,
– a category M of models, and
– a binary relation |= ⊆ |M| × S, called the satisfaction relation.

Then, morphisms between rooms are of course called corridors [12]:

Definition 3. A corridor (α, β) : (S1,M1, |=1) → (S2,M2, |=2) consists of

– a sentence translation function α : S1 → S2, and
– a model reduction functor β : M2 → M1, such that

M2 |=2 α(ϕ1) if and only if β(M2) |=1 ϕ1

holds for each M2 ∈ |M2| and each ϕ1 ∈ S1 ( satisfaction condition).

Since corridors compose and there are obvious identity corridors, rooms and
corridors form a category Room. Then, an institution is just a functor I : Sign →
Room.

Relationships between institutions (and entailment systems) are captured
mathematically by ‘institution morphisms’, of which there are several variants,
each yielding a category under a canonical composition. For the purposes of
this paper, institution morphisms [14] seem technically most convenient. For the
notion of institutional monad introduced below, we also need 2-cells between
institution morphisms, called modifications.

We use the representation of institutions as functors introduced above.
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Definition 4. Given institutions I1 : Sign1 → Room and I2 : Sign2 → Room,
an institution morphism (Φ, ρ) : I1 → I2 consists of a functor Φ : Sign1 → Sign2

and a natural transformation ρ : I2 ◦ Φ → I1.
Given institution morphisms (Φ, ρ) : I1 → I2 and (Φ′, ρ′) : I1 → I2, an insti-

tution morphism modification θ : (Φ, ρ) → (Φ′, ρ′) is just a natural transforma-
tion θ : Φ → Φ′ such that ρ = ρ′ ◦ (I2 · θ).6

This leads to a 2-category Ins of institutions, morphisms and modifications.

Example 7. There is an institution morphism μ1 : FOL= → Prop. From a first-
order signature, it only keeps the nullary predicates, which become propositional
variables. Also from a first-order model, only the interpretations of the nullary
predicates are kept. Moreover, there is an obvious inclusion of Prop-sentences
into FOL=-sentences. The satisfaction condition is easily shown. �
Example 8. Another institution morphism μ2 : FOL= → Prop keeps all pred-
icates from a first-order signature as propositional variables. From a first-order
model, extract a valuation by mapping a predicate to true iff it is universally
true. A propositional variable is translated to a sentence stating that the corre-
sponding predicate holds universally. Again, the satisfaction condition is easily
shown. �
Example 9. The inclusions ιΣ : (μ1)Σ → (μ2)Σ form a modification ι :
μ1 → μ2. �

4 Derived Signature Morphisms Through Definitional
Extensions

In this section, we develop a very general approach to derived signature mor-
phisms, based on two assumptions: (1) signatures are replaced by theories, and
(2) models can be amalgamated. While these assumptions and the idea of let-
ting theory morphisms be targeted in some definitional extension is folklore,
surprisingly little is known about the properties of this construction.

We start with colimits, which can be seen as a tool for combining and inter-
connecting systems, and amalgamation, which ensures that models can be com-
bined along colimits. Amalgamation ensures further nice logical properties, e.g.
laws for modularity [7], availability of institution-independent proof calculi for
structured specifications [2,19] or well-behaved semantics for architectural spec-
ifications [22].

Definition 5. A cocone for a diagram in Sign is (weakly) amalgamable if it
is mapped to a (weak) limit in CAT under Mod. I (or Mod) admits (finite)
(weak) amalgamation if (finite) colimits exists in Sign and colimiting cocones
are (weakly) amalgamable, i.e. if Mod maps (finite) colimits to (weak) limits.

6 The original notion from [4] is a lax variant of this: a morphism ρ → ρ′ ◦ (I2 · θ) is
given instead of equality.
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An important special case is pushouts: I (or Mod) has (weak) model amalga-
mation for pushouts, if pushouts exist in Sign and are (weakly) amalgamable.
More specifically, the latter means that for any pushout

Σ Σ1

Σ2 ΣR

in Sign and any pair (M1,M2) ∈ Mod(Σ1)×Mod(Σ2) that is compatible in the
sense that M1 and M2 reduce to the same Σ-model can be amalgamated to a
unique (or weakly amalgamated to a not necessarily unique) ΣR-model M (i.e.,
there exists a (unique) M ∈ Mod(ΣR) that reduces to M1 and M2, respectively),
and similarly for model morphisms.

This specific explanation in terms of compatible families of models that can
be amalgamated also generalises to arbitrary colimits.

For example, it is well-known [21] that

Proposition 1. Both propositional logic and many-sorted first-order logic both
have model amalgamation.

In the sequel, we work in an arbitrary but fixed institution I = (Sign,Sen,Mod,
|=).

Definition 6. A theory is a pair T = (Σ,Γ ) where Γ is a set of Σ-sentences.
A theory morphism (Σ,Γ ) → (Σ′, Γ ′) is a signature morphism σ : Σ → Σ′

such that Γ ′ |=Σ′ σ(Γ ). Let Th(I) denote this category. Each theory (Σ,Γ )
inherits sentences from SenI(Σ), while the models are restricted to those models
in ModI(Σ) that satisfy all sentences in Γ . It is easy to see that I maps theory
morphisms to corridors in this way. By taking Th(I) as “signature” category,
we arrive at the institution ITh of theories.

Definition 7. A theory morphism σ : T1 → T2 is conservative, if each T1-model
has a σ-expansion to a T2-model; it is definitional, if each model has a unique
such expansion. Definitional theory morphisms are also called definitional exten-
sions and are denoted as T1 • σ

T2.

Definition 8. A derived theory morphism (σ, θ) : T1 → T2 is given by an ordi-
nary theory morphism σ : T1 → T ′

2 into a definitional extension θ : T2 • T ′
2

of T2.

Every theory morphism σ : T1 → T2 is a derived theory morphism with
respect to the identity id : T2 • T2. We can define reducts for arbitrary derived
theory morphisms by first taking the unique θ-expansion and then taking σ-
reduct.
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T ′
2

T1

σ

T2

•
θ

Mod(T ′
2)

Mod(σ)
Mod(θ)

Mod(T1) Mod(T2)

∃!

If we had based derived theory morphisms on conservative instead of definitional
extensions, reducts would exist but generally would not be unique due to the
possibility to have several different θ-expansions.

Example 10. In the setting of Example 1, we can construct a derived theory
morphism Tring → Talgebra via definitional extension T ′

algebra:

Σ′
algebra := Σalgebra ∪ {+}

Γ ′
algebra := Γalgebra ∪ {x + y = (x ∨ y) ∧ ¬(x ∧ y)}

One can then define an ordinary signature morphism σ : Σring → Σ′
algebra by

mapping · �→ ∧ and + �→ +.

Note that there is a caveat: adding defined symbols generally can change
the notion of model morphism. For example, consider a FOL=-signature with
a binary predicate symbol Q. Then adding a unary predicate symbol P with
definition

P (x) ⇔ ∀y.Q(x, y)

is indeed a definitional extension. However, not every model morphism for Q will
also preserve P . As a consequence, derived theory morphisms in general do not
provide reducts for model morphisms. Hence, in the sequel, we have to make the
following

General Assumption. Model morphisms are compatible with definitional
extensions, which means that given a definitional extension σ : T1 → T2, every
T1-model morphism h1 : M1 → M ′

1 has a unique expansion to a T2-model mor-
phism h2 : M2 → M ′

2, where M2 is the unique expansion of M1 and M ′
2 that

of M ′
1.

One simple way to achieve this property is to dispense with non-trivial model
morphisms and use discrete model categories. Another way is to restrict formu-
las in derived theory morphisms to those that are compatible with all model
morphisms. Both ways have certain drawbacks, but there is no easy solution to
this problem.

Further note that in general a derived theory morphism T1 → T2 does not
provide a translation of T1-sentences to T2-sentences. This means that we will
arrive at a category of theories and derived theory morphisms which form a
specification frame, which is given by a category Spec of (abstract) specifications
(or theories), with semantics given by a model functor Mod : Specop → CAT.
The terminology follows [3], the concept appeared earlier as “specification logic”
in [10,11]). As before, functions Mod(σ), for σ : T1 → T2 in Spec, will be called
reducts and denoted by |σ.
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Our derived theory morphisms are similar to morphisms in the category
Cospan(ITh). However, the latter category has severe drawbacks: generally, only
some colimits exist, see [1]. Moreover, the equivalence used for cospans, isomor-
phism of intermediate objects, is much too fine-grained for our purposes. In
general, there are many choices for a derived signature morphism due to under-
determination of the intermediate theory T ′

2: arbitrary symbols may be added to
the signature Σ′

2 and equivalent formulations of the sentences in Γ ′
2 can be cho-

sen. Such modifications do not change the essence of the morphism, i.e. induced
mappings on model level. The following definition will account for this fact:

Definition 9. Two derived theory morphisms (σ1, θ1), (σ2, θ2) : T1 → T2 are
equivalent, if their induced model reduct maps are equal.

Proposition 2. In am institution I with model amalgamation for pushouts,
derived theory morphisms compose. This leads to a category Der(I) of derived
theory morphisms up to equivalence.

Proof. The composition (σ2, θ2) ◦ (σ1, θ1) is given by (σ ◦ σ1, θ ◦ θ2), where the
rhombus is a pushout:

T ′
2

σ

T ′
3

θ

T1

σ1

T2

θ1
σ2

T3

θ2

In order to show that θ ◦ θ2 is definitional, it suffices to show that θ is (θ2 is
by definition). Let M ′

3 be T ′
3-model. Since θ1 is definitional, M ′

3|σ2 has a unique
expansion to a T ′

2-model M ′
2. Then the unique amalgamation of M ′

3 and M ′
2

gives a the unique desired expansion of M ′
3. This shows the folklore fact that

definitional extensions are preserved by pushouts.
Composition is well-defined, because different pushouts always lead to equiv-

alent derived theory morphisms. �
Note that in case that θ1 = id, the composition simplifies to (σ2 ◦ σ1, θ2).

Further note that for the verification of commutativity of diagrams in Der(I),
it is often easier to compose model reduct maps; this avoids the computation of
the above pushout.

Altogether, we arrive at

Theorem 1. For a given institution I, theories and their models together with
derived theory morphisms and their reducts from a specification frame IDer.

A central result is to establish the existence of colimits in Der(I):

Theorem 2. In an institution with model amalgamation, the category Der(I)
of derived theory morphisms is cocomplete.
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Proof. First note that colimits lift from signatures to theories [13], so we can
assume that the category of theories Th(I) is cocomplete.

The initial theory 0 is also initial in Der(I): Given any theory T , the derived
theory morphism from 0 to T is (!T , idT ). Concerning its uniqueness, note that by
model amalgamation, Mod(0) is a singleton, which means that there all derived
theory morphisms starting from 0 are equivalent.

Concerning non-empty products, given a set of theories (Ti)i∈I , its coprod-
uct

∐
I Ti in the category of theories lifts to Der(I). The coproduct injections

in Der(I) are . To show the universal property, let

Ti
τi

Ui T
θi be a cocone in Der(I). Let (C, (μi : Ui → C)i∈I) be the

colimit of ( U
θi

Ui )i∈I in Th(I). Then let τ :
∐

I Ti → C be [μi]I ◦ ∐
I τi.

Pick some i0 ∈ I. The mediating morphism from the colimit to the cocone is
then (τ, μi0 ◦ θi0) :

∐
I Ti → T (μi0 ◦ θi0 is equal to μi ◦ θi for any i ∈ I).

μi0 ◦ θi0 is definitional: any T -model M has unique θi-expansions Mi ∈ Mod(Ui)
for i ∈ I. Then M together with the Mi form a compatible family of models
for ( U

θi

Ui )i∈I. By model amalgamation, this family has a unique amal-
gamation to a model MC of the colimit C such that MC |μi

= Mi. Now μi0 ◦ θi0

commutes with the cocones, because (1) given a T -model, its unique C-expansion
reduces via μi to its unique Ui-expansion and (2) the left triangle commutes by
definition of τ .

C
∐

I Ti

τ

Ti

�i

τi
T

μi◦θi=μi0◦θi0

θi

Ui

μi

To show its uniqueness, assume that there is another morphism (λ, θ) :
∐

I Ti →
T with (λ, θ) ◦ (�i, id) = (τi, θi), which means that the two model reduct maps
from T to Ti are the same:

Ui

Ti

τi

�i

T

θi

θ

∐
I Ti

λ

But then (λ, θ) = (τ, μi0 ◦ θi0) by model amalgamation:
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C
∐

I Ui

[μi]I

∐
I Ti

∐
I τi

λ

T

μi0◦θi0

θ

It remains to treat coequalisers. Given a pair of parallel derived theory mor-
phisms (σ1, θ1), (σ2, θ2) : T → U , its coequaliser in Der(I) is given by (μ, idC),
which is obtained as the following colimit of theories:

U1

μ1

T

σ1

σ2

U

θ1

θ2

μ
C (∗)

U2

μ2

By definitionality of θ1 and θ2 and model amalgamation, (μ, idC) is an epi
in Der(I). Concerning the universal property, consider any cocone in Der(I)
(τ, θ) : U → D. Take the pushout of theories shown in the left square

C

κ

U

μ

τ

E

V

λ

D
θ

Then (κ, λ◦θ) : C → D is the mediating morphism. To establish definitional-
ity of λ, consider any V -model M . Let Mi ∈ Mod(Ui) by the unique θi-expansion
of MU := M |τ (i = 1, 2). Since (τ, θ) is a cocone, (τ, θ)◦(σ1, θ1) = (τ, θ)◦(σ1, θ1).
Now consider the D-model MD := M |θ. Then

M1|σ1 = MU |(σ1,θ1) = MD|(τ,θ)◦(σ1,θ1) = MD|(τ,θ)◦(σ2,θ2) = MU |(σ2,θ2) = M2|σ2

Let us denote this model by MT . Thus, (MT ,MU ,M1,M2) is a compatible family
of models for the diagram (∗) above (without the C), which by model amalga-
mation can be amalgamated to a C-model MC . Let ME be the amalgamation
of MC and M . Then ME is the needed λ-expansion of M . Its uniqueness follows
from those of the amalgamations.

From the diagram above we easily get that (κ, λ ◦ θ) ◦ (μ, idC) = (τ, θ).
Uniqueness follows since (μ, idC) is an epi in Der(I). �

A natural follow-up question is whether the specification frame IDer admits
amalgamation. Under some mild assumption, the answer is positive:
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Theorem 3. IDer admits amalgamation whenever I does.

Proof. Since Der(I) inherits coproducts from I, also amalgamation lifts. Con-
cerning coequalisers, in the notion of diagram (∗) above, let MU a U -model
such that MU |(σ1,θ1) = MD|(τ,θ)◦(σ1,θ1). Let Mi ∈ Mod(Ui) be the unique θi-
expansion of MU (i = 1, 2). Then (MU |θ1 ,M1,M2,MU ) is a compatible family
for (∗) without C. This family can be uniquely amalgamated to a model MC of
C, which is the desired amalgamation in Der(I). Uniqueness follows from that
of the amalgamation in I and that of definitional extensions. �

We have defined equivalence of derived theory morphisms using a semantic
condition that is undecidable in general. However, for specific institutions, one
can do better. For example, in FOL=, one can restrict definitional extensions to
those that are given by explicit definitions of predicate and function symbols (i.e.
by equivalence to a formula or equality to a term). Then one can use syntactic
equality of symbol definitions in order to decide equivalence of derived signa-
ture morphisms. This yields an efficiently decidable approximation of semantic
equivalence.

A more syntactic notion of equivalence of derived theory morphisms would
require definitional extensions to be monic. Then, two derived theory morphisms
(σ1, θ1) : T1 → T2 and (σ2, θ2) : T1 → T2 are said to be equivalent, if there is a
theory T ′ and commutative diagrams as follows:

T ′
1

T1

σ1

σ2

T ′ T2

θ1

θ2

T ′
2

Under suitable assumptions, coproducts exist; however, coequalisers do not. This
is why we have chosen the semantic notion of equivalence above.

5 Derived Signature Morphisms as Abstract
Substitutions

The second approach to derived signature morphisms is to consider them to be
a special kind of abstract substitution in the sense of [5,6]. Such Σ-substitutions
generalise the idea of substitutions found in many logics to arbitrary institutions.
The extension of a signature by a set of variables is expressed by a signature
morphism χ : Σ → Σ′, leading to the following definition (we give a version that
makes use of rooms and corridors):

Definition 10. For any signature Σ of an institution I, with two “extensions”
χ1 : Σ → Σ1 and χ2 : Σ → Σ2, a Σ-substitution χ1 → χ2 is a corridor
ρ : I(Σ1) → I(Σ2) that preserves Σ, i.e. the following diagram commutes
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I(Σ1)
ρ

I(Σ2)

I(Σ)
I(χ1) I(χ2)

The idea of this definition is the existence of sentence translations and model
reducts between extensions of a signature. This makes it a very general concept,
that covers besides classical first-order substitution also second-order substitu-
tions in FOL= and also derived signature morphisms. [6, 99f] demonstrates this
for the case of FOL=:7 for a given base signature Σ, a derived signature Φ(Σ) is
constructed. There exists a canonical embedding η : Σ → Φ(Σ). It is then shown
that sentences over the derived signature can be translated to sentences over the
base signature and that a model for the base signatures provide a model for the
derived signature, i.e. there is a corridor ρ from I(Φ(Σ)) to I(Σ). In summary,
such a derivation is a Σ-substitution from η to id (this could also be expressed
simply by saying that ρ is a retraction of I(η) in the category Room).

