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Preface

This volume brings together through a peer-revision process advanced research
results obtained on nonlinear speech processing, following the tradition initiated by
the European COST Action 277: “Nonlinear Speech Processing” (http://www.cost.
eu/COST_Actions/ict/277). The research published in this book was discussed for
the first time at the 7th edition of the International Workshop on “Nonlinear Speech
Processing (NOLISP)” held in Vietri sul Mare, Italy, on May 18–20, 2015.

The workshop afforded a change of perspective in nonlinear speech processing,
where the research focus moved from “engineering tools” to “interactional
exchanges” and asked for investigations of coding/decoding and computational
processes, and social and cognitive speech features for improving the quality of life
of end users of communicative interfaces exploiting speech as the main commu-
nicative tool for human–machine interaction. The consequences should result in the
development of autonomous, adaptive voice user interfaces (VUIs) able to exploit
linguistic and paralinguistic information and allow free form of conversations. This
approach will foster traverse investigations on the multifunctional role of speech
and multimodal communication modes that account for gestures, emotions, and
social signal processing for developing friendly and socially believable interactive
dialogue systems.

The editors would like to thank the staff of the International Institute for
Advanced Scientific Studies (IIASS), who provided precious technical support in
the organization of the NOLISP 2015. In addition, the editors are grateful to the
contributors for making this book a scientifically stimulating compilation of new
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and original ideas, and the NOLISP International Scientific Committee for their
rigorous and invaluable scientific revisions, their dedication, and their priceless
selection process.

November 2015 Anna Esposito
Marcos Faundez-Zanuy
Antonietta M. Esposito

Gennaro Cordasco
Thomas Drugman
Jordi Solé-Casals

Francesco Carlo Morabito
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Part I
Nonlinear Speech Processing: An

Introduction



A Decade of Encouraging Speech Processing
“Outside of the Box”—A Foreword

Björn W. Schuller

Abstract A perspective on this year’s Non-Linear Speech Processing effort is given
focussing on alternative approaches. In fact, it wasmarked by a strong presence of the
“younger” field of paralinguistic speech analysis. Beyond the more mature recogni-
tion of emotion, a significant interest in health and care applications can be noticed.
This includes Alzheimer’s disease, cognitive load level, depressive disorders, and
Parkinson’s disease, and reaches to language impairment, general pathology as well
as speech interfaces for the elderly. In fact, even speaker identification has seen a
study on the influence of emotionally converted speech. Related to speech analysis,
the front-end side along the usual chain of speech processing was strongly repre-
sented.Backendmachine learning includes extreme learningmachines, unsupervised
clustering, and deep representations.

The chapters of this collection are an extension of the work the authors had presented
at the 2015 seventh biennial international Non-linear Speech Processing (NOLISP)
workshop. NOLSIP 2015 has—as ever in this series—invited alternative approaches
in speech processing. This is amore than crucial focus considering the growing “age”
of computational speech processing—in particular speech and speaker recognition
benefit from more than six and roughly five decades of experience by now. This
may appear young in comparison to many traditional fields of research, but relating
it to the birth hour of Computer Science and according milestones beyond Boole’s
algebra in the later 1840s such as the Turing machine in the later 1930s, makes
Speech Processing increasingly a rather “traditional” area of research in Computer
Science. While these decades have overall been marked by significant progress, one
could also repeatedly witness “plateaus of stagnation” such as last in the noughties.
It has been exactly the thinking offside the “conventional” that continually helped
to overcome the pitfall of overly trusting in one direction. A good example of such

B.W. Schuller (B)
Machine Learning Group, Imperial College London, London, UK
e-mail: bjoern.schuller@imperial.ac.uk

B.W. Schuller
Chair of Complex and Intelligent Systems, University of Passau, Passau, Germany

© Springer International Publishing Switzerland 2016
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4 B.W. Schuller

thinking “outside of the box” was the recent change of emphasis from statistical to
neural approaches within the “deep learning wave”.

In fact, this collection of extended contributions of the NOLISP 2015 program
is marked by a strong presence of the “younger” roughly two decades aged field of
paralinguistic speech analysis. Beyond the “more mature” recognition of emotion
(Camilo Vasquez et al.), a significant part is dedicated to health and care applications.
This includes chapters on speech analysis related to Alzheimer’s disease (López-De-
Ipiña et al.), cognitive load level (Luz and Su), depressive disorders (Esposito et al.
and Kiss et al.), and Parkinson’s disease (Gómez-Vilda et al. and Mekyska et al.);
the content further reaches to new findings regarding specific language impairment
(Dacewicz, Nowak, and Szelag), general pathology (Szelag and Dacewicz) as well
as speech interfaces for the elderly (Wang et al.). Further paralinguistic speaker
classification contained deals with speaker age classification (Muñoz-Mulas et al.),
and personality traits, role, and conflict in a summary of the keynote that had been
given by Alessandro Vinciarelli. Similarly concerned with social aspects and speak-
ing style is the summary of the other keynote that had been presented by Jonathan
Harrington; it stresses the relevance of contextual aspects and sound change. In fact,
even speaker identification featured in this collection deals with the influence of
emotionally converted speech (Pribil and Pribilova) besides speaker identification in
“more usual” settings (Ghezaiel, Ben Slimane, and Ben Braiek).

Related to speech analysis, the front-end side along the usual chain of speech
processing is strongly represented: Prosody (Babu and Sao), and in particular pitch
estimation (Jlassi, Bouzid, and Ellouze) aswell as glottal closure (Smidi, Bouzid, and
Ellouze) and glottal features (Lazaro-Carrascosa and Gómez-Vilda), modelling of
diphthong articulation (Carmona-Duarte et al.), and stationary voiced speech (Zam-
mel and Ellouze) make novel speech features and modelling a further major topic
of the book. The pre-processing and enhancement usually preceding this modelling
along this chain of processing is represented in this volume by new methods for
nonlinear acoustic echo cancellation (Comminiello et al.).

NOLISP was this year jointly organised with the 25th ItalianWorkshop on Neural
Networks (WIRN 2015)—a perfect match in these days of “neural renaissance”. It
thus seems not surprising that more “backend” machine learning-focused contri-
butions could also be found in its program. The extended original contributions in
this collection reach from experience with extreme learning machines (Della Porta
et al.), and unsupervised clustering and deep representations (Salvi) to “non-neural
network-related” chapters, e.g., concerned with Markov chains (Singh).

Finally, on the “opposite end” of analysis, two contributions consider alternative
approaches for hidden Markov models (Sulír and Juhár), and deep neural networks
(Takaki and Yamagishi) for speech synthesis.

Overall, NOLISP itself celebrated its first decade’s anniversary after the first
edition held in 2005 in this year. Unaffected by this, it faithfully kept following its aim
to provide space to those works not following the “mainstream”. Besides alternative
approaches, the still “somewhat alternative” Computational Paralinguistics made up
for the lion’s share of its program in 2015. It will be exciting to see which of this
year’s extended contributions featured in this collection will contribute to shape the
future of non-linear speech processing.
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1 Introduction

Even though contextual instances play a fundamental role in delineating the most
appropriate communication tools for implementing successful interactional
exchanges [12], nevertheless, spoken messages remain naturally preferred and
extremely effective among humans. This is substantiated by the fact that speech based
information communication technologies (ICT) are largely accepted and favored
among persons. To our knowledge, visual telecommunication tools, such as telecon-
ferencing, are still at an early stage of acceptance, because their “perceived ease
of use (PEOU)”, and “perceived usefulness (PU)”, are strongly affected by both
“individual factors such as anxiety and self-efficacy, and institutional factors such
as institutional support and voluntariness” [26, p.118]. On the contrary, Voice User
Interfaces (VUIs), had proven to be largely accepted to the extent that 65+ aged
elders are enthusiast to be assisted and monitored for their chronic diseases by a
static speaking face [8].

A spoken message produces a precise physical object, a wave of sounds, through
which an individual communicates ideas and beliefs, shares knowledge, express
needs, feelings, and emotions. The everyday simplicity and flexibility of a such
acoustic event in serving as a “container” of countless superimposing and inter-
weaving information, is impressive. The elementary “wave of sounds” will take on
several encoding channels, where different streams of data flow together to efficiently
build up and successfully shape human exchanges. Among all these encodings, the
linguistic code is undoubtedly the most important. It exploits a predefined and shared
communication protocol (the language1) that allows interactants to decipher a sub-
stantial part of the semantic meaning of the delivered message. However, there is a
lot of additional information normally sent through speech. Psycholinguistic studies
have shown thatmeanings are conveyed not only bywords (intended here as lexicon).
During speech production, there exist multiple sets of non-lexical expressions carry-
ing on specific communicative values. Typical non-lexical communicative events at
the paralinguistic speech level are, for example, empty and filled pauses signaling,
among many other functions, mood states; vocalizations signaling positive or nega-
tive feedbacks (“aah”, “hum”); speech repairs signaling speakers cognitive and emo-
tional states, as well as discourse planning/re-planning strategies; and intonational
phrases contour changes allowing to disambiguate meanings [6, 7, 10, 12–14]. The
abovementioned speech resources are powerful enough to fulfill plenty of commu-
nicative needs without the intervention and independently from the linguistic code,
since the process of encoding/decoding for this information is very likely affected
by cultural, unconscious, and instinctive communication mechanisms rather than by
language production/comprehension rules.

In addition, it is well known that communicative exchanges among humans are not
achieved only through speech and linguistic vocal expressions. Written and visual

1Here “language” is intended to be “the verbal language” as opposed to other general meanings of
the term. The interpretation of a “language” as a code can be found in De Saussure [9].
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channels, convey linguistic and paralinguistic information that complement or substi-
tute spoken messages and gestures achieve the same pragmatic and semantic speech
function [12, 18]. However, at the current technological stage there are few ICT
technologies exploiting these channels: speech technologies predominate among all
of them and are favorite with respect to visual, graphical and text interfaces. The ulti-
mate speech ICT objectives are guided by the willingness to improve voice services
in telecommunication systems, providing a high quality speech synthesis, more effi-
cient speech coding, effective speech recognition, speaker identification, and speaker
verification systems in order to significantly spread the VUIs acceptance for infor-
mation systems such as the mobile Internet (by improving speech synthesis and
recognition) and the future generations of wireless communication networks (by
improving speech coding).

2 Beyond Nonlinear Speech Processing

The nonlinear approach to speech processing had produced advances in several
speech engineering fields such as coding, transmission, compression, and synthe-
sis among others, as well as, advances beyond the engineering approach. This is
because the functional role of speech, being a human ability, is not constrained to a
finite scope and therefore, investigations in one field had produced results in another.
Among the topics that had exploited for long time and still exploit nonlinear tech-
niques, it is worth to mention Speech Coding, intended as the ability of an algorithm
to code speech in a compact bit-stream such that the amount of transmitted data (the
bit rate) would be as low as possible to accommodate transmission channel con-
straints while preserving speech intelligibility and pleasantness [1, 2, 20]. Low-rate
speech coding algorithms have been developed for interactive multimedia services
on packet-switched networks such as mobile radio networks, Internet, and mobile
network user base, and even more very low bit rate coding at consumer quality will
be demanded by the future ICT systems [21, 22, 31].

Two topics of highly nonlinear relevance are Speech Synthesis and Recognition.
Humans have very high requirements and expectations when dealing with VUIs,
other than simplicity, flexibility and easiness of interaction. This is because voice
interactions are an ordinary tool of exchanges among them and do not require, on
the user side, cognitive efforts, attention, and memory resources as in the case of
graphical and text interfaces. Voice exchanges between humans and machines elim-
inate delays caused by option menus and can provide very rapidly and complex
verbal responses. However current VUIs are not free of constraints. VUIs represent
a complex interface option for systems developers since the underlying automated
speech recognition (ASR) and Text to Speech (TTS) technology is constrained to
context based and speaker dependent applications. Free-form of human-machine
conversations are not provided by the current speech technologies. Improvements
in dialog management resources are still addressed to specific use scenarios varying
from allowing health users to surf theWorldWideWeb tomore complex applications
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such monitoring the wellbeing of elderly people, which add, to the complexity of the
free-form of conversations also those related to poor speech production (and then
more complex efforts for its recognition) because of possible fine motor articulatory
impairments due to the age [8, 24, 25, 30]. Current commercial voice enabled sys-
tems are Webtalk (http://www.pcworld.com/article/98603/article.html) developed
by Microsoft, and Siri (http://www.apple.com/ios/siri/) developed by Apple. These
systems are not free of criticisms and still constrained in the dialogue management
to be speaker-dependent, with a restricted dictionary, and favorable environmental
conditions. These limitations aremostly due to themany sources of variability affect-
ing the speech signals coarsely grouped by Esposito [16] as: “a) phonetic variability
(i.e. the acoustic realizations of phonemes are highly dependent on the context in
which they appear), b) within-speaker variability (as result of changes in the speakers
physical and emotional state, speaking rate, voice quality), c) across-speaker vari-
ability (due to differences in the socio-linguistic background, gender, dialect, and
size and shape of the vocal tract), and d) acoustic variability (as result of changes in
the environment as well as the position and the characteristics of the transducer)”.
Reliable and effective speech recognition and synthesis applications must be able
to handle efficiently these variabilities knowing at any stage of the speech recog-
nition/synthesis process which source more than the others is affecting the system
efficiency and performance. The general assumption behind these investigations is
“that there are rules governing speech variability and such rules can be learned and
applied in practical situations” [15, 16]. This point of view is not generally accepted
(see [23] for an alternative point of view), since it is related to the classical problem of
reconciling the physical and linguistic description of speech, i.e. the invariance issue.
Five decades of research in nonlinear speech processing seems to bring convincing
arguments on the role of the context (the cultural, organizational, and physical con-
text) in the human communications [12] suggesting to consider the invariance issue
context dependent to a certain extent. Two more nonlinear engineering topics such
as Voice Analysis, and Conversion (where the quality of the human voice is analysed
for clinical and phonetics applications and where techniques for the manipulation of
voice characters) produced the flourishment of new speech research fields and new
speech applications, such as the analysis of emotional vocal expressions in order to
identify speech acoustic emotional features and be able to detect emotional states
from speech [3–5, 17, 27, 28] and even more psychopathological disorders such as
depression, stress and anxiety [11, 19, 29].

The nonlinear approach to speech processing had gone beyond the acoustic and
engineering approach to speech processing, extending its research to the psycho-
logical, social, and organizational implications derived from exchanges that are not
anymore only among humans, being an automatic system involved. However, in
order to be an efficient and effective exchange, the richness of the speech signal must
be preserved combining appropriately technological constraints and its social and
functional role.

http://www.pcworld.com/article/98603/article.html
http://www.apple.com/ios/siri/
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3 Contents of this Book

It took over 50years to realize that speech is beyond speech and therefore nonlinear
speech processing should go beyond nonlinear techniques and exploits heuristic and
psychological models of human interaction in order to succeed in the implementa-
tions of socially believableVUIs and applications for humanhealth andpsychological
support. This book is signaling advances in these directions taking into account the
multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s
foreword). To this aim, the book is organized in 6 sections, each collecting a small
number of short chapters reporting advances “inside” and “outside” themes related
to nonlinear speech research. The themes emphasize theoretical and practical issues
for modelling socially believable speech interfaces, ranging from efforts to capture
the nature of sound changes in linguistic contexts and the timing nature of speech;
labors to identify and detect speech features that help in the diagnosis of psycholog-
ical and neuronal disease, attempts to improve the effectiveness and performance of
Voice User Interfaces, new front-end algorithms for the coding/decoding of effective
and computationally efficient acoustic and linguistic speech representations, as well
as investigations capturing the social nature of speech in signaling personality traits,
emotions and improving human machine interactions.

The coarsely arrangement in 6 scientific sections should be considered only a
thematic classification. The sections are closely connected and provide fundamental
insights for the cross-fertilization of different disciplines. All the chapters collected
in each section are original and never published before. In addition, all the chapters
benefited from the live interactions in person among the participants of the successful
meeting in Vietri sul Mare under the egide of the 7th biennial international workshop
on Non-Linear Speech Processing (NOLISP 2015) which had initiated alternative
approaches to speech processing according to the research tradition proposed by the
COST Action 277 (http://www.cost.eu/COST_Actions/ict/277).

4 Conclusions

The readers of this book will get a taste of the major research areas on nonlinear
speech processing, different visions on the multifunctional role of speech, different
methodologies for analyzing and detecting important speech features, psycholog-
ical, social, and cognitive disease, and how nonlinear speech processing interact
with cognitive and social processes and can shed light on their comprehension and
understanding. The research topics proposed by the book are particularly computer
science, engineering, signal processing andhuman-computer interaction oriented and
the contributors to this volume are leading authorities in their respective fields. How-
ever, interesting psychological, and cognitive aspects are also captured and discussed,
letting the book to go, as speech itself, beyond and across scientific disciplines.

http://www.cost.eu/COST_Actions/ict/277


10 A. Esposito et al.

References

1. ArjonaRamírez,M.,Minami,M.:Technology and standards for low-bit-rate vocodingmethods.
In: Bidgoli, H. (ed.) The Handbook of Computer Networks, vol. 2, pp. 447–467. Wiley, New
York (2011)

2. Arjona Ramírez, M., Minami, M.: Low bit rate speech coding. In: Proakis, J.G. (ed.) Wiley
Encyclopedia of Telecommunications, vol. 3, pp. 1299–1308. Wiley, New York (2003)

3. Atassi, H., Esposito, A., Smekal, Z.: Analysis of high-level features for vocal emotion recogni-
tion. In: Proceedings of 34th IEEE International Conference on Telecommunication and Signal
Processing (TSP), pp. 361–366 (2011)

4. Atassi, H., Riviello, M.T., Smekal, Z., Hussain, A., Esposito, A.: Emotional vocal expressions
recognition using the cost 2102 italian database of emotional speech. In: Esposito, A., et al.
(eds.) Development of Multimodal Interfaces: Active Listening and Synchrony, LNCS 5967,
pp. 255–267. Springer, Berlin, Heidelberg (2010)

5. Atassi, H., Esposito, A.: Speaker independent approach to the classification of emotional vocal
expressions. In: Proceedings of IEEE Conference on Tools with Artificial Intelligence (ICTAI
2008), vol. 1, pp. 487–494 (2008)

6. Butterworth, B.L., Beattie, G.W.: Gestures and silence as indicator of planning in speech.
In: Smith, P.T., Campbell, R.N. (eds.) Recent Advances in the Psychology of Language, pp.
347–360. Olenum Press, New York (1978)

7. Chafe, W.L.: Cognitive constraint on information flow. In: Tomlin, R. (ed.) Coherence and
Grounding in Discourse, pp. 20–51. John Benjamins, Amsterdam (1987)

8. Cordasco, G., Esposito, M., Masucci, F., Riviello, M.T., Esposito, A., Chollet, G., Schlögl, S.,
Milhorat, P., Pelosi, G.: Assessing voice user interfaces: the vAssist system prototype. In: 5th
IEEE International Conference on Cognitive InfoCommunications, pp. 91–96. Vietri sul Mare,
5–7 Nov 2014

9. De Saussure, F.: Cours de linguistique générale. Editions Payot, Paris (1922)
10. Esposito, A., Esposito, A.M., Vogel, C.: Needs and challenges in human computer interaction

for processing social emotional information. Pattern Recogn. Lett. 66, 41–51 (2015)
11. Esposito, A., Esposito, A.M., Likforman, L., Maldonato, M.N., Vinciarelli, A.: On the signifi-

cance of speech pauses in depressive disorders: results on read and spontaneous narratives. In
this volume (2015)

12. Esposito, A.: The situatedmultimodal facets of human communication. In: Rojc,M., Campbell,
N. (eds.) Coverbal Synchrony in Human-Machine Interaction, ch. 7, pp. 173–202. CRC Press,
Taylor & Francis Group, Boca Raton, FL (2013)

13. Esposito, A., Marinaro, M.: What pauses can tell us about speech and gesture partnership.
In: Esposito, A., et al. (eds.) Fundamentals of Verbal and Nonverbal Communication and the
Biometric Issue. NATO Publishing Series, vol. 18, pp. 45–57. IOS Press, The Netherlands
(2007)

14. Esposito, A., Bourbakis, N.G.: The role of timing in speech perception and speech produc-
tion processes and its effects on language impaired individuals. In: Proceedings of the 6th
International IEEE Symposium on BioInformatics and BioEngineering (BIBE), pp. 348–356
(2006)

15. Esposito, A.: The importance of data for training intelligent devices. In: Apolloni, B., Kurfess,
C. (eds.) From Synapses to Rules: Discovering Symbolic Knowledge from Neural Processed
Data, pp. 229–250. Kluwer Academic Press, Dordrecht (2002)

16. Esposito, A.: Approaching speech signal problems: an unifying viewpoint for the speech recog-
nitionprocess. In: SuarezGarcia, S.,BaronFernandez,R. (eds.)Memoria ofTaller Internacional
de Tratamiento del Habla, Procesamiento de Vos y el Language, CIC-IPN Obra Compleata
(2000). ISBN: 970-18-4936-1

17. Galanis, D., Karabetsos, S., Koutsombogera, M., Papageorgiou, H., Esposito, A., Riviello,
M.T.: Classification of emotional speech units in call centre interactions. In: Proceedings of
4th IEEE International Conference on Cognitive Infocommunications (CogInfoCom2013), pp.
403–406. Budapest, Hungary, 2–5 Dec 2013



Recent Advances in Nonlinear Speech Processing: Directions and Challenges 11

18. Kendon, A.: Gesture: Visible Action as Utterance. Cambridge University Press, Cambridge
(2004)

19. Kiss, G., Tulics, M.G., Sztahó, D., Esposito, A., Vicsi, K.: Language independent detection
possibilities of depression by speech. In this volume (2015)

20. Kroon, P.: Evaluation of speech coders. In: Paliwal, K.K., Bastiaan Kleijn, W. (eds.) Speech
Coding and Synthesis, pp. 467–494. Elsevier Science, Amsterdam (1995)

21. Gibson, J.D.: Speech coding methods, standards, and applications. IEEE Circuits Syst. Mag.
5(4), 30–49 (2005)

22. Faundez-Zanuy,M., Janer, L., Esposito,A., Satue-Villar,A.,Roure, J., Espinosa-Duro,V. (eds.):
Nonlinear Analyses and Algorithms for Speech Processing, LNAI 3817. Springer, Berlin,
Heidelberg (2006)

23. Lindblom, B.: Explaining phonetic variation: a sketch of the H&H theory. In: Hardcastle, W.,
Marchal, A. (eds.) Speech Production and Speech Modeling, pp. 403–439. Kluwer, Dordrecht
(1990)

24. Meena, R., Skantze, G., Gustafson, J.: Data-driven models for timing feedback responses in a
map task dialogue system. Comput. Speech Lang. 28, 903–922 (2014)

25. Milhorat, P., Schlögl, S., Chollet, G., Boudyy, J., Esposito, A., Pelosi, G.: Building the next
generation of personal digital assistants. In: Proceedings of 1st IEEE International Confer-
ence on Advanced Technologies for Signal and Image Processing–ATSIP’2014, pp. 458–463.
Sousse, Tunisia, 17–19 Mar 2014. ISSN 978-1-4799-4888-8/14/

26. Park, N., Rhoads, M., Hou, J., Lee, K.M.: Understanding the acceptance of teleconferencing
systems among employees: an extension of the technology acceptance model. Comput. Hum.
Behav. 39, 118–127 (2014)

27. Ringeval, F., Eyben, F.,Kroupi, E.,Yuce,A., Thiran, J.P., Ebrahimi, T., Lalanne,D., Schuller,B.:
Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological
data. Pattern Recogn. Lett. Elsevier (2014)

28. Schullerm, B.: Deep learning our everyday emotions: a short overview. In: Bassis et al. (eds.)
Advances in Neural Networks: Computational and Theoretical Issues. Series: SIST Series, vol.
37, pp. 339–346. Springer, Berlin, Heidelberg (2015)

29. Scherer, S., Stratou, G., Lucas, G., Mahmoud, M., Boberg, J., Gratch, J., Rizzo, A., Morency,
L.P.: Automatic audio-visual behaviour descriptors for psychological disorder analysis. Special
Issue on Best of Face and Gesture 2013: Image Vis. Comput. 32(10), 648–658 (2014)

30. Skantze, G., Hjalmarsson, A.: Towards incremental speech generation in conversational sys-
tems. Comput. Speech Lang. 27, 243–262 (2013)

31. Stylianou, Y., Faundez-Zanuy, M., Esposito, A. (eds.): Progress in Nonlinear Speech Process-
ing, LNCS 4391. Springer, Berlin, Heidelberg (2007)



Part II
Features of Sound Change



The Relationship Between the (Mis)-Parsing
of Coarticulation in Perception and Sound
Change: Evidence from Dissimilation
and Language Acquisition

Jonathan Harrington, Felicitas Kleber and Mary Stevens

Abstract The study is concerned with whether historical sound change is more
likely to occur when coarticulation, or the way that speech sounds overlap with and
influence each other in time, is misaligned in production and perception. The focus
of the first experiment was on long-range coarticulatory lip-rounding that has been
linked with historical dissimilation. A perception experiment based on present-day
Italian showed that inherently lip-rounded segmentsweremore likely to bemasked—
and thereby erroneously deleted—in hypoarticulated speech. The second experiment
tested whether the mismatch between the modalities was more likely in young chil-
dren than in adults. For this purpose, first language German speakers participated
in a forced-choice perception experiment in which they categorised German back
and front vowels in coarticulatory non-fronting and fronting consonantal contexts.
Children’s ability to normalise for coarticulation was shown to be less than that of the
adults. Taken together, the results suggest that sound change can occur when coar-
ticulatory relationships are perceptually obscured due to a hypoarticulated speaking
style causing consonants to be camouflaged in the case of dissimilation and variants
to approximate those that are strongly influenced by coarticulation in the case of
diachronic back vowel fronting.

1 Introduction

Research in the last 30–40 years has shown a relationship between contextual vari-
ation in speech communication and historical change. A well-known example is
synchronic transconsonantal vowel coarticulation [24, 52] that has led to the sound
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change by which umlaut has developed in some languages (e.g. present-day German
Füße /fyse/ and present-day English ‘feet’ from Proto-Germanic /fotiz/). The general
aim in this chapter is to consider the mechanisms by which diachronic change can
take hold, given what is known about the dynamics of speech production and their
relationship to perception. The focus will be on the types of sound change that have
been documented in numerous languages and whose bases are in coarticulation: that
is in how speech sounds overlap with and influence each other in time.

Many physiological, acoustic, and perceptual studies are consistent with the idea
developed from action theory [15] through to articulatory phonology [7] that speech
production can be modelled as the orchestration of autonomous gestures that wax
and wane in time [45] so that, within any given time window multiple sounds make
contributions in different degrees of strength to the acoustic signal [59]. Thus, in
producing queen /kwin/, the tongue-dorsum raising of /i/ is likely to overlap par-
tially or entirely both with the preceding lip-rounding from /w/ and with a lowered
velum in anticipation of the following /n/. This simultaneous production, coarticu-
lation or coproduction of multiple gestures from successive speech sounds can also
easily extend across major prosodic boundaries, especially in the case of liquids
[23, 32, 61]. The important point as far as modelling sound change from coarticula-
tion is concerned is that, to use an apt metaphor from Lindblom [43], speech is ‘big
band’ in which the gestures of speech production are independently controlled and
each make their own contribution to the acoustic signal, analogously to the acoustic
contribution towards realising a common musical arrangement that is made by the
independently controlled and separate instruments of an orchestra.

As far as the listener is concerned, numerous experiments suggest that coar-
ticulation is perceived analogously to its production. The evidence for this derives
from experiments showing how an identical acoustical signal is differently perceived
depending on the context in which it is embedded [21, 46]. For example, many lis-
teners hear a nasal vowel as oral when it is surrounded by nasal consonants [34].
An explanation for this finding is that listeners parse the acoustic signal into the
overlapping articulatory gestures that could have given rise to it [17, 20]. For this
example, listeners perceive the temporally overlapping tongue dorsum movements
for the vowel and lowered velum of the nasal as autonomously coproduced gestures.
A consequence of perceived coproduction is that nasalisation in perception is asso-
ciated not with the vowel but with the nasal consonant that caused it: that is, listeners
factor nasalisation from the acoustic signal of the vowel [4, 5]. It is in this sense
that some have argued for parity or a common currency between coarticulation in
production and coarticulation in perception [16]. For some researchers, there must
necessarily be parity because gestures are directly perceived in the speech signal [19].
In the theory to be developed in the present chapter, such parity across production
and perception in processing coarticulation is considered to be the condition that
obtains only under stability, i.e. when no sound change is taking place. Moreover,
we propose that sound change can occur under the perhaps rarer condition in which
the production and perception of coarticulation are out of alignment: that is, when
listeners perceive or parse coarticulation in away that is different from its production.
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This theory is closely informed by Ohala’s [48–50] model of sound change and
extensions thereof (e.g. [41, 57]) in which occasional ambiguities in the transmission
of coarticulation from a speaker to hearer can be a source of sound change. A well-
known example is the epenthetic stop insertion that synchronically gives rise to
variations such as /drεmt, drεmpt/ (‘dreamed’) that are related to sound changes
such as empt y from old English /æmtig/. Where then does the /p/ come from? A
likely answer is that a /p/ can be perceived if the lip closure for /m/ is released not
synchronously but after the oral closure leading to a bilabial stop or doubly articulated
[̂pt]. Notice that the listener must have heard a /p/ even though no such unit formed
part of speech production. That this must be so can be seen in the derivation of names
such as ‘Hampton’ which arose by combining in Old English the surname ‘Ham’
(and importantly not ‘Hamp’) with ‘tun’. Thus, the part of the signal corresponding
to the overlapping lip-constriction and /t/ closure that must have occurred in /æmtig/
and /hamtun/ has been decontextualised by the listener, because it is not interpreted
in relation to the phonetic context that gave rise to it. This part of the signal has
(with the passage of time) instead been phonologised because it has come to be
permanently associated (in ‘empty’ and ‘Hampton’) with a /p/ phoneme where none
had originally existed.

Speech communication also varies substantially in speaking style. This can be
in a social sense, as when speakers adapt their style to take account of the social
status of the interlocutor (e.g. [30]). Moreover, there is, of course, well-documented
evidence of an association between the adaptation of speaking style towards a more
prestigious social class and sound change [38]. Here we shall be concerned not with
social variation, but instead with the adaptation in speech production depending on
the extent towhich themeaning of the signal is predictable fromcontext.According to
Lindblom [42], speech is produced with a high degree of clarity or hyperarticulation
when the listener has to rely almost entirely on the signal to understand it. This might
happen in introducing a person for the first time, given that there is unlikely to be
any prior context or knowledge by which the listener can infer the person’s name
from context. Local hyperarticulation is likely to occur at points in the signal that
are particularly important for understanding what is being said [11]; in stress-accent
languages, these points of information focus also typically occur in nuclear accented
words [10].By contrast, a speaker tends tohypoarticulate the parts of the speech signal
in which the listener is predicted to be able to bring to bear contextual knowledge
in the broadest sense—sometimes because of a topic that is current in a dialogue,
sometimes bymeans of the knowledge that is assumed to be shared by the speaker and
listener [54]. According to Lindblom [42], listeners tend not to process the details of
the signal in hypoarticulated speech: firstly, they might not need to because the signal
should be highly predictable using top-down information; secondly, hypoarticulated
signals may in any case be of less use for decoding meaning if the phonetic content is
degraded—such as when vowels are reduced and consonants are strongly lenited, as
is typical of a hypoarticulated speaking style. In Lindblom [44], it is when listeners
exceptionally process the fine phonetic detail in hypoarticulated speech that a new
pronunciation for a word can be added to the lexicon.
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Harrington et al. [28, 29] tested whether the types of ambiguities in the trans-
mission of coarticulation—that Ohala considers to be responsible for many kinds of
sound change—may bemore acute in hypoarticulated speech. They assessedwhether
prosodic weakening influenced the extent to which listeners adjusted their percep-
tions for a coarticulatory effect (vowel fronting in VCV coarticulation and polysyl-
labic shortening). Their results suggested less perceptual adjustment for coarticula-
tion in lexically weak than strong syllables [28] and less adjustment in prosodically
deaccented than accented words [29]. Taken together, these results provide some
evidence that listeners’ phonological categorisations are less influenced by coartic-
ulation in hypoarticulated speech (of which lexically weak syllables and deaccented
words are two examples). In this paper, we extend this idea to test whether there is
a connection between dissimilation sound changes and the degradation of perceived
coarticulation in hypoarticulated speech (see [2] and [6] for a review and analysis of
dissimilation in different languages). Dissimilation is a very different type of sound
change compared with those that formed the basis of the analysis in Harrington et al.
[28, 29] in which the sound changes associated with phonetic variation come about
because listeners are presumed to adjust their perceptions insufficiently for coartic-
ulation. Dissimilation, by contrast, comes about according to Ohala [53] because
listeners adjust their perceptions too much for a presumed coarticulatory effect. So
far, there have been very few attempts to reconstruct in the laboratory the synchronic
conditions that could lead to dissimilation and the few that have been conducted
(e.g. [1]) have found little evidence to support the idea that dissimilation is associ-
ated with an over-compensation for coarticulation, as suggested by Ohala [48, 49].

In the last 10 years, various studies have shown that listeners even of the same
dialect do not always agree on how to process coarticulation. For example, studies
by Beddor [4, 5] have shown that American English listeners vary in how nasalised
they perceive a vowel to be before a nasal consonant. Moreover, Yu [63] and Yu
et al. [64] have shown how listeners’ perception of (and normalisation for) coartic-
ulation is influenced by their personality and social profiles. Such results suggest
another potential source of sound change: that individuals or perhaps groups of indi-
viduals differ in how a given speech signal is parsed perceptually (see also [33]).
Group differences in processing coarticulation perceptually were found for older
versus younger subjects for a sound change in progress in Standard Southern British
[27, 36].

In this chapter, we consider whether the possibly different ways in which adults
and young children perceive coarticulation may be another potential source of sound
change. There is of course an extensive literature on the association between sound
change and language acquisition [22, 35, 40] with a particular emphasis on demon-
strating the commonality between children’s misarticulations during acquisition and
patterns of sound change. As argued elsewhere [3, 14, 60], there is little evidence
for such a direct association and this is also not the type of investigation that is being
pursued here. The approach follows instead that of Kleber and Peters [37] who seek
to test whether, as less experienced users of the language, children are more likely to
have difficulty normalising in perception for coarticulation. Some evidence that this
might be so was presented in Nittrouer and Studdert-Kennedy [47] for consonants.
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Since that study, there have been no further analyses of whether adults and children
process coarticulation differently in perception. Here we extend their analysis for the
first time to an investigation of the coarticulatory influences of consonants on vowels
(and in another language).

In summary, the aim of this chapter is to test earlier [50] and more recent
[4, 36, 41, 57] models of an association between sound change and the perceptual
processing of coarticulation.We approach this issue from two very different perspec-
tives. Firstly, by considering how listeners’ processing ambiguities could give rise
to dissimilation (Sect. 2). Secondly, by analysing whether sound change might arise
through the different ways that coarticulation might be processed across two groups
of listeners—in this case children and adults (Sect. 3).

2 Sound Change and Dissimilation

The experiment in this section was concerned with the relationship between per-
ceptual processing and a dissimilatory sound change. Dissimilation occurs when
one of two similar segments in close proximity changes to become less similar. An
example is Grassman’s Law under which aspiration disappears when there is another
following aspirated stop, e.g. Ancient Greek /thriks/ ‘hair’ nominative’ but /trikhos/
‘hair’ (genitive) derived historically from /thrikhos/ with initial aspiration. According
to Ohala [50], dissimilation can occur when listeners mistakenly attribute part of a
speech sound to coarticulation instead of to the speech sound itself. For the example
above, sound change comes about because listeners mistakenly interpret the first
aspirated segment as being caused by anticipatory coarticulatory spreading of the
second /h/. A similar idea is used to explain the sound change whereby the first /w/
was deleted from Latin /kwinkwe/ (‘five’) leading to /kinkwe/ (and then via a differ-

ent sound change to /t inkwe/ in present-day Italian). The interpretation in Ohala’s
model is that there is long-range lip-rounding between the two /w/s in /kwinkwe/
that listeners attribute to the second /w/. From another point of view, long-range
lip-rounding due to coarticulation occasionally prevents listeners from interpreting
the first /w/ as a phonological unit in its own right. Notice that this sound change
did not apply to Latin quindecim (‘fifteen’) which is produced with an initial /kw/ in

present-day Italian, i.e. /kwindit i/). This is because there is no /w/ that occurs later
in this word to which coarticulation could be incorrectly attributed.

In the following experiment, two hypotheses were tested. The first was concerned
with creating the conditions in the laboratory that could have given rise to dissim-
ilation by testing whether, in present-day Italian, a later occurring /w/ could mask
the perception of an initial /w/. Since there are very few words in Italian with a
repeated /w/ (qualunque being one of the few exceptions), this was done by testing
the perception of /kw/ versus /k/ in a target word when followed by a word that did
(quattro, ‘four’, /kwat:ro/) or did not (sette, ‘seven’, /set:e/) contain a prevocalic /w/.
The second hypothesis was concerned with the effects of hypoarticulation. Here we
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tested whether the perception of the first /w/ was even more likely to be masked by
coarticulation when the target word occurred in a deaccenting/hypoarticulation con-
text. The reasoning behind this follows the arguments of the preceding section that
the perceptual parsing of coarticulation may be obscured in hypoarticulated signals:
that is, hypoarticulated speech may blur the distinction between lip-rounding due to
the presence of an /w/ and the long-range coarticulatory effects of lip-rounding that
arise due to the second /w/.

2.1 Method

We created a /kw…k/ continuum and tested the effect of the following word (an
initial /kw/ vs. /s/) and prosodic context (accented or deaccented) on listener per-
ception of lip rounding. To create the stimuli, we extracted a single canto (/kanto/ ‘I
sing’) token from phrases that had been read aloud and recorded by a female Italian
speaker for the purposes of this experiment. We used PSOLA in Praat to synthe-
size an 11-step continuum from /kanto/ to /kwanto/ (quanto, ‘how much’). We also
lowered F2 in /anto/ to simulate lip rounding throughout the word. We discarded
steps 2 and 10 to keep the time taken for the experiment as short as possible for
participants. The resulting 9-step canto…quanto continuum was inserted into four
different carrier phrases that differed according to the following word (quattro vs.
sette) and to whether or not the target word canto-quanto was accented (shown in
upper case below) or deaccented. In the accented condition, the nuclear accent fell
on canto-quanto which was synthesised with a large pitch obtrusion appropriate for
an L+H* pitch-accent on the first syllable /kan/. In the deaccented condition, the
nuclear accent fell on detto (‘said’), the pitch obtrusion occurred on the first syllable
of ‘detto’ and canto-quanto were deaccented (synthesised with a low and flat pitch).
The two readings differ in the location of (narrow) focus: thus, the accented condition
might be appropriate as a response to ‘what did you say four/seven times?’ and the
deaccented condition as a response to ‘did you read or did you say canto-quanto
four/seven times?’ (see [12] and [39] for further details on the association between
focus and accent in Italian).

H0

{

detto QUANTO. . .CANTO
DETTO quanto. . .canto

}

×
{

quattro
sette

}

volte
‘I said___four times’
‘I SAID__seven times’

Prosodic context Following word

The stimuli (9 continuum steps × 2 prosodic contexts (accented/deaccented) × 2
following words (quattro/sette)× 10 repetitions= 360) were presented to 24 Italian
listeners in a two-alternative forced-choice perception test that was conducted on-
line. Participants also heard additional stimuli consisting of the target words canto-
quanto in isolation; we do not discuss the isolated word data here. Participants were
asked to wear headphones and could listen to the stimuli as many times as they
wished. Their task was to listen to each phrase stimulus, decide whether the target
word sounded more like canto or quanto and click on the corresponding button. The



The Relationship Between the (Mis)-Parsing of Coarticulation … 21

listener participants were native Italian speakers aged between 19 and 53years and,
in terms of regional variety, all but two were self-reported Standard Italian and/or
Tuscan Italian speakers. All participants were paid for their participation with a
voucher sent to their email address.

We fitted a generalized linear model within the R package lme4 with the lis-
tener response (2 levels: quanto/canto) as the dependent variable, prosody (2 levels:
accented/deaccented), word (2 levels: quattro/sette) and the stimulus number as fixed
factors, and also included all two-way interactions between these factors. The lis-
tener (24 levels) was included as random factor. The significance of any term was
obtained by testing whether the full model and one without the term being tested
differed significantly from each other.

2.2 Results

We excluded 3/24 listeners from all further analyses because there was no conver-
gence in their derived psychometric curves (i.e. the decision boundaries for these
three listeners lay well beyond the range of the stimulus steps).

Our first hypothesis is that the following word (quattro vs. sette) should influence
listeners’ decisions and that there should be more canto responses when the target
word precedes quattro. This is because, following Ohala’s model, listeners should
attribute lip rounding during the target word to anticipatory coarticulation for the
upcoming /kw/. But there should be no such bias towards canto in the sette context
since there is no /w/ in the followingword towhich coarticulation could be attributed.
It is clear from Fig. 1—which shows psychometric curves fitted to all 21 listeners
separately in the four contexts—that there is no support for this hypothesis. If there
had been more canto responses preceding quattro, then the black curves in Fig. 1
should be to the left of the grey ones. In fact, there appear to be no differences
in responses before the two words in the deaccented context while in the accented
context, there is even a trend towards more quanto responses preceding quattro. Thus
there is no evidence from this experiment to support the idea that a following /w/
masks the perception of an initial /w/.

The second hypothesis was that there should be an even greater tendency for more
canto responses before quattro in the deaccented condition. Obviously, there is no
support for this hypothesis either, given the completely overlapping psychometric
curves preceding these words in the deaccented context. On the other hand, the same
figure shows that there are very many more canto responses in the deaccented than
in the accented context. Some suggestions for why this might be so are discussed
below.

The observations in Fig. 1 were to a large extent supported by the statistical analy-
sis. Firstly, droppingword aswell as both the interaction of wordwith stimulus and of
word with prosody made no significant difference to the statistical model. This result
shows that the difference between quattro/sette had no significant influence on the
responses: thus the trend in Fig. 1 by which there were more quanto responses pre-
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Fig. 1 Fitted psychometric curves showing listener responses to a quanto-canto continuum embed-
ded in four contexts: Preceding __quattro (black) versus __sette (grey) and in accented (solid) versus
deaccented (dashed) position. The circles are the averages of responses across all listeners for any
stimulus number. Increasing stimulus numbers are from low to high F2

ceding quattro in the accented condition was not supported by the statistical analysis.
Consistently with Fig. 1, there was a significant interaction between stimulus num-
ber and prosody (χ2

1 = 31.2, p < 0.001): this result shows what is evident in Fig. 1
that there are more canto responses along the stimulus continuum in the deaccented
versus accented conditions.

2.3 Discussion

We simulated long-range coarticulatory lip-rounding both by lowering F2 in—anto
and through the presence of /w/ in an immediately following word. The presence of a
lip-rounded consonant in the following word (quattro) or not (sette) made no differ-
ence to listeners’ responses. We were therefore not able to recreate in the laboratory
the sound change by which an initial /w/ in Latin quinque dissimilates as a result of
a following /w/. This negative finding does not necessarily mean that Ohala’s [50]
idea about dissimilation through over-compensating for coarticulation is wrong; it
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may just be that these following word differences are insufficient for recreating in an
experiment the conditions by which historic dissimilation could have occurred. But
there is, however, an interpretation that could be consistent with Ohala’s model based
on our second finding that, regardless of the following word, listeners responded far
more with canto when the target word was deaccented. Our interpretation of this
finding is that in deaccented/hypoarticulated speech, the separation between long-
range anticipatory lip-rounding from lip-rounding due to the initial /w/ is obscured.
Recall that in our stimuli, -anto was in all cases synthesised with a very low F2.
This makes all the stimuli sound as if they were produced by a speaker with a long-
term rounded lip setting. It is this speaker-attribute of lip-rounding that listeners fail
to distinguish perceptually from the /w/ of quanto (causing them to hear canto).
Thus the lip-rounding in our data camouflages perceptually the initial /w/. This is
entirely consistent with Ohala [48] who also interprets dissimilation as perceptual
camouflage.

According to Ohala, the listener error that is the source of dissimilation comes
about because of a following /w/. We were not able to demonstrate that with our
results. But our results are consistent with the idea that long-range lip-rounding can
interfere with the perception of an initial /w/. The further new angle suggested by
the present results is that this interference comes about not in all speaking styles, but
specifically in hypoarticulated/deaccented speech.

The present study and those in Harrington et al. [28, 29] have suggested a
language-internal motivation for sound change which arises because hypoarticu-
lation (simulated here by deaccenting) can be detrimental to parsing coarticulation
perceptually. In the next experiment, we consider the extent to which differences at
the group level—between adults and children in parsing coarticulation—may addi-
tionally contribute to some of the conditions that can cause sound change to occur.

3 The Perception of Coarticulation by Adults
and by Children

The coarticulation to be investigated in this experiment was the fronting of the mid-
high lax rounded vowel /�/ in a symmetrical /t_t/ context and the acoustic lowering
of themid-high front rounded vowel /y/ in a symmetrical /p_p/ context. Thematerials
were in all cases taken from standard German in which /�, y/ are contrastive (e.g.
musste/müsste, /m�ste, myste/, ‘had to’/‘should have’).

The coarticulatory fronting of /�/ has been extensively documented and comes
about because the tongue dorsum for /�/ is shifted forward under the influence of
the alveolar constriction [36, 52]. This type of phonetic /�/-fronting causes a raising
of its second formant frequency. The coarticulatory F2-lowering in /y/ comes about
because the constricted lip gesture for /p/ overlaps with the high front rounded vowel
/y/. From another related point of view, the F2-frequency of /y/ is lowered under the
influence of the low F2-locus frequency for /p/.
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The influence of coarticulation in perception was tested using a well-established
technique of embedding an acoustically identical /�-y/ continuum in /t_t/ and /p_p/
contexts and then deriving through a forced-choice listening experiment the cross-
over boundary at which responses are equivocal, i.e. at 50% [21, 46]. The main point
to observe here is that the direction in which /�, y/ differ acoustically (from low to
high F2) is the same as that of the coarticulatory influence of the /p_p, t_t/ contexts
(also from low F2 for /p_p/ to high F2 for /t_t/). Therefore, if listeners adjust their
responses in relation to these coarticulatory effects, then they should be more likely
to hear /�/ in a /t_t/ than a /p_p/ context. This is further illustrated in Fig. 2 which
shows schematically the relationship between production and perception for these
vowel× context combinations. The figure shows how the distributions are shifted to
the right (towards higher F2) in the production of both vowels in the /t_t/ context than
in a /p_p/ context for the reasons stated above: /t/ causes F2 to be raised, and /p/ F2 to
be lowered (with the raising effect due to the alveolar possibly being greater than the
lowering effect due to the labial). Consequently, if perceptions are adjusted exactly
for these effects of coarticulation—that is, if there is ‘parity’ between the production
and perception of coarticulation—then the cross-over boundary in perception from
/�/ to /y/ (shown in the lower half of the same figure) should be higher in a /t_t/ than
in a /p_p/ context. The issue to be tested is whether this difference in the cross-over
boundary (the length of the line marked ‘normalise’ in Fig. 2) was less for children,
which would indicate that they normalise less for coarticulation. This follows from

Fig. 2 A schematic outline of the relationship between the production and perception of coartic-
ulation. The upper part of the display illustrates the hypothetical distributions in F2 of the four
target words showing higher F2 values in a /t_t/ context. The lower panel shows the distribution of
the corresponding perceptual responses under the assumption that the production and perception
of coarticulation are exactly aligned. The degree to which listeners normalise for coarticulation in
this model is proportional to the length of the horizontal line marked ‘normalise’ which extends
between the two sigmoids cross-over boundaries at which the probability of perceiving /�/ or /y/
are both 50%
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one of Ohala’s [50] predictions that children as less experienced listeners of the
language might normalise less for coarticulation than adults.

3.1 Method

There were three parts to the method. Firstly (Sect. 3.1.1), a training phase for the
children which also involved the creation of a child-production database. Secondly
(Sect. 3.1.2), the creation of perception stimuli to which we obtained forced-choice
categorical responses from the adults and imitations (following training) from the
children. Thirdly (Sect. 3.1.3), the conversion of the child imitations to categorical
responses. These three stages are described more fully below.

3.1.1 Child-Production Database

13 children participated in a training period inwhich they first learned to associate the
target non-words with four puppet names TUTT, TÜTT, PUPP, PÜPP correspond-
ing phonemically to /t�t, tyt p�p, pyp/ respectively (Fig. 3). Once these had been
learned, they produced each of the four puppet names five times. The productions
were obtained from the children from a randomised sequence of the puppets’ pic-
tures (those in Fig. 3) that were presented on a computer screen one at a time. This
child-production database consisted of 4 words× 5 repetitions× 13 children= 260
tokens.

3.1.2 Creation of Synthetic Stimuli

A male speaker of Standard German with slight South German regional character-
istics produced utterances containing /p�p, tyt/ in the carrier phrase ‘Maria hat ___
gesagt’ (literally: ‘Maria has ___ said’) with nuclear accent on the target word. An

PUPPPÜPPTUTT TÜTT

Fig. 3 The four puppet pictures used in the picture-naming task by the children for the production
(from left to right) of /t�t, tyt, pyp, p�p/
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11-step F2 continuum was created between original productions of /p�p/ (F2 =
803Hz) and /tyt/ (F2 = 1436Hz) by using LPC-resynthesis in the static morphing
method ofAkustyk [56]. The durations of the vowels were normalized using PSOLA.
This same 11-step vowel continuum differing in F2 was spliced into labial /p_p/ and
alveolar /t_t/ contexts in the same utterance ‘Maria hat ___ gesagt’ with nuclear
accent on the target word (see also [36] for further details).

The stimuli were randomised and presented to a group of 20 L1-German speaking
adults (students at the IPS, most of them in their twenties) and to a group of 13 L1-
German speaking children (age range from 4years and 11months to 6years and
3months) resulting in 2 continua (p_p, t_t)× 11 stimuli× 10 repetitions× 20 adult
listeners+ 2 continua (p_p, t_t)× 11 stimuli× 3 repetitions× 13 children listeners
= 5258 presentations. The adults carried out a forced choice identification task and
identified each stimulus as one of TUTT, TÜTT, PUPP, PÜPP. Since such a task was
considered to be too difficult for the children, they instead imitated each stimulus that
they heard following both the training period and the creation of the child-production
database as described in Sect. 3.1.1: that is, the children were very familiar with
the four characters shown in Fig. 4 before they participated in this perception and
imitation experiment.

3.1.3 Obtaining Categorical Responses from Children

Both the child-production (Sect. 3.1.1) and child-imitation (Sect. 3.1.2) corpora were
segmented and labelled phonetically and prosodically by two transcribers. The
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Fig. 4 Psychometric curves showing the proportion of /y/ responses as a function of stimulus
number calculated across all subjects for adults (left) and children (right) in /p_p/ (black) and /t_t/
(grey) contexts. The points are proportions at each stimulus number averaged across all subjects (19
adults, 8 children). The vertical lines show the 50% cross-over boundaries at which the proportion
of /�, y/ responses are both equal to 0.5. The increasing stimulus numbers extend from low to
high F2
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acoustic vowel boundaries were marked at the onset and offset of periodicity of each
vowel. The formant frequencies were calculated with a 12.5ms Blackman window
and a frame shift of 5ms. The formant datawas checkedmanually and hand-corrected
if necessary. All mis-imitations (e.g. /p/ for /t/ substitutions) and target words that
were not phrase-medial were excluded from further analyses (a total of 354 out of
858 tokens).

In order to be able to compare the adult and child data, the child imitations had
to be converted into /y/ or /�/ categorical responses. For this purpose, training was
carried out on the child-production database and testing involved classifying each
imitation as one of these two vowel categories. We included only children who had
produced a minimum of 5 /�/ and 5 /y/ vowels, since otherwise it was difficult to
achieve statistical stability in constructing the training models. Since three children
had produced less than this number of tokens, training and testing were carried out
on the data from the remaining 10 children and only the data from those 10 children
were further analysed below.

The training and testing were accomplished separately for each child. Training
was a Gaussian classification [13, 26, 58] based on the first two formant frequencies
at the acoustic temporal midpoint of the vowel. Testing was a maximum likelihood
classification based on whichever Bayesian distance to the two vowel categories was
smallest.

4 Results

We first removed responses from those combinations of listeners and consonantal-
contexts in which there was no convergence in the psychometric curves, i.e. if the
resulting decision boundary for any given listener on either continuum fell outside
the range of the stimuli (i.e. outside the range of the x-axis shown in Fig. 4). This
happened if e.g. a listener responded to a continuum almost entirely with either
/�/ or /y/. This required removing all (n = 6) response data from 2 children and 1
adult (leaving data from 8 children and 19 adults for further analysis). In addition,
responses to the p_p continuum from a further 4 adults and one child (n = 5) and
to the t_t continuum from additionally 1 child (n = 1) had to be removed for the
same reason. Thus of the 60 possible original decision boundaries ((20 adults + 10
children) × 2 consonantal contexts), 48 decision boundaries and their associated
perceptual responses remained and were analysed below, after removing these data.

