Chapter 10

Analytical, Optimal, and Sparse Optimal
Control of Traveling Wave Solutions

to Reaction-Diffusion Systems

Christopher Ryll, Jakob Lober, Steffen Martens,
Harald Engel and Fredi Troltzsch

Abstract This work deals with the position control of selected patterns in reaction-
diffusion systems. Exemplarily, the Schlogl and FitzHugh-Nagumo model are dis-
cussed using three different approaches. First, an analytical solution is proposed. Sec-
ond, the standard optimal control procedure is applied. The third approach extends
standard optimal control to so-called sparse optimal control that results in very local-
ized control signals and allows the analysis of second order optimality conditions.

10.1 Introduction

Beside the well-known Turing patterns, reaction-diffusion (RD) systems possess a
rich variety of self-organized spatio-temporal wave patterns including propagating
fronts, solitary excitation pulses, and periodic pulse trains in one-dimensional media.
These patterns are “building blocks” of wave patterns like target patterns, wave
segments, and spiral waves in two as well as scroll waves in three spatial dimensions,
respectively. Another important class of RD patterns are stationary, breathing, and
moving localized spots [1-7].

Several control strategies have been developed for purposeful manipulation of
wave dynamics as the application of closed-loop or feedback-mediated control loops
with and without delays [8—11] and open-loop control that includes external spatio-
temporal forcing [10, 12—14], optimal control [15-17], and control by imposed geo-
metric constraints and heterogeneities on the medium [18, 19]. While feedback-
mediated control relies on a continuous monitoring of the system’s state, open-loop
control is based on a detailed knowledge of the system’s dynamics and its parameters.

Experimentally, feedback control loops have been developed for the photosensi-
tive Belousov-Zhabotinsky (BZ) reaction. The feedback signals are obtained from
wave activity measured at one or several detector points, along detector lines, or in
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a spatially extended control domain including global feedback control [8, 9, 20].
Varying the excitability of the light-sensitive BZ medium by changing the globally
applied light intensity forces a spiral wave tip to describe a wide range of hypocy-
cloidal and epicycloidal trajectories [21, 22]. Moreover, feedback-mediated control
loops have been applied successfully in order to stabilize unstable patterns in experi-
ments such as unstable traveling wave segments and spots [11]. Two feedback loops
were used to guide unstable wave segments in the BZ reaction along pre-given tra-
jectories [23]. An open loop control was successfully deployed in dragging traveling
chemical pulses of adsorbed CO during heterogeneous catalysis on platinum single
crystal surfaces [24]. In these experiments, the pulse velocity was controlled by a
laser beam creating a movable localized temperature heterogeneity on an addressable
catalyst surface, resulting in a V-shaped pattern [25]. Dragging a one-dimensional
chemical front or phase interface to a new position by anchoring it to a movable
parameter heterogeneity was studied theoretically in [26, 27].

Recently, an open-loop control for controlling the position of traveling waves over
time according to a prescribed protocol of motion 43(1) was proposed that preserves
simultaneously the wave profile [28]. Although position control is realized by external
spatio-temporal forcing, i.e., it is an open-loop control, no detailed knowledge about
the reaction dynamics as well as the system parameters is needed. We have already
demonstrated the ability of position control to accelerate or decelerate traveling
fronts and pulses in one spatial dimension for a variety of RD models [29, 30].
In particular, we found that the analytically derived control function is close to a
numerically obtained optimal control solution. A similar approach allows to control
the two-dimensional shape of traveling wave solutions. Control signals that realize a
desired wave shape are determined analytically from nonlinear evolution equations
for isoconcentration lines as the perturbed nonlinear phase diffusion equation or the
perturbed linear eikonal equation [31]. In the work at hand, we compare our analytic
approach for position control with optimal trajectory tracking of RD patterns in more
detail. In particular, we quantify the difference between an analytical solution and a
numerically obtained result to optimal control. Thereby, we determine the conditions
under which the numerical result approaches the analytical result. This establishes a
basis for using analytical solutions to speed up numerical computations of optimal
control and serves as a consistency check for numerical algorithms.

We consider the following controlled RD system

Qi (%, 1) — DAI(R, 1) + RU(x, 1) = Bf (&, 1). (10.1)

Here, u(X,t) = (u1(X, 1), ..., u,(X,1))T is a vector of n state components in a
bounded or unbounded spatial domain £2 C RY of dimension N € {1,2,3}. D
is an n x n matrix of diffusion coefficients which is assumed to be diagonal,
D = diag(Dy, ..., D,), because the medium is Bresumed to be isotropic. A rep-
resents the N-dimensional Laplace operator and R denotes the vector of n reaction
kinetics gvhich, in general, are nonlinear functions of the state. The vector of control
signals f(%,1) = (fi(X,1), ..., fu(¥, )T acts at all times and everywhere within
the spatial domain §2. The latter assumption is rarely justified in experiments, where
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the application of control signals is often restricted to subsets of £2. However, notable
exceptions as, e.g., the already mentioned photosensitive BZ reaction, exist. Here, the
light intensity is deployed as the control signal such that the control acts everywhere
within a two-dimensional domain.

