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Abstract We survey recent results on reaction-diffusion equations with discon-
tinuous hysteretic nonlinearities. We connect these equations with free boundary
problems and introduce a related notion of spatial transversality for initial data and
solutions. We assert that the equation with transverse initial data possesses a unique
solution, which remains transverse for some time, and also describe its regularity. At
a moment when the solution becomes nontransverse, we discretize the spatial vari-
able and analyze the resulting lattice dynamical system with hysteresis. In particular,
we discuss a new pattern formation mechanism—rattling, which indicates how one
should reset the continuous model to make it well posed.
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11.1 Introduction

11.1.1 Motivation

In this chapter we will survey recent results on reaction-diffusion equations with a
hysteretic discontinuity defined at every spatial point. We also refer to [1–3] and the
more recent surveys by Visintin [4, 5] for other types of partial differential equations
with hysteresis.

The equations we are dealing with in the present chapter were introduced in
[6, 7] to describe growth patterns in colonies of bacteria (Salmonella typhirmurium).
In these experiments, bacteria (non-difussing) are fixed to the surface of a petri
dish, and their growth rate responds to changes in the relative concentrations of
available nutrient and a growth-inhibiting by-product. The model asserts that at a
location where there is a sufficiently high amount of nutrient relative to by-product,
the bacteria will grow. This growth will continue until the production of by-product
and diffusion of the nutrient lowers this ratio below a lower threshold, causing growth
to stop. Growth will not resume until the diffusion of by-product raises the relative
concentrations above an upper threshold that is distinct from the lower. Numerics in
[6] reproduced the formation of distinctive concentric rings observed in experiments,
however the question of the existence and uniqueness of solutions, as well as a
thorough explanation of the mechanism of pattern formation, remained open.

Another application in developmental biology can be found, e.g., in [8], and an
analysis of the corresponding stationary solutions in [9].

11.1.2 Setting of the Problem

In this chapter we will treat the following prototype problem:

ut = Δu + f (u, v), v = H(ξ0, u), (x, t) ∈ QT , (11.1)

u|t=0 = ϕ, x ∈ Q, (11.2)

∂u

∂ν

∣
∣
∣
∣
∂ ′ QT

= 0. (11.3)

Here Q ⊂ R
n is a domain with smooth boundary, QT := Q × (0, T ), where T > 0,

∂ ′ QT := ∂ Q × (0, T ), u is a real-valued function on QT , and H(ξ0, u) is a hys-
teresis operator defined as follows (see Fig. 11.1a). Fix two real numbers α < β,
an integer ξ0 ∈ {−1, 1}, and two continuous functions H1 : (−∞, β] → R and
H−1 : [α,∞) → R such that H1(u) �= H−1(u) for u ∈ [α, β]. Define the sets

Σ1 := {(u, v) ∈ R
2 | u ∈ (−∞, β), v = H1(u)},

Σ−1 := {(u, v) ∈ R
2 | u ∈ (α,∞), v = H−1(u)}.
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Definition 11.1.1 Let u, v : [0, T ] → R, where u is a continuous function. We say
that v = H(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 for every t ∈ [0, T ].
2. If u(0) ∈ (α, β), then v(0) = Hξ0(u(0)).
3. If u(t0) ∈ (α, β), then v(t) is continuous in a neighorhood of t0.

The operatorH(ξ0, u) is called the non-ideal relay and item 3means that the non-
ideal relay jumps up (or down) when u = α (or u = β). This definition is equivalent
to the definitions of non-ideal relay found in [1, 10, 11]. IfH(ξ0, u)(t) = Hj (u(t)),
then we call ξ(t) := j the configuration of H at the moment t , and we call ξ0 the
initial configuration. Now let u : QT → R be a function of (x, t) and ξ0 : Q →
{−1, 1} a function of x , then H(ξ0, u)(x, t) is defined in the same way by treating
x as a parameter, i.e., there is a non-ideal relay at every x ∈ Q with input u(x, t),
configuration ξ(x, t), and initial configuration ξ0(x).

11.1.3 Set-Valued Hysteresis

First results on the well-posedness of (11.1)–(11.3) were obtained in [12, 13] for
set-valued hysteresis, and their model problems are worth explaining in more detail.
In both papers, the uniqueness of solutions as well as their continuous dependence
on initial data remained open.

First we discuss the work of Visintin [13], which treats (11.1)–(11.3) for arbitrary
n ≥ 1 withH(ξ0, u) replaced by a set-valued operator called a completed relay (see
Fig. 11.1b). We still use the thresholds α < β, and will consider constant hysteresis
branches H1(u) ≡ 1, and H−1(u) ≡ −1. We also define the setΣ0 := {(u, v) ∈ R

2 |
u ∈ [α, β], v ∈ (−1, 1)}.
Definition 11.1.2 Let u, v : [0, T ] → R, where u is a continuous function, and let
ξ0 ∈ [−1, 1]. We say v ∈ HVis(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 ∪ Σ0 for every t ∈ [0, T ].
2. If u(0) ∈ (α, β), then v(0) = ξ0; if u(0) = α (or β), then v(0) ∈ [ξ0, 1] (or v(0) ∈

[−1, ξ0]).

(a) (b) (c)

Fig. 11.1 The hysteresis operator with H1(u) ≡ 1 and H−1(u) ≡ −1
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3. If u(t0) ∈ (α, β), then v(t) is constant in a neighborhood of t0.
4. If u(t0) = α (or β), then v(t) is non-decreasing (or non-increasing) in a neigh-

borhood of t0.

By treating x as a parameter, HVis(ξ0, u) is defined for u : QT → R as we have
done previously forH(ξ0, u). Visintin [13] proved the existence of u and v such that
the equation

ut = Δu + v, v ∈ HVis(ξ0, u),

with n ≥ 1, Dirichlet boundary conditions, and initial data ϕ is satisfied in a weak
sense in QT . Visintin [13] and more recently Aiki and Kopfova [14] proved the exis-
tence of solutions to modified versions of [6, 7], where the hysteretic discontinuity
was a completed relay responding to a scalar input. A non-ideal relay with vector
input, as in [6, 7], behaves almost identically to a non-ideal relay with scalar input,
but for clarity of exposition we only consider scalar inputs in this chapter.