Given such a derivation (Φ, η, ρ) for a signature Σ2, a derived signature mor-
phism from Σ1 to Σ2 is defined as an ordinary signature morphism σ : Σ1 →
Φ(Σ2). The substitution condition assures, that sentence translation and model
reduction hold for the underlying base category, i.e. Σ1-sentences can be trans-
lated to Σ2-sentences, and Σ2-models can be reduced to Σ1-models along σ by
detour over Φ(Σ2):

I(Φ(Σ2))

ρΣ2

I(Σ1)

I(σ)

I(Σ2)

Analysing the above example, one can find the following ingredients that seem
to be essential to introduce the concept of derivation in an institution I:

– a general way to construct derived signatures, i.e. a functor Φ : Sign → Sign
– a canonical embedding from the base signature to its derivation, i.e. a natural

transformation η : id → Φ
– a translation (corridor) from the “derived logic” to “simple logic”, i.e. a natural

transformation ρ : I ◦ Φ → I
– compatibility of the embedding and the translation, expressed by the condition

ρ ◦ (I · ι) = id

Using the language of institution morphisms and institution morphism modifi-
cations, this amounts to saying:

Definition 11. A derivation for an institution I consists of

– an institution morphism T = (ΦT , ρT ) : I → I and
– an institution morphism modification η : id → T

7 We give only a brief summary here, simplifying and adapting notation.
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This allows to introduce derived signature morphisms between arbitrary signa-
tures of Sign. However, a shortcoming of this approach is that derived signature
morphisms can not be composed in an obvious way. This will be addressed in
the next section.

Before closing this section, it should be remarked that one can use derivations
as an alternative way to introduce substitutions at an abstract level: reconsid-
ering the above situation, where a signature Σ and two extensions χ1 : Σ → Σ1

and χ2 : Σ → Σ2 are given, a derivation-based Σ-substitution χ1 → χ2 is defined
as a derived signature morphism σ : Σ1 → Σ2 that preserves Σ, i.e. it makes
following diagram of signature morphisms commute:

Φ(Σ2)

Σ1

σ

Σ2

ηΣ2

Σ

χ1 χ2

For example, in the case of FOL=, consider extensions χ1 and χ2 of a signature
Σ by first-order variables, i.e. new 0-ary operator names. Then a substitution
μ replaces variables of Σ1 by terms over Σ2, i.e. symbols from a derivation
Φ(Σ2). Higher-order substitutions can be obtained by extending the signature
with higher-order variables, i.e. new operators names with arity > 0. This notion
of derivation-based Σ-substitution, can also be used to introduce an abstract
notion of unification: given a set of Σ1-sentences S, a unifier is a derived signa-
ture morphism μ : Σ1 → Σ1 (that preserves Σ) such that the induced mapping
on sentence level, i.e. ρΣ1 ◦ SenI(μ) : SenI(Σ1) → SenI(Σ1) maps S on a single-
ton set.

This notion of substitution is more specific than the above one, since every
derivation-based Σ-substitution σ is a Σ-substitution in the sense of Definition 10:
the induced corridor ρ = ρΣ2 ◦ I(σ) obviously preserves I(Σ). The advantage of
the derivation-based approach is, that it anchors the corridor ρ in a mapping on
signature level in a natural way, while it stills seems general enough to cover most
interesting cases.

6 Derived Signature Morphisms Through Kleisli
Institutions

The approaches of the previous sections have some drawbacks: In the definitional
extension approach, sentences cannot be translated along derived theory mor-
phisms, while substitution-based derived signature morphisms do not compose.
In this section, we remedy these problems by introducing for each signature Σ, a
signature of terms ΦT (Σ), where T is a suitable monad. Then, a derived signature
morphism σ : Σ1 → Σ2 is an ordinary signature morphism σ : Σ1 → ΦT (Σ2).
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The monad needs to interact with the structure of the institution. This leads to
the notion of institutional monad.

Definition 12. An institutional monad T = (T, η, μ) is a monad in Ins (see
[18] for the notion of monad in a 2-category), which amounts to

– an institution I,
– an institution morphism T = (ΦT , ρT ) : I → I,
– an institution morphism modification η : id → T , and
– an institution morphism modification μ : T × T → T ,

such that the usual laws of a monad are satisfied:

T
ηT

Tη

T × T

μ

T × T × T
μT

Tμ

T × T

μ

T × T
μ

T T × T
μ

T

By selecting the signature component only, an institutional monad T gives
rise to an ordinary a monad, which we denote by T Sign.

Example 11 (monad over the first-order logic institution). Let T be the institu-
tion morphism (ΦT , ρT ) : FOL= → FOL= with ρT

Σ = (αT
Σ , βT

Σ).

– ΦT (Σ) adds terms λx1 : s1, . . . xn : sn.t as n-ary operations and terms λx1 :
s1, . . . xn : sn.ϕ (where ϕ is a formula) as n-ary predicates;

– αT
Σ : Sen(ΦT (Σ)) → Sen(Σ) β-reduces all application of λ-term operations

and predicates;
– βT

Σ : Mod(Σ) → Mod(ΦT (Σ)) interprets λ-term operations and predicates in
βT

Σ(M) as (a1, . . . , an) �→ M(t)[xi �→ ai]
– ηΣ : Σ → ΦT (Σ) is the obvious inclusion;
– μΣ : ΦT (ΦT (Σ)) → ΦT (Σ) collapses two levels of λ-terms into one.

The notion of Kleisli category for a monad can be generalised to institutions
in following way:

Definition 13. Given an institutional monad T = (T : I → I, η, μ), its Kleisli
institution IT is the Kleisli object of T in Ins, which amounts to

– the signature category of IT is the Kleisli category of the monad T Sign,
– given a signature Σ ∈ T Sign, IT (Σ) is just I(Σ), and
– given a signature morphism σ : Σ1 → Σ2 ∈ T Sign (which is a signature mor-

phism σ : Σ1 → ΦT (Σ2) in I), IT (σ) is given by

I(Σ1)
I(σ) I(ΦT (Σ2))

ρT
Σ2 I(Σ2)

providing sentence translation and model reduct for Kleisli morphisms.
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The institution independent notions of logical consequence, theory etc. and cor-
responding results of course also apply to the Kleisli institution; in particular,
Kleisli theory morphisms preserve logical consequence.

Contrary to the statement in [9], colimits are not necessarily lifted from the
base signature category to the Kleisli signature category:

Proposition 3. If the base institution I has signature coproducts, then does the
Kleisli institution IT . However, coequalisers (and therefore also e.g. pushouts)
are generally not lifted to the Kleisli institution.

Proof. If is a coproduct in the signature category of I, then
is a coproduct in the signature category. See

also (2.1) in [24].
Concerning coequalisers, consider the category of derived signature mor-

phisms of standard first-order logic. Take a parallel pair of arrows where a binary
function symbol is mapped a) to λx, y : s.x and b) to λx, y : s �→ y. Then there
is no coequalisers, since it would have to equate x, y �→ x with x, y �→ y. (A span
with no pushout can be obtained in a similar way.) �

Note that the negative situation in Proposition 3 can be remedied in some
cases. For the example given in the proof, a coequaliser exists in the category
of derived theory morphisms up to equivalence. In this pushout, an axiom ∀x, y :
s.x = y is added. This category can be defined as follows:

Definition 14. For the institution of many-sorted first-order logic, the category
of derived theory morphisms up to equivalence has theories as objects. Mor-
phisms are derived signature morphisms that map axioms to theorems, taken
up to an equivalence. Two derived theory morphisms are equivalent iff they map
a given symbol to terms that are provably equal.

Proposition 4. The category of derived theory morphisms up to equivalence
for FOL= has colimits.

Proof. For coproducts, use Proposition 3. The coequaliser of a pair

U
σ1

σ2
V

is obtained in the base signature category by

V
q

Q
ηQ

TW

where Q is the quotient of V by the congruence

σ1(s) ≡ σ2(s) (s ∈ sorts(U)).

Then on sorts, q ◦ σ1 = q ◦ σ2 =: q′. Moreover, W is Q augmented by axioms

∀x1 : q′(s1), . . . xn : q′(sn).α(σ1(f)(x1, . . . , xn) = σ2(f)(x1, . . . , xn))

for each operation symbol f : s1 . . . sn → s in U and axioms
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∀x1 : q′(s1), . . . xn : q′(sn).α(σ1(p)(x1, . . . , xn) ⇔ σ2(p)(x1, . . . , xn))

for each predicate symbol p : s1 . . . sn in U . Recall from Example 11 that the
effect of α is that all applications of σ1(f) (resp. σ1(p)) to terms are β-reduced.

Now the Kleisli morphism ηQ ◦ q : V → W equalises σ1 and σ2: for sorts,
this is done by q, and for operation and predicate symbols, this follows from
the axioms in W (noting that provably equal symbols are identified). Given
any Kleisli morphism h : V → X equalising σ1 and σ2, define k : W → X by
k(q(s)) = h(s) on sorts, and k(f) = h(f) for operation and predicate symbols.
In both cases, well-definedness follows from h ◦ σ1 = h ◦ σ2. �

7 Conclusions

We have introduced several approaches to derived signature (resp. theory) mor-
phisms. The first approach, using definitional extensions, is very general and
works in any institution with model amalgamation for pushouts. While mod-
els can be reduced against derived signature morphisms, the drawback is that
sentences cannot be translated along them. The second approach remedies this
problem axiomatically: model reducts and sentence translation are required to
exist. Moreover, powerful Herbrand theorems relate queries and substitutions
[5,6]. The third approach is more specific about the nature of derived signature
morphisms: they are obtained through a Kleisli construction in an institutional
monad, which provides a more precise (abstract) description of what derived
signature morphisms are.

Generally, it turns out that coproducts lift easily to the derived case, while
coequalizers are more difficult. The problem is that derived signature mor-
phisms are too powerful to admit coequalisers directly, because in a coequalisers,
they can be used to equate arbitrarily complex terms. The trick to still obtain
coequalisers is to pass from signature to theory morphisms and impose some
suitable quotient on the latter. For the approach of definitional extensions, we
can obtain coequalizers by working with theory morphisms and consider derived
theory morphisms up to semantic equivalence, while a stronger (more syntactic)
equivalence does not work. For the particular Kleisli institutions of the natural
institutional monad for many-sorted first-order logic, we can obtain coequalizers
by adding suitable equations. It is an interesting open question whether and how
this can be generalised to an arbitrary institution.

There are still open questions concerning the relationship between the notion
introduced via definitional extensions and the one using the Kleisli construction.
One can ask, if (and under which conditions) it is possible to define a “definitional
extension institutional monad”, in which a derivation consists of the colimit of
all “suitable” definitional extensions. It seems promising to consider syntactic
definitional extensions, i.e. those that induce a mapping on the sentence level
that is compatible with the model expansion. Another interesting point concerns
the development of a general way to construct institutional monads, that would
provide a kind of canoncial derivation. Here the idea of a charter [12] may provide
a starting point.
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On a more general level, this approach shows again, that notions from basic
category theory (monads and Kleisli construction) can be adopted to institu-
tions and lead to useful concepts there. It naturally leads to the question, if
related notions, like the Eilenberg-Moore construction, can give raise to mean-
ingful applications in an institutional setting as well.
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Abstract. Use Cases (UC) are a popular way of describing system
behavior and represent important artifacts for system design, analysis,
and evolution. Hence, UC quality impacts the overall system quality and
defect rates. However, they are presented in natural language, which is
usually the cause of issues related to imprecision, ambiguity, and incom-
pleteness. We present the results of an empirical study on the formal-
ization of UCs as Graph Transformation models (GTs) with the goal of
running tool-supported analyses on them and revealing possible errors
(treated as open issues). We describe initial steps for a translation from a
UC to a GT, how to use an existing tool to analyze the produced GT, and
present some diagnostic feedback based on the results of these analyses
and the possible level of severity of the detected problems. To evaluate
the effectiveness of the translation and of the analyses in identifying prob-
lems in UCs, we applied our approach on a set of real UC descriptions
obtained from a software developer company and measured the results
using a well-known metric. The final results demonstrate that this app-
roach can reveal real problems that could otherwise go undetected and,
thus, help improve the quality of the UCs.

Keywords: Use cases · Graph transformation · Empirical study · Model
analysis

1 Introduction

Use Cases (UC) [3] are a popular model for documenting software expected
behavior. They are used in different software processes, not only for requirement
documentation and validation, but also as specifications for system design, ver-
ification, and evolution. Hence, they are important reference points within the
software development process. In current practice, UC descriptions are typically
informally documented using, in most cases, natural language in a predefined
structure. Being informal descriptions, UCs might be ambiguous and imprecise.
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This may result in a number of specification problems that can be propagated
to later development phases and jeopardize the overall system quality [1]. In
fact, it is well-known that most software faults are introduced during the spec-
ification phase [12]. Nevertheless, it is important to keep UC descriptions in a
format familiar to the stakeholders, since they must be involved in the UC defin-
ition. Thus, the verification of UCs normally corresponds to manual inspections
and walkthroughs [11]. Because the analysis is manual, detecting incompleteness
and recognizing ambiguities is not a trivial task. Since software quality is highly
dependent on the quality of the specification, cost-effective strategies to decrease
the number of errors in UCs are crucial.

Strategies for the formalization of UCs have already been proposed, such as
[7,8,10,15]. Many of them assume a particular syntax for UC description tai-
lored for their particular formalisms. This limits the expression of requirements
in terms of the stakeholders language and, in some cases, also restrains the
semantics of the UC. Moreover, whereas current design techniques are mostly
data-driven, which delays control-flow decisions until later phases, many of the
used formalisms model UCs as sequences of actions, which may neglect data-
related issues. Our aim is to keep the expressiveness of a description in natural
language and use a formalism for modeling/analysing UCs that is flexible enough
to represent the semantics defined by stakeholders at a very abstract level. More-
over, we advocate that the translation from a UC to a formal model should be
performed in a systematic way, guided by well-defined steps (possibly aided by
tools), such that the model can be obtained without an expert in the formalism
(because the expertise is embedded in the predefined translation process). This
is fundamental for the adoption of formal methods in practice.

In this paper, we investigate the suitability of Graph Transformation (GT)
[5,14] as a formal model to describe and analyze UCs. Some reasons for choos-
ing GT are: the elements of a UC can be naturally represented as graphs; it is a
visual language; the semantics is very simple yet expressive; GT is data-driven;
there are various static and dynamic analysis techniques available for GT, as
well as tools to support them. We work towards an approach that integrates
UC formalization and tool-supported analysis, with the objective of improving
the quality of UCs. As the formalization requires a precise description of the
behavior described in the UC, the process of translating it into a formal model
may already reveal errors. The goal is to define a sequence of steps to guide
the process of building the formal model, executing analyses, and evaluating the
results in terms of the level of severity of errors. Diagnostic feedback should also
be provided, indicating possible actions to solve the detected problems through
modification of the original UC. Hence, the process should, iteratively and grad-
ually, improve an initial UC and generate, as result, not only a more precise
UC, which can still be presented to non-technical stakeholders and be readily
used without affecting the usual development process, but also a corresponding
formal model that can be refined and used in subsequent design activities. This
paper presents the first steps towards such a process, presenting an outline of
the idea and an empirical evaluation of the effectiveness of the translation and
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of the analyses in identifying problems in UCs. We applied our approach on a
set of real UC descriptions obtained from a software development company and
measured the results using a well-known metric. The final results demonstrate
that this approach can reveal real problems that could otherwise go undetected
and, thus, help improve the quality of the UCs.

This paper is organized as follows: Sect. 2 presents the necessary background
information and details of the translation from UCs to GTs, as well as a detailed
description of each step of our approach applied to a running a example; Sect. 3
presents the settings of the conducted empirical study; Sect. 4 presents an analy-
sis and discussion of results; Sect. 5 discusses threats to the validity of our work;
Sect. 6 presents a comparative analysis of our technique in relation to some sim-
ilar techniques; and Sect. 7 concludes the paper and discusses future work.

2 Modeling UCs Using GTs

2.1 Background

Use Cases a Use Case (UC) defines a contract between stakeholders of a system,
describing part of the system behavior [3]. The main purpose of a UC descrip-
tion is the documentation of the expected system behavior and to ease the com-
munication between stakeholders, often including non-technical people, about
required system functionalities. For this reason, the most usual UC description
is the textual form. A general format of a UC contains a unique name, a pri-
mary actor, a primary goal, and a set of sequential steps describing the successful
interaction between the primary actor and the system towards the primary goal.
A sequence of alternative steps are often included to represent exception flows.
Pre- and post-conditions are also listed to indicate, respectively, conditions that
must hold before and after the UC execution.

Figure 1 depicts an example of UC of a bank system in a typical textual
format, describing the log in operation executed by a bank client. We explain
our approach using this UC as example.

Graph Transformations. The formalism of Graph Transformations (GT) [5,14]
is based on defining states of a system as graphs and state changes as rules that
transform these graphs. Due to space limitations, in this section, we only provide
an informal overview of the notions used in this paper. For formal definitions,
see e.g. [14]. Examples of graphs, rules and their analysis are presented in the
following subsections.