As schematically outlined in Fig. 2 above, the greater the distance between the
decision boundaries of the psychometric curves, the more listeners normalised for
context, i.e. the more they perceived the same acoustic stimulus to be different in the
two contexts. The results of the group psychometric curves in Fig. 4 clearly show a
greater contextual normalisation for adults than for children. The same figure also
shows that the psychometric curves are a good deal flatter for the children which
means that they perceived the /�-y/ phonological contrast less distinctively than did
adults.



28 J. Harrington et al.

D
ec

is
io

n 
bo

un
da

ry

4

6

8

10

p_p t_t

Adult

p_p t_t

Child
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The individual decision boundaries for the 19 adult and 8 child listeners in Fig. 5
below show, consistently with the group plots in Fig. 4, a much greater separation
between the labial and alveolar contexts for adults than for children. Since the results
of a mixed model with the decision boundary as the dependent variable, with conso-
nantal context (2 levels: labial, alveolar) and group (2 levels: adult, child) and with
the listener as a random factor showed a significant interaction between the fixed
factors (χ2

1 = 9.3, p < 0.01), we applied post-hoc Tukey tests to the same data.
These showed consistently with Fig. 5 a significant difference between the decision
boundaries for adults (z = 9.1, p < 0.001) but not for children. They also showed a
significant difference in the decision boundaries between adults and children in the
labial (z = 3.7, p < 0.001) but not in the alveolar context. Thus as Fig. 5 shows,
the decision boundaries in the labial context are much closer to those in the alveolar
context for children than for adults.

5 General Discussion

The study has been concerned with the influence of segmental context on the percep-
tion of phonological contrasts and the way in which normalisation (compensation)
for context can be affected by variation in speaking style (the first experiment) or by
differences between speaker groups (the second). The experiments were conceived
within the theory being developed in this chapter that parity between how coarticula-
tion is produced and perceived represents a stable association between phonological
categories and speech signals, whereas sound change can come about when there is
a misalignment between the modalities in processing coarticulation.
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The first experiment tested whether such instability was more likely in hypoar-
ticulated signals. The sound change concerned a case of dissimilation by which
historical /w/ has been deleted when there is another /w/ that occurs later in the
same word. Hypoarticulation was simulated by a post-focal, deaccented synthesis of
the target word. The results showed fewer initial /w/ perceptions in the hypoarticu-
lated condition. The fewer perceptions of /w/ in the hypoarticulated condition were
not due to the presence or absence of a following /w/ (in the next word), but were
instead explained as a result of confusion with the lip-rounding that was simulated
synthetically by lowering the second formant frequency throughout the target word.
Our interpretation of these results is that in hypoarticulated speech, listeners less
effectively parsed the signal into those properties that were due to the initial /w/ and
those that came about because of the simulated long-range lip-rounding: that is, in
a hypoarticulated speaking style phonetic long-range lip-rounding is more likely to
mask or camouflage perceptually the initial /w/ than in hyperarticulated speech.

The second experiment built upon earlier findings by Nittrouer and Studdert-
Kennedy [47] to test whether the perceptual adjustments for consonantal context are
weaker in children than in adults. Our results were consistent with this hypothesis:
adults’ decisions were swayed to a greater extent by consonantal context than those
of children in categorising German lax high rounded vowels.

Wenowconsider the extent towhich our interpretation of these results is consistent
with Ohala’s [50, 51] theory concerning the conditions under which sound change
is likely to occur. In our model, dissimilation resulting from a deletion of the initial
/w/ comes about because listeners cannot so easily distinguish the initial /w/ from
the effects of long-range lip-rounding in a hypoarticulated speaking style. Thus,
in contrast to Ohala, we do not invoke an over-normalisation for coarticulation to
explain either these data or the processes leading to dissimilation in general. Further,
our model differs from Ohala’s because we propose that long-range lip-rounding
itself rather than the presence of a second /w/ is sufficient to trigger the perceptual
deletion of the first /w/. On the other hand, our interpretation that dissimilation
comes about as a result of long-range lip-rounding perceptually masking or hiding a
segment that shares the same phonetic properties is very reminiscent of Ohala’s [48]
view that there is commonality between the mechanisms leading to dissimilation and
those in the visual domain causing an object to be camouflaged (as when—to use
his analogy—a white rabbit is hidden against a background of snow). The difference
here is that our model incorporates speaking style: the perceptual masking that can
lead to dissimilation is more likely to happen in response to hypoarticulated speech.

The data from the second experiment are relevant to Ohala’s [50] interpretation
that many more sound changes arise because of an insufficient perceptual normali-
sation for coarticulation. With regard to the data in the second experiment, Ohala’s
[50] idea is that the back vowel of /tut/ can change category for the listener into a
front vowel /tyt/ when the listener no longer normalises for coarticulation: that is,
the prior stage in Ohala’s model to diachronic category change is that /u/ in /tut/ is
decontexualised such that a listener ceases to apply a perceptual shift to compen-
sate for the phonetic raising effects due to the flanking alveolars. With regard to the
model schematised in Fig. 2, Ohala’s prediction of perceptual under-compensation
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for coarticulation is that the right /t�t-tyt/ boundary should shift to the left so that
the section marked ‘normalise’ is recategorised as /y/. But this is not what our data
show. Recall that there was no difference between children and adults in the location
of the /t�t-tyt/ boundary: children’s diminished normalisation for context instead
came about because of a rightwards shift of the /p�p-pyp/ boundary towards that of
/t�t-tyt/.

So do these data from this second experiment have anything to say about sound
change? We think that they do. This is because they form a consistent pattern with
our other various different types of analyses of /�, u/-fronting based on (i) longi-
tudinal studies in the same individual [25], (ii) an apparent-time study comparing
younger and older speakers and listeners [27] in Standard Southern British, andmore
recently (iii) normalisation for /�/-fronting in deaccented speech in German [28].
Whenever our perception analyses showed evidence for an under-compensation for
coarticulation, then, just as for the children in the present experiment, the decision
boundary of the /�/ or /u/-variants in the back or non-fronting context shifted to the
front—and not as predicted by Ohala’s [50] model the other way round. Our findings
from perception in these studies are also generally consistent with production data
(e.g. for the longitudinal study in Harrington [25]) by which there was a shift of
non-fronting (e.g. ‘move’, /muv/) towards fronted /u/-variants (e.g. ‘mute’, /mjut/).

Our explanation for these findings across these studies is that diachronic /�, u/
fronting is the outcome of a synchronically gradual shift induced by /�, u/ undershoot
which pushes non-fronting (‘move’) towards fronted (‘mute’) variants. Acoustically,
the shift is brought about by an F2-raising of non-fronting /�, u/-variants due to
their centralisation under hypoarticulation. That is, acoustically the F2-space of
vowels in words like ‘move’ becomes more extensive when there is target under-
shoot/hypoarticulation: crucially, this extension due to hypoarticulation/undershoot
is asymmetric towards higher F2 values. The perceptual response to this greater
asymmetric variation in production is firstly the flatter psychometric response curve
observed for the labial context in the present study for adults compared with alveo-
lars (compare the steepness of the two sigmoids in the left panel of Fig. 4). Secondly,
if inexperienced listeners are predominantly exposed in speech communication to
hypoarticulated back vowels, then it is not just the sigmoid slope of the perceptual
contrast that will decrease: the decision boundary will also shift up the F2 scale
towards the fronted variant. This we would suggest is the reason why children’s per-
ceptual responses in the labial context are shifted much further to the right and nearer
to those of the alveolar context than for adults. Based on these data then, diachronic
/�, u/-fronting is not brought about as Ohala [50] has argued because a listener gives
up compensating for coarticulation (which should cause the alveolar decision bound-
ary to shift towards the labial one). It is instead the outcome of phonologising a back
vowel variant (‘move’) that extends synchronically due to hypoarticulation towards
a variant (‘mute’) that is already front as a result of coarticulation.

The core idea here is then that hypoarticulated variants shift towards those that are
substantially affected by coarticulation. To what extent does this idea generalise to
other types of sound change? For Ohala [50], sound changes such as diachronic /u/-
fronting, umlaut resulting from VCV coarticulation, and the development of vowel



The Relationship Between the (Mis)-Parsing of Coarticulation … 31

nasalisation are all brought about if a listener turned speaker normalises insuffi-
ciently for coarticulation. In our model, all of these sound changes are linked not by
insufficient compensation for coarticulation, but by the weakening effects induced
by hypoarticulation. In the absence of data of our own, we speculate that hypoar-
ticulation can just as easily target the source of coarticulation as the coarticulatory
effect, causing its weakening (e.g. modern Standard German Füße with a final / /
derived from Old High German /fotiz/) or its deletion (as in French ‘main’, /mε̃/
from Latin ‘manus’). This weakening/deletion of the source would lead to its decou-
pling from (and eventual phonologisation of) the coarticulatory effect. Thus these
three sound changes share in common that they are all derived not from a perceptual
under-compensation for coarticulation but instead from the perceptual consequences
of hypoarticulated speech signals: the main difference across these sound changes
is that hypoarticulation in /u/-fronting targets the sound that is ultimately changed,
whereas in VCV coarticulation and the phonologisation of vowel nasalisation, it
targets the source that gives rise to the sound change.

Hypoarticulation is also the synchronic factor that links the two experimental find-
ings of this chapter: in the first, a hypoarticulated speaking style causes a perceptual
camouflage between long-range anticipatory coarticulation and an initial consonant
with similar phonetic properties, potentially leading diachronically to its dissimila-
tion. In the second, hypoarticulation causes synchronically a bias that shifts back
/�/-variants towards their fronted variants, leading potentially to their merger and
diachronic recategorisation as front vowels. This merger was evident in the chil-
dren’s responses in Experiment 2. The link between both experiments is the idea
that hypoarticulation results in listener uncertainty. This is substantiated by the evi-
dence showing flatter sigmoids for deaccented versus accented responses for adults
(Experiment 1: Fig. 1) and for children versus adults (Experiment 2: Fig. 4).

In our proposed model, sound change arises synchronically out of the interac-
tion of the separate forces of hypoarticulation and coarticulation that act upon the
transmission of speech. From this point of view, our model integrates the insights
expressed respectively in Lindblom et al. [44] and Ohala [50, 51] that both speaking
style variation and the perception of coarticulation together set the conditions for
sound change to occur. Our model is consistent with past [8, 9, 53, 55] as well as
more recent [31, 41, 65] findings that, because lexically more frequent words tend
to be hypoarticulated relative to less frequent ones [18, 42, 62], then sound change
may often be lexically gradual and dependent on lexical statistics.

Finally, our model in which hypoarticulation plays a central role in setting the
conditions for sound change to occur is also consistent with the evidence that sound
change is very often reductive. But we emphasise that our model does not predict that
sound change must be reductive. The data from the second experiment represent just
such an example in which diachronic vowel recategorisation emerges out of hypoar-
ticulation pushing (in both perception and production) back towards coarticulatory
fronted high vowel variants without any vowel reduction.
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Nonlinear Timing and Language Processing
in Norm and Pathology

Elzbieta Szelag and Anna Dacewicz

Abstract Manyexperimental data have indicated that nonlinear temporal processing
plays a crucial role in human cognition, including our language communication.
We summarize briefly the neuropsychological findings on typical temporal frame
underlying language processing. Concentrating on millisecond (the high-frequency
processing system) andmultisecond (the low-frequency system) timingmechanisms,
we provide evidence on temporal dynamics of both speech reception and expression
with the special concern on temporal integration and temporal resolution of the signal.
The examples of nonlinear temporal processing are discussed in cross-linguistic sce-
nario. Finally, we provide some examples on time distortion in language-disordered
population and discuss future applications of training in temporal processing in ame-
lioration of language functions.

Keywords Language ·Nonlinear temporal processing ·Temporalwindows ·Cross-
linguistic comparisons · Language disorders

1 Introduction

Language is the human learned communication system consisting of arbitrary signs
representing the external and internal word, structured according to the grammatical
rules. It permits to communicate our perceptions, thoughts and memories. Speech
is defined as motor acts—by performing articulatory movements a speaker encodes
information and addresses it via acoustic signal to the listener’s ear. Thus, the speaker
encodes the message which is, next, decoded by the listener. Both the encoding and
decoding processes are of a great complexity.
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Human language has not a monolithic entity and may be separated into several
functional sub-systems that control reception (comprehension), expression (produc-
tion), verbal memory, writing and reading. Each of these functional units is subserved
by different mechanisms and processes that are located in different parts of the brain
[1]. The specific damage to these structures may have different consequences for
our verbal communication. Looking at the dorsal and ventral tracts for language in
fiber tracking studies summarized by Friederici and Gierhan [2], it seems important
to note that these sub-systems do not work separately and could be described by
complex relationships between the components. Moreover, an inherent part of all
these sub-systems is a temporal dynamics. Look around—in every language words
are composed of sub-sets of sounds (phonemes) which constitute the distinct spectro-
temporal units consisting of specific formants (phonological level). The strings of
phonemes form syllables, syllables are integrated into words which have meanings
(semantics) and they are, next, arranged into meaningful sentences that follow spe-
cific rules (syntax). Each of the afore-going levels is characterized by a specific
distinct temporal dynamics which may be reflected in a defined temporal analysis,
corresponding to some tens of milliseconds (single phonemes), hundreds of mil-
liseconds (syllables), or seconds (sentences or phrases). Thus, the speech signal is
characterized by the modulation of sound properties over a wide range of timescales
(Fig. 1).

Understanding the mechanisms by which the brain organizes this complex tem-
poral behaviour is a central issue in modern neuroscience. We present here some
evidence that, in addition to the central neural control of language, a further level
of temporal organization is provided by the nonlinear oscillatory dynamics that
are intrinsic to the efferent and afferent pathways. Accordingly, we can produce
sequences of oscillatory states that are both spectrally and temporally complex.

Fig. 1 The relationship between objective (indicated by an arrow) and subjective non-linear (indi-
cated by specific timewindows) time flow in processing of the speech signal. Themillisecond timing
corresponds to simple phonemes (dark grey) and syllables (light grey), whereas the multisecond
timing to phrase duration in the fluent speech (dotted gray)
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Simple variations in such neural signals can result in atypical temporal process-
ing leading to deficient speech perception and/or expression. It seems, therefore,
that language is inherently an example of a multileveled temporal activity, thus, the
use of rhythm, tempo and pausing is crucial for our verbal communication. Such
temporal dynamics involves the “higher” level cognitive function in which a global
supra-system chunking is implemented.

This paper addresses the nonlinear timing in human verbal communication. We
summarize briefly the results of neuropsychological findings on temporal dynamic in
language processing in norm and pathology. We begin by describing the typical tem-
poral dynamic embedded into language processing. Next, we report some evidence
on cross-linguistic universalia observed in different languages, like tonal (Chinese)
or phonemic non-tonal (Polish or German), followed by the examples of time dis-
tortion in various language-disordered populations. We review predominantly the
results of our studies that are illustrated with some literature examples. Finally, we
provide some evidence on benefits of training in such nonlinear temporal processing
in amelioration of language function.

2 Nonlinear Temporal Processing in a Cross-Linguistic
Scenario

The close relationship between temporal information processing and language capa-
bilities is well established. Timing in cognitive systems, including language com-
munication, is usually considered as nonlinear temporal constraints that comprise
the complex relationships between components of an integrated system. It may be
characterized as particular steps of typical linguistic processing in both speaking and
writing.

Considering the temporal processing in the language domain, we should empha-
size one important issue. The concept of general nature of an objective time passing,
as well as time continuity was implemented by Isaak Newton and basic physicists.
They assumed absolute, true, mathematical time which flows equably without any
relation to the external or internal stimulation. In contrast, in cognitive systems,
we refer to the subjective flow of time which is characterized by distinct tempo-
ral phenomena, reflecting the temporal discontinuity. At least two processing sys-
tems (known also as “temporal windows”) can be distinguished employing discrete
time sampling. Accordingly, one can distinguish a high-frequency processing system
related to millisecond timing, as well as a low-frequency processing system charac-
terized by a few seconds time domain. We provide below some rationale that these
two systems are fundamental for language communication.

The problem of time wrapping of speech is approached using the observation
of temporal dynamics in our fluent speech, as well as numerous experimental par-
adigms applied to assess time perception abilities in particular individuals. For the
high-frequency processing system the most important techniques are temporal gap
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detection (known also as the fusion threshold paradigm), duration comparison, as
well as temporal ordering based on assessment of temporal-order-threshold. This
paradigm assesses the smallest temporal gap separating two stimuli presented in
rapid sequence that is necessary to report correctly their temporal order, thus, the
relation before–after. The temporal order threshold reflects the sequencing abilities
and may be measured using the following paradigms: (1) monaural stimulus presen-
tation of two clicks or two tone bursts presented to the right and then to the left ear
(the identification of relation left-right or right-left), (2) binaural stimulus presenta-
tion comprising two tones differing in frequency (the identification of low-high or
high-low order), and (3) white noise or tone stimuli differing in duration (short-long
or long-short). On the other hand, for the multisecond processing system the most
important techniques are time judgement comprising reproduction, production, esti-
mation, or comparison of temporal intervals, moreover, spontaneous reversal time
rate of ambiguous figures, and subjective accentuation of metronome beats.

The millisecond timing refers to the duration of single phonemes in the fluent
speech. The entire set of formant transitions which build single phonemes, especially
stop-consonants like P, B, T, D, K, G has usually ca. 40ms duration in any language.
Another example for the nonlinear temporal constraints can be the Voice-Onset-
Time (VOT), introduced by Lisker and Abramson [3]. This paradigm is defined as
the time interval between the release of a stop occlusion and the onset of vocal
cord vibration: “…the time interval between the burst that marks release and the
onset of periodicity that reflects laryngeal vibration…” [3]. Despite cross-linguistic
differences in the identification of such phenomena (reflecting positive or negative
VOT values), as well as differentiated order of a burst and an onset of vibration in
voicing contrast perception across languages, the critical VOT value has usually a
duration around some tens of milliseconds. For example in Slavic languages (like
Polish), voicing starts well before the release of the plosive (app. 30ms or more).
According to the normative data collected in our Laboratory from 67 healthy Polish
speakers, synthesized pseudo-words /Tomek - domek/ (in English: /Tom - the house/)
withVOT from−1001 to−70mswere usually perceived by as voiced, whereas those
with VOT from +5 to +90ms the unvoiced ones [4]. The categorization pattern in
perceptual labelling of voiced and voiceless initial consonants is an example on the
existence of nonlinear temporality in speech perception/production.

In case of multisecond processing level we can refer to temporal binding or
temporal integration. Such low-frequency processing appears to group successive
events into approx. 2–3s time units. The convincing results indicating such nonlin-
ear processing system comes not only from experimental data on time reproduction,
spontaneous rate of ambiguous figures, sensory-motor synchronization, subjective
accentuation of metronome beats [5–7] but also from every day observations of the
dynamic flow of our fluent speech. In many languages, like Polish, German, English,
Russian, Italian or Chinese, verbal utterances of ca. 2–3s duration are interspersed by
short pauses. They are necessary for a speaker to prepare mentally to the next verbal

1In Slavic languages the negative VOT values are typical for the voicing contrast, whereas, those
positive ones for the unvoicing contrast.
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unit, aswell as for a listener to process the received verbal information. Such temporal
chunking is also observed in many languages in poetry, as lines in classic verse often
have a duration limited to a few seconds [8]. Accordingly, both the expression and
reception of spontaneous flow of speech indicates the temporal chunking limited to
a few second. In addition to the high-frequency system (see above), the multisecond
timing provides another nonlinear temporal constraints and temporal frame for our
language communication.

The other question is whether the mother tongue or the specific language environ-
ment could influence millisecond timing mechanisms verified with temporal order-
ing abilities [9]. To answer this question we performed cross-linguistic comparisons
with normal healthy young volunteers of different language background, i.e., Chinese
(tonal language users) and Polish (non-tonal, phonetic language users). Using three
different measurement procedures focussed on millisecond timing, i.e., monaurally
presented clicks (‘left-right’ discrimination) and binaurally presented tones (‘high-
low’ discrimination) of either near frequencies (600 and 1200Hz) or distant fre-
quencies (400 and 3000Hz) we found that Chinese and Polish subjects have similar
temporal order thresholds in ‘click task’, but significantly reversed threshold patterns
in ‘tone tasks’. While Chinese subjects have the lower order thresholds for two near
frequency tones, Polish subjects demonstrate exactly the opposite—the lower order
thresholds for two far frequency tones. Such double dissociation indicates not only a
common temporal mechanism for auditory information processing across different
language groups evidenced with the ‘click task’, but also an impact of native lan-
guage experience on temporal order perception verified with the ‘tone tasks’. The
long-term exposure to each speech environment creates its own temporal window of
optimal processing which is adaptive to its own speech system, but non-adaptive to
the other speech system.

3 Temporal Integration Versus Temporal Resolution

The question could be asked why these temporal mechanisms are active when we
perceive or produce verbal utterances?

It may be suggested, on one hand, that our focusing on time allows to reduce
the complexity imprinting in language communication. Indeed, phonemes are built
from formant transitions which are integrated into a global entity within ca. 40ms.
The detection and processing a huge number of incoming features of the arriv-
ing signal, e.g., spatio-temporal dimensions of single formants within particular
phonemes, could result in overloading of our brains by many details causing less
efficient processing. Thus, the temporal mechanisms might allow the dimensional-
ity reduction, fostering optimization of the processing. On the other hand, during
speech reception (the afferent pathway) we do not detect usually particular syllables
within words, or single words within sentences, but integrate the perceived sounds
into meaningful sentences. The similar mechanism may be probably active in the
efferent pathway, when the motor program is set in within the premotor cortical
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circuits, controlling speech production. From the communication point of view, tem-
poral processing may be also related to the rhythmic division of time into the equal
portions of verbal utterances, allowing efficient temporal resolutionwithin the signal.
It may be responsible for the proper decoding of distinctive acoustic features within
the signal.

A number of models for TI have been proposed to answer the question how do
listeners integrate temporally distributed verbal information into coherent represen-
tations of formants, syllables and words? One hypothesis assumed that sequentially
stored items inworkingmemory provide the bottom-up input to unitize the list chunks
that group together sequences of items of variable length. The list chunks compete
with each other. The winning groupings may create an emergent conscious percept
whose properties match the data stored in the reference memory [10].

To sum up, one should distinguish two main issues, i.e., temporal integration and
temporal resolution. As stated above, the term temporal integration (TI) refers to
summation of features (formants, phonemes, syllables, words) during information
processing by the brain. The stimuli may be various types of incoming signals typical
for conversation, like speaking, poems, songs, writing and reading. Short succeeding
stimuli falling in rapid sequences are fuelled by the need of proper auditory com-
prehension of the speech signal. It, by its nature, changes rapidly in time. Better
understanding of the temporal speech characteristics could help us to improve the
communication skill in favourable listening environment what may be especially
important in case of language disordered listeners.

On the other hand, the pattern of changes in an acoustic stimulus contains infor-
mation about the sound source. The message is transmitted by the sender to the
listener. Therefore the identification, discrimination, and interpretation of acoustic
stimuli depend on the ability of the auditory system to faithfully encode the temporal
features of those events. The ability to respond to changes in an acoustic stimulus
has been termed temporal resolution (TR). Investigations of TR have focused on
the attempt to separate pure temporal from spectro-temporal resolving capabilities.
The TR is limited by auditory properties of a listener, related to the hypothetical
individual pacemaker. Impaired TR may be conceptualized as a decrease in this
smoothing process and, thus, a loss of temporal information. It may be reflected, for
example, in poorer decoding of distinctive features or poorer detection of formant
transitions characteristic for particular phonemes in the verbal output of speech. The
loss of neglected information may result in poorer phonological awareness (deficient
phonemic hearing) leading to poorer auditory comprehension of the incoming speech
signal. By an analogy, in the efferent pathway during programming and execution of
articulatory movement patterns necessary to produce the strings of phonemes defi-
cient TR may result in poorer expression of the rapid transitions within the produced
signal.
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4 Nonlinear Temporal Processing Deficits in Language
Disordered Population

Many experimental data have indicated temporal processing deficits in language
disorders in children and adults. The range of temporal information processing is
an important factor to consider when studying various subject groups. We provide
below some examples on time distortion in such population.

4.1 Acquired Damage to the Brain and Aphasia

Historically, deficient millisecond timing was reported first in aphasic patients by
Efron [11] and Swisher and Hirsh [12]. Such deficit was also confirmed in our ear-
lier clinical studies of aphasic patients with post-stroke unilateral focal brain lesions.
We observed, however, the interesting relationship between the type of aphasic syn-
drome and the deficient time range. Deficient millisecond time range was evidenced
in Wernicke’s aphasics who displayed disordered phonemic hearing and auditory
comprehension deficits. In this group deficient timing was evidenced in sequencing
abilities measured with the temporal-ordering task. The Wernicke’s aphasics needed
significantly longer intervals between two successive stimuli to report their order cor-
rectly [13]. In contrast, patients with right hemispheric lesions displayed no deficits
in temporal order perception, and achieved the order threshold values at the same
level as individuals without any brain damage.

On the other hand, Broca’s aphasics demonstrated time distortion on multisecond
level, verified in the experiment with subjective accentuation of metronome beats [6,
7]. Disordered multisecond system in these patients could be related to poor verbal
output, telegraphic speech and shortened phrase length. The dissociation in deficient
time range observed in Broca’s and Wernicke’s aphasics corresponded, thus, to the
specific type language of disorders, comprising predominantly either sentence level
(Broca’s aphasia) or phoneme level (Wernicke’s aphasia).

Moreover, in our recent studies [14] we found in aphasic patients significant cor-
relations between the severity of deficient millisecond timing and receptive language
deficits which were verified with the Token Test, the Phoneme Discrimination Test,
and the Voice-Onset-Time (VOT) Test. These correlation data provide the strong
clinical support for the thesis that timing constitutes the core process incorporated
in language resources and indicate a clear coexistence of the ‘timing - auditory com-
prehension’ relationships.

4.2 Developmental Language Disorders

Deficient millisecond timing was also observed in children with isolated language
disorders e.g., Specific Language Impairment (SLI) and dyslexia. SLI is manifested
in delayed expressive and receptive language development, despite the normal level
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of nonverbal intelligence. In dyslexia disturbances concerning reading and writ-
ing abilities and are not attributable to overall learning difficulties. Interestingly, it
is estimated that these two developmental disorders co-occur up to 50% of cases
[15]. In early papers Tallal and co-workers reported that SLI children and dyslexics
had difficulties during identification and discrimination of tones presented in rapid
succession [16, 17]. It has been assumed, therefore, that difficulties in temporal
information processing may constitute the core problem in those language disorders.

SLI. Temporal information processing deficits in SLI children have been also
revealed in the recent studies conducted in our Laboratory. Obtained data suggest,
that compared to healthy children, SLI children aged from 5 to 8years need twice as
much time between two stimuli to order their relation “before-after”.

Despite of temporal processing deficits, in the existing literature the other impair-
ments were also taken into consideration as a core deficit in SLI children. Linguistic
theories of SLI concentrate mostly on delay in various grammar rules acquisition.
Nevertheless, they are usually restricted only to languages with specified grammar
structure and do not explain the whole phenomenon of SLI. Another possibility was
proposed by McArthur and Bishop [18]. They revealed that frequency discrimina-
tion thresholds were elevated in ca. one-third children with SLI, while the duration
of the stimuli did not hinder the task performance. Thus, the spectral information
processing deficit is observed in a part of a population of SLI children. Presence of
both spectral and temporal processing deficits in some SLI children, reported also
in electrophysiological studies [19, 20] may support a thesis on nonspecific delay in
brain maturation.

Dyslexia. In dyslexic, malfunction of high frequency system may lead to deficit
on the level of phonological awareness, e.g., impairment in segmenting the written
words into its phonemes. The other theory explaining reading difficulties suggests
deficits in the magnocellular visual stream of information. It may be associated
with the concept of multisensory temporal binding window [21] in which the visual
information is integrated with the auditory one. Such integration time window for
binding operations in dyslexic children is probably extended, contrary to the healthy
individuals. Thus, the difficulties in dyslexia are associated with difficulties in fitting
auditory information (phonemes) with visual information (letters) during reading.

Infantile autism. The clinical observations have suggested that severe abnor-
malities in social behaviour in autism coexist with disturbances of major cognitive
functions, like perception, attention, memory, and/or language). Inadequate commu-
nication is observed in severe cases as the absence of speech, or in high function-
ing children as delayed onset or selective communication deficits. As the temporal
dynamics is an essential component of all these cognitive functions, in our study we
tested whether children with autism show typical temporal processing on multisec-
ond temporal level. Our focus on this processing level was justified by its importance
for every-day motor behaviour, conversational skills and social interactions [22].

Using a temporal-reproduction paradigm, we found that autistic children were
unable to link their responses to stimulus duration. Independently of presented stim-
ulus duration, they reproduced auditory or visual stimuli with the same response
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duration of ca. 3 s on average. The important deficits in duration judgment were
accompanied by preserved time window for temporal integration in a residual form.
As a few second time window is crucial for many aspects of human mental activity
(see above), one might conclude that the existence of temporal integration reported
in our studymay indicate the residual temporal frame for cognitive resources, despite
severe cognitive deficits in autism.

5 Applications of Training in Temporal Processing
in Amelioration of Language Function

Nowadays, a rapid expansionof interest among scientists reflects practical approaches
to treatment of patients suffering from language disorders. Referring to the evidence
on time distortion in language–disordered population, our knowledge on importance
of non-linear timing for verbal communication resulted in application of the specific
training in temporal processing to improve deficient timing. Because of co-existence
of timing and language deficits documented above, it may be expected that such
training improves temporal dynamics, resulting in a transfer of improvement form
the trained time domain to the untrained language domain. Such hypothesis was
verified in our pilot studies conducted in patients suffering from post-stroke apha-
sia [23, 24] as well as in our recent studies in children with SLI [24]. It should be
mentioned that the beneficial effects of temporal training were evidenced not only
in language-disordered subjects, but also in normal elderly volunteers indicating
age-related cognitive deficits [25]. The modern neuropsychological rehabilitation,
therefore, should consider also the training in temporal information processing as a
basic component of human cognitive function.
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Temporal Information Processing
and Language Skills in Children
with Specific Language Impairment

Anna Dacewicz, Kamila Nowak and Elzbieta Szelag

Abstract Deficits in temporal information processing (TIP) have been proposed as a
one of the crucial mechanisms underlying language disorders. The aim of the present
study was to investigate the relationship between TIP and language skills in children
withSpecificLanguage Impairment (SLI). In case ofSLI, normal patterns of language
acquisition are disturbed, while its etiology is not associated with neurological or
environmental factors. In the present paper we assessed in twenty seven SLI children,
aged from 5 to 8years, both the efficiency of TIP and language skills. The result
revealed significant correlation between efficiency of TIP and the global language
skills. These data may provide one more evidence for the debate on SLI etiology,
confirming auditory information processing abnormalities in SLI children.

Keywords Specific Language Impairment · Temporal information processing ·
Language development

1 Introduction

According to the International Classification of Diseases (ICD-10) [1], Specific Lan-
guage Impairment (SLI) is manifested in disturbances in normal patterns of language
acquisition. The development of language reception or/and expression in children
suffering from this deficit is delayed, as compared to that observed in typically
developing peers. However, the level of other cognitive functions remains within the
normal range. The language disorders in SLI are not directly attributable to neurolog-
ical, emotional or sensory deficits or environmental factors. Nowadays, the etiology
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of SLI remains still unclear. Nevertheless, couple potential mechanisms which may
constitute the core cause of delayed language development have been a topic of many
existing literature studies.

One of the viewpoints implicates deficits in auditory information processing,
reflecting problems in encoding both verbal and complex non-verbal auditory infor-
mation. Historically, Tallal and colleagues suggested that children with SLI may be
less efficient in discrimination of speech [2] and non-speech [3] sounds that occurred
in rapid succession. Furthermore, one of the factors influencing phonological hear-
ing is the duration of the acoustically discriminable features of presented stimuli [4].
Moreover SLI children displayed also deficits in auditory information processing
related to poorer ability of frequency discrimination [5]. Other theories implicate
some higher-level difficulties associated with procedural memory deficits [6]. The
ambiguity of theories on the core deficit in SLI may be related to the great hetero-
geneity of this disorder.

1.1 Temporal Information Processing (TIP) in Children
with SLI

Deficits in rapid auditory TIP in SLI children were revealed in various tasks: during
e.g. identification of the order of paired high- and low-frequency tones presented
in rapid succession [7], discrimination of two rapidly presented tones differing in
pitch [3], or detection of a brief tone followed immediately by a masking noise [8].
On the contrary, several studies fail to evidence deficient TIP in SLI children [9].
According to McArthur and Bishop [10], inconsistency of the existing results may
be associated with the following factors: differences in the applied methodology in
particular literature studies, presence of problems in general auditory discrimination
ability rather than in isolated deficit in rapid auditory processing, various age of
participants in particular studies, characteristics of control groups, or influence of
attentional deficits on the measurement of TIP in a given task.

Nevertheless, previous studies revealed that TIP deficits coexist with impaired
phonological awareness and verbal short term memory in many children with SLI
[11]. This phenomenon may suggest common neural mechanisms that control both
verbal and non-verbal auditory processing which may be disordered in SLI children.
By analogy a lot of evidences indicates that adult patients with brain injures located
in the left hemisphere are impaired in both the perception of temporal order (thus, in
TIP) and language [12–15]. Pöppel proposed the central TIP mechanism located in
the left hemisphere [16]. This hypothesis may have some references to SLI children.
For example, Chiron et al. using dichotic listening task revealed that children with
dysphasia do not show predominant activation of the left hemisphere inmeasurement
of cerebral blood flow [17].
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Moreover, electrophysiological studies confirmed that both rapid auditoryprocess-
ing and verbal information processing are less mature in children with SLI. Such a
viewpoint may be supported by the vast majority of studies which revealed event-
related brain potentials (ERP) abnormalities in SLI children. ERPs are electrical
potentials recorded from the scalp after stimulus presentation.Benasich et al. revealed
that during presentation of two tones in rapid succession, infants from families with a
history of language learning impairment showed smaller mismatch response ampli-
tude and longer latency of N250 than children from families without any history
of such impairment [18] Furthermore, Davids et al. demonstrated that mismatch
negativity ERP was not present in SLI children while it was observed in typically
developing peers [19].

Considering this evidence, the aim of the present study was to investigate the rela-
tionship betweenTIP and the level of language skills in Polish children suffering from
SLI. We focus here not only on the phonological level of language comprehension,
but also on higher degree of syntactic-semantic processing.

2 Method

2.1 Subjects

Participants were twenty seven children suffering from SLI (18 male and 9 female)
aged from 5 to 8years of life. All children were Polish native speakers, right-handed
(verified with the Oldfield Questionnaire [20]), had normal level of intelligence (IQ
of 85 or higher, measured with the Raven’s Coloured Progressive Matrices [21]),
and normal hearing level (screening audiometry thresholds equal or lover than 20dB
on 500, 1000, 2000, 4000 Hz frequencies). Children had no neurological or psy-
chiatric diagnosis and they were free from any other neurodevelopmental disorders,
like autism, attention deficits or socio-emotional disturbances, as determined by the
parental report.

The main inclusion criterion was a developmental language delay, defined as
reduced performance measured with the Test for Assessment of Global Language
Skills (TAGLS) which constitutes the global assessment of language development
in children [22]. All SLI children investigated here displayed the overall standard
language score or at least two standard language subtests scores below or equal 4th
sten.

2.2 Procedures

Temporal Information Processing Assessment. The paradigm of the auditory
Temporal-Order-Threshold (TOT) was applied. TOT is a minimum time gap sep-
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arating two successive stimuli, necessary for a subject to report their temporal order
correctly. In this paradigm two stimulus presentationmodeswere used:monaural and
binaural one, implemented into the classical adaptive procedure which was verified
in our previous studies [23]. These two modes differed in both physical property of
presented stimuli and method of presentation. In both these modes two brief stim-
uli were presented in rapid succession with various inter-stimulus-intervals (ISI)
which varied adaptively in consecutive trials. The stimuli were presented through
the headphones at a comfortable listening level. Before the experiment proper, chil-
dren underwent the introductory session in which the constant ISI of 300ms duration
was applied.

Monaural Presentation Mode. In monaural mode two, 1ms sounds (rectangular
clicks) were presented monaurally in rapid succession, i.e., the first click was pre-
sented to one ear followed by the second click to the other ear. Participants were
asked to report the order of these two successively presented clicks by pointing the
left or the right handset, respectively (corresponding to the first listened click).

Binaural Presentation Mode. In binaural mode, two 10ms sinusoidal tones of
400 and 3000Hz were presented binaurally in rapid succession, i.e., the first one
was presented to both ears followed by the second tone, presented also to both ears.
Children were asked to report the order of two tones by pointing to the response
cards.

For every participant outcomes measures, i.e. the TOT values, obtained in these
twomodeswere averaged and themean auditory TOTvaluewas applied in the further
analysis.

Language Assessment. We used TAGLSwhich is commonly used tool in Poland
for assessment of global language skills in children. The TAGLS measures two
following language competencies:

• global linguistic skill understood as a general knowledge of the language systems
(semantic, syntactic and phonological)

• communicative skills understood as the ability to use language in everyday oral
communication.

TAGLS consists of 7 Subscales which are listed below:

1. Story Recall assesses auditory speech comprehension: examiner read aloud a
short story and after that the children answers 10 questions related to this story.

2. Lexicon assesses the lexicon capacity: children name 10 pictures and resolve 10
riddles (beginning from “How we called …?”).

3. Correction of Sentences assesses the ability to notice and correct both grammar
and semantic mistakes in listened sentences.

4. Inflection assesses grammar skills based on the declension ability which is one of
the most important grammar features in the Polish language: in this test, children
decline nouns combined with adjectives.

5. Asking Questions assesses the ability to create questions based on short stories.
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6. Request and Orders assesses level of pragmatic skills: children imagine 5 events
from everyday life situations and express requests and orders related to those
events.

7. Storytelling assesses the ability to story reproduction: examiner read aloud short
story twice and, then, it is reproduced by the child.

3 Results

In SLI children the mean auditory TOT was 195 (SD = 64)ms and the total score
on TAGLS was 58 (SD= 21) points. In this paper we concentrate on the correlation
analysis concerning the relationship between the skills achieved in TIP (measured
with auditory TOT) and language competency. We performed Pearson correlations
between the mean TOT from two modes (monaural and binaural) and the total score
on TAGLS.

We observed moderate negative correlation (r = −0.66; p < 0.001, n = 27)
between the total score onTAGLSandTOT (Fig. 1). The higher TOTvalues reflecting
the poorer TIP skills coexisted with poorer total score on TAGLS.

It should be noted, however, that the total score on TAGLS did not correlate with
child’s age or with the IQ level.

The total score possible to obtain in TAGLS is 125 points.

Fig. 1 Scatter data
illustrating correlation
between TOT values and the
language skills assessed with
the TAGLS
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4 Discussion

The present study explored the relationship between TIP and language competency
in children with SLI. Our results indicated that delayed language acquisition coex-
isted with deficits in rapid auditory processing. Children with elevated TOT in both
monaural and binaural modes (corresponding to deficient timing) achieved lower
outcome measures on TAGLS.

On the basis of previous literature studies, rapid auditory processing is crucial for
language comprehension. Acoustic waveform is a complex stream of rapidly chang-
ing, acoustic segments varied in frequencies, intensity and temporal characteristic
(e.g., formant transitions, Voice-Onset-Time). Hence, for the proper understanding
of the speech stream it is necessary to sequencing and splitting properly the acoustic
waveform. Since many years, the role of TIP in language processing has been inves-
tigated. The vast majority of studies concentrated on time perception in amillisecond
time window, corresponding to phoneme level in auditory language comprehension.

Our data are consistent with studies in which poor timing skills were correlated
with deficient phonological awareness in childrenwithSLIor dyslexia [11].However,
in our study for the first time, the outcome measures obtained in test which assessed
the global language skills turned out significantly correlatedwith temporal abilities in
children. Such result provided a new important evidence on the association between
TIP and language. The novel outcome of this study revealed that the global level of
language skills is associatedwithTIPon themillisecond level. Itmay confirm thatTIP
is crucial not only for language comprehension, but also for language expression or
global communication skills. Therefore, the overall outcomes in TAGLS may reflect
a global language deficit. On the other hand, the lower level of language reception
may hinder the comprehension of commands in TAGLS in our study. It should be
noted however, that the linguistic capacity assessed with TAGLS includes verbal
commands, similarly as the other language tests existing in the literature. Thus, the
language disorders may overlap with receptive deficits during processing of the test
commands.

Nevertheless, the worsened performance on both tasks reported here, thus on TOT
and TAGLS, could be mediated by disturbances in attention capacity. In particular,
both TOT values and TAGLS scores demanded the elevated level of sustained atten-
tion. The level of performance may be vulnerable to the individual sensitivity to
distraction. Such interpretation may be supported by literature evidence suggesting
comorbidity of ADHD and SLI [24].

The most important finding of the present study is that our data may have some
practical applications in predicting benefits of language therapy based on improve-
ment of TIP. TIP measurement may constitute a valuable tool to differentiate the
etiology of the delay in language development. It may also imply the most effective
solution for language therapy. Accordingly, the conventional speech therapy in chil-
dren with difficulties in rapid auditory information processing may be less efficient,
as it does not address the core problem of an individual, i.e., an impairment of audi-
tory patterns perception in spoken language rather than of motor patterns in speech
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production. So far, the existing studies reported that such therapies ameliorated lan-
guage function in children with SLI [25], children with reading difficulties [26] and
aphasic patients [14]. Moreover not only language function, but also other cognitive
functions may be ameliorated after the temporal training [27].

5 Conclusion

To sum up, the present study provides the evidence that the level of language devel-
opment is correlated with millisecond timing not only in terms of language compre-
hension but also on the broader aspects of language skills.
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Kinematic Modelling of Dipthong
Articulation
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Miguel A. Ferrer, Pedro Gómez-Vilda and Réjean Plamondon

Abstract The Sigma-Lognormal model has successfully been applied to
handwriting modeling but never to acoustic-phonetic articulation. The hypothesis
of this paper is that vocal tract dynamics, which includes jaw and tongue can be ap-
proached by the Kinematic Theory. In speech analysis, the movement of the tongue
and jaw has been linked to the variation on first and second formants. In this paper, we
explore the Kinematic hypothesis, based on diphthong pronunciation, which invoke
the most extreme tongue gestures in the vowel triangle, estimation of their formants,
and transformation of these to space for evaluating the speed profile. The estimated
speed profile is modelled by the sigma lognormalmodel of the Kinematic Theory. An
average reconstruction error of 20 dB has been obtained in the experiments carried
out with 20 different volunteers. This result validates the work hypothesis, opening
a new research line in speech processing.
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1 Introduction

It is well known in speech analysis that a specific vowel phonation depends on the
velo-pharyngeal switch, the tongue neuromotor system, the mandibular system and
the laryngeal system. In the case of vowels, a space representation can be obtained
from the two first formants (F1 and F2) [1]. For instance, in [2] the jaw-tongue
dynamics is considered as the basis to explain the space formant distribution in
running speech. Besides, [2] shows a simple model to estimate jaw-tongue dynamics
from the two first formants.

The Kinematic Theory of rapid humanmovements [3] describes the way in which
neuromuscular systems are involved in the production of muscular movements. This
theory has been applied successfully to handwriting, analyzing the neuromuscular
system involved in the production of rapid movements [4], the variations of hand-
writing with time [5, 6], the prevention of brain strokes [7], the specification of a
diagnostic system for neuro-muscular disorder [9], etc.

In the case of handwriting, the arm and trunkmuscles act to generate the handwrit-
ing. Similarly, the tongue and jaw muscles are moving to generate different vowels
sounds during the speech articulation. So, our hypothesis includes that both speech
and handwriting signals could be studied as a human movement. Furthermore, a
parallelism can be established between both signals.

In the present paper, a method to estimate the speed profile from the two first
formants is introduced, using the Sigma-Lognormal model to foresee the possibility
of its applicability to model speech dynamics.

The paper is organized as follows: in Sect. 2 an introduction to the physiology of
phonation and the method used to transform formants into distance is presented. In
Sect. 3, a brief description of theSigma-Lognormalmodel is introduced. InSect. 4,we
present the method followed to estimate the speed signal from the two first formants.
The results of the experiments carried out over 20 subjects are presented. Finally,
conclusions are commented in Sect. 5.

2 Physiology of Phonation

Thearticulatoryorgans andnasal cavity allow focusing the energyof the speech signal
at certain frequencies (formants), due to oropharyngeal tract resonators. Estimating
the resonance or formant structure of voiced speech is possible from a digital inverse
filter formulation. There are numerous techniques to perform the inverse filtering of
a speech signal as the Iterative Adaptive Inverse Filtering algorithm [9], which can
provide an adequate estimation of the glottal excitation. However, a linear prediction
model based on an autoregressive process (AR) [10] is enough to determine the
formants (in non-nasal phonations). In this case, speech signal s(n) can be modelled
as follows:
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s(n) =
NLP
∑

i=1

aL P(i)s(n − i) + e(n) (1)

where NL P represents the order of the predictor, {aL P} are the coefficients of linear
prediction (LPC) and e(n) represents the error in the model. The LPC coefficients
are calculated by least squared error algorithms and define the transfer function of
the vocal tract, V(z), assumed to be given as an all-pole function:

V (z) = G

1 − ∑NL P
i=1 aL P(i)z−i

= G
∏NL P

i=1 (1 − pL P(i)z−1)
(2)

The poles characterize the formants which are the local maxima of the spectrum,
where the first (F1) and second (F2) formants correspond to the two first maximum
values in the LPC spectrum. The estimation of the predictor order is based on the
sample frequency: for an fs of 22050 samples/s a compromise is to use 15 coefficients.

Also, it is well known that in the vowel phonation the formants F1 and F2 vary
for each vocals creating a vowel triangle [1] (Fig. 1).

The acoustic representation spaces are associated to jaw position, articulation
place and lip rounding. Assuming a simplification in the acoustic representation, the
closed-open gesture and a back-front gesture can be defined. The first is produced by
themuscles involved in the jawmovements and the second by the tonguemovements.
These movements can be correlated with the formants positions in plane F1 versus
F2 [2] as:

Fig. 1 Vowel representation spaces adapted from [1]. Spanish (full circle) and American English
(long-dash circle)
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[

�x
�y

]

=
[

c11 c12
c21 c22

] [

�F1
�F2

]

(3)

where �x and �y are the relative displacement from an initial position of the jaw
and tongue (x0, y0). ci j are the weights of the combination matrix.

3 Overview of the Sigma-Lognormal Model

In this work, we applied a Sigma-Lognormal model [11] in order to parameterize the
speed profile of the tongue movement. This model considers the resulting speed of
a neuromuscular system action or stroke describing a lognormal function scaled by
a command (D) and time-shifted by the time occurrence of the command (t0) [11].
The complex pattern is produced by summing each resulting lognormal function,
given by equation:

−→
vn (t) =

−→
∑ ∧

(t) =
∑M

i=1
�v j (t) (4)

where M represents the number of simple movements involved in the generation of
a given pattern,

∧

(t) is the Sigma-Lognormal and �v j (t) is the velocity profile of the
jth stroke.

The speed in the Cartesian space can be calculated as:

vn_x (t) =
∑M

i=1
|�v j (t)| cos(∅ j ) (5)

vn_y(t) =
∑M

i=1
|�v j (t)| sin(∅ j ) (6)

where ∅ j is the direction angle in the jth stroke.
Given vn_x and vn_y , the goodness of their reconstruction from the Sigma-

Lognormal domain, is given by the error between the original and its reconstructed
signal, which must be as minimum as possible. This criterion can be evaluated using
the Signal-to-Noise-Ratio (SNR) between the reconstructed speed profile ( �vv(t)) and
the original one ( �vv(t)). In this way, the SNR is defined as:

SNR = 20 log

( ∫ tn
ts

[v2x_n(t) + v2y_n(t)]dt
∫ tn

ts
[(v2x_n(t) + v2x (t)

)2 + (v2yn(t) − v2y(t))
2]dt

)

(7)

The higher is the SNR the better is the reconstruction. Generally speaking, a SNR
greater than 20 dB provides excellent signal reconstruction.
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4 Methods

4.1 Subjects

Twenty mid age healthy subjects (fifteen males and five females) participated in the
experiment. They were recorded during the utterance of three different diphthong
phonations pronounced by Spanish speakers (/au/, /iu/, and /ai/).

4.2 Formant Estimation

Formants F1 and F2 for each sample (see Fig. 2) were estimated. Then, Eq.3 was
used to transform the two formants into a space representation. For this purpose,
the study in [12] was taken as a reference to estimate a first approximation to the
coefficients. In Fig. 3, we can observe the special representation of the �x and �y
obtained from the F1 and F2 from one subject and the three analyzed diphthongs.

4.3 Speed Profile

The speed profile �v(t) from the calculated �x and �y was estimated with:

|�v(t)| =
√

�x2 + �y2 (8)

The resulting speed profile can be seen in Fig. 4.

Fig. 2 Formant estimation
for diphthong /ai/
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Fig. 3 Formant to position
transformation

Fig. 4 Speed profile for /ai/
phonation

Finally, the quality of the reconstruction from formants to Sigma-Lognormals was
evaluated. For such, The Sigma-Lognormal model was used in order to parameterize
the resulting speed profile. Then, the SNR (Eq.7) between the reconstructed signal
and the original one was calculated. The results of the experiment are presented in
the next section.

5 Experiments and Results

In the experiment, 4 s long utterances of the three diphthongs (/ai/, /iu/ and /au/)
were recorded at 22,050Hz and 16 bits resolution. As it was explained in previous
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Fig. 5 Corresponding speed
profile (full line) and its
Sigma-Lognormal
decomposition (dot line)

Fig. 6 Signal-to-Noise-
Ratio for each
diphthong

iu au ai

20

21

22

23

24

25

26

SNR

section, formants positions F1-F2 were extracted each 5ms and the speed profile was
estimated.

Once the speed profile is calculated, the reconstructed speed profile is extracted
automatically, using the Sigma-Lognormal model explained briefly in Sect. 3 [11].
A typical original speed profile and its Sigma-Lognomal reconstruction one are
shown in Fig. 5. It can be observed how close to the original profile the reconstructed
speed profile is. In this particular example the SNR is 25dB.

The SNR was estimated from Eq.7. The results are shown in Fig. 6. As it is seen
from these results, the SNR is greater than 20dB, which assesses the excellence of
fitting the original speed with the Kinematic Theory as in the case of handwriting [6].
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6 Conclusions

In this paper, the possibility of modeling formant dynamics as a function of the
articulation organ position representation space has been introduced and evaluated.
In order to validate thework hypothesis, the original speed profilewas estimated from
the distance representation of the formants. This speed profile has been reconstructed
using the Kinematic Theory and its associated Sigma Lognormal model. The results
obtained from the experiments, grant an estimation fit showing a signal-noise ratio
of more than 20dB, which could be considered as an excellent validation figure of
this hypothesis.

These first results open new ways to model speech dynamics and the possibility
of applying these advances to handwriting, and to the study of neurodegenerative
speech production.
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C04 research project and the fellowship program of Universidad de Las Palmas de Gran Canaria.
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Abstract Most of medical developments require the ability to identify samples that
are anomalous with respect to a target group or control group, in the sense they could
belong to a new, previously unseen class or are not class data. In this case when
there are not enough data to train two-class One-class classification appear like an
available solution. On the other hand non-linear approaches could give very useful
information. The aim of our project is to contribute to earlier diagnosis of AD and
better estimates of its severity by using automatic analysis performed through new
biomarkers extracted from speech signal. Themethods selected in this case are speech
biomarkers oriented to Spontaneous Speech and Emotional Response Analysis. In
this approach One-class classifiers and two-class classifiers are analyzed. The use
of information about outlier and Fractal Dimension features improves the system
performance.

