
Chapter 13
Moment Closure—A Brief Review

Christian Kuehn

Abstract Moment closure methods appear in myriad scientific disciplines in the
modelling of complex systems. The goal is to achieve a closed form of a large, usu-
ally even infinite, set of coupled differential (or difference) equations. Each equation
describes the evolution of one “moment”, a suitable coarse-grained quantity com-
putable from the full state space. If the system is too large for analytical and/or
numerical methods, then one aims to reduce it by finding a moment closure relation
expressing “higher-order moments” in terms of “lower-order moments”. In this brief
review, we focus on highlighting how moment closure methods occur in different
contexts. We also conjecture via a geometric explanation why it has been difficult
to rigorously justify many moment closure approximations although they work very
well in practice.

13.1 Introduction

The idea ofmoment-basedmethods ismost easily explained in the context of stochas-
tic dynamical systems. Abstractly, such a system generates a time-indexed sequence
of random variables x = x(t) ∈ X , say for t ∈ [0,+∞) on a given state space X .
Let us assume that the random variable x has a well-defined probability density
function (PDF) p = p(x, t). Instead of trying to study the full PDF, it is a natural
step to just focus on certain moments m j = m j (t) such as the mean, the variance,
and so on, where j ∈ J and J is an index set and M = {m j : j ∈ J } is a fixed
finite-dimensional space of moments. In principle, we may consider any moment
space M consisting of a choice of coarse-grained variables approximating the full
system, not just statistical moments. A typical moment-closure based study consists
of four main steps:
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(S0) Moment Space Select the space M containing a hierarchy of moments m j .
(S1) Moment Equations The next step is to derive evolution equations for the

moments m j . In the general case, such a system will be high-dimensional and
fully coupled.

(S2) Moment ClosureThe large, often even infinite-dimensional, systemofmoment
equations has to be closed tomake it tractable for analytical and numerical tech-
niques. In the general case, the closed system will be nonlinear and it will only
approximate the full system of all moments.

(S3) Justification and Verification One has to justify, why the expansion made in
step (S1) and the approximationmade in step (S2) are useful in the context of the
problem considered. In particular, the choice of the m j and the approximation
properties of the closure have to be answered.

Each of the steps (S0)–(S3) has its own difficulties. We shall not focus on (S0)
as selecting what good ‘moments’ or ‘coarse-grained’ variables are creates its own
set of problems. Instead, we consider some classical choices. (S1) is frequently a
lengthy computation. Deriving relatively small moment systems tends to be a man-
ageable task. For larger systems, computer algebra packages may help to carry out
some of the calculations. Finding a good closure in (S2) is very difficult. Different
approaches have shown to be successful. The ideas frequently include heuristics,
empirical/numerical observations, physical first-principle considerations or a-priori
assumptions. This partially explains, why mathematically rigorous justifications in
(S3) are relatively rare and usually work for specific systems only. However, compar-
isons with numerical simulations of particle/agent-based models and comparisons
with explicit special solutions have consistently shown that moment closure methods
are an efficient tool. Here we shall also not consider (S3) in detail and refer the reader
to suitable case studies in the literature.

Although moment closure ideas appear virtually across all quantitative scientific
disciplines, a unifying theory has not emerged yet. In this review, several lines of
research will be highlighted. Frequently the focus of moment closure research is to
optimize closure methods with one particular application in mind. It is the hope that
highlighting common principles will eventually lead to a better global understanding
of the area.

In Sect. 13.2 we introduce moment equations more formally. We show how to
derive moment equations via three fundamental approaches. In Sect. 13.3 the basic
ideas for moment closure methods are outlined. The differences and similarities
between different closure ideas are discussed. In Sect. 13.4 a survey of different
applications is given. As already emphasized in the title of this review, we do not aim
to be exhaustive here but rather try to indicate the common ideas across the enormous
breadth of the area.
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13.2 Moment Equations

The derivation ofmoment equations will be explained in the context of three classical
examples. Although the examples look quite different at first sight, we shall indicate
how the procedures are related.