Graphs are structures that consist of a set of nodes and a set of edges. Each
edge connects two nodes of the graph, one representing a source and another
representing a target. A total homomorphism between graphs is a mapping of
nodes and edges that is compatible with sources and targets of edges. Intuitively,
a total homomorphism from a graph G1 to a graph G2 means that all items
(nodes and edges) of G1 can be found in G2 (but distinct nodes/edges of G1
are not necessarily distinct in G2 ). If we have a graph, say TG , that represents
all possible (graphical) types that are needed to describe a system, a total homo-
morphism h from any graph G to TG would associate a (graphical) type to each
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Fig. 1. Login Use Case description.

item of G . We call this triple 〈G, h, TG〉 a typed graph, and TG is called a type
graph (that is, nodes of TG describe all possible types of nodes of a system, and
edges of TG describe possible relationships between these types).

A Graph Rule describes a relationship between two graphs. It consists of: a
left-hand side (LHS), which describes items that must be present for this rule to
be applied; a right-hand side (RHS), describing items that will be present after
the application of the rule; and a mapping from LHS to RHS, which describes
items that will be preserved by the application of the rule. This mapping must
be compatible with the structure of the graphs (i.e., a morphism between typed
graphs) and may be partial. Items that are in the LHS and are not mapped
to the RHS are deleted, whereas items that are in the RHS and are not in the
image of the mapping from the LHS are created. We also assume that rules do
not merge items, that is, they are injective.

A GT System consists of a type graph, specifying the (graphical) types of the
system, and a set of rules over this type graph that define the system behavior.
The application of a rule r to a graph G is possible if an image of the LHS of r
is found in G (that is, there is a total typed-graph morphism from the LHS of
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r to G). The result of a rule application deletes from G all items that are not
mapped in r and adds the ones created by r.

Our analysis of GTs is based on concurrent rules and critical pairs, two
methods of analysis independent from the initial state of the system and, thus,
they are complementary to any other verification strategy based on initial states
(such as testing), detailed further ahead.

2.2 UC Formalization and Verification Strategy

Figure 2 depicts the proposed UC formalization and verification strategy, which
is divided into four main phases. Starting from a textual description of the UC,
the first phase (UC Data Extraction phase) is to identify entities (Step 1) and
actions (Step 2) that will be part of the formal model. Then, basic verifications
can be performed regarding the consistency of the extracted information (Pri-
mary Verifications phase). We look for inconsistencies that might affect or even
prevent the construction of the GT model such as entities or conditions that are
mentioned but never used, actions or effects of an action that are not clearly
defined, and so on. If inconsistencies are detected, the UC must be rewritten
to eliminate them or the analyst can annotate the problem as an open issue to
be resolved later on. When no basic inconsistencies are found, the GT can then
be generated (GT Generation phase). In this process, conditions and effects of
actions are modeled as states (graphs) in Step 3. Then, in Step 4, a type graph
is built through the definition of a graphical representation of the artifacts gen-
erated in Steps 1 and 3. After that (Step 5), each UC step is modeled as a
transition rule from one state (graph) to another, using the structures defined
in Steps 3 and 4.

Having the GT, a series of automatic verifications (based on concurrent rules,
conflict analysis, and dependency analysis) can be performed to detect possible
problems (UC Analysis phase). We use the AGG tool [18] to perform the auto-
matic analyses on the GT model. All detected issues are annotated as open
issues (OIs) along with the solutions (when applicable). With this approach,
any design decision made over an OI can be documented and tracked back to
the original UC. Through analysis, it is possible to verify whether the pre- and
post-conditions were correctly included in the model, whether there are con-
flicting and/or dependent rules, what is the semantics of a detected conflict or
dependency, and whether these results were expected or not. One important
point is that, during the process of representing the UC in the formal model,
clarifications and decisions about the semantics of the textual description must
be made. Annotated OIs force the stakeholders to be more precise and explicit
about tacit knowledge and unexpressed assumptions about system invariants
and expected behavior.

Open issues are classified according to their severity level: code Yellow ( )
indicates a warning, meaning a minor problem that can probably be solved by a
single person; code Orange ( ) indicates a problem that requires more attention
and probably a definition/confirmation from the stakeholders; code Red ( )
indicates a serious issue that requires a modification in the UC description.



Use Case Analysis Based on Formal Methods: An Empirical Study 115

Fig. 2. Overview of the UC formalization and verification strategy.

Fig. 3. UC1 - Step 1

Below, we describe the steps of our UC formalization and verification approach
and the possible OIs that can be derived from them, illustrating the results for
the login UC (UC1 - Fig. 1).

Step 1 - Identification of entities: The analyst manually identifies in the UC
text all the entities involved in UC. Figure 3 shows the result for the example.
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Table 1. Primary verification steps

Open
issue

Verification Problem Severity
level

Possible action

OI.1 An entity listed in
Step 1 is not used
(as actor or in-
volved) in any ac-
tion

Different names for the
same entity or entities
used in pre-/post-
conditions are not used
in the steps of the UC

Yellow

Analyze whether this
is actually what is in-
tended,

OI.2 A branching con-
dition is not used
in any action

The description of the
actions may be too ab-
stract

Yellow

Analyze whether this
is actually what is in-
tended

OI.3 The effect of
an action is not
clearly defined

Ambiguous description
or omission

Red

Provide more details
in the UC description

Fig. 4. UC1 - Step 2

Step 2 - Identification of actions: This step defines a Table of Actions, containing
an entry for each action in the UC.

Actions that perform input/output operations involve a special entity called
IO. Considering the possibility of alternative paths described in the UC, a Table
of Branch Conditions is also defined.

Based on these two tables, three basic verifications can be performed and
may raise open issues, as detailed in Table 1. Figure 4 shows the result of this
step to the example UC. Only part of the Table of Actions is presented. As a
result, three open issues were raised.

Step 3 - Modeling conditions and effects as states: In this step, it must be
explicitly defined how to describe the conditions and effects listed in the Table
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of Actions, as well as the pre- and post-conditions of the UC in terms of nodes and
edges of a graph. The resulting table is called Table of Conditions/Effects. At the
same time, we build a Table of Operations that is used in these formal definitions,
with two predefined operations Input and Output. The tables resulting from this
step are illustrated in Fig. 5.

Fig. 5. UC1 - Step 3

Step 4 - Construction of the Type graph: The nodes of the type graph are the
entities (Step 1) and operations (Step 3). The arcs are the relationships that
were necessary to characterize the conditions/effects. If attributes of nodes were
used to characterise the conditions/effects, they must also be part of the type
graph. Figure 6 shows the type graph for our running example.

Fig. 6. UC1 - Step 4

Step 5 - Construction of rules: Rules that formally describe the behavior of
the UC are constructed. For each action listed in the Table of Actions, we build
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Fig. 7. UC1 - Step 5

a rule having as left-hand side (LHS) the graph that describes the conditions
that must be true for this action to occur. The graphs corresponding to each
condition are already described in the Table of Conditions/Effects, hence it is
only necessary to merge them appropriately. Analogously, the right-hand side
(RHS) of the rule is built using the effects of each action. Some rules of the
example UC are shown in Fig. 7.

Step 6 - Use case analysis: The following analysis techniques may be performed
in any order. The result from these analyses are usually complementary.

6.1. Use Case Effect: We first define rule sequences (RSs) that represent the
execution of each possible path of the UC. RSs are just sequences of rules (defined
in Step 5) that implement the execution of each scenario of the UC. Based on
each RS, we build a single rule, called concurrent rule, which shows the effect of
the whole UC in one step. This concurrent rule allows us to check whether the
overall effect is really the desired one. Table 2 presents the analysis performed
on the RSs and possible resulting open issues.

This analysis makes it explicit: (i) everything that is required for the UC
to execute (LHS of the rule); and, (ii) the overall effect of the UC (RHS of the
rule). To build the concurrent rule, the rules of the UC are joint by dependencies
and, therefore, if some items are forgotten, this might lead to the impossibility
of building the concurrent rule using all rules of the UC (and, thus, we might
discover errors in the description of the UC steps as rules). Figure 8 shows the
result of this step for our UC example.

6.2. Conflict Analysis (critical pairs): This type of analysis technique tells us
which steps are mutually exclusive, that is, it pinpoints the choice points of the
system. Table 3 presents the verifications based on critical pairs analysis and the
possible resulting open issues. The result of the conflict critical-pair analysis is a
Conflict Matrix, having rules as rows and columns, where each cell is filled with
a number indicating how many items of a rule (row) are in conflict with items
of another rule (column).
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Table 2. Verification steps on rules sequences

Open
issue

Verification Problem Severity
level

Possible action

OI.4 A concurrent rule
(for any alternative
path in the UC)
cannot be built us-
ing all the rules
in the correspond-
ing RSs

Items generated by
some rule and used
by another one may
be missing by omis-
sion or modeling er-
ror

Red

Review the rules

OI.5 Multiple concur-
rent rules are built
for a single UC
scenario

Multiple instances of
one or more entities
are possible, leading
to different (possibly
unexpected) ways of
combining the rules
of the UC

Red

Check dependencies between
rules to find unexpected sub-
paths in the UC behavior

OI.6 UC pre-conditions
are not a subgraph
of the LHSs of the
concurrent rules

Pre-conditions may
include unnecessary
items

Yellow

Remove unused pre-conditions
from the UC text

OI.7 The LHS of a con-
current rule is not
a subgraph of the
UC pre-conditions

UC requires some-
thing that is not ex-
plicitly stated in the
pre-conditions

Orange

Identify the RS in problem-
atic concurrent rule and check
whether all actions in this
path were correctly modeled. If
model is correct, check for miss-
ing pre-conditions.

OI.8 Post-conditions of
an alternative path
of the UC are not
contained in the
RHS of the cor-
responding concur-
rent rule

Some rule is not
generating a required
item (by UC omis-
sion or modeling mis-
take)

Red

Check the rules. If all rules
seem to be correct, post-
conditions might be too strong.

OI.9 The RHS of a con-
current rule is not
contained in the
corresponding UC
post-condition

Some rule is not
deleting a required
item (by UC omis-
sion or modeling mis-
take)

Red

If the rules seem to correctly
describe each action, post-
conditions might be too weak

A value Zero in a cell means there is no conflict between two rules. The
conflicts are only between items of the LHSs of the rules. The results of this step
for our example are presented in Fig. 9.

6.3. Dependency Analysis (critical pairs): Similarly to critical pair analysis,
(potential) dependency analysis is independent of an initial situation and is per-
formed by building a Dependency Matrix. It shows relationships between rules
and can be used to check whether the dependencies that we intuitively expected
to occur are actually there. The verifications based on this matrix are presented
in Table 4.
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Fig. 8. UC1 - Step 6.1

Table 3. Verification steps based on critical pairs analysis

Open
issue

Verification Problem Severity
level

Possible action

OI.10 A rule is not conflict-
ing with itself

The rule could be ap-
plied an arbitrary num-
ber of times

Yellow

Analyze whether this
is actually the in-
tended behavior

OI.11 There is no conflict
between rules that
represent the branch-
ing points of the UC
behavior

Non-deterministic be-
havior: any alternative
path can be taken no
matter the condition

Red

Revise the conditions
(LHSs) associated
with rules represent-
ing alternative paths
in the UC

OI.12 Conflicts between
rules other than
the ones described
above (with itself
and branch points)

These conflicts repre-
sent branches in system
execution that must be
explicitly stated in the
UC (and in the model)
as an alternative path

Orange

Revise the conflicting
rules

Table 4. Verification steps based on dependencies analysis

Open
issue

Verification Problem Severity
level

Possible action

OI.13 Dependencies listed do
not represent depen-
dencies that are desired
in the system

Possible omission in
the UC description or
a modeling error

Yellow

Check the RHS of a
rule and the LHS of
the other rule that de-
pends on the first one

OI.14 An expected depen-
dency between rules
does not appear

Possible omission in
the UC description or
a modeling error.

Yellow

Check the rules in-
volved
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Fig. 9. UC1 - Step 6.2

Fig. 10. UC1 - Step 6.3

Figure 10 shows the result of this step for our example UC. If two rules that
we would like to occur always in some specific order are shown to be independent,
then they could actually occur in any order, which represents a possible problem.

As a final result, we obtain a UC textual description more accurate and
complete, as shown in Fig. 11, after all open issues have been analysed.

Currently, most of the steps are manual and some of them are carried out
aided by tools. In steps 1 and 2, the analysis is purely manual, however, in steps
3, 4 and 5, the analyst should use a tool such as AGG, which helps build a formal
model of the system by supporting the visual construction of graph grammars.
This tool is also very useful in step 6 to perform the analysis of critical pairs
and the generation of concurrent rules, which are not trivial processes.

3 Study Settings

Considering the methodology presented in the previous section, we now detail
the study conducted to evaluate its usefulness for UC formalization and its effec-
tiveness for tool-supported analysis of UCs in order to detect real and potential
problems. This empirical study was crucial to obtain concrete evidences that
using GTs in the context of UCs promotes quality.

In order to adequately evaluate our approach, we followed the principles
of experimental software engineering [19]. We first present our study goal in
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Fig. 11. Login Use Case description after verification.

Table 5. Goal definition.

Element Our study goal

Motivation To understand the usefulness of GTs to improve the quality of UCs

Purpose Evaluate

Object The effectiveness of using GTs to identify problems in UCs

Perspective From a perspective of the researcher

Scope In the context of a single real software development project

Table 5, which follows the GQM template [2]. Based on the definition of our
goal, we derived two research questions, which we aim to answer with our study.

RQ-1. Are system analysts able to detect problems in their own UC descriptions
without additional support?

RQ-2. How effective is our GT-based approach in identifying problems in UCs?
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In order to answer these research questions, we followed the steps detailed
in Sect. 3.1, which describes the study procedure. In Sect. 3.2, we introduce the
software development project that is the target system of our study.

3.1 Procedure

1 - Analysis of UCs by System Analyst. In order to answer RQ-1, we requested
a system analyst responsible for the creation of the UC descriptions, to carefully
revise them, and point out problems, such as ambiguity, imprecision, omission,
incompleteness, and inconsistency. This analyst has more than three years of
experience in software projects with varying lengths (from a few weeks to years)
with documentation describing the entire architecture of the solution, including
artifacts such as class and sequence diagrams and use cases. If the system ana-
lyst found any problem, then such problems should ideally be identified by our
approach. However, there was no guarantee the system analyst would be able
to identify all existing problems. Therefore, the system analyst was a “sound
but not complete” oracle, i.e. all problems identified were real problems but not
necessarily all of the problems that existed in the UCs would be detected.

2 - UC Formalization. Given a set of 5 UCs, we performed the steps detailed in
Sect. 2 to formalize them using GTs and used the AGG tool to analyze them.
As a result, we detected some OIs.

3 - Evaluation of Detected Open Issues. After identifying open issues using our
GT-based approach, we evaluated whether they were real problems in the ana-
lyzed UCs. If a detected OI had been pointed out as a real problem by the
system analyst in the first step of our procedure, then it was definitely a real
problem. Otherwise, the system analyst was requested to analyze the OI and ver-
ify whether it was an actual problem that they were unable to identify during
the manual inspection.

4 - Data Analysis. The previous steps of our procedure produced the following
data: (i) a list of OIs identified by our approach; and (ii) a list of problems
identified by the system analyst with or without the aid of our approach. Our
aim is that our approach detects all and only real problems (i.e., all OIs are
real problems and all real problems are identified as OIs). This can be seen
as a classification problem, and thus the effectiveness of our approach can be
measured using the metrics widely used in the context of information retrieval
of precision and recall [13], whose formulas are shown below:

Precision =
true positives

true positives + false positives
(1)

Recall =
true positives

true positives + false negatives
(2)

where true positives are OIs that correspond to real problems; false positives
are OIs that are not real problems; and false negatives are real problems not
identified as OIs.
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3.2 Target System

The UC descriptions we used in our study are part of the analysis documentation
of an industrial software project. This project involves the development of a
typical system to manage and sell products, and include functional requirements
such as adding new products, changing product information, creating sale orders,
and releasing products in stock. Because our study procedure involves the manual
analysis of UC descriptions, we selected a subset of all available UCs, choosing
those that are not trivial, involving basic and alternative flows. The selected UC
descriptions were written in English and described actions performed by actors
(e.g. user, system, database, etc.) to achieve a particular state of the system or
perform a specific operation. The UC set used has an average of ten sequential
steps and five alternative branches.

Based on the Use Case Points Method [4], the UCs used in the study were
evaluated between average and complex because of the number of transactions
(between 4 and 7 or more than 7) and the type of actors involved (many com-
plex actors) in their descriptions. Figure 12 shows a fragment of a full textual
description of a UC along with two examples of OIs found.

Fig. 12. Example of Open Issues found in the Use Case textual description.

In the example, the first OI identified is related to the names of the entities
involved in the use case. The first step of the analysis is to identify all existing
entities in the description, and in this situation, since there are three different
names for an entity which is apparently the same, problems such as uncertainty,
inaccuracy or ambiguity may appear in system development. This OI, classified
as a warning, has not been confirmed as real problem because Product Item
and Sales Item have different semantics in the system and are indeed treated as
different entities. The other OI found is more serious, because there is an effect
that is not fully defined in the use case. It is unclear what means the action of
validate the data. Validation can be related to the existence of the data in the
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database, or if the data entered are compatible with the expected type (numbers,
words, dates, etc.), or check the correctness according to some oracle, etc. The
definition of this effect possibly will require a project team’s decision, so it is
rated at a higher level of severity. In this case, the problem was confirmed, since
the analyst was not sure how this validation would be performed. These two
situations exemplify the review process applied to the entire set of UCs used in
this study. We do not provide any further details about our target system and
its UCs due to a confidentiality agreement.

