
Chapter 4
Controlling Oscillations in Nonlinear
Systems with Delayed Output Feedback

Fatihcan M. Atay

Abstract We discuss the problem of controlling oscillations in weakly nonlinear
systems by delayed feedback. In classical control theory, the objective of the control
action is typically to drive the system to a stable equilibrium. Here we also study the
possibility of driving the system to a stable limit cycle having a prescribed ampli-
tude and frequency, as well as suppressing unwanted oscillations, using partial state
information in the feedback. The presence of the delay in the output feedback turns
out to play a crucial role in achieving these goals.

4.1 Introduction

Controlling the behavior of dynamical systems is a problem of practical importance
in many applications. In classical control theory, the basic goal is usually stated as a
regulator problem, namely, to obtain an asymptotically stable equilibrium solution
which attracts all nearby initial conditions. A more sophisticated aim in oscillation
control can be defined as obtaining a stable periodic solution with desired properties,
such as oscillation at a given amplitude or frequency. We call this goal the oscil-
lator problem. This chapter deals with the oscillator problem under delayed output
feedback.

Feedback delays are an inevitable feature of many natural and man-made control
mechanisms. While they are often seen as an undesired characteristic that can desta-
bilize the system or complicate the analysis, positive uses of delays have also been
studied. These go back to the 1950s [1], followed by other works in later years [2–5],
where delays were used to enhance the system performance in various ways. Most
of the analytical studies have so far focused on linear systems and stability. In the
present chapter we consider feedback laws to control the amplitude and stability of
oscillations in nonlinear systems. Moreover, we consider the problem from an output
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feedback point of view, where only partial information about the state of the system
is available for the feedback control.

The main results we present can be rigorously derived in full generality for weak
nonlinearities, such as for systems near a Hopf bifurcation, which is an important
mechanism for generating oscillations in nonlinear systems. The analysis then starts
by projecting the dynamics onto a center manifold and proceeds by investigating
the resulting two-dimensional system. This general approach for oscillation control
can be found in [6–8]. For the purpose of simplicity, here we will assume that such
a reduction step has already been done and a two-dimensional system has been
obtained. Therefore, we will study systems described by equations of the form

ẍ + ω2x + εg(x, ẋ, ε) = ε f (x(t − τ)). (4.1)

Here x ∈ R, and ω and ε � 1 are positive parameters. The left hand side of (4.1)
describes the dynamics of the system after projection onto a two-dimensional center
manifold corresponding to a pair of imaginary eigenvalues ±iω, whereas the right
hand side represents a feedback of position that is delayed by τ ≥ 0. The feedback
is, at the moment, scaled by the parameter ε so that it has a comparable magnitude
with the nonlinearity g; however, we will relax this assumption in Sect. 4.5 when we
study frequency control.

The form of left hand side of (4.1) is quite general and includes several para-
digmatic systems as special cases, for instance the van der Pol (with g(x, ẋ, ε) =
(x2 − 1)ẋ) and the Duffing oscillators (with g(x, ẋ, ε) = αx + βx3+γ ẋ). Equations
of the form (4.1) also come up in various biological and industrial settings, for
example in the production of proteins [9, 10], orientation control in the fly [11, 12],
neuromuscular regulation of movement and posture [10, 13, 14], acousto-optical
bistability [15], metal cutting [16], vibration absorption [17], and control of the
inverted pendulum [18]. Feedback loops with only partial state information is typical
in many biological control mechanisms. Furthermore, the classical control-theoretic
approach of using an observer to reconstruct the full state is not an option in natural
systems. Hence, it is an interesting and challenging goal to discover the theoretical
basis for control under partial and delayed information.

The regulator and oscillator problems under delayed feedback have been studied
for nonlinear equations of type (4.1) in several previous works. Some of the most
relevant ones for the purposes of this chapter using similar techniques can be listed as
follows. Controlling the amplitude of oscillations was investigated in [19] for the van
der Pol oscillator and later in [20] for more general oscillators (4.1). Controlling the
frequency of oscillations is studied in [6]. Suppressing oscillations in networks has
been treated in [21]. A general study for controlling systems near Hopf bifurcation
using distributed delays is given in [7], and for networks of oscillators in [21].