Let us now turn to the model hysteresis operator HAlt(ξ0, u) proposed by Alt in
[12] (see Fig. 11.1c). We still consider H1(u) ≡ 1 and H−1(u) ≡ −1, and introduce
the set

Σ̃0 := {(u, v) ∈ R
2 | u = α, v ∈ [−1, 1)} ∪ {(u, v) ∈ R

2 | u = β, v ∈ (−1, 1]}.

Definition 11.1.3 Let u, v : [0, T ] → R, where u is a continuous function, and let
ξ0 ∈ {−1, 1}. We say that v ∈ HAlt(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 ∪ Σ̃0 for every t ∈ [0, T ].
2. If u(0) ∈ [α, β], then v(0) = ξ0.
3. If u(t0) ∈ (α, β), then v(t) is constant in a neighborhood of t0.
4. If u(t0) = α (or β), then v(t) is non-decreasing (or non-increasing) in a neigh-

borhood of t0.

One can define HAlt(ξ0, u) for u : QT → R by treating x as a parameter as we did
when defining H(ξ0, u) and HVis(ξ0, u).

To highlight the main difference between the completed relay HVis(ξ0, u) and
Alt’s relay HAlt(ξ0, u), suppose that HVis(ξ0, u)(t0),HAlt(ξ0, u)(t0) ∈ (−1, 1) and
u(t0) = β has a local maximum at time t0. Then, as soon as u decreases,HAlt jumps
to −1, however HVis remains constant.

Let us introduce the notation {u = α} := {(x, t) ∈ QT | u(x, t) = α}, with {u =
β} defined analogously. Alt’s existence theorem can, omitting the technical assump-
tions, be stated in the following way. Let n = 1 and suppose (ϕ, ξ0) ∈ Σ1 ∪ Σ−1.
Then the following holds:

1. There exists u and v such that v ∈ HAlt(ξ0, u) a.e. in QT and

ut = uxx + v a.e. on {(x, t) ∈ QT | u(x, t) /∈ {α, β}}.
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2. We have
ut = uxx a.e. on {(x, t) ∈ QT | u(x, t) ∈ {α, β}},

v ∈ [−1, 0] on {u = β}, and v ∈ [0, 1] on {u = α}.
3. Items 2–4 of Definition 11.1.3 hold in the following weak sense:

For everyψ ∈ C∞
0 (Q × [0, T ))withψ ≥ 0 on {Q × [0, T )} ∩ {u = α} andψ ≤

0 on {Q × [0, T )} ∩ {u = β},
∫

QT

(v − v0)ψt dxdt ≤ 0.

11.1.4 Slow-Fast Approximation

Equations of the type (11.1)–(11.3) are deeply connected with slow-fast systems
where the variable v is replaced by a fast bistable ordinary differential equation with
a small parameter δ > 0

δvt = g(u, v). (11.4)

A typical example are the FitzHugh–Nagumo equations, where g(u, v) = v − v3

3 − u
and the hysteresis branches H1(u) and H−1(u) are the stable parts of the nullcline of g
(see Fig. 11.2). The question of whether the hysteresis operator approximates the fast
variable v as δ → 0 has been addressed for systems of ordinary differential equations
(see, e.g., [15, 16] and further references in [17]), however the correspondingquestion
for partial differential equations is still open.

11.1.5 Free Boundary Approach

Problem (11.1)–(11.3) with hysteresis has two distinct phases and a switching mech-
anism, hence it can be considered as a free boundary problem. First observe that the
hysteresisH naturally segregates the domain into two subdomains depending on the
value of ξ(x, t). Denote

Fig. 11.2 a The nullcline of
the S-shaped nonlinearity
g(u, v). b Hysteresis with
nonconstant branches H1(u)

and H−1(u)

(a) (b)
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(a) (b) (c)

Fig. 11.3 An example of the hysteresis configuration ξ responding to an input u

Q j := {x ∈ Q | ξ0(x) = j}, j = ±1. (11.5)

Let us look at how the free boundary Q1 ∩ Q−1 can evolve for a simple example on
the interval Q = (0, 1). Consider a neighborhood U of x ∈ Q, and suppose at time
t = 0, Q1 ∩ U and Q−1 ∩ U are subintervals separated by a point b ∈ U (Fig. 11.3a).
Let u(x, t0) > β for x < b, u(x, t0) < β for x > b, and let x = a(t) be the unique
solution of u(x, t) = β in U . If at time t1 > 0 the value of u at points x > b have
already risen above β, then ξ(x, t) has switched from 1 to −1. These are the points
x such that b < x ≤ a(t1) (Fig. 11.3b). Now if at time t2 > t1 the value of u at the
switched points has fallen below β again, ξ(x, t) remains switched. These are the
points x such that a(t2) < x < a(t1) (Fig. 11.3c). More succinctly, ξ(x, t) = −1 if
x ≤ b(t) and ξ(x, t) = 1 if x > b(t), where b(t) = max0≤s≤t a(s).

The point of this example is to illustrate that the free boundary does not in general
coincide with the points where u is equal to one of the threshold values. This is
different from the two-phase parabolic obstacle problem (see, e.g., [18, 19]), which
(11.1)–(11.3) reduces to if α = β.

Assume the derivative ϕ′(b) in the above example was non-vanishing on the
boundary {b} = Q1 ∩ Q−1. This is an example of transverse initial data, andwhether
the initial data is transverse or not will play an important role in the analysis of
problem (11.1)–(11.3).

11.1.6 Overview

This chapter is organized in the following way.
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In Sect. 11.2wewill investigate thewell-posedness of (11.1)–(11.3) for transverse
initial data. For n = 1 the existence of solutions and their continuous dependence
on initial data was established in [11], uniqueness of the solution in [20] and the
analogous results for systems of equations in [21]. Preliminary results for n ≥ 2
were obtained in [22].

In Sect. 11.3 we consider the regularity of solutions u, in particular, whether the
generalized derivatives uxi x j and ut are uniformly bounded. We will summarize the
results of [23], where the authors proved that these derivatives are locally bounded
in a neighborhood of a point not on the free boundary. They also showed that this
bound depends on the parabolic distance to the parts of the free boundary that do not
contain the sets {u = α} or {u = β}.

