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Abstract This paper presents a technique for spectral modeling using a deep neural
network (DNN) for statistical parametric speech synthesis. In statistical paramet-
ric speech synthesis systems, spectrum is generally represented by low-dimensional
spectral envelope parameters such as cepstrum and LSP, and the parameters are
statistically modeled using hidden Markov models (HMMs) or DNNs. In this paper,
we propose a statistical parametric speech synthesis system that models high-
dimensional spectral amplitudes directly using the DNN framework to improvemod-
elling of spectral fine structures. We combine two DNNs, i.e. one for data-driven
feature extraction from the spectral amplitudes pre-trained using an auto-encoder
and another for acoustic modeling into a large network and optimize the networks
together to construct a single DNN that directly synthesizes spectral amplitude
information from linguistic features. Experimental results show that the proposed
technique increases the quality of synthetic speech.

1 Introduction

Recently, deep neural networks (DNNs) with many hidden layers have been sig-
nificantly improved in statistical speech synthesis researches. For instance, DNNs
have been applied for acoustic modelling. Zen et al. [1] use DNN to learn the rela-
tionship between input texts and extracted features instead of decision tree-based
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state tying. Restricted Boltzmann machines or deep belief networks have been used
to model output probabilities of hidden Markov model (HMM) states instead of
GMMs [2]. Recurrent neural network and long-short term memory have been used
for prosody modelling [3] and acoustic trajectory modelling [4]. In addition, an auto-
encoder neural network has also been used to extract low dimensional excitation
parameters [5].

However, the synthetic speech of the latest statistical parametric speech synthesis
still sounds muffled, and averaging effects of statistical models are often said to
remove spectral fine structure of natural speech. To improve the quality of synthetic
speech, a stochastic postfilter approach has been proposed [6] where a DNN is used
to model the conditional probability of the spectral differences between natural and
synthetic speech. The approach was found to be able to reconstruct the spectral
fine structure lost during modeling and has significantly improved the quality for
synthetic speech [6]. In this experiment, the acoustic model was trained using lower
dimensional spectral envelope features, while the DNN-based postfiler was trained
using the spectral amplitudes obtained using the STRAIGHT vocoder [7]. From
the experimental findings, we can hypothesize that the current statistical parametric
speech synthesis may suffer from quality loss due to not only statistical averaging
but also acoustic modeling using lower dimensional acoustic features.

On the basis of this hypothesis, in this paper we present a new technique for
constructing a DNN that directly synthesizes spectral amplitudes from linguistic
features without using spectral envelope parameters such as mel-cepstrum. It is well
known that there are many problems for training a DNN such as the local optima,
vanishing gradients and so on [8]. However, it has been reported in the ASR field
that DNNs that deal with high-dimensional features, e.g. FFT frequency spectrum,
can be appropriately constructed using an efficient training technique such as pre-
training [9].

Thus, in this paper we propose an efficient training technique for constructing a
DNN that directly synthesizes spectral amplitudes from input texts. A key idea is to
stack two DNNs, an auto-encoder neural network for data-driven nonlinear feature
extraction from the spectral amplitudes and another network for acoustic modeling
and context clustering. The proposed technique is regarded as a function-wise pre-
training technique for constructing the DNN-based speech synthesis system.

The rest of this paper is organized as follows. Section2 reviews a DNN-based
acoustic model for the statistical parametric speech synthesis. Section3 describes a
DNN-based acoustic feature extractor and spectrum re-generator. Section4 explains
the proposed technique for constructing a DNN that directly synthesizes the spectral
amplitudes. The experimental conditions and results are shown in Sect. 5. Concluding
remarks and future works are presented in Sect. 6.
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Fig. 1 A framework of
DNN-based acoustic model

2 DNN-based Acoustic Model for Statistical Parametric
Speech Synthesis

It is believed that the human speech production system has layered hierarchical
structures to convert the linguistic information into speech. To approximate such
a complicated process, DNN-based acoustic models that represent the relationship
between linguistic and speech features have been proposed for statistical parametric
speech synthesis [1–4] This section briefly reviews one of the state-of-the-art DNN-
based acoustic models [1].

Figure1 illustrates a framework of the DNN-based acoustic model. In this frame-
work, linguistic features obtained from a given text are mapped to speech parameters
by a DNN. The input linguistic features include binary answers to questions about
linguistic contexts and numeric values, e.g. the number ofwords in the current phrase,
the position of the current syllable in the word, and durations of the current phoneme.
In [1], the output speech parameters include spectral and excitation parameters and
their time derivatives (dynamic features). By using pairs of input and output fea-
tures obtained from training data, the parameters of the DNN can be trained with a
stochastic gradient descend (SGD) [10]. Speech parameters can be predicted for an
arbitrary text by a trained DNN using forward propagation.