In the following we will analyze (4.1) and show that the goal of the regulator
problem (stabilizing the zero solution) can be achieved by a linear delayed feedback
of the variable x , and the goal of the oscillator problem (obtaining a stable limit cycle
at a given amplitude and/or modifying its frequency) can be achieved by a nonlinear
feedback function. The conclusion holds for general nonlinearities g and using only
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the feedback of the position x . On the other hand, the presence of a positive delay in
(4.1) turns out to be essential in attaining most of these goals.

4.2 Averaging Theory and Periodic Solutions

For notation, we will use ‖·‖ for the usual Euclidean norm and Dig for the partial
derivative of the function gwith respect to its i th argument.Without loss of generality,
it will be assumed throughout that ω = 1 in (4.1), which can always be achieved by
a rescaling of the time t �→ ωt . Furthermore, it will be assumed that the functions
f : R → R and g : R3 → R are C2, f (0) = 0, and g(0, 0, ε) = 0 for all ε.
The main tool for the analysis of (4.1) will be averaging theory for delay differ-

ential equations. Consider amplitude-phase variables (r, θ) defined by the transfor-
mation

x(t) = r(t) cos(t + θ(t))
ẋ(t) = −r(t) sin(t + θ(t)).

(4.2)

In these new coordinates, (4.1) takes the form

ṙ = ε sin(t + θ)( g − f )

θ̇ = ε
1

r
cos(t + θ)( g − f ),

(4.3)

where the arguments of f and g are expressed in terms of r and θ , i.e.,

g = g (r(t) cos(t + θ(t)),−r(t) sin(t + θ(t)), ε)
f = f (r(t − τ) cos(t − τ + θ(t − τ))).

(4.4)

When ε = 0, the solutions of (4.3) are constants, which correspond by (4.2) to the
usual harmonic oscillations. Thus, (4.3) can be viewed as a time-dependent pertur-
bation of a simple harmonic oscillator in the amplitude-phase variables, which can
be analyzed by the method of averaging for small ε.

Letting y = (r, θ) ∈ R
2, the system (4.3) and (4.4) is a delay differential equation

describing the relation between the instantaneous derivative ẏ(t) and the present and
past values of y(t). A solution y(t) of (4.3) describes a trajectory in the infinite-
dimensional state space C := C([−τ, 0],R2), namely, the Banach space of continu-
ous functionsmapping the interval [−τ, 0] toR2, equippedwith the supremum norm,
‖ f ‖ = sup

x∈[−τ,0]
f (x). A point yt on a trajectory is a piece of the solution function over

an interval of length τ , defined by yt (s) = y(t + s), s ∈ [−τ, 0]. In this notation,
(4.3) can be written as

ẏ(t) = εh(t, yt , ε) (4.5)

where h is periodic in t with period T = 2π . The averaged equation corresponding
to (4.5) is defined as
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ż(t) = εh̄(zt ) (4.6)

where

h̄(ϕ) := 1

T

∫ T

0
h(t, ϕ, 0) dt. (4.7)

In (4.6) zt is understood as a constant element of C. One can intuitively understand
this by noting that y is slowly changing by (4.5), so that yt (s) ≡ y(t)+ O(ε) for s ∈
[−τ, 0], i.e., y is almost constant over an interval of length τ . Thus, (4.6) is an ordinary
differential equation. In this way, averaging reduces the infinite-dimensional system
(4.5) to a finite dimensional one, (4.6). Furthermore, by the averaging theorem,
hyperbolic equilibrium points of (4.6) correspond to hyperbolic periodic solutions
of (4.5), with the same stability type [22].

We now return to our main equation (4.1) and its equivalent formulation (4.3) to
apply averaging theory. We average the equation for r given in (4.3) in the sense of
(4.7) to obtain

ṙ = ε
1

2π

∫ 2π

0
sin(t + θ) g(r cos(t + θ),−r sin(t + θ), 0) dt− (4.8)

ε
1

2π

∫ 2π

0
sin(t + θ) f (r cos(t − τ + θ)) dt.

Here, in accordance with (4.6), r and θ are treated as constants over one period.
With the change of variables u = −(t + θ), and using the fact that the integrand is
2π -periodic in u, the first integral in (4.8) becomes

ε
1

2π

∫ −θ−2π

−θ

(sin u )g(r cos u, r sin u, 0) du.