In Sect. 11.4 we consider non-transverse data and the results of [24]. We will
analyze a spatio-temporal pattern (called rattling) arising after spatial discretization
of the reaction-diffusion equation and discuss its connection with the continuous
model with hysteresis operators H,HVis, and HAlt.

11.2 Transverse Initial Data

11.2.1 Setting of a Model Problem

In this section we will discuss the well-posedness of problem (11.1)–(11.3) under
the assumption that ϕ is transverse with respect to ξ0, a notion which we will make
precise shortly. In order to illustrate the main ideas, we will treat the following
model problem in detail and then discuss generalizations at the end of this section
(see Sect. 11.2.4). Let h−1 ≤ 0 ≤ h1 be two constants, and let the hysteresis branches
be given by H1(u) ≡ h1 and H−1(u) ≡ h−1. Consider the prototype problem

ut = Δu + H(ξ0, u), (x, t) ∈ QT , (11.6)

u|t=0 = ϕ, x ∈ Q, (11.7)

∂u

∂ν

∣
∣
∣
∣
∂ ′ QT

= 0. (11.8)

We will treat n = 1 in Sect. 11.2.2 (see [11, 20]) and n ≥ 2 (see [22]) in Sect. 11.2.3.
Throughout this subsection we will always assume that ϕ and ξ0 are consistent
with each other, i.e., if ϕ(x) < α (or ϕ(x) > β), then ξ0(x) = 1 (or ξ0(x) = −1). In
particular, this means that for every x ∈ Q, ξ(x, t) is continuous from the right as a
function of t ∈ [0, T ).

Since in general H(ξ0, u) ∈ Lq(QT ), we will look for solutions in the Sobolev
space W 2,1

q (QT ) with q > n + 2. This is the space consisting of functions with
two weak spatial derivatives and one weak time derivative from Lq(QT ) (see [25,
Chap.1]). If u ∈ W 2,1

q (QT ), then for every t ∈ [0, T ] the trace is well defined and
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u(·, t) ∈ W 2−2/q
q (Q) (see, e.g., [25, p. 70]). To ensure that ϕ is regular enough to

define the spatial transversality property,we henceforth fix aγ such that 0 < γ < 1 −
(n + 2)/q. It follows that if ϕ ∈ W 2−2/q

q (Q), then ϕ ∈ Cγ (Q) and ∇ϕ ∈ (Cγ (Q))n ,
where Cγ is the standard Hölder space (see [26, Sect. 4.6.1]).

The subspace W 2−2/q
q,N (Q) ⊂ W 2−2/q

q (Q) of functions with homogeneous Neu-
mann boundary conditions is a well-defined subspace, and in this section we always
assume that ϕ ∈ W 2−2/q

q,N (Q).

Definition 11.2.1 A solution to problem (11.6)–(11.8) on the time interval [0, T ) is
a function u ∈ W 2,1

q (QT ) such that (11.6) is satisfied in Lq(QT ) and u satisfies (11.7)
and (11.8) in terms of traces. A solution on [0,∞) is a function u : Q × [0,∞) → R

such that for any T > 0, u|QT is a solution in the sense just described.

We note that if u ∈ W 2,1
q (QT ), then H(ξ0, u) is a measurable function on QT (see

[1, Sect. 6.1]).

11.2.2 Case n = 1

Let Q = (0, 1) and Q j be given by (11.5).

Definition 11.2.2 Let ϕ ∈ C1(Q). We say ϕ is transverse with respect to ξ0 if the
following hold:

1. There is ab ∈ (0, 1) such that Q−1 = {x | 0 ≤ x ≤ b} and Q1 = {x | b < x ≤ 1}.
2. If ϕ(b) = β, then ϕ′(b) < 0.

An example of ϕ and ξ0 satisfying Definition 11.2.2 is given in Fig. 11.3a.

Definition 11.2.3 A solution u is called transverse if for all t ∈ [0, T ], u(·, t) is
transverse with respect to ξ(·, t).

Theorem 11.2.4 (See [11, Theorems 2.16 and 2.17]) Suppose the initial data ϕ ∈
W 2−2/q

q,N (Q) is transverse with respect to ξ0. Then there is a T > 0 such that the
following hold:

1. Any solution u ∈ W 2,1
q (QT ) of problem (11.6)–(11.8) is transverse.

2. There is at least one transverse solution u ∈ W 2,1
q (QT ) of problem (11.6)–(11.8).

3. If u ∈ W 2,1
q (QT ) is a transverse solution of problem (11.6)–(11.8), then it can be

continued to a maximal interval of transverse existence [0, Tmax), i.e., u(x, Tmax)

is not transverse or Tmax = ∞.

We will sketch the proof of Theorem 11.2.4, part 2, assuming that ϕ(b) = β and
ϕ′(b) < 0.

Let us define the closed, convex, bounded subset of C[0, T ]

B := {b ∈ C[0, T ] | b(t) ∈ [0, 1], b(0) = b}.
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For any b0 ∈ B, define the function

F(x, t) :=
{

h−1 if 0 ≤ x ≤ b0(t),
h1 if b0(t) < x ≤ 1.

(11.9)

Let u ∈ W 2,1
q (QT ) be the solution to problem (11.6)–(11.8) with nonlinearity F

in place of H(ξ0, u). We claim that T can be chosen small enough such that the
configuration ξ(x, t) of H(ξ0, u) is defined by a unique discontinuity point b(t).
Note that we do not yet claim that F = H(ξ0, u).

To prove the claim, first fix T0 > 0. It is a result of classical parabolic theory [25,
Chap.4] that for all T ∈ [0, T0]

‖u‖Cγ (QT ) + ‖ux‖Cγ (QT ) ≤ C1

(

‖F‖Lq (QT ) + ‖ϕ‖W 2−2/q
q,N (Q)

)

≤ C2, (11.10)

whereC1, C2, . . . > 0 depend only on T0 and q. The claim now follows from (11.10)
with the help of the implicit function theorem.

Observe that u is a solution of problem (11.6)–(11.8) ifH(ξ0, u) = F , i.e., b0 = b.
We therefore look for a fixed point of the map R : B → B, R(b0) := b.