Equation (10.1) must be supplemented with an initial condition i (X, tg) = io(X)
and appropriate boundary conditions. A common choice are no-flux boundary con-
ditions at the boundary X = 952 x (0, T), 0,u(x,t) = 0, where 3,1 denotes the
component-wise spatial derivative in the direction normal to the boundary I" = 9£2
of the spatial domain.

Typically, the number m of independent control signals in Eq. (10.1) is smaller than
the number n of state components. We call such a system an underactuated system.
The n x m matrix B determines which state components are directly affected by the
control signals. If m = n and the matrix B is regular, it is called a fully actuated
system. .

Our main goal is to identify a control f such that the state # follows a desired
spatio-temporal trajectory 4, also called a desired distribution, as closely as possible
everywhere in space §2 and for all times 0 < ¢ < T. We can measure the distance
between the actual solution # of the controlled RD system Eq. (10.1) and the desired
trajectory i, up to the terminal time T with the non-negative functional

J (@) =it = iig)72 ) (10.2)

2

12(0) 18 the L*-norm defined by

where || - ||

T
g = [ dian {07, (103)
082

in the space-time-cylinder Q: = £2 x (0, T'). The functional Eq. (10.2) reaches its
smallest possible value, J = 0 if and only if the controlled state u equals the desired
trajectory almost everywhere in time and space.

In many cases, the desired trajectory 14 cannot be realized exactly by the control,
cf. Ref. [32], for examples. However, one might be able to find a control which
enforces the state u to follow i, as closely as possible as measured by J. A control

f = f is optimal if it realizes a state # which minimizes J. The method of optimal
control views J as a constrained functional subject to i satisfying the controlled RD
system Eq. (10.1).

Often, the minimum of the objective functional J, Eq. (10.2), does not exist within
appropriate function spaces. Consider, for example, the assumption that the con-
trolled state, obtained as a solution to the optimization problem, is continuous in
time and space. Despite that a discontinuous state i, leading to a smaller value for
J (1) than any continuous function, might exist, this state is not regarded as a solu-
tion to the optimization problem. Furthermore, a control enforcing a discontinuous
state may diverge at exactly the points of discontinuity; examples in the context of
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dynamical systems are discussed in Ref. [32]. For that reason, the unregularized
optimization problem, Eq. (10.2), is also called a singular optimal control problem.
To ensure the existence of a minimum of J within appropriate function spaces and
bounded control signals, additional (inequality) constraints such as bounds for the
control signal can be introduced, cf. Ref. [33]. Alternatively, it is possible to add a so-
called Tikhonov-regularization term to the functional Eq.(10.2) which is quadratic
in the control, . .

J@@, f) = i = idalljag) + VI Flij2)- (10.4)

The L?-norm of the control f is weighted by a small coefficient v > 0. This term
might be interpreted as a control cost to achieve a certain state u. Since the control f
does not come for free, there is a “price” to pay. In numerical computations, v > 0
serves as a regularization parameter that stabilizes the algorithm. For the numerical
results shown in later sections, we typically choose v in the range 1078 <v <1073,
While v > 0 guarantees the existence of an optimal control f in one and two spatial
dimensions even in the absence of bounds on the control signal [33], it is not known
whether Tikhonov-regularization alone also works in spatial dimensions N larger
than two. Here, we restrict our investigations to one and two spatial dimensions.
The presence of the regularization term causes the states to be further away from
the desired trajectories than in the case of v = 0. Thus, the case v = 0 is of special
interest. Naturally, the solution # for v = 0 is the closest (in the L?(Q)-sense) to
the desired trajectory i, among all optimal solutions associated with any v > 0.
Therefore, it can be seen as the limit of realizability of a certain desired trajectory i,.

In addition to the weighted L2-norm of the control, other terms can be added to
the functional Eq.(10.4). An interesting choice is the weighted L'-norm such that
the functional reads

(i, f) = lli — iial32 ) + VI F122.) + 61 FllLico)- (10.5)

For appropriate values of ¥ > 0, the corresponding optimal control becomes sparse,
i.e., it only acts in some localized regions of the space-time-cylinder, while it vanishes
identically everywhere else. Therefore, it is also called sparse control or sparse
optimal control in the literature, see Refs. [34—37]. In some sense, we can interpret
the areas with non-vanishing sparse optimal control signals as the most sensitive areas
of the RD patterns with respect to the desired control goal. A manipulation of the RD
pattern in these areas is most efficient, while control signals applied in other regions
have only weak impact. Furthermore, the weighted L'-norm enables the analysis of
solutions with a Tikhonov-regularization parameter v tending to zero. This allows
to draw conclusions about the approximation of solutions to unregularized problems
by regularized ones.

