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Abstract We discuss an adaptive control delay-coupled networks of Stuart-Landau
oscillators, an expansion of systems close to a Hopf bifurcation. Based on the con-
sidered, automated control scheme, the speed-gradient method, the topology of a
network adjusts itself by changing the link weights in a self-organized manner such
that the target state is realized. We find that the emerging topology of the network
is modulated by the coupling delay. If the delay time is a multiple of the system’s
eigenperiod, the coupling within a cluster and to neighboring clusters is on average
positive (excitatory), while the coupling to clusters with a phase lag close to π is
negative (inhibitory). For delay times equal to odd multiples of half of the eigenpe-
riod, we find the opposite: Nodes within one cluster and of neighboring clusters are
coupled by inhibitory links, while the coupling to clusters distant in phase state is
excitatory. In addition, the control scheme is able to construct networks such that they
exhibit not only a given cluster state, but also oscillate with a prescribed frequency.
Finally, we demonstrate the efficiency of the speed-gradient method in cases where
only part of the network is accessible.
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3.1 Introduction

Networks are ubiquitous. They can be found in a large variety of different research
areas such as social science, economics, psychology, biology, physics, and mathe-
matics [1–3], where networks are used to model the interactions of coupled systems
or large number of agents. Two important lines of research have formed: (i) inves-
tigations of network topologies including data-mining and constructive models of
their generation [1–6] and (ii) studies of dynamics on networks with fixed topology
[7–16]. The concept of adaptive networks aims to bring these two directions together
by considering topologies that evolve according to the states of the network nodes,
which are in turn influenced by the topology [17].

In the wide spectrum of dynamical scenarios of coupled systems, zero-lag syn-
chronization, which is also known as in-phase or complete synchronization, has been
at the center of attention for a long time. Within the last decade, other, more complex
synchronization patterns have moved into the focus of increasing research activities.
These include cluster and group synchronization, which was studied in theory [11,
18–21] and realized in experiments [22, 23]. Prominent examples of these types of
synchrony have been reported in many biological systems including dynamics of
neurons [24], central pattern generation in animal locomotion [25], or population
dynamics [26]. The difference between cluster and group synchronization can be
described as follows: Group synchronization corresponds to the case where each
cluster potentially exhibits different local dynamics. This dynamical state is more
general than an M-cluster state, for which the compound system exhibits M clusters
with zero-lag synchronization between the nodes within one cluster, but—in the case
of oscillating dynamics—with a constant phase lag of 2π/M between the clusters.

If the network dynamics does not settle in the desired cluster state in a self-
organized way, control methods can help to adaptively change the topology of the
network in order to realize the target state. This has previously been investigated,
to our knowledge, only by a few researchers: Lu et al., for instance, considered the
control of cluster synchronization by means of changing topology. As a limiting
restriction for the applicability, their method requires a-priori knowledge to which
cluster each node should belong in the final state [27]. Furthermore, the majority of
algorithms, which have been developed to control synchrony by adaptation of the
network topology, take advantage of local mechanisms. A large number of these
control schemes can be related to Hebb’s rule: Cells that fire together, wire together
[28]. The method that we propose below, however, uses a global goal function to
realize self-organized control. It is hence a powerful alternative and complements
existing control schemes.

In short, we will present an algorithm that adapts the weights of the links in the
network such that a desired cluster state is reached. We will show that our method is
robust towards different initial conditions and also works for a large parameter range.
This includes the potential adding of new links, if the initial weight had been zero, or
the removal of links, if the respective weight is set to zero. The adaptation algorithm
for the network structure is based on the speed-gradient method [29, 30]. The goal
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function, which we employ, has a strong advantage compared to other methods: it
does not rely on a-priori ordering of nodes, i.e., it is not necessary to assign each
node to a specific cluster in advance.