4 Results and Discussion

As result of the execution of the procedure described in the previous section, we
collected the data needed to answer our research questions. The system analyst,
after revising the original UCs, reported that they had no problems whatsoever.
Hence, from the perspective of the analyst who created the UCs, they were cor-
rect. However, after applying our approach to these UCs, 32 OIs were identified
across the 5 UCs, which gives an average of 6.4 OIs per UC. This is an expres-
sive number, since the system analyst stated that the UCs did not contain any
problem. In order to verify whether the identified OIs were false alarms (false
positives), the system analyst was asked to check each one of them. Out of the
32 OIs, 24 were pointed out by the analyst as real problems and, consequently,
only 8 of the identified OIs were false positives.

Table 6 presents our results in detail. It shows the number of OIs found in each
UC (columns #OI) and how many of these OIs were confirmed as real problems
(columns #P). The rows show the number of detected OIs with respect to their
level of severity (yellow, orange, or red), according to our previously introduced
classification. The table also presents the total number of detected OIs of each
type and the total number of real problems considering all the 5 UCs.

Table 6. Study results

OI UC 1 UC 2 UC 3 UC 4 UC 5 Total
Type #OI #P #OI #P #OI #P #OI #P #OI #P #OI #P

3 2 4 2 2 1 4 2 1 0 14 7
1 1 1 1 1 1 0 0 2 2 5 5
3 3 1 1 3 2 3 3 3 3 13 12

Total 7 6 6 4 6 4 7 5 6 5 32 24

Legend: UC - Use Case; OI - Open Issue; P - Problem.

The results were then analyzed according to the selected metrics. Because
the system analyst was unable to identify any problem without support (i.e., to
the best of the analyst’s knowledge there was no error in the analyzed UCs),
the number of problems not identified by our approach was equals to 0, leading
to recall = 1.0. However, this result is possibly misleading, as there might be
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problems not identified by both the system analyst and our approach. This is an
indication that even for a stakeholder (such as a system analyst, or a user) who
knows well the system domain, it is not a trivial task to identify problems. A
possible reason for this is the fact that this knowledge of the domain causes the
stakeholder to understand different names as synonyms as part of this domain-
specific knowledge and overlook omissions in the UCs because they believe some
information is obvious. This is an evidence that support (e.g. techniques or tools)
for the revision process plays a key role in identifying existing UC problems. As
for the Precision, the obtained value was 0.75 (24 true positives and 8 false pos-
itives) — that is, 75 % of the OIs identified by our GT-based approach were
real problems in the UC descriptions. Most of the identified issues were actual
problems whereas most of our false alarms (7 of 8) are in the less critical cate-
gories. This means that most of the identified issues not only were real errors not
detected by the person who created the UCs, but also revealed problems that
required attention from the analyst as they could lead to serious consequences
in the actual system.

By analyzing OIs not identified as problems, we observed that 6 of them were
not necessarily classified as a false positive by the system analyst. They preferred
to leave such issues as they were and postpone changes to future design decisions,
considering that they alone could not decide what was the best approach to tackle
those issues. The other 2 OIs found, confirmed as false positives by the system
analyst, were related to words (names or concepts) used in the specification and
have been identified as incompleteness or ambiguities due to lack of knowledge
of the modeler about the problem domain and the internal processes of the
company. Considering these results, it was concluded that, in most cases, our
analysis helped the system analyst, even when an OI did not cause an immediate
UC fix, but showed issues that might be considered in future phases of the
project. These observations will be used as input for a refinement of the steps
proposed to formalize UCs using GTs, in order to create a tool-assisted method
to support the UC reviewing process.

Note that OIs were identified without the intervention of any stakeholder.
The only provided input was the software documentation in the form of UC
descriptions and the output was a checklist with OIs to be revised. For the system
analyst, this has great value because the detected problems can be resolved not
only at the UC level, but also at the design and implementation levels, as they are
performed based on UCs. More importantly, had these problems been detected
before the design and implementation, when they should have, development costs
could have been potentially reduced.

5 Threats to Validity

When planning and conducting our study, we carefully considered validity con-
cerns. This section discusses the main threats we identified to validate this study
and how we mitigated them.

Internal Validity. The main threat to internal validity of this study was the
selection of a person responsible for performing the modeling of UCs in the
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formalism of graphs. Being a formalism mainly used in the sub-area of for-
mal methods, it is difficult to find professionals working on software projects
in industry with in-depth knowledge of graph transformations. However, one of
our intentions with this work was to show that, correctly following the steps of
our strategy, the modeler does not need a deep understanding of the formalism.
Moreover, we used the AGG tool to automate the analyses of the generated
model and provide a graphical interface for the manipulation of graphs.

Construct Validity. There are different ways of modeling a system through
the formalism of graphs that can produce some threats to construct validity. The
modeler may not follow correctly the modeling steps, being influenced by their
prior knowledge about the formalism. This means that they could change the
way of building the model based on their own previous knowledge. Consequently,
we cannot guarantee they will obtain similar results to those presented in this
work. The same applies when they have an advanced knowledge of the problem
domain, because the modeler can insert information in the model that is not
documented in the software artifact, hiding a possible omission of information
in the UC description. For these reasons, we proposed a roadmap, step by step,
on how to model UCs as GTs, for both beginners and experts users.

Conclusion Validity. As the main threat to validity of the conclusion of our
study we also highlight potential problems in the generation of the formal model.
Besides different forms of modeling and the issue that the modeler may be influ-
enced by their experience or prior knowledge of the problem domain, the modeler
may build a model inconsistent with the initial documentation due to errors dur-
ing the modeling process. Once again, our step-by-step modeling process should
be followed to prevent the creation of a model that is not consistent with the
UC. Moreover, the tool-supported verifications can also detect some modeling
errors, as shown in Tables 2, 3 and 4, thus reducing the risk of this threat.

External Validity. The main threat to the external validity was the selection
of artifacts on which we based our study. We did not use any criteria to select
either the project or the system analyst who participated of our study. As a
consequence of this, the project that was made available for us may not be a
representative sample of a large set of software development projects. We were
aware of this threat during the study. However, we opted for randomly choosing
artifacts to support the applicability of our strategy in different scenarios. This
way, we guaranteed that we were not selecting UCs that would be more tailored
for our approach. We also believe that obtaining good results even in a situation
of a random choice of UCs gives greater confidence on our process.

6 Related Work

Some authors have developed approaches for translating UCs to well-known
formalisms, such as LTS [16], Petri Nets [20], and FSM [9,17]. Unlike these for-
malisms, a GT model is data-driven, hence the focus is on the manipulation
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of data inside the system. We do not need to explicitly determine the con-
trol flow unless it is necessary to guarantee data consistency. Considering other
approaches that formalize UCs using a GT model, there are two closest to ours.
The approach presented in [21] allows the simulation of the execution of the
system but do not report the use of any type of analysis, which, in our opinion,
reduces the advantage of having a formal model. The work described in [6] con-
siders analyses such as critical pairs and dependencies involving multiple UCs
and provides some ideas on the interpretation of the results. However, we pro-
pose a more structured way of providing diagnostic feedback about single UCs,
which serves as a guide to point out the possible errors as well as their severity
level. As problems in individual UCs can affect the inter-UCs behavior, we chose
to initially study how to improve each UC and then move on to the study of
how to apply similar ideas for inter-UC formalization and analysis.

Although we could find similar approaches regarding the formalization of UCs
as GT models, we could not find any description of an empirical study as the one
described in this paper. We believe that this type of study is important not only
to provide confidence on the proposed approach, encouraging us to develop it
further in terms of its formalization as a validation and verification process, but
also to allow us to quantify how good it is. This type of result is also important
from the stakeholders’ point of view, as they can see in practice and numerically
the benefits of applying formal methods to a usually informal process. Moreover,
unlike most of the other approaches, our work focuses on helping the developers
to construct the formal model by the definition of a systematic translation.

7 Conclusions and Future Work

In this paper, was investigated the suitability of GT as a formal basis for UC
description and improvement. Was defined an outline of a translation process
from UCs to GTs in a step-by-step manner, which describes how to use an
existing tool to analyze the generated model and diagnose real and potential
problems. The detection of such problems may cause changes to the UCs and
trigger a new round of analyses, incrementally and iteratively improving the
initial specification. The process also generates a formal model that can be used
for further analyses. The approach was evaluated through an experiment with
real software artifacts, where it was possible to detect existing errors, allowing
an improvement on the original UCs.

Making a general analysis of the experiment, the results were considered
promising, since it was possible to identify a large number of real problems
based on a documentation that was produced at an early stage of a software
development. Considering the proposed strategy, was observed the need for fur-
ther automation of the process, which is the most immediate planned future
work.

In this paper, was discussed the application of the approach to one UC at
a time. Even though this has already shown benefits regarding the software
development process, inter-UC analyses are currently being implemented as well
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as the appropriate diagnostic feedback. Within the same model frame, other
types of validation and verification techniques on GT models, such as test case
generation, model checking, and theorem proving are also subject of current
work. These techniques will be incorporated into a comprehensive methodology
for software quality improvement targeting other types of errors. We also plan
to study how changes in the UCs could be handled by our approach and how
we could reduce the impact and cost of changes by identifying which parts are
effectively affected and which analyses are actually required.

Also, a tool was designed, which is already in the early stages of development,
in order to automate the first steps of the methodology (between steps 1 and 5)
to help the analyst to build a formal model through the graph formalism. This
tool aims to help produce the model data in a format acceptable by the AGG
tool, responsible for the computational analysis of the graphs.

Finally, note that, although was not presented any new formal method or
verification technique here, a considerable amount of expertise in formal methods
was required to define the OIs: they are meant to bridge the gap between the
informal and formal worlds. We believe that this type of work is crucial towards
the industrial adoption of formal methods.
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and José Luiz Fiadeiro3

1 Departamento de Computación, Universidad de Buenos Aires,
Buenos Aires, Argentina

{ivissani,clpombo}@dc.uba.ar
2 Consejo Nacional de Investigaciones Cient́ıficas y Tecnológicas,

Buenos Aires, Argentina
3 Department of Computer Science, Royal Holloway University of London,

Surrey, UK
ittutu@gmail.com, Jose.Fiadeiro@rhul.ac.uk

4 Institute of Mathematics of the Romanian Academy, Research Group
of the Project ID-3-0439, Bucharest, Romania

Abstract. Service-oriented computing is a new paradigm where appli-
cations run over global computational networks and are formed by ser-
vices discovered and bound at run-time through the intervention of a
middleware. Asynchronous Relational Nets (ARNs) were presented by
Fiadeiro and Lopes with the aim of formalising the elements of an inter-
face theory for service-oriented software designs. The semantics of ARNs
was originally given in terms of sequences of sets of actions correspond-
ing to the behaviour of the service. Later, they were given an institution-
based semantics where signatures are ARNs and models are morphisms
into ground networks, that have no dependencies on external services.

In this work, we propose a full operational semantics capable of reflect-
ing the dynamic nature of service execution by making explicit the recon-
figurations that take place at run-time as the result of the discovery and
binding of required services. This provides us a refined view of the execu-
tion of ARNs based upon which a specialized variant of linear temporal
logic can be used to express, and even to verify through standard model-
checking techniques, properties concerning the behaviour of ARNs that
are more complex than those considered before.

1 Introduction and Motivation

In the context of global ubiquitous computing, the structure of software systems
is becoming more and more dynamic as applications need to be able to respond
and adapt to changes in the environment in which they operate. For instance,
the new paradigm of Service-Oriented Computing (SOC) supports a new gen-
eration of software applications that run over globally available computational
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and network infrastructures where they can procure services on the fly (subject
to a negotiation of Service Level Agreements, or SLAs for short) and bind to
them so that, collectively, they can fulfil given business goals [12]. There is no
control as to the nature of the components that an application can bind to. In
particular, development no longer takes place in a top-down process in which
subsystems are developed and integrated by skilled engineers: in SOC, discovery
and binding are performed by middleware.

Asynchronous Relational Networks (ARNs) were presented by Fiadeiro and
Lopes in [13] with the aim of formalising the elements of an interface theory for
service-oriented software designs. ARNs are a formal orchestration model based
on hypergraphs whose hyperedges are interpreted either as processes or as com-
munication channels. The nodes (or points) that are only adjacent to process
hyperedges are called provides-points, while those adjacent only to communica-
tion hyperedges are called requires-points. The rationale behind this separation
is that a provides-point is the interface through which a service exports its
functionality, while a requires-point is the interface through which an activity
expects certain service to provide a functionality. The composition of ARNs
(i.e., the binding mechanism of services) is obtained by “fusing” provides-points
and requires-points, subject to a certain compliance check between the contract
associated to them. For example, in [22] the binding is subject to a (semantic)
entailment relation between theories over linear temporal logic [19], which are
attached to the provides- and the requires-points of the considered networks.

Providing semantics to ARNs requires to carefully combine different elements
intervening in the rationale behind the formalism and its intended behaviour. In
their first definition, ARNs were given semantics in terms of infinite sequences
of sets of actions, which capture the behaviour of the service. In this presen-
tation, the behavioural description was given in terms of linear temporal logic
theory presentations [13]. A more modern (and also more operational) presenta-
tion of the semantics of ARNs, the one on which we rely in this article, resorts
to automata on infinite objects whose inputs consist of sequences of sets of
actions (see [22]), as defined in the original semantics of ARNs. Under this for-
malism, both types of hyperedges are labelled with Muller automata; in the
case of process hyperedges, the automata formalise the computation carried out
by that particular service, while in the case of communication hyperedges, the
automata represent the orchestrator that syncs the behaviour of the participants
in the communication process. The behaviour of the system is then obtained as
the composition of the Muller automata associated to both computation and
communication hyperedges. Finally, the reconfiguration of networks (realized
through the discovery and binding of services) is defined by considering an insti-
tutional framework in which signatures are ARNs and models are morphisms
into ground ARNs, which have no dependencies on external services (see, e.g.,
[22] for a more in depth presentation of this semantics).

Under the above-mentioned consideration, the operational semantics of ARNs
(as a set of execution traces) is based on the fact that a network can be recon-
figured until all its external dependencies (captured by requires-points) are ful-
filled, i.e., the original network admits a morphism to a ground ARN. In our work,
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we consider that semantics is assigned modulo a given repository of services, forc-
ing us to drop the assumption that given an ARN it is possible to find a ground net-
work to which the former has a morphism. Regarding previous works, we believe
that this approach results in a more realistic executing environment where the
potential satisfaction of requirements is limited by the services registered in a
repository, and not by the entire universe of possible services.

The aim of this work is to provide a trace-based operational semantics for
service-oriented software designs reflecting the true dynamic nature of run-time
discovery and binding of services. This is done by making the reconfiguration
of an activity an observable event of its behaviour. In SOC, the reconfiguration
events are triggered by particular actions associated with a requires-point; at that
moment, the middleware has to procure a service that meets the requirements of
the activity from an already known repository of services. From this perspective
our proposal is to define execution traces where actions can be either

– internal actions of the activity: actions that are not associated with requires-
points, thus executable without the need for reconfiguring the activity, or

– reconfiguration actions: actions that are associated with a requires-point, thus
triggering the reconfiguration of the system by means of the discovery and
binding of a service providing that computation.

Summarising, the main contributions of this paper are: (1) we provide a trace-
based operational semantics for ARNs reflecting both internal transitions taking
place in any of the services already intervening in the computation and dynamic
reconfiguration actions resulting from the process by binding the provides-point
of ARNs taken from the repository to its require-points, and (2) we provide
support for defining a model-checking technique that can enable the automatic
analysis of linear temporal logic properties of activities.

In this way, our work departs from previous approaches to dynamic reconfig-
uration in the context of service-oriented computing, such as [20], which reasons
about functional behaviour and control concerns in a framework based on first-
order logic, [6], which relies on typed graph-transformation techniques imple-
mented in Alloy [15] and Maude [7,10], which makes use of graph grammars
as a formal framework for dealing with dynamicity, and [8,14], which proposes
architectural design rewriting as a term-rewriting-based approach to the devel-
opment and reconfiguration of software architectures. A survey of these general
logic-, graph-, or rewriting-based formalisms can be found in [4].

The article is organised as follows. In Sect. 2 we recall the preliminary notions
needed for our work. In Sect. 3 we give appropriate definitions for providing
operational semantics for ARNs based on a (quasi) automaton generated by a
repository and on the traces accepted by it. We also provide a variant of Linear
Temporal Logic (in Sect. 4) that is suitable for defining and checking properties
related to the execution of activities. As a running example, we gradually intro-
duce the details of travel-agent scenario, which we use to illustrate the concepts
presented in the Sects. 3 and 4. Finally in Sect. 5 we draw some conclusions and
discuss further lines of research.
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2 Preliminary Definitions

In this section we present the preliminary definitions we use throughout this
work. We assume the reader has a nodding acquaintance of the basic definitions
of category theory. Most of the definitions needed throughout the forthcoming
sections can be found in [2,11,17]. For hypergraph terminology, notation and
definitions, the reader is pointed to [1,9], while for automata on infinite sequences
we suggest [18,21].

Definition 1 (Muller automaton). The categoryMA of (action-based) Muller
automata (see, e.g. [22]) is defined as follows:
The objects of MA are pairs 〈A,Λ〉 consisting of a set A of actions and a Muller
automaton Λ = 〈Q, 2A,Δ, I,F〉 over the alphabet 2A, where

– Q is the set of states of Λ,
– Δ ⊆ Q × 2A × Q is the transition relation of Λ, with transitions (p, ι, q) ∈ Δ

usually denoted by p
ι−→ q,

– I ⊆ Q is the set of initial states of Λ, and
– F ⊆ 2Q is the set of final-state sets of Λ.