Consider b01, b02 ∈ B and define F1, F2 via b01, b02 similarly to (11.9), and let
u1, u2 be the corresponding solutions. Observe that F1 �= F2 only if

min(b01(t), b02(t)) < x < max(b01(t), b02(t)),

in particular,

‖u1 − u2‖Cγ (QT ) + ‖u1x − u2x‖Cγ (QT ) ≤ C1‖F1 − F2‖Lq (QT ),

≤ C3‖b01 − b02‖1/q
C[0,T ].

(11.11)

Applying (11.10) again, and using ϕ′(b) > 0 and the implicit function theorem, we
see that the left hand side of (11.11) bounds ‖a1 − a2‖C[0,T ]. One can additionally
show that ‖a1 − a2‖C[0,T ] bounds ‖b1 − b2‖C[0,T ], hence

‖b1 − b2‖C[0,T ] ≤ ‖a1 − a2‖C[0,T ] ≤ C4‖b01 − b02‖1/q
C[0,T ]. (11.12)

In particular (11.12) shows thatR is a continuous map on B. Moreover, one can use
(11.10) to show thatR(B) is bounded in Cγ [0, T ], and since Cγ [0, T ] is compactly
embedded into C[0, T ], the Schauder fixed point theorem implies thatR has a fixed
point.

Theorem 11.2.5 (see [20, Theorem 2.2]) If u1 and u2 are transverse solutions of
problem (11.6)–(11.8) with the same ϕ, then u1 ≡ u2.

We prove the theorem by expressing solutions as a convolution with the Green
function G(x, y, t, s) for the heat equation with Neumann boundary conditions.
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Let us use this function to estimate the solution w = u1 − u2 of the heat equation
with zero initial data, Neumann boundary conditions, and the right hand side h =
H(ξ0, u1) − H(ξ0, u2):

|w(x, t)| ≤
∫ t

0

∫

Q
|G(x, y, t, s)||h(y, s)| dyds. (11.13)

Also note that G satisfies the inequality (see, e.g., [27])

|G(x, y, t, s)| ≤ C1

(t − s)1/2
, x, y ∈ Q, 0 ≤ s < t, (11.14)

where C1 > 0 does not depend on x , y, t or s.
Similarly to the proof of Theorem 11.2.4, for every s ≤ t the integral of |h(y, s)|

over Q is bounded by ‖b1 − b2‖C[0,t] and hence by ‖a1 − a2‖C[0,t] and hence by
‖u1 − u2‖C(Qt )

. Combining this with (11.13) and (11.14), and taking the supremum
over (x, t) ∈ QT we get

‖w‖C(QT ) ≤ C2

√
T ‖w‖C(QT ),

where C2 > 0 does not depend on T . Thus w = 0 for T small enough. A passage to
arbitrary T is standard.

Theorem 11.2.6 (See [11, Theorem 2.9]) Let u ∈ W 2,1
q (QT ) be a transverse solu-

tion of problem (11.6)–(11.8). If ‖ϕ − ϕn‖W 2−2/q
q,N (Q)

→ 0 and |bn − b| → 0 as n →
∞, then for sufficiently large n, problem (11.6)–(11.8) has a solution un ∈ W 2,1

q (QT )

with initial data ϕn and initial configuration ξ0n defined via bn. Furthermore,
‖un − u‖W 2,1

q (QT ) → 0 as n → ∞.

The crux of the proof is showing that for sufficiently large n, all the solutions
exist on the same time interval [0, T ]. To this end we note that we have in fact
given an explicit construction of T , and that this T depends on b, ‖ϕ‖W 2−2/q

q (Q)
, and

if ϕ(b) = β, also on ϕ′(b). Hence for ϕn and bn close enough to ϕ and b in their
respective norms, the same T can be used.

11.2.3 Case n ≥ 2

For the case n ≥ 2 a notion of transversality has been studied in a model problem.
For clarity we will define transversality for the case where the threshold β is adjoined
to the free boundary between Q1 and Q−1, and α is not. In what follows, let int(A)

denote the topological interior of a subset A ⊂ Q, and let {ϕ = α} be defined simi-
larly to {u = α} but taking x ∈ Q instead of (x, t) ∈ QT . In [22] the existence and
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(a) (b) (c)

Fig. 11.4 An example of a the sets Q±1, b transverse data, and c non-transverse data

uniqueness of solutions were studied for initial data transverse in the following sense
(see Fig. 11.4a, b, and recall that Q j is given by (11.5)).

Definition 11.2.7 We say the function ϕ is transverse with respect to ξ0 if the fol-
lowing hold:

1. Q1 and Q−1 aremeasurable, ∂ Q−1 ⊂ Q, ∂ Q1 = ∂ Q−1 ∪ ∂ Q, and ∂ Q−1 has zero
Lebesgue measure.

2. ϕ(x) < β for x ∈ int(Q1) ∪ ∂ Q.
3. ϕ(x) > α for x ∈ Q−1.
4. If x ∈ {u = β} ∩ ∂ Q−1, then there is a neighbourhood A of x , a set A′ ⊂ R

n−1,
a κ > 0, and a map ψ such that

(a) ψ is a composition of a translation and a rotation. and

ψ(A) = A′ × [−κ, κ], ψ(x) = (0, 0).

(b) There is a continuous function b : A′ → [−κ, κ] such that the configuration
function ξ0 ◦ ψ−1 inψ(A) (which we denote by ξ0(y′, yn), y′ ∈ A′) is given
by

ξ0(y′, yn) =
{−1 if − κ ≤ yn ≤ b(y′),
1 if b(y′) < yn ≤ κ.

(c) ϕ ◦ ψ−1, which we write as ϕ(y′, yn), satisfies ϕyn (0, 0) < 0.

We observe that in Sect. 11.2.2, the boundary between Q1 and Q−1 was a single point
b. But when n ≥ 2, this boundary is assumed to have the structure of a continuous
codimension 1 submanifold in a neighborhood of a point on the free boundary where
ϕ takes a threshold value. Also note that for n ≥ 2 non-transversality can be caused
by the geometry of ∂ Q−1 in addition to the possible degeneracy of∇ϕ (see Fig. 11.4c
and Sect. 11.2.4 for further discussion).