13.2.1 Stochastic Differential Equations

Consider a probability space (Ω,F ,P) and letW = W (t) ∈ R
L be a vector of inde-

pendent Brownian motions for t ∈ R. A system of stochastic differential equations
(SDEs) driven by W (t) for unknowns x = x(t) ∈ R

N = X is given by

dx = f (x) dt + F(x) dW (13.1)

where f : RN → R
N , F : RN → R

N×L are assumed to be sufficiently smoothmaps,
and we interpret the SDEs in the Itô sense [1, 2]. Alternatively, one may write (13.1)
usingwhite noise, i.e., via the generalized derivative ofBrownianmotion, ξ := W ′ [1]
as

x ′ = f (x) + F(x)ξ, ′ = d

dt
. (13.2)

For the equivalent Stratonovich formulation see [3]. Instead of studying (13.1)–(13.2)
directly, one frequently focuses on certain moments of the distribution. For example,
one may make the choice to consider

m j (t) := 〈x(t) j 〉 = 〈x1(t) j1 · · · xN (t) jN 〉, (13.3)

where 〈·〉 denotes the expected (or mean) value and j ∈ J , j = ( j1, . . . , jN ), jn ∈
N0, where J is a certain set of multi-indices so that M = {m j : j ∈ J }. Of course,
it should be noted that J can be potentially a very large set, e.g., for the cardinality
of all multi-indices up to order J we have
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However, the main steps to derive evolution equations for m j are similar for every
fixed choice of J, N . After defining m j = m j (t) (or any other “coarse-grained”
variables),wemay just differentiatem j . Consider as an example the case N = 1 = L ,
andJ = {1, 2, . . . , J }, where we write the multi-index simply as j = j ∈ N0. Then
averaging (13.2) yields

m ′
1 = 〈x ′〉 = 〈 f (x)〉 + 〈F(x)ξ 〉,
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which illustrates the problem that we may never hope to express the moment equa-
tions explicitly for any nonlinear SDE if f and/or F are not expressible as convergent
power series, i.e., if they are not analytic. The term 〈F(x)ξ 〉 is not necessarily equal
to zero for general nonlinearities F as

∫ t
0 F(x(s)) dW (s) is only a local martingale

under relatively mild assumptions [2]. Suppose we simplify the situation drastically
by assuming a quadratic polynomial f and constant additive noise

f (x) = a2x
2 + a1x + a0, F(x) ≡ σ ∈ R. (13.4)

Then we can actually use that 〈ξ 〉 = 0 and get

m ′
1 = 〈x ′〉 = a2〈x2〉 + a1〈x〉 + a0 = a2m2 + a1m1 + a0.

Hence, we also need an equation for the moment m2. Using Itô’s formula one finds
the differential

d(x2) = [2x f (x) + σ 2] dt + 2xσ dW

and taking the expectation it follows that

m ′
2 = 2〈a2x3 + a1x

2 + a0x〉 + σ 2 + σ 〈2xξ 〉
= 2(a2m3 + a1m2 + a0m1) + σ 2, (13.5)

where 〈2xξ 〉 = 0 due to themartingale property of
∫ t
0 2x(s) dWs . The key point is that

theODE form2 depends uponm3. The same problem repeats for highermoments and
we get an infinite system of ODEs, even for the simplified case considered here. For
a generic nonlinear SDE, the moment system is a fully-coupled infinite-dimensional
system of ODEs. Equations at a given order | j | = J depend upon higher-order
moments | j | > J , where | j | := ∑

n jn .
Another option to derive moment equations is to consider the Fokker-Plank (or

forward Kolmogorov) equation associated to (13.1)–(13.2); see [3]. It describes the
probability density p = p(x, t |x0, t0) of x at time t starting at x0 = x(t0) and is given
by

∂p

∂t
= −

N
∑

k=1

∂

∂xk
[p f ] + 1

2

N
∑

i,k=1

∂2

∂xi∂xk
[(FFT )ik p]. (13.6)

Consider the case of additive noise F(x) ≡ σ , quadratic polynomial nonlinearity
f (x) and N = 1 = L as in (13.4), then we have

∂p

∂t
= − ∂

∂x
[(a2x2 + a1x + a0)p] + σ 2

2

∂2 p

∂x2
. (13.7)

The idea to derive equations form j is to multiply (13.7) by x j , integrate by parts and
use some a-priori known properties or assumptions about p. For example, we have
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m ′
1 = 〈x ′〉 =

∫

R

x
∂p

∂t
dx

=
∫

R

−x
∂

∂x
[(a2x2 + a1x + a0)p] dx +

∫

R

x
σ 2

2

∂2 p

∂x2
dx .

