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         The  Murine Pituitary Development  : A Useful Tool 
to Decode Human Pituitary Development 

 Human pituitary development is assumed to follow more or less closely the murine 
pituitary development, and this is why the murine model currently represents the 
most appropriate model to determine the major temporospatial interactions between 
signaling pathways and transcription factors leading to a mature endocrine organ 
[ 1 ,  2 ]. Pituitary development in humans is imperfectly known, and all the steps 
described in the following lines are based on our knowledge of murine pituitary 
development. 

 Anterior and posterior pituitary lobes have two different embryonic origins: the 
anterior lobe is derived from oral ectoderm, whereas the posterior lobe is derived 
from neurectoderm. Even if close connections exist between both structures, we 
will only focus on the development of the anterior lobe and the mature pituitary. 
No study to date on human pituitary defi ciency has identifi ed strong connections 
and phenotypic associations that include anterior pituitary defi ciencies and congeni-
tal diabetes insipidus (except for the only reported aryl hydrocarbon receptor nuclear 
translocator ( ARNT2 ) mutation, as described later). 

 Briefl y, anterior pituitary ontogenesis begins early during brain neurogenesis, 
around embryonic day (e) 7.5 in the mouse, corresponding to the fi rst visualization 
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of the pituitary placode [ 3 ]. At e9, the placode forms the rudimentary Rathke’s 
pouch, under the control of signaling molecules issued from the  infundibulum   
( bone morphogenetic protein 4 (Bmp4)   and  fi broblast growth factor 8 (Fgf8)  ). 
Defi nitive Rathke’s pouch is observed at e11.5 [ 4 ].  Progenitors   around the lumen 
move progressively to the developing pituitary and differentiate under the control 
of several factors including SRY-box (Sox)2, Sox9, and Isl Lim homeobox (Isl)-1, 
   among others; the majority of these have not been identifi ed as causative factors for 
pituitary defi ciencies, suggesting that they are either crucial (and would lead to 
early death if abnormal) or that other pathways can be used if they are abnormal 
[ 5 – 7 ]. This fi rst step leading to terminal differentiation of the pituitary is possible 
due to a tightly controlled temporospatial gradient of morphogenic factors from 
different origins, the diencephalon (Bmp4, Fgf8, 10 and 18, Wnt5a), the ectoderm 
(Isl1, Bmp2, sonic hedgehog (Shh), Wnt 4), the ventral mesoderm (chordin, Bmp2) 
[ 8 ], or the pituitary cells (Table  12.1 ).

   At e11.5, α-subunit is expressed in the rostral tip [ 9 ], followed by  adrenocortico-
tropin (ACTH)   (e12.5), thyrotropin (TSH)β (e14.5), proopiomelanocortin (Pomc) 

   Table 12.1    Main differences  between   human and murine phenotypes and partial/complete loss of 
function of the major proteins encoded by genes involved in combined pituitary hormone 
defi ciencies   

 Murine phenotype  Human phenotype  Transmission 

 POU1F1  GH, TSH, Prl 
defi ciency 

 GH, TSH, Prl defi ciency.  Pituitary 
  hypoplasia 

 Recessive 
(murine): 
recessive or 
dominant (human) 

 Pituitary hypoplasia 

 PROP1  GH, TSH, Prl 
defi ciency 

 GH, TSH, Prl, LH/FSH 
defi ciencies; inconstant ACTH 
defi ciency. Inconstant transient 
pituitary hyperplasia and then 
hypoplasia 

 Recessive (murine 
and human) 

 HESX1  Variable phenotype, 
midline anomalies. Eye 
anomalies. Pituitary 
hypoplasia or 
hyperplasia 

 Variable pituitary defi ciencies 
(from isolated GH defi ciency to 
panhypopituitarism); normal or 
hypoplasic pituitary. Septo-optic 
dysplasia 

 Recessive 
(murine): 
recessive or 
dominant (human) 

 OTX2  Severe anomalies of 
anterior brain 
structures, pituitary 
dysmorphology 

 Variable pituitary defi ciencies 
(from isolated GH defi ciency to 
panhypopituitarism). Normal or 
hypoplasic pituitary,    normal or 
ectopic posterior pituitary. 
Inconstant brain anomalies 

 Recessive (murine 
and human) 

 LHX3  Pituitary aplasia  GH, TSH, LH/FSH defi ciencies; 
inconstant ACTH defi ciency. 
Hypoplasic or hyperplasic pituitary. 
Neck rotation anomalies; deafness 