As a proof of concept, we will consider the normal form of a Hopf bifurcation,
which is also known as Stuart-Landau oscillator. This model is generic for many
oscillating systems present in nature and technological applications. In addition, we
take into account time delays in the coupling between the nodes because delays nat-
urally arise in many applications. Note that our scheme also works for instantaneous
coupling. Furthermore, we will demonstrate that our method does not require to
control all links of a network. The control scheme is still successful if only a subset
of links is accessible, which we will explicitly illustrate for random networks [31].
We will also show how networks can be constructed in which cluster states oscillate
with a prescribed frequency. This includes zero frequency and gives rise to a freez-
ing of the dynamical motion. The final topology, i.e., distribution of link weights,
of these controlled networks will contain some randomness because we start with
random initial conditions for the state of the nodes. Despite this randomness, we will
show that on average the topology is characterized by common features. As a crucial
parameter shaping a topology, which enables synchronization, we identify the delay
time.

Delay is an ubiquitous phenomenon in nature and technology and arises whenever
time in the propagation or the processing of a signal is needed [32, 33]. For example,
in laser networks the finite speed of light gives rise to a propagation delay [34–36].
Time delay in neural networks emanates from the finite speed of the transmission of
an action potential between two neurons where the propagation velocity of an action
potential varies between 1 and 100 m/s depending on the diameter of the axon and
whether the fibers are myelinated or not [37]. The influence of delay on the dynamics
on networks has been investigated by several authors [13, 16, 19, 38–57]. Depending
on the context, delay can play a constructive or a destructive role [58–69].

The rest of this chapter is organized as follows: In Sect. 3.2 we introduce the
model of Stuart-Landau oscillator and discuss the application of the speed-gradient
method on the coupling matrix. In Sect. 3.3, we present the main results including
applications of the control scheme to select a frequency of the ensemble of oscillators
and restricted accessibility of the controller. We wrap up in Sect. 3.4 and finish with
an outlook for future research directions and additional questions.

3.2 Model Equation and Control Scheme

In this chapter, we will first introduce the model equations of the Hopf normal form.
Then, we will show the application of the speed-gradient method for an automated
adjustment of the network topology by changing the weights of the links. The control
scheme is based on a goal function that will be designed such that it becomes minimal
for the desired M-cluster state.
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3.2.1 Stuart-Landau Oscillator

We consider the Stuart-Landau oscillator given by the following equations

ż = [
λ + iω − |z|2] z (3.1)

with the complex variable z ∈ C and parameters λ, ω ∈ R [70]. This system arises
generically in a center manifold expansion close to a supercritical Hopf bifurcation
with λ as the bifurcation parameter. Below the bifurcation, i.e., for negative λ, the
system exhibits a stable focus at the origin, which becomes unstable at the bifurcation
point λ = 0. Above the bifurcation, a stable limit cycle with radius r = √

λ coexists
with the unstable focus. The parameter ω is the frequency of the limit cycle and
determines the intrinsic timescale.

Throughout this chapter, we discuss networks of N delay-coupled Stuart-Landau
oscillators z j , j = 1, . . . , N , described by

ż j (t) = [λ + iω − |z j |2]z j + K
N∑

n=1

G jn(t)[zn(t − τ) − z j (t)] (3.2)

with a real coupling strength K and coupling delay τ . For notational convenience, we
use in the following the abbreviation zn,τ ≡ zn(t − τ). The matrix {G jn(t)} j,n=1,...,N

describes the topology of the network. Its elements might change over time, because
it is subject to the adaptive control as discussed in Sect. 3.2.2 below.