If p and its derivative vanish at infinity, which is quite reasonable for many densities,
then integration by parts gives

m ′
1 =

∫

R

[(a2x2 + a1x + a0)p] dx = a2m2 + a1m1 + a0

as expected. A similar calculation yields the equations for other moments. Using the
forwardKolmogorov equation generalizes in a relatively straightforwardway to other
Markov process, e.g., to discrete-time and/or discrete-space stochastic processes; in
fact, many discrete stochastic processes have natural ODE limits [4–7]. In the context
of Markov processes, yet another approach is to utilize the moment generating func-
tion or Laplace transform s 
→ 〈exp[isx]〉 (where i := √−1) to determine equations
for the moments.

13.2.2 Kinetic Equations

A different context where moment methods are used frequently is kinetic theory
[8–10]. Let x ∈ Ω ⊂ R

N and consider the description of a gas via a single-particle
density � = �(x, t, v), which is nonnegative and can be interpreted as a probabil-
ity density if it is normalized; in fact, the notational similarity between p from
Sect. 13.2.1 and the one-particle density � is deliberate. The pair (x, v) ∈ Ω × R

N

is interpreted as position and velocity. A kinetic equation is given by

∂�

∂t
+ v · ∇x� = Q(�), (13.8)

where ∇x =
(

∂
∂x1

, . . . , ∂
∂xN

)�
, suitable boundary conditions are assumed, and � 
→

Q(�) is the collision operator acting only on the v-variable at each (x, t) ∈ R
N ×

[0,+∞) with domain D(Q). For example, for short-range interaction and hard-
sphere collisions [11] one would take for a function v 
→ G(v) the operator

Q(G)(v) =
∫

SN−1

∫

RN

‖v − w‖[G(w∗)G(v∗) − G(v)G(w)] dw dψ

where v∗ = 1
2 (v + w + ‖v − w‖ψ), w∗ = 1

2 (v + w + ‖v − w‖ψ) for ψ ∈ S
N−1 and

S
N−1 denotes the unit sphere in RN . We denote velocity averaging by
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〈G〉 =
∫

RN

G(v) dv,

where the overloaded notation 〈·〉 is again deliberately chosen to highlight the similar-
ities with Sect. 13.2.1. It is standard to make several assumptions about the collision
operator such as the conservation ofmass,momentum, energy aswell as local entropy
dissipation

〈Q(G)〉 = 0, 〈vQ(G)〉 = 0, 〈‖v‖2Q(G)〉 = 0, 〈ln(G)Q(G)〉 ≤ 0. (13.9)

Moreover, one usually assumes that the steady states of (13.8) are Maxwellian
(Gaussian-like) densities of the form

ρ∗(v) = q

(2πθ)N/2
exp

(

−‖v − v∗‖2
2θ

)

, (q, θ, v∗) ∈ R
+ × R

+ × R
N (13.10)

and that Q commutes with certain group actions [8] implying symmetries. Note that
the physical constraints (13.9) have important consequences, e.g., entropy dissipation
implies the local dissipation law

∂

∂t
〈� ln � − �〉 + ∇x · 〈v(� ln � − �)〉 = 〈ln �Q(�)〉 ≤ 0. (13.11)

while mass conservation implies the local conservation law

∂

∂t
〈�〉 + ∇x · 〈v�〉 = 0 (13.12)

with similar local conservation laws for momentum and energy. The local conserva-
tion law indicates that it could be natural, similar to the SDE case above, to multiply
the kinetic equation (13.8) by polynomials and then average. Let {m j = m j (v)}Jj=1
be a basis for a J -dimensional space of polynomials M. Consider a column vector
M = M(v) ∈ R

J containing all the basis elements so that every elementm ∈ M can
be written as m = α�M for some vector α ∈ R

J . Then it follows

∂

∂t
〈�M〉 + ∇x · 〈v�M〉 = 〈Q(�)M〉 (13.13)

by multiplying and averaging. This is exactly the same procedure as for the for-
ward Kolmogorov equation for the SDE case above. Observe that (13.13) is a
J -dimensional set of moment equations when viewed component-wise. This set
is usually not closed. We already see by looking at the case M ≡ v that the second
term in (13.13) will usually generate higher-order moments.
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13.2.3 Networks