Keywords One-class classifier ·Nonlinear Speech Processing ·Alzheimer disease
diagnosis · Spontaneous Speech · Fractal Dimensions

K. López-de-Ipiña (B) · P. Calvo
Universidad Del País Vasco/Euskal Herriko Unibertsitatea, Europa Pz 1,
20008 Donostia, Spain
e-mail: karmele.ipina@ehu.eus

P. Calvo
e-mail: pilarmaria.calvo@ehu.eus

M. Faundez-Zanuy
Fundació Tecnocampus, Avda. Ernest Lluch 32, 08302 Mataró, Spain
e-mail: faundez@tecnocampus.cat

J. Solé-Casals
Data and Signal Processing Research Group, University of Vic–Central
University of Catalonia, Sagrada Família 7, 08500 Vic, Spain
e-mail: jordi.sole@uvic.cat

F. Zelarin
GuABIAN, Association for Personal Autonomy,
Avda Zarautz, 6, 4 left, 20018 Donostia, Spain
e-mail: guabiangipuzkoa@gmail.com

© Springer International Publishing Switzerland 2016
A. Esposito et al. (eds.), Recent Advances in Nonlinear Speech Processing,
Smart Innovation, Systems and Technologies 48,
DOI 10.1007/978-3-319-28109-4_7

63



64 K. López-de-Ipiña et al.

1 Introduction

Many applications (most of medical developments) require the ability to identify
samples that are anomalouswith respect to a target groupor control group, in the sense
they belong to a new, previously unseen class or are not class data as in not common
diseases or environment with very few population. In this case there are not enough
data to train two-class models classifier, as in pilot studies, one possible approach to
this kind of verification or identification problems is one-class classification, learning
a description of the target class concerned based solely on data from this class. One-
class classification problem [1] differs from multi-class classifier in one essential
aspect. In one-class classification it is assumed that only information of one of the
classes, the target class, is available. This means that just example objects of the
target class can be used and that no information about the other class of outlier objects
is present. The different terms such as fault detection, anomaly detection, novelty
detection and outlier detection originate from the different applications to which one
class classification can be applied. The boundary between the two classes has to be
estimated from data of only control class. The task is to define a boundary around the
target class, such that it accepts asmuch of the target/control objects as possible,while
it minimizes the chance of accepting outlier objects. In the literature a large number
of different terms have been used for this problem. The term one-class classification
originates from [2]. The application is as follows: The first application for one class
classification (also called data description as it forms the boundary around the whole
available data) is outlier detection, to detect uncharacteristic objects from a dataset.
Secondly, data description can be used for a classification problem where one of
the classes is sampled very well, while the other class is severely under sampled.
The measurements on the under sampled class might be very expensive or difficult
to obtain. Finally, the last possible use of the outlier detection is the comparison
of two data sets. Assume that a classifier has been trained (in a long and difficult
optimization process) on some (possibly expensive) data [3]. As explained above, the
second application of outlier detection is in the classification problem where one of
the classes is sampled very well but it is very hard and expensive, if not impossible, to
obtain the data of the second class. One of the major difficulties inherent in the data
(as in many medical diagnostic applications) is this highly skewed class distribution.
The problem of imbalanced datasets is particularly crucial in applications where the
goal is to maximize recognition of the minority class.

Alzheimer’s Disease (AD) is the most common type of dementia among the
elderly. It is characterized by progressive and irreversible cognitive deterioration
with memory loss and impairments in judgment and language, together with other
cognitive deficits and behavioral symptoms. The cognitive deficits and behavioral
symptoms are severe enough to limit the ability of an individual to perform everyday
professional, social or family activities. As the disease progresses, patients develop
severe disability and full dependence. An early and accurate diagnosis of AD helps
patients and their families to plan for the future and offers the best opportunity to treat
the symptoms of the disease. According to current criteria, the diagnosis is expressed
with different degrees of certainty as possible or probable AD when dementia is
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present and other possible causes have been ruled out. The diagnosis of definite AD
requires the demonstration of the typical AD pathological changes at autopsy [4–6].
In addition to the loss of memory, one of the major problems caused by AD is the
loss of language skills. We can meet different communication deficits in the area of
language, including aphasia (difficulty in speaking and understanding) and anomia
(difficulty in recognizing and naming things). The specific communication problems
the patient encounters depend on the stage of the disease [6–8].

Themain goal of the present work is feature search in Spontaneous SpeechAnaly-
sis (ASSA) an Emotional Response Analysis (ERA) oriented to pre-clinical evalu-
ation for the definition of test for AD diagnosis. These features will define control
group (CR) and AD disease. Non-invasive Intelligent Techniques of diagnosis may
become valuable tools for early detection of dementia. Moreover, these techniques
are very low-cost and do not require extensive infrastructure or the availability of
medical equipment. They are thus capable of yielding information easily, quickly, and
inexpensively [9, 10]. This study is focuses on early AD detection and its objective
is the identification of AD in the pre-clinical (before first symptoms), Mild Cogni-
tive Impairment (MCI) and prodromic (some very early symptoms but no dementia)
stages. The research presented here is a complementary preliminary experiment to
define thresholds for a number of biomarkers related to spontaneous speech. Feature
search in this work is oriented to pre-clinical evaluation for the definition of test for
AD diagnosis. Obtained data will complement the biomarkers of each person [11].
In addition to the loss of memory, one of the major problems caused by AD is the
loss of language skills (Fig. 1, [12]). We can meet different communication deficits
in the area of language, including aphasia (difficulty in speaking and understanding)
and in Emotional Response [13–16].

Fig. 1 Signal and spectrogram of a control subject (top) and a subject with AD (bottom) during
Spontaneous Speech (pitch in blue, intensity in yellow)
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2 Materials

This study is focused on early AD detection and its objective is the identification
of AD in the pre-clinical (before first symptoms) and prodromic (some very early
symptoms but no dementia) stages. The research presented here is a complementary
preliminary experiment to define thresholds for a number of biomarkers related to
spontaneous speech. Feature search in this work is oriented to pre-clinical evaluation
for the definition of test for AD diagnosis. Obtained data will complement the bio-
markers of each person. Trying to develop a new methodology applicable to a wide
range of individuals of different sex, age, language and cultural and social back-
ground, we have built up a multicultural and multilingual (English, French, Spanish,
Catalan, Basque, Chinese, Arabian and Portuguese) database with video recordings
of 50 healthy and 20 AD patients (with a prior diagnosis of Alzheimer) recorded for
12h and 8h, respectively. The age span of the individuals in the database was 20–98
years and there were 20 males and 20 females. This database is called AZTIAHO. A
subset of 20 AD patients was selected (68–96 years of age, 12 women, 8 men) with
a distribution in the three stages of AD as follows: First Stage [ES = 4], Secondary
Stage [IS = 10] and Tertiary stage [AS = 6]. The control group (CR) was made up
of 20 individuals (10 male and 10 female, aged 20–98 years) representing a wide
range of speech responses. This subset of the database is called AZTIAHORE [10].

3 Methods

In previouswork [10, 16] the goal of the experimentationwas to examine the potential
of the selected features to help in the automatic measurement of the degradation of
Spontaneous Speech, Emotional Response and theirmanifestation in peoplewithAD
as compared to the control group. The approach’s performance was very satisfactory
and promising results for early diagnosis and classification of AD patient groups but
medical doctors propose new experimentation oriented to detect mainly early stage.
The goal of this new experimentation is to detect changes with regard to CR group
and outliers which point to presence of AD’s symptoms. One class classification will
be used for this propose.

3.1 Feature Extraction

Spoken language is one of the most important elements defining an individual’s
intellect, social life, and personality; it allows us to communicate with each other,
share knowledge, and express our cultural and personal identity. Spoken language
is the most spontaneous, natural, intuitive, and efficient method of communication
among people. Therefore, the analysis by automatedmethods of Spontaneous Speech
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(SS—free and natural spoken communication), possibly combinedwith othermetho-
dologies, could be a useful non-invasive method for early AD diagnosis. The analy-
sis of Spontaneous Speech fluency is based on three families of features (SSF set),
obtained by the Praat software package (Praat) and software that we ourselves devel-
oped in MATLAB. For that purpose, an automatic Voice Activity Detector (VAD)
has extracted voiced/unvoiced segments as parts of an acoustic signal [12, 17].

3.1.1 Linear Features

These three families of features include:

1. Duration: histogram of voiced and unvoiced segments, the average voiced/
unvoiced, and variations.

2. Time domain: short time energy;
3. Frequency domain, quality: spectral centroid.

In this study, we aim to accomplish also the automatic selection of emotional
speech by analyzing three families of features in speech:

1. Acoustic features: pitch, standard deviation of pitch, max and min pitch, inten-
sity, standard deviation of intensity, max and min intensity, period mean, period
standard deviation, and Root Mean Square amplitude (RMS);

2. Voice quality features: shimmer, local jitter, Noise-to-Harmonics Ratio (NHR),
Harmonics-to-Noise Ratio (HNR) and autocorrelation;

3. Duration features: locally voiceless frames, degree of voice breaks.
4. Emotional Temperature [10].

3.1.2 Fractal Dimension

Most of the fractal systems have a characteristic called self-similarity. An object
is self-similar if a close-up examination of the object reveals that it is composed of
smaller versions of itself. Self-similarity can be quantified as a relativemeasure of the
number of basic building blocks that form a pattern, and this measure is defined as the
Fractal Dimension. It should be noted that the Fractal Dimension of natural phenom-
ena is only measurable using statistical approaches. Consequently, there exists no
precise reference of the Fractal Dimension value that a given waveform should have.
In addition, speech waveforms are not stationary, so most ASR techniques employ
short sections of the signal in order to extract features from thewaveform. Thismeans
that one plausible technique for extracting features from speech waveforms, for the
purpose of recognizing different phonemes, is to divide the signal in short chunks
and calculate the features for each chunk. This was the approach we adopted. In other
words, we calculated the Fractal Dimension of short segments of the waveform and
observed the evolution of the obtained values along the whole signal, with the aim of
finding in it fractal characteristics that could help in identifying different elements of
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the spoken message. There are several algorithms for measuring the Fractal Dimen-
sion. In this current work we focus on the alternatives which are especially suited
for time series analysis and which don’t need previous modelling of the system. One
of these algorithms is Higuchi [18] named from his author. Higuchi and Castiglioni
were chose because it has been reported to be more accurate in previous works with
under-resourced conditions [10, 19]. Higuchi [18] proposed an algorithm for mea-
suring the Fractal Dimension of discrete time sequences directly from the time series
x(1), x(2), . . . , x(n).

Without going into detail, the algorithm calculates the length Lm(k) (see Eq.1)
for each value of m and k covering all the series.

Lm (k) =

� N−m
k �

∑

i=1

|x (m + ik) − x (m + (i − 1) k)| (n − 1)

⌊

N−m
k

⌋

k
(1)

After that, a sum of all the lengths Lm(k) for each k is determined with Eq.2.

L (k) =
k

∑

m=1

Lm (k) (2)

And finally, the slope of the curve ln(L(k))/ln(1/k) is estimated using least squares
linear best fit, and the result is the Higuchi Fractal Dimension (HFD).

The selection of an appropriate window size to be used during the experiments is
essential. Broadly speaking, the Fractal Dimension is a tool for attempting to capture
the dynamics of the system. With a short window, the estimation is highly local
and adapts fast to the changes in the waveform. When the window is longer, some
details are lost but the Fractal Dimension better anticipates the characteristics of
the signal. Additionally, previous studies that take into account the window size of
similar dimension estimations [20–22] suggest that a bigger window could be useful
in some cases. Consequently, four window-sizes of 160, 320 and 1280 points will be
analyzed.

3.1.3 Features Sets

In the experimentation, three families of feature sets will be used:

1. SSF+EF: Spontaneous Speech features and Emotional Speech features
2. SSF+EF+ET: SSF+EF and Emotional Temperature
3. SSF+EF+ET+VHD: SSF+EF, Emotional Temperature, Higuchi Fractal Dimen-

sion and its maximum, minimum, variance, standard deviation
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3.1.4 Automatic Classification

The main goal of the present work is feature search in Spontaneous Speech oriented
to pre-clinical evaluation for the definition of tests for AD diagnosis. These features
will define CR group and the three AD levels. Moreover a secondary goal will be the
optimization of computational cost oriented to real time applications. Thus automatic
classificationwill bemodeled in this sense. Twodifferent classifierswill be evaluated:

1. Multi-class classifier: Multi Layer Perceptron (MLP) with Neuron Number in
Hidden Layer (NNHL)=max(Attribute/Number+Classes/Number) and Training
Step (TS) NNHL*10.

2. One-Class classifier: The base classifiers to be used in the experimentation were
Bagging and MLP.

WEKA [23] software was used in carrying out the experiments. The results were
evaluated usingClassification Error Rate (CER) andAccuracy (Acc). For the training
and validation steps, we used k-fold cross-validation with k = 10. Cross validation
is a robust validation for variable selection [24].

4 Results and Discussion

The task was Automatic Classification, with the classification targets being: healthy
speakers without neurological pathologies and speakers diagnosed with AD. The
experimentation was carried out with AZTIAHORE. The results have been analysed
with regard to the feature set described in Sect. 3. Experimentation has been divided to
test One-class classifier only with speech samples from CR group and with informa-
tion about outliers (patients with AD) and Multi-class classifier (MLP). The results
are shown in Figs. 2, 3. In preliminary experiments and based in previous works
a window-size of 320 samples have been selected. The results are satisfactory for
this study because they obtained very good results for all feature sets (Fig. 2.). Most
of them have about 100% of Accuracy for CR group. However it must be high-
lighted that despite global result are optimums there is a lack for experiment without
outlier. In this case results are very poor for people with AD because there are
not enough samples to train properly the MLP. The best results are obtained for
SSF+EF+ET+VHFD.

One-class classifier outperformsMLPwhen outliers group is not used in the train-
ing process. The results are satisfactory for this study in the case ofMLP classifier and
outliers. Bagging paradigm presents lower computational cost but very poor results.
The new fractal features improve the system but they can improve Bagging perfor-
mance. The best results are obtained for integral feature set, which mixes features
relative to Spontaneous Speech and Emotional Response (SSF+VHFD+EF+ET). ET
appears also as a powerful feature to discriminate AD. The results are satisfactory
for this study because they obtained very good results not only for MLP classifier
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Fig. 2 %CER global results for Multi-class and One-class classifiers

Fig. 3 %CER classes’ results for Multi-class and One-class classifiers



Multi-class Versus One-Class Classifier in Spontaneous Speech… 71

but also for Bagging, which presents lower computational cost. One-class classifier
with MLP is the option which shows optimum computational cost and better perfor-
mance in all cases. Moreover this model out-performs MLP when there is a lack of
appropriate AD samples.

5 Conclusions

One-class classification has been used for detection of AD symptoms in spontaneous
speech with under-resourced condition. In one-class classification it is assumed that
only information of one of the classes, the target class, is available. In this work we
explore the problem of imbalanced datasets by using information about outlier and,
Fractal Dimension and Emotional Temperature features. This option improves the
system performance. One-class classifier with MLP outperforms two-class classifier
when there are very few AD samples. The approach of this work complements the
previous multi-class modelling (two class) and is robust in terms of capturing the
dynamics of the speech, and it offers many advantages in terms of be easier to
compare the power of the new features against the previous ones. In future works
we will introduce new features relatives to speech modelling oriented to standard
medical tests for AD diagnosis and to emotion response analysis.
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On the Significance of Speech Pauses
in Depressive Disorders: Results on Read
and Spontaneous Narratives
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Mauro N. Maldonato and Alessandro Vinciarelli

Abstract This paper investigates whether and how depressive disorders affect
speech and in particular timing strategies for speech pauses (empty and filled pauses,
as well as, phoneme lengthening). The investigation is made exploiting read and
spontaneous narratives. The collected data are from 24 subjects, divided into two
groups (depressed and control) asked to read a tale, as well as, spontaneously report
on their daily activities. Ten different frequency and duration measures for pauses
and clauses are proposed and have been collected using the PRAAT software on
the speech recordings produced by the participants. A T-Student test for indepen-
dent samples was applied on the collected frequency and duration measures in order
to ascertain whether significant differences between healthy and depressed speech
measures are observed. In the “spontaneous narrative” condition, depressed patients
exhibited significant differences in: the average duration of their empty pauses, the
average frequency, and the average duration of their clauses. In the read narratives,
only the average pause’s frequency of the clauses was significantly lower in the
depressed subjects with respect to the healthy ones. The results suggest that depres-
sive disorders affect speech quality and speech production through pause and clause
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durations, as well as, clause quantities. In particular, the significant differences in
clause quantities (observed both in the read and spontaneous narratives), suggest a
strong general effect of depressive symptoms on cognitive and psychomotor func-
tions. Depressive symptoms produce changes in the planned timing of pauses, even
when reading, modifying the timing of pausing strategies.

Keywords Depressive disorders · Speech pauses · Filled and empty pauses ·Vowel
and consonant lengthening ·Clauses · Pausing strategies · Phonation time · Silences

1 Introduction

Speech structure is characterized by pauses, the role and cognitive dimension of
which were first underlined by Rochester [33], Butterworth [7], Chafe [10], Clark
and Fox Tree [11] and more recently by Esposito et al. [17] and Benus et al. [4],
attributing to them the function of signaling complex cognitive planning processes
related to the effort to communicate new information content.

Coarsely, speech pauses have been described as a multi-determined phenomenon
serving different communicative social functions, among these, synchronizing the
verbal and nonverbal communication modes [18, 19], marking the boundaries of
narrative units [27–30], predicting a person’s status [32], as well as, identifying the
caller/receiver’s status in phone calls, the caller doing significantly more pauses than
the receiver [37].

Pauses in speech are distinguished into three coarse categories as “empty”, and
“filled” pauses and “consonant/vowel lengthening” (this first categorization was due
to Maclay and Osgood [23]). Empty pauses are defined as silent speech intervals, the
length of which may vary depending on the task under consideration [15, 16]. Filled
pauses are vocalizations such as uhm, uh, ehm, etc. Some authors tend to attribute
different communicative functions to empty and filled pauses [9]. For example, it is
supposed that empty pauses are mostly used to signal phrase boundaries while filled
pauses serve to keep the speaker’s turn [11]. The lengthening of vowels and/or con-
sonants in word final or central positions is conceptualized as due to pre-articulatory
planning processes [24]. Clauses are considered by definition “a sequence of words
grouped together on a semantic or functional basis”. Clauses are tied to pausing
strategies because they are segmented through the three abovementioned different
pause categories.

The proposed investigation aims at identifying speech pause duration and pause’s
frequencymeasures robust enough to show significant differences between depressed
and healthy speech. Such measures will serve for the development of algorithms
implemented in automatic diagnostic tools for the early detection and diagnosis of
depressive disorders.



On the Significance of Speech Pauses in Depressive Disorders: Results … 75

2 Methods

2.1 Subjects

The 12 depressed patients are Italian and were recruited with the help of psychiatrists
at the Department of Mental Health and the General Hospital in Caserta, the Institute
for Mental Health and the General Hospital in Santa Maria Capua Vetere, the Centre
for Psychological Listening in Aversa (Italy) and in a private psychiatric office.
They were already diagnosed as depressed and some of them were under treatment.
In addition they were administered the Beck Depressive Inventory Second Edition
(BDI II) proposed by Beck et al. [3] in the Italian language version assessed by
Ghisi et al. [20]. Table1 reports their code (because of anonymity constraints all
the subjects received a subject identification code when enrolled in the experiment
and were identified by it), gender, age, and BDI II scores. Before being enrolled
in the experiment, informed consensus were gathered from all of them. Moreover,
the subjects were informed by the experimenter that the aims and the expectations
of the proposed research were to find voice and face (also facial expressions were
recorded, even though, not for all the involved participants) features that may serve
for detecting depressive states. No mention to speech pauses was indeed made.

The speechwas first collected for the depressed patients and then the control group
was matched to them for age and gender. The BDI II was also administered to the
healthy group. Table1 reports both the experimental and control group demographic
variables. Participants were local inhabitants of the Campania Region (Italy), and
therefore they matched for geographical/cultural areas and social rule sharing.

2.2 Procedure and Experimental Set-up

Participants were conducted to a quiet room and seated in front of a PC. They were
provided with headphones and asked to provide their speech in two different exper-
imental conditions. In the former, they were asked to spontaneously report on their
weekly activities. In the latter, they were asked to read from the PC monitor the tale
“The North Wind and the Sun” by Esopo. The tale is a standard phonetically bal-
anced short folk tale (about six sentences all together), frequently used in phoniatric
practices.

The recordings were made using a clip-on microphone (Audio-Technica
ATR3350), with external USB sound card. Speech was sampled at 16kHz and quan-
tized at 16 bits. For each subject, the recording procedure did not last more than
15min.
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2.3 Measurements

The recordings were analyzed through the PRAAT (http://www.fon.hum.uva.nl/
praat/) software, which allows to display at the same time both the spectrogram and
waveform of each recording. The pauses (either filled, or empty or consonant/vowel
lengthening) were identified manually through their spectral characteristics (from
the spectrogram) and then boundaries were identified through the listening of these
spectral chunks. The details of the criteria applied to identify the boundaries in the
speech waveform are accurately described in [14].

The 10 measurements taken on each participant’ (both depressed and healthy
subjects) recordings (both read and spontaneous narratives) are described as follow:

1. Empty pause rate1 (EPR1): It was calculated as the ratio between the number of
empty pauses (frequency) and the total duration of each spontaneous and read
narrative (measured in seconds);

2. Empty pause rate2 (EPR2): It was calculated as the ratio between the total dura-
tion of empty pauses and the total duration of each spontaneous and read narra-
tive;

3. Filled Pause Rate1 (FPR1): It was calculated as the ratio between the number
of filled pauses (frequency) and the total duration of each spontaneous and read
narrative;

4. Filled Pause Rate2 (FPR2): It was calculated as the ratio between the total dura-
tion of filled pauses and the total duration of each spontaneous and read narrative;

5. Lengthening Rate1 (LR1): It was calculated as the ratio between the number of
consonant/vowel lengthening (frequency) and the total duration of each sponta-
neous and read narrative (in seconds);

6. LengtheningRate2 (LR2): Itwas calculated as the ratio between the total duration
of consonant/vowel lengthening and the total duration of each spontaneous and
read narrative;

7. Clause Rate1 (CR1): It was calculated as the ratio between the number of clauses
(frequency) and the total duration of each spontaneous and read narrative;

8. Clause Rate2 (CR2): It was calculated as the ratio between the total duration of
clauses and the total duration of each spontaneous and read narrative;

9. Pause Rate1 (PR1): It was calculated as the ratio between the sum of EPR1,
FPR1, and LR1 (that are frequencies) and the total duration of each spontaneous
and read narrative;

10. Duration Pause Rate1 (DPR1): It was calculated as the ratio between the sum of
empty, filled pauses, and consonant/vowel lengthening durations and the total
duration of each spontaneous and read narrative.

For sake of clarity, Table2 exemplifies the description of the abovemeasurements.

http://www.fon.hum.uva.nl/praat/
http://www.fon.hum.uva.nl/praat/
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Table 2 Description and acronyms assigned to the measurements under examination

Duration in s/duration
in s

Acronym Frequency/duration
in s

Acronym

Empty pause
durations/Speech total
duration

EPR2 Empty pause
frequency/Speech total
duration

EPR1

Filled pause
durations/Speech total
duration

FPR2 Filled pause
frequency/Speech total
duration

FPR1

Lengthening
durations/Speech total
duration

LR2 Lengthening
frequency/Speech total
duration

LR1

Pause total
durations/Speech total
duration

DPR1 Pause total
frequency/Speech total
duration

PR1

Clause
durations/Speech total
duration

CR2 Clause
frequency/Speech total
duration

CR1

3 Results

A T-Student test for independent samples was applied on the collected measures in
order to ascertain significant differences between healthy and depressed speech.

In the “spontaneous narratives” it was found that:

(a) DPR1, the total duration of speech pauses (empty, filled and vowel lengthening
taken all together) is significantly longer (α < 0.05) for depressed subjects with
respect to healthy ones, under one (T(22) = 2.438257, ρ = 0.011646) and two
tailed testing hypotheses (T(22) = 2.438257, ρ = 0.023293);

(b) EPR2, the total duration of empty pauses is significantly longer (α < 0.05) for
depressed subjects with respect to healthy ones under one (T(22) = 2.282619,
ρ = 0.016239) and two tailed testing hypotheses (T(22) = 2.282619, ρ =
0.032479);

(c) CR2, the clause duration is significantly shorter (α < 0.05), for depressed sub-
jects with respect to healthy ones under one (T(22) = 2.434987, ρ = 0.011729)
and two tailed testing hypotheses (T(22) = 2.434987, ρ = 0.023458);

(d) CR1, the clause frequency is significantly lower (α < 0.05) for depressed sub-
jects with respect to healthy ones under one (T(22) = 4.028679, ρ = 0.000281)
and two tailed testing hypotheses (T(22) = 4.028679, ρ = 0.000562);

Figure1 illustrates the differences between depressed and healthy subjects in CR1
frequency rate andCR2,DPR1, EPR2 duration rates. Differenceswere not significant
for the remaining measurements.
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Fig. 1 Differences between depressed and healthy subjects in CR1, CR2, DPR1, EPR2 rates

Fig. 2 Differences between depressed and healthy subjects in CR1 frequency rates

In the “read narratives” only the frequency of clauses (CR1) was significantly
lower (α < 0.05) for the depressed subjects with respect to healthy ones, under one
tailed (T(22) = 1.834149, ρ = 0.040778) testing hypothesis. Figure2 illustrates the
CR1 differences between the two groups.
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4 Discussions

This research investigates on how depressive disorders affect speech pausing strate-
gies either in spontaneous or read narratives. In literature, the identified acoustic
differences between depressed and healthy speech are attributed to changes in F0
frequency values and F0 related measures, as well as, formants, power spectral den-
sity,Mel FrequencyCepstral (MFCC) coefficients, speech rate and glottal parameters
such as jitter and shimmer [2, 5, 13, 21, 22, 26, 27, 38]. In particular, it has been
proven that depressed speech exhibits a “slow” auditory dimension [12, 25] and it
is perceived as sluggish. According to our results, the perceived “sluggishness” can
be primarily attributed to lengthened empty pauses (no significant differences were
found for filled pause and consonant/vowel lengthening), and shortened phonation
time (clauses are shorter in duration and less numerous). Similar results were found
in “automatic” speech tasks (such as counting, reciting the alphabet, and/or read-
ing (see [1, 6, 27, 35]) but not in “extemporaneous free speech samples” (see [27],
p. 9). This different outcome can be attributed to the fact that in [27] the speech
was collected through telephone and the noise on the communication line may have
distorted the signal making difficult to automatically identify the pause boundaries.
In addition, the production of spontaneous speech is more cognitively demanding
with respect to automatic speech tasks, requiring preparation, word selection and
motor articulatory control. Since speech pauses signal complex cognitive planning
processes related to the effort to communicate new information content [10, 18], the
lengthened silences and shorter phonation time can be considered an index of cogni-
tive and psychomotor retardations related to the degree of severity of depressive states
[8, 25, 31, 34, 36]. Longer silences in depressed speech suggest planning commu-
nicative efforts to maintain a regular conversation and the need for more cognitive
elaboration time [25, 31, 36]. The extra time requirements may produce inadequa-
cies in a typical interactional exchange, both for the listener that does not know how
to react to these long silences and the speaker who feels the failure of the exchange.
The requirements for extra time to express themselves reduce the phonation time,
reducing the amount of information content to be communicated. The consequence
is a social impairment that isolates these subjects and impairs the quality of their
social life.

Robust speech features for detecting depressive states might help in the imple-
mentation of automatic tools to support doctors in the early detection and diagnosis
of depression. Speech silences and phonation time seem robust enough to be auto-
matically exploited, given the significant differences measured in different speech
tasks and contexts. An early detection of depression can help patients reduce the
length of the depressive period and allow a faster recovery.

The strength of the reported results is that they are in agreement with data obtained
through different experimental set-ups, supporting the robustness of speech pauses
as feature based algorithms. However, there is the need for more data and more
thorough analyses to exploit them as depression diagnosis support.
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Abstract Up to 90% of patients with Parkinson’s disease (PD) suffer from hypoki-
netic dysathria (HD) which is also manifested in the field of phonation. Clinical
signs of HD like monoloudness, monopitch or hoarse voice are usually quantified
by conventional clinical interpretable features (jitter, shimmer, harmonic-to-noise
ratio, etc.). This paper provides large and robust insight into perceptual analysis of
5 Czech vowels of 84 PD patients and proves that despite the clinical inexplicability
the perceptual features outperform the conventional ones, especially in terms of dis-
crimination power (classification accuracy ACC = 92%, sensitivity SEN = 93%,
specificity SPE = 92%) and partial correlation with clinical scores like UPDRS
(Unified Parkinson’s disease rating scale), MMSE (Mini-mental state examination)
or FOG (Freezing of gait questionnaire), where p < 0.0001.
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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disease caused by a progressive loss
of dopaminergic neurons, primarily in the substantia nigra pars compacta, but also in
other parts of brain [11]. Prevalence of this disease is estimated to 1.5% for people
aged over 65 years [9]. PD is associated with different motor and non-motor deficits
like muscular rigidity, rest tremor, bradykinesia and postural instability [3, 6, 11]. In
60–90% of PD patients the multimodal disruption of motor speech realization called
hypokinetic dysarthria (HD) can be observed [4]. Most of patients with HD have
soft and breathy voice with small variation in speech intensity (monoloudness) and
fundamental frequency (monopitch) [1]. The other clinical signs like decreased artic-
ulatory organs movement, hoarse or harsh voice, flat speech melody (dysprosody)
or voice tremor can be observed as well [10].

In the last two decades scientists developed several acoustic signal analysis meth-
ods focusedon assessment of parkinsonic speech [5, 8, 13].Although a lot has already
been investigated, some issues (e.g. early stage detection or accurate progress esti-
mation) have not been solved yet. As time goes, new, robust and more sophisticated
speech parametrization methods occur. But this speech features evolution more often
builds barrier between engineers and clinicians, which is called “The issue of clinical
interpretability”. A feature with high discrimination power or good abilities to mon-
itor progress of disease can be proposed, however it is becoming useless as soon as
we try to find relations between its value and clinical signs of HD. In order to make a
good diagnose the clinicians need transparent parametrization. In other words, when
a value of feature changes they must know what will be the result from the clini-
cal sign point of view. According to this consideration we can divide features into
two categories: (1) clinically interpretable—they help us to directly quantify clini-
cal signs; (2) clinically inexplicable features—we can find significant correlations
between their values and clinical signs, but we can just guess what are the exact
relations.

Perceptual features are good representatives of the second category. Although
some researchers tried to interpret them from hypokinetic dysarthria signs point
of view [2, 7, 13], their meaning is still hidden in this field of science. Probably
the deepest research focused on discrimination power of perceptual features was
made by Orozco-Arroyave et al. [7]. Their results show that perceptual analysis of
sustained Spanish vowels [a], [i] and [u] based on PLP (Perceptual Linear Predictive
Coefficients) or MFCC (Mel-Frequency Cepstral Coefficients) provides the highest
discrimination power. However, they used just a limited set of features (5) and small
group of patients and control speakers respectively (20+ 20).

To sum up the introduction, although the perceptual features are clinically inex-
plicable, they could be very good markers of Parkinson’s disease. Therefore the aim
of this work is to: (1) prove that perceptual features can outperform the conventional
clinically interpretable parameters or significantly improve PD identification accu-
racy; (2) test a large set of perceptual parameters and identify feature with the highest
discrimination power; (3) find what kind of vowel realization it is better to analyse;
(4) identify perceptual features that can predict values of different clinical tests.
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The rest of this paper is organized as follows. Sections2 and 3 describe the dataset
andmethodology respectively. Section4 provides some preliminary results where the
features are evaluated in terms of correlation and mutual information with speakers’
label. Results of single-feature classification are given as well. Finally partial corre-
lation with clinical tests and classification based on feature selection is considered.
The conclusion is given in Sect. 5.

2 Data

In the frame of this study 84 PD patients (36 women, 48 men) and 49 (24 women,
25 men) age and gender matched healthy controls (HC) were enrolled at the First
Department of Neurology, St. Anne’s University Hospital in Brno, Czech Republic.
The demographic and clinical characteristics of PD patients can be seen in Table1.
The healthy controls had no history or presence of brain diseases (including neuro-
logical and psychiatric illnesses) or speech disorders. The PD patients were on their
regular dopaminergic treatment. All participants signed an informed consent form
that had been approved by the Ethics Committee of St. Anne’s University Hospital
in Brno.

During acquisition the participantswere asked to utter sequence of 5Czech vowels
([a], [e], [i], [o] and [u]) in 4 different ways: (1) s—short vowels pronounced with
normal intensity; (2) l—sustained vowels pronounced with normal intensity; (3)
ll—sustained vowels pronounced with maximum intensity; (4) ls—sustained vowels

Table 1 Demographic and clinical characteristics of PD patients

Speakers PD (females) PD (males)

Number 36 48

Age (years) 68.47± 7.64 66.21± 8.78

PD duration (years) 7.61± 4.85 7.83± 4.39

UPDRS III 22.06± 13.73 26.85± 10.22

UPDRS IV 2.72± 3.01 3.15± 2.59

RBDSQ 3.42± 3.48 3.85± 2.99

FOG 6.94± 5.72 6.67± 5.57

NMSS 36.03± 26.72 38.19± 19.72

BDI 18.57± 23.94 9.69± 6.23

MMSE 27.38± 3.63 28.56± 1.05

LED (mg) 862.44± 508.3 1087± 557.47
aUPDRS III—Unified Parkinson’s disease rating scale, part III: Motor Examination; UPDRS IV—
Unified Parkinson’s disease rating scale, part IV: Complications of Therapy; RBDSQ—The REM
sleep behavior disorder screening questionnaire); FOG—Freezing of gait questionnaire; NMSS—
Non-motor symptoms scale; BDI—Beck depression inventory; MMSE—Mini-mental state exam-
ination; LED—L-dopa equivalent daily dose
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pronounced with minimum intensity, but not whispered. Speech was recorded with
sampling frequency fs = 48 kHz and consequently downsampled to fs = 16 kHz in
order to decrease computational burden.

3 Methodology

In order to compare the discrimination power of perceptual features to conventional
ones, during the parametrization stepwe extracted fundamental frequency F0, 5 kinds
of jitter and 6 kinds of shimmer, Teager-Kaiser energy operator TKEO, formants
F1 − F3 and their bandwidths BW1 − BW3, harmonic-to-noise ratio HNR, glottal-
to-noise excitation ratio GNE, vowel space area VSA and its logarithmic version
lnVSA, formant centralization ratio FCR, vowel articulation index VAI and ratio of
second formants of vowels [i] and [u] F2i/F2u. If the specific feature was represented
by vector or matrix, we applied transformation to scalar value. For this purpose we
used median, standard deviation (std), 1st percentile (1p), 99th percentile (99p) and
interpercentile range (ir) defined as 99p–1p. In the case of matrix the transformation
was applied over each band separately.

3.1 Perceptual Features

First of all we included to this study the most popular MFCC (Mel Frequency Cep-
stral Coefficients) that can indirectly detect slight misplacements of articulators [13].
Consequently we derived from MFFC next 3 kinds of perceptual features: LFCC
(Linear Frequency Cepstral Coefficients), CMS (Cepstral Mean Subtraction coef-
ficients) and MFCC adjusted to equal loudness curves (as in the case of PLP). In
order to provide information complementary to MFCC we tested MSC (Modulation
Spectra Coefficients).

Next set of features is based on linear prediction: LPC (Linear Predictive Coef-
ficients), PLP (Perceptual Linear Predictive coefficients), LPCC (Linear Predictive
Cepstral Coefficients), LPCT (Linear Predictive Cosine Transform coefficients) and
ACW (Adaptive Component Weighted coefficients). In comparison to simple LPC
orMFCC the PLP also takes into account adjustment to the equal loudness curve and
intensity-loudness power law. The advantage of LPCC and LPCT over “classic” LPC
is small correlation of values. Finaly the advantage of ACW is that these coefficients
are less sensitive to channel distortion.

The last features in this study are ICC (Inferior Colliculus Coefficients) that
analyse amplitude modulations in voice using a biologically-inspired model of the
inferior colliculus. All perceptual featureswere extended by their 1st order regression
coefficients (Δ).
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3.2 Preliminary Analysis

Weemployed calculation ofSpearman’s rank sumcorrelation andmutual information
(MI) between feature vectors and resulting speakers’ label in order to estimate dis-
crimination power of the vowels separately. Consequentlywe appliedMann-Whitney
U test and classification based on random forests (RF). Classification results were
expressed byACC, SEN, SPE and trade-off between sensitivity and specificity (TSS)
defined as:

TSS = 2sin(
π ·SEN

2 ) sin( π ·SPE
2 ) (1)

Finally to identify perceptual features that can predict values of different clinical
tests we calculated Spearman’s partial correlations where the effect of patients’ age
and L-dopa equivalent daily dose was removed.

3.3 Classification

In the last step we performed classification with a two-step feature selection. Firstly
we reduced set of features to 500 parameters bymRMR(minimumRedundancyMax-
imumRelevance) and consequently we employed SFFS (Sequential Forward Feature
Selection). Three scenarioswere considered: individual vowel analysis; classification
within each vowel sequence (see Sect. 2); classification using all vowel realizations.
In all the cases we used leave-one-out validation.

4 Experimental Results

The preliminary results performed by Spearman’s rank correlation, mutual informa-
tion, Mann-Whitney U test and RF classifier are given in Table2. The results of PD
identification based on feature selection can be seen in Table3. Finally the results of
Spearman’s partial correlations between clinical characteristics and selected features
are in Table4.

According to the preliminary analysis we can conclude that std of 10th CMS
coefficient extracted from short vowel [o] provides the best discrimination power
in terms of ACC (80.45%), SEN (78.57%), SPE (83.67%) and TSS (1.88). On the
other hand conventional shimmer extracted from sustained vowel [i] pronounced
with minimum intensity reached better results of ρ(−0.4064), MI (0.7633) and p
(0.0000).

Considering the classification using feature selection, in the first scenario (indi-
vidual vowel analysis) we can observe the best results in the case of sustained and
loudly pronounced vowel [a] (ACC = 91.73%, SEN = 90.48%, SPE = 93.88%,
TSS = 1.98). All 8 selected features were perceptual. In the case of second scenario
(classificationwithin eachvowel sequence) the best results provided sustained vowels
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Table 3 Classification results (using feature selection)

Vowels ACC (%) SEN (%) SPE (%) TSS No.

a (s) 84.21 86.90 79.59 1.90 6

e (s) 81.95 82.14 81.63 1.89 8

i (s) 72.18 73.81 69.39 1.76 3

o (s) 80.45 78.57 83.67 1.88 1

u (s) 85.71 86.90 83.67 1.93 6

a (l) 87.22 88.10 85.71 1.94 6

e (l) 75.94 78.57 71.43 1.80 7

i (l) 82.71 83.33 81.63 1.90 11

o (l) 75.19 79.76 67.35 1.77 2

u (l) 77.44 73.81 83.67 1.85 1

a (ll) 91.73 90.48 93.88 1.98 8

e (ll) 78.20 83.33 69.39 1.81 3

i (ll) 78.95 82.14 73.47 1.84 6

o (ll) 81.20 80.95 81.63 1.89 3

u (ll) 72.18 76.19 65.31 1.74 1

a (ls) 76.69 78.57 73.47 1.82 3

e (ls) 87.97 88.10 87.76 1.95 8

i (ls) 84.21 84.52 83.67 1.92 11

o (ls) 76.69 77.38 75.51 1.83 6

u (ls) 84.21 86.90 79.59 1.90 4

all (s) 80.45 78.57 83.67 1.88 1

all (l) 91.73 90.48 93.88 1.98 9

all (ll) 81.95 79.76 85.71 1.90 7

all (ls) 90.98 91.67 89.80 1.97 11

all (s, l, ll, ls) 92.48 92.86 91.84 1.98 9
aACC—classification accuracy; SEN—sensitivity; SPE—specificity; TSS—trade-off between sen-
sitivity and specificity; No.—number of selected features, s—short vowel pronounced with normal
intensity; l—sustained vowel pronounced with normal intensity; ll—sustained vowel pronounced
withmaximum intensity; ls—sustained vowel pronouncedwithminimum intensity (notwhispering)

pronouncedwith natural intensity (ACC= 91.73%,SEN= 90.48%,SPE= 93.88%,
TSS = 1.98), where all 9 selected features were perceptual as well. It was proved
that in order to get best classification results (ACC = 92.48%, SEN = 92.86%,
SPE = 91.84%, TSS = 1.98) it is advantageous to use all 4 sets of vowels.

In our recent studywe found out that sustained vowels pronounced withminimum
intensity can be good speech tasks for detection of improper vocal folds vibration
(measured by features based on empirical mode decomposition) [12]. In the case of
perceptual analysis we observe that loudly pronounced features are better candidates
to analyse. We explain this by substantiality of perception. Theoretically longer and
more intense stimuli results in better perception.
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Table 4 Spearman’s partial correlations between clinical characteristics and selected features (after
removal of age and LED effect)

Clinical info Feature ρ p

PD duration i (l): 15th CMS (std) −0.4369 3.25 · 10−5

UPDRS III i (l): 1st ΔPLP (1p) −0.5174 6.98 · 10−7

UPDRS IV e (ll): 5th ΔMFCC (ir) 0.4572 1.23 · 10−5

RBDSQ u (ls): 13th ΔMFCC (99p) 0.4906 2.16 · 10−6

FOG a (ls): 6th MFCC (std) −0.4476 1.96 · 10−5

NMSS a (ll): 12th LPC (99p) 0.4616 1.25 · 10−5

BDI u (s): 3rd ΔLPCT (1p) 0.5832 1.25 · 10−6

MMSE i (l): 20th MFCC (99p) −0.4719 5.55 · 10−5

Finally we have proved that perceptual features significantly correlate (p <

0.0001) with different clinical information like UPDRS III (Unified Parkinson’s dis-
ease rating scale, part III:Motor Examination),UPDRS IV (part IV:Complications of
Therapy), RBDSQ (TheREMsleep behavior disorder screening questionnaire), FOG
(Freezing of gait questionnaire), NMSS (Non-motor symptoms scale), BDI (Beck
depression inventory) and MMSE (Mini-mental state examination). This means that
they can be used for estimation of these scores.

5 Conclusion

In this paper we perceptualy analysed phonation of 84 PD patients and 49 gender
and age matched controls. We achieved all goals of this work: (1) We have proved
that perceptual features outperform the conventional ones in terms of discrimina-
tion power. (2) From a wide range of perceptual features we have found out that
those based on CMS (derived from MFCC) better quantify the signs of hypokinetic
dysarthria. (3) We have shown that it is advantageous to perform perceptual analy-
sis of loud sustained vowels. (4) In the case of each considered clinical score we
identified a perceptual feature that can be used for its estimation.

In the near future we would like to move further, perceptualy analyse another
speech tasks (spontaneous speech, read sentences, etc.) and focus on each gender
individually.
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Phonation Biomechanics in Quantifying
Parkinson’s Disease Symptom Severity

P. Gómez-Vilda, A. Álvarez-Marquina, A. Tsanas, C.A. Lázaro-Carrascosa,
V. Rodellar-Biarge, V. Nieto-Lluis and R. Martínez-Olalla

Abstract It is known that Parkinson’s Disease (PD) leaves marks in phonation
dystonia and tremor. These marks can be expressed as a function of biomechani-
cal characteristics monitoring vocal fold tension and imbalance. These features may
assist tracing the neuromotor activity of laryngeal pathways. Therefore these fea-
tures may be used in grading the stage of a PD patient efficiently, frequently and
remotely by telephone or VoIP channels. The present work is devoted to describe
and compare the PD symptom severity quantification from neuromotor-sensitive fea-
tures with respect to other features on a telephone-recorded database. The results of
these comparisons are presented and discussed.

Keywords Neurologic disease · Parkinson’s Disease (PD) · Speech neuromotor
activity · Aging voice · Dysarthria

1 Introduction

Parkinson’s Disease (PD) is a neurodegenerative disorder occurring due to deteriora-
tion of substantia nigra in midbrain, with increasing yearly prevalence and incidence
rates. Its prevalence is expected to double in 2030 with respect to 2005 [1]. It is well
known that PD affects voice and speech even at an early stage, when other symp-
toms are not yet evident [2, 3]. Therefore speech features have been routinely used
to detect, assess and monitor PD by clinicians [4, 5]. The Unified PD Rating Scale
(UPDRS) [4, 6, 7] is often used in PD clinical evaluation, assigning a normalized
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score in the interval 0–4 on 17 items such as memory, speech, swallowing, hand-
writing, walking and numbness, amongst others. Another popular PD grading scale
is that of Hoehn and Yahr (H&Y) [8]. During the last decade, important advances in
PD evaluation and grading using speech have been produced [9]. These are based in
correlates of phonation, prosody or fluency. Phonation correlates are based in f0 dis-
tortion measurements as jitter, shimmer, harmonic-noise-ratios (HNR), pitch period
entropy (PPE) or mel-frequency cepstral coefficients (MFCC’s), among others [4].
The problem in using these correlates is the loss of semantics, which may imply a
too large penalty jeopardizing further research. The present approach is intended to
advance in the grading of PD whilst maintaining the semantics of the domain. A set
of biomechanical features derived from phonation which are known to preserve para-
meter semantics [10, 11] have been used. These are related to vocal fold mechanical
stress and tremor, which is one of the primary hallmarks that may be perceived in
around 60% of the PD cases, manifesting in bands around 2–4Hz (physiological),
6–10 (neurological) or above 10Hz (sometimes addressed as jitter or flutter). If it
is concentrated in the upper bands it may not be perceived acoustically most times.
The performance of these features will be compared with the f0 distortion features.
A brief description of how PD affects the biomechanics of phonation is provided
in Sect. 2. Section3 presents the methodology of the study. Results are shown and
discussed in Sect. 4. Conclusions are presented in Sect. 5.

2 Larynx Neuro-Motor Activation Features

The speech neuromotor sequence activates the muscles of the pharynx, tongue, lar-
ynx, chest and diaphragm through sub-thalamic pathways. The cricothyroid, trans-
verse and oblique arytenoid, as well as the posterior cricoarytenoid muscles in the
larynx are especially relevant in phonation, as they are responsible for vocal fold
stretching, adduction and abduction. Fine muscular control is provided by a two-way
regulation system in which dopamine, noradrenaline, serotonine and acetylcholine
are involved. Alterations in the level of these substances, and especially of dopamine
produced in substantia nigra impairs the regulatory function and results in the appear-
ing of the PDmotor syndrome characterized by tremor, rigidity bradykinesia and loss
of equilibrium [12]. Perturbations in respiration, phonation and articulation affect
speech. The dystonic behavior of the vocal fold stiffness or its fluctuation (tremor),
are some of the symptoms associated to PD phonation. The method proposed here
is to estimate vocal fold stiffness from sustained long vowels (/a/). The procedures
used in the estimation of this correlate are vocal tract inversion by a lattice adaptive
filter [13], and biomechanical inversion of a 2-mass model of the vocal folds [14].
As a result, an estimate of the vocal fold body mechanical stiffness is produced for
each phonation cycle, from which tremor may be characterized (see [10] for more
details). Themechanical stiffness of the vocal fold body and cover, the dynamicmass
of body and cover, the dissipation losses in the oscillating vocal folds, together with
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the cycle-to-cycle variation of these parameters (asymmetric vibration unbalance),
can be used as features. The tremor band-split inverse model coefficients, as well as
tremor distribution in frequency and amplitude [11] can also be used as correlates.

3 Materials and Methods

This study is framed within the Patient Voice Analysis Challenge (PVAC) supported
by Synapse [15]. The PVAC has recruited a large database of telephone-line quality
sustained /a/ utterances recorded at 8kHz from crowdsourcing volunteers suffering
from any degree of PD, who were also asked to self-assess symptom severity under
the UPDRS and H&Y standards. The data made available by PVAC is a set of /a/
utterances in .wav format, plus the data sheet with the UPDRS and H&Y scores, and
a collection of features already produced for each recording summarized in Table1.

The purpose of the present study is to compare the performance of larynx neuro-
motor activity features (LNMAF) described in Sect. 2 with f0 distortion and MFCC
features provided by PVAC (PVACF), which are known to be highly competent in PD
detection and grading [4–7]. The set of biomechanical features used in the present
study are given in Table2.

The experiments are designed to correlate the UPDRS scores provided by the
patients, with those predicted using feature sets PVACF and LNMAF. The data set
including 770 sample utterances was split randomly into training and test subsets,
composed of 389 and 390 samples each. A male and a female training subsets were
produced selecting 183 and 186 samples from the training subset respectively (one
sample per subject). 38 features (as the ones listed in Table1) were estimated for
each sample in the subsets by the PVAC. The training sets were processed using

Table 1 Features provided within PVAC (PVACF)

F001. Median of fundamental frequency f0

F002. Mean absolute f0 time derivative

F003. Median absolute f0 time derivative

F004. Mean of abs. val. of RMS power time derivative

F005. Median of abs. val. of RMS power time derivative

F006–19. Median of MFCC’s 0–12 across entire voice recording

F020–32. Mean of MFCC’s 0–12 across entire voice recording

F033. Recurrence period density entropy (RPDE) hnorm

F034. Detrended fluctuation analysis (DFA) scaling parameter alpha

F035. Modified pitch period entropy (PPE)

F036. Relative spectral power 0–500Hz

F037. Relative spectral power 500–1000Hz

F038. Relative spectral power 1000–2000Hz
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Table 2 Larynx neuro-motor activity features (LNMAF)

F039. Median of fundamental frequency f0

F040. Median of jitter (relative between neighbor phonation cycles)

F041. Median of shimmer (relative between mean amplitude of neighbor phonation cycles)

F042. Median of maximum flow declination rate (MFDR)

F043. Median of noise-harmonic ratio

F044. Median of mucosal wave correlate to average acoustic wave ratio (MWC/AAC)

F045–58. Medians of cepstral coefficients across the analysis window

F059–70. Medians of the mucosal wave correlate power spectral density (MWCPSD) profile

F071–72. Medians of MWCPSD minima slenderness

F073–75. Medians of vocal fold body dynamic mass, losses and stiffness

F076–78. Medians of vocal fold body dynamic mass, losses and stiffness unbalances

F079–81. Medians of vocal fold cover dynamic mass, losses and stiffness

F082–84. Medians of vocal fold cover dynamic mass, losses and stiffness unbalances

F085–86. Medians of glottal source recovery instants 1 and 2

F087–88. Medians of glottal source open instants 1 and 2

F089. Median of glottal source maximum instant

F090–91. Medians of glottal source recovery amplitudes 1 and 2

F092–93. Medians of glottal source open amplitudes 1 and 2

F094–95. Median of glottal flow stop and start instants

F096. Median of glottal flow closing instant

F097–100. Medians of glottal flow gap, contact, adduction and permanent defects

F101–103. Medians of the 1st, 2nd and 3rd order cyclic coefficients (tremor)

F104–105. Medians of the physiological band tremor frequency and amplitude

F106–107. Medians of the neurological band tremor frequency and amplitude

F108–109. Medians of the flutter band tremor frequency and amplitude

F110. Median of the root mean square tremor amplitude

the LNMAF methodology to estimate the 72 features described in Sect. 2 listed in
Table2. The experiments consisted in predicting the subjective self-scores using
multiple linear regression Support Vector Machines (SVM’s [16]). The goodness of
the fit is given in terms of the Weighted Mean Absolute Error (WMAE) defined as:

εω =
N

∑

i=1

ωi

∣

∣si − ŝi

∣

∣ (1)

where N is the test set size, si is the self-score, ŝi is the score predicted by the SVM,
and ωi is the weight of the prediction (ratio between the number of times subject i
appears in the test −ni contributions-relative to the total number of samples ni/N ).
The objective of the experiment is to determine which feature combinations are more
efficient in producing the minimal WMAE. The training subsets are divided in 10
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subgroups each. For each subgroup a training session of the SVM is conducted, and
a test is carried on the nine other subgroups in a leave-one-out protocol. The scores
obtained are combined in a unified score such as ŝi , and the WMAE is obtained.
The 10-fold validation is repeated on three different feature sets: PVACF, which
includes features F001–38 in Table1; LNMAF, which includes features F039–110,
and PVACF+ LNMAF, which includes the merged feature set F001–110. The com-
binations of k features producing the lowest WMAE are selected, with k ranging
from 1 to 25. This process is repeated for the three feature sets PVACF, LNMAF and
PVACF + LNMAF. The results are presented and discussed in the next section.

4 Results and Discussion

The feature templates producing the lowest WMAE from the exhaustive run con-
ducted on the k feature templates with 1 < k < 25 for the three feature sets are
presented in Table3. The normalized WMAE from male and female sets for the
different feature templates tested is presented in Fig. 1.