Similarly, with u = t − τ + θ , the second integral in (4.8) can be written as

− ε
1

2π

∫ 2π+θ−τ

θ−τ

sin(u + τ) f (r cos u) du

= −ε
sin τ

2π

∫ 2π

0
f (r cos u) cos u du − ε

cos τ

2π

∫ 2π

0
f (r cos u) sin u du (4.9)

where we have used the fact that the second integral in (4.9) is zero. Combining, we
see that the averaged equation for r has the form

ṙ = −ε(F(r) + G(r)), (4.10)
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where

F(r) = sin τ

2π

∫ 2π

0
f (r cos t) cos t dt, (4.11)

G(r) = 1

2π

∫ 2π

0
g(r cos t, r sin t, 0) sin t dt. (4.12)

By the averaging theorem for delay differential equations [22] and the transforma-
tion (4.2), positive hyperbolic equilibria R of (4.10) yield hyperbolic periodic solu-
tions of (4.1) of the form x(t) ≈ R cos t , with the same stability type. In other words,
if R > 0 is such that F(R) + G(R) = 0 and F ′(R) + G ′(R) �= 0, then (4.1) has a
periodic solution which is orbitally asymptotically stable if F ′(R) + G ′(R) > 0, and
unstable if F ′(R) + G ′(R) < 0, as long as ε > 0 is sufficiently small. In this way,
studying nontrivial hyperbolic periodic solutions of (4.1) is reduced to investigating
positive and hyperbolic equilibrium points of (4.10).

The stability argument extends to R = 0 and can be used to deduce the stability
of the zero solution of (4.1). In fact, this can be done directly without resorting to
averaging, but it is interesting to relate the conditions to the averaged quantities (4.11)
and (4.12). Thus, linearization of (4.1) about the zero solution gives the characteristic
equation

Δ(λ, ε) := λ2 + 1 + ε(D1g(0, 0, ε) + λD2g(0, 0, ε)) − ε f ′(0)e−λτ = 0. (4.13)

When ε = 0, there are two roots on the imaginary axis: λ = ±i . By the implicit
function theorem, the roots depend smoothly on ε in a neighborhood of ε = 0, and
implicit differentiation of (4.45) gives

Re[λ′(ε)|ε=0] = −1

2
( f ′(0) sin τ + D2g(0, 0, 0)) (4.14)

= − (
F ′(0) + G ′(0)

)
. (4.15)

Hence, the roots λ move into the left (respectively, right) complex half-plane if
F ′(0) + G ′(0) is positive (resp., negative), and remain there for all sufficiently
small ε > 0, indicating that the zero solution of (4.1) is asymptotically stable if
F ′(0) + G ′(0) > 0 and unstable if F ′(0) + G ′(0) < 0. Thus, the stability of equi-
librium solutions (regulator problem) and periodic orbits (oscillator problem) can be
conveniently expressed within the same framework.

Remark 1 For calculations it is worthwhile to note that F and G defined in (4.11)
and (4.12) are both odd functions of r ; i.e.

F(−r) = −F(r) and G(−r) = −G(r) for all r ∈ R. (4.16)

For details, see [20].
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4.3 Linear Feedback

Classical control theory has been extensively developed for linear systems or their
linearizations at suitable operating points. Hence, it is natural to first consider a linear
feedback law, namely the case when f has the form

f (x) = k1x, (4.17)

for some feedback gain k1 ∈ R. Then by (4.11),

F(r) = 1

2
rk1 sin τ. (4.18)

We first consider the regulator problem of stabilizing of the zero solution. From
(4.14),

Re[λ′(ε)|ε=0] = −1

2
(k1 sin τ + D2g(0, 0, 0)).

We thus immediately obtain that, for small ε > 0, the zero solution of (4.1) is asymp-
totically stable if k1 sin τ > −D2g(0, 0, 0), and unstable if k1 sin τ < −D2g(0, 0, 0).

For periodic solutions, we seek positive fixed points R of the averaged equation
(4.10), i.e., of

ṙ = −ε

(
1

2
rk1 sin τ + G(r)

)
, (4.19)

which gives

k1 sin τ = −2
G(R)

R
. (4.20)

We define the function

Ḡ(r) := G(r)

r
(4.21)

and note that

Ḡ ′(r) = rG ′(r) − G(r)

r2
= 1

r
(G ′(r) − Ḡ(r)). (4.22)

Combining (4.18), (4.20), and (4.21), we have

F ′(R) + G ′(R) = RḠ ′(R).