Another common situation where moment equations appear are network dynamical
systems. Typical examples occur in epidemiology, chemical reaction networks and
socio-economic models. Here we illustrate the moment equations [12–15] for the
classical susceptible-infected-susceptible (SIS) model [16] on a fixed network; for
remarks on adaptive networks see Sect. 13.4. Given a graph of K nodes, each node
can be in two states, infected I or susceptible S. Along an SI -link infections occur
at rate τ and recovery of infected nodes occurs at rate γ . The entire (microscopic)
description of the system is then given by all potential configurations x ∈ R

N = X
of non-isomorphic graph configurations of S and I nodes. Even for small graphs,
N can be extremely large since already just all possible node configurations without
considering the topology of the graph are 2K . Therefore, it is natural to consider a
coarse-grained description. Let mI = 〈I 〉 = 〈I 〉(t) and mS = 〈S〉 = 〈S〉(t) denote
the average number of infected and susceptibles at time t . From the assumptions
about infection and recovery rates we formally derive

dmS

dt
= γmI − τ 〈SI 〉, (13.14)

dmI

dt
= τ 〈SI 〉 − γmI , (13.15)

where 〈SI 〉 =: mSI denotes the average number of SI -links. In (13.14) the first term
describes that susceptibles are gained proportional to the number of infected times
the recovery rate γ . The second term describes that infections are expected to occur
proportional to the number of SI -links at the infection rate τ . Equation (13.15) can
be motivated similarly. However, the system is not closed and we need an equation
for 〈SI 〉. In addition to (13.14)–(13.15), the result [14, Theorem 1] states that the
remaining second-order motif equations are given by

dmSI

dt
= γ (mI I − mSI ) + τ(mSSI − mI SI − mSI ), (13.16)

dmI I

dt
= −2γmI I + 2τ(mI SI + mSI ), (13.17)

dmSS

dt
= 2γmSI − 2τmSSI , (13.18)

where we refer also to [12, 13]; it should be noted that (13.16)–(13.18) does not seem
to coincide with a direct derivation by counting links [17, (9.2)–(9.3)]. In any case, it
is clear that third-order motifs must appear, e.g., if we just look at the motif I S I then
an infection event generates two new I I -links so the higher-order topological motif
structure does have an influence on lower-order densities. If we pick the second-order
space of moments

M = {mI ,mS,mSI ,mSS,mI I } (13.19)
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the Eqs. (13.14)–(13.15) and (13.16)–(13.18) are not closed. We have the same
problems as for the SDE and kinetic cases discussed previously. The derivation of the
SISmoment equations can be based upon formalmicroscopic balance considerations.
Another option is write the discrete finite-size SIS-model as a Markov chain with
Kolmogorov equation

dx

dt
= Px, (13.20)

which can be viewed as an ODE of 2K equations given by a matrix P . One defines
the moments as averages, e.g., taking

〈I 〉(t) :=
K

∑

k=0

kx (k)(t), 〈S〉(t) :=
K

∑

k=0

(K − k)x (k)(t),

where x (k)(t) are all states with k infected nodes at time t . Similarly one can define
higher moments, multiply the Kolmogorov equation by suitable terms, sum the equa-
tion as an analogy to the integration presented in Sect. 13.2.2, and derive the moment
equations [14]. For any general network dynamical systems, moment equations can
usually be derived. However, the choice which moment (or coarse-grained) variables
to consider is far from trivial as discussed in Sect. 13.4.

13.3 Moment Closure

We have seen that moment equations, albeit being very intuitive, do suffer from the
drawback that the number of moment equations tends to grow rapidly and the exact
moment system tends to form an infinite-dimensional system given by

dm1
dt = h1(m1,m2, . . .),
dm2
dt = h2(m2,m3, . . .),
dm3
dt = · · · ,

(13.21)

where we are going to assume from now on the even more general case h j =
h j (m1,m2,m3, . . .) for all j . In some cases, working with an infinite-dimensional
system of moments may already be preferable to the original problem. We do not
discuss this direction further and instead try to close (13.21) to obtain a finite-
dimensional system. The idea is to find a mapping H , usually expressing the higher-
order moments in terms of certain lower-order moments of the form

H(m1, . . . ,mκ) = (mκ+1,mκ+2, . . .) (13.22)
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for some κ ∈ J , such that (13.21) yields a closed system

dm1
dt = h1(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)),
dm2
dt = h2(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)),
... = ...

dmκ

dt = hκ(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)).