For every pair of Muller automata 〈A,Λ〉 and 〈A′, Λ′〉, with Λ = 〈Q, 2A,Δ, I,F〉
and Λ′ = 〈Q′, 2A′

,Δ′, I ′,F ′〉, an MA-morphism 〈σ, h〉 : 〈A,Λ〉 → 〈A′, Λ′〉 con-
sists of functions σ : A → A′ and h : Q′ → Q such that (h(p′), σ−1(ι′), h(q′)) ∈ Δ
whenever (p′, ι′, q′) ∈ Δ′, h(I ′) ⊆ I, and h(F ′) ⊆ F .
The composition of MA-morphisms is defined componentwise.

As we mentioned before, in this work we focus on providing semantics to
service-oriented software artefacts. To do that, we resort to the formal language
of asynchronous relational nets (see, e.g., [13]). The intuition behind the defi-
nition is that ARNs are hypergraphs where the hyperedges are divided in two
classes: computation hyperedges and communication hyperedges. Computation
hyperedges represent processes, while communication hyperedges represent com-
munication channels. Hypergraph nodes (also called points) are labelled with
ports, i.e., with structured sets M = M− ∪ M+ of publication (M−) and deliv-
ery messages (M+),1 along the lines of [3,5]. At the same time, hyperedges are
labelled with Muller automata; thus, both processes and communication chan-
nels have an associated behaviour given by their corresponding automata, which
interact through (messages defined by) the ports labelling their connected points.

The following definitions formalise the manner in which the computation and
communication units are structured to interact with each other.

Definition 2 (Process). A process 〈γ, Λ〉 consists of a set γ of pairwise dis-
joint ports and a Muller automaton Λ over the set of actions Aγ =

⋃
M∈γ AM ,

where AM = {m! | m ∈ M−} ∪ {m¡ | m ∈ M+}.
1 Formally, we can define ports as sets M of messages together with a function M →

{−,+} that assigns a polarity to every message.
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As an example, Fig. 1 (a) depicts a process 〈γTA, ΛTA〉 where γTA =
{TA0,TA1,TA2} and ΛTA is the automaton presented in Fig. 1 (b). The travel
agent is meant to provide hotel and/or flight bookings in the local currency of
the customers. Accomplishing this task requires two different interactions to take
place: on one hand, the communication with hotel-accommodation providers and
with flight-tickets providers, and on the other hand, the communication with a
currency-converter provider. In order for the composition of the automata devel-
oped along our example to behave well, we need that every automaton is able to
stay in any state indefinitely. This behaviour is achieved by forcing every state
to have a self-loop labelled with the emptyset. With the purpose of easing the
figures we avoid drawing these self-loops. The reader should still understand the
descriptions of the automata as if there was a self-loop transition, labelled with
the empty set, for every state.

Travel
Agent

ΛTA

+ bookHotels
+ bookFlights
+ bookHotels&Flights
− reservations

TA0

− getHotels
− getFlights
+ hotels
+ flights

TA1

− getExchangeRate
+ rate
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Fig. 1. The TravelAgent process together with its automaton ΛTA

Definition 3 (Connection). Let γ be a set of pairwise disjoint ports. A con-
nection 〈M,μ,Λ〉 between the ports of γ consists of a set M of messages, a
partial attachment injection μi : M ⇀ Mi for each port Mi ∈ γ, and a Muller
automaton Λ over AM = {m! | m ∈ M} ∪ {m¡ | m ∈ M} such that

(a) M =
⋃

Mi∈γ

dom (μi) and (b) μ−1
i (M∓

i ) ⊆
⋃

Mj∈γ\{Mi}
μ−1

j (M±
j ).
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In Fig. 2 (a) a connection C0 is shown whose set of messages is the union of
the messages of the ports TA1,H0,F0 and the family of mappings μ is formed
by the trivial identity mapping. In Fig. 2 (b) the automaton ΛC0 that describes
the behaviour of the communication channel is shown. This connection just
delivers every published message. Nevertheless it imposes some restrictions to
the sequences of messages that can be delivered. For example notice that, after
the message getHotels of TA1 is received (and delivered), only the message hotels
of H0 is accepted for delivery.
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Fig. 2. The C0 connection

With these elements we can now define asynchronous relational networks.

Definition 4 (Asynchronous Relational Net [22]). An asynchronous rela-
tional net α = 〈X,P,C, γ,M, μ, Λ〉 consists of

– a hypergraph 〈X,E〉, where X is a (finite) set of points and E = P ∪ C is
a set of hyperedges (non-empty subsets of X) partitioned into computation
hyperedges p ∈ P and communication hyperedges c ∈ C such that no adjacent
hyperedges belong to the same partition, and
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– three labelling functions that assign (a) a port Mx to each point x ∈ X, (b)
a process 〈γp, Λp〉 to each hyperedge p ∈ P , and (c) a connection 〈Mc, μc, Λc〉
to each hyperedge c ∈ C.

Definition 5 (Morphism of ARNs). A morphism δ : α → α′ between two
ARNs α = 〈X,P,C, γ,M, μ, Λ〉 and α′ = 〈X ′, P ′, C ′, γ′,M ′, μ′, Λ′〉 consists of

– an injective map δ : X → X ′ such that δ(P ) ⊆ P ′ and δ(C) ⊆ C ′, that is an
injective homomorphism between the underlying hypergraphs of α and α′ that
preserves the computation and communication hyperedges, and

– a family of polarity-preserving injections δptx : Mx → M ′
δ(x), for x ∈ X,

such that

– for every point x ∈ ⋃
P , δptx = 1Mx

,
– for every computation hyperedge p ∈ P , Λp = Λ′

δ(p), and
– for every communication hyperedge c ∈ C, Mc = M ′

δ(c), Λc = Λ′
δ(c) and, for

every point x ∈ γc, μc,x; δptx = μ′
δ(c),δ(x).

ARNs together with morphisms of ARNs form a category, denoted ARN, in
which the composition is defined component-wise, and left and right identities
are given by morphisms whose components are identity functions.

Intuitively, an ARN is a hypergraph for which some of the hyperedges
(process hyperedges) formalise computations as Muller automata communicating
through ports (identified with nodes of the hypergraph) over a fixed language of
actions. Note that the communication between computational units is not estab-
lished directly but mediated by a communication hyperedge; the other kind of
hyperedge which use Muller automata to formalise communication channels.

In order to define service modules, repositories, and activities, we need to
distinguish between two types of interaction-points, i.e. of points that are not
incident with both computation and communication hyperedges.

Definition 6 (Requires- and provides-point). A requires-point of an ARN
is a point that is incident only with a communication hyperedge. Similarly, a
provides-point is a point incident only with a computation hyperedge.

Definition 7 (Service repository). A service repository is just a set R of
service modules, that is of triples 〈P, α,R〉, also written P ←−−

α
R, where α is an

ARN, P is a provides-point of α, and R is a finite set of requires-points of α.

Definition 8 (Activity). An activity is a pair 〈α,R〉, also denoted 	−−−
α

R, such
that α is an ARN and R is a finite set of requires-points of α.

The previous definitions formalise the idea of a service-oriented software arte-
fact as an activity whose computational requirements are modelled by “dangling”
connections, and that do not pursue the provision of any service to other com-
putational unit, modelled as the absence of provides points. Figure 3 depicts
a TravelClient activity with a single requires-point through which this activity
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can ask either for hotels or hotels and flights reservations. As we will show in
the forthcoming sections, requires-points act as the ports to which the provides-
points of services are bound in order to fulfil these requirements.

Turning a process into a service available for discovery and binding
requires, as we mentioned in the previous definitions, the declaration of the
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communication channels that will be used to connect to other services. In the
case of TravelAgent, three services are required to execute, communicating over
two different communication channels. On one of them the process interacts with
accommodation providers and flight tickets providers, while through the other
the process will obtain exchange rates to be able to show the options to the
customer in its local currency. In some sense, TravelAgent provides the ability to
coherently combine these three services in order to offer a richer experience. It
should then be clear that whenever the TravelAgent is asked for hotels and flights
reservations, it will require both services in order to fulfil its task, plus the ser-
vice for currency exchange conversion. Figure 4 (a) shows the TravelAgent service
obtained by attaching the communication channels to two of the ports defined
by the TravelAgent process, resulting in a network with three requires-points.
The Fig. 4 (b) shows the automaton for the connection C1.

3 Operational Semantics for ARNs

In this section we present the main contribution of the paper, being a full oper-
ational semantics for activities executing with respect to a given repository. To
do this, we introduce two different kinds of transitions for activities: (1) item
internal transitions, those resulting from the execution of a certain set of actions
by the automata that synchronise over them, and (2) reconfiguration transitions,
the ones resulting from the need of executing a set of actions on a port of a com-
munication hyperedge. Then, runs (on given traces) are legal infinite sequences
of states related by appropriate transitions.

Definition 9 (Alphabet of an ARN). The alphabet associated with an ARN
α is the vertex Aα of the colimit ξ : Dα ⇒ Aα of the functor Dα : Jα → Set, where

– Jα is the preordered category whose objects are points x ∈ X, hyperedges
e ∈ P ∪ C, or “attachments” 〈c, x〉 of α, with c ∈ C and x ∈ γc, and whose
arrows are given by {x → p | p ∈ P, x ∈ γp}, for computation hyperedges, and
{c ← 〈c, x〉 → x | c ∈ C, x ∈ γc}, for communication hyperedges;

– Dα defines the sets of actions associated with the ports, processes and chan-
nels, together with the appropriate mappings between them.

Definition 10 (Automaton of an ARN). Let α = 〈X,P,C, γ,M, μ, Λ〉 be an
ARN and 〈Qe, 2AMe ,Δe, Ie,Fe〉 be the components of Λe, for each e ∈ P ∪C. The
automaton Λα = 〈Qα, 2Aα ,Δα, Iα,Fα〉 associated with α is defined as follows:

Qα =
∏

e∈P∪C Qe,
Δα = {(p, ι, q) | (πe(p), ξ−1

e (ι), πe(q)) ∈ Δe for each e ∈ P ∪ C},
Iα =

∏
e∈P∪C Ie, and

Fα = {F ⊆ Qα | πe(F ) ∈ Fe for all e ∈ P ∪ C},

where πe : Qα → Qe are the corresponding projections of the product
∏

e∈P∪C Qe.

Fact 1. Under the notations of Definition 10, for every hyperedge e of α, the
maps ξe and πe define an MA-morphism 〈ξe, πe〉 : 〈AMe

, Λe〉 → 〈Aα, Λα〉.
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Intuitively, the automaton of an ARN is the automaton resulting from taking
the product of the automata of the several components of the ARN. This product
is synchronized over the shared alphabet of the components. Notice that the
notion of shared alphabet is given by the mappings defined in the connections.

Proposition 1. For every ARN α = 〈X,P,C, γ,M, μ, Λ〉, the MA-morphisms
〈ξe, πe〉 : 〈AMe

, Λe〉 → 〈Aα, Λα〉 associated with hyperedges e ∈ P∪C form colimit
injections for the functor Gα : Jα → MA that maps

– every computation or communication hyperedge e ∈ P ∪ C to 〈AMe
, Λe〉 and

– every point x ∈ X (or attachment 〈c, x〉) to 〈AMx
, Λx〉, where Λx is the

Muller automaton 〈{q}, 2AMx , {(q, ι, q) | ι ⊆ AMx
}, {q}, {{q}}〉 with only one

state, which is both initial and final, and with all possible transitions.

Therefore, both the alphabet and the automaton of an ARN α are given by the
vertex 〈Aα, Λα〉 of a colimiting cocone of the functor Gα : Jα → MA.

The universality property discussed above of the alphabet and of the automa-
ton of an ARN allows us to extend Definition 10 to morphisms of networks.

Corollary 1. For every morphism of ARNs δ : α → α′ there exists a unique
MA-morphism 〈Aδ, �δ〉 : 〈Aα, Λα〉 → 〈Aα′ , Λα′〉 such that

(a) ξx;Aδ = ξ′
δ(x) and (b) ( �δ) ;πx = π′

δ(x)

for every point or hyperedge x of α, where 〈ξx, πx〉 and 〈ξ′
x′ , π′

x′〉 are components
of the colimiting cocones of the functors Gα : Jα → MA and Gα′ : Jα′ → MA.2

Operational semantics of ARNs. From a categorical perspective, the unique-
ness aspect of Corollary 1 is particularly important in capturing the operational
semantics of ARNs in a fully abstract manner: it enables us to describe both
automata and morphisms of automata associated with ARNs and morphisms of
ARNs through a functor A : ARN → MA that maps every ARN α to 〈Aα, Λα〉
and every morphisms of ARNs δ : α → α′ to 〈Aδ, �δ〉.

3.1 Open Executions of ARNs

In order to formalise open executions of ARNs, i.e. of executions in which not
only the states of the underlying automata of ARNs can change as a result of the
publication or the delivery of various messages, but also the ARNs themselves
through discovery and binding to other networks, we rely on the usual automata-
theoretic notions of execution, trace, and run, which we consider over a particular
(super-)automaton of ARNs and local states of their underlying automata.

Definition 11. The “flattened” automaton A� = 〈Q�, A�,Δ�, I�,F �〉 induced by
the functor A : ARN → MA

3 is defined as follows:
2 The definitions of Gα and Gα′ follow the presentation given in Proposition 1.
3 Note that Λ� is in fact a quasi-automaton, because its components are proper classes.
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Q� = {〈α, q〉 | α ∈ |ARN| and q ∈ Qα},
A� = {〈δ, ι〉 | δ : α → α′ and ι ⊆ Aα},
Δ� = {(〈α, q〉, 〈δ, ι〉, 〈α′, q′〉) | δ : α → α′ and (q, ι, q′�δ) ∈ Δα},
I� = {〈α, q〉 | α ∈ |ARN| and q ∈ Iα}, and

F � = {{〈α, q〉 | q ∈ F} | α ∈ |ARN| and F ∈ Fα}.

This “flattened” automaton amalgamates in a single structure both the con-
figuration and the state of the system. These two elements are viewed as a
pair 〈ARN, state〉. Now the transitions in this automaton can represent state
changes and structural changes together. In this sense, the “flattened” automa-
ton achieves the goal of giving us a unified view of both aspects of a service
oriented system. The construction of this automaton can be seen, from a cat-
egorical point of view, as the flattening of the indexed category induced by
A : ARN → MA.

We recall that a trace over a set A of actions is an infinite sequence λ ∈ (2A)ω,
and that a run of a Muller automaton Λ = 〈Q, 2A,Δ, I,F〉 on a trace λ is a
sequence of states  ∈ Qω such that (0) ∈ I and ((i), λ(i), (i + 1)) ∈ Δ
for every i ∈ ω; together, λ and  form an execution of the automaton Λ. An
execution 〈λ, ρ〉, or simply the run , is successful if the set of states that occur
infinitely often in , denoted Inf(), is a member of F . Furthermore, a trace λ
is accepted by Λ if and only if there exists a successful run of Λ on λ.

Definition 12 (Open execution of an ARN). An open execution of an ARN
α is an execution of A� that starts from an initial state of Λα, i.e. a sequence

〈α0, q0〉 δ0,ι0−−−→ 〈α1, q1〉 δ1,ι1−−−→ 〈α2, q2〉 δ2,ι2−−−→ · · ·

such that α0 = α, q0 ∈ Iα and, for every i ∈ ω, 〈αi, qi〉 〈δi,ιi〉−−−−→ 〈αi+1, qi+1〉 is a
transition in Δ�. An open execution as above is successful if it is successful with
respect to the automaton A�, i.e. if there exists i ∈ ω such that (a) for all j ≥ i,
αj = αi, δj = 1αi

, and (b) {qj | j ≥ i} ∈ Fαi
.

Based on the definition of the transitions of A� and on the functoriality of
A : ARN → MA, it is easy to see that, for every ARN α, every successful open
execution of α gives a successful execution of its underlying automaton Λα.

Proposition 2. For every (successful) open execution

〈α0, q0〉 δ0,ι0−−−→ 〈α1, q1〉 δ1,ι1−−−→ 〈α2, q2〉 δ2,ι2−−−→ · · ·

of the quasi-automaton A�, the infinite sequence

q0
ι0−→ q1�δ0

A−1
δ0

(ι1)−−−−−→ q2�δ0;δ1

A−1
δ0;δ1

(ι2)−−−−−−→ · · ·

corresponds to a (successful) execution of the automaton Λα0 .
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Note that, since the restrictions imposed to the transitions of A� are very
weak – more precisely, because there are no constraints on the morphisms of
ARN δ : α → α′ that underlie open-transitions 〈α, q〉 δ,ι−→ 〈α′, q′〉 – Proposition 2
cannot be generalised to executions of the automata Λαi

, for i > 0. To address
this aspect, we need to take into consideration the fact that, in practice, the
reconfigurations of ARNs are actually triggered by certain actions of their alpha-
bet, and that they comply with the general rules of the process of service dis-
covery and binding. Therefore, we need to consider open executions of activities
with respect to given service repositories.

3.2 Open Executions of Activities

For the rest of this section we assume that R is an arbitrary but fixed repository
of service modules.