It may be seen that the best template features are different for the male and
female subsets, a finding in agreement with previous studies [4]. TheWMAE decays
up to a certain point, after which it increases again (a classical manifestation of the
curse of dimensionality). The LNMAF feature set produces lowerWMAE’s than the
PVACF set for most of the cases. The merging of both feature sets behaves better
than each set alone. The reduction of the WMAE in LNMAF relative to PVACF
is of 16.34% (males) and 15.22% (females), and of 25.22% (males) and 21.76%
(females) relative to the merged sets. In the PAVFC male set features 12, 15, 16,
19, 21 and 32 correspond to MFCC’s; 35 is the modified pitch period entropy of a
logarithmic semitone pitch residual [17]. In the female set features 1 and 3 are f0 and
its time derivative; 5 is the absolute rms value of energy, 8, 12, 13, 16, 18 and 25 are
MFCC’s. In the LNMAF best male set features 51 and 52 are unrestricted cepstral
coefficients; 67 is the 2nd maximum frequency position in the glottal source power
spectral density; 73, 74 and 75 are the vocal fold body mass, losses and stiffness; 76
is the vocal fold body mass unbalance (asymmetric vibration); 79 is the vocal fold
cover mass; 85 is the glottal source recovery time; 92 is the glottal source amplitude
at the opening instant; 99 is the vocal fold adduction defect; 105 is the amplitude of
the physiological tremor; and 107 is the amplitude of neurological tremor. Possibly
features 67, 73, 74, 75, 76, 79, 85, 92 and 99may be affected by aging voice, whereas
105 and 107 show neurodegenerative influence. In the LNMAF best female feature
set 40 is the jitter; 47, 53 and 54 are also unrestricted cepstral coefficients; 61 is
the 2nd maximum frequency amplitude, found in the glottal source power spectral
density; 67 is the 1st maximum frequency position; 74 is the estimate of vocal fold
body losses; 97 and 98 are the glottal flow escape defect, and the contact defect; 101
and 102 are the first two coefficients of the inverse filter estimating of tremor [10],
and 109 is the amplitude of the flutter tremor. When analyzing the features included
in themale set merged templates (PVACF + LNMAF) it may be seen that features 12,
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Fig. 1 Normalized WMAE for the different templates tested. Each template index corresponds
with the number of features included. a Male set. b Female set

14 and 29 are MFCC’s; 38 is the spectral power in 1–2kHz; 43 is the noise-harmonic
ratio; 51 and 57 are unrestricted cepstral parameters; 67, 74 and 99 are present as well
in the LNMAF; and 108 is the flutter frequency. The description of the female set
features in the merged templates (PVACF + LNMAF) for the female set is: 21, 22,
23 and 32 are MFCC’s; 39 is f0 estimated on the glottal source; 40 and 41 are jitter
and shimmer, respectively; 47, 61, 97, 101, 102 and 104 are present as well in the



100 P. Gómez-Vilda et al.

LNMAF; and 82 and 83 are the unbalances of the vocal fold cover mass and losses.
The number LNMAF features in the composite templates (PVACF + LNMAF) is
dominant in the male and in the female feature sets when compared with the number
of PVACF coefficients (8/3 and 11/4). This fact indicates that the minimumWMAE
may be more dependent on larynx activity than on voice distortion features.

5 Conclusions

The severity grading of PD using voice is an intricate, challenging problem. Through
the present study a comparative approach to this problem has been presented. The
most important findings are the following:

• Glottal source features (LNMAF) are more efficient in reducing WMAE more
than voice features (PVACF).

• Combining PVACF and LNMAF results in the minimum WMAE.
• The role of LNMAF features seems to be dominant in the combined feature tem-
plates. This result is very relevant, as LNMAF gives information on biomechanical
implications which are very semantic.

• These observations are valid for both genders.
• Features related with f0 distortion seem to be highly relevant in all cases. The same
is valid for cepstral features, either unrestricted or mel-banded. Biomechanical
features (parameters and unbalances) are relevant as well, but it is not clear if they
monitor aging voice or PD.

• Contact and opening defects are also relevant, although may be affected by aging.
• Tremor features are very relevant, and are plausibly induced by PD, although the
influence of other causes cannot be excluded (essential, spasmodic, etc.).

A word has to be said on the use of telephone-like quality voice, which is justified
under the following considerations: database recruiting is based on crowdsourcing,
the donators being volunteers providing their own voice on the telephone line, this
being a near-real situation if these methods are to be used for distant and frequent
evaluation of patients; besides, telephone-quality is subject to channel distortion,
therefore if the methodology works well for this type of signal, plausible it will
work better for higher quality standards. Finally it must be said that telephone-
channel distortion does not affect greatly to biomechanical glottal features, as the
spectral power of the glottal signal is concentrated in the 300–3000Hz, adapting well
to channel width. Significant differences between broad and narrow channel band
are not noticeable, as demonstrated by the relative invariance to feature statistical
distributions with channel width. Furthermore future studies need considering if
means are more sensitive to distortion induced by aging or PD voice because of real
causes or because of the presence of more outliers in their estimation. Regarding
tremor a very important question to deserve further analysis is that of its estimation
on voice or on the glottal source. As it is well known, the source-filter model gives a
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definition to separate the articulation part (acoustic oro-naso-pharyngeal tract) from
the glottal source (the glottal flow derivative). But according to the physiological
description given in Sect. 2 the innervations of larynx, pharynx, tongue, jaw and facial
muscles depend on different neuromotor pathways. Therefore, tremor estimated on
voice may be different than that estimated only on the glottal source. To infer the
origin and nature of tremor in voice requires a further study on tremor in formants
(articulation) and in the glottal source (phonation), this being a pending line of
study. Another relevant question is to determine to which extent the features used in
grading PD severity are reactive only to PD deterioration or if they are also reactive
to aging voice (not necessarily related to PD). Aging voice (presbyphonia) is mainly
of organic origin, due in principle to the loss of elastin and collagen in the tissue
structure of larynx, and mainly in the vocal folds (especially in Reinke’s space). This
process is degenerative and especially noticeable after 60. Another fact influencing
aging voice is the hormonal decay [18]. The presence of progesterone and estrogens
is strongly reduced in the case of females after menopause, and testosterone decay is
also noted in the case of males, although at a lesser level and extent. Another factor
which introduces more uncertainty in the correlates is the consequence of alcohol,
tobacco or other inhaled drug abuse affecting the upper respiratory ways. These
effects worsen with age, thus influencing causing a more deteriorated phonation.
These factors have to be taken into consideration to avoid misleading effects on PD
grading performance.
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Abstract In this study, acoustic-phonetic analysis of continuous speech and statisti-
cal analyseswere performed in order to find parameters in depressed speech that show
significant differences compared to a healthy reference group. Read speechmaterials
were gathered in the Hungarian and Italian languages from both healthy people and
patients diagnosed with different degrees of depression. By statistical examination
it was found that there are many parameters in the speech of depressed people that
show significant differences compared to a healthy reference group. Moreover, most
of those parameters behave similarly in other languages such as in Italian. For clas-
sification of the healthy and depressed speech, these parameters were used as an
input for the classifiers. Two classification methods were compared: Support Vector
Machine (SVM) and a two-layer feed-forward neural network (NN). No difference
was found between the results of the two methods when trained and tested on Hun-
garian language (both SVM and NN classification accuracy was 75%). In the case of
training with Hungarian and testing with Italian healthy and depressed speech both
classifiers reached 77% of accuracy.
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1 Introduction

Speech is a good indicator of the physiological and cognitive condition of humans,
thus symptoms of depression can also be observed in speech. Experienced physicians
can diagnose depression from the patient’s speech quality. To name the properties
of depressed speech physicians often use the words melted, slow, monotonic, life-
less and metallic. Research indicates that we can link these perceptual properties to
acoustic parameters.

Many studies have determined acoustic parameters that can be connected to
depression. In some of the studies, follow-up monitoring research has been car-
ried out to gather parameters with high classification performance; others measure
differences between the speech of healthy and depressed people. For the changes of
mood states and emotions prosodic parameters like rhythm, intonation, accent and
timing are very important [1–4].

An early study contains experiments with only three patients, but this study has
already identified one of themost important acoustic parameters of depressed speech:
fundamental frequency [5].

Today, researchers are studying phonetic parameters at different levels of speech
production, such as: fundamental frequency, variation of fundamental frequen-
cies, formants, power spectral density [6], cepstrum [7] or MFC coefficients (Mel-
frequency cepstrum coefficients) [8], speech rate [9], glottal parameters [10],
amplitude modulation and other different prosodic parameters [11–15].

Our first goal is to expand the above mentioned specific set of acoustic-phonetic
parameters of depressed speech. Moreover we are going to examine the language
dependency of these parameters. We look after those parameters which behave simi-
larly in other languages such as in Italian. Our second goal is to compare two classi-
fication methods: SVM and a two-layer feed-forward NN. Furthermore we compare
the classification results for the Hungarian and Italian languages.

The paper is structured as follows. The descriptions of the used databases are
presented in Sect. 2, detailed descriptions of the evaluation of acoustic parameters
are presented in Sect. 3, next we show our classification results in Sect. 4, followed
by the conclusions in Sect. 5.

2 Databases

Read speech was used for the research, the healthy and depressed Hungarian and
Italian participants were asked to read the tale “The North Wind and the Sun” in
their own mother tongue. The tale is a standard phonetically balanced short folk tale
(about six sentences all together), frequently used in the phoniatry practice.
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2.1 Depressed Hungarian Speech Database

The Depressed Hungarian Speech Database is a collection of records from Hun-
garians who are suffering from depression. The database contains the speech of 54
patients (35 females and 19 males). The patients were selected with the help of a
psychiatrist from the Neurology Department of Semmelweis University, Hungary. In
order to measure depression and classify the recordings, Beck Depression Inventory
(BDI) score was used. This is a method to specify the severity of depression in the
range from 0 to 63 [16]. The categories are the following: 0–13: healthy; 14–19:
mild depression; 20–28: moderate depression; 29–63: severe depression. The distri-
bution of BDI indices of Hungarian depressed patients is shown in Fig. 1, the age
distributions of the patients is shown in Fig. 2.

If a speaker’s BDI score is between 0 and 13, the speaker was considered healthy,
thus generating the following database.

2.2 Healthy Hungarian Speech Database

The Healthy Hungarian Speech Database contains the speech records of 73 healthy
speakers (44 females and 29 males). The recordings were recorded with clip-on
microphones (Audio-Technica ATR3350), with external USB sound card, with 44
100Hz at 16kHz sampling rate, quantized at 16 bits. The age distribution of the
speakers is shown in Fig. 3.

Fig. 1 The distribution of
BDI indices of the depressed
people in the Hungarian
database
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Fig. 3 Healthy reference
speech database age
distribution

0

10

20

30

40

20-30 31-40 41-50 51-60 61-70N
u

m
b

er
 o

f 
o

cc
u

rr
en

ce
s

Age intervals

Fig. 4 The distribution of
BDI indices of the depressed
people in the Italian database
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Both database recordings were annotated and segmented on phoneme level, using
SAMPAphonetic alphabetwith the help of an automatic phoneme segmentator devel-
oped in our Laboratory [17]. After then, manual correction was done.

2.3 Healthy and Depressed Italian Speech Database

22 recordings were collected from Italian speakers. 11 recordings are from healthy
people and 11 are from patients suffering from depression. The patients who are suf-
fering from depression were selected with the help of our Italian colleagues. The BDI
indices in this case are within the range of 16 to 38. The recordings were annotated
and segmented on phoneme level, the same way as the Hungarian databases. The
distribution of BDI indices are shown in Fig. 4. All our databases are under continual
expansion.

3 Acoustic Parameters

The acoustic-phonetic parameters were divided into two groups: segmental and
supra-segmental (prosodic) parameters. The segmental parameters were calculated
in the middle of the same vowel (‘E’). In this article all parameters were called
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segmental, which were measured in the middle of the vowel, using a given time
window for the calculation. These are fundamental frequency of ‘E’ vowels (F0),
first and second formant frequency of ‘E’ vowels (F1, F2), jitter of the vowels ‘E’
(Jitter) and shimmer of the vowels ‘E’ (Shimmer). For the calculation of formants,
fundamental frequency, jitter and shimmer, a Hamming window was used with 25
ms frame size and these parameters were always measured from the middle of each
vowel ‘E’. ‘E’ sounds were detected automatically. This vowel was chosen for the
measurement, because typically is the most frequent in Hungarian and in this tale as
well. There was no significant difference between the different acoustic parameters
measured at different vowels (except for the vowel-specific F1 and F2 values), so it
is not necessary to examine all of them, examination of the ‘E’ sound is sufficient.

The supra-segmental (prosodic) parameters were calculated by the total length
of each recording. The following prosodic parameters were measured: intensity
dynamics of speech (variance of intensity, VDS), fundamental frequency dynam-
ics of speech (range of fundamental frequency, RFF), total length of pauses (TLP),
articulation and speech rate (AR, SR), and rate of transient parts (ROT) [18].

Some of these parameters are already known as good indicators of depression:
TLP, AR, SR, F1, F2, but there are others which are less or not at all used to examine
the relation of depression: Jitter, Shimmer, VDS, RFF, ROT. In the examination of
depression there is a very common parameter (voice onset time), which was not
examined by us. This is because it is hard to calculate automatically, and our final
goal is build a system which can automatically indicate depression.

For the measurement of intensity a 100 ms frame size window was used with 10
ms time step, and the variance of these values was used as VDS. For themeasurement
of RFF the variance of all the vowels’ F0 value was used. For the measurement of the
ROT 30 ms frame size window was used with 1 ms time step. The ROT value is the
ratio of the total length of transient parts and the total length of the recording (except
the pauses). The calculation of the transient parts is based on a specific distance
method on the basis of frequency domain with Mel-band filterbank [18].

Every acoustic parameter showed normal distribution across both sexes for
depressed as well as normal speech (they were tested with the Kolmogorov-Smirnov
test with significance level 95%). Two-tailed tests were used for statistical signifi-
cance testing for the mean values of the acoustic parameters between depressed and
healthy speech.Where F probe showed significant variances of an acoustic parameter
between depressed and normal speech (with significance level 95%), the Welch’s T
test was used. The significance analysis was performed separately by gender. For the
T test the significant level was 90%. The following segmental parameters showed
significant differences between healthy and depressed speech at least in one gender
(Table1).

The following supra-segmental parameters showed significant differences between
healthy and depressed speech (VDS, RFF, AR, SR, TLP and ROT), at least in one
gender (Table2).
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Table 1 Two-sample T tests results for segmental parameters

Feature Sex Group Mean Var P val. Student
val.

Sign.
Diff.

F0 [Hz] F Dep. 158 26, 8 3, 5 1, 7 YES
Normal 179 24, 8

M Dep. 105 12, 5 1, 5 1, 7 NO

Normal 112 16, 5

F1 Var [Hz] F Dep. 68 18 0, 8 1, 7 NO

Normal 61 13

M Dep. 65 16 1, 8 1, 7 YES
Normal 52 12

F2 Var [Hz] F Dep. 164 28 1, 8 1, 7 YES
Normal 152 31

M Dep. 149 40 1, 9 1, 7 YES
Normal 128 36

Jitter [%] F Dep. 2, 7 0, 7 2, 6 1, 7 YES
Normal 1, 3 0, 4

M Dep. 3, 8 1, 3 0, 9 1, 7 NO

Normal 3, 5 1, 1

Jitter Var F Dep. 2, 3 0, 6 2, 4 1, 7 YES
Normal 1, 9 0, 5

M Dep. 3, 2 1 0, 7 1, 7 NO

Normal 3 1

Shimmer [%] F Dep. 11, 4 2 3, 6 1, 7 YES
Normal 9, 9 1, 5

M Dep. 13 1, 6 3, 1 1, 7 YES
Normal 11, 5 1, 6

Shimmer Var [%] F Dep. 6, 6 1, 4 3, 2 1, 7 YES
Normal 5, 6 1, 1

M Dep. 8, 2 1, 1 1, 4 1, 7 NO

Normal 7, 6 1, 3

Further investigation was carried out, how these parameters change by increasing
the degree of depression. It was found that the distance from the normal value of
the parameters grew according to the severity of depression. Figure5 shows how
shimmer values are affected by the severity degree of depression.

The parameters which showed significant differences between the two groups in
the case of Hungarian were examined for Italian recordings as well. The two lan-
guages show similar tendencies according to theses parameters on the data obtained
from the healthy and depressed populations. There was no significance analysis car-
ried out for Italian data since our Italian databases were too small (11 healthy and
11 depressed speakers).
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Table 2 Two-sample T tests results for supra-segmental parameters

Feature Sex Group Mean Var P val. Student
val.

Sign.
Diff.

VDS [dB] F Dep. 5, 7 1 5, 9 1, 7 YES
Normal 6, 9 0, 7

M Dep. 5, 6 0, 8 4, 3 1, 7 YES
Normal 6, 5 0, 6

RFF [Hz] F Dep. 185 55 3, 2 1, 7 YES
Normal 222 42

M Dep. 123 66 0, 3 1, 7 NO

Normal 129 48

AR [count/s] F Dep. 12 1, 5 0, 9 1, 7 NO

Normal 12, 5 1, 2

M Dep. 12 2 3, 4 1, 7 YES
Normal 14 1

SR [count/s] F Dep. 10, 4 1, 5 0, 4 1, 7 NO

Normal 10, 9 1, 3

M Dep. 10 3 3, 7 1, 7 YES
Normal 11, 7 2, 7

TLP [s] F Dep. 8, 1 0, 6 0, 2 1, 7 NO

Normal 7, 9 0, 5

M Dep. 10, 7 2 3, 2 1, 7 YES
Normal 7, 1 0, 9

ROT [%] F Dep. 23 2, 1 1, 8 1, 7 YES
Normal 26 2, 3

M Dep. 20 2, 9 3 1, 7 YES
Normal 26 2, 2

Fig. 5 Shimmer distribution
in function of BDI values in
the case of male speakers
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4 Classifications

Our main goal was to detect depression by speech, and we intended to build a sys-
tem which could work mostly in a language-independent way. For this reason, first,
acoustic parameters were selected according to our statistical examination in Sect. 3,
which showed significant difference at least in one gender. Fundamental frequency
values were not used because they strongly vary from one person to another. There-
after, parameterswere selectedwhich, on the base of our phonetic knowledge, operate
language independently. The first and second formant frequencies, articulation and
speech rate are surely language-dependent parameters, these parameters were left out
as well. Thus, the following parameters were used for the classification tasks: range
of fundamental frequency (RFF), volume dynamics of speech (VDS), the variance
of the first and the second formant frequency (F1 Var, F2 Var), jitter (Jitter), shim-
mer (Shimmer), the variance of jitter and shimmer (Jitter Var, Shimmer Var), rate of
transient (ROT), and the total length of pauses (TLP), the variance of the first and
the second formant frequency (F1 Var, F2 Var), jitter (Jitter), shimmer (Shimmer),
the variance of jitter and shimmer (Jitter Var, Shimmer Var) were calculated at the
middle of vowels ‘E’ in case of Hungarian, as described in Session 3. In the case
of Italian these segmental parameters were measured instead that from the “E” from
the vowel ’I’, because this vowel was the most frequent one in the Italian fairy tale.
We could rightly do this, because as we have mentioned it in the Chap. 4, we did not
find significant differences among the selected parameters in the case of different
vowels. The mean and/or variance values of each parameter were calculated for each
recording and were used for the classification.

Two classification methods were compared first for Hungarian and then for Italian
databases: SVM (using kernel type of radial basis function) and NN. To perform
classifications with SVM, LIBSVM integrated software version 3.20 was used [19].
For NN type classifications a two-layer feed-forward network was created (with
sigmoid hidden and softmax output neurons) with the help of the Matlab Neural
Network Toolbox [20].

The two classifiers (SVM, NN) were trained and tested with the Hungarian data-
bases. A total of 108 recordings were used for the classification task, 54 recordings
from healthy and 54 recordings from depressed readers. The database was distributed
in three parts: 55% of the data was used for training, 15% for development (to opti-
mize parameters) and 30% for testing. The training set contained 30 recordings from
healthy and 30 recordings from depressed readers, the development set contained 8
recordings from healthy and 8 recordings from depressed readers and the test set
contained 16 recordings from healthy and 16 recordings from depressed readers.

With the balanced train, development and test set, a random baseline classifier
would give us 50%. With the experiments on the development set, the best classifier
parameters were selected (parameters where the classification results on the develop-
ment set were close to the best results) and these parameters were used to determine
the classification accuracy on the test set. Our best classification results are shown
in Table3.

http://dx.doi.org/10.1007/978-3-319-28109-4_4
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Table 3 Classification results using SVM and neural network (Training data: Hungarian; Testing
data: Hungarian)

Classifier Acoustic parameters C Gamma Number of
hidden nodes

Classification
accuracy (%)

SVM F1 Var, F2 Var, Jitter,
Jitter Var, Shimmer,
Shimmer Var, RFF,
VDS, TLP, ROT

4 0, 125 – 75

NN F1 Var, F2 Var, Jitter,
Jitter Var, Shimmer,
Shimmer Var, RFF,
VDS, TLP, ROT

– – 18 75

Table 4 Classification results using SVM and neural network (Training data: Hungarian; Testing
data: Italian)

Classifier Acoustic parameters C Gamma Number of
hidden nodes

Classifiction
accuracy (%)

SVM F1 Var, F2 Var, Jitter,
Jitter Var, Shimmer,
Shimmer Var, RFF,
VDS, TLP, ROT

4 0, 125 – 77

NN F1 Var, F2 Var, Jitter,
Jitter Var, Shimmer,
Shimmer Var, RFF,
VDS, TLP, ROT

– – 18 76

No difference was found between the result of the two methods when trained and
tested on Hungarian. In both cases the best accuracy was 75%. When searching for
the best result, the numbers of hidden neurons were mapped between 2 to twice the
number of inputs, in our case 20 hidden neurons. The best result was obtained at
18 hidden neurons when training and testing on Hungarian. We wanted to exam-
ine whether the selected parameters could be used in other languages too, for the
detection of depression. Thus, the classifiers were trained with the Healthy Hun-
garian Speech and Depressed Hungarian Speech databases (with the same training
and parameter combination used for the first classification). Testing was done with
the Italian recordings, presented in Sect. 2.3. The classification results are shown in
Table4.

It was found that SVM and NN gave slightly better results when trained and
tested on the Italian dataset. Both classifiers categorized 17 correct from the 22 total
recordings. The increased classification results may be misleading due to differences
in the test sets, although correct or incorrect classification of a record causes high
percentage deviation due to the limited number of samples.
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Note that the BDI scores of the Hungarian and Italian depressed databases differ
and the number of samples limits the significance of the results in both databases.
However, it is interesting to note that the classification results, when testing with
Italian dataset, did not change significantly, despite the fact that the classifier was
trained by Hungarian.

5 Conclusions

In this study we performed statistical examination in order to identify acoustic-
phonetic parameters associated with depression that show significant differences
compared to a healthy reference group. It was found that there are many parameters
in the speech of depressed people that show significant differences compared to a
healthy reference group. Our selected parameters are partly different from those used
in previousworks. Our 75 and 77%of correct classification percentageswere slightly
better than the 72% achieved by David et al. (2013, [21]), even though results are
not comparable since the databases were different.

The selected parameters were examined on a small Italian database too, which
contained both healthy and depressed speech. It was found that the differences of
the selected parameters’ values, between the healthy and depressed speech, were
similar in case of Hungarian and Italian language. On the basis of the results of the
classification experiment with the Hungarian and Italian databases, it can be said that
those 10 selected speech parameters significantly change in the case of depression,
and moreover, these parameters behave similarly in the case of Italian language too
and possibly in the case of other languages. Of course, the proof of this statement
requires that the investigation should be extended to other languages as well. These
parameters are as follows: range of fundamental frequency, volume dynamics of
speech, the variance of the first and the second formant frequency, jitter, shimmer,
the variance of jitter and shimmer, rate of transient, and the total length of pauses.

In addition, we compared two classification methods: SVM and a two-layer feed-
forward NN on our databases. The selected parameters, which indicated depression
in the statistical examination, were not language dependent when used as an input
for the classifiers for classification of the healthy and depressed speech. No differ-
ence was found between the result of the two methods when trained and tested on
Hungarian; we gained 75% accuracy with both classifiers. When the classifiers were
trained by Hungarian and tested with Italian dataset SVM and NN gave slightly bet-
ter results. The classification accuracy was 77% in both cases. We can presume that
the separation of healthy and depressed speech carries similar tendencies for both
Hungarian and Italian languages.

The presented results clearly indicate that the development of such a medical
device able to diagnose and identify depressive states is quite realistic and worth
working for it. Of course we need much more data and the method needs to be tested
by further languages.
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Constructing a Deep Neural Network Based
Spectral Model for Statistical Speech
Synthesis

Shinji Takaki and Junichi Yamagishi

Abstract This paper presents a technique for spectral modeling using a deep neural
network (DNN) for statistical parametric speech synthesis. In statistical paramet-
ric speech synthesis systems, spectrum is generally represented by low-dimensional
spectral envelope parameters such as cepstrum and LSP, and the parameters are
statistically modeled using hidden Markov models (HMMs) or DNNs. In this paper,
we propose a statistical parametric speech synthesis system that models high-
dimensional spectral amplitudes directly using the DNN framework to improvemod-
elling of spectral fine structures. We combine two DNNs, i.e. one for data-driven
feature extraction from the spectral amplitudes pre-trained using an auto-encoder
and another for acoustic modeling into a large network and optimize the networks
together to construct a single DNN that directly synthesizes spectral amplitude
information from linguistic features. Experimental results show that the proposed
technique increases the quality of synthetic speech.

1 Introduction

Recently, deep neural networks (DNNs) with many hidden layers have been sig-
nificantly improved in statistical speech synthesis researches. For instance, DNNs
have been applied for acoustic modelling. Zen et al. [1] use DNN to learn the rela-
tionship between input texts and extracted features instead of decision tree-based
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state tying. Restricted Boltzmann machines or deep belief networks have been used
to model output probabilities of hidden Markov model (HMM) states instead of
GMMs [2]. Recurrent neural network and long-short term memory have been used
for prosody modelling [3] and acoustic trajectory modelling [4]. In addition, an auto-
encoder neural network has also been used to extract low dimensional excitation
parameters [5].

However, the synthetic speech of the latest statistical parametric speech synthesis
still sounds muffled, and averaging effects of statistical models are often said to
remove spectral fine structure of natural speech. To improve the quality of synthetic
speech, a stochastic postfilter approach has been proposed [6] where a DNN is used
to model the conditional probability of the spectral differences between natural and
synthetic speech. The approach was found to be able to reconstruct the spectral
fine structure lost during modeling and has significantly improved the quality for
synthetic speech [6]. In this experiment, the acoustic model was trained using lower
dimensional spectral envelope features, while the DNN-based postfiler was trained
using the spectral amplitudes obtained using the STRAIGHT vocoder [7]. From
the experimental findings, we can hypothesize that the current statistical parametric
speech synthesis may suffer from quality loss due to not only statistical averaging
but also acoustic modeling using lower dimensional acoustic features.

On the basis of this hypothesis, in this paper we present a new technique for
constructing a DNN that directly synthesizes spectral amplitudes from linguistic
features without using spectral envelope parameters such as mel-cepstrum. It is well
known that there are many problems for training a DNN such as the local optima,
vanishing gradients and so on [8]. However, it has been reported in the ASR field
that DNNs that deal with high-dimensional features, e.g. FFT frequency spectrum,
can be appropriately constructed using an efficient training technique such as pre-
training [9].

Thus, in this paper we propose an efficient training technique for constructing a
DNN that directly synthesizes spectral amplitudes from input texts. A key idea is to
stack two DNNs, an auto-encoder neural network for data-driven nonlinear feature
extraction from the spectral amplitudes and another network for acoustic modeling
and context clustering. The proposed technique is regarded as a function-wise pre-
training technique for constructing the DNN-based speech synthesis system.

The rest of this paper is organized as follows. Section2 reviews a DNN-based
acoustic model for the statistical parametric speech synthesis. Section3 describes a
DNN-based acoustic feature extractor and spectrum re-generator. Section4 explains
the proposed technique for constructing a DNN that directly synthesizes the spectral
amplitudes. The experimental conditions and results are shown in Sect. 5. Concluding
remarks and future works are presented in Sect. 6.
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Fig. 1 A framework of
DNN-based acoustic model

2 DNN-based Acoustic Model for Statistical Parametric
Speech Synthesis

It is believed that the human speech production system has layered hierarchical
structures to convert the linguistic information into speech. To approximate such
a complicated process, DNN-based acoustic models that represent the relationship
between linguistic and speech features have been proposed for statistical parametric
speech synthesis [1–4] This section briefly reviews one of the state-of-the-art DNN-
based acoustic models [1].

Figure1 illustrates a framework of the DNN-based acoustic model. In this frame-
work, linguistic features obtained from a given text are mapped to speech parameters
by a DNN. The input linguistic features include binary answers to questions about
linguistic contexts and numeric values, e.g. the number ofwords in the current phrase,
the position of the current syllable in the word, and durations of the current phoneme.
In [1], the output speech parameters include spectral and excitation parameters and
their time derivatives (dynamic features). By using pairs of input and output fea-
tures obtained from training data, the parameters of the DNN can be trained with a
stochastic gradient descend (SGD) [10]. Speech parameters can be predicted for an
arbitrary text by a trained DNN using forward propagation.

3 Deep Auto-encoder Based Acoustic Feature Extraction

An auto-encoder is an artificial neural network that is used generally for learning a
compressed and distributed representation of a dataset. It consists of the encoder and
the decoder. In the basic one-hidden-layer auto-encoder, the encoder maps an input
vector x to a hidden representation y as follows:

y = fθ (x) = s(Wx + b), (1)

where θ = {W, b}. W and b represent an m × n weight matrix and a bias vector of
dimensionality m, respectively, where n is the dimension of x. The function s is a
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non-linear transformation on the linear mapping Wx + b. A sigmoid, a tanh, or a
relu function is typically used for s. y, the output of the encoder, is then mapped to z,
the output of the decoder. The mapping is performed by a linear mapping followed
by an arbitrary function t that employs an n × m weight matrix W′ and a bias vector
of dimensionality n as follows:

z = gθ ′(y) = t (W′y + b′), (2)

where θ ′ = {W′, b′}. An auto-encoder can be made deeper by stacking multiple
layers of encoders and decoders to form a deep architecture.

Pre-training is widely used for constructing a deep auto-encoder. In pre-training,
the number of layers in a deep auto-encoder increases twice as compare to a deep
neural network (DNN) when stacking each pre-trained unit. It has been reported that
fine-tuning with back-propagaqion through a deep auto-encoder is ineffective due
to vanishing gradients at the lower layers [8]. To overcome this issue, we restrict
the decoding weight as the transpose of the encoding weight following [10], that is,
W′ = WT where WT denotes the transpose of W. Each layer of a deep auto-encoder
can be pre-trained greedily to minimize the reconstruction loss of the data locally.
Figure2 shows a procedure for constructing a deep auto-encoder using pre-training.
In pre-training, a one-hidden-layer auto-encoder is trained and the encoding output
of the locally trained layer is used as the input for the next layer. After all layers are
pre-trained, they are stacked and are fine-tuned to minimize the reconstruction error
over the entire dataset using error backpropagation [11]. We use the mean square
error (MSE) for the loss function of a deep auto-encoder.

Figure3 shows an example of original and reconstructed spectrograms using the
standard mel-cepstral analysis and a deep auto-encoder. Both mel-cepstral analysis
and the deep auto-encoder produced 120-dimensional acoustic features. We can
clearly see that the deep auto-encoder reconstructs spectral fine structures more
precisely than that of the mel-cepstral analysis. Log spectral distortions between
natural spectrum and reconstructed spectrum calculated using 441 sentences were

Fig. 2 Greedy layer-wise
pre-training for constructing
a deep auto-encoder
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(a) (b) (c)

Fig. 3 Original and reconstructed spectra using mel-cepstral analysis and a deep auto-encoder.
a Original, b mel-cepstrum, c deep auto-encoder

2.53 and 1.19 dB for the mel-cepstral analysis and deep auto-encoder, respectively.
Similar auto-encoder based bottleneck features were tested for a ClusterGen speech
synthesizer [12]. Our idea is different from [12] and we stack the decoder part of the
deep auto-encoder onto another DNN for acoustic modeling.

4 Proposed DNN-based Spectral Modeling

ADNN-based acoustic model described in Sect. 2 may be used for the direct spectral
modeling by substituting an output of the network from mel-cepstrum to the spec-
trum. However, the dimension of spectrum is much higher than that of mel-cepstrum.
For a speech signal at 48kHz, themel-cepstral analysis order typically used is around
50-dim, whereas the dimension of spectrum corresponds to FFT points such as 2049.
Because of this high dimensional data, amore efficient training technique is needed to
construct a DNN that directly represents the relationship between linguistic features
and spectra. In this paper, we hence propose a function-wise pre-training technique
where we explicitly divide the general flow of the statistical parametric speech syn-
thesis system into a few sub-processes, construct and optimize a DNN for each task
individually, and stack the individual networks for the final optimization.

Figure4 shows a procedure for constructing the proposed DNN-based spectral
model. Details of each step of the proposed technique are as follows:

Step 1. Train a deep auto-encoder using spectra and extract bottleneck features for a
DNN-based acoustic model used in Step 2. Layer-wise pre-training or other
initialization may be used for the learning of the deep auto-encoder.

Step 2. Train a DNN-based acoustic model using the bottleneck features extracted
in Step 1. Layer-wise pre-training or other initialization may be used for
learning the DNN.
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Fig. 4 Constructing a DNN-based spectral model based on a deep autoencoder and a DNN-based
acoustic model

Step 3. Stack the trained DNN-based acoustic model for bottleneck features and
the decoder part of the trained deep auto-encoder as shown in Fig. 4 and
optimize the whole network.

A DNN that represents the relationship between linguistic features and spectra is
constructed based on a DNN-based spectral generator and a DNN-based acoustic
model using the bottleneck features. After this proposed pre-training, we fine-tune
theDNN tominimize the error over the entire dataset using pairs of linguistic features
and spectra in training data with SGD.

5 Experiments

We have evaluated the proposed technique in the subjective experiment. The dataset
we use consists of 4546 short audiowaveforms uttered by a professional female native
speaker of English and each waveform is around 5s long. All data was sampled at
48 kHz.

Wecompared three techniques;CEPSTRUM is theDNNthat synthesizes cepstrum
vectors, SPECTRUM has the same network structure as that of CEPSTRUM, but
it outputs the spectral amplitudes directly, and INTEG is the proposed DNN that
synthesizes spectrum amplitudes with the proposed pre-training framework. In these
techniques, the dynamic and acceleration features were not used. Figure5 shows
structures of constructed DNNs for each technique. We trained five-hidden-layer
DNN-based acoustic models for each technique. The number of units in each of the
hidden layers was set to 1024. Random initialization was used in a way similar to [1].
In INTEG, we trained the symmetric five-hidden-layer auto-encoder. The numbers
of units of the hidden layers were 2049, 500, 60, 500 and 2049 As a result, we
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Fig. 5 Structures of constructed DNNs for each technique

constructed and fine-tuned the eight-hidden-layer (1024-1024-1024-1024-1024-60-
500-2049) DNN for INTEG. We used a sigmoid function for all units of hidden and
output layers of all DNNs.

For each waveform, we first extract its frequency spectra using the STRAIGHT
vocoder with 2049 FFT points. For constructing the conventional system, 59 dimen-
sional cepstrum coefficientswere used. Spectrum and cepstrumwere both frequency-
warped using the Bark scale. Note that all the techniques synthesize only spectrum
features and other requisite acoustic features; that is, F0 and aperiodicity measures
were synthesized from the same HMM-based synthesis system [13]. Feature vectors
for HMMs were comprised of 258 dimensions: 59 dimensional bark-cepstral coeffi-
cients (plus the 0th coefficient), log f0, 25 dimensional band aperiodicity measures,
and their dynamic and acceleration coefficients. Phoneme durations were also esti-
mated by HMM-based speech synthesis. The context-dependent labels were built
using the pronunciation lexicon Combilex [14]. The linguistic features for DNN
acoustic models were comprised of 897 dimensions: 858 dimensional binary fea-
tures for categorical linguistic contexts, 36 numerical features for numerical linguis-
tic contexts, and three numerical features for the position of the current frame and
duration of the current segment. The linguistic features and spectral amplitudes in
the training data were normalized for training DNNs. In the proposed technique,
however, the bottleneck features are not normalized, and the normalization process
is not used for hidden units in the integrated DNN. The input linguistic features were
normalized to have zero-mean unit-variance, whereas the output spectral amplitudes
were normalized to be within 0.0–1.0.

We synthesized speech samples from spectrum amplitudes, F0 features and ape-
riodicity measures using the STRAIGHT vocoder in all techniques. In CEPSTRUM,
synthesized cepstral vectors were converted into spectrum amplitudes for using the
STRAIGHT vocoder.
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Fig. 6 Results of preference
test

In subjective experiments, two preference tests were conducted. Seven subjects
participated in both listening tests. Thirty sentences were randomly selected from the
180 sentences for each subject. The experiment was carried out using headphones in
a quiet room.

5.1 Experimental Result

Figure6 shows the results of the preference tests with 95% confidence intervals.
In the first preference test, they were asked to compare the DNN that synthesizes
cepstrum vectors (CEPSTRUM) with the proposed DNN (INTEG). In the second
preference test, they were asked to compare the DNN without the proposed pre-
training technique that synthesizes spectrum amplitudes (SPECTRUM) with the pro-
posed DNN (INTEG). The figure shows that the proposed technique produces more
natural-sounding speech than other techniques. This indicates that the DNN that
directly synthesizes spectra was efficiently trained using the proposed technique.

6 Conclusion

In this paper, we have proposed a technique for constructing a DNN that directly
synthesizes spectral amplitudes. On the basis of the general flow for constructing
the statistical parametric speech synthesis systems, a part of layers of a DNN could
be efficiently pre-trained. Experimental results showed that the proposed technique
increased the quality of synthetic speech.

In futurework,wewill investigate the effect of structures of aDNN-based acoustic
model and a DNN-based spectrum auto-encoder more thoroughly. Time derivative
features will also be interesting to investigate.
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The Influence of Adaptation Database Size
on the Quality of HMM-based Synthetic
Voice Based on the Large Average Voice
Model

Martin Sulír and Jozef Juhár

Abstract This paper describes the influence of various database size on the overall
quality of HMM-based synthetic voices which were built with the help of large
average voice model using an average voice-based speech synthesis system together
with AHO-coder vocoding technique. Together, eight new voices of one male speaker
were built by gradually adding new data into adaptation database while the quality of
individual new voices were evaluated with the help of objective evaluation methods.
A mean mel-cepstral distortion together with an aligned and averaged fundamental
frequency assessment were used for the evaluation of newly created voices. The aim
was to show the effect of adding more data into adaptation database to the overall
quality as well as to define the threshold when the impact of the newly added data
on the voice quality will be negligible in case of using a sufficiently large average
voice model in the adaptation procedure. The result of this work is a set of spectrum
and fundamental frequency assessments which directly show the dependence of the
voice quality on the amount of adaptation data together with the threshold definition.

Keywords Hidden Markov models · Models adaptation · Objective evaluation ·
Statistical parametric speech synthesis · Text-to-speech

1 Introduction

A Speech synthesis, which is represented by the Text-To-Speech (TTS) systems,
is one of the most important part of the speech interaction with the computer. The
main task of these systems is primarily making life easier for example to people
with physical disabilities, such as blind people, or to totally ordinary people and
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facilitating their day to day operations [1]. The expansion of such systems was
mainly caused by the demand for speech as one of the modalities, especially in the
interactive applications where the speech communication with the device facilitates
the transfer of information from system to user. Nowadays, the hidden Markov model
based speech synthesis method represents one of the most progressive approach how
to convert written text into sound, which ultimately sounds like human speech [2].
The progressiveness of this method is particularly involved in its high flexibility,
where it allows to quite easily create the new voices with the help of adaptation,
interpolation or, for example, using the technique of eigenvoice. The utilization of
these techniques arise from using of hidden Markov models (HMM) which can be
properly mathematically modified in order to obtain their desired modified versions.
Models adaptation provides a relatively large range for customizing of models, where
it uses a principle of using a small adaptation database and the large pre-trained
average voice model to create a new voice which corresponds to the speaker who
recorded the input adaptation database. In this case, the adapted voice quality is
influenced by the two major factors: the adaptation database size and its quality and
the average voice model diversity. The main motivation for the experiments described
in this paper was to verify the dependence between the large diverse average voice
model and various sized adaptation databases as well as to determine their impact on
the overall adapted voice quality at the output of the system. The paper is organized
as follows: in Sect. 2 an average voice-based speech synthesis (AVSS) system is
described. Section 3 describes a speech synthesis system for evaluation. In Sect. 4,
the experiments and results of objective evaluation are presented. The conclusions
are listed at the end of this paper.

2 Average Voice-based Speech Synthesis System

The adaptation techniques were firstly developed for the automatic speech recogni-
tion systems, where they enable to adapt general acoustic models to a specific topic,
speaker or environment which increases the accuracy of a speech recognition. The
basic principles of these techniques have been applied also into speech synthesis
systems where they showed their potential in a speaker adaptation task. The average
voice-based speech synthesis system builds upon the original HMM-based system,
which has been extended by a process of model adaptation [3]. Figure 1 shows a block
diagram of the AVSS system for the HMM-based speech synthesis with a speaker
adaptation.

The AVSS system can be divided into three basic parts. The first one is a training
part which consists of the average models training. Its main task is an extraction of
spectral and excitation parameters from the speech database as well as an implemen-
tation of the HMMs training. In the case of the average models training, the speech
database consists of the multiple sub-databases, where each of them was recorded
by one certain speaker. In the HMM-based speech synthesis method, each of the
HMMs correspond to a left-to-right model where each output vector is composed of
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Fig. 1 Block diagram of AVSS system for HMM-based speech synthesis

two components, namely it consists of the spectrum part, represented by mel-cepstral
coefficients and their delta and delta-delta coefficients and the excitation part which
is represented by the excitation parameters and their corresponding delta and delta-
delta dynamic features. The trained HMMs include also the density distributions for
state duration for the purposes of reproduction of the temporal structure of speech.
A conventional HMM-based TTS system works as a mel-cepstral vocoder with a
simple impulse train as the excitation signal, where a sequence of periodic pulses
and white noise together with a Mel log spectrum approximation (MLSA) filter are
used. The speech synthesis process is carried out by filtering of the pulse train in
case of the voiced segments and white noise filtering in case of the unvoiced speech
segments where the excitation is controlled by the logarithmic values of the gen-
erated fundamental frequency. The filter parameters are adjusted according to the
input mel-cepstral coefficients obtained in the parameter generation process. A sev-
eral high-quality vocoders with a more advanced excitation were implemented into
HMM-based speech synthesis system. Such methods include, e.g., MELP (Mixed
Excitation Linear Prediction) method [4], HSM (Harmonic/Stochastic Model) model
[5], excitation model based on modeling of residues [6], STRAIGHT (Speech Trans-
formation and Representation using Adaptive Interpolation of Weighted Spectrum)
[7] or AHOcoder [8]. The latter approach is one of the most advanced vocoder there-
fore the experiments in this work were carried out with this vocoding method. The
second part of AVSS system is an adaptation step. A target speaker speech database
together with its spectral and excitation parameters represent inputs to the adaptation
process. The process of adaptation of the average voice models is implemented in this
part, where a lot of modifications of the basic adaptation methods (Maximum likeli-
hood linear regression, etc.) have been developed [9]. In general, the multiple linear
transformation functions are estimated with the help of target speaker data during the
adaptation process. However, it is not possible to estimate a transformation function
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for each context dependent model so each function is usually shared by a group of
related models. A synthesis part of the average voice HMM-based speech synthesis
system consists of two main components. The first component is represented by the
text analyzer, which convert a given text into contextual label sequence. The second
component consists of the several blocks which are responsible for the parameter
generation from the context dependent HMMs and duration models; excitation gen-
eration based on the generated excitation parameters and the synthesis filter. This
component compose a HMM sequence by concatenating context-dependent HMMs
according to input label sequence. Subsequently, the state durations for the concate-
nate HMM sequence are determined in order to maximize the output probability of
the state durations. The vectors of mel-cepstral coefficients and logarithmic values of
generated fundamental frequency values are generated based on the obtained HMM
sequence and the speech waveform is synthesized from these vectors by using the
speech synthesis filter.

3 Description of Speech Synthesis Systems for Evaluation

3.1 Average Voice Speech Databases Description and
Training

The speech databases required for an average voice HMMs training arose partly
from the acoustic data which are used for a speech recognition system in Slovak
language and partly from the especially prepared phonetically balanced data used for
a speaker dependent HMM-based speech synthesis training. The speech recognition
database was algorithmically divided into isolated sentences and individual speakers
and it includes together the utterances of the biggest seven male and seven female
speakers where each of them contain more than the 450 utterances. The three (two
female and one male) phonetically balanced speech databases especially prepared
for the purposes of speech synthesis were added to this data. Together, seventeen
sub-databases were used for average voice model training with the help of AVSS
system [3]. A detailed specification of the obtained average voice speech databases
is shown in Table 1.

3.2 Adaptation Speech Databases Description

Eight various sized speech databases were used as adaptation input speech data where
each of them arose from one phonetically balanced male database. This large single
speaker speech database has been carefully recorded under the studio conditions and
it consists of the 3667 phonetically balanced Slovak sentences [10]. It was divided
into eight sub-databases, where the smallest one consisted of the 29 utterances and as
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Table 1 Average voice speech databases specification

Female speech databases

Speaker 1 2 3 4 5 6 7 8 9

No. of
utterances

810 545 535 520 570 525 469 4526 330

Duration
(min)

138 97 90 105 112 95 79 411 49

Male speech databases

Speaker 1 2 3 4 5 6 7 8

No. of
utterances

517 631 543 767 657 531 571 330

Duration
(min)

89 87 102 140 89 107 86 38

Total number of sentences: 13377 Total duration: 31 hr 54 min

Table 2 Adaptation speech sub-databases specification

Name AD1 AD2 AD3 AD4 AD5 AD6 AD7 AD8 SD NS

No. of utterances 29 57 115 229 458 917 1834 3667 3667 3667

Duration (min) 3 6 11 21 37 70 141 284 284 284

Note Adaptation a b

aspeaker dependent database; bnatural speaker database

the biggest one the entire database was used. Each sub-database between the first and
the last one contained twice as many utterances than the previous database. A detailed
specification of obtained adaptation sub-databases is shown in Table 2. The table also
includes a description of speaker dependent voice, based on the same database, and
the natural speaker database which were used for comparison of acquired results.

3.3 Description of All Systems for Evaluation

On the basis of the aforementioned databases, eight new HMM-based speech synthe-
sis systems were created using the speaker adaptation techniques. These systems use
previously developed modules for Slovak text analysis together with the proposed
language dependent context clustering. A more detailed description of these parts
can be found in [11]. For these experiments, a Constrained maximum likelihood
linear regression (CMLLR) combined with additional Maximum a posteriori (MAP)
adaptation were used. Following table shows a description of the newly created Slo-
vak AVSS systems together with the speaker dependent one, which is used when
comparing the results of evaluation (Table 3).
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4 Evaluation and Results

An evaluation of newly created voices was performed by the objective tests. The
evaluation part of Slovak speech male database, which was created by separating of
one fifth of the entire corpus, was used for the objective evaluation. Taken together,
a spectrum of generated utterances was evaluated by measuring of their mean Mel-
cepstral distortion (MCD) and interpolated f0 (fundamental frequency) contours were
compared with f0 contour of reference database and speaker dependent voice trained
with the help of the same database. The detailed explanation of all experiments and
their results will be given in the following section.

A MCD evaluation method represent a distance measure calculated between mel-
cepstral coefficients of the reference (or original) and the evaluated speech samples
[12]. In these experimentation, 859 recordings of the reference male speaker and the
reference speaker dependent voice are considered (the generated speech files can be
found here: http://kemt-old.fei.tuke.sk:1025/synteza_web/adapt_eval/). We applied
this metric to the mel-cepstral coefficients generated by eight test systems, which are
described in Sect. 3.3. In the first case, these coefficients were compared with the
reference speaker’s mel-cepstral coefficients and subsequently also with the speaker
dependent voice’s coefficients. The content of generated speech samples of all system
and all utterances had the same content as the reference. Finally, the acquired results
from all 859 comparisons were averaged to obtain the mean Mel-cepstral distortion
of each evaluated system. The results of objective evaluation of the speech synthesis
systems with the mean MCD method are shown in Fig. 2.

As we can see, the obtained results show a continuous increase of the quality with
the increasing number of adaptation data. The largest qualitative difference is between
the AD1 and the AD2 system which may demonstrates the inadequacy of data in the
first system. The most interesting result is the minimum decrease of quality between
the systems from four to eight. This phenomenon demonstrates the ineffectiveness
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Fig. 2 Mean MCD objective evaluation results

http://kemt-old.fei.tuke.sk:1025/synteza_web/adapt_eval/
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of increasing the number of data at the certain point. The comparison of the adapted
systems with the speaker dependent voice as the reference only confirmed the above
mentioned conclusions.

The objective evaluation was also made for the fundamental frequency of the
generated utterances. In this case, the evaluation part of created corpora was used
again for the assessment whether the generated f0 values are correct and appropriate.
An evaluation procedure consisted of the fundamental frequency extraction from
the male reference database together with the same extraction from the generated
utterances of all eight newly created TTS systems. This extraction was performed
on each of the 859 recordings of each system and subsequently the alignment was
performed with the help of an interpolation to achieve a vector alignment to the
same length for the needs of their averaging and comparison. The alignment was
followed by the averaging of the values in each sample of acquired vectors what led
to obtaining of an average fundamental frequency contour of the generated utterances
and the reference samples. The comparison of the aligned and averaged f0 values of
all systems together with the reference and speaker dependent voice are shown in
Fig. 3. It is apparent that almost all tested systems generate the fundamental frequency
of an artificial speech with almost the same values as it is in the reference. The only
system with a significantly different f0 contour was the AD1 which again highlights
the inadequacy of the adaptation data.

Figure 4 shows the dependency between the mean MCD and the adaptation data-
base size expressed in minutes. As can be seen, it is possible to determine a threshold
(between the values from 60 to 70 min), where the adaptation database enlargement
already had no significant effect on the output voice quality. The values above this
threshold than cause only the quality oscillation.
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Fig. 3 Comparison of aligned and averaged f0 values
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Fig. 4 Dependency between the mean MCD and adaptation database size

5 Conclusions

This paper presents the influence of adaptation database size on the quality of HMM-
based synthetic voice based on the large average voice model. The performance
of the newly created systems have been evaluated through the objective tests. The
above-mentioned tests showed that when the large diverse average model is used it
is possible to get quite good synthetic voice with the help of adaptation techniques
with the small amount of data. The experiments also showed the existence of the
threshold beyond which the increasing size of the database cause only the quality
oscillation. Acquired results underline the effectiveness of the model adaptation
techniques as such especially when using the AHO-coder which represents one of
the most advanced vocoder.
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Comparison of Text-Independent Original
Speaker Recognition from Emotionally
Converted Speech

Jiří Přibil and Anna Přibilová

Abstract The paper describes an application of the classifier based on the Gaussian
mixture models (GMM) for reverse identification of the original speaker from the
emotionally transformed speech in Czech and Slovak. We investigate whether the
identification score given by the GMM classifier depends on the type and the struc-
ture of used speech features. Comparison of the results obtained with the sentences
in German and English has shown that the structure and the balance of the speech
database have influence on the identification accuracy but the used language is not
practically important. The evaluation experiments confirmed that the developed text-
independent GMM original speaker identifier is functional for the closed-set classi-
fication tasks.

Keywords Emotional voice conversion ·Speech spectral features ·Speech prosodic
features · Gaussian mixture model · Original speaker identification

1 Introduction

Expression of positive or negative emotional states in speech, although formerly
investigated merely by psychologists, has become a part of a multidisciplinary field
of research focused on human-computer interaction [1]. Greater effectiveness of this
interaction and dialogue management is achieved by inclusion of emotions in the
speech recognition as well as in the speech synthesis. For that reason, the expressive
speech synthesis has moved to the centre of attention of speech processing researchers
[2] in particular because the improvement of speech naturalness can be achieved by
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A. Přibilová
Faculty of Electrical Engineering & Information Technology, Institute of Electronics and
Photonics, Slovak University of Technology, Ilkovičova 3, SK-812 19 Bratislava, Slovakia
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the way of emotional speech style conversion which holds for many languages [3].
In addition, there are increasing demands for realization of more familiar human-
computer interfaces [4] using different approaches: development of the text-to-speech
(TTS) systems with the expressive speech style production [5], personification of the
TTS systems [6], application of the storytelling speaking style for narration of stories
for children [7, 8] or in special book reading software for blind users [9], etc. On the
other hand, this conversion could not change the original speaker identity in contrast
to voice transformation [10]. Subjective listening tests are often used for evaluation
of quality, naturalness, and intelligibility of the synthetic speech [11], however, in
our case the successfulness of this type of evaluation is very problematic–practically
impossible. For this reason, we sought another statistically-based evaluation method
that can be used for the original speaker identification from the resynthesized speech
with applied emotional speech style conversion.

In the previous work [12] it was verified that the synthetic speech quality can be
evaluated by the original speaker identification using text-independent classification
in a closed set with the unknown speaker in the set of known speakers [13]. The
Gaussian mixture model (GMM) of a speaker [14], providing a probabilistic model
of the underlying sounds of a person’s voice, is useful for text-independent speaker
identification with short duration of speech utterances [15, 16]. The main advantage
of this statistical evaluation method is that it needs no human interaction and the
obtained results can be compared numerically. The accuracy of identification of the
original speaker from the signal generated by the speech synthesizer depends on
the used method of synthetic speech production—it means that the changes (errors,
deviations from the original signal) are caused only by the chosen method of speech
signal parameterization. In the case of emotional speech transformation, much more
factors have influence on the original speaker identification accuracy due to the
modifications in the spectrum (changed formant positions) and the prosody (changed
F0 contour, energy contour, time duration, linear trend, etc.). Identification of the
original speaker may be affected by these changes with possible decrease of the final
GMM identification accuracy.