(13.23)

The two main questions are

(Q1) How to find/select the mapping H?
(Q2) How well does (13.23) approximate solutions of (13.21) and/or of the orig-

inal dynamical system from which the moment equations (13.21) have been
derived?

Here we shall focus on describing the several answers proposed to (Q1). For
a general nonlinear system, (Q2) is extremely difficult and Sect. 13.3.4 provides a
geometric conjecture why this could be the case.

13.3.1 Stochastic Closures

In this section we focus on the SDE (13.1) from Sect. 13.2.1. However, similar prin-
ciples apply to all incarnations of the moment equations we have discussed. One
possibility is to truncate [18] the system and neglect all moments higher than a
certain order, which means taking

H(m1, . . . ,mκ) = (0, 0, . . .). (13.24)

Albeit being rather simple, the advantage of (13.24) is that it is trivial to implement
and does not work as badly as one may think at first sight for many examples. A
variation of the theme is to use the method of steady-state of moments by setting

0 = hκ+1(m1,m2, . . . ,mκ ,mκ+1, . . .),

0 = hκ+2(m1,m2, . . . ,mκ ,mκ+1, . . .),
... = ...

(13.25)

and try to solve for all higher-order moments in terms of (m1,m2, . . . ,mκ) in the
algebraic equations (13.25). As we shall point out in Sect. 13.3.4, this is nothing but
the quasi-steady-state assumption in disguise. Similar ideas as for zero and steady-
sate moments can also be implemented using central moments and cumulants [18].

Another common idea formoment closure principles is tomake an apriori assump-
tion about the distribution of the solution. Consider the one-dimensional SDE exam-
ple (N = 1 = L) and suppose x = x(t) is normally distributed. For a normal distri-
bution with mean zero and variance ν2, we know the moments
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〈x j 〉 = ν j ( j − 1)!!, if j is even, 〈x j 〉 = 0, if j is odd, (13.26)

so one closure method, the so-called Gaussian (or normal) closure, is to set

m j = 0 if j ≥ 3 and j is odd,

m j = (m2)
j/2 ( j − 1)!! if j ≥ 4 and j is even.

A similar approach can be implemented using central moments. If x turns out to
deviate substantially from a Gaussian distribution, then one has to question whether
a Gaussian closure is really a good choice. The Gaussian closure principle is one
choice of a wide variety of distributional closures. For example, one could assume
the moments of a lognormal distribution [19] instead

x ∼ exp[μ̃ + ν̃ x̃], x̃ ∼ N (0, 1), ⇒ 〈x j 〉 = m j = exp

[

jμ̃ + 1

2
j2ν̃2

]

(13.27)

where ‘∼’means ‘distributed according to’ a given distribution andN (0, 1) indicates
the standard normal distribution. Solving for (μ̃, ν̃) in (13.27) in terms of (m1,m2)

yields a moment closure (m3,m4, . . .) = H(m1,m2). The same principle also works
for discrete state space stochastic process, using a-prior distribution assumption. A
typical example is the binomial closure [20] and mixtures of different distributional
closure have also been considered [21, 22].

13.3.2 Physical Principle Closures

In the context of moment equations of the form (13.13) derived from kinetic equa-
tions, a typical moment closure technique is to consider a constrained closure based
upon a postulated physical principle. The constraints are usually derived from the
original kinetic equation (13.8), e.g., if it satisfies certain symmetries, entropy dissi-
pation and local conservation laws, then the closure for the moment equations should
aim to capture these properties somehow. For example, the assumption

span{1, v1, . . . , vN , ‖v‖2} ⊂ M

turns out to be necessary to recover conservation laws [8], while assuming that the
spaceM is invariant under suitable transformations is going to preserve symmetries.
However, even by restricting the space of moments to preserve certain physical
assumptions, this usually does not constraint the moments enough to get a closure.
Following [8] suppose that the single-particle density is given by

� = M(α) = exp[α�M(v)], m = m(v) ∈ M s.t.m(v) = α�M(v) (13.28)

for some moment densities α = α(x, t) ∈ R
J . Using (13.28) in (13.13) leads to
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∂