Therefore, a positive solution R of (4.20) is a fixed point of the averaged equation
(4.10) and its stability is determined only by the sign of Ḡ ′(R). By the averaging the-
orem, such points correspond to periodic solutions of the original equation (4.1) with
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amplitude R, which are orbitally asymptotically stable if Ḡ ′(R) > 0, and unstable if
Ḡ ′(R) < 0, for sufficiently small ε > 0.

Now the important observation is that, for any desired amplitude R > 0, it is
possible to find a feedback gain k1 such that (4.20) is satisfied, provided sin τ �= 0.
Hence, delayed linear feedback can be effective in modifying the amplitude of peri-
odic solutions. The condition sin τ �= 0 shows that a nonzero delay in the feedback is
essential for this task. However, the stability of these periodic solutions depends only
on the function Ḡ, and hence on the nonlinearity g. So, linear feedback is helpful in
solving the oscillator problem only to the extent allowed by the nonlinearity g (for
an example see [19]). On the other hand, linear feedback is effective in the regulator
problem since it can stabilize the zero solution. We illustrate with examples.

Example 2 Consider the celebrated van der Pol oscillator under delayed feedback

ẍ(t) + ε(x2 − 1)ẋ + 1 = εk1x(t − τ). (4.23)

It is well known that the uncontrolled system (k1 = 0) has an attracting limit cycle
solution x(t) ≈ 2 cos t for small ε whereas the origin is unstable. We will show that
we can modify the amplitude of limit cycle oscillations or make the origin stable
by an appropriate choice of feedback gain k1. Now, (4.23) has the form (4.1) with
g(x, ẋ, ε) = (x2 − 1)ẋ and f (x) = k1x . The averaged quantities are

G(r) = 1

2
r

(
r2

4
− 1

)
(4.24)

and F as in (4.18); so the averaged equation for (4.23) is

ṙ = −ε
r

2

(
r2

4
− 1 + k1 sin τ

)
. (4.25)

This equation has a fixed point at zero, and another one at r = R = 2
√
1 − k1 sin τ

if k1 sin τ < 1. We have Ḡ ′(r) = r/4, which is clearly positive for all r > 0; so the
fixed point R is stable whenever it exists. Therefore, for 0 < ε � 1, (4.23) can have
a stable periodic solution with amplitude approximately R = 2

√
1 − k1 sin τ . In the

absence of feedback, i.e., when k1 = 0, we recover the familiar periodic solution
x(t) ≈ 2 cos t of (4.23), but we also see that we can set the amplitude arbitrarily by
changing k1. Moreover, by choosing k1 sin τ > −D2g(0, 0, 0) = 1, the limit cycle
oscillations can be destroyed and the origin can be made stable. Both situations are
depicted in Fig. 4.1.

Example 3 Wemake a small modification to the van der Pol oscillator of Example 2
and consider the nonlinearity g with reversed sign, i.e., g = −(x2 − 1)ẋ , again with
linear delayed feedback:

ẍ(t) − ε(x2 − 1)ẋ + 1 = εk1x(t − τ). (4.26)
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Fig. 4.1 Van der Pol oscillator under delayed feedback. Choosing a feedback gain of k1 = 0.75
reduces the amplitude of limit cycle oscillations to 1 (blue curve), whereas increasing the gain to
k1 = 2 destroys the limit cycle and stabilizes the equilibrium point (black curve). Parameter values
τ = π/2 and ε = 0.1; random initial conditions

Now the averaged equation becomes

ṙ = −ε
r

2

(
1 − r2

4
+ k1 sin τ

)
, (4.27)

which has a positive fixed point at R = 2
√
1 + k1 sin τ if k1 sin τ > −1. As before,

the amplitude of periodic solutions can be changed by appropriate choice of k1 and
τ . However, these solutions are all unstable because Ḡ ′(R) = −R/4 < 0. Thus, in
this case the nonlinearity g does not allow the linear feedback to set up stable limit
cycle oscillations at any amplitude R. (Note that the origin is locally stable as long as
k1 sin τ > −D2g(0, 0, 0) = −1.) In the next section we shall show how to overcome
this limitation by adding a nonlinear term to the feedback function.

4.4 Nonlinear Feedback

As we have seen in Sect. 4.3, linear feedback is sufficient for the regulator problem
but in general not for the oscillator problem. Therefore, we now turn to nonlinear
feedback schemes.We show that, by adding a cubic term to the feedback function, the
possibility of controlling oscillations through delayed feedback is greatly improved.