 Recessive (murine 
and human) 

 LHX4  Hypoplasic pituitary  Pituitary defi ciencies, 
 extrapituitary   anomalies 

 Recessive 
(murine), 
dominant (human) 
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(e14.5, intermediate lobe), growth hormone (GH) and prolactin (Prl) (e15.5) [ 10 ], 
luteinizing hormone (Lh)β (e16.5), and fi nally  follicle-stimulating hormone (Fsh)β   
(e17.5). Precise mechanisms leading to this differentiation and the formation of pitu-
itary cell networks remain incompletely understood. Pituitary specifi c or  nonspecifi c 
transcription factors are involved in a timely manner during these steps of differentia-
tion, early acting such as LIM homeobox (Lhx)3, Lhx4, paired-like homeodomain 
transcription factor (Pitx)2, Hesx1 (also known as Rpx), or ARNT2 [ 11 ] or late-act-
ing such as prophet of Pit-1 (Prop1) and Pou1f1 (Pit-1). Early acting transcription 
factors are also involved in  the   development of other organs (e.g., the eye, inner ear), 
and their defects lead to extrapituitary anomalies, whereas alterations of late-acting 
transcription factors usually lead to a pure pituitary phenotype. A summarized 
scheme of the timing of expression of the transcription factors known to be involved 
in CPHD is given in Fig.  12.1 .

       Early Acting Transcription Factors: The Pituitary Phenotype 
Is Usually Not Alone 

 Anomalies of these transcription factors are characterized by a wide range of pheno-
types, usually including anterior pituitary hormone defi ciencies, extrapituitary 
abnormalities, and malformations such as  pituitary stalk interruption syndrome 
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  Fig. 12.1    Simplifi ed scheme representing the main transcription factor expression during pitu-
itary development. Note that early transcription factor dysfunction is associated with pituitary and 
extrapituitary anomalies, whereas late transcription factor (PIT-1, PROP1) dysfunction is associ-
ated with pure pituitary phenotype       
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(PSIS)   or midline defects. These complex phenotypes are due to the non-pituitary- 
specifi c expression of these transcription factors, which are also involved in the 
development of the forebrain and related midline structures such as the hypothalamus. 
To make the description easier, we focused on the phenotypic traits that should 
guide the clinician to certain transcription factors. 

    Etiological Possibilities in Patients Carrying Pituitary 
Defi ciency and Midline Anomalies: HESX1, GLI2, FGF8 
and FGFR1, PROK2, and PROKR2 

 What do we call midline anomalies? It is a large group of diseases from pituitary 
stalk interruption syndrome to  septo-optic dysplasia (SOD)   and holoprosenceph-
aly. Pituitary stalk interruption syndrome is defi ned on brain MRI by the association 
of an absent or thin pituitary stalk, pituitary hypoplasia, and/or ectopic posterior 
pituitary [ 12 ]. As only 30 % of patients with PSIS have a history of traumatic 
event, it is likely that a high number of cases are actually due to genetic anomalies. 
Septo- optic dysplasia is defi ned by at least two of the following criteria: septum or 
corpus callosum agenesis, optic nerve hypoplasia, and pituitary defi ciencies [ 13 ]. 
 Holoprosencephaly   is a complex brain malformation, affecting both the brain and 
face (cyclopia, median or bilateral labial and/or palatal cleft, hypotelorism or a single 
median incisor in milder cases) due to an abnormal division of the  prosencephalon   
between days 18 and 28. Intellectual disability is frequently associated. Recent 
studies emphasize the continuum between these different genetic causes leading to 
phenotypes of variable severity depending on the degree of abnormal development 
of the anterior brain [ 14 – 16 ]. This likely explains why, for any given pathway or 
transcription factor, the phenotype can be highly variable from mild to extremely 
severe. This group mainly includes anomalies of the paired transcription factor 
HESX1, and few novelties less well known such as GLI2, or pathways previously 
thought to be only involved in isolated hypogonadotropic hypogonadism. We will 
see, however, in the next paragraph that other transcription factors, more likely 
involved in eye development, can also lead to midline anomalies, which makes this 
classifi cation diffi cult to perform. 