In order to investigate the amplitude and phase dynamics of the complex variable
z, it is convenient to rewrite Eq. (3.1) using r j = |z j | and ϕ j = arg(z j ):

ṙ j (t) = [
λ − r2

j

]
r j + K

N∑

n=1

G jn
{
rn,τ cos

[
ϕn,τ − ϕ j

]− r j
}
, (3.3a)

ϕ̇ j (t) = ω + K
N∑

n=1

G jn

{
rn,τ

r j
sin

[
ϕn,τ − ϕ j

]}
. (3.3b)

One class of solutions of Eqs. (3.3) are M-cluster states that exhibit a common
amplitude r j ≡ r0. The phases of the oscillators in an M-cluster state are given by
ϕ j = ΩMt + j2π/M , where ΩM is the collective frequency. A special cluster state
is complete, in-phase, or zero-lag synchronization, i.e., M = 1, where all nodes are
in one cluster. The other extreme case are splay states with M = N , where each
cluster consists of a single node only. In the continuum limit, the splay state on a
unidirectionally coupled ring corresponds to a rotating wave. For a schematic diagram
of (a) in-phase synchronization, (b) a 3-cluster state, and (c) a splay state, see Fig. 3.1.
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Fig. 3.1 Schematic examples of a in-phase synchronization (M = 1), b a 3-cluster (M = 3), and
c a splay state (M = N ). Each cluster consists of the same number of nodes

3.2.2 Speed-Gradient Method

For a dynamical system in general notation

ẋ(t) = F (x, u, t) , (3.4)

an additional set of equations for the control vector u can be derived using the
gradient (with respect to the accessible parameters) of the speed (temporal change)
of an appropriately chosen goal function Q [29]:

du
dt

= −Γ ∇u Q̇ (x, u, t) (3.5)

with a positive definite gain matrix Γ . Intuitively, the control scheme works as
follows: The speed Q̇ may decrease along the direction of its negative gradient. As Q̇
becomes negative, the control function Q will decrease as well and will finally reach
its minimum indicating that the control goal is realized. For details and conditions,
see Refs. [71, 72].

In the following, we will apply this speed-gradient control to the elements of the
coupling matrix {G jn(t)} j,n=1,...,N of Eq. (3.2), i.e.,

Ġ jn = −γ
∂

∂G jn
Q̇M

with γ > 0 and choose the goal function QM to realize the M-cluster state as [73]:

QM = 1 − 1

N 2

N∑

j=1

eMiϕ j

N∑

k=1

e−Miϕk

︸ ︷︷ ︸
I

+ 1

2

M−1∑

p=1

N∑

j=1

epiϕ j

N∑

k=1

e−piϕk

︸ ︷︷ ︸
I I

+ 1

2

N∑

i,k=1

(ri − rk)
2

︸ ︷︷ ︸
I I I

+ c

2

t∫

0

N∑

k=1

(
N∑

i=1

Gki − 1

)2

dt

︸ ︷︷ ︸
I V

(3.6)
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Fig. 3.2 Effects of the penalty term (II) in Eq. (3.6). Both Q1 and Q2 without penalty terms have
a minimum for ϕ1 = ϕ2. Taking the penalty terms for p < M = 2 into account, this minimum
vanishes and Q2 becomes zero only for anti-phase synchronization

with c > 0. The goal function becomes minimized, once an M-cluster state is
reached, and consists of the following terms: (I) a Kuramoto-type order parame-
ter generalized for an M-cluster state, (II) a penalty term for all p-cluster states with
p < M , (III) a penalty term to realize identical amplitudes of all oscillators, and (IV)
a term added to guarantee a constant row-sum of {G jn(t)} j,n=1,...,N designed such
that

∑N
n=1 G jn = 1. Figure 3.2 illustrates the effects of the penalty term (II) for in-

phase and anti-phase synchronization of a network motif of two coupled nodes. The
penalty term (IV) takes into account all deviations from the unity row-sum during
the growth of the network, such that QM will not vanish completely in the goal state.
Thus, we define qM ≡ QM − c

2

∫ t
0

∑
k

(∑
i Gki − 1

)2
dt , i.e., the sum over the terms

(I)–(III), as better measure for the quality of synchronization.
Calculating the derivation of QM and the gradient with respect to the matrix ele-

ments G jn , we obtain the following N 2 equations after some algebraic manipulation
[73]

