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Abstract Many real world optimization scenarios impose certain limitations, in
terms of constraints and bounds, on various factors affecting the problem. In this
paper we formulate several methods for bound handling of decision variables
involved in solving a multi-objective optimization problem using particle swarm
optimization algorithm. We further compare the performance of these methods on
different 2-objective test problems.
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1 Introduction

Particle swarm optimization (PSO) is a stochastic, population-based evolutionary
algorithm inspired by the collective behavior of flocks and uses swarm intelligence
to perform the task of search and optimization [1]. The process starts with random
particles (points lying between the specified upper and lower bounds) being gen-
erated in the search space. The particles move in the search space guided by their
own experiences and the acquired knowledge of the swarm, i.e., they have personal
and global guides that guide them to better regions (solutions) in the solution space.
These guides are the best solutions discovered so far by the particle itself, in the
case of the personal guide, and the best solutions discovered so far collectively by
the group in the case of the global guides. In the latter case each particle is assigned
a global guide based on some criteria. When we say the particles move we
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essentially mean to say that the position of the particle is changed or updated after
every iteration. A velocity vector is added to the current position vector to move it
to a new position. The personal guides and global guides play a major role in the
formulation of the velocity vector. One of the biggest problems faced with PSO is
that of maintaining the swarm within the feasible region, especially when swarm
goes out the bound [2, 3]. The particles get large velocities. The velocity vector
adds momentum to the particle and forces the particle out of the feasible region.
Empirical analysis and theoretical proofs show that particles leave search bound-
aries very early during the optimization process [4, 5]. This results in inefficient
performance of the algorithm, and poor convergence of the swarm, as even after
millions of function evaluations, the swarm fails to converge, wasting a lot of time.
As a result, in most cases, we do not get any feasible solution at all.

Over the past, several methods have been proposed in the literature to extend
PSO to deal with multi-objective optimization problems, which are known as
Multi-Objective Particle Swarm Optimization (MOPSO) techniques [6–8]. How-
ever so far, little attention has been drawn for bound handling to MOPSO [9].
A task of respecting the bounds is even more difficult with MOPSO when many
particles are likely to converge to the Pareto-optimal front and get out of the
bounds. Helwig et al. in [2] have suggested several methods for bound handling on
a flat landscape. Padhye et al. [3] suggested inverse parabolic distribution strategy
and compared the results with other techniques for single-objective optimization. In
this paper we implement the various methods of [2] for the bound handling in
multi-objective problems. These methods can help to not only achieve solutions
faster but also can help improving the efficiency of PSO. We test the methods on
benchmark problems including ZDT1, ZDT2, ZDT3 and ZDT6 [10]. It is observed
that the swarm fails to converge to the Pareto-optimal front in the absence of
coupling with one of the bound handling methods mentioned in [2].

The outline of the paper is as follows. In Sect. 2 we describe the general scheme
of the PSO algorithm. In Sect. 3 we describe the bound handling methods that we
have coupled with MOPSO. In Sect. 4 we present the results of various bound
handling methods with MOPSO for ZDT1, ZDT2, ZDT3 and ZDT6 benchmark
multi-objective problems. Finally in Sect. 5 we draw our conclusion.

2 Generalized MOPSO Algorithm

The generalized MOPSO algorithm is given in Table 1. It is a simple MOPSO
algorithm coupled with a boundary handling technique. The fitness is assigned to
each particle using non-dominated sorting and crowding distance operators [11].
The following equations illustrate the position, velocity, personal guide and global
guide updates respectively.
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(1) Position of the particle (i) is adjusted as xt+1
i = xti + vt+1

i
(2) Velocity of particle (i) is updated as

vt+1
i =wvti + c1r1 pti, lb − xti

� �
+ c2r2 pti, gb − xti

� �

where i is the ith particle, t is the iteration number, v0i is set randomly, w adds
to inertia of particle, n is the number of particles in the swarm, c1 and c2 are
acceleration coefficients, and r1 and r2 are random numbers ∈ [0, 1].

(3) pti, lb is the personal guide of the ith particle at tth iteration which is calculated
as
If f xt+1

i

� �
has better fitness than f pti, lb

� �
then pt+1

i, lb = xt+1
i

Else pt+1
i, lb = pti, lb

(4) pti, gb is the global guide of the ith particle at tth iteration, calculated as

ptgb ∈ pt1, lb, p
t
2, lb, . . . , p

t
n, lb

� �jf ptgb
� �

= best f pt1, lb
� �

, f pt2, lb
� �

, . . . , f ptn, lb
� �� �

.