    HESX1 

  Hesx1   is a paired homeodomain transcription factor that has been well characterized 
over the last 15 years. It is a major actor in pituitary development as its expression 
and then inhibition are crucial at given time points to allow the  formation of a 
mature Rathke’s pouch. The expression profi le of Hesx1 perfectly illustrates the 
complexity of pituitary development. For instance, decreased expression of Hesx1 
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at e13 in mice is necessary for Prop1 and secondarily Pou1f1 expression, two late 
transcription factors necessary for proper differentiation of GH-, TSH-, and Prl- 
secreting cells [ 17 – 20 ]. Appropriate expression of other early acting transcription 
factors such as Lhx1, Lhx3, or Six3 (some being involved in human disease) is also 
necessary for early proper Hesx1 expression [ 21 ]: the lack of Hesx1 in mice (homo-
zygous inactivation  Hesx1   −/−  ) indeed leads to a very severe phenotype with corpus 
callosum aplasia and ectopic posterior pituitary. In humans, HESX1 mutations can 
lead to a wide range of phenotypes: 16  HESX1  mutations have been reported [ 17 , 
 22 – 30 ], the homozygous anomalies (40 % cases) usually leading to a more severe 
phenotype [ 31 ]. GH defi ciency is  constant; other pituitary defi ciencies are reported 
in 50 % cases. Optic nerve anomalies are the other major phenotypic sign, observed 
in 30 % cases. One should not consider, however, that SOD is always due to  HESX1  
mutations, as only 1 % cases have actually been linked to this genotype [ 31 – 34 ]. 
Brain MRI usually reveals pituitary hypoplasia (80 % cases) and  midline   anomalies 
such as ectopic or non-visible posterior pituitary in 50–60 % cases and  corpus 
callosum agenesis or hypoplasia in 25 % cases.  

    Sonic Hedgehog and GLI2 

  Sonic hedgehog (SHH) signaling pathway   is involved in the early steps of pituitary 
development:  SHH  mutations have been reported in patients with severe forms of 
isolated holoprosencephaly [ 35 ]. SHH targets, GLI transcription factors, have also 
been involved in CPHD:  GLI2  heterozygous mutations have been reported in patients 
with holoprosencephaly or with pituitary hormone defi cits and less severe midline 
craniofacial anomalies and pituitary hypoplasia, corpus callosum agenesis, or ectopic 
posterior pituitary on brain MRI; some individuals also have polydactyly.  

    Pathways Known to Be Involved in Hypogonadotropic Hypogonadism 

   FGF8 and FGFR1 

  FGFR1  and   FGF8  heterozygous mutation  s were fi rst reported in 10 % of Kallmann 
syndrome and 7 % of normosmic hypogonadism [ 36 ]. Pituitary MRI showed nor-
mal or hypoplastic anterior pituitary and inconstant ectopic posterior pituitary. 
Penetrance was incomplete [ 37 ,  38 ]. However, the expression of Fgf8 and Fgfr1 in 
the ventral diencephalon is necessary for proper Rathke’s pouch formation, tempo-
rospatial pattern of pituitary cell lineages, and the development of extrapituitary 
structures [ 39 ]. This explains why other anomalies were then reported such as ear 
hypoplasia, dental agenesis, cleft palate, and distal limb malformations. Finally, 
 FGFR1  and  FGF8  mutations have also been reported in patients with SOD, with 
about 4 % prevalence [ 14 ].  
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   PROK2 and PROKR2 

  Prokineticin pathway   is known to be involved in portal angiogenesis and neuronal 
development and migration [ 40 ]: this suggested its potential involvement in pituitary 
stalk development.  PROK2  and  PROKR2  mutations have recently been reported in a 
cohort of patients with pituitary defi ciencies, anterior pituitary hypoplasia or aplasia, 
and PSIS [ 15 ]. Mutations in these genes were also reported thereafter in patients with 
SOD, and inconstant additional brain abnormalities, such as cerebellar hypoplasia, 
Dandy-Walker cyst, or focal abnormality of mesial frontal cortex [ 16 ].    

    Etiological Possibilities in Patients Carrying Pituitary 
Defi ciency and Eye Anomalies: OTX2, SOX2, PITX2, ARNT2 

 Whereas  OTX2  mutations seem to play an important role in CPHD, the other factors 
reported here have been recently described or do not seem to be involved in a large 
number of patients. This explains why they are usually not screened in patients, 
except in case of a specifi c phenotypic sign associated to CPHD. 