3 Deep Auto-encoder Based Acoustic Feature Extraction

An auto-encoder is an artificial neural network that is used generally for learning a
compressed and distributed representation of a dataset. It consists of the encoder and
the decoder. In the basic one-hidden-layer auto-encoder, the encoder maps an input
vector x to a hidden representation y as follows:

y = fθ (x) = s(Wx + b), (1)

where θ = {W, b}. W and b represent an m × n weight matrix and a bias vector of
dimensionality m, respectively, where n is the dimension of x. The function s is a
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non-linear transformation on the linear mapping Wx + b. A sigmoid, a tanh, or a
relu function is typically used for s. y, the output of the encoder, is then mapped to z,
the output of the decoder. The mapping is performed by a linear mapping followed
by an arbitrary function t that employs an n × m weight matrix W′ and a bias vector
of dimensionality n as follows:

z = gθ ′(y) = t (W′y + b′), (2)

where θ ′ = {W′, b′}. An auto-encoder can be made deeper by stacking multiple
layers of encoders and decoders to form a deep architecture.

Pre-training is widely used for constructing a deep auto-encoder. In pre-training,
the number of layers in a deep auto-encoder increases twice as compare to a deep
neural network (DNN) when stacking each pre-trained unit. It has been reported that
fine-tuning with back-propagaqion through a deep auto-encoder is ineffective due
to vanishing gradients at the lower layers [8]. To overcome this issue, we restrict
the decoding weight as the transpose of the encoding weight following [10], that is,
W′ = WT where WT denotes the transpose of W. Each layer of a deep auto-encoder
can be pre-trained greedily to minimize the reconstruction loss of the data locally.
Figure2 shows a procedure for constructing a deep auto-encoder using pre-training.
In pre-training, a one-hidden-layer auto-encoder is trained and the encoding output
of the locally trained layer is used as the input for the next layer. After all layers are
pre-trained, they are stacked and are fine-tuned to minimize the reconstruction error
over the entire dataset using error backpropagation [11]. We use the mean square
error (MSE) for the loss function of a deep auto-encoder.

Figure3 shows an example of original and reconstructed spectrograms using the
standard mel-cepstral analysis and a deep auto-encoder. Both mel-cepstral analysis
and the deep auto-encoder produced 120-dimensional acoustic features. We can
clearly see that the deep auto-encoder reconstructs spectral fine structures more
precisely than that of the mel-cepstral analysis. Log spectral distortions between
natural spectrum and reconstructed spectrum calculated using 441 sentences were

Fig. 2 Greedy layer-wise
pre-training for constructing
a deep auto-encoder
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(a) (b) (c)

Fig. 3 Original and reconstructed spectra using mel-cepstral analysis and a deep auto-encoder.
a Original, b mel-cepstrum, c deep auto-encoder

2.53 and 1.19 dB for the mel-cepstral analysis and deep auto-encoder, respectively.
Similar auto-encoder based bottleneck features were tested for a ClusterGen speech
synthesizer [12]. Our idea is different from [12] and we stack the decoder part of the
deep auto-encoder onto another DNN for acoustic modeling.

4 Proposed DNN-based Spectral Modeling

ADNN-based acoustic model described in Sect. 2 may be used for the direct spectral
modeling by substituting an output of the network from mel-cepstrum to the spec-
trum. However, the dimension of spectrum is much higher than that of mel-cepstrum.
For a speech signal at 48kHz, themel-cepstral analysis order typically used is around
50-dim, whereas the dimension of spectrum corresponds to FFT points such as 2049.
Because of this high dimensional data, amore efficient training technique is needed to
construct a DNN that directly represents the relationship between linguistic features
and spectra. In this paper, we hence propose a function-wise pre-training technique
where we explicitly divide the general flow of the statistical parametric speech syn-
thesis system into a few sub-processes, construct and optimize a DNN for each task
individually, and stack the individual networks for the final optimization.

Figure4 shows a procedure for constructing the proposed DNN-based spectral
model. Details of each step of the proposed technique are as follows:

Step 1. Train a deep auto-encoder using spectra and extract bottleneck features for a
DNN-based acoustic model used in Step 2. Layer-wise pre-training or other
initialization may be used for the learning of the deep auto-encoder.

Step 2. Train a DNN-based acoustic model using the bottleneck features extracted
in Step 1. Layer-wise pre-training or other initialization may be used for
learning the DNN.
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Fig. 4 Constructing a DNN-based spectral model based on a deep autoencoder and a DNN-based
acoustic model

Step 3. Stack the trained DNN-based acoustic model for bottleneck features and
the decoder part of the trained deep auto-encoder as shown in Fig. 4 and
optimize the whole network.