We consider a feedback function of the form

f (x) = k1x + k3x
3. (4.28)
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We will show that the coefficients ki can be chosen so that the averaged equation
(4.10) has a stable equilibrium point at a desired value R.

The averaged function F corresponding to (4.28) is also a cubic polynomial,

F(r) = q1r + q3r
3, (4.29)

with

q1 = 1

2
k1 sin τ and q3 = 3

8
k3 sin τ . (4.30)

Consequently,
F(r) + G(r) = r(q1 + q3r

2 + Ḡ(r)), (4.31)

where the function Ḡ is defined in (4.21). Now let R > 0 be given. We will choose
q1 in a suitable manner, to be described shortly, and define q3 in terms of q1 as

q3 = −q1 − Ḡ(R)

R2
. (4.32)

With this choice of q3, it follows from (4.31) that F(R) + G(R) = 0; so, R is an
equilibrium point of the averaged equation (4.10). We will choose q1 to ensure that
R is a stable equilibrium, i.e., F ′(R) + G ′(R) > 0. From (4.31),

F ′(R) + G ′(R) = R(2Rq3 + Ḡ ′(R)), (4.33)

which is positive provided

q3 > − Ḡ ′(R)

2R
. (4.34)

Using (4.34) in (4.32), the condition on q1 is found as

q1 <
1

2
RḠ ′(R) − Ḡ(R). (4.35)

From conditions (4.34) and (4.35), the feedback coefficients of (4.28) can then
be calculated, using (4.30), as k1 = 2q1(sin τ)−1 and k3 = 8q3(3 sin τ)−1, whenever
sin τ �= 0. We thus have a procedure for feedback design to create a stable periodic
solution with a prescribed amplitude R: First choose k1 and/or τ so that

k1 sin τ < RḠ ′(R) − 2Ḡ(R). (4.36)

Subsequently, calculate k3 through the formula

k3 = − 8

3R2

(
1

2
k1 + Ḡ(R)

sin τ

)
. (4.37)
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Then, for all sufficiently small ε > 0, the nonlinear feedback (4.28) ensures that the
system (4.1) has an asymptotically orbitally stable periodic solutionwhose amplitude
is R + O(ε). By a similar reasoning it can be seen that, by reversing the inequality
in (4.36), one obtains an unstable periodic solution with amplitude R + O(ε).

Example 4 We consider the modified van der Pol equation of Example 3, this time
with a nonlinear feedback:

ẍ(t) − ε(x2 − 1)ẋ + 1 = εk1x(t − τ) + εk3x
3(t − τ). (4.38)

The averaged equation is

ṙ = −ε
r

2

(
1 − r2

4
+ k1 sin τ + 3r2

4
k3 sin τ

)
, (4.39)

which has the positive fixed point

r = R = 2

√
1 + k1 sin τ

1 − 3k3 sin τ
(4.40)

whenever the radicand is positive. Furthermore,

RḠ ′(R) − 2Ḡ(R) = − R2

4
− 2

(
1

2
− R2

8

)
= −1;

so, choosing k1 sin τ < −1 satisfies (4.36) and ensures that the fixed point R is
stable. Formula (4.37) then determines the remaining coefficient k3. For instance, if
it is desired to create stable oscillations at an amplitude of R = 3 with τ = π/2, we
can choose, e.g., k1 = −2, and find k3 = 13/27 from (4.40). Figure4.2 shows the
resulting limit cycle.

Remark 5 One may wonder why we have chosen to add a cubic term in (4.28).
We note that if f is an even function, then (4.11) gives F(−r) = F(r), so that, in
view of (4.16), one has F(r) ≡ 0. Hence, F only depends on the odd part fo(x) =
1
2 ( f (x) − f (−x)) of f . Since for small ε the dynamics of (4.1) is determined by
G and F , there is no loss of generality in assuming that f is an odd function. In
this sense, (4.28) represents the simplest nonlinear feedback function (at least in the
ring of polynomials). Together with the results of the previous section, it is seen that
simple delayed feedback schemes can be quite powerful in oscillation control.
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Fig. 4.2 Themodified van der Pol oscillator (4.38) under nonlinear feedback exhibiting stable limit
cycle oscillations at the prescribed amplitude 3. Parameter values are τ = π/2, ε = 0.1, k1 = −2,
and k3 = 0.48; random initial conditions