    OTX2 

 Otx2 is a paired homeodomain transcription factor involved in the early steps of 
brain development. In mice,  Otx2   is expressed from e10.5 to e14.5 in the ventral 
diencephalon, where it likely interacts with Hesx1, and from e10.5 to e12.5 in 
Rathke’s pouch. Otx2 is also involved in gonadotropin-releasing hormone (GnRH) 
neuronal development [ 41 ]. In mice, homozygous inactivation of  Otx2  ( Otx2   −/−  ) 
leads to a severe brain phenotype; heterozygous inactivation leads to a wide range of 
phenotype, with eye anomalies, inconstant holoprosencephaly, and usually  pituitary 
hypoplasia. This phenotype is close to the one observed in humans: 25 heterozygous 
de novo  OTX2  mutations have been reported, including nine in patients with con-
genital hypopituitarism; the remaining 16 mutations were reported in patients with 
ophthalmic diseases and no mention of pituitary defi ciency. Individuals can either 
present with isolated GH defi ciency or panhypopituitarism and inconstant hypo-
plastic pituitary, ectopic posterior pituitary, and Chiari syndrome. There is no 
genotype/ phenotype   correlation [ 42 – 46 ].  

    SOX2 

  Sox2   is an “HMG DNA-binding domain” (similar to SRY gene) transcription factor. 
At e9.5, Sox2 expression is observed in the brain, the neural tube, the oral endoderm, 
the sensorial placodes, and the branchial arcs. At e11.5, Sox2 is expressed in Rathke’s 
pouch and the future hypothalamus. Sox2 is then expressed in the periluminal 
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proliferative zone where it could be involved in the maintenance and function of 
pituitary progenitors [ 47 ]. At adult age, Sox2 is expressed in the periventricular zone 
of the lateral ventricles and in the dentate gyrus, but its precise role (promoting the 
differentiation of stem cells in injured pituitary?) is unknown. Homozygous inactiva-
tion is lethal in mice; heterozygous inactivation leads to increased perinatal death, 
epilepsy, and almost complete panhypopituitarism (corticotroph axis is usually func-
tional); in contrast, eye anomalies are inconstant. The phenotype is different in 
humans:  heterozygous de novo  SOX2  mutations have been observed in six patients 
with hypogonadotropic hypogonadism, bilateral microphthalmia, corpus callosum 
hypoplasia, and inconstant intellectual disability. Pituitary phenotypes included 
inconstant GH, TSH, or ACTH defi ciencies, and pituitary hypoplasia in 80 % cases. 
Surprisingly, corpus callosum anomaly has been reported in one case [ 47 ].  

    PITX2 

  PITX2   is not the perfect example of a transcription factor to think about in patients 
with CPHD. Despite its obvious roles in pituitary development, only three patients 
have been reported as having GH defi ciency and pituitary hypoplasia [ 48 – 50 ]. As 
shown in mice, it is probably because of compensatory mechanisms, at least in the 
pituitary, likely due to a close transcription factor, Pitx1. Pitx2 is a paired homeodomain 
transcription factor expressed in Rathke’s pouch at e10.5 [ 51 ,  52 ] and pituitary ante-
rior and intermediate lobes at e12.5. At adult age, Pitx2 is expressed in thyrotrophs 
and gonadotrophs [ 53 ]. Pitx2 expression is ubiquitous, as it has also been observed 
in the adult brain, eye, kidney, lungs, testis, and tongue [ 51 ,  54 ]. In humans,  PITX2  
mutations have been reported in patients with  Axenfeld-Rieger syndrome  , which is 
characterized by anomalies in the ocular anterior compartment and systemic mal-
formations (craniofacial dysmorphy, dental, and umbilical anomalies) [ 55 ,  56 ]. 
 PITX2  mutations should thus be screened in patients with this phenotype, keeping 
in mind that some pituitary  defi ciencies   might be associated. It does not make sense 
to routinely screen for  PITX2  mutations in patients with CPHD.  

    ARNT2 

 A recent report described a large consanguineous family with eye abnormalities, 
congenital hypopituitarism, diabetes insipidus, and renal and central nervous sys-
tem (CNS) anomalies, related to a defect in the helix-loop-helix transcription factor 
 ARNT2  . ARNT2 is known to be involved in the development of the hypothalamus, 
other CNS structures, the kidneys, and the eyes. All patients presented with a thin 
pituitary stalk, hypoplastic anterior pituitary, ectopic or nonvisualized posterior 
pituitary, hypoplastic frontal and temporal lobes, thin corpus callosum, and delay in 
brain myelination [ 11 ]. Precise roles of ARNT2 during pituitary and extrapituitary 
structure development are, however, imperfectly determined, and the search for 
other mutations in patients with CPHD has been negative to date.   
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    Etiological Possibilities in Patients Carrying Pituitary 
Defi ciency and Neurogenesis Anomalies: The LIM 
Domain Transcription Factors 

 LHX4 and LHX3 are two close transcription factors belonging to a large family of 
transcription factors known to be involved in the development of several structures. 
Several mutations of LHX4 and LHX3 have been reported for the last 10 years in 
patients with CPHD. In contrast, up to now, no mutation has been identifi ed in 
patients with a pituitary phenotype in the other LIM domain transcription factors. 