The general MOPSO scheme can be modified to produce improved results and
faster convergence of the swarm, by introducing the concept of bound handling
while updating the position of the particle. This maintains all the particles within the
feasible search region always during the search. These bound handling methods are
described in the following section.

Table 1 MOPSO coupled with boundary handling technique

1. Set the iteration counter, t = 0, maximum allowed iterations = T, c1 = 1.7, c2 = 1.6 and
w = 0.9
2. Initialize position and velocity of the particles randomly
3. Evaluate particles and assign fitness
4. while t < T do
a. Calculate pti, lb using (3)

b. Calculate pti, gb using (4)

c. Update velocity for each particle using (2)
d. Update position for each particle using (1)
e. Check If the position of the particle has exceeded the bounds
If yes

Using a boundary handling technique described in Sect. 3, update the position and velocity for
each particle
Else

Keep the same position and velocity as calculated in 4(b) and 4(c)
f. Evaluate particles and assign fitness
g. t = t + 1
5. end while
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3 Bound Handling Methods

In this section we discuss various bound handling methods which are coupled with
MOPSO.

1. Mutation: Mutation based method that perturbs the unbounded position by a
small amount to bring the particle back into the feasible region.

2. Reflect Methods: In the reflect method we reflect all the violating variables
along the closer bound and repeat the process unless the variable is within the
bounds. There are three variations to alter the velocity.

i. Reflect-Adjust: Vnew =Xnew, bounded −Xold, unbounded

ii. Reflect Unmodified: Velocity is unmodified.
iii. Reflect-Zero: Velocity is set to zero.

3. Nearest Methods: Put the particle on the nearer bounds with four variations to
alter the velocity.

i. Nearest–Zero: Velocity is set to zero.
ii. Nearest–Unmodified: Velocity is unmodified.
iii. Nearest with deterministic back: Vnew = − 0.5 *Vold

iv. Nearest with random back: Vnew = − lambda *Vold, where lambda is a
random real number between 0 and 1.

4. Random Methods: Randomly locate the particle within the bounds with two
variations to change the velocity.

i. Random-Zero: Velocity is set to zero.
ii. Random-Unmodified: Velocity is unmodified.

5. Hyperbolic Method: In this method the particle is not allowed to leave the
feasible area at all. The new velocity is normalized before updating the position
as,

If Vt+1
i >0 Vt+1

i =Vt+1
i ̸ 1+ Vt+1

i ̸ Xi,max −Xt
i

� ��� ��� �
Else Vt+1

i =Vt+1
i ̸ 1+ Vt+1

i ̸ Xt
i −Xi,min

� ��� ��� �

The normalized velocity ensures that the new position of the particle is always
within the bounds.

The methods described in this section help to handle variable bounds during the
execution of the algorithm. These methods restrict the movement of the particle
thereby keeping them in the feasible region. Hence they help the algorithm to
converge faster and find better solutions. We now describe the benchmark problems
over which we have tested the MOPSO algorithm coupled with these methods.
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4 Results and Discussion

MOPSO with various bound handling methods is tested on four ZDT benchmark
problems [10] in multi-objective optimization. The mathematical description of the
problems is given in Table 2 with their nature of Pareto-front. Their characteristic
features of convexity, non-convexity, discreteness and non-uniformity respectively
are known to cause difficulty to an EA in converging to the Pareto optimal front.
We run our code 20 times with different initial particle positions using the algorithm
described in Table 1. The performance of bound handling methods are assessed by
using inverse generalized distance. The best, median and worst inversed generalized
distance (IGD) values [12] from our runs are tabulated in Table 3.

For solving problems with convex Pareto fronts, the best performance is shown
by the Hyperbolic method, but it is not consistent, hence Nearest Z serves as the
best method for such problems as shown by its consistent IGD values for ZDT1
problem. Other versions of the Nearest method can also prove to be useful.

Solving problems having a non-convex front like ZDT2 proves to be difficult
using MOPSO even after the deployment of bound handling methods. Although
Nearest Z shows maximum convergence in the best case in ZDT2 problem, but in
several other runs it fails to live up to its best performance. Similar behavior is
shown by Nearest U and Nearest DB methods. However Nearest RB shows
incredible consistency in solving ZDT2 problem as evident from the consistent
best, median and worst IGD values for ZDT2 problem. Hence for solving problems
with a previous knowledge of it having a non-convex Pareto front, Nearest RB
method could prove to be extremely useful for an improved bound handling and a
better convergence to the true Pareto using MOPSO. None of the other methods
solve the ZDT2 problem.