4.5 Controlling the Frequency of Oscillations

The results of the foregoing sections indicate that the control law (4.28) can be
effective for controlling the stability of periodic solutions as well as specifying their
amplitude. However, so far we have not discussed controlling the frequency of the
oscillations. For this latter goal, it turns out that the feedback magnitude in (4.1)
needs to be modified. Namely, we need to relax the assumption that the forcing term
on the right hand side of (4.1) is of order ε. Therefore, we will now consider the
slightly modified equation

ẍ + x + εg(x, ẋ, ε) = f (x(t − τ)). (4.41)

The reason for this change of right hand side can be understood as follows. The
previous system (4.1) was viewed as an ε-perturbation of a simple harmonic oscil-
lator. There, by using a suitable feedback function, we were able to create a stable
limit cycle at a prescribed amplitude because the harmonic oscillator has periodic
solutions of all amplitudes. However, all these solutions have the same frequency 1.
Therefore, forcing the system with a feedback magnitude of order ε cannot change
the frequency appreciably. In the case of (4.41), however, the unperturbed system

ẍ + x = f (x(t − τ)). (4.42)

is no longer the simple harmonic oscillator; in fact, it is not a planar system anymore
if τ �= 0. This may offer more possibilities for choosing a desired periodic solution
at a certain amplitude and frequency. The price to be paid is that (4.42) is an infinite-
dimensional system.
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We can proceed in a similar way using averaging theory and the insight gained
from the previous sections. From Sect. 4.4 we know that a cubic function of the form
f (x) = ε(k1x + k3x3) can be used in (4.42) to control amplitude of oscillations, and
we have observed that we would need a feedback term of higher magnitude if we are
to have any hope of modifying frequencies significantly. We are therefore naturally
led to trying the following feedback form

f (x) = kx + ε(k1x + k3x
3) (4.43)

in (4.41).
With the choice (4.43) and small ε, (4.41) can be viewed as an perturbation of the

linear system
ẍ + x = kx(t − τ). (4.44)

Just like for the harmonic oscillator, we would like to know what variety of stable
periodic solutions (4.44) has. For this purpose we seek purely imaginary solutions
of the corresponding characteristic equation

χ(λ) := λ2 + 1 − ke−λτ = 0. (4.45)

The following result summarizes the frequency range about such solutions; for a
proof see [6].

Lemma 6 ([6]) Let Ω ∈ (
√
2/5,

√
2) and k = Ω2 − 1. Let τ be an arbitrary non-

negative number ifΩ = 1, otherwise let τ = π/Ω . Then the characteristic equation
(4.45) has precisely two roots λ = ±iΩ on the imaginary axis and no roots with
positive real parts.

Thus, unlike the simple harmonic oscillator which has periodic solutions only with a
single frequency, (4.44) has periodic solutionswith a range of frequencies in the inter-
val (

√
2/5,

√
2). Coming from a linear equation, these solutions can have arbitrary

amplitudes since anymultiple of a solution is also a solution.We are now in a familiar
setting: after fixing one of these frequencies by choosing k as in the above Lemma,
we can addO(ε) terms to the feedback to account forO(ε) nonlinearities in order to
obtain stable limit cycles in (4.41) with a prescribed amplitude. In other words, we
activate the coefficients k1 and k2 in the feedback law (4.43). We note, however, that
the calculation of the averaged equations involves quite a different technique than
the previous sections, namely the projection of the dynamics of (4.41) onto a center
manifold corresponding to the roots λ = ±iΩ of the characteristic equation (4.45).
As the theory of center manifold reduction for delay differential equations is beyond
our scope here, we refer the interested reader to [6] for details. The important thing
to note is that the averaged quantities Fand G are now given by
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F(r) = 1

2π

4Ω sin(Ωτ) − 2τ
(
1 − Ω2

)
cos(Ωτ)

τ 2(1 − Ω2)2 + 4Ω2

∫ 2π

0
cos t f (r cos t) dt (4.46)

G(r) = 1

2π

∫ 2π

0

4Ω sin t + 2τ
(
1 − Ω2

)
cos t

τ 2(1 − Ω2)2 + 4Ω2
g (r cos t,Ωr sin t, 0) dt (4.47)

instead of (4.11) and (4.12). With this change, the averaged equation still has the
form (4.10) and the stability of its fixed points can be calculated as before.