    LHX4 

  Lhx4   is involved in the early steps of pituitary ontogenesis. In mice, Lhx4 expres-
sion has been reported in Rathke’s pouch at e9.5 and in the anterior part of the 
pituitary at e12.5. A low expression is still observed at adult age [ 57 ,  58 ]. The phe-
notype of homozygous inactivation of Lhx4 in mice is lethal due to respiratory 
distress, whereas heterozygous inactivation is not symptomatic. The main differ-
ence with humans is actually the transmission mode of inheritance, as all human 
 LHX4  mutations are in a heterozygous state: 11 sporadic or  familial    LHX4  muta-
tions have been reported in 17 patients [ 59 ], with a wide intra- and interfamilial 
phenotypic variability in terms of pituitary phenotype (ranging from isolated GH 
defi ciency to complete panhypopituitarism) [ 60 ,  61 ] and brain MRI (pituitary hypo-
plasia, inconstant ectopic posterior pituitary and sellar hypoplasia, corpus callosum 
hypoplasia, or Chiari syndrome). Of note, one patient carrying a 1q25 microdeletion 
(including  LHX4  deletion) also presented with a cardiac defect (but it was likely 
multifactorial).  

    LHX3 

  Lhx3   is the perfect example of how extrapolating a human phenotype from a mouse 
phenotype is complex: while homozygous  Lhx3  inactivation in mice is lethal, het-
erozygous inactivation does not lead to any particular phenotype. In contrast, in 
humans, all described  LHX3  mutations were homozygous, and even if the pheno-
type was complex, it was never lethal. This discrepancy might be explained by the 
different weight of compensatory mechanisms performed by Lhx4 in both species, 
but this remains highly hypothetical [ 57 ]. The role of Lhx3 during pituitary 
 development is crucial, as it is necessary for proper expression of several other tran-
scription factors or receptors such as Hesx1 [ 62 ], forkhead box (fox)l2, Notch2, 
splicing factor (SF) 1, T-box (tbx)19 (involved in corticotroph differentiation), 
GnRH receptor and FSHβ [ 63 – 65 ], and Pou1f1 [ 66 ]. In addition to its role during 
pituitary development, Lhx3 is involved in the development of extrapituitary struc-
tures, such as medullar motoneurons [ 67 ,  68 ] (which likely explains neck rotation 

F. Castinetti and T. Brue



185

anomalies in humans with  LHX3  mutations) and inner ear [ 69 ,  70 ] (which explains 
hearing trouble in humans with  LHX3  mutations). In humans, 12 homozygous 
 LHX3  mutations have been reported [ 71 – 77 ]. Pituitary phenotype usually includes 
GH, TSH, and LH/FSH defi ciencies, while ACTH defi ciency is inconstant (roughly 
half of the cases). On MRI, pituitary aplasia or hypoplasia is observed in 60 % 
cases, whereas hyperplasia is observed in 30 % cases. The mechanisms for hyper-
plasia are unknown but may be close to the ones reported for  PROP1  mutations 
(detailed later in the text). As previously mentioned, extrapituitary phenotype can 
 include   abnormal head and neck rotation (70 % cases), vertebral abnormalities 
(50 % cases), and mild to severe hearing defi cits (50 % cases).    

    Late-Acting Transcription Factors: The Pituitary 
Phenotype Is Alone 

 If we only focus on transcription factors with anomalies reported in CPHD, then the 
list is short: PROP1 and POU1F1 are the only major actors known to be involved in 
pure pituitary phenotype. It does not mean that the fi nal differentiation of thyro-
trophs, for instance, or their function does not require other transcription factors 
such as GATA2 or maybe ISL1; it only means that no mutation of these genes has 
been reported so far in humans. Patients with  PROP1  or  POU1F1  mutations thus 
present anterior pituitary hormone defi ciencies (progressive or not), normal 
hypothalamo- pituitary morphology at MRI (regardless of the size of the pituitary 
gland), and no extrapituitary malformations. In such a context,  PROP1  mutations 
remain the most frequently reported genetic defect. 