Ġ jn = − γ K

[
rn,τ

r j
sin(ϕn,τ − ϕ j )

]

×
N∑

k=1

⎧
⎨

⎩

∑

1≤p<M

p sin[p(ϕk − ϕ j )] − 2M

N 2
sin[M(ϕk − ϕ j )]

⎫
⎬

⎭

− 2γ K
N∑

k=1

(r j − rk)
[
rn,τ cos(ϕn,τ − ϕ j ) − r j

]− γ c

(
N∑

i=1

G ji − 1

)

.

(3.7)

The case, when not all N 2 elements of the coupling matrix are accessible, will be
discussed in Sect. 3.3.3.

Next, we will present some results on the generation of various cluster states, that
is, different combinations of number of elements N and number of clusters M .



3 Adaptively Controlled Synchronization of Delay-Coupled Networks 53

3.3 Results

In this chapter, we will present the main findings of our study. At first, we will demon-
strate the success of the proposed control method along the lines of an exemplary
8-cluster state. Then, we will address the impact of the time delay on the distribution
of the coupling weights. Finally, we will discuss two applications of the controller:
(i) a frequency selection of the cluster state and (ii) targeted control, when only a
fraction of the network is accessible.

3.3.1 Automated Adjustment of Network Topology

Figure 3.3 presents a successful realization of an 8-cluster state and depicts the time
series of the radii, the phase differences with respect to the reference node 0, the
weights of the coupling matrix, and the goal function with (Q8) and without (q8)
the unity row-sum term IV of Eq. (3.6) during the growth of the network. The
simulations starts from a unidirectional ring as initial topology and random initial
conditions z j (−50) = r j (−50)eiϕ j (−50), j = 1, . . . , N . The control is switched on
at time t = 0. One can see that after a short transient, the radii and phases rapidly
converge to the desired 8-cluster state, and Q8 and q8 approach their minimum. Once
the target state is reached, the coupling weights do not change anymore. The specific
choice of the parameter γ influences the transient times to reach the final network
that supports the desired cluster state. Note that the generated network contains
excitatory links, i.e., G jn > 0, and inhibitory ones with G jn < 0. The distribution
of the weights in the final topology and the perturbation of the network (marked by
the dotted line at t = 80) will be discussed in detail in Sect. 3.3.2.

Fig. 3.3 Control of an 8-cluster state for N = 40. Parameters: λ = 0.1, ω = 1, c = 0.01, K = 0.1,
τ = π , γ = 10
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We also study the fraction of successful realizations fc and the time to reach the
target state tc in dependence on the coupling strength K and the delay time τ . We
find that the fraction of successfully controlled networks fc is close to 1 and tc is
roughly 10 units in the considered range 0.1 < K ≤ 5, 0 ≤ τ ≤ 3π (cf. Fig. 10.4 in
Ref. [74]), demonstrating that our method works very reliably independently of the
coupling parameters. The quantities fc and tc will be helpful in Sect. 3.3.3, where
we will apply the control only to a fraction of the links in the network.

3.3.2 Dependence on Time Delay

In the following, we discuss the structural properties of the networks after successful
control for different coupling delays. For this purpose, we consider the coupling
weights of the final topology as a function of the final phase difference between
all pairs of oscillators. This will allow us to investigate the influence of delay on
networks that enable synchronization in the prescribed cluster state.

Figure 3.4 shows the weights G jn of an 8-cluster state as an average over 100 real-
izations. This ensemble average 〈G jn〉 is presented in dependence on the final phase
difference Δ jn ≡ limt→∞[ϕ j (t) − ϕn(t)], where the different colors correspond to
different coupling delays. The network of the exemplary case shown in Fig. 3.3 is
included in the dark-blue curve for τ = π .