Motivation of the work described in this paper was to verify applicability of
a GMM-based classifier for identification of the original speaker after applied con-
version from neutral to four emotional states (joy, surprise, sadness, and anger) spo-
ken in Czech and Slovak languages [17]. In the comparison experiment, the neutral
speech was first emotionally converted and subsequently used for identification of
the original speaker. In this way, the impact of emotional conversion upon speaker
identification is investigated in our experiment. In addition, the correctness of the
GMM identification is analyzed with respect to the setting of the parameters and the
choice of the speech features during GMM training. The emotional speech conver-
sion method used in this experiment was originally developed within the framework
of previous research [18]. This method is based on non-linear spectral envelope
transformation that shifts the first formant to the left and the higher ones to the
right for pleasant emotions, and the first formant to the right and higher ones to
the left for unpleasant emotions according to the knowledge of psychological and
phonetic research [19]. For the speech analysis and resynthesis of the male voice the
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source-filter model with cepstral parameterization of the vocal tract transfer function
[20] was used, the speech signal of the female voice was resynthesized using the har-
monic speech model [18, 21]. The databases containing original neutral speech used
in our research were: the database of Czech and Slovak stories (CZ&SK) performed
by professional actors [17], the Berlin Database of Emotional Speech (Emo-DB)
in German language [22] and the Texas Instruments and Massachusetts Institute of
Technology (TIMIT) database in English language [23].

2 Description of Used GMM-based Re-identification
Method

The GMMs represent a linear combination of multiple Gaussian probability distri-
bution functions of an input data vector [14]. For GMM creation, it is necessary
to determine the covariance matrix, the vector of mean values, and the weighting
parameters from the input training data. Using the expectation-maximization (EM)
iteration algorithm, the maximum likelihood function of GMM is found [14]. The
EM algorithm is controlled by the number of used mixtures (NGMIX) and the number
of iterations (NITER); the iteration stops when the difference between the previous
and current probabilities fulfills the internal condition or the predetermined maxi-
mum number of iterations is reached. In general, the elements of the feature vectors
could be correlated [17], so rather a high number of mixtures and a full covariance
matrix would be necessary to provide sufficient approximation [24]. On the other
hand, the GMM with a diagonal covariance matrix is usually used for speaker identi-
fication [14] due to lower computational complexity. The GMM classifier returns the
probability (so called score) that the tested utterance belongs to the GMM model.
In the standard realization of the GMM classifier, the resulting class is given by
the maximum overall probability of all obtained scores corresponding to M output
classes using the feature vector T from the tested sentences

m∗ = arg max
1≤m≤M

score (T,m) . (1)

This relatively simple and robust approach cannot achieve the best recognition accu-
racy in all cases. In our experiment, a more complex method based on the accumulated
score calculation was used for final decision about the classified original speaker.
The accumulated score can be expressed by the relation

mACC = arg max
1≤i≤M

⋃P

p=1

(

m∗ (i, p) ≡ i
)

, (2)

where m∗(i, p) represents the value calculated by (1) for the current pth frame, P
is the number of the frames in the sentence, and the union operator represents the
occurrence rate of the i th class. Practical realization consists of an experimental one-
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Fig. 1 Block diagram of the developed GMM-based classifier for identification of the original
speaker from the converted emotional speech

level structure of the GMM classifier as shown in Fig. 1. Classification is performed
for both genders of the voice (male/female) that had been correctly determined in the
previous process [17] or set manually. The input feature vectors are processed from
the tested sentences with the transformed emotional speech. The speaker identifica-
tion block uses the GMM models that were created and trained on the data of the
feature vectors obtained from the sentences of original speakers in a neutral style.
The obtained individual values of score (T,m) are further used for calculation of
the accumulated score mACC and depending on the used discrimination level the M
output classes of original speakers are finally determined.

The speech signal analysis is performed in the following way: the fundamental
frequency F0 is determined from the input sentence after segmentation and weighting.
For all speech frames the smoothed spectral envelope and the power spectral density
are computed for further processing: determination of spectral and prosodic features.
The speech parameter vector of N values can be next processed in two ways:

• the first one uses only one representative statistical value (mean value, standard
deviation, median value, etc.) from all N values,

• the second one uses N − 2K representative statistical values computed from
a window with the length of WAVER = 2K + 1 values around the i th value where
K + 1 ≤ i ≤ N − K .

These output feature vectors with the length of NFEAT are stored in the database
for direct use in the GMM classification process—see the block diagram in Fig. 2.
Spectral features like mel frequency cepstral coefficients (MFCC) together with
energy and prosodic parameters are most commonly used in GMM-based speaker
identification [25] and emotional voice classification [26]. However, the relative
position of formants and formant trajectories [27] can be used as the main indica-
tor for speech classification in voiced parts. The basic spectral features compris-
ing the first two formant positions F1,2 [28] with theirs ratios F1/F2 and the first
four cepstral coefficients c1−4 are used here together with the features determined
from the spectral envelope: decrease, spread, and centroid. The used supplementary
spectral features are: harmonic-to-noise ratio (HNR), spectral flatness (SFM), and
spectral entropy (SE). The conversion method includes also the changes in the time
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Fig. 2 Block diagram of the determination of the feature vectors from the speech spectral properties
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duration—lengthening or shortening in dependence on the chosen type of emotional
style conversion [29]. As regards the supra-segmental speech properties, the prosodic
parameters like differential contour F0DIFF (F0 after subtraction of its mean and the
LT removal), zero-crossing rate (F0ZCR), jitter, shimmer, etc. were determined.

3 Speech Material and Performed Experiments

The main speech corpus used for GMM creation, training, and testing consists of 89
sentences uttered by 5 male speakers and 79 sentences uttered by 5 female speakers
with duration from 0.5 to 8.5 s, resampled at 16 kHz. The sentences from the CZ&SK
database in a neutral style were subsequently converted to four emotional styles:
“joy”, “joyous surprise”, “sadness”, and “anger”. The structure of the speech corpus,
the composition of the speakers, and the record time durations in the Czech and Slovak
speech database are relatively similar to those in the well-known Berlin Database of
Emotional Speech [22] in German language that is the only public and free database
among several emotional speech databases which are either private or commercially
available or public with licence fee [30]. The principal reason for the use of the
Emo-DB was that it can be taken as a reference for the final comparison experiment.
The Emo-DB speech database consists of the set of sentences with the same contents
expressed in seven emotional styles: “neutral”, “joy”, “sadness”, “boredom”, “fear”,
“resistance”, and “anger”. For processing in this experiment, only neutral sentences
uttered by 5 male and 5 female speakers with duration from 1.5 to 8.5 s were extracted
from the whole speech corpus (100 sentences altogether). The TIMIT speech database
in English (having been collected since 1990 and consisting of 630 speakers in total,
438 males and 192 females) is often used for GMM recognition/identification [23]
as well as in more complex comparisons [31]. In spite of the fact that the TIMIT
database consists of the sentences in a neutral style only, we take sentences from this
database as the second reference for comparison with the results using the Czech and
Slovak speech database. In a similar way as in the case of the Emo-DB, we chose
100 + 100 sentences by 5 + 5 male/female speakers with duration from 1.3 to 6.4 s,
sampled at 16 kHz.
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The frame length for the spectral analysis depends on the mean pitch period
of the processed signal. The processed speech material originates from speakers
with different mean F0 values, so different parameter settings for analysis—frame
(window) length and window overlapping—were applied. The F0 values (for pitch
contour calculation) were determined by the autocorrelation analysis method with
the pitch-period correction from the cepstrum using the experimentally chosen pitch
ranges of 55 ÷ 250 Hz for the male voices and 105 ÷ 350 Hz for the female ones.
The input feature vector length was set to NFEAT = 16 and five feature sets were
created as shown in Table 1.

For the experiment with GMM recognition of the original speaker, the analysis
and comparison was aimed at investigation of:

• influence of different types of speech parameters used in the five sets of the input
feature vectors—see the numerical results for all four types of transformed emo-
tions in Table 2 and the 3D confusion matrices for the male and the female voices
in Fig. 3,

• influence of the initial parameter during the GMM creation on the resulting iden-
tification score: the number of applied mixtures of the Gaussian probability den-
sity functions NG M I X = {8, 16, 32, 64, 128, 256, and 512}—see the summarized
mean values in Table 3,

• influence of the chosen window length WAVER on computation of representative
statistical values used in the input feature vectors for GMM training and testing;
the evaluation done for K = {1, 3, 5, 10, 15, 20}—see detailed results in Fig. 4,

Table 1 Structure of the used feature sets for the GMM re-identification

Set Feature type Statistical value

P0 {HNR, spectral decrease, centroid, SFM,
SE, F0DIFF, jitter, and shimmer}

{min, rel. max, min, mean, std, median}

P1 {spectral spread, decrease, centroid, SFM,
HNR, F0DIFF, F0ZCR, jitter, and shimmer}

{mean, median, std, rel. max, min, max}

P2 {F1/F2, spectral decrease, centroid, HNR,
SFM, SE, F0DIFF, jitter, and shimmer}

{mean, std, median}

P3 {F1,F2,F1/F2, spectral decrease, HNR,
SFM, SE, F0DIFF, jitter, and shimmer}

{skewness, kurtosis, std, mean, median,
rel. max, max}

P4 {c1 − c4, spectral decrease, centroid, SFM,
SE, F0DIFF, jitter, and shimmer}

{skewness, mean, std, median}

Table 2 Comparison of the mean original speaker GMM recognition accuracy in [%] including
values of the standard deviation (in parentheses), documenting influence of the used type of the
feature vector; results for sentences with all four types of transformed emotions altogether

Voice/feature set P0 P1 P2 P3 P4

Male 93.3 (4.2) 91.7 (7.1) 91.7 (6.5) 76.6 (14) 90.2 (6.5)

Female 93.9 (3.8) 94.6 (5.7) 92.8 (5.7) 68.1 (20) 93.9 (3.8)

Total 93.65 93.15 92.25 72.35 92.05
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Fig. 3 3-D representation of confusion matrices of the GMM original speaker recognition for the
speech with all four transformed emotions altogether: male (left) and female (right) voices, feature
set P3 (the worst one)

Table 3 Mean values of the original speaker recognition accuracy in [%] including the standard
deviation (in parentheses) for sentences with transformed emotions altogether depending on the
used number of mixtures NGMIX

Voice/NGMIX 5a 8 16 32 64 128 256 512

Male 77.8
(6.5)

88.7
(9.4)

90.8
(8.8)

93.6
(4.2)

93.3
(4.2)

91.0
(7.1)

84.9
(16.2)

78.2
(29.8)

Female 79.5
(18.2)

69.5
(31)

83.4
(16.3)

92.6
(7.3)

94.0
(3.8)

94.8
(2.6)

94.3
(5.5)

84
(11.5)

Total 78.7 77.3 87.2 93.1 93.7 92.9 89.6 81.1
aUsed the feature set P0et
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Fig. 4 Influence of the used window length (2K + 1) for the speech feature determination on the
GMM original speaker recognition accuracy; results for all four types of the transformed emotions:
male (left) and female (right)

• analysis of the GMM recognition accuracy for each of the four transformed emo-
tional styles—see the summary results in Table 4,

• comparison of the computational complexity: CPU times for the GMM creation
and training phase as well as mean values of the original speaker classification
accuracy for different number of used mixtures; summarized for all four types of
transformed emotions and both voices presented by Table 5,

• final analysis of the original speaker identification accuracy for utterances from
CZ&SK database in comparison with the results obtained for utterances from
Emo-DB and TIMIT—see summary values of the achieved accuracy in Table 6.
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Table 4 Summarized mean values of the GMM recognition accuracy in [%] including values of
the standard deviation (in parentheses) sorted by the type of the transformed emotional style

Emotion/speaker Joy Surprise Sadness Anger

Male 97.8 (4.9) 100 (0) 89.6 (9.6) 89.4 (11)

Female 97.6 (3.0) 98.7 (2.7) 89.7 (12) 89.3 (7.6)

Total 97.70 99.35 89.65 88.35

Table 5 Comparison of the computational complexity (CPU time in [s]) for different number of
used mixtures; summarized for all transformed emotions and both genders

Phase/NGMIX 5a 8 16 32 64 128 256 512

Creation and trainingb 0.58 11.8 20.5 43.3 87.5 179 363 861

Identificationc 0.25
(15.4)

0.64
(37.6)

0.65
(38.4)

0.71
(43.9)

0.74
(43.1)

0.93
(53.8)

1.17
(67.7)

1.69
(95.4)

Total time 0.825 12.44 21.15 44.01 88.24 179.9 364.2 862.7
aThe used feature set P0et
bSummary values for all transformed emotional speech styles in both genders (5 + 5 models)
cMean values per sentence including the standard deviation values in [ms] (in parentheses)

Table 6 Final comparison of the GMM recognition accuracy in [%] including the values of the
standard deviation (in parentheses) depending on the used speech database

Voice/database CZ&SKa CZ&SK Emo-DB TIMIT

Male 77.8 (6.5) 93.3 (4.2) 85.5 (8.9) 95.5 (3.7)

Female 79.5 (18.2) 94.0 (3.8) 84.0 (11.7) 97.5 (2.5)

Total 78.7 93.6 84.8 96.5
aThe feature set P0et and the simple classification method was used

If not defined otherwise, the setting used for the first three comparisons was:
feature set P0, NGMIX = 64, NITER = 1000, K = 10. In the final analysis, the results
were compared with a simple method of calculation of representative statistical values
in the input vectors (one value for every sentence) and using a simple classification
method from the score determined by (1). In this approach, the feature set P0et
having the same structure as the set P0, and setting of NGMIX = 5, NITER = 500
was applied. The obtained results are presented for visual comparison using the
graphical form (the confusion matrices and/or the bar graphs of the identification
accuracy in [%]) as well as numerical matching of the mean values stored in the tables.
The original speaker identification accuracy was calculated from X A sentences with
correctly identified original speaker and the total number NU of the tested sentences
as (X A/NU )

∗100 [%]. The values in the confusion matrices were calculated in a
similar way.

The computational complexity was tested on the PC with the following config-
uration: processor Intel(R) i3-2120 at 3.30 GHz, 8 GB RAM, and Windows 7 pro-
fessional OS. To determine the spectral features and the prosodic parameters, the
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elementary functions from Matlab ver. 2010b environment with the help of “Sig-
nal Processing Toolbox” and “Statistics Toolbox” were applied. The basic functions
from the Ian T. Nabney “Netlab” pattern analysis toolbox [32] were used for imple-
mentation of the GMM functions.

4 Discussion of Obtained Results

Results of the first analysis have shown that proper selection of the input features for
GMM evaluation is very important. Contrary to our expectations, for the extended sets
P3–P4 comprising the formants and the cepstral coefficients, there was no increase
in the original speaker identification accuracy. In the case of P3 containing the first
two formant positions and their ratios, the results were the worst—the achieved
recognition accuracy of the female speakers was even lower than 50 % (see Fig. 3).
For GMM original speaker identification from the emotionally converted sentences,
the best results were obtained with P0 containing a mix of spectral and basic prosodic
speech features; therefore, it was used in the further experiments.

In general, it holds that higher number of Gaussian mixtures can increase the
recognition accuracy when the short speech signal is evaluated (with duration up to
one second [24]). For this reason, at first, we carried out the analysis of influence
of the used number of GMM mixtures in a larger interval spanning from 8 to 512
mixtures. Numerical matching of obtained results in Table 3 shows that a relatively
higher improvement was observed in the summary mean recognition accuracy of
93/94 % (for male/female voices—in the best case of NGMIX = 64) compared with
89/70 % accuracy for the minimum number of 8 mixtures. The applied number of
mixtures has a great influence on the computational complexity (the measured CPU
time) for creation and training of the GMM models but it has only a little impact on
duration of the identification phase—see values in Table 5. The use of the maximum
number of 512 mixtures causes increase of the CPU time more than 10 times when
compared with 64 mixtures (and approximately 70 times higher CPU time than for 8
mixtures). Moreover, as the maximum value of NGMIX = 512 does not bring the best
results of the recognition accuracy, for next processing the setting NGMIX = 64 was
applied. On the other hand, choice of the number of iterations NITER has not great
weight when its order is about hundreds; the optimum value is about one thousand.

The subsequently performed analysis of the influence of different window lengths
WAVER for the speech feature determination has shown a local maximum of the
achieved identification accuracy lying in the interval of K = 10 ÷ 15 with slight dif-
ferences for the male and the female voices (see bar-graphs in Fig. 4). Therefore, the
value K = 10 (WAVER = 21) was chosen for next experiments. The detailed results
per emotions (see Table 4) are in accordance with the degree of the applied changes
during the emotional style transformation: the best score for the style of the “joyous
surprise” (99 %), the worst score for the style of the “anger” (88 %). When the feature
set P0et and the simple classification method are used, the obtained identification
accuracy is much lower—about 78 % as shown in the first column in Table 6.
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The final comparison with Emo-DB and TIMIT shows heavy dependence of the
achieved identification accuracy on the used speech database for the GMM training
and testing. In the case of analysis using the sentences from the CZ&SK we obtained
slightly better results than for the utterances originated from the Emo-DB. It might be
caused by the selection of only sentences in a neutral speech style from the Emo-DB
for next processing, so from the statistical point of view the used speech corpus was
not finally balanced. It seems to be a cause of higher dispersion of the results for each
of the female speakers in Emo-DB as it can be seen in Table 4. The TIMIT database
gives higher re-identification accuracy for male voices (up to 96 % in comparison
with 93 % for CZ&SK) as well as for female voices (97 % vs. 94 % for CZ&SK).
These results could depend on total neutrality of the TIMIT database while CZ&SK
and Emo-DB were primarily constructed for the experiments with emotional speech.

5 Conclusion

The obtained results of the basic original speaker identification experiment corre-
sponded with the proposed working hypothesis about lowering of the achieved GMM
identification score for greater range of the performed spectral and prosodic modifi-
cations of the emotionally transformed speech. Our approach of applying the GMM
for the original speaker identification from the speech after conversion from neutral
to four emotional states uses atypically relatively a low number of the specific speech
features (unlike the mostly used MFCC coefficients)—energy parameters, low-pass
intensity, or high-pass intensity—as well as the number of mixtures for the GMM
model creation, training, and classification. In difference of our previous works [12,
17, 33], for the final speaker re-identification the approach based on cumulative
score was applied. The last specificity of this research and comparison lies in the fact
that the basic speech database used for experiments was composed of the sentences
uttered by the original Czech and Slovak speakers. The parameters used for emo-
tional speech style conversion were also determined using the research results aimed
at statistical analysis of Czech and Slovak emotional speech. Therefore, it is hard
to compare the obtained results directly with the current state of the art published
by other authors for different languages. Yet, the basic comparison of the original
speaker identification using the German (Emo-DB) and English (TIMIT) speech has
shown that the identification accuracy depends also on the structure and the balance
of the used speech database but the influence of the language of the utterance is not
very important.

The next aim of finding the best (optimal) structure of the input feature set for
GMM original speaker recognition was fulfilled, too. Some types of speech fea-
tures are not sufficient for this identification task, especially those based on formant
frequencies—see the worst results for the set P3. On the other hand, the choice of
the type of the used statistical representative value is not substantial. The discov-
ered local maximum of the used number of the GMM mixtures corresponds with
reasonable requirement on computational complexity as documented by the results
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in Tables 3 and 5. In the speech features determination phase, the influence of the
window length on the computational complexity was only minimal, but the correct
setting had significant influence on the original speaker identification accuracy.

The currently developed method uses the diagonal covariance matrix of GMM
models [12]. Therefore, in near future we will compare this approach with the other
ones which use the full covariance matrix or the probabilistic PCA (Principal Com-
ponent Analysis) [34] although at the expense of higher computational complexity.
Further, we plan also to compare identification using the GMM approach and the
other favoured methods such as SVM [35].
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An Analysis of Shallow and Deep
Representations of Speech Based
on Unsupervised Classification
of Isolated Words

Giampiero Salvi

Abstract We analyse the properties of shallow and deep representations of speech.
Mel frequency cepstral coefficients (MFCC) are compared to representations learned
by a four layer Deep Belief Network (DBN) in terms of discriminative power and
invariance to irrelevant factors such as speaker identity or gender. To avoid the influ-
ence of supervised statistical modelling, an unsupervised isolated word classifica-
tion task is used for the comparison. The deep representations are also obtained with
unsupervised training (no back-propagation pass is performed). The results show that
DBN features provide a more concise clustering and higher match between clusters
and word categories in terms of adjusted Rand score. Some of the confusions present
with the MFCC features are, however, retained even with the DBN features.

Keywords Deep learning · Representations · Hierarchical clustering

1 Introduction

Since the introduction of a fast learning procedure for Deep Belief Networks
(DBNs) [6], deep learning has provided state-of-the-art performance in many areas
of Machine Learning [3, 9], for an extensive review of the applications of these
methods see [5]. The paradigm is based on pre-training a DBN, that is, a stack of
Restricted Boltzmann Machines (RBMs), on large amounts of unlabelled data and
using its parameters to initialise a discriminative DeepNeural Network (DNN) that is
trained on small and labelled data sets. This paradigm has become the standard way
of building Automatic Speech Recognition (ASR) systems as well [7]. However,
the feature representations extracted by these deep models have only partly been
studied. In many of those studies, the representations are analysed in relation to the
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labels used for the supervised part of the training. In [4], e.g., the authors investigate
if adding the output of all the DNN layers can improve speech recognition. Their
conclusion is that the second layer from the top still improves results whereas layers
that are closer to the input do not carry useful information.

More extensive analyses have been performed with Convolutional Neural Net-
works, where it is often possible to interpret the meaning of the weights, at least for
the first layers that are closer to the signal representation. This was done in the area
of Computer Vision (e.g. [11, 14]), but, recently also for Automatic Speech Recog-
nition, [13]. We are not aware of careful analyses of the representations learned by
DBNs/DNNs.

In this paper we investigate how deep features relate to shallow features when no
supervision is used. For this reason we trained a DBN on MFCC frames from the
TIDIGITS database and we compare the word level clustering that can be obtained
with these features as opposed to the same clustering based on the MFCC features
alone. The data used for clustering is the subset of isolated digits from the database,
and the pairwise distance between speech examples is computed with the help of
Dynamic Time Warping (DTW).

2 Method

The objective of the method is to establish how discriminative and robust are shallow
and deep features when used to compare utterances of isolated words. We used
Dynamic Time Warping (DTW) to compare different utterances, with L1 norm of
the local distances between feature vectors. The features consisted of simple MFCC
vectors in the shallow case and the output of the 4th layer of an DBN in the deep
case.

Hierarchical clustering was performed with complete linkage, based on the pair-
wise distance between utterances. The validity of the clustering was estimated with
respect to the true digits. We used for this purpose the adjusted Rand index [8], that
measures the similarity between two partitions disregarding the actual labels used
(which are arbitrary). If S is a set of n elements (the spoken utterances in our case),
and X and Y are two partitions of S of sizes r and s respectively with, possibly r �= s,
then the Rand index [12] is defined as:

R = a + b
(

n
2

) ,

where, a is the number of pairs of elements in S that are in the same set in X and in
the same set in Y , and b is the number of pairs of elements in S that are in different
sets in X and in different sets in Y . The adjusted Rand index corrects the Rand index
for chance.
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This measure was used both to determine an optimal level at which the clustering
tree should be cut, but also to compare between the partitions obtained with different
methods.

3 Data

We used the TIDIGITS database for this study [10]. The database contains sequences
of digits spoken by American English speakers. Eleven words are contained in the
database because the digit “0” can be pronounced bothwith thewords “oh” or “zero”.
The database is divided into training and test set. The training set, that was used for
this study, contains 112 speakers (57women and 55men), each uttering 77 sequences
of digits. Of these, 22 are isolated digits (two repetitions of each digit word). In all
cases, the clustering is performed on the isolated digits, whereas the sequences are
used for training the DBN. In total, 6159 utterances (1,267,952 frames) were used
for training, and 2464 utterances (239,440 frames) for clustering.

4 Experiments

The MFCC features were computed over windows of 20ms with 10ms steps and
512 point FFT length. Thirteen MFCC coefficients were used including C0–C12. No
delta coefficients were used for this study, neither for the clustering nor as input to the
DBNmodel. TheDBN includes four hidden layers of 1024Bernoulli nodes each. The
input layer consists of 13 Gaussian nodes. The DBN was trained using the “pdnn”
package [1], based on the Theano toolkit [2], with the following parameters: epochs
per layer: 10, batch size: 128, learning rate (Bernoulli-Bernoulli): 0.08, learning
rate (Gaussian-Bernoulli): 0.005, initial momentum 0.5 (used for 5 epochs), final
momentum: 0.9. The pre-training took about 2.5 h on a GeForce GTX TITAN GPU.

The original MFCC vectors and the activity at the 4th layer at the DBN were then
used to compute a 2464 × 2464 distance matrix between each pair of utterances in
the test set (isolated digit files). The computation took in each case about 24 h on
24×Intel(R) Xeon(R) CPU X5660 @ 2.80GHz cores.

5 Results

Figure1 shows the full dendrogram for the clustering obtained withMFCC and DBN
features. Given that the tree has 2464 leaves, it is not possible to display the labels
associatedwith them. The figure is included to give a global idea of how the clustering
looks like.

Figure2 displays the Rand score as a function of the number of clusters (and in
turn as a function of the distance level at which the dendrogram of Fig. 1 is cut).
The graph has been restricted to up to 200 clusters for clarity of exposition. Between
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Fig. 1 Dendrogram for the clustering obtained withMFCC features (top) and DBN layer 4 features
(bottom)

Fig. 2 Adjusted rand score comparing the clustering obtained at different levels of the hierarchy
to the actual digits. MFCC features, and DBN layer 4 features

Table 1 Details on the adjusted rand score around the optimum

Adjusted rand index Number of clusters

10 11 12 13 14 15 16 17 18 19

MFCC 0.58 0.61 0.64 0.63 0.63 0.62 0.66 0.68 0.65 0.62

DBN4 0.56 0.58 0.63 0.71 0.74 0.70 0.71 0.71 0.71 0.68

See also Fig. 2
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Table 2 Description of the clusters obtained with the MFCC features (top) and DBN features
(bottom)

MFCC features

Cluster
id

Max
digit

Digits Gender

o z 1 2 3 4 5 6 7 8 9 woman man

2 o 116 0 0 0 0 110 0 0 0 0 0 224 2

10 o 98 0 0 0 0 0 0 0 0 0 0 0 98

1 z 0 104 0 0 0 0 0 0 0 0 0 104 0

12 z 0 110 0 0 0 0 0 0 0 0 0 2 108

3 1 0 0 89 0 0 0 0 0 0 0 77 166 0

13 1 0 0 112 0 0 0 2 0 2 0 100 22 194

15 2 6 4 4 216 6 4 2 0 14 2 4 116 146

5 3 0 0 0 0 108 0 0 0 0 0 0 108 0

14 3 0 0 0 0 110 0 0 0 0 0 0 4 106

11 4 2 0 0 0 0 110 0 0 0 0 0 4 108

6 5 0 0 0 0 0 0 192 0 0 0 2 98 96

7 5 2 4 7 0 0 0 28 0 0 0 10 19 32

8 6 0 0 0 0 0 0 0 224 0 0 0 114 110

16 7 0 0 0 0 0 0 0 0 186 0 0 88 98

17 7 0 2 2 6 0 0 0 0 22 0 2 34 0

9 8 0 0 0 2 0 0 0 0 0 222 0 112 112

4 9 0 0 10 0 0 0 0 0 0 0 29 39 0

DBN layer 4 features

Cluster
id

Max
digit

Digits Gender

o z 1 2 3 4 5 6 7 8 9 woman man

6 o 98 7 0 2 0 0 0 0 44 0 0 149 2

14 o 120 0 45 0 2 2 0 0 0 0 4 65 108

11 z 0 110 0 0 0 0 0 0 0 0 0 106 4

13 z 0 106 0 0 0 0 0 0 0 0 0 0 106

10 2 0 0 0 220 0 0 0 2 2 11 0 116 119

3 3 0 0 32 0 90 0 0 0 0 0 0 120 2

8 3 0 0 0 0 128 0 0 0 0 0 0 20 108

7 4 2 0 0 0 0 222 0 0 0 0 0 112 112

5 5 4 1 0 0 4 0 218 0 0 0 1 122 106

1 6 0 0 0 0 0 0 0 222 0 0 0 112 110

9 7 0 0 0 0 0 0 0 0 178 0 0 68 110

2 8 0 0 0 2 0 0 0 0 0 213 0 114 101

4 9 0 0 31 0 0 0 0 0 0 0 101 132 0

12 9 0 0 116 0 0 0 6 0 0 0 118 18 222

Clusters are ordered by the majority count of digits in each cluster (max digit). The number of
clusters is 17 for MFCC features and 14 for DBN features. The number of examples of each digit
for each cluster is reported as well as the number of examples spoken by female or male speakers
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200 and 2464 clusters the Rand score continues to decrease monotonically both
for MFCC and DBN features. From the figure it can be observed that the optimal
number of clusters in this case is 17 for MFCC features and 14 for DBN features.
The maximum score obtained is higher for DBN features (0.74) than for the MFCC
features (0.68). Table1 shows the Rand score in more details around the optimum.
From the table we can see that if we force the number of clusters to be equal to the
number of words (11), then the Rand score for the MFCC features is slightly higher
than that for DBN features (0.61 vs. 0.58).

We can also see that the Rand score for the DBN4 features is higher than that for
the MFCC features even for 17 clusters, where MFCCs perform at best.

Table2 shows the relation between clusters and actual digits. The first column
shows the arbitrary cluster index. The second column shows the digit that corresponds
to the majority of examples in that cluster. Two different clustering results are shown:
results basedonMFCCfeatures (top table) comprise 17 clusterswhereas results based
on DBN features have only 14 clusters. Both for MFCC and DBN features, it can be
observed that in a few cases, more than one cluster corresponds to a specific digit.
In some cases, such as digit ‘oh’, ‘zero’ and ‘three’ with MFCC features, it is clear
that the two associated clusters correspond to the digit as spoken by female or male
speakers respectively. In other cases, such as digit ‘five’, this distinction cannot be
observed. Sometimes, the same cluster includes a nearly equal number of examples
from two digits. This is the case, e.g., for digits “oh” and “four” with MFCC features
(but not with DBN features), and digits “one” and “nine” for both MFCC and DBN
features.

In a few cases the clusters obtained with DBN features are clearly superior. This
is the case for the digits ‘four’, ‘five’ and ‘seven’, that obtain a single clusters with
DBN features. In other cases the advantage of using DBN features is less evident.
For example, there are two clusters for ‘nine’ that include many examples of ‘one’.

6 Conclusions

Westudied the properties ofMFCC (shallow) andDBN (deep) features for an isolated
word clustering task.Weobserved thatDBN features result in fewer andmore concise
clusters and a higher match with the true identity of the words (14 clusters and 0.74
Rand score for theDBNfeatures; 17 clusters and0.68Rand score forMFCCfeatures).
However, some of the confusions that we could observe withMFCC features are still
present with DBN features, and the latter are still dependent on speaker identity, for
example gender. Furthermore, if we force the number of clusters to be equal to the
number of words, the difference in clustering performance betweenMFCC andDBN
features is reduced.

Future work will compare the clustering performance using each of the DBN
layers. Furthermore, it would be interesting to study the effect of supervised training,
for example by adding a softmax layer to the DBN with phonetic classes (or, more
precisely HMM states) and retraining the model with back-propagation.
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ELM Based Algorithms for Acoustic
Template Matching in Home Automation
Scenarios: Advancements and Performance
Analysis

Giulio della Porta, Emanuele Principi, Giacomo Ferroni,
Stefano Squartini, Amir Hussain and Francesco Piazza

Abstract Speech and sound recognition in home automation scenarios has been
gaining an increasing interest in the last decade. One interesting approach addressed
in the literature is based on the template matching paradigm, which is characterized
by ease of implementation and independence on large datasets for system training.
Moving from a recent contribution of some of the authors, where an Extreme Learn-
ingMachine algorithm was proposed and evaluated, a wider performance analysis in
diverse operating conditions is provided here, together with some relevant improve-
ments. These are allowed by the employment of supervector features as input, for
the first time used with ELMs, up to the authors’ knowledge. As already verified in
other application contexts and with different learning systems, this ensures a more
robust characterization of the speech segment to be classified, also in presence of
mismatch between training and testing data. The accomplished computer simulations
confirm the effectiveness of the approach, with F1-Measure performance up to 99%
in the multicondition case, and a computational time reduction factor close to 4, with
respect to the SVM counterpart.

1 Introduction

Nowadays, security, automation and easy-to-use human-machine interfaces (HMI)
are the main keywords of the new home automation oriented technologies. In this
context, efficient and reliable speech/sound recognition plays a crucial role, both for
providing a user-friendly interface and for the detection of dangerous situations, such
as persons’ falls. One of the fundamental part of these technologies is provided by the
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automatic recognition of sentences uttered by the user as well as the identification
of dangerous situations by solely exploiting the sound captured by one or more
microphones [13].

In the last decades, many research efforts have been leading to a wide variety
of speech recognition solutions able to recognise the human speech also in adverse
conditions with a high reliability grade. The core of many of these systems is rep-
resented by Hidden Markov Models (HMM), while recently deep neural networks
gained a significant attention [7, 17]. In addition to them, template matching tech-
niques [16] have also been devoted a certain attention in the recent years [2, 11,
18]. In this paper, we focus on this approach due to its ease of implementation and
independence on large dataset for system training. A simple template matching algo-
rithm operates by measuring the distance between the input utterance and a set of
templates with Dynamic Time Warping (DTW) [16]. A threshold is then used to
discriminate between in-domain and out-of-domain sentences and to determine the
input class affiliation. The original DTW technique presents some shortcomings such
as the high computational cost and the low performance in speaker independent task.
In recent works [2, 11, 18], however, efficient versions of the algorithm have been
developed to overcome those negative aspects.

The template matching algorithm can be improved by opportunely employing
discriminative techniques such as Support Vector Machine (SVM) [4, 5] or Extreme
Learning Machine (ELM). However, these techniques cannot be directly employed
since input utterances generally have different lengths, thus different number of
feature vectors. The solutions to this issue are either based on hybrid SVM/HMM
architectures [6] or on dynamic kernels [5]. Due to its capability to increase the
training speed with respect to traditional neural networks learning methods, ELMs
have recently gained much interest in the scientific community [9]. Moreover, a
recent study [3] has shown that ELMs achieve performance similar to SVMs, but
requiring reduced training and testing times.

This paper extends a previous work [14] by some of the authors in which acoustic
template-matching approaches for automatic emergency detection were presented.
In particular, in [14] DTW distances and the outerproduct of trajectory matrix have
been employed as input to ELM and ELM-kernel classifiers. Here, the approach
is improved by introducing Gaussian mean supervectors (GMS) [12] obtained by
training a Gaussian Mixture Model (GMM) for representing the acoustic space and
by collecting its mean values vector after adaptation with the Maximum a Posteriori
algorithm. Moreover, the approach has been evaluated in different vocal efforts sce-
narios. The experiments have been conducted using the ITAAL [15] and APASCI [1]
datasets. The former is an Italian speech corpus of home automation commands and
distress calls recorded with distant and close-talking microphones containing speech
signals uttered with normal and loud vocal efforts. The APASCI dataset is a larger
Italian corpus used for creating the GMM Universal Background Model (UBM).
Compared to [14], where the algorithms were tested in a matched acoustic scenario,
here we extend the evaluation by introducing a mismatched and a multicondition
scenario, thus performing a deeper performance analysis.
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The paper outline is the following: the proposed approach description is provided
in Sect. 2, whilst Sect. 3 illustrates the experiment setup, the dataset and the assessed
results. Finally, Sect. 4 concludes the paper.

2 The Proposed Approach

The proposed approach is presented in this section following a rigorous formulation
of the problem we aim to address. Let Uk = {uk,1, . . . , uk,Lk } be an utterance com-
posed of Lk low-level feature vectors uk,l of dimension D × 1 and l being the time
frame index. A training T corpus can then be defined as:

T = {(U1, C1), . . . , (UK , CK )}, (1)

where Ck is the class of utterance Uk . Given a test utterance Y = {y1, y2, . . . , yL y },
the problem is finding the corresponding label Cy ∈ {C1, C2, . . . , CK } based on a
certain classification criterion.

In this paper, two different classifiers have being employed: ELM and ELM with
kernel. Generally, each input utterance is composed of a different number of feature
vectors Lk , thus preventing the use of the aforementioned classifiers without using
a length normalisation algorithm. In particular, each utterance is here mapped to
a fixed-length feature vector by employing the Gaussian Mean supervector of the
utterance. As low-level feature set, the MFCC is employed, largely used in speech
recognition tasks (Fig. 1).

Fig. 1 Block scheme of the
proposed approach
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2.1 Gaussian Mean Supervectors

Gaussian Mean Supervectors are an effective and compact way for representing
an input utterance. In order to calculate the GMS of input utterance, a Universal
BackgroundModel (UBM) representing a statistical description of the acoustic space
is needed. The Gaussian Mixture Model (GMM) representing the UBM is given by
the following expression:

p(x|λ) =
J

∑

j=1

w j p(x|μ j ,� j ), (2)

where λ = {w j ,μ j ,� j | j = 1, 2, . . . , J }, w j are the mixture weights, and
p(·|μ j ,� j ) is a multivariate Gaussian distribution with mean vector μ j of size
D × 1 and diagonal covariance matrix � j of size D × D.

TheGMSM of an utteranceX = {x1, x2 . . . , xL} composed of L low-level feature
vectors (e.g., MFCCs) is obtained by adapting the means of the UBM model with
maximum a posteriori (MAP) adaptation and then concatenating the mean vectors:

M = [μT
1 ,μT

2 , · · · ,μT
J ]T ,

where T denotes the transpose operator. Regardless the length of the input utterance,
M is a D J × 1 vector.

2.2 Extreme Learning Machine

ELM is a fast learning algorithm designed for single hidden layer feedforward neural
networks (SLFNs). In ELM, the input weights of SLFNs do not need to be tuned.
They can be randomly generated, whereas the output weights are analytically deter-
mined using the least-square method. This process allows a significant training time
reduction.

Consider a set of N labelled training samples {(x1, t1), ..., (xN , tN )} where xi ∈
{−1, 1}, and SLFN with I input neurons and L hidden neurons (Fig. 2). The ELM
decision function, for binary classification, is the following:

fL(x) = sign

(

L
∑

i=1

βi hi (x)

)

= sign (h(x)β) .

In the equation, the vector β = [β1, ..., βL ]T contains the weight hidden neurons and
output neurons, while h(x) = [h1(x), ..., hL(x)] is the output of the hidden layer
with respect to the input x . Usually, h(x) = [G(a1, b1, x), . . . , G(aL , bL , x)] and
G(a, b, x) is a nonlinear piecewise continuous function that satisfies ELM universal



ELM Based Algorithms for Acoustic Template Matching … 163

Fig. 2 ELM with I input
neurons and L hidden
neurons

approximation capability theorems, and {ai , bi }L
i=1 are randomly generated. In order

to provided the best performance in the experiments, G(a1, b1, x) assumes the form
of the sigmoid.

Defining the hidden-layer output matrix H as

H =
⎛

⎜

⎝

h1(x1) · · · hL(x1)
...

...
...

h1(xN ) · · · hL(xN )

⎞

⎟

⎠ ,

training thELMconsist inminimizing ||Hβ − T|| and ||β whereT = [t1, t2, ..., tN ]T .
The solution to the problem can be calculated as the minimum norm least-square
solution of the linear system:

β̂ = H−1T,

where H−1 is the Moore-Penrose generalized inverse of matrix H. ELM allows
achieving good generalization performance, by computing output weights analyti-
cally, with speedy training phase.

2.2.1 Extreme Learning Machine with Kernels

In kernel-based ELM [8], h(x) is unknown, and the output function of the classifier
is written as:

f(x) =
⎡

⎢

⎣

K (x, x1)
...

K (x, xN )

⎤

⎥

⎦

T
(

I
C

+ �

)−1

T, (3)

where � is defined so that each element �i, j = h(xi ) · h(x j ) = K (xi , x j ). K (·, ·)
is a kernel function as in SVM, and in this work assumes the form a radial basis
function. It is interesting to note that differently from standard ELM, the number of
hidden neurons must not be known in advance.
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3 Experiments

The proposed approach has been evaluated on the ITAAL corpus [15]. The dataset
is composed of utterances spoken by 20 native Italian speakers coming from the
central Italy (Marche region). Recordings have been performed on a room with a
reverberation time equal to 0.72 s using a headset microphone and an array composed
of four microphones. Every sentence was spoken both with normal and loud vocal
efforts. In the experiments, only the headset microphone has been used. The UBM
has been trained on APASCI [1], an Italian speech database composed of 5,290
phonetically rich sentences and 10,800 isolated digits, for a total of 641min of speech.
The speechmaterialwas readby100 Italian speakers and recorded in quiet conditions.

The experiment consists in evaluating the algorithms performance in three differ-
ent tasks, matched, mismatched and multicondition, that differ in the composition of
the training and test sets. In thematched task, both test and training sets are composed
of signals uttered with the same vocal effort. On the contrary, in the mismatched task
the training set and the test sets contain signals uttered with different vocal effort. In
the remaining task, multicondition, testing and training signals comprise both vocal
efforts. Regardless the task, the evaluation has been performed using a leave-one-
speaker-out method, i.e., each speaker at turn is employed for testing and not for
training.

The GMS-based approach has been compared to alternative techniques which
employ a different length normalisation method and a different classifier. In particu-
lar, as in [14], DTW distances have been employed instead of supervectors and SVM
is used as alternative classifier. The DTW length normalisation provides a fixed-
length vector from the input utterance by calculating the distance between itself
and the other utterances of the input set T . Recalling the notation in Sect. 2, an input
utteranceX is mapped to an I × 1 vector v = [d(X, U1), d(X, U2), . . . , d(X, UI )]T ,
where U1 . . . UI ∈ T and d(·, ·) represents the DTW distance. Referring to Fig. 1,
DTW-based length normalisation replaces the supervector mapping block. Clearly,
this method does not require the UBM.

Regarding the parameters of feature extraction pipelines, the sample rate of the
signals is 16kHz and a pre-emphasis coefficient μ = 0.97, a frame length of 25ms
and a hop size of 10ms, and 40 filters in the mel-like filterbank are used.

The algorithms performance have been evaluated by varying the classifier-related
parameters. In particular, the size of the ELM has been varied from 30 to 1000 neu-
rons by gradually incrementing it of 20 neurons at each iteration. The optimal values
of the ELM kernel and SVM parameters C and γ have been selected using a grid
search. More specifically, both of them have been varied from 2−15 to 215 increment-
ing the exponent by 2 at each iteration. Regarding the supervector extraction, the
number of Gaussians of the UBM has been varied from 4 to 64 by doubling it at each
iteration. Table1 reports the parameter values for all classifiers in the diverse oper-
ating conditions addressed in our experiments. The LIBSVM library has been used
to implement the SVM classifier, whilst an ANSI C implementation of the ELM and
ELM kernel is used for ELM experiments. The performance has been assessed using
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Table 1 Best parameter values for all classifier in performed simulations

Matched Mismatched Multicondition

Normal Loud Normal Loud

Distance-based

ELM (neurons) 70 120 150 90 80

ELM kernel (C , γ ) 2−3, 2−7 27, 2 22, 2−1 2−1, 2−1 22, 2−1

SVM (C , γ ) 27, 2−3 25, 2−3 212, 2−9 25, 2−1 26, 2−1

Supervector-based

ELM (neurons, No.
gaussians)

280, 23 400, 23 480, 23 320, 23 620, 23

ELM kernel (C , γ , No.
gaussians)

2−1, 25, 25 26, 25, 25 2, 2−8, 25 2, 23, s5 2, 23, s5

SVM (C , γ , No. gaus-
sians)

2, 2−6, 25 2, 2−6, 25 2, 2−8, 25 2, 2−6, 24 2, 2−7, 25

the average of F1-Measure over the number of classes (i.e., the type of sentences) in
the dataset.

3.1 Results and Discussion

In this subsection the results obtained in performed computer simulations are
reported.

Table2 shows the obtained results for the matched case. Part of these results have
been already presented in [14], and they are now completed with those related to
supervectors-based feature extraction, for all involved classifiers. It can be easily
observed that ELM kernel and SVM present very close performance, both in “dis-
tance” and “supervectors” case studies, always outperforming ELM except for the
“distance-Loud” operating condition.

Table3 shows the results obtained on the mismatched task. With the exception of
ELM kernel trained on normal signals and tested on loud signals, all the algorithms
present a performance decrease respect to the matched condition. Interestingly, the

Table 2 F1-Measure (%) obtained on the matched task

Distance Supervectors

Normal Loud Normal Loud

ELM 88.45 90.45 81.38 85.06

ELM kernel 90.97 86.32 98.40 98.56

SVM 91.78 87.16 98.69 99.02
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Table 3 F1-Measure (%) on the mismatched task

Distance Supervectors

Normal Loud Normal Loud

ELM 83.24 (−5.21) 89.06 (−1.39) 72.49 (−8.89) 73.68 (−11.38)

ELM kernel 89.31 (−1.66) 91.07 (+4.75) 92.56 (−5.84) 91.89 (−6.67)

SVM 81.11 (−10.67) 85.46 (−1.70) 95.16 (−3.53) 95.54 (−3.48)

The “Normal” (respectively, “Loud”) column results have obtained training the algorithms on
“Loud” (respectively, “Normal”) signals. The difference between the matched results of Table2 is
shown in brackets

three classifiers exhibit a different behaviour, with SVM suffering the most from
the signal mismatch with an average F1-Measure decrease amounting to 6.20%. The
ELMdecrease is about the half, 3.30%,while ELMkernel improves the performance
by 1.55% thanks to the increase in the loud signals test.

Table4 shows the results for themulticondition task. In this caseELMkernel offers
remarkable results: indeed it allows to achieve, in the “supervector” case study, an
accuracy higher than 7% with respect to the “distance” case and even slightly better
than the ones obtained in the matched condition (see Table2). Moreover, whereas
ELMkernel and SVMshow comparable performance (F1-Measure up to 99%), ELM
does not seem to compete with them.

As pointed out in the literature, one of the advantages of using ELM with respect
to SVM relies on the execution times, so it is worth analysing the performance of
the algorithms from this perspective. The results shown in Table5 represent the time
required to perform both training and testing, in the matched condition with the best
parameter values for all involved classifiers (see Table1). It is evident from the val-
ues in Table5 that ELM and ELM Kernel are the most performing algorithms. In
particular, with the usage of supervectors, ELM Kernel allows to reduce the compu-
tational time by a factor of 4. Similar conclusions can be drawn in the mismatched
and multicondition conditions.

Table 4 F1-Measure (%) on the multicondition task

Distance Supervectors

ELM 89.20 87.68

ELM kernel 91.78 99.06

SVM 91.82 99.05

Table 5 Execution times (s)

Distance Supervectors

ELM 0.018 0.248

ELM kernel 0.022 0.120

SVM 0.032 0.452
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4 Conclusion

In this paper, the authors extend the approach recently proposed in [14] for acoustic
template matching in home automation scenarios, by involving the supervector para-
digm for feature length normalization inELM training.Up to the authors’ knowledge,
this is the first attempt in the literature along this direction, and can thus represent a
valuable reference also for diverse application fields.

ELM and ELMkernel algorithms have been compared with the standard SVM, by
using MFCCs, the popular choice in many automatic speech recognition systems, as
low level features, and DTW distance and supervectors as feature length normaliza-
tion techniques. The experiments to assess the performance of the algorithms have
been conducted against the ITAAL corpus. The APASCI database has been used for
creating the UBM, needed for the calculation of supervectors.

Differently from [14] and exploiting the two distinct vocal efforts (normal vs.
loud) included in the ITAAL database, three different operating conditions have been
addressed in this work: the matched, the mismatched and the multicondition. The
results demonstrate the good performance, both in terms of accuracy (F1-Measure
up to 99% in the multicondition case) and execution times (computational time
reduction factor close to 4, with respect to SVM), of the ELM kernel algorithm by
using the supervectors approach for feature length normalization.

In future works, further experiments will be carried out by involving alternative
feature sets (i.e. Power Normalized Cepstral Coefficients) and also employing dif-
ferent learning systems, like Deep Neural Networks [7] and Echo State Networks
[10].
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Linear Versus Nonlinear Multi-scale
Decomposition for Co-channel Speaker
Identification System

Wajdi Ghezaiel, Amel Ben Slimane and Ezzedine Ben Braiek

Abstract Co-channel speech is a combination of speech utterances over a single
communication channel. Traditional approach to co-channel speech processing is to
attempt to extract the speech of the speaker of interest (target speech) from other
(interfering) speech. Usable speech criteria are proposed to extract minimally cor-
rupted speech for speaker identification in co-channel speech. In this paper, we
present usable speech extraction method based on pitch information obtained from
linear multi-scale decomposition by dyadic wavelet transform and nonlinear multi-
scale decomposition by empirical mode decomposition. Detected usable speech are
organized into speaker stream, and applied to speaker identification system. The pro-
posed methods are evaluated and compared across various Target to Interferer Ratio
(TIR) for speaker identification system.

1 Introduction

Degrading the quality and intelligibility of the speech signals, background noise is
a severe problem in communication and related speech systems. The desired signal
is mostly contaminated with some interference sources. There are different types of
noise signals which affect the quality of the original speech. Noise signals can be
classified as stationary or non stationary. Stationary noise can be dealt with by using
denoising and noise reduction techniques; whereas non stationary noise is caused by
another speech from a different speaker. Such interference is frequent and the cor-
rupted speech is known as co-channel speech [1]. In traditional speaker identification
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SID, only one target speaker exists in the given signal whereas in co-channel SID, the
task is to identify the target speakers in one given mixture. Research on co-channel
speaker identification has been done for more than one decade [1], yet the problem
remains largely unsolved. Research has been carried to extract one of the speakers
from co-channel speech by either enhancing target speech or suppressing interfering
speech [1]. In automatic speaker recognition, as pointed out in [2], the intelligibility
and quality of extracted speech are not important. What the system needs are portions
of the speech that contain speaker characteristics unique to an individual speaker,
classifiable and long enough for the system to make identification or verification
decisions. These portions of speech, or segments, are defined as consecutive frames
of speech that are minimally corrupted by interfering speech and are, thus, called
usable speech [2]. Yantormo performed a study on co-channel speech and concluded
that the target to interferer ratio TIR was a good measure to quantify the usability for
speaker identification [3]. The TIR is a power ratio of the target speech to the inter-
fering speech. This ratio can be expressed for entire utterances or individual frames
of speech. For usability, frames above 20 dB TIR are considered usable. However the
TIR is not an observable value from the co-channel speech data. Hence, a number of
methods for usable speech detection which refer to the TIR have been developed and
studied under co-channel condition [4–6]. In these methods, usable speech frames
are composed of voiced speech. In [7], the Peak difference autocorrelation of wavelet
transform method (PDAWT) is applied in order to detect pitch information in usable
speech. This method applies autocorrelation on approximation component obtained
by filtering co-channel speech at one dyadic wavelet transform (DWT) scale. In our
previous work [8, 9], we have developed linear multi-scale decomposition by dyadic
wavelet transform (MRDWT) method to detect usable speech. MRDWT method
applies dyadic wavelet transform (DWT) iteratively to detect pitch periodicity. We
are motivated by detecting pitch information in all lower frequency sub-bands of
co-channel speech. DWT is performed for stationary signal analysis. However co-
channel speech signal is non stationary signal, a nonlinear multi-scale approach
which incorporates the Empirical Mode Decomposition (EMD) may be effective
[10]. EMD is a signal processing technique particularly suitable for non-linear and
non-stationary signal, has recently been proposed [11] as a new tool for data analysis.
The EMD method is able to decompose a complex signal into a series of intrinsic
mode functions (IMF) and a residue in accordance with different frequency bands
[11]. We have proposed in [12–14] a new method for usable detection by empirical
mode decomposition MREMD. In this paper, we propose to compare performance
of the two proposed usable speech method for speaker identification system. Evalu-
ation of this method is performed on TIMIT database referring to the TIR measure.
Co-channel speech is constructed by mixing all possible gender speakers. Discussion
of proposed methods are provided basing on evaluation results. The next section we
describe how to extract usable speech using linear and nonlinear multi-scale decom-
position. In Sect. 3, we present the speaker identification system. Experiment results
and comparisons are given in Sect. 4. Section 5 concludes the paper.
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2 Multi-scale Decomposition for Usable Speech Detection

Usable frames are characterized by periodicity features. These features should be
located in low-frequency band that includes the pitch frequency. Multi-scale decom-
position is applied iteratively in order to determine the suitable band for periodicity
detection. In this low-frequency band, periodicity features are not much disturbed
by interferer speech in case of usable segments. In case of unusable frames, it is
not possible to detect periodicity in all lower sub-bands. At each iteration, auto-
correlation is applied to the low-frequency band in order to detect periodicity [15].
Three dominated local maxima are determined from the autocorrelation signal with a
peak-picking algorithm which uses a threshold calculated from local maxima ampli-
tudes. A difference of autocorrelation lag between the first and second maximum and
between the second and third maximum is determined. If this difference is less than
the threshold, periodicity is detected and co-channel speech segment is classified as
usable. This threshold is empirically fixed according to the best evaluation results.
The optimum threshold value of 8 samples is chosen at 16 kHz sampling frequency.
If at this scale, periodicity is not detected, a multi-scale decomposition is applied to
this low-frequency band signal in order to detect hidden periodicity feature in finer
band frequency. For unusable frames, it is not possible to detect periodicity in all
lower sub-bands.