    PROP1 

  Prop1   is a pituitary-specifi c paired domain transcription factor. In mice, its  expression 
is observed from e10 to e15.5, with a peak around e12 [ 78 ]. Prop1 is necessary for 
proper Pou1f1 expression, leading to somato-lactotroph and thyrotroph cell differen-
tiation [ 55 ,  79 ]. In mice, the phenotype is close to the one reported in humans, except 
for the lack of ACTH defi ciency. The reason why humans might have corticotroph 
defi ciency (seen in about 50 % of cases) remains a mystery, and the large period of 
appearance (from young age to 40 years old) is another intriguing fact. In humans, at 
least 25  PROP1  mutations have been reported [ 80 – 101 ]. Homozygous or compound 
heterozygous  PROP1  mutations, transmitted in an autosomal recessive manner, cur-
rently represent the most frequently identifi ed etiologies of CPHD [ 1 ,  102 ,  103 ]. 
Pituitary phenotype includes GH, TSH, LH/FSH, ACTH, and PRL defi ciencies, 
diagnosed from childhood to adulthood [ 104 ]. Pituitary MRI can show transient 
pituitary hyperplasia and  normal or hypoplastic pituitary; pituitary hyperplasia 
sometimes precedes  spontaneous hypoplasia [ 82 ,  105 – 109 ]. A hypothesis that may 
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account for this phenomenon is that pituitary progenitors might not differentiate in 
the absence of Prop1, thus accumulating in the intermediate lobe causing hyperplasia, 
with apoptosis  then   resulting in fi nal hypoplasia [ 110 ].  

    PIT-1/POU1F 1 

  Pit-1   was the fi rst pituitary-specifi c transcription factor identifi ed in  Snell  mice and 
then in humans (POU1F1, human ortholog of Pit-1) [ 111 ].  Pou1f1   expression is fi rst 
observed at e13.5 during pituitary development. Pou1f1 is necessary for thyrotroph, 
somatotroph, and lactotroph differentiation and remains expressed in these cell 
lineages at adult age. In humans,  POU1F1  mutations can be transmitted as an auto-
somal recessive or dominant trait. Complete TSH and GH defi ciencies are usually 
observed during childhood, whereas gonadotroph and corticotroph axes remain 
functional. Brain MRI can be normal or show pituitary hypoplasia.   

    Conclusions and Perspectives 

 The identifi cation of almost all genes identifi ed to date in CPHD was based on 
the murine model. Even if it is clear that having a close animal model is crucial, 
the discrepancy between mice and humans might explain why only 10 % of the 
etiologies of CPHD have been identifi ed today. This is an issue, as identifying the 
etiologies of congenital hypopituitarism is of major importance to better diagnose 
and treat the patients, in particular in the differential diagnosis of a pituitary mass 
on MRI, or to identify the patients at risk of developing delayed corticotroph defi -
ciency and as a prenatal diagnosis to decrease the risk of early death (undiagnosed 
corticotroph defi ciency, for instance). 

 Another possibility to explain this poor rate of identifi cation is the limits in the 
detection techniques that we have: classical Sanger sequencing has, for instance, 
inherent limits with the impossibility to identify large deletions or insertions or 
intronic alterations leading to splicing anomalies. The development of new tech-
niques in the recent years should dramatically improve the rate of identifi cation of 
etiologies of congenital hypopituitarism:  array comparative genomic hybridization 
(aCGH)   has been created for identifying segmental genomic copy number  variations 
(gain or loss) such as structural rearrangements (deletions, duplications, insertions, 
translocations) or complex chromosomal aneuploidies; it can be designed in a whole 
genome approach, where the array targets are equally spaced with coverage of 100 
to 1000 kb. Another promising approach is whole-exome sequencing, which is 
based on the assumption that 85 % of mutations are located in coding regions of the 
genome. This technique should be of great interest in highly penetrant Mendelian 
diseases. However, reporting new variants in a single patient does not mean patho-
genicity and requires confi rmation by a similar fi nding in other persons presenting 
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with similar phenotypes. Moreover, confi rmatory steps by bioinformatics analysis 
after a usually large dataset of results can be highly challenging. 

 To summarize, in one sentence, huge progress has been made over the last 20 
years, but we are only at the beginning of the path. Thinking differently might likely 
help explaining the majority of yet unknown causes of CPHD.     
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