∂t
〈M(α)M〉 + ∇x · 〈vM(α)M〉 = 〈Q(M(α))M〉. (13.29)

Observe that we may view (13.29) as a system of J equations for the J unknowns
α. Hence, one has formally achieved closure. The question is what really motivates
the exponential ansatz (13.28). Introduce new variables η = 〈M(α)M〉 and define a
function

H(η) = −〈M(α)〉 + α�η

and one may show that α = [DηH ](η). It turns out [8] that H(η) can be computed
by solving the entropy minimization problem

min
�

{〈� ln � − �〉 : 〈M�〉 = η} = H(η), (13.30)

where the constraint 〈M�〉 = η prescribes certainmoments;we recall thatM = M(v)
is the fixed vector containing the moment space basis elements and the relation
α = [DηH ](η) holds. From a statistical physics perspective, it may be more natural
to view (13.30) as an entropy maximization problem [23] by introducing another
minus sign. Therefore, the choice of the exponential function in the ansatz (13.28)
does not only guarantee non-negativity but it was developed as it is the Legendre
transform of the so-called entropy density � 
→ � ln � − � so it naturally relates to
a physical optimization problem [8].

To motivate further why using a closure motivated by entropy corresponds to
certain physical principles, let us consider the ‘minimal’ moment space

M = span{1, v1, . . . , vN , ‖v‖2}

The closure ansatz (13.28) can be facilitated using the vectorM(v) = (1, v1, . . . , vN ,

‖v‖2) but then [24] the ansatz is related to the Maxwellian density (13.10) since

ρ∗(v) = exp[α�M(v)], α =
(

ln

(
q

(2πθ)3/2

)

− ‖v∗‖
2θ

,
v∗
θ

,− 1

2θ

)�

but Maxwellian densities are essentially Gaussian-like densities and we again have
a Gaussian closure. Using a Gaussian closure implies that the moment equations
become the Euler equations of gas dynamics, which can be viewed as a mean-field
model near equilibrium for the mesoscopic single-particle kinetic equation (13.8),
which is itself a limit of microscopic equations for each particle [25, 26].

Taking a larger moment space M one may also get the Navier-Stokes equation
as a limit [8], and this hydrodynamic limit can even be justified rigorously under
certain assumptions [27]. This clearly shows that moment closure methods can link
physical theories at different scales.
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13.3.3 Microscopic Closures

Since there are limit connections between the microscopic level and macroscopic
moment equations, it seems plausible that starting from an individual-based network
model, one may motivate moment closure techniques. Here we shall illustrate this
approach for the SIS-model from Sect. 13.2.3. Suppose we start at the level of first-
order moments and let M = {mI ,mS}. To close (13.14)–(13.15) we want a map

mSI = H(mI ,mS). (13.31)

If we view the density of the I nodes and S nodes as very weakly correlated random
variables then a first guess is to use the approximation

mSI = 〈SI 〉 ≈ 〈S〉〈I 〉 = mSmI . (13.32)

Plugging (13.32) into (13.14)–(13.15) yields the mean-field SIS model

m ′
S = γmI − τmSmI ,

m ′
I = τmSmI − mI .

(13.33)

The mean-field SIS model is one of the simplest examples where one clearly sees
that although the moment equations are linear ODEs, the moment-closure ODEs are
frequently nonlinear. It is important to note that (13.32) is not expected to be valid
for all possible networks as it ignores the graph structure. A natural alternative is to
consider

mSI = 〈SI 〉 ≈ md〈S〉〈I 〉 = mdmSmI , (13.34)

where md is the mean degree of the given graph/network. Hence it is intuitive
that (13.32) is valid for a complete graph in the limit K → ∞ [15].

If we want to find a closure similar to the approximation (13.32) for second-order
moments with M as in (13.19), then the classical choice is the pair-approximation
[28–30]

mabc ≈ mabmbc

mb
, a, b, c ∈ {S, I } (13.35)

which just means that the density of triplet motifs is given approximately by counting
certain link densities that form the triplet. In (13.35) we have again ignored pre-
factors from the graph structure such as the mean excess degree [12, 17]. As before,
the assumption (13.35) is neglecting certain correlations and provides a mapping

(mSSI ,mI SI ) = H(mI I ,mSS,mSI ) =
(
mSSmSI

mS
,
mSImSI

mS

)

(13.36)

and substituting (13.36) into (13.16)–(13.18) yields a system of five closed nonlinear
ODEs. Many other paradigms for similar closures exist. The idea is to use the inter-
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pretation of the moments and approximate certain higher-order moments based upon
certain assumptions for each moment/motif. In the cases discussed here, this means
neglecting certain correlation terms from random variables. At least on a formal
level, this is approach is related to the other closures we have discussed. For exam-
ple, forcing maximum entropy means minimizing correlations in the system while
assuming a certain distribution for the moments just means assuming a particular
correlation structure of mixed moments.