2.1 Linear Multi-scale Decomposition by Dyadic Wavelet

Linear Multi-scale decomposition based on dyadic wavelet transform (MRDWT) is
used to decompose voiced co-channel speech into a linear combination of two com-
ponents [8, 9]. The first component ranging from the high-frequency band and called
detail. The second component ranging to low-frequency band and called approxima-
tion. Autocorrelation is applied on approximation to detect pitch information [15].
A maximum of 4 iterations are allowed. This limit is fixed based on pitch band. The
lowest band should correspond to pitch band. Figure 1 shows usable frame for male-
male co-channel speech. Figure 1 shows that periodicity is not detected respectively
at scale 1 and scale 2. It is noted that the fundamental periodicity of the voiced speech
becomes clearer in the correlation domain. In this case, periodicity is detected only
at scale 3. Hence this frame is classified as usable.

2.2 Nonlinear Multi-scale Decomposition by Empirical
Mode Decomposition

Nonlinear Multi-scale decomposition based on EMD (MREMD) is used to decom-
pose voiced co-channel speech into a linear combination of two components. The first



172 W. Ghezaiel et al.

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5
Co−channel speech

0 50 100 150 200 250 300 350 400 450 500
−1

0

1
DWT approximation at scale 1

0 50 100 150 200 250 300 350 400
−0.5

0

0.5
DWT approximation at scale 3

0 100 200 300 400 500 600
−5

0

5
Autocorrelation of approximation at scale 3

lag

0 50 100 150 200 250 300 350 400 450 500
−0.5

0

0.5
DWT approximation at scale 2

Fig. 1 Analysis of a usable speech frame for male-male co-channel

component called intrinsic mode function (IMF) ranging from the high-frequency
band and so-called detail [12]. The second component called residue ranging to
low-frequency band and so-called approximation [12]. Autocorrelation is applied
on approximation to detect pitch information [13, 14]. A maximum of 5 iterations
are allowed. This limit is fixed empirically basing on evaluation results, the lowest
band should correspond to pitch band. Figure 2 shows usable frame for female-male
co-channel speech. Periodicity is not detected respectively at scale 1 and scale 2. Peri-
odicity is detected only at scale 3.

3 Speaker Identification System

In order to identify the target and the interferer speakers, the detected usable seg-
ments are organized into two speaker streams by a speaker assignment system [16].
The speaker assignment system organizes usable speech segments under co-channel
conditions. It has extended probabilistic framework of traditional SID to co-channel
speech. It uses exhaustive search algorithm to maximize the posterior probability in
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Fig. 2 Analysis of a usable speech frame for female-male co-channel speech

grouping usable speech. Then, usable segments are assigned to two speaker groups,
corresponding to the two speakers in the mixture. The two speaker streams are used
as input for speaker identification system. The SID is performed with a baseline sys-
tem [17]. Modeling is assured by Gaussian Mixture Model (GMM) and estimated
through the Expectation Maximization (EM) algorithm that maximizes the likeli-
hood criterion. A set of 16 mixtures are used for speaker model. In our experiment,
we use the classical parameterization based on 16 Mel Frequency Cepstral Coeffi-
cients (MFCC). These coefficients are computed from the speech signal every 10
ms using a time window of 25 ms. Each feature vector is presented by the middle
windows of every utterance. Speaker model is trained using the EM algorithm with
the features calculated from training samples. In testing phase, the organized usable
speech, with speaker assignment system, are used as test speech samples for SID
system. The same features are derived from the test speech samples and are input
to every speakers GMM. The speaker with the highest likelihood score represents
the identified speaker. Here, speaker identification experiments are close-set and
text-independent.
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4 Evaluation Results

The TIMIT database is used for all the simulation experiments. The TIMIT database
is just used for illustration purposes like in [2]. The speaker set is composed of
38 speakers from the DR1? dialect region, 14 of which are female and the rest are
male. Each speaker has 10 utterance files, 5 out of 10 files are used for training and
the remaining 5 files are used to create co-channel mixtures for testing. For each
speaker deemed as the target speaker, 1 out of 5 test files is randomly selected and
mixed with randomly selected files of every other speaker, which are regarded as
interfering utterances. For each pair, the TIR is calculated as the energy ratio of the
target speech over the interference speech. Three different sets of co-channel speech
are considered: male-male, female-female, and male-female. Thus, for each TIR, a
total of 1406 co-channel mixture files are created for the testing purpose.

4.1 Evaluation of Usable Speech Detection Methods

The Target to Interferer Ratio TIR measure is used to label voiced frames as usable
or unusable. For usability decision, frames that have above 20 dB TIR are considered
as usable. Evaluation is based on hits and false alarms percentages. The performance
of the proposed methods is given in Table 1.

Peak difference autocorrelation of wavelet transform (PDAWT) method [7]
applies DWT once only to co-channel speech to detect pitch information. On aver-
age the PDAWT method detects at least 81 % of the usable speech with a false alarm
rate of 30 %. On average the MRDWT method detects at least 95.76 % of the usable
speech with a false alarm rate of 29.65 % [7]. Nonlinear multi-scale decomposition
by EMD [12–14] achieves a minimum of false alarm compared to MRDWT and
PDAWT methods. We consider the effectiveness of EMD to reduce the percent of
false alarm. EMD achieve a maximum of hits for usable speech detected in male male
co-channel. We show the effectiveness of the nonlinear multi-scale decomposition
to detect usable speech.

Table 1 Results of usable speech detection methods

PDAWT MRDWT MREMD

Co-channel speech % hits % FA % hits % FA % hits % FA

Female-female 82.00 32.30 93.02 32.37 98.20 15.34

Male-male 80.50 30.60 98.46 28.93 98.69 18.60

Male-female 81.30 29.60 95.80 27.66 99.03 13.62

Average 81.20 30.80 95.76 29.65 98.64 15.85
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Fig. 3 Performance of the
proposed speaker
identification under
co-channel conditions
compared with related
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4.2 Speaker Identification Evaluation

The SID identifies the target and the interferer speaker. The evaluation system aims
to evaluate the identification of the speaker referred as target.

It clear from Fig. 3 that the EMD performs significantly better than the MRDWT
usable speech method. This effectiveness is due to reduction of false alarm by our
proposed method. The target SID correct rate with usable speech detection is bet-
ter than the target SID correct rate without usable speech detection. The proposed
usable speech detection improves speaker identification performance. The average
improvement is about 16 % in terms of SID correct rate. Also the improvements are
consistent across all TIR levels. Performance improvement increases at higher TIR
because the target speaker dominates the mixture. However, target speaker is dom-
inated by interference at negative TIR, resulting in better performance after usable
speech extraction. The accuracy degrades sharply when TIR decreases because the
target speech becomes increasingly corrupted.

5 Conclusion

In this paper, we have proposed a speaker identification system in co-channel speech.
We have proposed a new usable speech detection method based on multi-scale decom-
position by linear dyadic wavelet transform MRDWT and nonlinear empirical mode
decomposition MREMD. Usable speech is extracted based on the pitch informa-
tion obtained from sub-band analysis. Our usable speech extraction methods pro-
duces segments useful for co-channel SID across various TIR conditions. MREMD
achieves a good percent of usable speech detection and a minimum of false alarms.
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In comparison with wavelet linear filtering methods MRDWT, MREMD method
achieves a minimum of false alarms. We note the effectiveness of a nonlinear multi-
scale decomposition by EMD to reduce the percentage of false alarms. Usable seg-
ments are assigned to two speaker groups, corresponding to the two speakers in the
mixture. Organized usable speech are used as input to speaker identification system.
We have shown that proposed usable speech detection methods achieves good SID
performance and it performs significantly better than without usable speech detection.
SID performance degrades when TIR decreases because the target speech is increas-
ingly corrupted by interferer speech. We consider the effectiveness of MREMD to
achieve good SID performance and it performs significantly better than MRDWT
method for usable speech detection.
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Wigner-Ville Representation of a Stationary
Voiced Speech Model

Khawla Zammel and Noureddine Ellouze

Abstract The Wigner Ville transform is introduced as an appropriate tool to analyze
the signal in time and frequency plan since it give an accurate representation of energy.
This article aims at providing a new mathematical representation for voiced speech
signal based on Wigner Ville transform (WVT). We will create in the first place
a mathematical formulation of the Wigner Ville Transform of a stationary voiced
speech model. The speech model is expressed as a linear combination of sine waves
with amplitudes, phases and harmonic frequencies. We then will compare the WVT
of a real voiced speech signal to the WVT terms of the previous model.

Keywords Wigner Ville Transform · Voiced speech model · Fourier transform ·
Energy distribution

1 Introduction

The interest of time and frequency representation of a signal has been widely
acknowledged. It concerns the analysis and processing of signals with time-varying
frequency content. The purpose of this representation is to give information about
how the energy of the signal is distributed in the time-frequency space [1]. Analyzing
speech signal is a matter of particular interest dues to the amount of information that
the signal hold, but all the difference is made by choosing the right way to proceed
with the analysis.

Fourier and the spectrogram (squared modulus of the Fourier transform) are the
most intuitive approaches for time-frequency analysis. However, several other signal
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process methods were developed [7]. In the case of the quadratic distributions, the
various admissible solutions are grouped in a set called Cohen class. These distribu-
tions are covariant in time and frequency. In order to proceed with a time-frequency
representation, it is needed to choose between interferences (bilinear nature of the
distribution) and spreading (after smoothing to lessen the interferences) and each
analysis method has its advantages and disadvantages.

The Wigner Ville Transform (WVT) is a good candidate for time-frequency analy-
sis. It was introduced by Ville in 1948 in signal processing in order to improve time-
frequency concentration and was first considered by Wigner in 1932 in the field of
quantum thermodynamics [12].

In this paper, we will cover first the modelling of the voiced speech signal model
based on its Fourier transform. We then will compare the WVT transform of a real
voiced speech signal versus the WVT of the model created. We will highlight a large
number of WVT properties and all the questions that arises. Our challenge, through
creating such a model, is to explore from a theoretical point of view the power of
Wigner Ville applied on speech signal as a time frequency representation and some
of its properties.

2 Time-Frequency Analysis of a Voiced Model Speech
Signal

The idea of modelling the speech signal initiated by Portnoff [16] is also the con-
cern of many research made in the 1980s; including, mainly, those by McAulay and
Quatieri [15]. Signal modelling starts from the spectrum. Only local maxima or spec-
tral peaks are considered to be representative of the frequency components present
in the signal.

As a result, the pattern is then composed of the sum of a limited number of
sinusoids k.

x(t) =
∑

k

αke2πi f0kt+iφk . (1)

The model parameters are, respectively, the amplitudes αk , frequencies 2πk f0 and
the phase φk [13].

This basic form of the sinusoidal model is for strictly stationary signals, composed
of a sum of sinusoids whose parameters are fixed over the considered time portion [3].

Such representation is based of course on the nature of the vibration signal. In
our case in speech production, a vibration of the vocal cords is the source of voiced
sounds in which this model is locally well suited [2, 10].
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To compute the parameters exposed in (1), we use the short time Fourier transform.

Fx (t, f ) =
∫

x(τ )h(τ − t)e−2πi f τ dτ . (2)

For the purpose of illustration, we will consider a signal with the following
characteristics: a vowel “a” pronounced by a woman with a sampling frequency
of 16,000 Hz.

The spectre is computed through the STFT in (2) using a hamming window with
the same length as the signal.

The spectrogram, squared magnitude of the STFT Sx (t, f ) = |Fx (t, f )|2, is rep-
resented using a hamming window with same length as the signal and 50 % of over-
lapping (Figs. 1 and 2).

We then extract the local maxima from the spectrum (αi ). We have considered
until the 14th coefficient because the information in the spectrum after that rank has

part of vowel “a”

Fig. 1 Signal: part of vowel “a”

Fig. 2 Spectrum and spectrogram of the signal
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Table 1 αi values

alpha 1 alpha 2 alpha 3 alpha 4 alpha 5 alpha 6 alpha 7

1,4070 0,8153 1,8820 6,9970 14,6800 12,6300 7,3770

Table 2 αi values

alpha 8 alpha 9 alpha 10 alpha 11 alpha 12 alpha 13 alpha 14

1,5540 1,4200 0,9844 1,5580 1,8530 3,0120 0,9532

Fig. 3 Reconstituted signal

no significant impact. We also compute the fundamental frequency ( f0 = 224 Hz)
(Tables 1 and 2).

To reconstruct the voiced speech signal we need to add the α parameters above
and f0 in (1). The resulting signal have the same period as the real signal but with an
amplitude significantly high compared to it. To circumvent this difference we need
to add a factor to adjust the signal amplitude. This factor is computed using the ratio
between the real signal and the model. At the end we can generate this signal (Fig. 3).

3 Wigner Ville Transform

3.1 Definition and Major Properties

The WVT Wx (t, f ) of a time signal x(t) is expressed by [14]:

Wx (t, f ) =
∫ ∞

−∞
x(t + τ

2
)x∗(t − τ

2
)e−2πi f τ dτ . (3)
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The WVT can be considered as a suitable choice to proceed with the time and
frequency distribution as it is correlating the signal with a time- and frequency trans-
lated version of itself without using a windowing function like the ones used in the
Fourier and wavelet transforms [8, 12].

This particular property exempt WVT from the blurry effect due to the windowing
function, and as a result, the WVT gives the representation that has the best accuracy
in the time frequency [19].

At this point, the WVT may seem to be a powerful tool for signal analysis [11].
However, it misses a fundamental property as an energy density which is positivity
and the interferences created by the quadratic aspect of this transform [12].

3.2 WVT of the Speech Signal Model

First, we need to express the WVT with a voiced speech signal model to get the self
and cross-terms expressions.

WVT of a speech signal can be written, based on (3) and the signal x(t) =
∑

k αke2πi f0kt . as:

Wx (t, f ) =
∑

q

∑

p

αpαqe2πi(p−q) f0tδ( f − f0
(p + q)

2
). (4)

Equation 4 can be written as:

W (t, f ) =
∑

k

Wkk(t, f ) +
∑

k �=p

Wkp(t, f ).

When p = q

Wx (t, f ) =
∑

k

α2
kδ( f − k f0). (5)

when p > q as Wi j ∗ (t, f ) = W ji (t, f ) we write

W (t, f ) =
∑

k

Wkk(t, f ) +
∑

2�Wkp(t, f ).

Wx (t, f ) =
∑

p>q

2αpαq cos(2π(p − q) f0t)δ( f − f0
(p + q)

2
). (6)

where Wkk(t, f ) are self-terms energy distribution of xk(t) and Wkp(t, f ) are cross-
terms of WVT. The presence of non-negligible cross-terms, resulting from interac-
tions between signal components, may lead to an inaccurate visual interpretation of
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the signals time-frequency distribution, since they may overlap with the self-terms
of energy distribution.

Computing with phase will not change the result:

x(t) =
∑

k

αke2πi f0kt+iφk .

Wx (t, f ) =
∑

q

∑

p

αpαqe2πi(p−q) f0t+i(φp−φq )δ( f − f0
(p + q)

2
).

When p = q

Wx (t, f ) =
∑

k

α2
kδ( f − k f0)

when p > q

Wx (t, f ) =
∑

p>q

2αpαq cos(2π(p − q) f0t + (φp − φq))δ( f − f0
(p + q)

2
).

We will then use the model we developed and the parameters extracted from the
spectrum to represent the WVT of the voiced speech model. First, we will inject
these values in (5) and (6). The WVT representation is (Fig. 4).

The Wigner Ville Transform of the real signal (Fig. 5).

Fig. 4 Wigner Ville Transform of the voiced speech model
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Fig. 5 Wigner Ville Transform of the real signal

3.3 Analysis

The second step is superposing the two representations to identify similarities and dif-
ferences. Both representation of the WVT have the following characteristics: through
(5) and (6) we can notice that the self-terms are located in k f0 and the cross-term
are located in f0

(p+q)
2 . For (p+q)

2 = k the cross-terms overlap the self-terms, which
leads to a problem of energy analysis.

For the same frequency, amplitude variation is due to the product αp ∗ αq , and
the presence of periodicity variation and negative values are due to the cosine in (6).

The two representations don’t look exactly the same and the reason is the real
aspect of the signal which is non stationary and the energy variation between the real
and the reconstituted signal.

Let’s point out that the energy distribution is accurate in the WTV whereas it is
blurred in the spectrogram.

Apart the accuracy of energy, the WVT is characterized by the interferences (cross
terms) Eq. 6. Several studies worked on reducing the resulting interferences after the
WVT by the use of a smoothing function [4, 5, 9, 17].

The WVT of the window is a smoothing function that leads to the spectrogram. The
spectrogram of the signal x(t) can be estimated by computing the squared magnitude
of F(t, f ) : S(t, f ) = |F(t, f )|2 but also [6]:

S(t, f ) =
∫ ∫

Wx (τ , v)Wt (τ − t, v − f )dtd f.

The spectrogram of the signal can be written as:

Fx(t, f ) = X ( f ) ∗ e−2πi f t Wt ( f ) wi th X ( f ) =
N

∑

k=0

αkδ( f − k f0)
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Fx (t, f ) = X ( f ) ∗ e−2πi f t Wt ( f ) =
N

∑

k=0

αkδ( f − k f0) ∗ e−2πi f t Wt ( f )

Fx (t, f ) =
N

∑

k=0

αke−2πi( f −k f0)t Wt ( f − k f0)

Sx ( f, t) =
N

∑

p=0

N
∑

q=0

αpαqe−2πi t ( f −(p−q) f0)Wt ( f − p f0)Wt ( f − q f0)

After reducing the interferences (smoothing) these methods may distort the energy
accuracy. By studying the WVT of voiced speech signal model more closely, we can
figure out how to improve the Wigner Ville representation.

3.4 Wigner Ville of Periodic Signal

We can extend our previous work for periodic signal by using a window.
The WVT of the voiced speech signal model can be written as:

Wx (t, f ) =
∑

q

∑

p

αpαqe2πi(p−q) f0t
∫ ∞

−∞
e−2πi( f −(p+q) f0

2 )τ dτ

this expression is equivalent to the Eq. 4.
In the case of a rectagular window

X ( f ) =
∫ T

−T
e−2πi( f −(p+q) f0

2 )τ dτ = 2T sin c(2π f T − (p + q)π)

Wx (t, f ) =
∑

q

∑

p

αpαqe2πi(p−q) f0t 2T
sin(2π( f − (p + q) f0

2 )T

2π( f − (p + q) f0

2 )T

when p = q

Wx (t, f ) =
∑

k

α2
k2T

sin(2π( f − k f0)T )

2π( f − k f0)T

when p > q

Wx (t, f ) =
∑

p>q

2αpαq cos(2πi(p − q) f0t)2T
sin(2π( f − (p + q) f0

2 )T

2π( f − (p + q) f0

2 )T
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4 Conclusion

In this paper, we used the Wigner Ville Transform in two ways: (i) represent the
energy distribution of a voiced speech signal model (this expression was made by
writing the Wigner Ville formula with model speech model, and injecting the signals
parameters in this formula); and (ii) represent the WVT of a real voiced speech signal.
The purpose of this study is to examine the Wigner Ville transform from a theoretical
point of view.

Through creating this mathematical expression of the WVT of a voiced speech
signal model we were able to emphasize on some of the aspects of this transform:
energy accuracy, amplitude, periodicity, self-terms and cross-terms.

We concluded that the WVT is a very interesting representation for the voiced
speech signal, except for the interferences.

In future works we will work on reducing the interferences to have the best energy
representation of speech signal. We will focus, also on the WVT of non-stationary
signals as a generalization of this work [7, 18].
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Glottal Closure Instant Detection
by the Multi-scale Product of the Derivative
Glottal Waveform Signal

Ghaya Smidi, Aicha Bouzid and Noureddine Ellouze

Abstract This paper is about the detection of the glottal closure instants (GCI)
by the multi-scale product (MP) of the derivative glottal waveform signal. Based
on the source filter model, the derivative glottal waveform signal is estimated by the
inversefiltering of the nonpre-emphasized speech signalwith theLPcoefficients. The
derivative glottal waveform signal represents the real excitation of the vocal tract and
shows discontinuities at GCI. MP acts as a discontinuity detector. A preprocessing
step is added to improve the GCI detection. The performance of our method is
evaluated on the Keele university database and compared to the MP applied directly
on the speech signal. Using the preprocessing phase, theMP applied on the derivative
glottal waveform signal gives an identification rate of 99.21% and an accuracy to
±0.25 ms of 87.32% versus an identification rate of 99.15% and an accuracy to
±0.25 ms of 75.78% for the MP method applied directly on speech signal.

Keywords Glottal closure instant (GCI) · Multi-scale product (MP) · Derivative
glottal waveform signal

1 Introduction

Quasi-periodic vibrations of the vocal cords form the essential excitation of the
vocal tract in a voiced speech. These vibrations are the result of a glottis behavioral
phenomenon, caused by the air pressure coming from the lungs. In the larynx cycle,
the instants of the opening and closing of the glottis are important. Thesemoments are
notedGCI for closing (Glottal Closure Instant) andGOI for opening (GlottalOpening
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Instant). The major excitation of the vocal tract occurs at GCI. The vocal cords are
abruptly closed and stay closed for approximately the half of the cycle (closed phase),
the airflow stops quickly, resulting in a discontinuity of the waveform of the glottal
flow. Thus the GCI is the most significant moment when a periodic reference point
is required in the larynx cycle.

The estimation of the pitch contour and the boundaries of each larynx cycles
have been recently allowed by the detection of GCI. This information was used
in the anticausal-causal deconvolution of the speech signal [1], prosodic speech
modification [2], dereverberation of the speech [3], glottal flow estimation [4] and
so on. The critical importance of GCI in various fields, has led researchers to work
on GCI detection methods directly from the speech signal.

Manymethods havebeendeveloped todetect these crucial instants from the speech
waveform; besides a quantitative review has recently been developed by Drugman
and et al. to highlight five of the most effective methods determining the GCIs from
the speech signal namely the Hilbert Envelope-based method (HE) [5], the Zero
Frequency Resonator-based method (ZFR) [6], DYPSA [7], SEDREAMS [8] and
theYAGAalgorithm [9]. In theYAGAalgorithm,GCI are detected by the application
of themulti-scale product (MP)method on the derivative glottalwaveform signal then
the application of the group delay method followed by the dynamic programming.

In this paper,we focus on the application of theMPmethodon the derivative glottal
wave form signal without using the group delay method and dynamic programming.
The suggested method, the MP applied on the derivative glottal wave form signal, is
compared to the MP method applied directly on the speech signal.

This paper is structured as follows. Section2 dealswith the discontinuity detection
of the voiced speech by the MP method. Section3 presents GCI detection by the MP
of the derivative glottal waveform signal. In Sect. 4, results obtained on the Keele
database are shown and compared with MP applied directly on the speech signal. A
conclusion is given in Sect. 6.

2 Discontinuity Detection of Voiced Speech
by the Multi-scale Product Method

Themulti-scale product (MP)method is the product of the coefficients of the wavelet
transform (WT) at some scales. The MP of a signal f(n) is defined by Eq. (1):

p(n) =
∏

j

ws j [f(n)] (1)

where ws j [f(n)] is the WT of the signal f(n) at the scale s j .
The WT is considered as a multi-scale differential operator with n order of the

smoothed signal.
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It has been shown that for relatively fine scales, theWT of the signal presentsmax-
ima at its rapid transitions. However, themaxima obtained by theWTare degraded by
noise at low levels and generally smoothed with strong scales [10]. The MP solves
this problem and hence is considered as one of the most recent methods that has
proved its efficiency and robustness for GCI detection [11].

3 The Proposed Method

Our method is essentially based on the estimation of the derivative glottal waveform
signal and the application of the MP on this obtained signal

3.1 Estimation of the Derivative Glottal Waveform Signal
Based on the Source Filter Model of Speech Production

Relying on the source filter model, a voiced speech sound can be modeled as the
convolution of the derivative glottal waveform signal noted u′(n), and the transfer
function of the vocal tract noted v(n).

s(n) = u′(n) ∗ v(n) (2)

In the z domain, the Eq. (2) takes the following form:

S(z) = (1 − z−1)U (z) · V (z) (3)

Hence the derivative glottal waveform signal is given by:

(1 − z−1)̂U(z) = S(z)/̂V(z) (4)

According to the Eq. (4), the estimated derivative glottal waveform signal, is simply
the inverse filtering of the speech signal by the estimated transfer of the vocal tract
̂V(z).

In the literature, v(n) is considered as an all pole transfer filter [12]. In z domain
we have:

V(z) =
(

1 +
p

∑

k=1

akz
−k

)−1

(5)

Replacing V (z) by its expression in (5), we obtain:

S(z)

(

1 +
p

∑

k=1

akz
−k

)

= (1 − z−1) · U (z) (6)
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Fig. 1 Estimation of the derivative glottal waveform signal u′(n)

In the time domain, the expression becomes:

s(n) = −
p

∑

k=1

ak s(n − k) + u′(n) (7)

The first term is a p-order LPC of the signal s(n), where ak are the coefficients of
the transfer function of the vocal tract. The second term is related to the derivative
glottal waveform signal as the residue of the LPC decomposition of the speech signal
s(n).

The V(z) is determined through the estimation of ak coefficients by the autocorre-
lation method. This method requires the use of a pre-emphasized high pass filter [9].

Figure 1 presents the estimation of the derivative glottal waveform signal u′(n).

3.2 Detection of GCI by the Multiscale Product
of the Derivative Glottal Waveform Signal

The speech signal characterized by a non-stationary nature, estimating LPC coeffi-
cients is performed in a sliding window. Each voiced speech segment is decomposed
into frames, on which we apply the pre-emphasis filter and a Hanning window.
The prediction coefficients are calculated and thus the transfer of the vocal tract is
determined. Inverse filtering of the non-pre-emphasized speech signal, allows then to
determine the residual signal in the analysis window. The derivative glottal waveform
signal is finally generated by the overlap add method for the entire voiced segment.
The derivative glottal waveform signal represents the real excitation of the vocal tract
and shows discontinuities at GCI.

The WT is then applied as this signal at three scales. The product of these three
WT results in the MP of the derivative glottal waveform signal (Fig. 2).

3.3 Improving the GCI detection method

The windowing at the beginning and the end of the segment makes locating GCI
relatively difficult because of the low amplitude maxima. Therefore a processing
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Fig. 2 Example of GCI extraction on the 55th voiced segment for speaker m2: a the derivative
glottal waveform signal, b MP of the derivative glottal waveform signal, c the MP of EGG signal

of the voiced signal segment, consisting in adding L/2 zeros at the beginning and
end of the segment is proposed, where L is the length of the analysis window. The
calculation of the derivative glottal waveform signal is conducted in each window
then the overlap add method is used to calculate this signal throughout the entire
voiced segment. At the end of the processing, the base signal is extracted (Fig. 3).

Fig. 3 a Derivative glottal waveform signal without the proposed preprocessing. b Derivative
glottal waveform signal with the proposed preprocessing. c The MP of EGG signal
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4 Results

The experiments presented in this section have been carried out on the Keele univer-
sity database consisting in 10 speakers: 5 men and 5 women, labeled m1, m2, m3,
m4, m5 and f1, f2, f3, f4, f5: each speaker pronounces the text “the north wind story”
for about 40 s per speaker in an anechoic chamber. The EGG signal is recorded simul-
taneously with the speech signal in the same conditions. Both signals are sampled at
20 kHz and coded by 16 bits.

The proposed method is compared with the MP applied directly on the speech
signal. The GCI references are extracted by applyingMPmethod on the EGG signal.

The EGG signal needs to be time-aligned with the audio signal. In this work, the
time alignment is done by calculating themaximumof the cross-correlation function.

A 24th order LP analysis is performed on a Hanning window of 512 samples
shifted every 64 samples. The first derivative of a Gaussian function is used as the
WT and the following scales are used to generate the MP of u′(n) signal. s1 = 1,
s2 = 1.2 and s3 = 1.5.

The proposed method is evaluated according to the following measures:

• Identification Rate (IDR): the proportion of larynx cycles for which a unique GCI
is detected.

• Missing Rate (MR): the proportion of larynx cycles for which no GCI is detected.
• False Alarm Rate (FAR): the proportion of larynx cycles for which more than one
GCI is detected.

• Identification Accuracy (IDA): the standard deviation of the timing error
distribution.

• The accuracy to ±0.25 ms: the rate of detections for which the timing error is
smaller than this bound.

Table 1 shows the evaluation and the comparative results of GCI detection on
the Keele database in terms of identification rate, missing rate, false alarms rate

Table 1 Comparative results in terms of Identification Rate (IDR), Miss Rate (MR) and False
Alarm Rate (FAR)

Speaker Method IDR (%) MR (%) FAR (%) IDA (ms) Accuracy to
±0.25ms

Keele
database

MP(s(n)) 99.15 0.60 0.26 0.33 75.78

MP(u′(n))
without pre-
processing

98.76 1.04 0.21 0.28 87.76

MP(u′(n))
with pre-
processing

99.21 0.58 0.22 0.28 87.32

Identification Accuracy (IDA) and accuracy to ±0.25ms
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identification accuracy (IDA) and accuracy to ±0.25 ms, characterizing the error
probability densities.

Table 1 shows that theMP applied on the signal u′(n) calculated with the proposed
preprocessing step presents the best reliability and practically the same accuracy as
the MP applied on u′(n) signal calculated without preprocessing. The preprocessing
phase reduces visibly the rate of missed GCIs.

5 Computational Complexity of GCI Detection Methods

To compare the computational complexity of GCI detection methods evaluated in
this paper, we propose to calculate the Relative Computation Time (RCT) for each
one of them:

RCT (%) = 100 · C PU time (s)

Sound duration(s)

The averaged Relative Computation Time (RCT), obtained for our Matlab imple-
mentations for all keele database speakres, with an Intel (R) Core(TM) i3-3217 u
cpu @1.80 GHZ with 4GO of RAM.

Table 2 shows Relative Computation Time (RCT), in % for evaluated methods
averaged across all speakers Keele database.

We note that the MP applied on speech signal is the fastest method (with RTC
around3.70%) followedbyMPapplied onderivative glottalwaveform signalwithout
preprocessing phase (with RTC around 24.64%) and finallyMP applied on derivative
glottalwaveform signalwith preprocessing phase (aRTCaround 50.14%). This latter
is the heaviest because of the execution time given to the pre-treatment phase.

Table 2 Relative Computation Time (RCT) for evaluated methods averaged across all speakers
Keele database

Method CPU (s) RCT (%) Sound duration of all
Keele database (s)

MP(s(n)) 12.48 3.70 337.12

MP(u′(n)) without
preprocessing

83.08 24.64

MP(u′(n)) with
preprocessing

169.04 50.14
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6 Conclusions

This paper focuses on the detection of the glottal closure instants based on the Multi-
scale product of the derivative glottal waveform signal. The measures given by
the proposed method are valued on the Keele University database. An improving
of the detection method is brought through a preprocessing step. The results shows
that the MP of the derivative glottal waveform signal calculated with preprocessing
phase presents the best performance; an identification rate which exceeds 99% and
an accuracy to ±0.25ms which exceeds 87%.
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Non-linear Dynamics Characterization
from Wavelet Packet Transform
for Automatic Recognition of Emotional
Speech

J.C. Vásquez-Correa, J.R. Orozco-Arroyave, J.D. Arias-Londoño,
J.F. Vargas-Bonilla and Elmar Nöth

Abstract A new set of features based on non-linear dynamics measures obtained
from the wavelet packet transform for the automatic recognition of “fear-type” emo-
tions in speech is proposed. The experiments are carried out using three different
databases with a Gaussian Mixture Model for classification. The results indicate that
the proposed approach is promising for modeling “fear-type” emotions in speech.

Keywords Non-linear dynamics · Non-linear speech processing · Speech emotion
recognition · Wavelet packet transform

1 Introduction

Speech is the main process of communication between humans. This fact has moti-
vated researches to use it as a mechanism of interaction between humans and com-
puters. The challenge now is not only to recognize the words and sentences but also
the paralinguistic aspects of speech such as emotions and personality of the speaker.
In the last few years the interest of the research community has been focused on
the detection of “fear-type” emotions such as anger, disgust, fear, and desperation,
which appear in abnormal situations when the human integrity is at risk [1]. One of
the main aims of speech analysis is to find suitable speech features to represent the
emotional state of a speaker. In related works, the characterization has been focused
on prosodic features, spectral and cepstral features such as Mel Frequency Cepstral
Coefficients (MFCC), and voice quality features such as noise measures [1]. In [2]
the authors use Berlin [3], and enterface05 [4] databases for emotion recognition.
They useMFCC joint to their first and second derivatives, and perform the classifica-
tion using a Deep Neural Network with a HiddenMarkovModel (DNN-HMM). The
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reported accuracies are 77.92, and 53.89% for Berlin, and enterface05 databases,
respectively. In [5] the authors use enterface05 [4], and FAU Aibo [6] databases for
emotion recognition. They use acoustic features related to MFCC, energy, and fun-
damental frequency, and propose a method based on least square regression (LSR)
for recognition. The reported accuracies are 69.33% in enterface05, and 60.50% in
Aibo database, respectively.

On the other hand, the use of Non-Linear Dynamics (NLD) measures in speech
processing tasks has been increased in the last years. In [7] the authors perform
experiments in three different databases, including the Emotional prosody speech
and transcripts of the Linguistic Data Consortium (LDC) [8], the Berlin database [3],
and the Polish emotional speech database [9]. The authors characterize the speech
recordings using features related to NLD and perform the classification of different
emotional states using an artificial neural network. The reported accuracies are 80.75,
75.40, and 72.78% for each database, respectively. In [10] the authors use Berlin, and
SUSAS [11] databases to evaluate the representation capability of theHurst exponent
(HE) obtained from the Discrete Wavelet Transform (DWT) to recognize different
emotions and to detect stress from speech. The author perform segmentation between
voiced and unvoiced segments, and calculate the features only for voiced segments.
The speech signals are modeled using a Gaussian Mixture Model (GMM), and the
reported accuracies are 68.1 and 64%, for the Berlin and SUSAS databases, respec-
tively. In [12] the authors use SUSAS [11] database for automatic stress recognition
in speech. They use features related to energy and entropy obtained from Wavelet
Packet Transform (WPT). Automatic recognition is performed by means of a Linear
Discriminant Analysis (LDA), and the reported accuracy is about 91%.

In previous works, we calculate acoustic features obtained from WPT [13]. In
this paper, we propose a new set of features related to NLD obtained from WPT
for fear-type emotion recognition in speech signals. WPT provides a time-frequency
representation in different resolutions and the NLD features are calculated on each
decomposed band. The features are calculated on speech recordings of three differ-
ent databases very used in emotion recognition: (i) Berlin [3], (ii) GVEESS [14],
and (iii) enterface05 [4]. Classification is performed using a GMM derived from
a Universal Background Model (GMM-UBM). The rest of paper is distributed as
follows: Sect. 2 contains the description about the characterization and classification
processes. Section3 describes the experimental framework, the databases, and the
obtained results. Finally, Sect. 4 includes the conclusions derived from this study.

2 Materials and Methods

Figure1 shows the general scheme of the proposed methodology. It consists of four
stages. First the voiced and unvoiced segments of speech are separated using the
software Praat [15] in order to analyze features estimated from each one of them.
Second the wavelet decomposition is performed on each segment separately. Third
each decomposed band is characterized separately as follows: for the voiced segments
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Fig. 1 General scheme of the methodology

four NLD features are calculated including Correlation Dimension (CD), Largest
Lyapunov exponent (LLE), HE, and Lempel-Ziv complexity (LZC); and for the case
of unvoiced segments another four features are estimated including the log energy,
the log energy derived from Teager Energy Operator (TEO), the Shannon Entropy
(SE), and the Log Energy Entropy (LEE). The difference in the features estimated
both for voiced and unvoiced segments is based on the fact that features estimated
for voiced segments are related to perturbation of the fundamental frequency, and the
excitation source [10]. These features cannot be estimated for unvoiced segments.
Finally, the fourth stage of themethodology includes the GMM-UBMmodeling. The
decision of which emotion is present on each recording is taken by the combination
of the posterior probabilities produced by the classifiers applied on the voiced and
unvoiced feature vectors.

2.1 Feature Estimation

Taken’s embedding and phase space: theNLDanalysis beginswith the reconstruction
of the phase space of the speech signal according to the embedding process [7].
A time series x(i) i = 1, 2, · · · Nm , can be represented in a new space which is
defined as X [k] = {x[k], x[k + τ ], x[k + 2τ ], x[k + (m − 1)τ ]}. Nm = N − (m −
1)τ is the reconstructed vector length, τ is the time delay, and m is the embedding
dimension.

Correlation Dimension (CD): this feature allows the estimation of the exact space
that is occupied by the reconstructed vector in the phase space. It is an indicator
about the complexity and dimensionality of speech signal [7].

Largest Lyapunov Exponent (LLE): this measure quantifies the exponential diver-
gence of neighbor trajectories in a phase space. This measure provides an indicator
of the aperiodicity of a speech signal [7].

Hurst Exponent (HE): this feature expresses the long term dependence of a time
series. HE is defined according to the asymptotic behaviour of the rescaled range of a
time series as a function of a time interval. HE can be used to represent the emotional
state of speech according to the arousal level of the signal [10].
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Lempel Ziv Complexity (LZC): this feature establishes a measure about the degree
of disorder of spatio-temporal patterns in a time series. The LZC reflects the rate
of new patterns in the sequence; and ranges from 0 (deterministic sequence) to 1
(random sequence). LZC distribution shows values nearer to 1 for fear and anger
speech, than in case of neutral speech [7].

log-Energy: it is calculated according to the Eq.1 [16].

E(k) = log

[

∑Nk
l=1 x(l)2

Nk

]

(1)

log-Energy of TEO: the TEO was developed in order to measure the changes
in speech signal produced under stress. The TEO of a signal is calculated as
T E O(x) = x(k)x(k)∗ − x(k + 1)x(k − 1). Finally, the log Energy of TEO is cal-
culated according to the Eq.2 [16].

ET E O(k) = log

[

∑Nk
l=1 |x(l)x(l)∗ − x(l + 1)x(l − 1)|

Nk

]

(2)

Shannon and log energy entropy: it models the complexity of a system. In this
paperwe estimate two entropymeasurement, the Shannon entropy, and the log energy
entropy. These features are calculated according to [12] as H1(k) = −∑n

l=1 x(l)2

log(x(l)2) and H2(k) = −∑n
l=1 log(x(l)2), respectively. n is the number of bins

used to estimate the probability density function of the wavelet decomposition.

2.2 Classification

The features extracted from voiced and unvoiced segments were classified separately
using a GMM adapted from a UBM, using Maximum A Posterior (MAP) to derive a
specific GMM from the UBM [17]. A GMM can be defined as a probabilistic model
represented by the sum of several multivariate Gaussian components. The model is
expressed according to its probability density function.

p(x|Θ) =
M

∑

k=1

PkN (x|μk, �k) (3)

where M is the number of Gaussian components, Pk is the prior probability (mixing
weight), and N is a multivariate Gaussian density function. The UBM is trained
using the Expectation Maximization (EM) algorithm [17] using a population of all
classes. Then the specific GMM for each class is adapted using the MAP method.
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Finally, given a sample X = x1, x2, . . . , xT , where xi is the feature vector extracted
from the frame i , the decision about to which class belongs each speech sample is
taken evaluating the maximum Log-Likelihood according to the Eq.4.

L L(X,Θ) =
T

∑

t=1

log(p(xt |Θ)) (4)

The posterior probabilities obtained from the GMM model based on voiced seg-
ments is combined with those obtained from the GMM model based on unvoiced
segments. Both probabilities are normalized according to the length of the frames
to avoid possible bias introduced due to the length-dependence of the models.
The combined probability is defined as L Lcomb = αL L(X,ΘV oiced) + (1 − α)L L
(X,ΘUnvoiced), α ∈ (0.1, 0.2, . . . , 0.9) according to [18], and it is a weight coeffi-
cient which is optimized on test.

3 Experimental Framework and Results

3.1 Experimental Setup

All experiments were performed using leave one group speaker out cross-validation
(LOGSO-CV), with different numbers of Gaussian components for classifier (from
2 to 8) with diagonal covariance matrix. The value of α was optimized through a grid
search with 0 < α < 1. The selection criteria was based on the obtained accuracy on
the test set. The length of frames is selected according to the sample frequency in order
to guarantee enough number of points for thewavelet decomposition. Frames of 1764
samples are selected, which is equivalent to 40ms in caseswhen f s = 44100Hz, and
110mswhen f s = 16000Hz [13]. In both cases an overlapping percentage of 50% is
used. All of the coefficients from the second and third level of WPT are considered.
Daubechies3 is used as the mother wavelet. The experiments were carried out to
recognize different “fear-type” emotions in speech, such as anger, disgust, fear and
desperation.

3.2 Databases

• Berlin emotional database [3]: it contains 534 voice recordings produced by 10
speakers who acted 7 different emotions. The recordings were sampled at 16kHz.
In this paper three of the seven emotions of the database are considered for the
automatic recognition: anger, disgust, and fear.
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• Geneva Vocal Emotion Stimulus Set (GVEESS) [14]: it contains 224 recordings of
12 speakers who acted 14 emotions. The recordings were sampled at 44.1kHz. In
this paper four of the 14 emotions of the database are considered for the automatic
recognition: anger, disgust, fear, and desperation.

• enterface05 database [4]: this database contains 1317 audio-visual recordings with
6 emotions produced by 42 speakers. In this paper three of the six emotions of the
database are considered for the automatic recognition: anger, disgust, and fear. In
this database, each subject was instructed to listen to six successive short stories.
After each story the subject had to react to the situation by speaking predefined
phrases that fit the short story.

3.3 Results

Tables1 and 2 contain the accuracies obtainedwith the features extracted fromvoiced
and unvoiced segments, respectively. The number of Gaussian components is also
indicated in the tables. In Table1 the highest accuracies are obtained with the LZC.
Table2 shows that the best results are reached using the combination of all features,
specially in GVEESS, and enterface05 databases. Note also that in this case it is
possible to achieve similar results than in the case of features estimated only for
voiced segments, or features estimatedwithout the segmentation process as in related
works [2, 7].

Table 1 Emotion recognition accuracies for features estimated from voiced segments

Features GVEESS Berlin enterface05

Accuracy M Accuracy M Accuracy M

DC 57.1± 14.6 4 62.7± 13.9 5 47.6± 3.8 4

LLE 68.0± 16.2 4 67.6± 8.1 5 52.1± 4.9 6

HE 68.1± 28.0 4 67.6± 8.1 5 52.0± 4.9 6

LZC 82.0 ± 11.3 3 78.3 ± 9.9 3 54.0 ± 7.3 4

All 65.0± 21.2 5 79.0± 10.0 4 51.1± 8.0 5

Table 2 Emotion recognition accuracies for features estimated from unvoiced segments

Features GVEESS Berlin enterface05

Accuracy M Accuracy M Accuracy M

Log energy 93.4± 9.8 4 64.7± 11.1 4 46.9± 4.4 5

Log energy TEO 93.1± 8.8 6 60.8± 10.3 5 54.2± 4.9 5

SE 93.4± 9.8 4 71.0± 12.7 4 53.7± 5.8 4

LEE 92.3± 10.3 5 77.2 ± 10.9 4 57.0± 4.1 6

All 99.0 ± 2.5 6 69.13± 16.0 6 63.1 ± 15.7 3
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Fig. 2 Results combining the posterior probabilities

The posterior probabilities obtained with the voiced and unvoiced features that
reached highest accuracies are combined. The results are shown in Fig. 2. Note that
the combination of posterior probabilities provides higher accuracy than the sepa-
rated classification. In Fig. 2 each recognized emotion is indicated in the horizontal
axis. The bars indicate the accuracies obtained on each emotion, i.e. in the Berlin
database the bars on Disgust indicate that 24% of the recordings labeled as Disgust
where wrongly recognized by the system as Fear (bar in black). Also 13% of the
Disgust recordings where wrongly recognized as Anger. Finally, 63% of the Disgust
recordings were correctly recognized by the system as Disgust. Note that the high-
est accuracy in all of the three databases is obtained with the recordings labeled as
Anger. This result shows that the proposed feature set is able to model the fast air
flow in vocal tract produced by anger in speech, which causes vortices located near
the false vocal folds providing additional excitation signals other than the pitch [19].

4 Conclusion

A total of four NLD features obtained from the WPT are extracted from speech
signals to perform the automatic recognition of fear-type emotions. The voiced and
unvoiced segments of each recording are characterized separately. The results show
that LZC evaluated from wavelet decomposition in voice segments provides a good
representation of emotional content in speech signal relative to the other NLD mea-
sures estimated from WPT. We found also that features derived from energy and
entropy content of unvoiced segments are suitable for the characterization of emo-
tional speech. The obtained results are similar to those obtained in related works
when classical features are used, indicating that features related to NLD are useful
to represent the emotional content in speech, and must be used to characterization
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of emotional speech. Additionally, the evaluation of the proposed features in speech
recordings with non-controlled scenarios such as phone channels, signals with back-
ground noise, and non-acted emotions needs to be addressed in future work.
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Assessing a Set of Glottal Features
from Vocal Fold Biomechanics

Carlos Lázaro-Carrascosa and Pedro Gómez-Vilda

Abstract This paper summarizes a statistical studyof a set of glottal featureswith the
ultimate aim of measuring their capacity to discriminate and detect vocal pathology.
The study is concentrated in the analysis of relevance of a set of features obtained
from the analysis of phonated speech, specifically an open vowel as /ah/. The speech
signal was inversely filtered to obtain the glottal source, which on its turn was used to
generate a set of 72 features, describing its biometrical and biomechanical properties,
among others. The study of relevance is based on factorial analysis, parametrical and
non-parametrical hypothesis tests and effect size analysis, with the aim of assessing
the pathologic/normophonic condition of the speaker. The validation of the results is
based on discriminant analysis. The conclusions allow establishing the most relevant
features and feature families for pathological voice detection. High classification
rates are obtained in many cases.

Keywords Glottal features · Vocal disease · Diagnostic support · Discriminant
analysis · Effect size

1 Introduction

Voice pathologies have become recently a social problem that has reached a cer-
tain concern. Pollution in cities, smoking habits, air conditioning, etc. contributes to
it. This problem is more relevant for professionals who use their voice frequently:
speakers, singers, teachers, actors, telemarketers, etc. Therefore techniques that are
capable of drawing conclusions from a sample of recorded voice are of particu-
lar interest for the diagnosis as complementary to other invasive ones, involving
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exploration by laryngoscopes, fiberscopes or video endoscopes,which are techniques
much less comfortable for patients. Voice quality analysis has come a long way in
a relatively short period of time. Regarding the diagnosis of diseases, we have gone
in the last 15years from working primarily with features extracted from the voice
signal (both in time and frequency domains) and with scales as GRBAS [1] drawn
from subjective assessment by experts, to produce more accurate evaluations with
estimates derived from the glottal source. The importance of using the glottal source
resides broadly in that this signal is linked to the state of the speaker’s laryngeal struc-
ture. Unlike the voice signal (phonated speech) the glottal source, if conveniently
reconstructed using adaptive lattices, may be less influenced by the vocal tract [2].
As it is well known the vocal tract is related to the articulation of the spoken message
and its influence complicates the process of voice pathology detection, unlike when
using the reconstructed glottal source, where vocal tract influence has been almost
completely removed

The estimates of the glottal source have been obtained through inverse filtering
techniques developed by our research group, based on the original work of Alku
[3, 4]. We have also deepened into the nature of the glottal signal, dissecting and
relating it to the biomechanical features of the vocal folds, obtaining several estimates
of items such as mass or elasticity of vocal fold body and cover, among others. We
can see the full list of features in Table1.

In short, we have now a considerable amount of glottal features in multidimen-
sional statistical basis, designed to be able to discriminate people with pathologic
or dysphonic voices from those who do not show pathology. Four statistical tech-
niques will be used to reach this goal: mean difference test, both parametric and
nonparametric [5, 6], effect size analysis [7], factorial analysis and discriminant
analysis [5, 8].

To perform the experiments we have used a balanced and robust database, consist-
ing of two hundred speakers, one hundred of them males and one hundred females.
We have also used a well-balanced proportion where subjects with vocal pathology
as well as subjects who do not have a vocal pathology are equally represented.

The different statistical analyses performed will allow us to determine what fea-
tures contribute in a more decisive way in the detection of vocal pathology. The issue
of feature selection will be left for future studies. Therefore, some of the analyses
will even allow us to present a ranking of the features based on their importance for
the detection of vocal pathology. On the other hand, we will also conclude that it is
sometimes desirable to perform a dimensionality reduction in order to improve the
detection rates. Finally, detection rates themselves are perhaps the most important
conclusion of the work, so this article will be mainly focused on them.

All the analyses presented in this work have been performed for each of the
two genders in agreement with previous studies [9] showing that male and female
genders should be treated independently, due to the observed functional differences
between them.



Assessing a Set of Glottal Features from Vocal Fold Biomechanics 211

Table 1 Larynx neuro-motor activity features

F01. Median of fundamental frequency f0

F02. Median of Jitter (relative between neighbor phonation cycles)

F03. Median of Shimmer (relative between mean amplitude of neighbor phonation cycles)

F04. Median of Maximum Flow Declination Rate (MFDR)

F05. Median of noise-harmonic ratio

F06. Median of Mucosal Wave Correlate to Average Acoustic Wave ratio (MWC/AAC)

F07-20. Medians of cepstral coefficients across the analysis window

F21. Median of Mucosal Wave Correlate Power Spectral Density (MWCPSD) maximum (dB)

F22. Median of MWCPSD 1st minimum (dB) rel. to F59

F23. Median of MWCPSD 2nd maximum (dB) rel. to F59

F24. Median of MWCPSD 2nd minimum (dB) rel. to F59

F25. Median of MWCPSD 3rd maximum (dB) rel. to F59

F26. Median of MWCPSD end value (dB) rel. to F59

F27. Median of MWCPSD 1st maximum position in frequency

F28. Median of MWCPSD 1st minimum position in frequency rel. to F65

F29. Median of MWCPSD 2nd maximum position in frequency rel. to F65

F30. Median of MWCPSD 2nd minimum position in frequency rel. to F65

F31. Median of MWCPSD 3rd maximum position in frequency rel. to F65

F32. Median of MWCPSD end value position in frequency rel. to F65

F33. Median of MWCPSD 1st minimum slenderness

F34. Median of MWCPSD 2nd minimum slenderness

F35-37. Medians of vocal fold body dynamic mass, losses and stiffness

F38-40. Medians of vocal fold body dynamic mass, losses and stiffness unbalances

F41-43. Medians of vocal fold cover dynamic mass, losses and stiffness

F44-46. Medians of vocal fold cover dynamic mass, losses and stiffness unbalances

F47-48. Medians of glottal source recovery instants 1 and 2

F49-50. Medians of glottal source open instants 1 and 2

F51. Median of glottal source maximum instant

F52-53. Medians of glottal source recovery amplitudes 1 and 2

F54-55. Medians of glottal source open amplitudes 1 and 2

F56-57. Median of glottal flow stop and start instants

F58. Median of glottal flow closing instant

F59-62. Medians of glottal flow gap, contact, adduction and permanent defects

F63-65. Medians of the 1st, 2nd and 3rd order cyclic coefficients (tremor)

F66-67. Medians of the physiological band tremor frequency and amplitude

F68-69. Medians of the neurological band tremor frequency and amplitude

F70-71. Medians of the flutter band tremor frequency and amplitude

F72. Median of the root mean square tremor amplitude
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2 Materials and Methods

The database used for the study is a corpus of 200 subjects (100male and 100 female),
created by our research group, which evenly distributes the presence and absence of
vocal pathology. Thus, the database can be described as: 50 non-pathological female
subjects, 50 pathological female subjects, 50 non-pathological male subjects and
50 male pathological subjects. This data will be split in two sets for Discriminant
Analysis: train and test. We have tried several sizes for the sets, in different experi-
ments, but themore frequently proportion used is 90% for training—10% for testing.

The majority of studies analyze data collected from male and female subjects
independently. In general, the need for male and female samples to reach general
conclusions is well known [9]; the research in this field also recommends taking into
consideration the different physiological characteristics of both genders. The ages of
the subjects range from 19 to 56, with a mean of 30.02years and a standard deviation
of 9.94years. Normal condition has been determined by electroglottography, video-
endoscopy and GRBAS tests. Besides, previously some criteria which patients must
meet to fulfill such a condition were established:

• self-report not having any laryngeal pathology;
• have a voice according to gender, age and cultural group speaker, plus a suitable
pitch, timbre, volume and flexibility of diction;

• be a non-smoker;
• no history of any surgery related to any laryngeal pathology;
• no history of endotracheal intubation in the last year.