It can be seen that the curves have the form of a shifted cosine, i.e., 〈G jn〉 ∝
cos

(
2π( j − n)

M − τ
)

. Focusing on the 8-cluster states of Fig. 3.3, we find a nega-

tive coupling between nodes with a small phase difference and a positive coupling
between nodes with a phase equal or close to π .

For further insight into the network structure, we consider a row-wise discrete
Fourier transform of the coupling matrix

{
G jn

}
after successful control. For this

Fig. 3.4 Dependence of the
elements of coupling matrix
averaged over 100
realizations on the phase
difference Δ jn =
limt→∞ [ϕ j (t) − ϕn(t)] for
N = 30, M = 10, and
different time delays τ . Other
parameters as in Fig. 3.3
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purpose, we introduce an auxiliary N × M matrix Γ jk = ∑m−1
l=0 G̃ j,k+lM , where m

is the number of nodes in one cluster, i.e., m = N/M , and the final topology of the
network is given by G̃ = G(t∞). For notational convenience, we label the nodes such
that the synchronized state can be described by r j ≡ r0,M and ϕ j ≡ ΩMt + j 2π

M ,
j = 1, . . . , N , where r0,M and ΩM denote the common radius and the common
frequency, respectively. In other words, Γ jn represents the total input which node j
receives from all nodes in cluster n. Representing each row of Γ as a discrete Fourier
series, the corresponding Fourier coefficients are given by

a j
l = 2

M

M∑

k=1

Γ jk sin

(
l(k − j)2π

M
− ΩMτ

)

= 2

N

N∑

k=1

G̃ jk sin

(
l(k − j)2π

M
− ΩMτ

)
, (3.8a)

b j
l = 2

M

M∑

k=1

Γ jk cos

(
l(k − j)2π

M
− ΩMτ

)

= 2

N

N∑

k=1

G̃ jk cos

(
l(k − j)2π

M
− ΩMτ

)
, (3.8b)

where l labels the lth coefficient in the Fourier series of the j th row. Note that the
coefficients a j

0 are equal to zero and due to the constant row-sum condition of G jn ,
we have b j

0 = 1
2M cos(ΩM τ)

.
It is straight-forward, but lengthy to perform a linear stability analysis to compute

the impact of perturbation on the radii, phases, and Fourier coefficients on the desired
cluster state. One will finally derive a characteristic equation, whose infinite number
of roots are the Floquet exponents. We are only interested in the one with the largest
real part, which we denote by ReΛ. If this quantity is negative, the cluster solution
will be stable, otherwise the solution is unstable. For details, on the derivation see
Sect. 10.6.2 of Ref. [74].

Figure 3.5 shows the result of this stability analysis for (a) all higher Fourier
coefficients being zero, i.e., a j

l = b j
l = 0 for l > 1 and j = 1, . . . , N , (b) random

higher Fourier coefficients, and (c) constant higher Fourier coefficients, i.e., a j
l =

b j
l = 10 for a j

l = b j
l = 10 and j = 1, . . . , N , in dependence on the common radius

r0,M and the common frequency ΩM . Random means that for each value of r0,M and
ΩM the coefficients are drawn from a uniform distribution on the interval [−10, 10].
We find that the stability is only affected by the higher Fourier coefficients if r0,M

is small: For small r0,M the unstable regions (yellow to orange color code) have a
qualitatively different form in panels (a), (b), and (c), while for large r0,M stability
is found in all three cases.
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Fig. 3.5 Stability as a function of common frequency ΩM and radius r2
0,M for a vanishing higher

Fourier coefficients, i.e., a j
l = b j

l = 0 for l > 1, b random higher Fourier coefficients, c constant

higher Fourier coefficients, i.e., a j
l = b j

l = 10 for l > 1. N = 8, M = 4. Other parameters as in
Fig. 3.3

Another possibility to test the influence of the higher coefficients is to disturb them
during or after the course of the adaptation process. This is shown for the 8-cluster
state in Fig. 3.3, where at t = 80, we set each of the higher Fourier coefficients to a
random value in the interval [−3, 3]. One can see that the common frequency and
radius do not change as a result of this perturbation.