Theorem 11.2.8 (see [22, Theorems 3.18 and 3.19]) Assume that n ≥ 2 and ϕ ∈
W 2−2/q

q,N (Q) is transverse with respect to ξ0. Then there is a T > 0 such that any
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solution u ∈ W 2,1
q (QT ) to problem (11.6)–(11.8) is transverse and there is at least one

such solution. Moreover, if for some T ′ > 0, u1 and u2 are two transverse solutions
to problem (11.6)–(11.8) on QT ′ , then u1 ≡ u2.

The main ideas of the proof are similar to those for the case n = 1. Since
(ϕ(y′, ·), ξ0(y′, ·)) is transverse in the 1d sense for every y′ ∈ A′, one can prove
continuity of a map R that now maps functions u0 ∈ Cλ(QT ) (λ < γ ) to solu-
tionsR(u0) := u of problem (11.6)–(11.8) with the right hand sideH(ξ0, u0). Esti-
mate (11.10) implies that u ∈ Cγ (QT ), and the compactness of the embedding
Cγ (QT ) ⊂ Cλ(QT ) and the Schauder fixed point theorem together imply that R
has a fixed point in Cγ (QT ).

11.2.4 Generalizations and Open Problems

Let us list some generalizations for the case n = 1.
Change of topology. Suppose u(x, t) becomes non-transverse at some time T

in the sense of Definition 11.2.2. Then one of two possibilities arise. Either u(x, T )

has touched a threshold with zero spatial derivative at some point in (0, 1), or this
is not the case but limt→T b(t) = 1. In the latter case, one can continue the solu-
tion, and it remains unique, by redefining the problem effectively without hysteresis
[11, Theorem 2.18]. We say that the topology of the hysteresis has changed at time
T , in the sense that ξ transitions from piecewise constant to uniformly constant.

Continuous dependence on initial data. If u is a solution such that the topology
has changed for some t1 < T , then u need not continuously depend on the initial
data since a sequence of approximating solutions un may become non-transverse
at moments τn with τn < t1 and limn→∞ τn = t1 (the dashed line in Fig. 11.5). But

Fig. 11.5 A solution u (drawn as solid lines in the lower picture) and its configuration ξ (the upper
picture) that remain transverse as a discontinuity of ξ disappears at time t1. The dashed line in
the lower picture is a series of non-transverse approximations un that become non-transverse at
moments τn with τn < t1 and limn→∞ τn = t1
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if we also assume that each un is a transverse solution, then solutions do depend
continuously on their initial data.

Finite number of discontinuities. The results in Sect. 11.2.2 remain valid if the
hysteresis topology is defined by finitely many discontinuity points. The hysteresis
changing topology in the sense we described for one point of discontinuity corre-
sponds to these points merging together in the general case (see Fig. 11.6).

Fig. 11.6 Discontinuities merging as t → t1

General nonlinearity. The results in this section also hold for the more general
problem (11.1)–(11.3). First one must assume that f is locally Lipschitz and dissipa-
tive (see [11, Condition 2.11]). With such an f , and if H1 and H−1 are locally Hölder
continuous, then transverse solutions exist and can be continuted up to a maximal
interval of transverse existence. If one additionally assumes that transverse solutions
are unique, they can be shown to continuously depend on their initial data. To prove
the uniqueness of solutions the authors of [20, 22] make the stronger assumption on
H1 and H−1, namely that

|H1(u1) − H1(u2)| ≤ M

(β − u1)σ + (β − u2)σ
|u1 − u2|,

for u1, u2 in a left neighborhood of β, with M > 0 and σ ∈ (0, 1), plus an analogous
inequality for H−1 and a right neighborhood of α. This condition covers the case
where H1 and H−1 are the stable branches in the slow-fast approximation as in
Fig. 11.2 (see the appendix of [20] for further discussion).

Systems of equations. In [21, Theorem 2.1], the results of Sect. 11.2.2 were
generalized to systems of equations of the type in problem (11.1)–(11.3). It was also
shown therein that problem (11.1)–(11.3) can be coupled to ordinary differential
equations to cover the Hoppensteadt–Jäger model from [6, 7].

Let us conclude this subsection by discussing an open problem.
Openproblem. In Fig. 11.4c, one can see that for every y′ �= 0, (ϕ(y′, ·), ξ0(y′, ·))

is transverse in the 1d sense (with two discontinuties), but since the free boundary
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cannot be represented as a graph with codomain yn at the point y′ = 0, this initial
data is not transverse. Whether Definition 11.2.7 can be generalized to include such
cases is the subject of future work, and at this stage the authors strongly suspect that
item 4 of Definition 11.2.7 can be replaced by the following statement: if x ∈ {u =
β} ∩ ∂ Q−1, then ∇ϕ(x) �= 0. In other words, the assumption that the free boundary
is a graph is not necessary, and hence Fig. 11.4c would also be transverse. This
question is intimately linked to the topology of the free boundary. Whether solutions
can be continued to a maximal interval of existence and how to pose continuous
dependence of initial data is unclear for the quite general conditions on Q−1 and Q1

in Definition11.2.7. These questions also apply to the case where n = 1 and ξ0 has
infinitely many discontinuities.

11.3 Regularity of Strong Solutions

To begin with let us discuss what we mean by regularity of solutions in this context.
First observe that we cannot expect a classical solution sinceH has a jump disconti-
nuity. Therefore the “optimal” regularity we expect is W 2,1∞ . In this section we obtain
W 2,1∞ “locally”, for points (x, t) ∈ QT outside of the static part of the free boundary.
We will also assume the following condition:

Condition 11.3.1 H1(u) ≡ 1 and H−1(u) ≡ −1.

Let us introduce the notation Q±1
T := {(x, t) | ξ(x, t) = ±1} and observe that u is

smooth on the interior of Q±1
T .

The free boundary is defined as the set Γ := ∂ Q1
T ∩ ∂ Q−1

T . Moreover, we define
Γα := {u = α} ∩ Γ and Γβ := {u = β} ∩ Γ . Note that both Γα and Γβ have zero
Lebesgue measure whenever u is a solution of problem (11.6)–(11.8). This follows
from the fact that ut − Δu = 0 a.e. on Γα ∪ Γβ and Condition 11.3.1 (see Alt’s
argument in the introduction and [12]).