Definition 13. The activity (quasi-)automaton R� = 〈QR, AR,ΔR, IR,FR〉
generated by the service repository R is defined as follows:

The states in QR are pairs 〈	−−−
α

R, q〉, where 	−−−
α

R is an activity – i.e. α is an
ARN and R is a finite set of requires-points of α – and q is a state of Λα.

The alphabet AR is given by pairs 〈δ, ι〉, where δ : α → α′ is a morphism of
ARNs and ι is a set of α-actions; thus, AR is just the alphabet of A�.

There exists a transition 〈	−−−
α

R, q〉 δ,ι−→ 〈	−−−
α′ R′, q′〉 whenever:

1. 〈α, q〉 δ,ι−→ 〈α′, q′〉 is a transition of A�;
2. for each requires-point r ∈ R such that ξr(AM+

r
) ∩ ι = ∅ there exists

– a service module P r ←−−
αr Rr in R and

– a polarity-preserving injection θr : Mr → MP r

such that the following colimit can be defined in the category of ARNs

N (Mrn
)

θrn

��

⊆
��

... N (Mr1)
θr1 ��

⊆

�������������
αr1

δr1

���
�

�
�

� αrn

δrn
��

�
�

����	α
δ

��





 α′

where {r1, . . . , rn} is the biggest subset of R such that ξri
(AM+

ri
) ∩ ι = ∅ for

all 1 ≤ i ≤ n and N (Mri
) is the atomic ARN that consists of only one point,

labelled with the port Mri
, and no hyperedges;

3. there exists a transition p′ ι′
−→ q′ of Λα′ such that p′�δ = q, A−1

δ (ι′) = ι and,
for each requires-point r ∈ R as above, p′�δr is an initial state of Λαr .

The states in IR are those pairs 〈	−−−
α

R, q〉 for which q ∈ Iα.
The final-state sets in FR are those sets {〈	−−−

α
R, q〉 | q ∈ F} for which F ∈ Fα.
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Note that the definition of the transitions of R� integrates both the opera-
tional semantics of ARNs given by the functor A : ARN → MA and the logic-
programming semantics of service discovery and binding described in [22], albeit
in a simplified form, since here we do not take into account the linear temporal
sentences that label requires-points. The removal of linear temporal sentences
does not limit the applicability of the theory, but rather enables us to give a
clearer and more concise presentation of the operational semantics of activities.

Open executions of activities can be defined relative to the automaton R� in
a similar way to the open executions of ARNs (see Definition 12).

Definition 14 (Open execution of an activity). An open execution of an
activity 	−−−

α
R with respect to R is an execution of the quasi-automaton R� that

starts from an initial state of Λα, i.e. a sequence of transitions of R�

〈	−−−
α0

R0, q0〉 δ0,ι0−−−→ 〈	−−−
α1

R1, q1〉 δ1,ι1−−−→ 〈	−−−
α2

R2, q2〉 δ2,ι2−−−→ · · ·

such that α0 = α, R0 = R, and q0 ∈ Iα. An open execution as above is successful
if there exists i ∈ ω such that (a) for all j ≥ i, αj = αi, δj = 1αi

, and (b)
{qj | j ≥ i} ∈ Fαi

.

To illustrate open executions, let’s consider a repository R formed by the service
TravelAgent (depicted in Fig. 4) and the very simple services CurrenciesAgent,
AccomodationAgent and FlightsAgent described in Fig. 5. Let’s also consider the
TravelClient activity of Fig. 3. Observing the automata of Fig. 3 (b) and (c), an
execution starts with the activity TravelClient performing one of two actions,
hotels! or hotels&Flights!. Let us assume it is hotels! without loss of generality.
The prefix of the execution after the transition has the following shape:

〈	−−−−−−−−
TravelClient

{CC1}, q0〉 id,hotels!−−−−−−→ 〈	−−−−−−−−
TravelClient

{CC1}, q1〉
where q0 and q1 are the states (q0, q0) and (q1, q1) of the composed automaton
ΛTC × ΛCC respectively. After this, the only plausible action in this run is
the delivery of the message hotels by the communication channel CC. Since
ξTravelClient(AM+

CC1
) ∩ {hotels¡} = {hotels¡} this action triggers a reconfiguration

of the activity. In our example’s repository, R, the only service that can satisfy
the requirement CC1 is TravelAgent. Thus, the action hotels¡ leads us to the
activity TravelClient′ shown in Fig. 6. The prefix of the execution after this last
transition is:

· · · id,hotels!−−−−−−→ 〈	−−−−−−−−
TravelClient

{CC1}, q1〉 δ,hotels¡−−−−−→ 〈	−−−−−−−−−
TravelClient′ {H0,F0,CE0}, q2〉

where q2 is the state (q1, q0, q1, q0, q0) of the automaton of TravelClient′. To see
that the morphism δ : TravelClient → TravelClient′ exists is straightforward.

A continuation for this execution is obtained by the automaton ΛTA, asso-
ciated with TravelAgent, publishing the action getHotels! and the mandatory
delivery getHotels! that comes after. This actions trigger a new reconfigura-
tion of the activity on port H0 of the communication channel C0; in this case,
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Currencies
Agent

ΛCA

+ getRates
− rates

CA0

(a) The CurrenciesAgent ser-
vice

q0start q1

getRates¡

rates!

Accomodations
Agent

ΛAA

+ getRooms
− rooms

AA0

(c) The AccomodationsAgent ser-
vice

q0start q1

getRooms¡

rooms!

Flights
Agent

ΛFA

+ getPlanes
− planes

FA0

(e) The FlightsAgent ser-
vice

q0start q1

getP lanes¡

planes!

Fig. 5. Very simple services in R

Travel
Client

ΛTC

− hotels
− hotels&Flights
+ booking

TC0

CC
ΛCC

+ bookHotels
+ bookFlights
+ bookHotels&Flights
− reservations

Travel
Agent

ΛTA

TA0

− getHotels
− getFlights
+ hotels
+ flights

TA1

− getExchangeRate
+ rate

TA2

C0

ΛC0

+ getHotels
− hotels

H0

+ getFlights
− flights

F0

C1

ΛC1

+ getExchangeRate
− rate

CE0

Fig. 6. The TravelClient′ activity

and considering once again our repository R, the result of the reconfiguration
should be the attachment of the service module AccomodationsAgent.

The following fact allows us to easily generalise Proposition 2 from open
executions of ARNs to open executions of activities.

Fact 2. There exists a (trivial) forgetful morphism of Muller automata R� → A�

that maps every state 〈	−−−
α

R, q〉 of R� to the state 〈α, q〉 of A�.

Proposition 3. For every (successful) execution

〈	−−−
α0

R0, q0〉 δ0,ι0−−−→ 〈	−−−
α1

R1, q1〉 δ1,ι1−−−→ 〈	−−−
α2

R2, q2〉 δ2,ι2−−−→ · · ·
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of the activity quasi-automaton R�, the infinite sequence

q0
ι0−→ q1�δ0

A−1
δ0

(ι1)−−−−−→ q2�δ0;δ1

A−1
δ0;δ1

(ι2)−−−−−−→ · · ·

is a (successful) execution of the automaton Λα0 .

Theorem 1 shows the relation that exists between the traces of an activity
with respect to a respository and the automata of each component of the activity.
It shows that every (successful) open execution of an activity can be projected
to a (successful) execution of each of the automata interveaning. In order to
prove that open executions of activities give rise to “local” executions of Λαi

–
for every i ∈ ω, not only for i = 0 – we rely on a consequence of the fact that
the functor A : ARN → MA preserves colimits and, in addition, we restrict the
automata associated with the underlying ARNs of service modules.

Proposition 4. The functor A : ARN → MA preserves colimits. In particular,
for every transition 〈	−−−

α
R, q〉 δ,ι−→ 〈	−−−

α′ R′, q′〉 as in Definition 13, the Muller
automaton Λα′ is isomorphic with the product

Λδ
α ×

∏

r∈R
ξr(AM

+
r
)∩ι �=∅

Λδr

αr

of the cofree expansions Λδ
α and Λδr

αr , for r ∈ R such that ξr(AM+
r

) ∩ ι = ∅, of
the automata Λα and Λαr along the alphabet maps Aδ and Aδr , respectively.4

Consequently, a transition p′ ι′
−→ q′ is defined in the automaton Λα′ if and only if

p′�δ

A−1
δ (ι′)−−−−−→ q′�δ is a transition of Λα and, for each r ∈ R such that ξr(AM+

r
)∩ι =

∅, p′�δr

A−1
δr (ι′)−−−−−→ q′�δr is a transition of Λαr .

Definition 15 (Idle initial states). An automaton Λ = 〈Q, 2A,Δ, I,F〉 is
said to have idle initial states if for every initial state q ∈ I there exists a
transition (p, ∅, q) ∈ Δ such that p is an initial state too.

The following result can be proved by induction on i ∈ ω. The base case
results directly from Proposition 3, while the induction step relies on condition 3
of Definition 13 and on Proposition 4.

Theorem 1. If, for every service module P ←−−
α

R in R, the automaton Λα has
idle initial states, then for every (successful) execution

〈	−−−
α0

R0, q0〉 δ0,ι0−−−→ 〈	−−−
α1

R1, q1〉 δ1,ι1−−−→ 〈	−−−
α2

R2, q2〉 δ2,ι2−−−→ · · ·
4 We recall from [22] that the cofree expansion of an automaton Λ = 〈Q, 2A, Δ, I, F〉
along a map σ : A → A′ is the automaton Λ′ = 〈Q, 2A′

, Δ′, I, F〉 for which (p, ι′, q) ∈
Δ′ if and only if (p, σ−1(X ′), q) ∈ Δ.



146 I. Vissani et al.

of R� there exists a (successful) execution of Λαi
, for i ∈ ω, of the form

q′
0

ι′
0−→ q′

1

ι′
1−→ · · · q′

i−1

ι′
i−1−−−→ qi

ιi−→ qi+1�δi

A−1
δi

(ιi+1)−−−−−−→ qi+2�δi;δi+1

A−1
δi;δi+1

(ιi+2)−−−−−−−−−→ · · ·

where, for every j < i, q′
j�δj ;··· ;δi−1

= qj and A−1
δj ;··· ;δi−1

(ι′j) = ιj.

The reader should notice that all the automata used as examples in this work
have idle initial states as a consequence of the hidden self loop, labelled with
the empty set, that we assumed to exist in every state.

4 Satisfiability of Linear Temporal Logic Formulae

In this section we show how we can use the trace semantics we presented in the
previous section to reason about Linear Temporal Logic (LTL for short) [16,19]
properties of activities. Next we define linear temporal logic by providing its
grammar and semantics in terms of sets of traces.

Definition 16. Let V be a set of proposition symbols, then the set of LTL for-
mulae on V, denoted as LTLForm(V), is the smallest set S such that:

– V ⊆ S, and
– if φ, ψ ∈ S, then {¬φ, φ ∨ ψ,Xφ, φUψ} ⊆ S.

We consider the signature of a repository to be the union of all messages
of all the service modules in it. This can give rise to an infinite language over
which it is possible to express properties refering to any of the services in the
repository, even those that are not yet bound (and might never be). To achieve
this we require the alphabets of the service modules in a repository R to be
pairwise disjoint.

Definition 17. Let R be a repository and 	−−−
α

R an activity. We denote with

AR,α the set
(⋃ {Aα′}

P ′ ←−−
α′ R′∈R

)
∪ Aα.

Defining satisfaction of an LTL formula requires that we first define what is
the set of propositions over which we can express the LTL formulae. We consider
as the set of propositions all the actions in the signature of the repository or in
the activity to which we are providing semantics. Thus, the propositions that
hold in a particular state will be the ones that correspond to the actions in the
label of the transition that took the system to that state.

In order to define if a run satisfies an LTL formula it is necessary to consider
the suffixes of a run, thus let

r=〈 	−−−
α0

R0,q0〉 δ0,ι0−−−→〈 	−−−
α1

R1,q1〉 δ1,ι1−−−→〈 	−−−
α2

R2,q2〉 δ2,ι2−−−→···

be a succesful open execution of 	−−−
α

R with respect to a repository R we denote
with ri the ith suffix of r. That is:

ri=〈 	−−−
αi

Ri,qi〉
δi,ιi−−−→〈 	−−−−−

αi+1
Ri+1,qi+1〉

δi+1,ιi+1−−−−−−→〈 	−−−−−
αi+2

Ri+2,qi+2〉
δi+2,ιi+2−−−−−−→···
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The thoughtful reader may notice that while our formulae are described over
the union of the alphabet of the repository R and the alphabet of the activity
	−−−
α

R, the labels ιi in a run belong to the alphabet Aαi
, that is the computed

co-limit described in Definition 9. Therefore, we need to translate our formula
accordingly with the modifications suffered by the activity during the particular
run to be able to check if it holds. In order to define how the translation of
the formula is carried out we rely on the result of Corollary 1. The following
definition provides the required notation to define these translations:

Definition 18. Let R be a repository and 〈	−−−
α

R, q〉 δ,ι−→ 〈	−−−
α′ R′, q′〉 a transition

of R� then we define Aδ̂ : AR,α → AR,α′ as

Aδ̂(a) =

⎧
⎪⎨

⎪⎩

Aδ(a) a ∈ Aα

Aδri (a) a ∈ Aαri

a otherwise

Definition 19. Let R be a repository and let 	−−−
α

R be an activity. Also let
V = AR,α, φ, ψ ∈ LTLForm(V), a ∈ V and v ⊆ V then:

– 〈r, v, τ〉 |= true,
– 〈r, v, τ〉 |= a iff τ(a) ∈ v,
– 〈r, v, τ〉 |= ¬φ iff 〈r, v, τ〉 |= φ,
– 〈r, v, τ〉 |= φ ∨ ψ if 〈r, v, τ〉 |= φ or 〈r, v, τ〉 |= ψ,
– 〈r, v, τ〉 |= Xφ iff 〈r1, ι0, τ ;Aδ̂0

〉 |= φ, and
– 〈r, v, τ〉 |= φUψ iff there exists 0 ≤ i such that 〈ri, ιi−1, τ ;Aδ̂0

; ...;Aδ̂i−1
〉 |= ψ

and for all j, 0 ≤ j < i, 〈rj , ιj−1, τ ;Aδ̂0
; ...;Aδ̂j−1

〉 |= φ where ι−1 = ∅ and
Aδ̂−1

= 1AR,α
.

If V is a set of propositions, φ, ψ ∈ LTLForm(V), the rest of the boolean
constants and operators are defined as usual as: false ≡ ¬true, φ ∧ ψ ≡ ¬(¬φ ∨
¬ψ), φ =⇒ ψ ≡ ¬φ ∨ ψ, etc. We define ♦φ ≡ trueUφ and �φ ≡ ¬(trueU¬φ).

Definition 20. Let R be a repository and let

r = 〈	−−−
α0

R0, q0〉 δ0,ι0−−−→ 〈	−−−
α1

R1, q1〉 δ1,ι1−−−→ 〈	−−−
α2

R2, q2〉 δ2,ι2−−−→ · · ·

be a successful open execution of R�. Then a formula φ ∈ LTLForm(AR,α0) is
satisfied by r (r |= φ) if and only if 〈r, ∅, 1AR,α0

〉 |= φ.

Following the previous definitions, checking if an activity 	−−−
α

R satisfies a
proposition φ under a repository R is equivalent to checking if every successful
open execution of 	−−−

α
R with respect to R satisfies φ.

In the following we will show how the satisfaction relation in Definition 20 can
be used to reason about properties of activities. We are particularly interested
in asserting properties regarding the future execution of an activity with respect
to a repository.
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In order to exemplify, let us once again consider the activity TravelClient
of Fig. 3(a) and the repository R formed by the services TravelAgent,
CurrenciesAgent, AccomodationAgent, and FlightsAgent described in Figs. 4 and 5.
We are then interested in the open successful executions of the quasi-automaton
R�. Two examples of statements we could be interested in are the following
properties:

1. Every execution of TravelClient requires the execution of CurrenciesAgent:
For all successful open executions r of R�, r |= ♦

(∨
a∈AMCurrenciesAgent

a
)
.

2. There exists an execution of TravelClient that does not require the execution
of FlightsAgent:

There exists a successful open execution r of R�, r |= �
(
¬

∨
a∈AMFlightsAgent

a
)
.

The first property is true and it can be checked by observing that in the
automaton ΛTA no matter what is the choice for a transition made in the ini-
tial state (bookHotels¡, bookF lights¡, or bookHotels&Flights¡), the transition
labelled with action getExchangeRate! belongs to every path that returns to
the initial state, that is the only accepting state. Therefore, the reconfiguration
of the activity on port CE0 is enforced in every successful execution.

The second one is also true as it states that there is an execution that does not
requires the binding of a flights agent. Observing TravelClient, one can consider
the trace in which no order on flights is placed never as the client always choose
to order just accommodation.

5 Conclusions and Further Work

The approach that we put forward in this paper combines, in an integrated
way, the operational semantics of processes and communication channels, and
the dynamic reconfiguration of ARNs. As a result, it provides a full operational
semantics of ARNs by means of automata on infinite sequences built from the
local semantics of processes, together with the semantics of those ARNs that
are selected from a given repository by means of service discovery and binding.
Another use for this semantics is in identifying the differences between the non-
deterministic behaviour of a component, reflected within the execution of an
ARN, and the nondeterminism that arises from the discovery and binding to
other ARNs.