13.3.4 Geometric Closure

All the moment closure methods described so far, have been extensively tested in
many practical examples and frequently lead to very good results; see Sect. 13.4.
However, regarding the question (Q2) on approximation accuracy ofmoment closure,
no completely general results are available. To make progress in this direction I
conjecture that a high-potential direction is to considermoment closures in the context
of geometric invariant manifold theory. There is very little mathematically rigorous
work in this direction [31] although the relevance [32, 33] is almost obvious.

Consider the abstract moment equations (13.21). Let us assume for illustration
purposes that we know that (13.21) can be written as a system

dm1
dt = h1(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .),
dm2
dt = h2(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .),
... = ...

dmκ

dt = hκ(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).
dmκ+1

dt = 1
ε
hκ+1(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).

dmκ+2

dt = 1
ε
hκ+2(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).

... = ...

(13.37)

where 0 < ε � 1 is a small parameter and each of the component functions of the
vector field h is of orderO(1) as ε → 0. Then (13.37) is a fast-slow system [34, 35]
with fast variables (mκ+1,mκ+2, . . .) and slow variables (m1, . . . ,mκ). The classical
quasi-steady-state assumption [36] to reduce (13.37) to a lower-dimensional system
is to take

0 = dmκ+1

dt
, 0 = dmκ+2

dt
, · · · .

This generates a system of differential-algebraic equations and if we can solve the
algebraic equations

0 = hκ+1(m1,m2, . . .), 0 = hκ+2(m1,m2, . . .), · · · (13.38)

via a mapping H as in (13.22) we end up with a closed system of the form (13.23).
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The quasi-steady-state approach hides several difficulties that are best understood
geometrically from the theory of normally hyperbolic invariant manifolds, which
is well exemplified by the case of fast-slow systems. For fast-slow systems, the
algebraic equations (13.38) provide a representation of the critical manifold

C0 = {(m1,m2, . . .) : h j = 0 for j > κ, j ∈ N}.

However, it is crucial to note that, despite its name, C0 is not necessarily a manifold
but in general just an algebraic variety. Even if we assume that C0 is a manifold
and we would be able to find a mapping H of the form (13.22), this mapping is
generically only possible locally [34, 37]. Even if we assume in addition that the
mapping is possible globally, then the dynamics on C0 given by (13.22) does not
necessarily approximate the dynamics of the full moment system for ε > 0. The
relevant property to have a dynamical approximation is normal hyperbolicity, i.e.,
the ‘matrix’ (

∂h j

∂ml

)∣
∣
∣
∣
C0

, j, l ∈ {κ + 1, κ + 2, . . .}

has no eigenvalues with zero real parts; in fact, this matrix is just the total derivative
of the fast variables restricted to points on C0 but for moment equations it is usually
infinite-dimensional. Even if we assume in addition that C0 is normally hyperbolic,
which is a very strong and non-generic assumption for a fast-slow system [34, 35],
then the dynamics given via the map H is only the lowest-order approximation. The
correct full dynamics is given on a slow manifold

Cε = {(mκ+1,mκ+2, . . .) = H(m1,m2, . . . ,mκ) + O(ε)} (13.39)

so H is only correct up to order O(ε). This novel viewpoint on moment closure
shows why it is probably quite difficult [38] to answer the approximation question
(Q2) since for a general nonlinear system, the moment equations will only admit a
closure via an explicit formula locally in the phase space of moments. One has to
be very lucky, and probably make very effective use of special structures [39, 40]
in the dynamical system, to obtain any global closure. Local closures are also an
interesting direction to pursue [41].