The estimates we obtain will depend critically on the static part of the free bound-
ary Γv := Γ \(Γα ∪ Γβ). If (x, t) ∈ Γv, then u(x, t) �= α, β and by continuity of u,
u(x, t ± τ) �= α, β for τ sufficiently small. This means ξ(x, t ± τ) = ξ(x, t) and so
if we draw the t-axis vertically as in Fig. 11.7, Γv looks like a vertical strip.

Next we recall the definition of a parabolic cylinder

Pr (x0, t0) := {x ∈ R
n | ‖x0 − x‖Rn < r} × (t0 − r2, t0 + r2), r > 0.

We define the parabolic distance between (x0, t0) and a set A ⊂ QT as

distp((x0, t0), A) := sup{r > 0 | Pr (x0, t0) ∩ {t ≤ t0} ∩ A = ∅}.

This is all the notation we need to state the main result of [23].
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Fig. 11.7 A possible
scenario where
Γ �= Γα ∪ Γβ and Γv
appears. White and grey
indicate the regions Q1

T and
Q−1

T respectively

Theorem 11.3.2 (see [23, Theorem 2.3]) We assume that n ≥ 1 and u is a solution
of problem (11.6)–(11.8). Then

|ut (x, t)| +
n

∑

i, j=1

|uxi x j (x, t)| ≤ C(ρv, ρb, M), a.e. (x, t) ∈ QT \Γv,

where C depends on ρv := distp((x, t), Γv), ρb := distp((x, t), ∂ ′ QT ∪ (Q × {0})),
and M := sup(x,t)∈QT

|u(x, t)|.
To explain the main ideas in the proof we define some further notation. Let Γ 0

α =
Γα ∩ {∇u = 0} and Γ ∗

α = Γα\Γ 0
α , with Γ 0

β and Γ ∗
β defined similarly. Furthermore,

define Γ 0 = Γ 0
α ∪ Γ 0

β and Γ ∗ = Γ ∗
α ∪ Γ ∗

β .
The crucial point in the proof is the quadratic growth estimate

sup
Pr (x,t)

|u − β| ≤ C1(ρv, ρb, M)r2 for r ≤ min {ρv, ρb} , (11.15)

and (x, t) ∈ Γ 0
β (the estimate on Γ 0

α is similar). The main tool for showing the
quadratic bound (11.15) is the local rescaled version of the Caffarelli monotonicity
formula, see [23, 28, 29].

Furthermore, the quadratic growth estimate (11.15) implies the corresponding
linear bound for |∇u|

sup
Pr (x,t)

|∇u| ≤ C2(ρv, ρb, M)r for all r ≤ min {ρv, ρb} , (11.16)

with (x, t) ∈ Γ 0. The dependence of C1 and C2 on the distance ρv in (11.15) and
(11.16) arises due to the monotonicity formula. Near Γv neither the local rescaled
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version of Caffarelli’s monotonicity formula nor its generalizations (such as the
almost monotonicity formula) are applicable to the positive and negative parts of the
spatial directional derivatives Deu, with e ∈ R

n .
Besides estimates (11.15) and (11.16), one also needs information about the

behaviour of ut near Γ ∗. Although ut may have jumps across the free boundary,
one can show that ut is a continuous function in a neighborhood of (x, t) ∈ Γ ∗\Γv.
In addition, themonotonicity of the jumps ofH(ξ0, u) in the t-direction provides one-
sided estimates of ut near Γα and Γβ . Combining these results with the observation
that ut ≤ 0 on Γ ∗

α \Γv, and ut ≥ 0 on Γ ∗
β \Γv gives

sup
Γ ∗\Γv

|ut | ≤ C3(ρb, M). (11.17)

Inequalities (11.15)–(11.17) allow one to apply methods from the theory of free
boundary problems (see, e.g., [18, 19]) and estimate |ut (x, t)| and |uxi x j (x, t)| for
a.e. (x, t) ∈ QT \ Γv.

11.4 Non-transverse Initial Data

11.4.1 Setting of a Problem

In this section we summarize the recent work [24], where the nontransverse case is
analyzed for x ∈ R, and indicate directions for further research. We will be inter-
ested in the behavior of solutions near one of the thresholds, say β. Therefore,
we set α = −∞ and β = 0 (see Fig. 11.8) and assume that the initial data satisfy
ϕ(x) = −cx2 + o(x2) in a small neighborhood of the origin, ϕ(x) < 0 everywhere
outside of the origin, ξ0(x) = −1 for x = 0, and ξ0(x) = 1 for x �= 0. In particular,
we assume c > 0. In this situation, the theorems in Sect. 11.2.2 are not applicable.
Hence, to understand the dynamics of the solution near the origin,we approximate the
continuous equation (11.6) by its spatial discretization and the initial data by the dis-
crete quadratic function. Namely, we choose a grid step ε > 0, set uε

n(t) := u(εn, t),
n ∈ Z, and consider the system of infinitely many ordinary differential equations
with hysteresis

Fig. 11.8 Hysteresis with
thresholds α = −∞ and
β = 0
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duε
n

dt
= uε

n+1 − 2uε
n + uε

n−1

ε2
+ H(uε

n), t > 0, n ∈ Z, (11.18)

supplemented by the nontransverse (quadratic) initial data

uε
n(0) = −c(εn)2, n ∈ Z. (11.19)

Here we do not explicitly indicate the dependence of H on ξ0, assuming that
H(uε

n)(t) = h1 if uε
n(s) < 0 for all s ∈ [0, t] and H(uε

n)(t) = h−1 otherwise. As
before, we assume that h−1 ≤ 0 < h1.

Due to [24, Theorem 2.5], problem (11.18), (11.19) admits a unique solution in
the class of functions satisfying

sup
s∈[0,t]

|uε
n(s)| ≤ AeB|n|, n ∈ Z, t ≥ 0,

with some A = A(t, ε) ≥ 0 and B = B(t, ε) ∈ R. Thus, we are now in a position
to discuss the dynamics of solutions for each fixed grid step ε and analyze the limit
ε → 0.