Concerning pathological cases, the sample set contains around the same number of
mild (functional) and moderate pathology grades, comprising polyps, nodules and
Reinke’s edemae. The recording protocol comprises three different utterances of the
vowel /ah/ with duration longer than 3s, taken with a headset microphone placed
10cm from the speaker’s mouth. The vowel “ah” has been selected because it is easy
to pronounce (causes less tension), and, above all, because the vocal tract influence
is better removed when we use this vowel, according to various tests performed. The
signals were sampled at 44,100Hz, lately undersampled to 22,050Hz. The resolution
used was 16 bits. The recordings were performed using the external sound board
Creative Studio. Segments of 0.2 s long were extracted from the central part (the
more stable) for analysis and featureization. These segments included a variable
number of cycles of phonation: about twenty in male voices, with a fundamental
frequency of 100Hz and about forty in female voices, with a fundamental frequency
of 200Hz [10].

The protocol used in the experimentation is based on the following steps:

1. Mean difference parametric test (Student’s t) between the two groups of the study:
people with speech pathology and people free from speech pathology. An addi-
tional effect-size analysis was also included to assess the relevance of the differ-
ences found.
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2. Nonparametric contrast between the two groups mentioned. In particular, test of
Mann-Whitney. This test, as well as the one mentioned in the previous point was
performed on all the features, in order to facilitate the comparison of results.

3. Factor Analysis based on Principal Components applied on the full set of features,
and also on significant subsets thereof. These subsets of features come from two
sources: first of them have been prepared from the results of the previous points of
this protocol: wewill use the features that give a significant difference between the
two groups mentioned above, we will also use the features with the highest effect
size values andwewill finally use the full set of features except the oneswithworse
effect size values. On the other hand, some subsets of features correspond directly
with the family to which they belong—Perturbation, Cepstrals, Biomechanics,
Biometrics, Temporals, Contact or Tremor—and the last ones are formed by all
the features except those belonging to one family at a time.

4. DiscriminantAnalysis on the full set of features and on significant subsets thereof.
The subsets are prepared with the same criterions as in the previous point. We
will also apply this analysis to the factors obtained in the previous section, and to
the best features—on their own—obtained from the effect size analysis.

3 Results

The rates of the first studies performed can be seen in Table2. This table offers an
overall rate, calculated as the arithmetic mean between the rate for the unselected
cases and the rate for a process of cross-validation that consists on classifying each
case using the functions derived from all cases other than that case.

We can see in the table that the rates are better when we use factors in the female
database. There, the highest rate (92.73%) is achieved for the factors derived from the
significant features in the t-student test. In the male database the difference between
the use of features or factors is fewer. The highest rate (79.39%) is achieved for the
significant features in the Mann-Whitney test.

The features whose effect size value can be considered large by Hopkins [7] in the
female database were the following: F58 (effect size value: 1.88), F56 (1.59), F51
(1.52), F21 (1.51), F25 (1.43), F42 (1.41), F57 (1.29) and F24 (1.15). It is remarkable
that the first three values come from temporal features, next three are biometric or
biomechanical features, and last two are temporal and biometric features again.
Some of these features (F56, F51, F21, F42 and F57) achieve by themselves overall
detection rates above 80%, but we would like to highlight the feature number 58
(Median of Glottal Flow Closing Instant) that produces a detection rate of 92.16%.
We can see the boxplot corresponding to this feature in Fig. 1.

Regarding the male database, we have just found one large value in the effect
size analysis, corresponding to the feature F50 (temporal, 1.21). Besides, the highest
values, that can be considered moderate [7] are achieved by the features F42 (biome-
chanic, 1.14), F51 (temporal, 1.17) and F25 (biometric, 1.00). From all these we can
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Table 2 First test performed and detection rates obtained for the bases of male and female data

Test Female data Male data

Avg. value (%) Avg. value (%)

All the features 78.40 78.89

All the factors 87.79 75.17

T-student positive features 83.00 77.22

T-student positive factors 92.73 76.44

Mann-Whitney positive
features

88.50 79.39

Mann-Whitney positive factors 90.61 79.17

Effect size best features 85.46 74.44

Effect size best factors 87.02 79.06

Effect size without worst
features

85.73 76.28

Effect size without worst
factors

89.44 76.66

Fig. 1 Boxplot of the feature 58, female database

remark the feature F51 (Median of Glottal Source Maximum Instant), that achieves
an overall detection rate of 78.61%.

The results related to the differerent families of features for the female database can
be seen in Figs. 2 and 3. Figure2 is divided in two sections: the left one is referred
to the features of each family; the right one is referred to the factors generated
with the features of each family. Figure3 is also divided in two: the left section is
referred to all the features except the ones included in each family; the right section
is referred to the factors generated with all the features except the ones included in
each family.
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Fig. 2 Study related to the feature families, female database, part one

Fig. 3 Study related to the feature families, female database, part two

There are four families whose features offers quite high rates by themselves: Per-
turbation, Biometrics, Biomechanics and Temporals. The last two of these families
improves their results when factors are applied. According to these results, if we
remove the Cepstral, Contact or Tremor features we obtain high success rates, very
specially when we use factors.

The results related to the male database can be seen in Fig. 4. We can highlight
the behaviour of the Temporal and Biomechanic features this time. They are the
families that produce higher rates. Besides, it is remarkable that there are no families
with very low rates in the male database. In general, the use of factors procures
worse results. On the other hand, when we remove the different families we obtain
the best rates, improving the results obtained in the previous experiments: several
overall rates are above 80%, and the highest one correspond to the remove of the
biomechanics features: 81.11% of success.
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Fig. 4 Study related to the feature families, male database

4 Conclusions

We have carried out a statistical study of glottal features using a database composed
of individuals of both genders. The study has mainly focused on finding out the most
suitable features to discriminate pathological and non-pathological voices, using the
Discriminant Analysis technique. From the results shown we reach the following
conclusions:

• We obtain better rates with female data than with male data in all cases.
• Contact, Tremor and Cepstral features seem to have less discriminatory power
than other categories, especially in the female database.

• In general, factors work better with female data; features do it with male data.
• We obtain good results when we use a large number of features (or factors). The
use of all features (or factors) with orwithout the removing of some certain features
reaches generally one of the best results in both databases.

• Not contradicting the previous point, the categories of features considered are
able to obtain high classification rates by themselves, just like the best features
according to the effect size analysis, which produce even better results in some
cases.
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• The best results are obtained with the significant factors from the t-student test for
the female database (92.73%) and with all the features except the biomechanical
ones for the male database (81.11%).
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Pitch Estimation Based on the Cepstrum
Analysis by the Multi Scale Product
of Clean and Noisy Speech

Wided Jlassi, Aicha Bouzid and Noureddine Ellouze

Abstract In this paper we propose a new method for estimating the pitch from the
speech signal which consists of analysing real cepstrum by the multiscale product
(MP) using continuous wavelet transform (WTC) having one vanishing moment
(CAMP). Our approach to estimate the pitch consists of the following steps: first
we frame the voiced signal, second we calculate the real cepstrum of each frame.
Finally, we compute the MP of the cepstrum. The MP is the product of the WTC at
three scales. Our method will be evaluated by the Keele database under clean and
noisy conditions. Experimental results indicate that the gross pitch errors (GPE) are
lower than the compared methods under clean and noisy conditions.

Keywords Speech · Real cepstrum · Wavelet transform · Multi-scale product ·
Pitch

1 Introduction

The fundamental frequency of the speech signal is the frequency of vibration cycle
of the vocal cords, determined by the tension of the muscles that control them. The
fundamental frequency varies from one speaker to another according to age and sex
[1]. The estimation of F0 is very important in the field of speech processing for many
applications such as coding [2], analysis or speech recognition [3].

Various methods in the frequency, time and time-frequency domain have been
proposed for pitch estimation [4] proposes a comparative overview.
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The present article introduces a new method for F0 estimation based on the cep-
strum analysis by the MP that operates in the time-scale domain.

Our algorithm operates the MP of the voiced speech cepstrum using a wavelet
having one vanishing moment under clean and noisy conditions.

Besides, our approach is evaluated and compared to the Cepstrum and Praat
approaches [5]. Praat is a free software designed for processing and synthesis of
speech sounds (phonetic). It determines the F0 candidates by the location of maxima
in the cross-correlation function over the voiced speech.

This paper is organized as follows: Sect. 2 describe the classic cepstrummethod for
the pitch estimation. Section3 presents some properties of the continuous wavelet
transform and the Multi-scale Product for the detection of signal singularities. In
Sect. 4, the details of our approach for estimating the pitch are exposed. In Sect. 5,
our approach is evaluated using the Keele University database under clean and noisy
conditions. Finally, we conclude this work.

2 Cepstrum

According to the speech production model, the voiced speech is the convolution of
the glottal excitation by the vocal tract transfer [6].

s(n) = e(n) ∗ θ(n) (1)

where s(n) is the speech signal, e(n) is the excitation signal and θ(n) is the con-
tribution of the vocal tract.

The cepstral analysis consists in ensuring the deconvolution [7].
The real cepstrum is defined as:

c[n] = 1

2π

π
∫

−π

log |S(w)|ejnwdw (2)

where:

S(w) =
+∞
∑

n=−∞
s(n)e−jwn (3)

A flowchart of the cepstrum analysis is shown in Fig. 1.
To get an estimation about the fundamental period and the fundamental frequency

we look for a peak in the appropriate quefrency region:

F0 = 1/quefrency (4)
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Fig. 1 Flowchart of the cepstrum analysis

3 Wavelet Transform and Multi Scale Product

The WT is a well-known method for the detection of signal singularities such as the
glottal closure instant GCI in the speech signal [8].

In fact, discontinuity in the signal is detected by a wavelet transform using a
wavelet having one vanishing moments [9].

The wavelet transform is expressed as the nth derivative of the signal smoothed
by a function θ

Wf(u, s) = sn
dn

dun
(f∗θs)(u) (5)

where

θ s(t) = 1√
s

θ (
−t

s
) (6)

A wavelet has n vanishing moments if and only if:

+∞
∫

−∞
tk�(t)dt = 0 (7)

With ∀ 0 ≤ k ≤ n − 1 and n indicates the number of the vanishing moments
characterizing the wavelet.

Bouzid et al. [8] has proved that the Multi-scale Product (MP) improve the sin-
gularity detection on the speech signal

p(n) =
3

∏

i=1

Wsi f(n) (8)

where Wsi f(n) is the WT of the function f at the scale Si.
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4 The Proposed Method

In this section, we present the CAMP approach for the estimation of the fundamental
frequency.

Thefirst step of the algorithmconsists in framing the voiced signal andmultiplying
each frame by a Hamming window. Thereafter, we proceed to calculate the real
cepstrum for each windowed frame and the WT of the cepstrum at three scales. The
next step is operates the product of WT coefficient and detect the local zero crossing
corresponding to the pitch period of each analyzed frame. Finally, we calculate the
corresponding fundamental frequency before proceeding to a post-processing phase.

This approach is applied using the first derivative of a Gaussian as a wavelet
having one vanishing moment.

The pitch period corresponds to the position of the zero crossing between the
maximum and the minimum detected on the MP of the cepstrum.

The focus of the post-processing is to reduce the F0 estimation error under both
clean and noisy conditions in order to have more reliable pitch detection algorithm.

This smoothing phase consists in comparing each value of the F0 by its previous
and next one and if there is a difference bigger than 30 Hz, we consider that is a false
measure and is replaced by the average of the last two ones.

Figures2 and 3 show the speech signal, followed by its cepstrum, and the CAMP
for the vowel /e/ pronounced by the speaker f1 and the same vowel corrupted by the
white noise (−5 dB) respectively.

We note that the peaks given by the proposed approach is revealed clearer and
the spurious peaks in the cepstrum are almost eliminated even if the speech signal is
noisy.

Fig. 2 The speech signal, the cepstrum and the CAMP for the vowel /e/ pronounced by the
speaker f1
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Fig. 3 the speech signal, the cepstrum and the CAMP for the vowel /e/ pronounced by the speaker
f1 corrupted by a white noise with SNR of −5 dB

5 Evaluation and Comparison

The Keele speech database provided by the Keele University [10] is used to evaluate
the performance of our method. It includes ten speakers, five men and five women,
pronouncing the text “The North Wind Story”

The sampling frequency used in this database is 20 kHz.
The parameters of our proposed approach are as follows:
The three scales (s1, s2, s3) used are (1, 1.5, 2) for women and (1.5, 2.5, 3.5) for

men.
The Hamming window has a length of 2048 samples for men and 1024 samples

for women, whereas the frame shift is fixed to 200 samples for both. These lengths
allow a good compromise between efficiency and stability of the parameters to be
measured.

The fundamental frequency references are obtained by the autocorrelation func-
tion of the multiscale product of the larygograph signal. This choice is justified by
the fact that it has been proven that the MP of the EGG signal is the most effective
to measure the fundamental frequency [11].

To evaluate the performance of our proposed method, the gross pitch error (GPE)
is considered if

| f0i,estimated

f0i,reference
| > ε (9)

And the GPE rate is defined as:

GPE = NGE

NV
× 100% (10)



224 W. Jlassi et al.

Table 1 GPE(%) of Praat, cepstrum and the CAMP methods

Methods Clean White noise

−5 dB 0 dB 5 dB 10 dB

Praat 3.22 30.91 11.53 6.11 4.28

Cepstre 2.97 31.41 20.70 10.91 6.46

CAMP 2.23 24.57 12.89 4.63 2.75
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Fig. 4 GPE(%) of the Praat, cepstrum and CAMP methods using Keele database

where NV the numbers of frames supposed voiced.
i is defined as the frame index and is the threshold which is usually taken 20%.
Table1 reports evaluation results for gross pitch error (GPE) of the proposed

method under clean and noisy conditions.
Figrue4 shows that our CAMP method gives very interesting results compared

to Praat and Cepsrtrum under clean and noisy conditions with the lowest GPE rate
using a wavelet having one vanishing moments.

Tables1 and 2 shows the execution time (in second) of our method compared to
the cepstrum method.

Referring to the results of Table2, time of execution of the cepstrum method is
better than our method.

Table 2 Execution time (in second) of our method compared to the cepstrum method

Methods Clean White noise

−5 dB 0 dB 5 dB 10 dB

Cepstre 17.41 11.75 13.11 12.29 12.74

CAMP 25.47 30.24 26.27 30.35 25.64
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6 Conclusion

In this paper, we propose a new method for estimating the pitch period from the
speech signal based on the cepstrum analysis by the multi-scale product under clean
and noisy condition.

Our method can be summarized in three essential steps. First, we frame the voiced
signal and multiply each frame by a Hamming window. Second, we calculate the real
and its WT at three scales. Thus we calculate the product obtained by the WT and
detect the local zero crossing corresponding to the pitch period. Finally, we calculate
the corresponding fundamental frequency before proceeding to a post-processing
step.

This approach significantly improves the cepstrum by eliminating the most unin-
teresting peaks in clear and noisy conditions.

Our approach is evaluated and compared to the Cepstrum and Praat approaches.
It gives the best results in terms of gross pitch errors.

Future work concerns, the evaluation of our approach in different noisy
environments.
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Minimizing Free Energy of Stochastic
Functions of Markov Chains

Rita Singh

Abstract Automatic speech recognition has generally been treated as a problem
of Bayesian classification. This is suboptimal when the distributions of the training
data do not match those of the test data to be recognized. In this paper we propose
an alternate analogous classification paradigm, in which classes are modeled by
thermodynamic systems, and classification is performed through a minimum energy
rule. Bayesian classification is shown to be a specific instance of this paradigm
when the temperature of the systems is unity. Classification at elevated temperatures
naturally provides a mechanism for dealing with statistical variations between test
and training data.

Keywords Bayes classification · Free energy · Temperature · Speech recognition

1 Introduction

In the usual rule for Bayesian classification any data X is assigned to the class that
is most likely to have generated it. Formally, if we represent the class assignment of
X as c(X), the classification rule is given by

c(X) = argmax
C

P(C)P(X |C) (1)

where C represents any class, P(C) is the a priori probability of C , and P(X |C) is
the probability distribution of data from class C . In the context of automatic speech
recognition, the classes are actually word sequences [1]. The Bayes classification
rule attempts to identify the a posteriori most likely word sequence, given (features
derived from) a recording X .

TheBayes classification rule is optimalwhen P(X |C) is the true class-conditional
probability distribution of data for C . In practical scenarios, however, the true

R. Singh (B)
Carnegie Mellon University, Pittsburgh, PA 15213, USA
e-mail: rsingh@cs.cmu.edu
URL: http://cs.cmu.edu/∼rsingh

© Springer International Publishing Switzerland 2016
A. Esposito et al. (eds.), Recent Advances in Nonlinear Speech Processing,
Smart Innovation, Systems and Technologies 48,
DOI 10.1007/978-3-319-28109-4_23

227



228 R. Singh

distribution P(X |C) is not known and must be approximated by a model P̂(X;ΛC ),
the parametersΛC ofwhichmust be learned from training data. Themodel P̂(X;ΛC)

is generally learned to be close (in the sense of KL divergence) to the distribution
of the training data, and often does not adequately model the test data. As a result,
the classification rule of (1) is suboptimal and can result in significantly degraded
performance when used in a speech recognizer.

In [2, 3] we have proposed an alternative formalism for classification in such
scenarios. Instead of assuming that P̂(X;ΛC ) represents a class-specific probabil-
ity distribution, we interpret it as a thermodynamic system, which has resulted in
an observation X . Subsequently, we replace the “maximum probability” criterion
deriving from the stochastic-process interpretation which leads to Bayes classifica-
tion rule, with a “minimum energy” criterion: the observation X is now assigned to
the class C whose system must expend the least energy to generate it. Designating
the energy as FC(X), the modified classification rule is

c(X) = argmin
C

FC(X) (2)

The distinction between the probability-based rule of (1), and (2) can be reconciled
by defining FC(X) = − log P(C, X;ΛC ). Indeed, such an equivalence is commonly
ascribed, and has been drawn upon in the definition of stochastic models such as the
Gibbs distribution [4], or even the normal distribution, where the log probability is
analogous to common definitions of energy associated with a data or vector [5].

Thermodynamic systems, however, also include a temperature parameter. In the
physical world the temperature of the system characterizes the fluctuation of state of
the system, effectively characterizing the variation in any measurements of it—the
greater the temperature the greater the variation will be. In our classification frame-
work, the temperature parameter may be analogously considered as characterizing
the increased variation in observations. At the specific setting of T = 1, the proba-
bilistic and energy classification rules become identical; at higher values however,
the energy-based mechanism naturally allows for greater variation in the data, such
as the differences between training and test data.

In the subsequent sectionswewill first describe the general Themodynamic princi-
ple of free energy (Sect. 2), followed by a brief outline of minimum-free energy clas-
sification (Sect. 3) and how it applies to automatic speech recognition (Sect. 4). We
then present experimental evidence of the effectiveness of the formulation (Sect. 5)
and discussion (Sect. 6).

2 Free Energy of a Stochastic System

A thermodynamic system at temperature T can exist in one of a large (potentially
infinite) number of states [6]. At each state s the system has an energy Es . If the
probability of state s is given by PT (s), the internal energy of the system, representing
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the capacity of the system to do work, is given by the average: UT = ∑

s PT (s)Es .
This capacity is counteracted by its internal disorder,which is factored into its entropy
HT = −∑

s PT (s) log PT (s) and the temperature T of the system. The Helmholtz
free energy of the system, measuring the useful work obtainable from the system
when it is closed, is thus defined by

FT = UT − T HT =
∑

s

PT (s)Es + T
∑

s

PT (s) log PT (s) (3)

At constant temperature, systems will drift towards the lowest free-energy states
[6], adjusting probabilities PT (s) until FT is minimized. The distribution PT (s) at
thermal equilibrium, obtained by minimizing FT , is the Gibbs distribution

PT (s) = 1

Z
exp

(−Es

T

)

(4)

where Z is a normalizing term. The corresponding equilibrium free energy is

FT = −T log
∑

s

exp

(−Es

T

)

(5)

3 Classification with Free Energy

Consider a class with a stochastic generative latent-variable model that assigns a
probability P(X |C) = ∑

s P(s|C)P(X |C, s) to any observation. To generate any
observation, the generative process must be in any latent state s and draw an obser-
vation from the state-conditioned distribution P(X |C, s).

For energy-based classification, we model every class C instead by a thermody-
namic system that can exist in one of a set SC of states. Within any state s the system
must have an energy EC

s (X) to result in the observation X . The equilibrium free
energy of this system, when it is at temperature T , is hence given by

FC
T (X) = −T log

∑

s

exp

(−EC
s (X)

T

)

(6)

The “energy” of each state is equated to negative log-likelihood of the combination
of the state and the observation, EC

s (X) = − log P(X, s, C)—intuitively, the greater
the energy needed to exhibit X , the less likely the system is to visit the corresponding
state. Using these values, the free energy of the system for any class comes out as

FC
T (X) = − log P(C) − T log

∑

s

exp

(

log P(X, s|C)

T

)

(7)
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We specify the minimum-energy classification rule as follows: the observation X
is assigned to the class that has the lowest free energy for X .

c(X) = argmin
C

FC
T (X) = argmin

C

(

− log P(C) − T log
∑

s

P(X, s|C)
1
T

)

(8)

This is a natural extension of the principle that thermodynamic systems evolve
towards minimum-energy configurations. Note that the objective in (8) remains a
function of the temperature parameter T . As T increases and the internal disorder
in the systems increases, the systems for the various classes will more frequently
visit low-energy states associated with X ; in the limit, T dominates and all classes
are equally capable of generating observation X . From a classification perspective,
T characterizes external influences such as noise or other factors that increase the
entropy of the systems. Note that at T = 1 (the “quiescent” condition) (8) reduces
to the conventional Bayesian classifier of (1).

4 Minimum Free Energy Decoding with Hidden Markov
Models

A particularly interesting family of stochastic models that can be cast into the free-
energy framework are stochastic functions of Markov chains, also known as Hid-
den Markov Models (HMMs) [7]. HMMs are frequently employed in automatic
speech recognition systems [1]. HMM-based speech recognition systems formulate
the Bayes classification paradigm as identifying the word sequence with the a pos-
teriori most likely state sequence for any speech recording X [8].

Ŵ = argmax
W

max
S

P(W )P(S|W )P(X |S, W ) (9)

where W represents any word sequence, P(W ) is the a priori probability of W , S is a
state sequence through the HMM for W , and P(S|W ) represents its probability. The
state output distributions of the HMM are often modeled by mixture distributions,
typically Gaussian mixtures. Thus the classification equation can be re-written as

Ŵ = argmax
W

max
S

P(W, S)

T
∏

t=1

P(Xt |st )

= argmax
W

max
S

P(W, S)

T
∏

t=1

∑

k

P(k|st )N (Xt ;μst ,k, �st ,k) (10)

Here Xt is the t th vector in X and st is the t th state in S. N () represents a Gaussian
distribution, P(k|st) represents themixtureweight of the k th Gaussian in theGaussian
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mixture distribution for state st , andμst ,k and�st ,k represent themean and covariance
of the kth Gaussian in st .

We can define K = k1, k2, . . . , kT , representing a sequence of Gaussians, one
each from states s1−sT . If each state is represented by a mixture of M Gaussians,
there are MT such sequences. Combining W and S into a single variable W , (10)
can be rewritten as:

Ŵ = argmax
W

log P(W) + log
∑

K

P(X, K |W) (11)

where

P(X, K |W) =
T

∏

t=1

P(kt |st)N (Xt ;μst ,k, �st ,k) (12)

The above is now easily recast into minimum-energy classification. Each class W
is represented by a thermodynamic system, which can be in one of a MT states,
where each state is a Gaussian sequence K . The energy of any state is given by
EW

K = − log P(X, K ,W). Consequently, the minimum free-energy classification
rule of (7) becomes, with minimal manipulation,

Ŵ = argmin
W

− log P(W) − T
∑

t

log
∑

k

P(kt |st)
1
T N (Xt ;μst ,k, �st ,k)

1
T (13)

This modified classification rule requires only minimal changes to the conven-
tional Viterbi decoder. The computation of state output distribution values as
∑

k P(kt |st )N (Xt ;μst ,k, �st ,k) is replacedby
(

∑

k P(kt |st )
1
T N (Xt ;μst ,k, �st ,k)

1
T

)T
.

The rest of the decoder remains unchanged. We refer to this modified decoding strat-
egy as “minimum-energy decoding”.

5 Experiments

We expect the benefits of minimum-energy decoding to be exhibited primarily when
there is mismatch between the distributions employed by the recognizer and the test
data. Our experiments were therefore aimed at evaluating the effect of minimum-
energy decoding under conditions of mismatch. One of the most common reasons
for mismatch in speech recognition systems is noise: test data to be recognized will
frequently be corrupted by various types of noise not seen in the training data. Note
that noise robustness is not the focus of this paper; rather it is the mismatch between
the acoustic models and the test data.

We conducted experiments on the Fisher database [9], digitally corrupted by
noise to introduce mismatch. The training data comprised the Fisher Phase I corpus
(LDC catalog No. LDC2004S13), including 5,850 two-channel audio files, each
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Table 1 Performance of minimum-energy speech recognition in terms of word error rate (%)

Temp (dB) 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 92.7 90.8 87.4 85.4 79.9 79.3 78.2 77.9 75.8 77.8 82.3

5 65.3 62.4 57.4 55.8 53.4 51.4 50.5 49.2 48.3 51.3 57.7

10 47.6 46.9 45.1 44.8 42.8 38.2 37.4 36.6 37.8 41.2 47.2

15 36.2 36.1 35.1 33.5 31.9 30.2 30.8 31.8 34.2 37.2 40.1

20 27.2 26.8 25.1 24.2 24.6 25.4 27.2 29.4 32.4 35.2 38.1

The T = 1.0 column corresponds to conventional decoding, representing Bayesian classification.
The bold numbers are the best results obtained in each row

containing a full conversation of up to 10min. 111,157 speech segments from the
corpus, representing nearly the entire data, minus our held-out test set, were used
to train the models. A set of 10,000 segments from the same data were used as our
held-out designated test set. The test set was corrupted to various signal-to-noise
ratios (SNR) by babble noise to introduce mismatch with respect to the the training
set.

We used the Carnegie Mellon University’s Sphinx-3 triphone-based automatic
speech recognition system [10] to perform all our experiments. All models were 3-
state left-to-right Bakis topologyHMMs.A total of 5000 tied states, eachmodeled by
amixture of 16Gaussians, were employed. The languagemodel was trained from the
Fisher training corpus and the Switchboard corpus. The baseline recognition word
error rate on the uncorrupted test set was 14.3%.

The test data were recognized at several temperatures. Table1 shows the word
error rates obtained at each SNR, against the temperature at which the data were
decoded.The column in the table corresponding toT = 1.0 is identical to the standard
Bayesian decoding, as explained earlier.

We note from the results that the optimal recognition performance is not obtained
at T = 1. The best result in all cases occurs at an elevated temperature. Moreover, as
the SNR decreases and, consequently, the degree of mismatch between the training
and test data increases, the optimal temperature increases. Thus, while the optimal
temperature at 0dB is close to 2.0, at 20dB the optimal temperature is 1.3. At greater
mismatch, e.g. at 0dB, the improvement from increased temperature is quite dra-
matic, amounting to about 17% absolute.

6 Conclusions

Elevation of temperature is observed to result in significantly improved recognition
under conditions of mismatch. Considering that just a simple adjustment has been
made to themanner inwhich state-output probabilities are computed during decoding
in order to achieve this, the improved classification scheme is promising for use in
speech recognizers. Itmust be noted that although these improvements are not as large
as that improved with sophisticated noise compensation algorithms, that is not the
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objective of our solution. The proposed algorithm makes no assumptions about the
reason for the mismatch; the only assumption is that while the systematic differences
between classes persist in the test data, the actual distribution may be shifted with
respect to the training data. Our purpose is to demonstrate that the proposed approach,
which is a natural extension of conventional Bayesian classification, could be used
to good effect under such conditions.

A key question that remains to be answered is that of selecting the optimal tem-
perature in an unsupervised manner. We continue to explore this problem.

More generally, the notions of “temperature” and “free energy” have often been
invoked in the context of annealing for optimization of objective functions defined
over a continuous support [11]. Classification, on the other hand, is typically a search
over a discrete support, and not usually viewed as an optimization problem. This is
generally considered to be distinct from the situations where notions of free energy
and temperature may be invoked. The novelty of our approach is to view the latter
as a special case of optimization, where the task is to find the optimal value over a
discrete support. In this context, automatic speech recognition systems present an
interesting case—although the support remains discrete, it is inifinite, representing
all possible sentences that may be spoken, suggesting that the concept of annealing
may be drawn upon if the search space could somehow be ordered and represented
over a continuum. However, how this may be done is unclear, and this remains a
topic for future research.
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A Nonlinear Acoustic Echo Canceller
with Improved Tracking Capabilities

Danilo Comminiello, Michele Scarpiniti, Simone Scardapane,
Raffaele Parisi and Aurelio Uncini

Abstract This paper introduces the use of a variable step size for a functional link
adaptive filter (FLAF). We consider a split FLAF architecture, in which linear and
nonlinear filterings are performed in two separate paths, thus resultingwell-suited for
online filtering applications, like the nonlinear acoustic echo cancellation (NAEC).
We focus our attention on the nonlinear path to improve the overall NAEC perfor-
mance. To this end, we derive a variable step size for the filter on the nonlinear path
that shows reliance not only on the nonlinear path, but on the whole split FLAF
architecture. The introduction of the variable step size for the nonlinear filter aims
at improving the modeling of nonlinear speech signals, thus yielding superior per-
formance in NAEC problems. Experimental results prove the effectiveness of the
proposed method with respect to the standard split FLAF involving a fixed step size.
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1 Introduction

Nonlinear acoustic echo cancellation (NAEC) systems are widely used to model
nonlinearities rebounding on acoustic echo paths that affect speech signals in hands-
free communication systems. Such nonlinearities are mainly caused by loudspeakers
and lead to a quality degradation of a speech communication. NAEC systems reduce
the effect of nonlinearities, thus improving echo cancellation performance.

In this paper, we focus on a recently proposed NAEC system, which is based
on the use of functional link adaptive filters (FLAFs) [5]. These filters are charac-
terized by a nonlinear expansion of the input followed by a linear filtering of the
expanded signal. In particular, we take into account a split FLAF (SFLAF) archi-
tecture [5], which separates the adaptation of linear and nonlinear elements in two
parallel paths, each one devoted to a specific task. This structure is particularly sig-
nificant in NAEC problems [4–6], since the linear path can be exclusively used to
estimate the acoustic impulse response, while the nonlinear path can be committed
to model any nonlinearity.

Usually, processing a speech signal is made difficult by its nonstationary nature.
Moreover, a nonlinearity, like that produced by a loudspeaker, emphasizes the non-
stationarity of a signal, such that modeling a distorted speech signal becomes very
difficult. In order to improve themodeling of nonlinearities, the tracking performance
of the nonlinear filter should be optimized according to the level of nonlinearity that
affects a speech signal at each instant [10]. To this end, we propose the use of a
variable step size for the adaptive filter on the nonlinear path of the SFLAF. Variable
step sizes have been largely used for adaptive filters in linear system identification
problems, such as acoustic echo cancellation and adaptive beamforming [1–3, 8,
11–13, 15]. However, in this paper the variable step size is used to provide improved
tracking performance in the presence of nonlinear speech.

The rest of the paper is organized as follows: the SFLAF architecture is described
in Sect. 2. In Sect. 3, a variable step size is introduced for the adaptive filter on the
nonlinear path, and, in Sect. 4, experimental results are shown. Finally, in Sect. 5 our
conclusions are presented.

2 The Split Functional Link Adaptive Filter

The split functional link adaptive filter (SFLAF) model [5], depicted in Fig. 1, is
a parallel architecture including a linear path and a nonlinear path. The former is
simply composed of a linear adaptive filter, which completely aims at modeling the
linear components of an unknown system; the nonlinear path is composed of a Ham-
merstein cascade model comprising a functional expansion block and a subsequent
adaptive filter.

At nth time instant the SFLAF receives the input sample x [n], which is stored in
the linear input bufferxL,n ∈ R

M = [

x [n] x [n − 1] . . . x [n − M + 1]
]T
, where M
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Fig. 1 The split functional
link adaptive filter

is the linear input buffer length, i.e., the length of linear adaptive filter wL,n ∈ R
M =

[

wL,0 [n] wL,1 [n] . . . wL,M−1 [n]
]T
. The adaptive filtering yields the linear output

yL [n] = xT
L,nwL,n−1. On the other hand, the nonlinear path receives a subvector of

xL,n as nonlinear input buffer:xFL,n ∈ R
Mi = [

x [n] x [n − 1] . . . x [n − Mi + 1]
]T
,

where Mi ≤ M is defined as the nonlinear input buffer length, which can be equal
to the linear input buffer length or just a portion of it. The nonlinear path receives
the nonlinear buffer xFL,n , which is processed by means of a functional expansion
block (FEB). The FEB consists of a series of functions, which might be a subset of a
complete set of orthonormal basis functions, satisfying universal approximation con-
straints. The term “functional links” refers to the functions contained in the chosen
set Φ = {

ϕ0 (·) , ϕ1 (·) , . . . , ϕQf−1 (·)
}

, where Qf is the number of functional links.
The FEB processes the input buffer by passing each element of the buffer xFL,n as
argument for the chosen functions, each one yielding a subvector gi,n ∈ R

Qf :

gi,n = [

ϕ0 (x [n − i]) ϕ1 (x [n − i]) . . . ϕQf−1 (x [n − i])
]

. (1)

The concatenation of such subvectors yields an expanded buffer gn ∈ R
Me :

gn = [

gT
0,n gT

1,n . . . gT
Mi−1,n

]T
(2)

where Me = Qf · Mi ≥ Mi represents the length of the expanded buffer. Note that
Me = Mi only when Qf = 1. The functional expansion chosen for this work is a
nonlinear trigonometric series expansion such that:

ϕ j (x [n − i]) =
{

sin (pπx [n − i]) , j = 2p − 2
cos (pπx [n − i]) , j = 2p − 1

(3)

where p = 1, . . . , P is the expansion index, being P the expansion order, and
j = 0, . . . , Qf − 1 is the functional link index. Therefore, in the case of trigono-
metric expansion, the functional link set Φ is composed of Qf = 2P functional
links. Convergence performance of a trigonometric FLAF is shown in [9]. Note that
(3) actually refers to amemoryless expansion, since it does not involve cross-products
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of the nth input sample with previous samples. However, the same process holds also
for functional expansion with memory. The choice of involving some memory may
be decisive when the nonlinearity introduced by the system to be identified is char-
acterized by a dynamic nature, i.e., depends also on the time instant. In our model,
we consider the memory of a nonlinearity by taking into account the outer products
of the i th input sample with the functional links of the previous K input samples,
where K represents the memory order (see [5] for a detailed explanation).

The achieved expanded buffer gn is then fed into a linear adaptive filter wFL,n ∈
R

Me = [

wFL,0 [n] wFL,1 [n] . . . wFL,Me−1 [n]
]T
, thus providing the nonlinear out-

put yFL [n] = gT
n wFL,n−1. The SFLAF output results from the sum of the two path

outputs:
y [n] = yL [n] + yFL [n] (4)

and, thereby, the overall error signal1 is:

e [n] = d [n] − y [n] = d [n] − xT
L,nwL,n−1 − gT

n wFL,n−1, (5)

which is used for the adaptation of both adaptive filters. In (5), d [n] represents the
desired signal including any near-end additive noise v [n] and a near-end speech con-
tribution s [n]. We use a standard normalized least-mean square (NLMS) algorithm
(see for example [14, 16]) to adapt the coefficients of both wL,n and wFL,n:

wL,n = wL,n−1 + μL
xL,ne [n]

xT
L,nxL,n + δL

(6)

wFL,n = wFL,n + μFL [n]
gne [n]

gT
n gn + δFL

(7)

where δL and δFL are regularization factors, and μL is a fixed step size for the filter
on the linear path, and μFL [n] is the variable step size parameter, on which we focus
in the next section in order to improve the nonlinear modeling performance.

3 A Variable Step Size for the Nonlinear FLAF

In this section, we derive the variable step size μFL [n] of (7), thus providing a
reliable solution to nonlinear speech modeling. In order to yield an algorithm easy to
control in practical implementations, similarly to what done in [12] for linear echo
cancellation, the derivation is taken considering that no a priori information must be
required about the nonlinearity to be modeled.

1It may also be denoted as a priori output estimation error [14] to be distinguished from the a priori
estimation error, which is defined as ea [n] = e [n] − v [n], where v [n] is additive noise.



A Nonlinear Acoustic Echo Canceller with Improved Tracking Capabilities 239

We start from the consideration that the desired signal d [n] is composed of a
signal x̃ [n], which is generated by the far-end signal convolved with an acoustic
impulse response and distorted by any nonlinear process. The desired signal also
contains a near-end contribution s [n] and any additive noise v [n], therefore, it can
be written as:

d [n] = x̃ [n] + s [n] + v [n] (8)

In order to derive the optimal variable step size parameter, we assume that x̃ [n], s [n]
and v [n] are statistically uncorrelated and we take the squares and the expectations
of both sides of (8), thus resulting:

E
{

d2 [n]
} = E

{

x̃2 [n]
} + E

{

s2 [n]
} + E

{

v2 [n]
}

(9)

According to the least perturbation property [14], at steady state, i.e., for n → ∞,
the weights of an adaptive filter no longer change during the adaptation. Therefore,
it is reasonable to assume the following approximation:

E
{

x̃2 [n]
} ≈ E

{

y2 [n]
} + E

{

q2 [n]
}

. (10)

In (10) an irreducible noise term q [n] has been introduced due to the nonlinear
approximation. Therefore, Eq. (9) turns into the following one:

E
{

d2 [n]
} − E

{

y2 [n]
} = E

{

s2 [n]
} + E

{

v2 [n]
} + E

{

q2 [n]
}

. (11)

The right member of (11) contains the near-end contribution and the irreducible
noise, that may be approximated to the a posteriori output estimation error ε [n] at
steady state [3, 14]. Therefore, Eq. (11) can be written as:

E
{

d2 [n]
} − E

{

y2 [n]
} ≈ E

{

ε2 [n]
}

. (12)

However, in order to achieve the optimalμFL [n], we need to express ε [n] in terms of
the a priori error e [n]. A relation between the a posteriori and a priori error signals
may be derived starting from the definition of ε [n]:

ε [n] = d [n] − xT
n wL,n − gT

n wFL,n (13)

Replacing the update Eqs. (6) and (7) in (13), and taking into account the a priori
error signal definition (5), it is possible to achieve the following relation:

ε [n] = (1 − μL − μFL [n]) e [n] (14)

The step size μL in (14) may be a fixed value or even a variable parameter achieved
by any variable step size technique. However, the goal of the paper is to investigate
the effects of a variable step size for the nonlinear modeling and thus we consider
μL as a fixed value. Therefore, we can replace Eq. (14) in (12), thus resulting:
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E
{

d2 [n]
} − E

{

y2 [n]
} = |1 − μL − μFL [n]|2 E

{

e2 [n]
}

(15)

from which we can derive an expression of the variable step size parameter μFL [n]:

μFL [n] =
∣

∣

∣

∣

∣

1 − μL −
√

E
{

d2 [n]
} − E

{

y2 [n]
}

E
{

e2 [n]
}

∣

∣

∣

∣

∣

. (16)

From a practical point of view, we evaluate the expectations in terms of power
estimates, as done for example in [12], thus achieving:

μFL [n] =
∣

∣

∣

∣

∣

∣

1 − μL −
√

∣

∣σ̂ 2
d [n] − σ̂ 2

y [n]
∣

∣

σ̂ 2
e [n] + ξ

∣

∣

∣

∣

∣

∣

. (17)

In (17), the general parameter σ̂ 2
θ [n] represents the power estimate of the sequence

θ [n], being θ = {d, y, e}, and it can be computed as:

σ̂ 2
θ [n] = βσ̂ 2

θ [n − 1] + (1 − β) θ2 [n] (18)

where β is a forgetting factor, whose value can be chosen as β = 0.99. A small pos-
itive number ξ = 10−4 is added in (17) to avoid divisions by zero. Another practical
consideration is that, in presence of high dynamic nonlinearities, the power of the
estimate of the output signal σ̂ 2

y [n] may be larger than the power of the desired signal
σ̂ 2

d [n]; this is the reason why the absolute value of the terms under the square root
is considered.

4 Experimental Results

We assess the effectiveness of the proposed FLAF-based architecture in a nonlinear
acoustic echo cancellation problem. Experiments take place in a simulated room
environment with a reverberation time of T60 ≈ 100 ms measured at 8 kHz sam-
pling frequency. A far-end signal x [n] is reproduced by a simulated loudspeaker
and captured by a microphone. In order to have a complete view of the effects of
the nonlinearity, we use both a colored noise and a speech signal as far-end input.
The colored noise signal is generated by means of a first-order autoregressive model,
whose transfer function is

√
1 − θ2/

(

1 − θ z−1
)

, with θ = 0.8, fed with an indepen-
dent and identically distributed (i.i.d.) Gaussian random process. In order to simulate
a loudspeaker distortion, we apply a symmetrical soft-clipping nonlinearity to the
far-end signal [6, 7]:
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Fig. 2 Scheme of the NAEC
system

y [n] =
⎧

⎨

⎩

2
3ζ x [n] , 0 ≤ |x [n]| ≤ ζ

sign (x [n]) 3−(2−|x[n]|/ζ )2

3 , ζ ≤ |x [n]| ≤ 2ζ
sign (x [n]) , 2ζ ≤ |x [n]| ≤ 1

(19)

where 0 < ζ ≤ 0.5 is a nonlinearity threshold. As also described by Fig. 2, the signal
y [n] is then convolved with an acoustic impulse response related to the simulated
room environment, thus achieving the desired signal d [n] acquired by amicrophone.
The signal d [n] contains also near-end background noise v [n], in the formof additive
Gaussian noise, providing 20 dB of signal-to-noise ratio (SNR). The length of the
acoustic impulse response is M = 300.

Performance is evaluated in terms of the echo return loss enhancement (ERLE),
expressed in dB as: ERLE [n] = 10 log10

(

E
{

d2 [n]
}

/E
{

e2 [n]
})

. We use the fol-
lowing parameter setting: input buffer length Mi = M , fixed step-size parameter
μL = 0.2, regularization parameter δFL = 10−2 for both the filters of the SFLAF,
expansion order P = 10, memoryless functional links (i.e., K = 0), and distortion
threshold ζ = 0.15. We compare the results of the proposed VSS-SFLAF with a
SFLAF having the same parameter setting of the VSS-SFLAF, but a fixed step-size
value μFL = 0.2.
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Fig. 3 Performance behavior in terms of ERLE in case of colored noise input
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Fig. 4 Performance behavior in terms of ERLE in case of female speech input

In case of colored noise, theVSS-SFLAFachieves a good improvement in terms of
tracking performance over the SFLAF, as it is possible to see in Fig. 3, while tending
to a similar behavior at steady state. Results becomes more significant when using
an input signal with a high nonstationarity, i.e., a speech signal, since performance
improvements are more difficult to be obtained in this case. As depicted in Fig. 4,
a gain over the SFLAF can be achieved, not only in proximity of the peaks of the
speech signal, but for the whole length of the signal.

5 Conclusions

In this paper, a functional link-based nonlinear acoustic echo canceller is proposed
involving a variable step size on the nonlinear path of the architecture. The proposed
VSS-SFLAF takes advantage from the use of the variable step size, thus improving
the tracking performance of nonlinear speech signals. Future research will include
the use of a joined variable step size that governs the convergence performance of
both filters on the linear and nonlinear paths.
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When the Game Gets Difficult, then it is Time
for Mimicry

Vijay Solanki, Alessandro Vinciarelli, Jane Stuart-Smith and Rachel Smith

Abstract The computing community shows significant interest for the detection
of mimicry, one of the names designating the tendency of interacting people to
converge towards commonbehavioural patterns. Thiswork shows experimentswhere
speaker verification techniques, originally designed to detect fraudulent attempts
to imitate others, are used to automatically detect the phenomenon. Furthermore,
the experiments show that mimicry tends to be more frequent when people deal
with harder collaborative tasks, thus suggesting that one of the functions of the
phenomenon is tomake communication easier ormore effective in case of difficulties.

Keywords Mimicry · Social Signal Processing ·Mixtures of Gaussians

1 Introduction

Automatic analysis of social and psychological phenomena taking place in
conversations has attracted significant attention in recent years, especially after the
development of domains like Social Signal Processing [20] and Computational Par-
alinguistics [18]. In particular, the computing community hasmade significant efforts
aimed at automating the analysis of a large number of social phenomena like, e.g.,
dominance [14], personality traits [21], conflict [7], emotions [22], and roles [17]
(see [21] for an extensive survey).
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Mimicry is one of the phenomena that has attracted most attention (see [11] for an
extensive survey). The literature adopts different names—e.g. accommodation [12],
interpersonal adaptation [9], synchrony (in particular when the convergence con-
cerns temporal behavioural patterns) [10], etc.—but they all refer to the unconscious
tendency of people to imitate others they interact with. For this reason, this article
proposes the use of speaker verification approaches—originally conceived to detect
fraudulent attempts to reproduce voice and speech of others [6]—to detect mimicry.

The key-idea of the approach applies to dyadic conversations involving two speak-
ers A and B. If p(X |Θ A) and p(X |Θ B) are statistical models of the acoustic evi-
dence produced by A and B (X is a sequence of observation vectors extracted from
an utterance, ΘA and ΘB are the parameter sets of the two models), then the like-
lihoods p(X B |Θ A) and p(X A|Θ B) should improve when there is mimicry (where
XY is a sequence of observation vectors extracted from speech samples uttered by
speaker Y ).

Preliminary experiments show that the improvement of the likelihoods above can
be actually observed and, in a large number of cases, it is statistically significant.
Furthermore, the experiments show that statistically significant improvements tend to
be more frequent when the subjects speak longer. In the interaction scenario adopted
for the experiments, this means that the subjects find it more difficult to address a
task they have been assigned. Thus, the results seem to suggest not only that the
approach detects and measures mimicry, but also that the function of mimicry (or at
least one of its functions) is to make interaction easier during difficult collaborative
efforts.

The rest of the paper is organized as follows: Sect. 2 introduces the mimicry
problem from a linguistic and psychological point of view, Sect. 3 introduces data
and scenario, Sect. 4 describes the approach proposed in this work, Sect. 5 reports on
experiments and results, and Sect. 6 draws some conclusions.

2 Previous Work

Communicating with another person is a shared experience which necessitates the
co-operation of both parties involved. This interactive, co-operative process requires
some give and take from the speakers in order to ensure successful communication.
Speakers have been observed to change their speech patterns in relation to the qual-
ities of their conversational partner. Within the field of linguistics, this phenomenon
was termed speech accommodation [12]. It has been found that, when exposed to
the speech of another person, speakers shift their speech patterning either towards
or away from that which they are presented with. In more recent years, it has been
discovered that this phenomenon can be found at the fine grained level of phonetic
changes [3, 15, 16, 19]. Generally speaking, speakers have been shown to modulate
the realisation of both segmental (eg. VOT, f 1/ f 2 in vowels) and supra-segmental
(eg. pitch, speech rate) features of speech in response to being exposed to an excerpt
of speech. The vast majority of studies of this kind tend to base their findings on
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small excerpts of carefully controlled stimuli, allowing for a great deal of experi-
mental control at a fine grained level. This approach has been of great benefit as the
findings demonstrate a robust accommodative effect even when subjects are given
minimal information from the speech signal to accommodate to.

Additionally, these studies have mostly focused on demonstrating that accommo-
dation can be found in single elements of a person’s phonetic repertoire (i.e. only
VOT or only f 1/ f 2 in vowels). Again, this has provided an excellent grounding
for the investigation of this phenomenon as it has been demonstrated to manifest
in a wide array of phonetic elements. However, recently there has been a move to
begin to assess accommodation in a more holistic manner. For instance, [4] assessed
the degree to which listeners accommodated to the fundamental frequency (pitch /
f 0) of a male speaker and indeed found evidence for accommodation as measured
by degree of fundamental frequency similarity. They also investigated the degree to
which people can perceive accommodation to fundamental frequency.Whilst accom-
modation was detected, the results did not correlate with those collected from the
first experiment. They conclude by highlighting that phonetic accommodation as
assessed from a perceptual standpoint constitutes a number of phonetic features and
is likely to be perceived holistically.

Further to this, there is also a move to begin to capture accommodation in dyadic
interactions rather than in response to pre-recorded stimuli [1]. Attempting to com-
bine both a holistic measure of phonetic accommodation with dyadic data using
traditional analyses as applied by phoneticians would be very costly and labour inten-
sive. All the phonetic elements of a conversation would need to be transcribed and
analysed manually. The results would then need to be collected and catalogued into a
searchable corpora with information not only about the phonetic variant in question
but also about the surrounding phonetic environment. Whilst there are some tools
designed to help in transcription1 and analysis [13], they are still not wholly trusted
by the community and can only partially aid in the work. An alternative approach
would be to develop a holistic measure which captures changes in phonetic variance
of both speakers over time.

3 Data and Scenario

The experiments contained in this work were performed on a corpus of 6 conversa-
tions (12 unacquainted participants in total) elicited using theDiapixUK scenario [5].
It consists of twelve images, eachwith a counterpart that is the same apart from twelve
slight differences. Participants are tasked with finding the differences between the
images, using verbal communication only. Here, two unacquainted participants were
required to find all of the differences within 15min. In order to limit the effect of

1FAVE (Forced Alignment and Vowel Extraction) Program Suite, I. Rosenfelder, J. Fruehwald, K.
Evanini and Y. Jiahong.



250 V. Solanki et al.

non-verbal communication as much as possible, the participants sat in opposite cor-
ners of a sound attenuated booth, with a divider between them. They could not see
each other but could still hear one another.

Overall, the 6 pairs spoke for 9h and 37min. Each pair went through all the
12 images of the Diapix Task, this allows the corpus to be split into 12× 6 = 72
intervals, each corresponding to one of the pictures (the average duration is 8min
and 1s). The task images were randomised before presentation to the different pairs.
In this way, effects due to the position of a picture (e.g., tiredness effects for the
pictures addressed at the end) should be limited. The participants were all females
born and raised in the Glasgow conurbation. The main reason behind this choice is
that gender and accent have been shown to play a role in mimicry [2, 8]. The age
range is 19 to 65 with an average of 30.9.

4 The Approach

The approach proposed in thiswork includes threemain steps. The first is the segmen-
tation of the speech stream into words (this task is currently implemented manually),
the second is the conversion of each word into a sequence of feature vectors (in the
case of this work, the first 12 Mel Frequency Cepstral Coefficients), the third is the
actual detection of mimicry. Given that the first step is performed manually, the rest
of this section focuses only on the latter two.

4.1 Feature Extraction

Everyworduttered during the conversations of the corpus is converted into a sequence
of 12-dimensional MFCC vectors. The features are extracted at regular time steps
of 10 ms from 30 ms long analysis windows. The reasons for using such a feature
extraction process are mainly two. On the one hand, MFCCs have been found to
be effective in speaker verification tasks [6]. On the other hand, MFCC account
for speaker independent aspects of speech towards which the subjects can actually
converge.

4.2 Mimicry Detection

Figure1 shows the main elements of the approach. The conversations are first seg-
mented into intervals that correspond to one of the Diapix pictures (see Sect. 3). For a
given interval, all the words are converted into sequences of 12-dimensional MFCC
vectors X (A)

i and X (B)
k , where A and B are the two speakers involved in the same

conversation. The words have been segmented manually and it is possible to know
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Fig. 1 The figure shows the experimental approach proposed in this work

their start times t (A)
i and t (B)

k (the words uttered by the two speakers are analyzed
separately).

For every word i of speaker A, it is possible to estimate the following likelihood
ratio:

d(A)
i = p(X (A)

i |Θ B)

p(X (A)
i |Θ A)

, (1)

where X (A)
i is the sequence of vectors extracted from the word, and Θ A and Θ B are

the parameter sets of the models trained over A and B. By switching A and B in the
equation above, it is possible to define d(B)

k for the words uttered by B.
In the experiments of this work, p(X |Θ A) and p(X |Θ B) are estimated using

Mixtures of Gaussians:

p(X |Θ) =
|X |
∏

l=1

G
∑

n=1

πnN (xl |μn,Σn) (2)

where |X | is the number of vectors in x, G is the number of Gaussians in the mixture,
πl is the mixing coefficient of Gaussian l in the mixture, and Σl is the covariance
matrix in the same Gaussian (the speaker index has been dropped for clarity).

5 Experiments and Results

Since every conversation can be segmented into 12 intervals (see Fig. 1), theMixtures
ofGaussians have been trained over the first interval of each conversation and used for
testing over the rest of the data. In this way, the test set corresponds to 11× 6 = 66
segments that can be further multiplied by 2 because words uttered by different
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Fig. 2 The charts show, for ach conversation the correlations between likelihood ratio and time
observed for each Diapix picture. The two bars for every picture correspond to the two speakers.
Asterisk and double asterisk correspond to significance level 0.05 and 0.01, respectively

speakers are considered separately. As a result, the test set includes 66× 2 = 132
samples.

For every sample that includes words uttered by A, it is possible to estimate the
correlation between d(A)

i and t (A)
i . If the correlation is statistically significant and

positive, it means that A tends to get closer to B and, hence, A tends to mimick B.
Viceversa, if the correlation is negative and statistically significant, it means that A
tends to diverge from B. When the correlation is not statistically significant, there
is no effect. The same considerations apply to B and the correlation between d(B)

k

and t (B)
k .