A DNN that represents the relationship between linguistic features and spectra is
constructed based on a DNN-based spectral generator and a DNN-based acoustic
model using the bottleneck features. After this proposed pre-training, we fine-tune
theDNN tominimize the error over the entire dataset using pairs of linguistic features
and spectra in training data with SGD.

5 Experiments

We have evaluated the proposed technique in the subjective experiment. The dataset
we use consists of 4546 short audiowaveforms uttered by a professional female native
speaker of English and each waveform is around 5s long. All data was sampled at
48 kHz.

Wecompared three techniques;CEPSTRUM is theDNNthat synthesizes cepstrum
vectors, SPECTRUM has the same network structure as that of CEPSTRUM, but
it outputs the spectral amplitudes directly, and INTEG is the proposed DNN that
synthesizes spectrum amplitudes with the proposed pre-training framework. In these
techniques, the dynamic and acceleration features were not used. Figure5 shows
structures of constructed DNNs for each technique. We trained five-hidden-layer
DNN-based acoustic models for each technique. The number of units in each of the
hidden layers was set to 1024. Random initialization was used in a way similar to [1].
In INTEG, we trained the symmetric five-hidden-layer auto-encoder. The numbers
of units of the hidden layers were 2049, 500, 60, 500 and 2049 As a result, we
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Fig. 5 Structures of constructed DNNs for each technique

constructed and fine-tuned the eight-hidden-layer (1024-1024-1024-1024-1024-60-
500-2049) DNN for INTEG. We used a sigmoid function for all units of hidden and
output layers of all DNNs.

For each waveform, we first extract its frequency spectra using the STRAIGHT
vocoder with 2049 FFT points. For constructing the conventional system, 59 dimen-
sional cepstrum coefficientswere used. Spectrum and cepstrumwere both frequency-
warped using the Bark scale. Note that all the techniques synthesize only spectrum
features and other requisite acoustic features; that is, F0 and aperiodicity measures
were synthesized from the same HMM-based synthesis system [13]. Feature vectors
for HMMs were comprised of 258 dimensions: 59 dimensional bark-cepstral coeffi-
cients (plus the 0th coefficient), log f0, 25 dimensional band aperiodicity measures,
and their dynamic and acceleration coefficients. Phoneme durations were also esti-
mated by HMM-based speech synthesis. The context-dependent labels were built
using the pronunciation lexicon Combilex [14]. The linguistic features for DNN
acoustic models were comprised of 897 dimensions: 858 dimensional binary fea-
tures for categorical linguistic contexts, 36 numerical features for numerical linguis-
tic contexts, and three numerical features for the position of the current frame and
duration of the current segment. The linguistic features and spectral amplitudes in
the training data were normalized for training DNNs. In the proposed technique,
however, the bottleneck features are not normalized, and the normalization process
is not used for hidden units in the integrated DNN. The input linguistic features were
normalized to have zero-mean unit-variance, whereas the output spectral amplitudes
were normalized to be within 0.0–1.0.

We synthesized speech samples from spectrum amplitudes, F0 features and ape-
riodicity measures using the STRAIGHT vocoder in all techniques. In CEPSTRUM,
synthesized cepstral vectors were converted into spectrum amplitudes for using the
STRAIGHT vocoder.
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Fig. 6 Results of preference
test

In subjective experiments, two preference tests were conducted. Seven subjects
participated in both listening tests. Thirty sentences were randomly selected from the
180 sentences for each subject. The experiment was carried out using headphones in
a quiet room.

5.1 Experimental Result

Figure6 shows the results of the preference tests with 95% confidence intervals.
In the first preference test, they were asked to compare the DNN that synthesizes
cepstrum vectors (CEPSTRUM) with the proposed DNN (INTEG). In the second
preference test, they were asked to compare the DNN without the proposed pre-
training technique that synthesizes spectrum amplitudes (SPECTRUM) with the pro-
posed DNN (INTEG). The figure shows that the proposed technique produces more
natural-sounding speech than other techniques. This indicates that the DNN that
directly synthesizes spectra was efficiently trained using the proposed technique.

6 Conclusion

In this paper, we have proposed a technique for constructing a DNN that directly
synthesizes spectral amplitudes. On the basis of the general flow for constructing
the statistical parametric speech synthesis systems, a part of layers of a DNN could
be efficiently pre-trained. Experimental results showed that the proposed technique
increased the quality of synthetic speech.

In futurework,wewill investigate the effect of structures of aDNN-based acoustic
model and a DNN-based spectrum auto-encoder more thoroughly. Time derivative
features will also be interesting to investigate.
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