First, we observe that ε in (11.18), (11.19) can be scaled out. Indeed, setting

un(t) := ε−2uε
n(ε

2t) (11.20)

reduces problem (11.18), (11.19) to the equivalent one

⎧

⎨

⎩

dun

dt
= un+1 − 2un + un−1 + H(un), t > 0, n ∈ Z,

un(0) = −cn2, n ∈ Z.

(11.21)

Using the comparison principle, it is easy to see that if h1 ≤ 2c, then un(t) < 0
for all n ∈ Z and t > 0 and, therefore, no switchings happen for t > 0. Let us assume
that

h−1 ≤ 0 < 2c < h1. (11.22)

It is easy to show that un(t) ≤ 0 for all n ∈ Z and t > 0. However, some nodes can
now reach the threshold β = 0 and switch the hysteresis. The main question is which
nodes do this and according to which law.

11.4.2 Numerical Observations

The following pattern formation behavior is indicated by numerics (see Fig. 11.9).
As time goes on, the spatial profile of un(t) forms two symmetric hills propagating
away from the origin. At the same time, the whole spatial profile oscillates up and
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(a) (b) (c)

Fig. 11.9 Upper graphs represent spatial profiles of the hysteresis H(un) and lower graphs the
spatial profiles of the solution un . a Nontransverse initial data. b Spatial profiles at a moment t > 0
for h−1 = 0. c Spatial profiles at a moment t > 0 for h−1 = −h1 < 0

down (never exceeding the threshold β = 0) and touches the threshold β = 0 in such
a way that

lim
j→∞

Nns( j)

Ns( j)
= |h−1|

h1
, (11.23)

where Ns( j) and Nns( j) are integers denoting the number of nodes in the set
{u0, u±1, . . . , u± j } that switch and do not switch, respectively, on the time inter-
val [0,∞). In [24], such a spatio-temporal pattern was called rattling.

A more specific pattern occurs if |h−1|/h1 = pns/ps, where ps and pns are co-
prime integers. In this case, for any j large enough, the set {u j+1, . . . , u j+ps+pns}
contains exactly ps nodes that switch and pns nodes that do not switch on the time
interval [0,∞).

If a node un switches on the time interval [0,∞), then we denote its switching
moment by tn; otherwise, set tn := ∞. In particular, finite values of tn characterize
the propagation velocity of the two hills mentioned above. Numerics indicates that,
for the nodes where tn is finite, we have

tn = an2 +
{

O(
√

n) if h−1 = 0,

O(n) if h−1 < 0,
as n → ∞, (11.24)

and
|uk+1(t) − uk(t)| ≤ b, |k| ≤ n, t ≥ tn, n = 0, 1, 2, . . . , (11.25)

where a, b > 0 do not depend on k and n. In particular, (11.24) and (11.25) mean
that the hills propagate with velocity of order t−1/2, while the cavity between the
hills has a bounded steepness, which distinguishes the observed phenomenon from
the “classical” traveling wave situation.
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11.4.3 Rigorous Result

The recent work [24] provides a rigorous analysis of the rattling in the case h−1 = 0,
where, according to (11.24), all the nodes are supposed to switch at time moments
satisfying

tn = an2 + qn, |qn| ≤ E
√

n, (11.26)

where E > 0 does not depend on n ∈ Z. In [24], the authors found the coeffi-
cient a and proved that if finitely many nodes un(t), n = 0,±1, · · · ± n0, switch
at time moments tn satisfying (11.26), then all the nodes un(t), n ∈ Z, switch at
time moments tn satisfying (11.26) (see the rigorous statement below). One of the
main tools in the analysis is the so-called discrete Green function yn(t) that is a
solution of the problem

⎧

⎪⎨

⎪⎩

ẏ0 = Δy0 + 1, t > 0,

ẏn = Δyn, t > 0, n �= 0,

yn(0) = 0, n ∈ Z.

(11.27)

The important property of the discrete Green function is the following asymptotics
proved in [30]:

yn(t) = √
t f

( |n|√
t

)

+ O

(
1√
t

)

as t → ∞, (11.28)

where

f (x) := 2x

∞∫

x

Z
−2h(Z) dZ, h(x) := 1

2
√

π
e− x2

4 , (11.29)

and O(·) does not depend on n ∈ Z.
Now if we (inductively) assume that the nodes u0, u±1, . . . u±(n−1) switched at

the moments satisfying (11.26), while no other nodes switched on the time interval
[0, tn−1], then the dynamics of the node

un(t) for t ≥ tn−1 (and until the next switching in the system occurs) is given by

un(t) = −cn2 + (h1 − 2c)t − h1

n−1
∑

k=−(n−1)

yn−k(t − tk). (11.30)

At the (potential) switching moment tn = an2 + qn , the relations tk = ak2 + qk
(|k| ≤ n − 1), equality (11.30), the Taylor formula, and asymptotics (11.28) yield
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0 = −cn2 + (h1 − 2c)an2 − h1

n−1
∑

k=−(n−1)

yn−k

(

a(n2 − k2)
)

+ l.o.t.

= −cn2 + (h1 − 2c)an2 − h1

n−1
∑

k=−(n−1)

√

a(n2 − k2) f

(

n − k
√

a(n2 − k2)

)

+ l.o.t.

= (−c + (h1 − 2c)a − h1Rn(a)) n2 + l.o.t.,

(11.31)

where

Rn(a) :=
n−1
∑

k=−(n−1)

1

n

√

a(1 − (k/n)2) f

(

1 − k/n
√

a(1 − (k/n)2)

)

and “l.o.t.” stands for lower order terms that we do not explicitly specify here. Note
that Rn(a) is the Riemann sum for the integral

I f (a) :=
1∫

−1

√

a(1 − x2) f

(

1 − x
√

a(1 − x2)

)

dx . (11.32)

Therefore, equality (11.31) can be rewritten as

0 = (−c + (h1 − 2c)a − h1 I f (a)
)

n2 + l.o.t. (11.33)

It is proved in [24] that there exists a unique a > 0 for which the coefficient at
n2 in (11.33) vanishes. The most difficult part is to analyze the lower order terms
in (11.33) that involve:

1. the remainders q0, q±1, . . . , qn from (11.26) arising from (11.30) via the appli-
cation of the Taylor formula,

2. the remainder in the asymptotic (11.28) for the discrete Green function yn(t),
3. the remainders arising from approximating the integral I f (a) by the Riemann

sum Rn(a).