In comparison with the logic-programming semantics of services described
in [22], this gives us a more refined view of the execution of ARNs; in particular,
it provides a notion of execution trace that reflects both internal actions taken
by services that are already intervening in the execution of an activity, and
dynamic reconfiguration events that result from triggering actions associated
with a requires-point of the activity. In addition, by defining the semantics of
an activity with respect to an arbitrary but fixed repository, it is also possible
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to describe and reason about the behaviour of those ARNs whose executions
may not lead to ground networks, despite the fact that they are still sound and
successful executions of the activity.

The proposed operational semantics allows us to use various forms of tempo-
ral logic to express properties concerning the behaviour of ARNs that surpasses
those considered before. We showed this by defining a variant of the satisfaction
relation for linear temporal logic, and exploiting the fact that reconfiguration
actions are observable in the execution traces; thus, it is possible to determine
whether or not a given service module of a repository is necessarily used, or may
be used, during the execution of an activity formalised as an ARN.

Many directions for further research are still to be explored in order to provide
an even more realistic execution environment for ARNs. Among them, in the
current formalism, services are bound once and forever. In real-life scenarios
services are bound only until they finish their computation (assuming that no
error occurs); this does not prevent the activity to require the execution of the
same action associated to the same requires-point, triggering a new discovery
with a potential different outcome on the choice of the service to be bound.
Also, our approach does not consider any possible change on the repository
during the execution which leads to a naive notion of distributed execution as
simple technical problems can make services temporarily unavailable.
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Abstract. In order to specify hybrid systems in a SOC paradigm, we
define Hybrid Doubly Labeled Transition Systems and the hybrid trace
of it. Then we extend SRML notations with a set of differential equation-
based expressions and hybrid programs and interpret the notations over
Hybrid Doubly Labeled Transition Systems. By redefining the dynamic
temporal logic dTL, we provide a logic basis for reasoning about the
behavior of hybrid transition systems. We illustrate our approach by a
case study about the control of a moving train, in which the movement
of the train is regulated by ordinary differential equations.

Keywords: Hybrid transition systems · SRML · Differential equations ·
dTL

1 Introduction

Service-Oriented Computing (SOC) is a computing paradigm that utilizes ser-
vices as fundamental elements to support rapid, low-cost development of dis-
tributed applications in heterogeneous environments [1]. In SOC, a service is
defined as an independent and autonomous piece of functionality which can be
described, published, discovered and used in a uniform way. Within the devel-
opment of SOC, complex systems are more and more involved. A typical type of
complex systems are the hybrid systems, which arise in embedded control where
discrete components are coupled with continuous components. In an abstract
point of view, hybrid systems are mixtures of real-time (continuous) dynamics
and discrete events [2]. In order to address these two aspects into SOC para-
digm, we make our approach by giving a SOC-based formal specification and
verification to hybrid systems.

The SOC-based specification of hybrid systems are realized by giving a hybrid
extension to the SENSORIA Reference Modeling Language (SRML). SRML is a
modeling language that can address the higher levels of abstraction of “business
modeling”[3], developed in the project SENSORIA – the IST-FET Integrated
Project that develops methodologies and tools such as Web Services [10] for
dealing with the challenges arose in Service-Oriented Computing. To make this
c© Springer International Publishing Switzerland 2015
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approach, we first define: Hybrid Doubly Labeled Transition System (HL2TSs),
which extends the semantic domain of UCTL [11]; hybrid traces of HL2TSs,
which represent traces of the system evolution; and service-oriented Hybrid Dou-
bly Labeled Transition Systems (SO-HL2TSs), which extends HL2TSs, as the
SRML semantic domain. Then we extend SRML by extending the language of
business role and the language of business protocol. The language of business role
is extended by defining formulas and differential equation-based terms for tran-
sition specifications, and interpreting them over SO-HL2TSs. The language of
business protocol is extended by redefining hybrid programs and formulas of the
dynamic logic temporal logic dTL [12], which provides modalities for quantifying
over traces of hybrid systems, for behaviour constraints.

We illustrate our approach though a case study of a Train-Control system
verification. The Train-Control system abstracts the European Train Control
System (ETCS)[19], which is a a signalling, control and train protection system
designed to replace the many incompatible safety systems currently used by
European railways. In such a system the displacement of the train is continuous
on time within the system evolution and is governed by ordinary differential
equations. On specifying the system with extended SRML, we verify a safety
constraint of it with a set of sequent calculus provided in [12] for verifying hybrid
systems.

2 A General Introduction to SRML

In this section we give an overview of SRML composition model and each element
of the composition introduced in [5].

SRML is designed for modeling composite services, whose business logic
involves a number of interactions among more elementary service components
within services and among different services via interfaces. This idea comes from
the concepts proposed in Service Component Architectures (SCA)[4]. The basic
units of business logic are called service modules, which are composed of service
components and external interfaces, and are orchestrated by control and data
flows. Service components are computational units central to the composite ser-
vices. Each service component is modeled by means of the execution pattern
that involves a set of interactions and orchestrations related to them. In a ser-
vice module, external interfaces are used for modeling external parties that either
provide services to or require services from this module. Each interface specifies
a set of interactions internal to this module and some constraints to which the
module expect the external parties to adhere. Service components and external
interfaces of the same module are connected to each other through internal wires
that are used to support and coordinate the interactions among them. Figure 1
shows an example of a service module.

The orchestrations of services components can be seen static, since they are
pre-define at design time and do not invoke services of any external party. While
the constraints of the external interfaces are dynamically configured at each
run time, when modules are discovered and bound to different external parties.
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Fig. 1. Service composition

In this paper, we only discuss the way of defining the module, but not the runtime
configuration. Next we show in detail the composition of a service module.

Business Role. Service components are specified through business roles, each
of which is specified by declaring a set of interactions and the way they are
orchestrated. We give the following introduction to each part:

Interactions involve two parties and can be in both directions. They are
defined from the point of view of the party in which they are defined. Local
specifies the variables that provide an abstract view of the state of the local
component.

Initialization designates a specific initial state.
Transitions model the activities performed by the component. A transition

has an optional name and some possible features. These features are classified as
follows: (i) A trigger is a condition that specifies the occurrence of an event or
a state condition; (ii) A guard is a condition that identifies the states in which
the transition can take place; (iii) Each sentence in effects specifies the effects
of the transition in the local state.

Business Protocol. External interfaces are specified through business proto-
cols. They declare similar interactions to those in business roles, but from the
external parties’ point of view. Instead of an orchestration, a business protocol
provide a set of properties that the external party is expected to follow.

Behaviour models the behaviors that users can expect form a service. Based
on temporal logic [14], they specify which message exchange sequences are sup-
ported by the service via a number of behaviour constraints.

Interaction Protocol. Wires that connect service components and external
interfaces are specified through interaction protocols, and are labeled by connec-
tors that coordinate the interactions in which the parties are jointly involved.
Our work doesn’t relate to this part, so it is not introduced in details.

3 Hybrid Extension of SRML

3.1 A Hybrid Extension of SRML Semantic Domain

Since SRML is a control/data flow driven modeling language, the following data
signature is adopted as a basic semantic domain:

Ω = 〈D,F 〉 (1)
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where D is a set of data sorts and F is a D∗ × D-indexed family of sets of
operations over the sorts. We assume that time ∈ D is a datatype that represents
the usual concept of time. And a fixed algebra U denotes the interpretation of Ω.

SRML is interpreted over Service-oriented Doubly Labeled Transition Sys-
tems (SO-L2TSs), whose structure bases on the UCTL [11] semantic domain –
L2TS. In order to extend SRML over the combination of hybrid systems and
transition systems, we define Hybrid L2TSs (HL2TS) by extending L2TSs with
a set of continuous functions Σ, and define the trace of a HL2TS to describe
the system evolution. Then we define SO-HL2TS over which extended SRML
could be interpreted.

Definition 1 (Hybrid Doubly Labeled Transition System). A hybrid
doubly Labelled Transition System (HL2TS) is a tuple

〈S, s0, Act,R,Σ,AP,L〉

where:

– S is a set of states;
– s0 ∈ S is the initial state;
– Act is a finite set of observable actions;
– R ⊆ S × 2Act × S is the transition relation. A transition (s, α, s′) ∈ R is

denoted by s
α−→ s′;

– Σ is a set of functions and for every function σ ∈ Σ, σ : [0, rσ] → S with
rσ ∈ R and rσ ≥ 0, σ is continuous on the interval [0, rσ];

– AP is a set of atomic propositions;
– L : S → 2AP is a labelling function such that L(s) is the subset of all atomic

propositions that are true in state s.

The evolution of a HL2TS is described by traces, which represent sequences
of pieces of continuous functions and discrete jumps in the HL2TS evolution.

Definition 2 (Trace). Let 〈S, s0, Act,R,Σ,AP,L〉 be a HL2TS then:

– For every σ ∈ Σ, σ[0, rσ] denotes the trace of infinitely many states σ(0), . . . ,
σ(rσ) along σ over the interval [0, rσ];

– ρ is a hybrid trace from s0 if ρ = (s0
α0−→ σ1, σ1[0, rσ1 ], σ1(rσ1)

α1−→ σ2(0),
σ2[0, rσ2 ], . . .) where (s0, α0, σ1(0)) ∈ R and σi(rσi

), αi, σi+1(0)) ∈ R with
i ∈ N;

– A position of ρ is a pair (i, ζ) with i ∈ N and ζ in the interval [0, rσi
]; the state

or transition of ρ at (i, ζ) is σi(ζ). Positions of ρ are ordered lexicographically
by (i, ζ) ≺ (j, ξ) iff either i < j, or i = j and ζ < ξ;

– A trace ρ starting from the initial state s0 terminates if it is a finite sequence
(ρ = (s0

α−→ σ1, σ1[0, rσ1 ], σ1(rσ1)
α1−→ σ2(0), σ2[0, rσ2 ], . . . , σn[0, rσn

]), and
the first state of the trace s0 is denoted by firstρ, the last state of the trace
σn(rσn

) is denoted by lastρ;
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– The concatenation of traces ρ1 = (s1
α0−→ σ1(0), σ1[0, rσ1 ], . . .) and ρ2 =

(s2
α′

0−→ ς1(0), ς1[0, rς1 ], . . .), denoted by ρ1 ◦ ρ2, is defined as follows:

ρ1 ◦ ρ2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(s0
α0−→ σ1(0), . . . , if ρ1 terminates at σn(rσn

)

σn[0, rσn
], s′

0

α′
0−→ ς1(0), . . .) and σn(rσn

) = s′
0

ρ1 if ρ1 does not terminate
not defined otherwise

SO-HL2TSs extends HL2TSs and Service-Oriented Transition Systems (SO-
TSs). SO-TSs are defined in [6]. By combining these two types of transition
systems, we get the semantic domain for SRML extension.

Definition 3 (Service-Oriented HL2TSs). The Service-Oriented HL2TS
(denoted SO-HL2TS) that abstracts a SO-TS 〈S,→, s0, G〉 is the tuple

〈S, s0, Act,R,Σ,AP,L, TIME,Π〉
where:

– 〈S, s0, Act,R,Σ,AP,L〉 is the corresponding HL2TS;
– Act = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪ {e¿ : e ∈ E};
– R ⊆ S × 2ActS is such that:

• s
α−→ s′ iff (s, α, s′ ∈ R for some α ∈ Act2;

• For every (s), α, s′) ∈ R:

α ={e! : e ∈ PUBs
α−→s′ ∪ {e¡ : e ∈ ADLV s

α−→s′}∪
{e? : e ∈ EXCs

α−→s′} ∪ {e¿ : e ∈ DSCs
α−→s′}

– AP = {e! : e ∈ E} ∪ {e¡ : e ∈ E} ∪ {e? : e ∈ E} ∪
{e¿ : e ∈ E} ∪ {a.pledge : a ∈ 2WAY };

– L : S → 2AP is such that:

L(s) ={e! : e ∈ HST !s} ∪ {e¡ : e ∈ HST ¡s}∪
{e? : e ∈ HST?s} ∪ {e¿ : e ∈ HST¿s}
∪ PLGs

with s ∈ S;
– TIME assigns to each state s ∈ S the instant TIMEs;
– Π assigns to each state s ∈ S the parameter interpretation Πs.

In Definition 3, E is the set of all events of a configuration defined in [6]. a
is an interaction and a.pledge is the pledge that is associated with that inter-
action in the configuration. 2WAY is the set of interactions that take place in
both directions in the configuration. HST !,HST ¡,HST? and HST¿ are subsets
of events in a computation state, PLG is the set of pledges that holds in the
computation state and TIME ∈ timeU . PUB,ADLV,EXC and DSC are sub-
sets of events in a computation step, where computation state and computation
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step are used to describe the computation of a configuration and they are also
defined in [6].

In the rest of this section, we present the semantics of SRML extension
interpreted over SO-HL2TSs defined in Sect. 2.2. The SRML extension consists
of two parts: the extension of business role and the extension of business protocol.
The latter includes an extension of dTL formulas which is used to specify and
verify behaviours specified by the new extended behaviour constraint in business
protocol.

In order to define the SRML extension, throughout the remaining of this
section we consider:

– sig = 〈NAME,PARAM〉 (defined in [6]) to be an interaction signature where
Act is the set of actions associated with sig;

– V AR (defined in [6]) to be an attribute declaration.
– Ξ = 〈N,W,PLL, Ψ, 2WAY, 1WAY 〉 (defined in [6]) to be a configuration;
– II (defined in [6]) to be an interaction interpretation for sig over 2WAY ∪

1WAY local to some node n ∈ N ;
– tr = 〈S, s0, Act,R,Σ,AP,L, TIME,Π〉 to be a SO-HL2TS for Ξ;
– Δ (defined in [6]) to be an attribute interpretation for V AR over m;
– m = 〈N,W,C, client, spec, prov〉 (defined in [6]) to be a service module.

3.2 Business Role Extension

Business role is defined over sig and V AR. We extend it by introducing new for-
mulas and predicates into transitions (see Fig. 3). These formulas and predicates
are defined based on a set of terms.

State terms denote the values of the variables and parameters of events in
states. They are interpreted over states.

Definition 4 (State Terms). The D − indexed family of sets STERM of
state terms is defined as follows:

– If c ∈ Fd, then c ∈ STERMd for every d ∈ D;
– If f ∈ F<d1,...,dn+1> and −→p ∈ STERM<d1,...,dn>, then f(−→p ) ∈ STERMdn+1

for every d1, . . . , dn, dn+1 ∈ D;
– If a ∈ NAME and param ∈ PARAM(a)d, then a.param ∈ STERMd for

every d ∈ D;
– If t ∈ V ARtime, then t ∈ STERMtime;
– If v ∈ V ARd, then v ∈ STERMd for every d ∈ D and d �= time.

For example in Fig. 2, in the guard of transition negotiation, terms “m”,
“currentDis” and “ST” are state terms.

Definition 5 (Interpretation of State Terms). The interpretation of a state
term T ∈ STERM in a state s ∈ S, written �T �s, is defined as follows, where
view is the function that defines how the parameter is observed:
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Fig. 2. Business role: train

– �c�s = cU
– �f(T1, . . . , Tn)�s = fU (�T1�s, . . . , �Tn�s)
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– �a.param�s = view(II(a).param′Πs

)
– �t�s = TIMEs

– �v�s = vΔ(s)

State predicates are defined based on state terms, and specify the properties
of states. The satisfaction of state predicates is defined for states.

Definition 6 (State Predicates). The state predicates SP is defined as
follows:

χ ::= T1 = (>,<, �=)T2 | χ ∧ χ′ | ¬χ | χ → χ′

with T1, T2 ∈ TERMd for some d ∈ D.

For example in Fig. 2, guard m − currentDIS ≥ ST of transition negotiation
is a state predicate.

Definition 7 (Satisfaction of State Predicates). The satisfaction relation
of state predicates is defined for every state s ∈ S follows:

– s |= T1 = (>,<, �=)T2 iff �T1�s = (>,<, �=)�T2�s

– s |= χ ∧ χ′ iff s |= χ and s |= χ′

– s |= ¬χ iff not s |= χ
– s |= χ → χ′ iff s |= χ → s |= χ′

Effect terms denote the values of the variables and parameters of events in
transitions, so terms denoting variable values in the source state(v, time) and
in the target state (v′, time′) within a transition are included. Effect terms are
interpreted over transitions.

Definition 8 (Effect Terms). The D-indexed family of sets ETERM of effect
terms is defined inductively as follows:

– The effect terms c, f(−→p ) and a.param are defined the same way as state terms;
– If t ∈ V ARtime then t, t′ ∈ ETERMtime;
– If v ∈ V ARd, then v, v′ ∈ ETERMd for every d ∈ D and d �= time.

For example in Fig. 2, in effect1 of transition pointPosition, terms “C0”,
“currentDis”, are effect terms.

Definition 9 (Interpretation of Effect Terms). The interpretation of an
effect term T ∈ ETERM over a transition s

α−→ s′ written �T �
s

α−→s′ is defined
as follows, where: II(param) = 〈param′, view〉:
– �c�

s
α−→s′ = cU

– �f(T1, . . . , Tn)�
s

α−→s′ = fU (�T1�s
α−→s′ , . . . , �Tn�

s
α−→s′)

– �a.param�
s

α−→s′ = view(II(a).param′Πσ′(0)
)

– �v�
s

α−→s′ = vΔ(s)

– �v′�
s

α−→s′ = vΔ(s′)
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– �t�
s

α−→s′ = TIMEσ(s)

– �t′�
s

α−→s′ = TIMEs′

Effect formulas are defined based on effect terms, and specify the effects
of state transitions. The satisfaction relation of effect formulas is defined for
transitions.