When there are several non-contiguous convex parts in the Pareto front, both
Nearest U and Nearest Z perform the best and equally well as in the case of ZDT3
problem. Hyperbolic and other versions of Nearest method could also be used as
they show consistent IGD values for all cases. Reflect Z and A also may be used,
while other methods result in weak Pareto front.

In the case of ZDT6 problem which has a non-uniformly distributed, non-convex
Pareto-optimal front, satisfactory performance is shown by Hyperbolic, all Nearest
methods and Reflect A, Z methods. Nearest RB method is consistent and shows the
best performance in the worst case.

The analysis of Table 3 and the plots in Fig. 1 give a clear idea that out of all the
methods, Random-U, Random-Z and Reflect U are the poorest and generate weak
Pareto fronts in all cases. The reason for the poor performance of Reflect U is that
even after being reflected back into the feasible region, the particle is forced out
again into infeasibility because of the unmodified velocity vector. The Random
methods also fail because they randomly put the violating variable in the feasible
region. In both the above cases even though feasibility is maintained, the swarm
loses out on the areas of better fitness. Hence the particles fail to converge to the
Pareto front. The other two variants of Reflect method, Reflect-A and Reflect-Z
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perform much better than their counterpart Reflect U because in these two cases the
velocity vector is modified (reversed or made zero) which helps the particle to
remain in the feasible region and eventually reach near the true Pareto front.
However the results acquired with them still have a scope of further improvement.
They may be used (although some other methods are much better) to solve prob-
lems with uniform or discrete convex fronts like ZDT1 and ZDT3 and non-uniform
problems like ZDT6 but fail miserably in solving non-convex problems like ZDT2
problem. (See the IGD values for ZDT2). The mutation based method also fails at a
general level in the context of the shape of the Pareto front, poor convergence and
getting stuck in the local optimum. One straight forward explanation is that the
small perturbation from the unbounded position does not ensure feasibility.
Hyperbolic, though not the best, can still be used with all problems mentioned in
the paper except ZDT2. Its performance can be attributed to the fact that it never
allows the particle to leave the feasible region and hence has proven to be quite
competitive. As mentioned in [2] the velocities when using Hyperbolic are very
small, which reduces the exploration capability of the swarm and it is highly
probable that it prematurely converges at a local optimum. This explains its poor
performance in solving ZDT2 problem.

All the Nearest methods have performed well. Nearest RB method has proven to
be the most consistent. The method never fails as depicted by the IGD values which

Fig. 1 0 % attainment plots for ZDT problems using MOPSO with bound handling techniques
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are the best or very close to the best compared to other methods even in the worst
cases.

It is closely followed by Nearest Z and Nearest DB methods that also give good
results most of the time. Nearest U method does not perform as good as the rest of
them due to the unmodified velocity vector.

An important reason to be noted here, which explains the superior performance
of all the Nearest methods is that with ZDT problems, part of the Pareto front lies at
the bound, and since the Nearest method keeps the particle at the bound to prevent
infeasibility, often the particles are able to reach a local optimum and then they
diverge from there to form the Pareto front. Nearest RB performs the best, as it sets
the velocity randomly compared to the other Nearest versions where the velocity is
predetermined which limits the exploration capability of the swarm.

From our analysis in this section we can say that the Nearest Methods and to
some extent the Hyperbolic method, are the most reliable methods for bound
handling. Finally we have identified that the Nearest RB method, may not produce
the best results in all cases, but it is very close to the best in all the cases. Hence we
recommend that, Nearest RB method should be used for bound handling with
various problem types.

5 Conclusion

In this paper we implemented several methods for bound handling of decision
variables for multi-objective particle swarm optimization, and showed that MOPSO
coupled with boundary handling techniques performs better than without the usage
of a well-defined boundary handling technique. The Nearest methods and the
Hyperbolic method perform well at handling the bounds, particularly the Near-
est RB method beats them all. The reflect method also gives fair results. Mutation
based method disappoints given its popularity in the literature. The algorithm works
almost perfectly for most of the 2-D benchmark problems including ZDT1, ZDT2,
ZDT3 and ZDT6. The future scope of research and study lies in the area of
development of further efficient bound handling methods for MOPSO that can be
used for multi and many objective optimization problems.
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