13.4 Applications and Further References

Historically, applications of moment closure can at least be traced back to the clas-
sical Kirkwood closure [42] as well as statistical physics applications, e.g., in the
Ising model [43]. The Gaussian (or normal) closure has a long history as well [44].
In mechanical applications and related nonlinear vibrations questions, stochastic
mechanics models have been among the first where moment closure techniques for
stochastic processes have become standard tools [45, 46] including the idea to just
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discard higher-order moments [47]. By now, moment closure methods have perme-
ated practically all natural sciences as evidenced by the classical books [48, 49]. For
SDEs, moment closure methods have not been used as intensively as one may guess
but see [50].

For kinetic theory, closure methods also have a long history, particularly start-
ing from the famous Grad 13-moment closure [51, 52], and moment methods have
become fundamental tools in gas dynamics [53]. One particularly important appli-
cation for kinetic-theory moment methods is the modelling of plasmas [54, 55]. In
general, it is quite difficult to study the resulting kinetic moment equations analyti-
cally [56, 57] butmany numerical approaches exist [58–61]. Of course, themaximum
entropy closure we have discussed is not restricted to kinetic theory [62] and maxi-
mum entropy principles appear in many contexts [63–67].

One area where moment closure methods are employed a lot recently is math-
ematical biology. For example, the pair approximation [12] and its variants [68]
are frequently used in various models including lattice models [69–74], homoge-
neous networks [75, 76] and many other network models [77–80]. Several closures
have also included higher-order moments [81, 82] and truncation ideas are still used
[83–85]. Applications to various different setups for epidemic spreading are myr-
iad [85, 86]. A typical benchmark problem for moment methods in biology is the
stochastic logistic equation [87–93]. Furthermore, spatial models in epidemiology
and ecology have been a focus [94–97]. There are several survey and comparison
papers with a focus on epidemics application and closure-methods available [13,
98–100]. There is also a link from mathematical biology and moment closure to
transport and kinetic equations [101, 102], e.g., in applications of cell motion [103].
Also physical constraints, as we have discussed for abstract kinetic equations, play
a key role in biology, e.g., trying to guarantee non-negativity [86].

Another direction is network dynamics [104], where moment closure methods
have been used very effectively are adaptive, or co-evolutionary, networks with
dynamics of and on the network [30, 105]. Moment equations are one reason why
one may hope to describe self-organization of adaptive networks [106] by low-
dimensional dynamical systems models [107]. Applications include opinion forma-
tion [108, 109] with a focus on the classical voter model [110–112]; see [113] for a
review of closure methods applied to the voter model. Other applications are found
again in epidemiology [114–120] and in game theory [121–123]. The maximum
entropy-closure we introduced for kinetic equations has also been applied in the
context of complex networks [124] and spatial network models in biology [125]. An
overview of the use of the pair approximation, several models, and the relation to
master equations can be found in [126]. It has also been shown that in many cases
low-order or mean-field closures can still be quite effective [127].

On the level of moment equations in network science, one has to distinguish
between purely moment or motif-based choices of the space M and the recent pro-
posal to use heterogeneous degree-based moments. For example, instead of just
tracking the moment of a node density, one also characterizes the degree distrib-
ution [128] of the node via new moment variables [129]. Various applications of
heterogeneous moment equations have been investigated [130, 131].
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Another important applications are stochastic reaction networks [132–134],where
the mean-field reaction-rate equations are not accurate enough [135]. A detailed
computation of moment equations from the master equation of reaction-rate models
is given in [136]. In a related area, turbulent combustionmodels are investigated using
moment closure [137–141]. For turbulent combustion, one frequently considers so-
called conditional moment closures where one either conditions upon the flow being
turbulent or restricts moments to certain parts of phase space; see [142] for a very
detailed review.

Further applications we have not focused on here can be found in genetics [143],
client-server models in computer science [144, 145], mathematical finance [146],
systems biology [147], estimating transport coefficients [148], neutron transport
[149], and radiative transport problems [150, 151]. We have also not focused on
certain methods to derive moment equations including moment-generating functions
[152–154], Lie-algebraic methods [155], and factorial moment expansions [156].

In summary, it is clear that many different areas are actively using moment clo-
sure methods and that a cross-disciplinary approach could yield new insights on the
validity regimes of various methods. Furthermore, it is important to emphasize again
that only a relatively small snapshot of the current literature has been given in this
review and a detailed account of all applications of moment closure methods would
probably fill many books.
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