More concretely, a nonlinear feedback function (4.43) can be constructed as fol-
lows: Given amplitude R > 0 and frequency Ω ∈ (

√
2/5,

√
2), take k = Ω2 − 1,

and choose τ = π/Ω if Ω �= 1 (see Lemma 6) or take any τ such that sin τ �= 0 if
Ω = 1. For O(ε) linear and cubic terms (4.28) in the feedback, (4.46) gives

F(r) = 1

2
γ k1r + 3

8
γ k3r

3, (4.48)

where

γ = 4Ω sin(Ωτ) − 2τ
(
1 − Ω2

)
cos(Ωτ)

τ 2(1 − Ω2)2 + 4Ω2
, (4.49)

which has a form similar to (4.29) with γ replacing sin τ . As in Sect. 4.4, choose
the feedback coefficient k1 satisfying (4.36) and determine k3 through the formula
(4.37), this time using (4.47) and (4.48) to calculate G and F . This determines all
the feedback coefficients in (4.43). Then the averaging theorem yields that, for all
sufficiently small ε > 0, the system (4.41) under the nonlinear feedback (4.43) has
an asymptotically orbitally stable periodic solution of the form x(t) ≈ R cos(Ωt).

Remark 7 Recall that, by our standing assumption, time is rescaled in (4.41) so that
the uncontrolled system ( f ≡ 0) has frequency 1 in the rescaled time. Thus, the fact
that the feedback term can set the frequency of the limit cycle to anyΩ ∈ (

√
2/5,

√
2)

implies that it can reduce the frequency of the uncontrolled oscillator by as much as
about 37% or increase it by about 41%.

Example 8 We return to the van der Pol oscillator used in Example 2, this time with
the aim of changing both the frequency and amplitude of oscillations by delayed
linear feedback. The controlled system is given by

ẍ(t) + ε(x2 − 1)ẋ + 1 = (k + εk1)x(t − τ). (4.50)

From g(x, ẋ, ε) = (x2 − 1)ẋ and (4.47) we calculate

G(r) = 4Ω2

τ 2(1 − Ω2)2 + 4Ω2
× r

2

(
r2

4
− 1

)

(compare with (4.24)), and from (4.48) and (4.49) we have F(r) = 1
2γ k1r . IfΩ �= 1

and τ is to be chosen according to Lemma 6 as τ = π/Ω , then (4.49) simplifies to



78 F.M. Atay

γ = 2πΩ
(
1 − Ω2

)
π2(1 − Ω2)2 + 4Ω4

,

and the averaged equation (4.10) becomes

ṙ = −ε
Ω4

π2(1 − Ω2)2 + 4Ω4
× r

2

(
r2 − 4 + 2π

(
1 − Ω2

)
Ω3

k1

)
.

There exists a positive fixed point

R =
√
4 − 2π

(
1 − Ω2

)
k1/Ω3 , (4.51)

provided the radicand is positive. Note that Ḡ ′(r) > 0 for all r > 0, as in Example 2,
so R is a stable fixed point. From (4.51) the value of k1 can be determined as

k1 = Ω3(4 − R2)

2π
(
1 − Ω2

) (4.52)

for given values of R andΩ . For instance, to create a stable limit cycle at about 75%of
the frequency (Ω = 3/4) and twice the amplitude (R = 4) of the uncontrolled van der
Pol oscillator, we calculate k = Ω2 − 1 = −7/16 and τ = 4π/3 from Lemma 6 and
k1 = −81/14π from (4.52). Figure4.3 shows the resulting limit cycle oscillations
obtained for ε = 0.01 and random initial conditions.
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Fig. 4.3 Van der Pol oscillator of Example 8 exhibiting stable limit cycle oscillations at reduced
frequency and increased amplitude
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4.6 Conclusion

We have shown how delayed output feedback can be effectively used in the control
of oscillatory behavior in weakly nonlinear systems. While the local stability of an
equilibrium solution can be studied through a linear stability analysis, controlling
periodic behavior in general requires nonlinear techniques. Here we have seen that
linear feedback is capable of stabilizing the zero solution. Moreover, by adding
nonlinear terms to the feedback function, it is possible to create stable limit cycle
oscillations with any prescribed amplitude. In addition, delayed feedback can also
modify the frequency of oscillations to a certain extent. In many cases these feats
cannot be accomplished by undelayed feedback of position, exhibiting a positive use
of delays in control.
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