Definition 10 (Effect Formulas). The Effects Formulas EF is defined as fol-
lows:

– χ ::= true | T1 = T2 | ini | χ ∧ χ′ | ¬χ

where T1, T2 ∈ ETERMd for some d ∈ D, and ini ∈ EnINI .

For example in Fig. 2, in effect1 of transition
pointPosition is an effect formula.

Definition 11 (Satisfaction of Effect Formulas). The satisfaction relation
of effect formulas EF is defined for every transition s

α−→ s′ as follows:

– s
α−→ s′ |= true

– s
α−→ s′ |= T1 = T2 iff �T1�s

α−→s′ = �T2�s
α−→s′

– s
α−→ s′ |= ini iff II(ini) ∈ PUBs

α−→s′

– s
α−→ s′ |= χ ∧ χ′ iff s

α−→ s′ |= χ and s
α−→ s′ |= χ′

– s
α−→ s′ |= ¬χ iff not s

α−→ s′ |= χ

Extended effect terms denote the values of variables along a trace of state
σ[0, rσ]; They extend effect terms by introducing the term vtime, which is used
to denote the time derivative of variable v at any time point TIMEσ(ζ). Where
σ ∈ Σ and ζ ∈ [0, rσ]. They are interpreted along traces.

Definition 12 (Extended Effect Terms). The D-indexed family E-ETERM
of sets of extended effect terms is defined inductively as follows:

– The extended effect terms c, f(−→p ), t, t′, v and v′ are defined the same way as
effect terms;

– If v ∈ V ARd, then vtime ∈ E-ETERMd′ .

For example in Fig. 2, in effect2 of transition correction, terms “Ctime”,
“V ”, “Vtime” and “−b” are extended effect terms.

Definition 13 (Interpretation of Extended Effect Terms). An extended
semantics of an effect term T ∈ E-ETERM is interpreted along a trace σ(0, rσ),
written �T �σ(0,rσ) is defined as follows:

– �c�σ(0,rσ) = c
σ(0,rσ)
U

– �f(T1, . . . , Tn)�σ(0,rσ) = fU (�T1�σ(0,rσ), . . . , �Tn�σ(0,rσ)

– �vtime�σ(0,rσ) = v
Δ(σ(0,rσ′ ))
time

– �v�σ(0,rσ) = vΔ(σ(0,rσ′ ))
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– �t�σ(0,rσ) = TIMEσ(0,rσ′ )

Extended effect formulas are defined based on extended effect terms, and
specify the first order differential equations about certain variables and time (in
Fig. 3 for example, in transition negotiation, Ctime = v0 is a differential equation
about the displacement of a train C and time, where C is a globally defined
variable). The satisfaction relation of extended effect formulas is defined for
traces of states.

Definition 14 (Extended Effect Formulas). The Extend Effects Formulas
E-EF is defined as follows:

– χ ::= true | vtime = T | χ ∧ χ′ | ¬χ

where vtime, T ∈ E-ETERM.

For example in Fig. 2, Ctime = V in effect2 of transition correction is an
extended effect formula.

Definition 15 (Satisfaction for Extended Effect Formulas). The satis-
faction relation for the extended effect formulas E-EF is defined for every trace
σ[0, rσ] as follows:

– σ[0, rσ] |= true
– σ[0, rσ] |= vtime = T iff v is continuous over TIMEσ[0,rσ] and has a time

derivative of value �T �σ(ζ) at each state σ(ζ) with ζ ∈ (0, rσ);
– σ[0, rσ] |= χ ∧ χ′ iff σ[0, rσ] |= χ and σ[0, rσ] |= χ′

– σ[0, rσ] |= ¬χ iff not σ[0, rσ] |= χ

Using state predicates, effect formulas and extended effect formulas, we can
specify a transition of a business role component in a SO-HL2TS.

Definition 16 (Transition Specification). A transition specification is a
triple

〈trigger, guard, effect1, effect2〉
where trigger ∈ Act, guard ∈ SP , effect1 ∈ EF and effect2 ∈ E-EF.

The satisfaction relation of transitions is defined for SO-HL2TSs.

Definition 17 (Transition Satisfaction). The SO-HL2TS m satisfies a tran-
sition specification

r = 〈trigger, guard, effects1, effect2〉

written m |= r, iff for every transition s
α−→ σ(0)the following property hold:

If II(trigger) ∈ α, s |= guard, then

s
α−→ σ(0) |= effect1 and σ[0, rσ] |= effect2.
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3.3 Business Protocol Extensions

As introduced in Sect. 2.1, the behaviors of business protocols are specified
through a set of behavior constraints. We introduce a new behavior constraint
(see Fig. 4: always l ≤ L → C < m) by defining hybrid programs and dTL
formulas. The behavior constraint captures common requirements along all the
traces of a system run.

Fig. 3. Business protocol: RadioBlockCentre

Hybrid programs [8] generalize real-time programs [9] to hybrid change and
are used to describe the behaviour of hybrid systems. They provide uniform
discrete jumps and continuous evolutions along differential equations. In [12],
hybrid programs are defined over a set variables and terms and used to specify
dTL formulas. In this paper, we define hybrid programs with transitions specified
in last section, and interpret them along hybrid traces.

Definition 18 (Redefined Hybrid Programs). The set of hybrid programs
HP of a SO-HL2TSs m is inductively defined as follows:

– If a transition r = 〈trigger, guard, effect1, effect2〉 over m has the satisfac-
tion relation m |= r, then r ∈ HP ;

– If β ∈ HP , then firstβ ∈ HP ;
– If β, γ ∈ HP , then (β ∪ γ) ∈ HP ;
– If β, γ ∈ HP , then (β; γ) ∈ HP ;
– If β ∈ HP , then (β∗) ∈ HP ;

Definition 19 (Trace Semantics of Redefined Hybrid Program). The
trace semantics of a redefined hybrid program β, written �β�, is defined as follows:

– �trigger, guard, effect1, effect2� = {s
α−→ σ(0), σ[0, rσ] : trigger ∈ α, s |=

guard, s
α−→ σ(0) |= effect1 and σ[0, rσ] |= effect2};
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– �firstβ� = {s
α−→ σ(0), σ[0, 0] : (s α−→ σ(0), σ[0, rσ]) ∈ �β�}

– �β ∪ γ� = �β� ∪ �γ�;
– �β; γ� = {σ ◦ ς : σ ∈ �β�, ς ∈ �γ� when σ ◦ ς is defined};
– �β∗� =

⋃
n∈N�βn�, where βn+1 = (βn;β) for n ≥ 1.

Given a service module m = 〈N,W,C, client, spec, prov〉, the function hp :
m → HP maps SRML specifications into hybrid programs. hp is constructed
similar to the method provided in [6] (for details see [7]). For example, the
hybrid program of the business role component Train in module Train-Control
(see Fig. 2) is: hp(Train) = [pointPosition∗] ∪ [pointPosition∗;negotiation]
∪[pointPosition∗;negotiation; correction].

Based on the definition of hybrid programs, we redefine dTL formulas as
follows:

Definition 20 (Redefined dTL Formulas). The sets Fml of dTL state for-
mulas and FmlT of dTL trace formulas are inductively defined as the smallest
set such that (φ ∈ Fml and π ∈ FmlT ):

φ ::= true | sp | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ → φ′ | ∀tφ | ∃tφ | [β]π | 〈β〉π
π ::= φ | �φ | ♦φ

with sp ∈ SP , t ∈ V ARtime and β ∈ HP .

Formulas without � and ♦ are called non-temporal dL formulas [8]. Unlike
in UCTL, state formulas are true on a trace if they hold for the last state of
that trace but not for the first. Thus, [β]φ expresses that φ is true at the end of
each trace of β. In contrast, [β]�φ expresses that φ is true all along all states of
every trace of β. According to the valuation of dTL formulas defined in [12], we
define the semantics of dTL formulas as follows:

Definition 21 (Satisfaction of dTL Formulas). Let 〈S, s0, Act,R,Σ,AP,L,
TIME,Π〉 be a SO-HL2TS. The satisfaction relation for dTL state formulas on
each state s ∈ S is defined as follows, where s[t �→ t̃] denotes the modification
that agrees with state s on all variables except for variable t ∈ V ARtime:

– s |= true;
– s |= sp iff sp ∈ L(s)
– s |= ¬φ iff not s |= φ;
– s |= φ ∧ φ′ iff s |= φ and s |= φ′;
– s |= φ ∨ φ′ iff s |= φ or s |= φ′;
– s |= φ → φ′ iff s |= φ → s |= φ′;
– s |= ∀tφ iff s[t �→ t̃] |= φ for all t̃ ∈ V ARtime;
– s |= ∃tφ iff s[t �→ t̃] |= φ for some t̃ ∈ V ARtime;
– s |= [β]π iff for each trace ρ ∈ �β� with firstρ = s, if the satisfaction relation

between ρ and π is defined then ρ |= π;
– s |= 〈β〉π iff there is a trace ρ ∈ �β� with firstρ = s, if the satisfaction

relation between ρ and π is defined then ρ |= π.
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The satisfaction relation for dTL trace formulas with respect to trace ρ =
(s α−→ σ1, σ1[0, rσ1 ], σ1(rσ1)

α1−→ σ2(0), σ2[0, rσ2 ], . . .) is defined as follows where
φ is a state formula and Λ denotes the failure of a system run:

– ρ |= φ iff ρ terminates and lastρ |= φ, whereas the satisfaction relation
between ρ and φ is not defined if ρ does not terminates;

– ρ |= �φ iff σi(ζ) |= φ for all positions (i, ζ) of ρ with σi(ζ) �= Λ;
– ρ |= ♦φ iff σi(ζ) |= φ for some positions (i, ζ) of ρ with σi(ζ) �= Λ;

In the end we can define the new behaviour constraint always s for extending
business protocol:

Definition 22 (Hybrid Behaviour Constraint). For any service module m
with the corresponding sets C and WW ∈ W :

– “always sp” stands for

[hp(C,WW )]�sp

(sp is true in each state along every trace of hybrid program hp(C,WW )
starting from the initial state, where sp ∈ SP ).

For example in Fig. 3, the behaviour “alwalys l < L → C < m” stands for
[hp(Train)]�(l ≤ L → C < m).

4 Case Study: The Verification of Train-Control System

The model of Train-Control System is inspired by the European Train Con-
trol System(ETCS). As shown in Fig. 4, the system is composed by three com-
ponents: Train, Radio Block Centers (RBC) and Balise which is melded with
the railway. RBC grant or deny movement authorities (MA) to individual train
by wireless communication. A train can not exceed the current MA (say m)
in order to guarantee safety driving. The balise reports to the train its cur-
rent position periodically, so the train knows how far it still is from the end of
MA. Before entering negotiation at some point ST (in the “far” region), the
train has sufficient distance to MA and can regulate its speed freely. When
the train enters the region “neg”, it sends a request to the RBC to apply
for the MA extension and proceed with a constant speed v0. If the train
receives negative response from the RBC, it enters the “cor” region and pro-
ceed with acceleration −b. With the restriction of the scenario above, we have
the hybrid program hp(Train − ControlSystem(Train)) = [pointPosition∗] ∪
[pointPosition∗;negotiation] ∪ [pointPosition∗;negotiation; correction].

Figure 5 shows the SRML module Train-Control. Each element of the module
is described as follows:

– business role: TR – a component that coordinates the movement process of
the train, of type Train;
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– business protocol: RBC– the external interface of the module which provides
service to the external parties for knowing the current position of the train
and issuing movement authority, of type RadioBlockCentre;

– business protocol: BA – the external interface of the module which requires
service from the external parties for getting the current positioning signal, of
type Balise;

– interaction protocol: RT, TB – two internal wires that make the partner rela-
tionship between RBC and TR, TR and BA explicitly.

Fig. 4. ETCS train coordination

Fig. 5. Train-Control module

The whole SRML specification can be found in Appendix 2. In business role
Train, C : displacement is a global variable of the train displacement which is
continuous in time. Differential equation Ctime = v0 describes the movement of
the train in region “(neg)”; and differential equation set Ctime = V, Vtime = −b
describes the movement of the train in region “cor”.

Next we show the verification of the behaviour, always l < L → C <
m, specified in business protocol RadioBlockCentre. This behaviour expresses
that,under a initial condition φ for parameters, a train will always remain within
its MA m, as long as the accumulated RBC negotiation latency l is at most L.
We assume that every transition σ(tσ) α−→ σ′(0) takes so short time that we
could approximately have CΔ(σ(rσ)) = CΔ(σ′(0)), lΔ(σ(rσ)) = lΔ(σ′(0)).

So we have ψ → [run(Train-Control System)]�(l ≤ L → C < m), where ψ is
the set of initial propositions and run(Train-Control System) = [pointPosition∗]
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∪ [pointPosition∗;negotiation] ∪ [pointPosition∗;negotiation; correction].
According to the scenario, the train is in region “far” along trace pointPosition∗,
we always have C < m. Thus the proof of this part can be omitted. In the end
we have the following formula:

where C0 is the initial displacement and l0 is the initial negotiation latency. As
shown in Fig. 2, the train first negotiate with RBC while keeping a constant
speed V and the movement is controlled by equation (Ctime = V ) in transition
negotiation. Then in transition correction the train brakes with acceleration −b
and the movement is controlled by equations (Ctime = V ∧ Vtime = −b).

We use the rule schema of the dTL calculus provided in [7] for our proof.
The rule schema can be find in Appendix 1 and 〈[ · ]〉 brackets are used instead of
modalities to visually identify the update prefix. We omit all the events, variables
and parameters that don’t appear in the state predicate l < L → C < m.

The dTL proof of the constraint in (2) splits into two cases as follows:

. . .
ψ � [negotiation]�φ

. . .
ψ � [negotiation][correction]�φ

T1 ψ � [negotiation; correction]�φ
P3 � ψ → [negotiation; correction]�φ

The left branch proves that if φ holds during negotiation, an open condition
Lv0 + C0 < m should be satisfied. The proof is shown as follows:

In the proof above, in the step applying P10, L is replaced by ∀t ≥ 0 to
obtain a general case.In the step applying D3, v0t + C0 is substituted by C and
t is substituted by l. In the step applying D7, C = v0t+C0 and l = t are special
solutions of differential equations Ctime = v0 and ltime = 1 respectively.

The right branch proves that if φ continues to holds after negotiation has
completed when continuing with an adjusted acceleration a, an open condition



166 N. Yu and M. Wirsing

v2
0 < 2b(m − Lv0 − C0) ∧ Lv0 + C0 < m should be satisfied. The proof is shown

as follows:

In the proof above, in the first step applying P10, ∀t̃ ≥ 0 is substituted to obtain
a general case. In the step applying D3, − b

2 t̃2 = v0t̃+C0 is substituted by C. In
the step applying T3 and D7, − b

2 t̃2 = v0t̃+C0 is a special solution of differential
equation set Ctime = V, Vtime = −b.

5 Concluding Remarks and Related Work

In this paper, we extended SRML semantic domain by defining HL2TSs and
it’s hybrid traces which represent the system evolution. Based on this, we made
a formal extension of SRML, which includes the extension of the language of
business role and the language of business protocol. For our case study, we
specified a Train-Control system with SRML and verified a safety constraint
of it.

This work has been done mainly on the basis of [6,12]. In [6] a formal spec-
ification of SRML is provided. In [12], hybrid programs and the logic dTL for
reasoning about the temporal behaviour of hybrid programs are defined, and a
set of calculus for deductive verification is provided. In the SRML extension, we
redefined hybrid programs and dTL formulas over the extended SRML seman-
tic domain, thus enables the evolution of a service-oriented transition system
with continuous traces can be reasoned about with the calculus in [12]. Fur-
thermore, to define the HL2TSs, we referenced [13] for Hybrid Automata; to
redefine hybrid programs and dTL, we referenced [14,15] for Temporal Logic
and Dynamic Logic basis. Different from various approaches for modeling and
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verifying hybrid systems, such as that provided in [17,18], our approach deals
with hybrid transition systems, which integrate interactions among components
with hybrid systems.

Although our work extends SRML, which is defined to specify service-
oriented transition systems, it does not include the content of service discovery
and binding. In [16] a formal operational semantics for service discovery and
binding is brought forward. A prospect of our future work might be applying
continuous time execution to this approach.

Appendix 1: A Rule Schema of the dTL Calculus

A rule schema of the dTL calculus can be found in Table 1. In these rules,
φ, ψ ∈ Fml and π ∈ FmlT ; χ1 ∈ EF and χ2 ∈ E-EF , T1, . . . , Tn ∈ ETERM ,
T ∈ E-ETERM and t ∈ ETERMtime. In D3, M is a first-order formula and the
substitution of M

T ′
1...T ′

n

T1...Tn
, which replaces T1 . . . Tn by T ′

1 . . . T ′
n in M. In D7-D8,

Table 1. Rule schemata of the temporal dynamic dTL verification calculus
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fv0 is the solution of the initial value problem vtime = T, v�(σ(0)) = v0, where
σ(0) is the state in which variable v has the value v0. In P10, Cl∀(F0 → G0) →
Cl∀(F → G) is an instance of a first-order tautology of real arithmetic and Cl∀
is the universal closure.

Appendix 2: SRML Specification of Module Train-Control

The SRML specification of service module Train-Control is shown in Fig. 6.

Fig. 6. Module Train-Control
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