In summary, these results can be seen as evidence that the higher Fourier coeffi-
cients do not affect the stability of the desired cluster state. Analyzing the first Fourier
coefficients, one can derive the following equations for the common radius r0,M and
frequency ΩM [73, 74]:

r2
0,M = λ + K

[
b j

1N

2
− 1

]

, (3.9a)

ΩM = ω + K

[
a j

1 N

2

]

. (3.9b)

Considering that these equations have to be satisfied for all j = 1, . . . , N , we
conclude that a solution with a common radius and a common frequency exists,
only if a1

1 = a2
1 = . . . = aN

1 ≡ a and b1
1 = b2

1 = . . . = bN
1 ≡ b. In fact, the aver-

age topology is mainly given by b, because a and b0 are typically small and the
higher coefficients average out as discussed above. Therefore, we obtain G jn ≈
b cos

(
2π( j − n)

M − ΩMτ
)

, which explains the cosine form of the curves shown in

Fig. 3.4.
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3.3.3 Applications of Controller

3.3.3.1 Frequency Selection

In the following, we will exploit Eq. (3.9b) to select a common frequency via con-
structing an appropriate matrix. For this purpose, we set a = 2

N

(
ΩM−ω

K

)
. To demon-

strate the effect of this choice, we consider the case of a stationary cluster with a
common frequency ΩM . Figure 3.6 depicts the corresponding time series of the radii,
phases, coupling weights, goal function, and ΩM . At t = 0 (first dotted line), we start
the adaptive control with M = N , that is, with the goal function leading to a splay
state. Then, at t = 40 (second dotted line), the adaptive control is switched off and
a is set to a = 2ω

NK forcing ΩM to approach zero.

3.3.3.2 Targeted Control

In the previous sections, we have assumed that every link of the network is subject to
the control scheme, that is, all elements of the coupling matrix {G jn(t)} j,n=1,...,N are
accessible. This might be not realistic for applications. We will show in the following
that it suffices to control a subset of links, while the other links are left unchanged.
This will be demonstrated for the example of a directed random network that consists
of P links chosen from the L = N (N − 1) possible links excluding self-coupling.
From this set of P links, we select, again randomly, A links which are subject to
adaptation as given by Eq. (3.7).

Fig. 3.6 Freezing of the motion of a splay state with N = 12 = M . Parameters: λ = 0.1, ω = 1,
c = 0.01, K = 0.1, τ = π , γ = 10
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Fig. 3.7 Control of A/L = 30 % of the links for N = 15, M = 3, and P/L = 0.4. Parameters:
λ = 0.1, ω = 1, c = 0.01, K = 0.1, τ = π , γ = 10

Figure 3.7 depicts the realization of 3-cluster state in a network of 15 nodes with the
time series of the radii, the phase differences, the elements of the coupling matrix, and
the goal function shown in the different panels, respectively. The nodes are coupled
on a random network with density 0.4 and with 30 % of the links accessible, i.e.,
A/L = 0.3. It can be seen that using the goal function Q3 the network consists of 3
equally sized clusters after successful control.

Next, we explore the performance of our method with respect to the links present
in the networks and the fraction of these links subject to adaptation. Figure 3.8a
depicts the fraction fc of successfully controlled networks as a function of P/L and
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Fig. 3.8 a Fraction fc of successfully controlled networks and b times tc needed to reach the control
goal as a function of number of random links P and number of controlled links A, normalized by
L = N (N − 1). We simulated 10 realizations for each parameter combination. K = 0.2. Other
parameters as in Fig. 3.7



3 Adaptively Controlled Synchronization of Delay-Coupled Networks 59

A/L . We define a network as successfully controlled in an M-cluster state at time tc
if it was in this state for t ∈ [tc − 1, tc]. Figure 3.8b shows the corresponding control
time tc.