Figure2 shows, for each pair of subjects, the correlations measured over the 11
time intervals used for test. The two bars for a given time interval correspond to the
two speakers. In this way, it is possible to test whether each of the subjects converges
individually towards her interlocutor. Out of 132 correlations, 51 are statistically
significant with confidence level α = 0.05 or less. The probability of this happening
by chance, estimated with a two-tailed binomial test, is 10−12.

Observing a large number of statistically significant correlations, well beyond
what is expected by chance, suggests that the approach actually distinguishes between
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Table 1 The table reports the average time (± the standard error) required for completing a task in
Positive (the largest significant correlation is positive), Negative (the largest significant correlation
is negative) and Null (there is no significant correlation) condition

Condition Positive Negative Null

Avg. Length (s) 585± 51 427± 43 430± 33

The Positive condition is associated to tasks that require longer time to be addressed

intervals over which mimicry takes place and intervals over which it does not. How-
ever, further confirmation can come from the relationship between the outcome of
the approach and an independent observed variable. Table1 shows the length of the
time intervals where statistically significant positive correlation is observed for at
least one of the two speakers. In other words, the figure shows the duration of those
intervals where, according to the approach proposed in this work, at least one of
the two speakers converges towards the other. The chart clearly shows that mimicry
tends to take place more frequently when spotting the differences in a picture takes
more time.

The data of Table1 can be interpreted in two ways: the first is that the more two
people talk together, the more they tend to imitate one another. The second is that
mimicry tends to take place more frequently when the subjects find it difficult to spot
the differences. If the first explanation was true, mimicry should be more frequent
when the subjects deal with the last pictures (at that point, the speakers have been
interacting for long time). However, this is not what can be observed in Fig. 2 and,
therefore, the second explanation appears to be more likely.

6 Conclusions

The experiments of this work show that methodologies inspired by speaker verifica-
tion can help to detect mimicry, i.e. the unconscious tendency to imitate others during
social interactions. Furthermore, the experiments show that the proposed approach
tends to detectmimicrymore frequentlywhen the subjects speak longer. In the partic-
ular scenario adopted for the experiments, this means that the subjects find it difficult
to address the task they are assigned. Thus, the experiments suggest that the function
of mimicry is, at least in the case of the corpus used in this work, to help subjects
when they are in difficulty.

Still, the experiments of this work are preliminary and the speaker verification
methodologies adopted are basic. Therefore, future work includes two main direc-
tions. The first is to adopt different feature extraction techniques to account for
different aspects of speech. The second is to move beyond Mixtures of Gaussians to
use Hidden Markov Models that take into account temporal aspects and, possibly,
the word being uttered.
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Predicting Cognitive Load Levels
from Speech Data

Jing Su and Saturnino Luz

Abstract An analysis of acoustic features for a ternary cognitive load classification
task and an application of a classification boosting method to the same task are pre-
sented. The analysis is based on a data set that encompasses a rich array of acoustic
features as well as electroglottographic (EGG) data. Supervised and unsupervised
methods for identifying constitutive features of the data set are investigated with the
ultimate goal of improving prediction. Our experiments show that the different tasks
used to elicit the speech for this challenge affect the acoustic features differently in
terms of their predictive power and that different feature selection methods might
be necessary across these sub-tasks. The sizes of the training sets are also an impor-
tant factor, as evidenced by the fact that the use of boosting combined with feature
selection was enough to bring the unweighted recall scores for the Stroop tasks well
above a strong support vector machine baseline.

Keywords Paralinguistic information · Cognitive load modelling · Feature selec-
tion · Classification

1 Introduction

Non-verbal and paralinguistic characteristics of speech have received increasing
attention from researchers. It is now commonly accepted that non-verbal sounds
form an important part of human communication [3], and that non-verbal features
may help identify important structural aspects of speech interaction [8] in both natural
and laboratory settings [2, 9, 10]. A more recent trend in the use of paralinguistic
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features is their analysis for predicting levels of cognitiveworkload.Determination of
workload levels is relevant in fields such as ergonomics, where it could help improve
human computer interaction [5]. While most research in this field has been based on
neurophysiological measuring, which involves specialised and intrusive equipment,
the use of voice features for assessment of cognitive load levels is seen as promising
enough to motivate a COMputational PARalinguistic ChallengE, ComParE [11].

This paper comprises a study of supervised and unsupervised machine learning
methods applied to the prediction of cognitive load levels on a dataset distributed as
part of theComParE’14 dataset. As this dataset contains a large number of speech and
electroglottographic features, we investigated unsupervised and supervised dimen-
sionality reduction methods in order to eliminate contingent features of the data.
We then trained ensambles of classifiers (using the boosting technique) in order to
distinguish among the different (discretised) levels of cognitive load.

Experiments showed that the cognitive load prediction task is better handled with
supervised feature selection and different classification schemes. Contrary to our
expectations, principal component analysis (PCA) and Discrete Cosine Transform
(DCT) feature extractionmethods proved quite ineffective.However,with supervised
feature selection a boosting global model achieved unweighted average recall (UAR)
scores 20.5 and 18%higher than a published baseline based on a tuned support vector
machine (SVM) classifier [11], in a Stroop time pressure and dual task, respectively.
Similar per-taskmodelswere not quite as successful, but still yielded an improvement
of 12% in the Stroop dual task data.

2 The Dataset

The Cognitive Load with Speech and EGG (CLSE) dataset [11, 14] was designed
to support the investigation of acoustic features and evaluation of algorithms for the
determination of a speaker’s cognitive load and working memory during speech.
The CLSE database comprises recordings of 20 male and 6 female native Australian
English speakers. These recordings encompass four types of experimental tasks,
namely: reading span Sentence, reading span Letter, Stroop time pressure and Stroop
dual task. These tasks define four partitions of the CLSE dataset. In each case, the
data instances are classified objectively into three distinct cognitive load levels: low
(L1), medium (L2) and high (L3) levels.

The “span” tasks are used to measure the working memory capacity of a subject
[14], in which participants are required to remember concepts or objects in the pres-
ence of distractors [4, 11]. The reading span task is based on the protocol described
by Unsworth et al. [13, 14]. It required the participants to read a series of (between
two to five) possibly illogical short sentences, indicate whether the sentence read was
true or false, and then remember a single letter presented briefly between sentences.
This setup allowed the gatherer of the dataset to label memory load levels objectively
as: L1, for data from the first sentence, L2, for data from the second sentence, and L3,
for data from the third, fourth, and fifth sentences (for which no further distinctions
were made).
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Table 1 Summary of
instance quantities in each
type of task

Training Validation Test

Reading span letter 815 499 576

Reading span sentence 825 525 600

Stroop time pressure 99 63 72

Stroop dual task 99 63 72

Total 1838 1150 1320

The Stroop tasks (Stroop time pressure and Stroop dual task), named after JR
Stroop’s seminal experiments [12], aim to induce increased cognitive load through
presentation of conflicting stimuli to the participant. In this case, the stimuli are word
and colour. The participant is asked to name the font colour of words corresponding
to different colour names. Data instances produced in conditions where both the
colour and the word that named the colour were the same were labelled as L1 (low
cognitive load). Where the font colours and the colour names differed, data were
labelled L2 or L3 (medium or high level of cognitive load). The high level was
defined in terms of the time pressure on the subject (i.e. the colour had to be named
in a short period of time, namely 0.8 s) or in terms of task complexity (i.e. participants
were required to perform a tone-counting task in addition to naming the font colour).
These distinctions characterise the Stroop time pressure and Stroop dual task subsets
of the CLSE dataset.

Table1 shows the standard “splits” of the CLSE dataset. The validation and the
test set contain roughly same number of instances, while the training set contains
about 50% more data. Among the four types of tasks employed in data collection,
the two span tasks occupy the majority of the dataset while the two Stroop tasks
comprise only about 10% of each dataset. Considering that the dataset has 6,374
attributes in total, one can readily see that the Stroop sets are affected more severely
by high dimensionality.

A fair portion of features in the training set have very low variance. This includes,
for instance, all quadratic regression coefficients of level 1, and a number of other
prosodic features. Some low level descriptors of spectral features also suffer from this
problem. These features are nearly constant and bring little discriminatory power to
the classification model. We therefore removed all features with standard deviation
less than 0.01. In Total 252 features (3.95% of all features) were removed from the
training set, as a preprocessing step for all modelling experiments in this paper.

3 Predicting Cognitive Load Labels

A training set containing 1,838 instances described by 6,374 features challenges
most classifiers since the data points are sparse with respect to dimensionality. The
sparsity is more severe for models trained on subsets that contain only instances of a
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particular task (per task models). We therefore started by assessing the potential of
three dimensionality reduction methods in rendering the dataset more tractable by
learning algorithms.

3.1 PCA Experiments

PCA seeks to reduce dimensionality while preserving most of data variation. Apply-
ing PCA to a dataset transformed so that all features are scaled and centered,we found
that the first eight principal components explain over 95% of cumulative variance.
We took 20 PCs and reencoded training and validation sets into this new space. The
cleaned features are projected onto the 20 PCs, and used for training (the transformed
training set has 1,838 instances with 20 features). When testing with the validation
set, features need to be projected to the 20 PCs before the prediction step.

Here a globalmodel is trained and used to predict on each instance in the validation
set.UARscoreswere collected for each task.Contrary to our expectation, both a naive
Bayes classifier and the AdaBoost classifier failed to produce satisfactory results.We
found that the UAR scores were far below baseline with the SVM global model of
[11]. We speculate that the reason of this low performance on the PCA-reduced sets
is the lack of an effective method for normalising the data per speaker on the training
and test set. In the absence of such normalisation, PCA may be dominated by a few
predominant features which can easily lead this method to overfit.

3.2 DCT Experiments

Discrete Cosine Transform (DCT) expresses a finite sequence of data points as a
weighted sum of cosine functions with different frequencies. DCT is similar to Dis-
crete Fourier Transform (DFT) but only has real spectrum. DCT is widely used
in image audio and video compression because it has strong energy compaction
property [1] by which most signal information concentrates in a few low-frequency
components.

In this study we apply DCT and inverse DCT transformation to the feature set
before classificationwith a global model. In order to test the scale of effective compo-
nents, a series of trials are made with 2 to 50% low-frequency components. Together
with DCT transformation, naive Bayes classifier, boosting classifiers with decision
stump base learner and decision tree base learner as well as SVM classifiers with
RBF kernel and polynomial kernel are tested with the validation set. However, none
of the tests have higher UAR score than the baseline in each task.
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Table 2 The effect of feature selection with AdaBoost classifier on validation set

FS = No(%) FS = Yes (%) Baseline

Reading span sentence 48.50 55.39 61.3

Stroop time pressure 57.14 65.08 54.0

Stroop dual task 49.21 52.38 44.4

UAR scores are from the global model, and AdaBoost is trained 30 iterations with decision tree
base classifier. FS indicates feature selection with the CfsSubsetEval filter

3.3 Feature Selection and Global Model

Faced with the failure of an unsupervised method of dimensionality reduction, we
attempted a supervised approach. The CfsSubsetEval feature filter provided by the
Weka package [6] was employed. It selects attributes by individual correlation with
the class variable and inter-correlation with other attributes. Subsets of features that
are highly correlatedwith the classwhile having low intercorrelation are preferred [7].
We compare global model prediction UAR scores with and without CfsSubsetEval
pre-filtering in Table2.

On classifier selection, we chose Boosting with a decision tree base learner
rather than decision stump. Table2 shows the efficacy of feature selection combined
with an AdaBoost.M1 with Decision Tree base learner. Without feature selection,
AdaBoostM1 beats the SVM baseline slightly in the Stroop tasks, but is 13% lower
than baseline in the reading task. This observation shows the power of ensemble
classification in this dataset when there is a proper base learner. When feature selec-
tion is in use, the global model achieves higher accuracy for each task. In Stroop
time pressure task, the best UAR is 65.08%, an improvement of 11 points over the
baseline. In the Stroop dual task, the best UAR is 52.38%, an 8-point improvement
over the baseline. However, reading span is still 6% lower than baseline. In the next
section we investigate per task models, where classifiers are trained on relatively
more uniform training sets.

3.4 Per Task Model

In the above section, we predicted objective load level with a global model which
trains a single model on all available instances and predicts on a validation set of
each task. In this section we apply an alternative approach, training one model with
data from one task and predicting on a validation set of the corresponding task. This
is called a per task model [11].

The split training sets are filtered in the same way as for the above described
experiments. Features with standard deviation less than 0.01 are pre-filtered. The
CfsSubsetEval filter selects 93, 74 and 51 features by sequence for each task. Then
AdaBoost.M1 is employed as a classifier for the corresponding per task models.
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Table 3 The effect of feature selection with AdaBoost

Ada+DT(%) Ada+DS(%) Baseline (%)

Reading span sentence 54.98 48.86 61.2

Stroop time pressure 68.25 73.02 74.6

Stroop dual task 66.67 71.43 63.5

UAR scores are from Per Task model, and AdaBoost is trained 20 iterations with each base learner

The number of training iterations is set to 20 for each base learner. Since the Decision
Tree (DT) base learner works well for the Global model, it is used again. Moreover,
we also use a Decision Stump (DS) base learner for comparison.

The results are shown in Table3. Decision Stump, as the simplest tree structure,
outperforms Decision Tree in AdaBoost for both Stroop tasks. This observation
comes fromper taskmodel prediction on the validation set and seemsquite surprising.
In order to test its validity, we further analyse the Stroop Dual Task model prediction
within the training set. Figure1a shows the performance of both DS and DT base
learners under different numbers of AdaBoost iterations. It is clear that AdaBoost
with the DT base learner reaches 100% UAR in the training set regardless of the
number of training steps (10 to 100 iterations). At the same time, its prediction
accuracy on the validation set oscillates between 61.90 and 68.25%. When we run
more iterations for DT, there is no clear trend of increase or decrease in UAR on the
validation set. This suggests over-fitting. In this situation, accuracy on the validation
set depends on randomness of the decision boundary in the hypothesis space, and
the boundary margin is already too narrow.

On the other hand, the simpler DS model improves with more training steps. Its
UAR score improves in both training set and validation set when iteration increases
from 10 to 20. The accuracy on the training set is far below 100%, but cannot be
improved when iteration is over 20. DS reaches its upper bound of prediction power.
We have seen that DS and DT both exhibit their best results on the Stroop Dual Task
model, and there is no need to explore a more complex model structure. The fact
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Fig. 1 Per task models of Stroop Dual Task (a) and Reading span task (b); AdaBoost.M1 with
Decision Stump and Decision Tree base learners
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that DS outperforms DT as an AdaBoost base learner is therefore to be expected.
The sub-tasks with the smallest numbers of instances (Stroop dual, and Stroop time
pressure) tend to favour simpler models that are less prone to overfitting.

However, DT outperforms DS as a base learner for AdaBoost.M1 in the Reading
Span Sentence task (Table3). DS training UAR remains below 50% when training
iterations increases from10 to 100 (Fig. 1b). This is a sign of under-fitting, suggesting
that DS cannot represent the variances in a Reading task with 825 instances (Table1).
As in the previous per task Stroop models, the DT based classifier’s training UAR
is 100% when iteration equals 10, indicating that it does not suffer from the same
problem.Unlike the previous case, however, in the reading taskmodel, theUARofDT
on the validation set has a roughly increasing trend with more iterations. Prediction
power is increasing with a more complex model, so here there is no indication of
over-fitting. More iterations or more complex DT base learners could induce better
UAR on the validation set.

4 Discussion

In this paper we proposed solutions for classifying three levels of objective load,
with evidence of 6,374 speech features. In contrast to the rich feature set, there
are only 1,838 instances spanning four different tasks. Since a moderately tuned
SVM classifier only achieves a 44.4% baseline on a Stroop task, our results serve
to emphasise the importance of data cleansing and dimensionality reduction in this
study.

We found that dimensionality reduction by feature extraction through PCA and
DCT harms performance in boosting as well as other models. This may be due to the
differences of mean values among the features and the lack of an effective unsuper-
vised way of normalising these values on a per speaker basis. On the other hand, the
supervised CfsSubsetEval filter proved to be an effective feature selection method.
The features with high correlation with class variable and low inter-correlation with
other features were favoured. Multicollinearity is thus alleviated in this large feature
set. The reduced feature set mainly contains frequency signals (MFCC and F0) and
sound quality measures (log HNR), instead of energy related features (RMS). The
reduced feature set does improve accuracy and improves on the SVM baseline for
the Stroop data (Table2).

The outcome of feature selection is encouraging, but we still need to improve
model accuracy by controlling the complexity of a supervised learning model. The
boosting model combines the predictions from multiple classifiers and is generally
more accurate than a single classifier. The training iterations act as a controller of
model complexity. In the first round, a base classifier is built. In the next round,
the weight of the n + 1 base learner is Dn+1, which is higher on instances that
learner n has error on. The final decision is a collective vote by weighted N base
learners. When boosting has no error on the training set, the generalisation power
of the base learner is enough for the current input. When validation accuracy keeps
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increasing with training accuracy stable at 100%, it is necessary to try to model with
more iterations, thereby increasing the risk of over-fitting. However, when training
accuracy remains stable at low values as the number of iterations increases, there
is little point in proceeding. Such base learner is not complex enough to represent
feature variances adequately.

5 Conclusion

We presented an exploration of feature selection andmodelling trade-offs to be taken
into account when approaching the challenge of categorising a speaker’s cognitive
load state based on acoustic features. We found that while Frequency signals (MFCC
and F0) and sound quality measures (log HNR) are critical in determining the levels
of cognitive load, energy related features (RMS) seem contingent to this task.

Under appropriate settings of base learner complexity, the boosting classifier
exceeds a strong SVMbaseline inmost Stroop tests. However, the former proved less
effective in the reading span sentence tasks. This suggests that it may be necessary
to study cognitive load prediction differently for each setting.

This is, however, a complex challenge and as the results reported here demonstrate,
there is ample room for further exploration. In the near future we plan to investigate
unsupervised ways of normalising the features per speaker as well as explore models
that can take advantage of global data in per task modelling.
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Unit Selection Using Acoustic
Supra-Segmental Cues to Improve Prosody

Anjana Babu and Anil K. Sao

Abstract Improving prosody of synthesized speech is a very challenging task.
In this paper, we propose an approach for improving the prosody by making use of
acoustic supra-segmental cues for selecting units (syllables) in unit selection based
speech synthesis (USS). It is based on the observation that certain acoustic features
exhibit consistency at phrase level. This is an improvement of the method proposed
in our earlier work (Babu et al. Twentieth National Conference on Communications
(NCC), 2014 [1]), where units are selected based on the likelihood of the acoustic
similarity of the adjacent units. The proposed approach is language independent and
is evaluated using five Indian languages. The results show that the synthesized speech
is quite natural.

1 Introduction

Incorporating prosody in unit selection based speech synthesis systems (USS) is a
very challenging problem. The existing methods involve estimating a target prosody
for the text and selecting units to match the target prosody. Traditionally, linguis-
tic information is used to predict prosody. For example, part-of-speech (POS) is
used for predicting the prosody in English [15]. The major challenge of such ap-
proaches is the lack of availability of sufficient linguistic resources for many lan-
guages. In USS systems also, prosody is first predicted using linguistic information
from the text, followed by selecting units with the target prosodic features such as
f0 [8] or the spectral characteristics, f0 and duration of each phone class [13], etc.
There are also approaches where prosody is applied as a post processing step us-
ing HNMs and PSOLA based techniques [3]. The inherent problem with prosody
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modification techniques is that they result in the loss of naturalness [4]. Hence, the use
of such approaches nullify the advantages of using natural speech segments in USS
based systems. For TTS for Indian languages, predicting prosody using linguistic
information is not very practical as there are many languages with very little lin-
guistic resources. There are some approaches for predicting certain acoustic features
using machine learning techniques for incorporating prosody in Indian languages
[9, 11, 12]. But most of them involve modifying the signal to the desired prosody.

In this paper, we are using acoustic features to improve the prosody of USS based
systems without using linguistic information. This is an extension of our previous
work, where units are selected in such a manner that the differences in the acoustic
features of adjacent units are minimized to improve the naturalness of synthesized
speech [1] (See Sect. 3). In the proposed approach, each phrase is considered as a
prosodic entity and units are selected in such a manner that the difference in acoustic
features of syllables, viz., average f0 and average energy of syllables, are consistent
within a phrase. Also, in order to maintain the speaking rate of the entire utterance,
the difference in the duration of syllables within phrase and at phrase boundaries are
not allowed to vary too much. The difference in acoustic features are modeled by
Gaussian distributions for all the locations of the syllables in the utterance, which is
explained in detail in [1].

The rest of the paper is organized as follows. Section2 details the speech database
used. Section3 describes an existing approach for selecting units in unit selection
framework. Section4 describes the approach used in this paper for predicting phrase
breaks. Section5 explains the proposed approach. Section6 gives the experimental
results and Sect. 7 concludes the work.

2 Speech Database Used

The performance of the proposed approach is evaluated using the speech corpus given
in Table1. The data in the database consists of recordings of declarative sentences,
which are referred to as utterances. The utterances are segmented at syllable level
using a semi-automatic labeling tool called DonLabel [6]. The phrases are marked
manually in these utterances.

Table 1 Language databases used

Language Hours of data Speaker Language family

Hindi 6.5 Male Aryan

Tamil 5.0 Female Dravidian

Gujarati 6.8 Male Aryan

Marathi 4.2 Male Aryan

Rajasthani 3.3 Female Aryan
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3 Unit Selection Using Acoustic Features

In [1], a method to select units based on the acoustic similarity was discussed.
The units for synthesis are selected in such a manner that the likelihood of the
difference in acoustic features is maximized. The difference in acoustic features, viz.
duration, average f0 and average energy of syllables, are modeled using Gaussian
distributions, most of which have mode around zero. This results in selecting units
that have minimal variations with respect to these acoustic features. The likelihood
of two units getting selected are obtained as scores based on the difference in the
acoustic features of the adjacent candidate units.

The units are selected by first computing the scores for every pair of candidates,
followed by a backtracking algorithm to select units based on the maximum scores
obtained by the pairs of candidates. This approach focuses mainly on improving the
naturalness across the entire utterance and does not necessarily improve the prosody.
In the approach proposed in the paper, units are selected using this method.

4 Phrase Break Prediction

In the proposed approach, it is essential to predict phrase breaks in the given text.
For predicting phrase breaks, case markers [2] and word terminal syllables [16] are
used. The phrase breaks are predicted using CART (Classification and Regression
tree), which uses features related to case markers (words) or word terminal syllables
(syllables). In this work, word-terminal syllables are used in Dravidian languages
considering the agglutinative nature. For Aryan languages, case markers or word-
terminal syllables can be used, as both of them gave similar results.

5 Unit Selection Using Acoustic Features
and Supra-Segmental Cues

Prosody is the rhythm andmeter of speech [14]. It is considered as a supra-segmental
characteristic of speech [10]. Some of the major acoustic features that characterizes
prosody are f0, energy and duration of speech [7]. It is important to incorporate
prosody in synthesized speech because they render the speech more natural and
meaningful [5]. Since prosody exhibits variability to some extent, no target values
are computed for the acoustic features. Setting target values often result in selecting
some units that are off themark due to the unavailability of units, and hence, degrades
the quality of the synthesized speech. The proposed approach selects units such that
fairly decent prosody can be obtained from the units available in the database. Also,
the proposed approach ensures the consistency in the difference of certain acoustic
features at the phrase level only and not at the utterance level. This has an additional
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advantage that, since the number of syllables in a phrase is less, the chances of
selecting syllables with acoustic similarities is higher. The main idea is to avoid
imposing any constraints that might adversely affect the unit selection, as well as
select a sequence of syllable units that result in good prosody. The proposed approach
makes use of the information about phrases for selecting units. The units are selected
using the scores mentioned in Sect. 3. However, instead of computing scores for
every pair of syllables in the utterance, phrase information is used to decide the
scores to be computed for each pair. Scores based on average f0 and average energy
are omitted for adjacent syllables that belong to different phrases, whereas scores
based on duration is computed for every pair of syllables irrespective of their phrases.
Synthesizing speech using the proposed approach involves the following steps.

1. Predicting phrase breaks using decision trees, which are trained on contextual
information about syllables.

2. Training statistical models describing the distribution of difference in acoustic
features at various locations in the utterance.

3. Selecting units using phrase information such that the likelihood of the variation
in acoustical features is maximized.

The proposed approach is depicted in Fig. 1. It can be seen that the first two steps
mentioned above are performed during the training stage and the last step during
the synthesis stage. In the synthesis stage, the phrase breaks are predicted using
decision trees. The scores for various adjacent candidate units are computed using
the Gaussian distributions of acoustic features for syllables at various locations. The
scores for average f0, average energy and duration are computed if there is no phrase
break present between two syllables. In case there is a phrase break between two
syllables, the score for duration only is computed.

This approach is validated by the analysis of the acoustic features of the syllables in
natural utterances within phrases and utterances, which is discussed in the following
subsections.

Fig. 1 Block diagram
depicting the proposed
approach
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5.1 f0 Contour

The deviation of average f0 of syllables from the average value in phrase and in
utterance were observed. The histograms corresponding to these observations are
shown in Fig. 2a, b. It can be observed that the histogram for phrase exhibited uni-
modal distribution, with mode at 0. This suggests that the variation of f0 within
phrase is not large. However, the histogram for the difference in average f0 from the
average value of the corresponding utterance showed a bimodal distribution. This
indicates that there is significant difference in the utterance. This is similar to the
observation in [17] that, within a single breath group or phrase of simple sentences,
the f0 fluctuates between two abstract lines, the baseline and the plateau, and dimin-
ishes towards the end of the phrase. Also, there is a tendency to reset f0 when a new
phrase starts [17]. This can be observed in Fig. 3a, b.

The two sub figures are not marked (a) and (b), Please include it, the same way
as in other figures.

5.2 Energy Contour

It was observed that all the phrases have roughly the same energy level across an
utterance.Within a phrase, the energy of the last syllable tends to be slightly lower and
the energy dies down rather slowly, compared to other syllables in the phrase. This
can be observed in the last syllable of the last phrase in Fig. 3b. In many phrases, it
can be observed that the energy is rather high at the beginning of the phrase (Fig. 3a).
In most of the observations, the energy starts high and decreases towards the end of
the phrase. The reason behind this could be that, after a pause, the speaker is able to
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Fig. 2 Normalized histograms depicting a the difference in average f0 of syllables from the average
of average f0 of all syllables in the corresponding phrase, b the difference in average f0 of syllables
from the average of average f0 of all syllables in the corresponding utterance in Rajasthani database
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Fig. 3 The waveform, f0 contour and energy contour of a a Rajasthani utterance containing 3
phrases, and b a Hindi utterance containing 5 phrases

start a new phrase with more energy which decreases towards the end of the phrase
due to fatigue. The difference in energy between the last syllable of a phrase and the
first syllable of the succeeding phrase is relatively high.

Certain deviations to the energy pattern discussed above can be observed. For
example, in Fig. 3b, certain syllables within a phrase have relatively high energy
with respect to the neighboring syllables. This could be because of emphasis, etc.
in the speech. But, in general, it is observed that a consistent energy pattern is quite
sufficient for a reasonably good prosody in the case of declarative speech.

5.3 Duration

The duration of the last syllables in phrases and utterances were observed to check
for any tendency for final lengthening of syllables [17] and it was found that they did
not deviate much from the average duration of syllables in the phrase or utterance in
which they were present. In the database, there were no significant number of cases
of variations in duration near prosodic boundaries and final lengthening of syllables.
The duration of syllables did not vary much within an utterance and the variations
were gradual.

6 Experimental Evaluation

The systems were built for five languages listed in Sect. 2. Different types of systems
were built for each language:

(a) Type 1 with average f0 across phrases and duration across utterance,
(b) Type 2 with average energy across phrases and duration across utterance, and
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(c) Type 3 with average f0 and average energy across phrases and duration across
utterance.

Utterances were synthesized from each of these three types of systems. These
utterances were used for a subjective evaluation test called Degradation Mean Opin-
ion Score (DMOS) test to assess the naturalness of the synthesized systems. The box
plots corresponding to these scores are given below in Fig. 4. It can be observed that
for most of the languages the median of system Type 3 is above the boxes of the other
two systems. In the case of Marathi (Fig. 4d), the box for system Type 3 is above the
boxes of the other two systems, indicating that Type 3 is better. This indicates that it
is likely that the systems using f0 and energy at phrase level is better. This could be
because phrases are characterized by f0 contour and energy pattern.

7 Conclusion

The proposed approachmakes use of the variation in acoustic features with respect to
the phrases in the utterance for incorporating prosody. Itwas observed that the average
f0 and average energy of syllables exhibited continuity within phrases, and not
necessarily across utterances. But the duration of the syllables was consistent across
the utterances. This observation was exploited for selecting units for incorporating
prosody in unit selection framework. The results of the subjective evaluation of the
speech synthesized using the proposed approach showed that both average f0 and
average energy are required, and not any one of them, for improving the prosody. The
approach proposed here uses only acoustic information and not linguistic information
for improving the prosody of speech. Since this approach is language independent
and has already been tested on five Indian languages, this approach can be used for
other languages.
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A User-Centric Design of Service Robots
Speech Interface for the Elderly

Ning Wang, Frank Broz, Alessandro Di Nuovo, Tony Belpaeme
and Angelo Cangelosi

Abstract The elderly population in the Europe have quickly increased and will
keep growing in the coming years. In facing the elder care challenges posed by the
amount of seniors staying alone in their own homes, great efforts have been made
to develop advanced robotic systems that can operate in intelligent environments,
and to enable the robot to ultimately work in real conditions and cooperate with
elderly end-users favoring independent living. In this paper, we describe the design
and implementation of a user-centric speech interface tailored for the elderly. The
speech user interface incorporating the state of the art speech technologies, is fully
integrated into application contexts and facilitates the actualization of the robotic
services in different scenarios. Contextual information is taken into account in the
speech recognition to reduce system complexity and to improve recognition success
rate. Under the framework of the EU FP7 Robot-Era Project, the usability of the
speech user interface on amulti-robots service platform has been evaluated by elderly
users recruited in Italy and Sweden through questionnaire interview. The quantitative
analysis results show that the majority of end-users strongly agree that the speech
interaction experienced during the Robot-Era services is acceptable.
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1 Introduction

1.1 Robots for the Elderly

The increasing ageing population leads to a growing burden of elder care world-
wide, which is especially true for the developed countries like those in the Europe.
According to an European Union report, the number of people elder than 65years
old was 87 million in the Europe in 2010 [2]. It is estimated by the World Health
Organization (WHO) that the elder population over the age of 60 is expected to be
around 2 billion in 2050 [20]. One of the problems caused by the growing older
population is that most of them still want to live in their own homes and to lead
independent living as long as possible. With their gradually decaying physical and
cognitive abilities, smart environments and assisting facilities, such as housekeep-
ing, mobility support, social communication, and reminding systems are needed in
their living places. In this circumstance, socially assistive robotic (SAR) platforms
designed for improving independent living and caring for the elderly users, which can
provide various services in both at-home and outdoor environments, are very much
desired. For example, Robot Robear, which is developed by the Japanese robotics
company RIKEN has human-like limbs to help move and carry objects. Others like
the Aldebaran Robot Pepper, with emotion intelligence equipped, are designed to
offer therapeutic care to the user. Meanwhile, elder adults living independently have
also expressed their willingness to have robots live with them at home [17]. In the
elder care domain, SAR platforms are usually integrated in an Ambient Assisted
Living (AAL) environment [13], in which smart assistance systems and personal
robots are designed and developed for a safer quality life at home.

1.2 Robotic User Interface

In order to achieve certain social, cognitive, and task outcomes goals in human-robot
interaction (HRI), robots are needed to display appropriate social behaviours [6]. In
realizing a SARplatform, one of themost challenging aspects regardingHRI is social
communication. User interfaces in SAR can be keyboard, touch screen, gesture, and
natural language, etc. Natural language based technologies such as automatic speech
recognition (ASR), text-to-speech (TTS) synthesis, and language understanding have
been evidently advanced in the past years, which can be seen from the great success
gained by speech and language based technology products in consumer electronic
markets, such as Siri1 byApple andNow2 byGoogle. Speech technology is viewed as
a major interaction modality in many application domains, for examples, customer

1http://www.apple.com/ios/siri/.
2http://www.google.com/landing/now/.

http://www.apple.com/ios/siri/
http://www.google.com/landing/now/


A User-Centric Design of Service Robots Speech Interface for the Elderly 277

schedule information query and booking systems over telephone have employed
voice-based interface for flights [8], trains [10] and restaurants and hotel booking
[12]. At the same time, speech interface has also beenwidely engaged inmulti-modal
user interactive systems, such as those in smart homes [14] and AAL [7]. It has been
found that among all human–machine interaction media, speech interaction is the
one most accepted by users, especially for elderly people [14]. However, challenges
exist in developing user-centric and high performance speech interaction tools. It
is known that large vocabulary continuous speech recognition (LVCSR) is always
time-consuming, substantial efforts such as data collection, model training, user
adaptation, and parameter tuning are needed before actual deployment. LVCSR with
state of the art recognition protocols and algorithms still report word error rates of
around 20% on average [15, 16], or of 10% if trained for a more specific domain
[19]. Accents, dialects and themixed usage ofmultiple languages cause other failures
in recognition. In domain-specific interaction tasks, contextual cues could be useful
for enhancing speech recognition performance in either HRI or AAL cases. The
central idea of context-sensitive speech recognition is to associate different contexts
or dialogue stateswith individual languagemodels ormore specifically, grammars. In
this case, grammar switching is indicated based on dialogue movement. This method
has been shown led to more robust speech recognition [11]. Lemon showed in [11]
the efforts on context-sensitive speech recognition in a dialogue system with more
flexible and effective grammar switching strategy. Contextual information was also
used to analyze the humans engagement towards the robot while using the dialogue
system [9].

In this paper, we describe the speech interface employed in our elder-robot inter-
action investigation. At first, the elder service robotic platform developed in the EU
FP7Robot-Era Project is introduced. Secondly, an overview of the speech-based user
interface deployed is given, in which the context-aware grammar-switching mech-
anism for speech recognition efficacy is highlighted. After that, preliminary results
of HRI experiments on a series of the Robot-Era tasks aiming at evaluating the
speech-based interface are shown. Finally, conclusive remarks of this investigation
are gained.

2 Elder Service Robotic Platform in Robot-Era

The EU FP7 Project Robot-Era3 [1] aims at integration and implementation of
advanced robotic systems including SAR and AAL architectures, with an ultimate
goal to provide intelligent environments and facilities in real scenarios for the ageing
population. To this end, the general feasibility, scientific/technical effectiveness and
social/legal acceptability of the package of robotic services offered as well as the
smart environments where the robot is operating in, is assessed by real users in actual

3http://www.robot-era.eu/.

http://www.robot-era.eu/
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Fig. 1 Multi-robots platform and ambient intelligence architecture of the Robot-Era Project [1]

scenarios. The end users of this system are elderly people leading independent living
in their daily life. In this project, several already available and commercial robotic
components are adapted and integrated in both indoor (e.g., domestic, condominium)
and outdoor environments to ensure independent, comfortable and safe living quality
for the ageing population.

The Robot-Era services are specially designed to meet the needs of independently
living elderly people in various scenarios ranging from indoor house keeping to
outdoor walking support. Studies indicate that elderly people favor multi-modal
user-robot interaction [18]. Among them, speech and gestures have been found most
preferable by them [4]. Considering the fact that touch screen based mobile phone
interface has gradually been accepted by more and more elderly users [3], in Robot-
Era Project, two interfaces: graphic user interface (GUI) and speech user interface
(SUI) are provided. Each of them can play as a sole-modal user interface, or they can
work together as a dual-modal HRI platform. Figure1 gives a whole picture of the
multi-robots and ambient intelligent system architecture developed in the Robot-Era
Project.

3 Speech Interaction

The SUI designed for the elderly people manipulating service robots is user-centric
and domain-specific. We make efforts to provide a multilingual spoken dialogue
system in various real-world scenarios. The spoken dialogue system employed is
mainly composed of the following components: commercialized Nuance4 speech

4http://www.nuance.com/.

http://www.nuance.com/
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recognizer and parser, open-sourceOlympus5 dialoguemanager, andAcapela6 voice-
as-a-service (VAAS) speech synthesizer. The Ravenclaw-based dialogue manager
simplifies the authoring of complex dialogs, having general support to handle speech
recognition errors, and is extendable to multi-modal input/output design [5]. The
speech recognition and parsing is based on service-tailored grammars. To operate
theSUI in real-world scenarios, one of themost important issues is to provide satisfac-
tory speech recognition accuracy as well as to manage the complexity and variety of
speech-based interaction. Considering service-specific spoken contexts might apply
to the SUI, we propose to handle this issue from the following aspects: (1) developing
context-aware language models (i.e., grammars in this study) to help reduce speech
recognition complexity [11]; (2) achieving continuous and flexible dialogue flow by
switching among different tasks without restarting the speech interaction module.
Another significant issue in SUI is error handling. These errors usually result from
speech recognition failures or misunderstandings due to false positives. The Olym-
pus dialogue manager uses an error handling policy based on repeated prompts for
recognition failures and explicit confirmation to ground recognized concepts in order
to manage these sources of error. To employ context-aware speech recognition in a
dialogue system, we load grammars dynamically according to the context change
of verbal interaction. At the beginning of a speech interaction, the dialogue could
only be initiated by the user via saying the wake-up word, which is defined to be the
name of the robot in this work. A grammar containing the full list of all available
services will be loaded immediately. After a specific service is chosen by the user
through speech, which can either be a short command or a complete sentence, the
dialogue manager will indicate the engine to switch to the according service-specific
grammar. In manipulating with the contextual information, real-time SUI operation
is ensured by avoiding complex large vocabulary languagemodels, meanwhile, more
robust speech recognition performance is achieved.

Our SUI is fully employable on the Robot-Era multi-robots platform. The speech
interaction mode is available for all Robot-Era services, which include commu-
nication (via mobile phone or skype), shopping, cleaning, food delivery, indoor
escort, object manipulation, garbage collection, laundry, reminding, surveillance,
and mobility support. These indoor or outdoor services are fully supported in three
languages: English, Italian, and Swedish. Figure2 shows the dialogue flow path in
a real SUI operation. In this example, the Robot-Era services food delivery, shop-
ping, laundry, and garbage collection are asked by the user sequentially. In each
dialogue stage, a specific grammar is enabled. Transitions from one grammar to
another are indicated by the dialogue manager. It is noted that before each dialogue
movement, a confirmation with the user is made to avoid wrong action caused by
speech recognition failures.

5http://wiki.speech.cs.cmu.edu/olympus/index.php/Olympus/.
6http://www.acapela-group.com/.

http://wiki.speech.cs.cmu.edu/olympus/index.php/Olympus/
http://www.acapela-group.com/
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Fig. 2 Robot-Era services manipulated by speech

4 Preliminary Experiments on Usability

To evaluate the usability of our SUI by elderly users, we designed and conducted a
series of tests on selected Robot-Era services. For the services shopping, reminding,
indoor escort, and garbage collection, the experimentswere carried out on our Italian
test site in Peccioli, Italy. The services laundry and food delivery were tested on the
Swedish test site in Angen, Sweden. For the last service communication, tests were
conducted on both sites. At this stage, we recruited 35 Italian subjects (22 females
and 13males), of an average age of 73.80± 5.81, and 12 Swedish subjects (4 females
and 8 males) aged averagely at 70.67 ± 5.37 to participate in the HRI experiments.

During the experiments, subjectsweren’t instructed step-by-step on using the SUI,
instead, they were shown a demonstration for each task. For further investigation,
their spontaneous speech interaction with the robot were recorded. A questionnaire
was completed by each subject. The questionnaire consisted of several items, and
two of them were about the usability of the SUI. Subjects were asked to use five-
point Likert type scale (1. strongly disagree; 2. disagree; 3. no opinion; 4. agree; 5.
strongly agree) to answer the questions. Figure3 shows the median scores valued by
all the subjects for the two questions, each in a radar plot. It is observed that most of
the subjects were satisfied with the SUI performance in the five services: shopping,
indoor escort, food delivery, garbage collection, and reminding. For the other two
services: communication and laundry, they still accepted it. In Fig. 4, the service-
wise acceptability scores are described by an error bar plot. It is found that among the
subjects, the SUI in all services get average scores above four out of five. In specific,
the elderly users were more satisfied with the SUI experience for the four services:
shopping, reminding, garbage collection, and indoor escort during the experiments.
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5 Conclusions

The increasing ageing population in need of personal care and services causes huge
pressure to the European countries, which turns out motivate the development of
personal robots nowadays. One of the most challenging aspects for personal robots
is social communication, which is especially difficult in the case of elder-robot inter-
action. In this paper, we introduce the design and implementation of a speech user
interface specially tailored for elderly users. Although being developed under the
framework of the EU FP7 Robot-Era Project, this interface can easily apply to other
robotic platforms or used alone. The speech user interface is realized by a spoken
dialogue system composed of the speech recognizer, parser, dialogue manager, and
speech synthesizer, etc. To achieve low-complexity yet user-centric speech interac-
tion system, we employ a context-sensitive speech recognition approach to enable
flexible dialogue movement in real time. Evaluation made by elderly users in Italy
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and Sweden shows that for the tested Robot-Era services, subjects totally agree that
the speech interaction experience during operating the robot is acceptable. Further
elder-robot interaction investigation is ongoing, it is therefore expected that more
findings on elder-centric speech interface will be gained in future.

Acknowledgments This work is fully supported by the European Union Seventh Framework Pro-
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New Method for Finding Optimum
Number of Characteristics to Classify
Speakers by Age

Cristina Muñoz-Mulas, Rafael Martínez-Olalla, Pedro Gómez-Vilda,
Agustín Álvarez-Marquina and Luis Miguel Mazaira-Fernández

Abstract It is known that the amount of characteristics may be the bottleneck of a
digital processing system. Finding a good method to detect which characteristics are
the most important to identify a speaker would get better results with less charac-
teristics. The classification of an adult speaker by their age is a big challenge since
the adulthood is a long period without significant changes in voice. This study pro-
poses a new method based on F-ratio, dispersion metric and also correlation between
parameters to find a rank of features. A bootstrapping procedure determines the opti-
mum number of characteristics within a feature vector to characterize a speaker. The
results are compared with other non linear ranking methods. The proposed algorithm
achieves a better performance in most cases.

Keywords Biometry · Boostrapping · Rankfeatures · Features selection

1 Introduction

Voice experiences several changes throughout the cycle of life. These changes are due
to growing factors which are directly influenced by nervous and hormonal changes
in the individual. As a result there are physical and physiological differences which
affect the organs of the phonatory system. These changes are reflected in voice.
According to the age period of a person and the changes occurred in his/her body,
the speaker may be classified into a stage of voice related to age: childhood, puberty,
adulthood or senescence. The ages that fall into each of these stages are approximate,
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since not all individuals undergo changes at the same time and they don’t live in the
same environment [1, 2].

Feature selection has become one of the “hot spots” for the studies that use data
set with a large number of variables. In recent decades several articles have been
published in reference to feature selection [3, 4]. However, due to the improvement
of the technology and the access to the information, the number of variables used
have increased, which implies new methods to find relevant features [5].

2 Materials and Methods

This study uses Albayzin database [6], which is divided into age groups as follows:
Females (young aged from 18 to 30 (77 speakers)/medium, aged from 29 to 41 (39
sp)/senior, aged from 43 to 55 (36 sp)) and Males (young, aged from 18 to 30 (77
sp)/medium, aged from 30 to 40 (39 sp)/senior, aged from 41 to 55 (36 sp)).

As described in previous studies [7] the speech signal (voice) is decomposed into
glottal pulse and vocal tract and each of these three signals (voice, vocal tract and
glottal pulse) are processed to obtain a MFC vector of 52 characteristics. In order to
simplify the process of feature selection, LTA vectors are composed gathering all the
information of each speaker as is detailed in [7]. As a result, a speaker is represented
by one unique vector.

The analysis of the characteristics concludes that a better classification would be
done if male and females are separated in different groups. In Fig. 1 we can see the
location of each speaker in the database when the first two canonical components
(c1, c2) from MANOVA are represented.

As we can see in Fig. 1, the young and senior groups are the one which seem to
be more separable in both cases, males and females.
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Fig. 1 Plot of males (left) and females (right) speakers represented by the first two canonical
components obtained by MANOVA
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We have assured that ANOVA conditions are guaranteed for most of the char-
acteristics (or slightly violated). ANOVA + post-hoc tests are conducted to high-
light the characteristics that are statistically relevant to separate age groups in both
gender sets. Three commonly used post hoc test are compared (LSD: Least Signif-
icant Difference, HSD: Honest Significant Difference, G-H: Games-Howell, which
doesn’t assume homecedasticity). Results of this comparison are summarized in
Figs. 2 and 3 for the 52 component vectors (20 voice, 12 glottal pulse, 20 vocal tract)
where characteristics statistically significant for separating age groups are depicted
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Fig. 2 Statistically significant characteristics for female speakers (Young vs. Medium, Young vs.
Senior, Medium vs. Senior) for LSD, HSD and G-H tests
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Fig. 3 Statistically significant characteristics for male speakers (Young vs. Medium, Young vs.
Senior, Medium vs. Senior) for LSD, HSD and G-H tests
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An interesting conclusion that can be inferred from Figs. 2 and 3 is that statistically
significant characteristics that separate age groups in males are completely different
from those that are able to separate age groups in females (see the alternation of
relevant characteristics between both figures).

As LSD is the most relaxed method, we decide to include all the characteristics
found by this test in our first feature vector. By doing so, we can reduce the initial
52 component vectors into 16 features vector for males and 19 feature vector for
females.

Glottal pulse and vocal tract signals are highly decorrelated by the separation
procedure and also are their respective MFCC vectors. However, they still have
some correlation with voice characteristics. This remaining correlation is evident in
Fig. 4, which shows the correlation matrix of the LSD selected characteristics for
males and females. As we can see, only voice and vocal tract characteristics keep
high correlation for some of their values.

Thus, selecting the characteristics using only F-ratio is not enough to avoid redun-
dant information. This fact leads to the idea of creating a new ranking algorithm
which uses not only F-ratio but also correlation and dispersion between groups. The
criterion in the algorithm is described in Eq. 2 and is applied to the whole 52 char-
acteristics initial vector introducing characteristics one by one and selecting in each
step the variable which maximizes Cr.

Cr = �n
i=1 Fci

Dα · (��|corrgr |)β (2)

where Fci is the F-ratio value of the ith included characteristic, n is the number of
characteristics included to that point, D is the dispersion metric and Corrgr is the
correlation matrix between characteristics included so far, α and β give different
weights to the variables.
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The procedure gives reordered 52-characteristic vector.

Dispersion
Dispersion (D), calculated by the Eq. (3) provides a measure to compare different sets
of features. This measure represents the separation (distance) between the individuals
within a group (compactness) in relation to the separation between groups. Thus, the
smaller values of D, the greater interest.

As the number elements within each group may be different, this metric should
be normalized as can be shown in the denominator of the expression in Eq. 3.

D =
1

n1
�n1

i=1dist (pi ,c1)+ 1
n2

�n2
i=1dist (qi ,c2)

dist (c1,c2)√
n1

√
n2√

n1 + n2

(3)

where p and q represent a vector of the group 1 and 2 respectively, n1 is the number
of objects in group 1, n2 the number of objects in group 2, c1 is the centroid of the
group 1 and c2 is the centroid of the group 2.

Using different values for α and β in Cr (Eq. 2), several ranking methods and
bootstrapping [8], we can generate several training/test sets, repeat the classifica-
tion process a large number of times and extract statistical information about the
distribution. In this case, we use LDA-diagonal linear function and SVM-RBF ker-
nel methods to classify and extract statistical information about the use of different
combinations to identify young/senior age.

We compare the results obtained by the refinement algorithm using different
combinations of α and β and several ranking methods [5] as the ones provided by
MATLAB “rankfeatures” function.

Description of the ordering algorithms compared
Refinement algorithm:

• Refcr1 → α = 1 and β = 1
• Refcr2 → α = 1 and β = 1/2
• Refcr3 → α = 2 and β = 1/2
• Refcr4 → α = 1/2 and β = 1

Ranking methods:

• t-test: Absolute value two-sample t-test with pooled variance estimate.
• entropy: Relative entropy, also known as Kullback-Leibler distance or divergence.
• Bhattacharyya: Minimum attainable classification error or Chernoff bound.
• ROC: Area between the empirical receiver operating characteristic (ROC) curve

and the random classifier slope.
• Wilcoxon: Absolute value of the u-statistic of a two-sample unpaired Wilcoxon

test, also known as Mann-Whitney.

The ranking algorithms can be tuned with a parameter alpha ranged between 0
and 1. Different values for that parameter have been tested, although the best results
are obtained for high values of alpha (>0.9).



290 C. Muñoz-Mulas et al.

Bootstrapping methodology is applied to compare the results when LDA + diag
linear function and SVM + RBF kernel function are used as classification methods.
The number of test sets created is 20,000 in each case.

3 Results

After bootstrapping and classification with LDA and SVM, We obtain the results
shown in Tables 1 and 2. Also a comparison is represented in Figs. 5 and 6, where we
can also detect how many characteristics are good enough to represent speakers for
age classification. As we can see, our method outperforms the rankfeatures functions,
and this fact is more evident in the male case.

Increasing the feature vector item by item, n = 1 … 16 for males, n = 1 …19
for females, we can repeat this procedure and obtain the optimum number of char-
acteristics for each ranking method In Figs. 5 and 6 the average of SVM and LDA
classification error rates is shown (for males and females respectively). For males,
we used ordered vectors from 3 to 16 characteristics whereas in females the vectors
are from 3 to 19 characteristics (same number as LSD vector). These vectors are

Table 1 Average error rates after 20.000 iterations for different ranking algorithms with 16
characteristics. Males

Refcr1 Refcr2 Refcr3 Refcr4 ttets ent bhatt Roc wilco

Mean

LDA 0.277 0.272 0.276 0.274 0.289 0.290 0.292 0.290 0.305

SVM 0.281 0.284 0.286 0.288 0.300 0.297 0.302 0.290 0.330

AVG 0.279 0.278 0.281 0.281 0.295 0.293 0.297 0.290 0.317

Standard deviation

LDA 0.063 0.063 0.062 0.063 0.062 0.063 0.065 0.065 0.069

SVM 0.063 0.062 0.062 0.062 0.061 0.061 0.063 0.063 0.066

Table 2 Average error rates after 20.000 iterations for different ranking algorithms with 19
characteristics. Females

Refcr1 Refcr2 Refcr3 Refcr4 ttets ent bhatt roc wilco

Mean

LDA 0.227 0.225 0.265 0.230 0.225 0.260 0.232 0.221 0.284

SVM 0.238 0.235 0.240 0.242 0.237 0.221 0.244 0.238 0.291

AVG 0.232 0.230 0.252 0.236 0.231 0.241 0.238 0.230 0.288

Standard deviation

LDA 0.060 0.060 0.060 0.060 0.060 0.063 0.061 0.060 0.067

SVM 0.059 0.061 0.059 0.061 0.060 0.066 0.061 0.060 0.065
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Fig. 5 Average of SVM and LDA classification error rates for males after bootstrapping as a
function of the number of characteristics
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Fig. 6 Average of SVM and LDA classification error rates for female after bootstrapping as a
function of the number of characteristics

Table 3 Average error rates for the optimum number of characteristics

ttets ent bhatt roc Refcr1 Refcr2 Refcr3 Refcr4 Refcr1

Males (4) 0.2799 0.2894 0.2874 0.2799 0.3217 0.2598 0.2799 0.2799 0.2598

Females (6) 0.254 0.235 0.266 0.244 0.264 0.254 0.266 0.266 0.225

ordered by the nine ordering methods described above. As we can see, Refcr1 and
Refcr4 achieve the best results in males using only 4 characteristics and Refcr4 gets
the best result in females when 6 characteristics are used Thus, we would be able to
reduce 16 and 19 feature vectors into 4 and 6 feature vectors.

To compare values, Table 3 summarizes the average error rates for females and
males when the optimum number of characteristics is used in each ranking feature
method.
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4 Conclusion and Discussion

The study summarizes a deep process of analysis and search of feature selection in a
challenging issue as age recognition by voice. Finally, the algorithm presented and
the method based on bootstrapping enables us to identify characteristics to represent
a speaker by en extremely low number of characteristics in a fast and easy way.

We have seen that female and male voices should be treated as different groups
and also that the features which are important for one group are not for the other, so
the groups must be treated separately. Some important conclusions may be detected
from the analysis, and more study is needed to understand what is behind these
differences.

The method proposed is a novel method based on F-ratio, correlation and disper-
sion metric which is able to sort a feature vector by the relevance of its characteristics
avoiding redundancies to some extent. The comparison of the results of this method
and other ranking methods reveals that our method outperforms all of them.

Also we can conclude that bootstrapping is a good way for finding the optimum
number of characteristics as it can avoid the results to be conditioned by the selected
training/test sets.
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