In particular, one has to prove that if |q j | ≤ E
√| j | for j = 0,±1, . . . ,±(n − 1),

then the lower order terms vanish for a specified above and |qn| ≤ E
√|n|. This

allows one to continue the inductive scheme and (after an appropriate analysis of the
nodes u±(n+1)(t), u±(n+2)(t), . . . for t ∈ [tn−1, tn]) complete the proof.

The rigourous formulation of the main result in [24] is as follows.

Theorem 11.4.1 (see [24, Theorem 3.2]) Assume that (11.22) holds and that
h−1 = 0. Let a = a(h1/c) > 0 be a (unique) root of the equation

− c + (h1 − 2c)a − h1 I f (a) = 0 (11.34)
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(a) (b) (c)

Fig. 11.10 Dependence on h1 of the values of a, E , and n0(E) that fulfill assumptions (11.35)
for c = 1/2. a The values of a are found as roots of (11.34). b, c The values of E and n0(E) are
calculated for discrete values h1 = 1.1, 1.2, 1.3, . . . , 2.5

with I f (a) given by (11.32). Then there exists a constant E0 = E0(h1, c, a) > 0
and a function n0 = n0(E) = n0(E, h1, c, a) (both explicitly constructed) with the
following property. If

finitely many nodes u0(t), u1(t), . . . , un0(t) switch at moments tn
satisfying (11.26) with the above a and some E ≥ E0,

(11.35)

then each node un(t), n ∈ Z, switches; moreover, the switching occurs at a time
moment tn satisfying (11.26) with a and E as in (11.35).

Wenote that the explicit formula (11.30) for the solution un(t) allows one to verify
the fulfillment of finitely many assumptions (11.35) numerically with an arbitrary
accuracy for any given values of h1 and c. The graphs in Fig. 11.10 taken from [24]
represent the values of a, E , and n0(E) that fulfill assumption (11.35) for c = 1/2
and h1 = 1.1, 1.2, 1.3, . . . , 2.5.

(a) (b)

Fig. 11.11 A snapshot for a time moment t > 0 of a two-dimensional spatial profile of hysteresis
taking values h1 > 2c > 0 and h−1 = −h1 < 0. The nontrasverse initial data is given by ϕ(x) =
−c(x21 + x22 ). Grey (black) squares or hexagons correspond to the nodes that have (not) switched
on the time interval [0, t]. a Discretization on the square lattice. b Discretization on the triangular
lattice
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11.4.4 Open Problems

To conclude this section, we indicate several directions of further research in the
nontransverse case.

Case h−1 < 0. In this case, one has to additionally prove a specific switching
pattern (11.23). We expect that the tools developed in [24] will work for rational
h1/h−1. The irrational case appears to be a much more difficult problem.

Multi-dimensional case. Numerics indicates that the behavior analogous to
(11.23) occurs in higher spatial dimensions for different kinds of approximating
grids. Figure11.11 illustrates the switching pattern for a two-dimensional analog of
problem (11.21), where the Laplacian is discretized on the square and triangular
lattices, respectively.

Limit ε → 0. We introduce the function

uε(x, t) := uε
n(t), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

(which is piecewise constant in x for everyfixed t).Making the transformation inverse
to (11.20) and assuming (11.23) and (11.24), we can deduce that, as ε → 0, the
function uε(x, t) approximates a smooth function u(x, t), which satisfies u(x, t) = 0
for x ∈ (−√

t/a,
√

t/a). In other words, u(x, t) sticks to the threshold line β = 0
on the expanding interval x ∈ (−√

t/a,
√

t/a).
Similarly to uε(x, t), we consider the function

H ε(x, t) := H(uε
n)(t), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

which is supposed to approximate the hysteresis H(u)(x, t) in (11.6). We see that
the spatial profile of H ε(x, t) for x ∈ (−√

t/a,
√

t/a) is a step-like function taking
values h1 and h−1 on alternating intervals of length of order ε. Hence, it has no
pointwise limit as ε → 0, but converges in a weak sense to the function H(x, t) given
by H(x, t) = 0 for x ∈ (−√

t/a,
√

t/a) and H(x, t) = h1 for x /∈ (−√
t/a,

√
t/a).

We emphasize that H(x, t) does not depend on h−1 (because a does not). On the
other hand, if h−1 < 0, the hysteresis operator H(u)(x, t) in (11.6) cannot take
value 0 by definition, which clarifies the essential difficulty with the well-posedness
of the original problem (11.6) in the nontransverse case. To overcome the non-
wellposedness, one need to allow the intermediate value 0 for the hysteresis operator,
cf. the discussion of modified hysteresis operators due to Visintin and Alt in the
introduction. A rigorous analysis of the limit ε → 0 is an open problem, which may
lead to a unique “physical” choice of an appropriate element in the multi-valued
Visintin’s hysteresis HVis(ξ0, u) in Definition 11.1.2.

Rattling in slow-fast systems. One may think that the rattling occurs exclusively
due to the discontinuous nature or hysteresis. This is not quite the case. Consider an
equation of type (11.6) with the hysteresis H(ξ0, u) replaced by the solution v of a
bistable ordinary differential equation of type (11.4), e.g.,
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ut = uxx + v, δvt = g(u, v). (11.36)

Numerical solution of system (11.36) with a nontransverse initial data u(x, 0) =
−cx2 + o(x2) and v(x, 0) = H1(β) near the origin reveals a behavior analogous to
that for a spatially discrete system (see Fig. 11.12). As the spatial profile of u(x, t)
touches the threshold β at some point x0, the spatial profile of v(x, t) forms a peak-
like transition layer around x0 that rapidly converges to a plateau. Thus, as time goes
on, the spatial profile of v(x, t) converges to a step-like function taking values H1(β)

and H−1(β) on alternating intervals, whose length tends to zero as δ → 0. A rigorous
analysis of the limit δ → 0 is an open problem.

Fig. 11.12 Lower and upper graphs are spatial profiles of the solution u(x, t) and v(x, t), respec-
tively, for problem (11.36) with initial data u|t=0 = −cx2 + o(x2), v|t=0 = H1(β)
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