One can see that the success rate fc does not depend strongly on the total number of
links P in the network and is rather constant for fixed A. The rate, however, depends
on the ratio of adapted links A/L . We conclude that the links additionally present in
the network, but not subject to control, have very little effect on the synchronizability
of the network. For example, consider a horizontal cut at A/L = 0.4. Then, the
control still works in more than 90 % of the cases.

Figure 3.9 further corroborates these results. A good approximation of the success
rate fc can be obtained if we assume that for successful control each node in the
networks needs at least two incoming links which are subject to adaptation. One
adapted link is not sufficient because it is not able to change due to the unity row-
sum condition. Only if a second incoming link is present, the links can change in order
to control the dynamics of the node because the effect of the adaptation of the first
link on the row-sum can be counterbalanced by the second link. Figure 3.9 depicts
fc versus A/L as red circles for a fixed ratio of P/L = 0.4, 0.6, 1 in panels (a)–(c),
respectively. The blue circles depict the fraction p>1 of networks where all nodes
have at least two incoming links. Obviously, p>1 well approximates fc although
they are not identical indicating that cases exist where the network can be controlled
though one node has less than two adapted incoming links, or where the control fails
although each node has two incoming links. Note that an analytic expression for p>1

can be derived, which yields the blue curves in Fig. 3.9. For details, see Sect. 10.8 in
Ref. [74].
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Fig. 3.9 Control of a subset of links for fixed ratio of a P/L = 0.4, b P/L = 0.6, and c P/L = 1.
Red circles Success rate fc. Blue circles Probability p>1 that no node in the network has less than
2 incoming links which are adapted. Blue line Analytic calculation of p>1 (cf. [74]). K = 0.2. 80
realizations for each value of A/L . Other parameters as in Fig. 3.7
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3.4 Summary and Conclusions

We have applied a speed-gradient algorithm to adapt the topology of time-delay
coupled oscillators to control cluster synchronization. The controller minimizes a
goal function that is based on a generalized Kuramoto order parameter. The goal
function is chosen according to the target cluster state, but independent of the ordering
of the nodes. An additional term ensures amplitude synchronization. We find that this
speed-gradient control scheme is very robust with respect to perturbations, different
initial conditions, and coupling parameters. We have focused on the dependence on
the coupling strength and delay time.

We have found that the distribution of link weights of the successfully controlled
network is modulated by the coupling delay. A row-wise discrete Fourier transform of
the coupling matrix gives insight into these delay modulations. Necessary conditions
for the existence of a common radius and a common frequency give rise to restrictions
affecting the first Fourier coefficients, while there is no restriction for the higher
Fourier coefficients. We also found that the stability of the cluster states is only weakly
affected by the higher Fourier coefficients. Thus, we conclude that the higher Fourier
coefficients are mainly dependent on the random initial conditions and are therefore
randomly distributed. On average, the network topology is therefore dominated by
the first Fourier coefficients leading to the observed delay modulation.

Appropriate selection of the first Fourier coefficients leads to cluster states with
a given common frequency. As an example, we have quenched the oscillations in
a Stuart-Landau oscillator. This allows for construction of networks that exhibit a
desired dynamical behavior.

In many real-world networks not all links are accessible to control. Therefore, we
have considered random networks, where we have chosen a random subset of links
to which we applied the adaptation algorithm. The other links remained fixed. We
have found that the control is successful if the number of adapted links is equal or
higher than approximately 30 % of all possible links, independently of the number
of actual fixed links. For practical applications this opens up the possibility to apply
the method more easily.

Since we have considered the paradigmatic Stuart-Landau oscillator as a generic
model of the Hopf bifurcation, we expect broad applicability to control, for instance,
synchronization of networks in medicine, chemistry or mechanical engineering or
as self-organizing mechanisms in biological networks.
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