In Sect. 10.2, we present an analytical approach for the control of the position of
RD patterns in fully actuated systems. These analytical expressions are solutions to
the unregularized (v = 0) optimization problem, Eq.(10.2), and might provide an
appropriate initial guess for numerical optimal control algorithms. Notably, neither



10 Analytical, Optimal, and Sparse Optimal Control of Traveling . .. 193

the controlled state nor the control signal suffering from the problems are usually
associated with unregularized optimal control; both expressions yield continuous and
bounded solutions under certain assumptions postulated in Sect. 10.2. In Sect. 10.3,
we explicitly state the optimal control problem for traveling wave solutions to the
Schlogl [1, 38] and the FitzHugh-Nagumo model [39, 40]. Both are well-known
models to describe traveling fronts and pulses in one spatial dimension, solitary
spots and spiral waves in two spatial dimensions, and scroll waves in three spatial
dimensions [4, 10, 41, 42]. We compare the analytical solutions from Sect. 10.2 with
a numerically obtained regularized optimal control solution for the position control
of a traveling front solution in the one-dimensional Schlégl model in Sect. 10.3.3. In
particular, we demonstrate the convergence of the numerical result to the analytical
solution for decreasing values v. The agreement becomes perfect within numerical
accuracy if v is chosen sufficiently small. Section 10.4 discusses sparse optimal con-
trol in detail and presents numerical examples obtained for the FitzHugh-Nagumo
system. Finally, we conclude our findings in Sect. 10.5.

10.2 Analytical Approach

Below, we sketch the idea of analytical position control of RD patterns proposed
previously in Refs. [28, 29]. For simplicity, we consider a single-component RD
system of the form

du(x, 1) — D2u(x, 1) + R(u(x, 1)) = f(x,1), (10.6)

in a one-dimensional infinitely extended spatial domain §2 = R. The state u as well
as the control signal f are scalar functions and the system Eq. (10.6) is fully actuated.
Usually, Eq. (10.6) is viewed as a differential equation for the state u with the control
signal f acting as an inhomogeneity. Alternatively, Eq.(10.6) can also be seen as
an expression for the control signal. Exploiting this relation, one simply inserts the
desired trajectory u, for u in Eq.(10.6) and obtains for the control

1) = dua(x, 1) — Dd2uy(x, 1) + R(ug(x, 1)). (10.7)

In the following, we assume that the desired trajectory u, is sufficiently smooth
everywhere in the space-time-cylinder Q such that the evaluation of the derivatives
1y and d2u4 yields continuous expressions. We call a desired trajectory uy exactly
realizable if the controlled state u equals u,; everywherein Q,i.e.,u(x,t) = uq(x, t).
For the control signal given by Eq.(10.7), this can only be true if two more condi-
tions are satisfied. First, the initial condition for the controlled state must coincide
with the initial state of the desired trajectory, i.e., u(x, o) = uy(x, tp). Second, all
boundary conditions obeyed by u have to be obeyed by the desired trajectory u, as
well. Because of u(x, t) = uy(x, t), the corresponding unregularized functional J,
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Eq. (10.2), vanishes identically. Thus, the control f is certainly a control which min-
imizes the unregularized functional J and, in particular, it is optimal.

In conclusion, we found a solution to the unregularized optimization problem
Eq. (10.2). The solution for the controlled state is simply u (x, t) = u,(x, t), while the
solution for the control signal is given by Eq. (10.7). Even though we are dealing with
an unregularized optimization problem, the control signal as well as the controlled
state are continuous and bounded functions, provided that the desired trajectory u,
is sufficiently smooth in space and time.

Generalizing the procedure to multi-component RD systems in multiple spatial
dimensions, the expression for the control reads

Fx,t) = B ' Biiq(x, t) — DAiig(x, t) + R(iiq(x, 1))). (10.8)

Once more, the initial and boundary conditions for the desired trajectory ity have to
comply with the initial and boundary conditions of the state u. Clearly, the inverse
of B exists if and only if Bisa regular square matrix, i.e., the system must be fully
actuated. We emphasize the generality of the result. Apart from mild conditions on
the smoothness of the desired distributions 4, Eq. (10.8) yields a simple expression
for the control signal for arbitrary .

Next, we exemplarily consider the position control of traveling waves (TW) in one
spatial dimension. Traveling waves are solutions to the uncontrolled RD system, i.e.,
Eq.(10.1) with f = 0. They are characterized by a wave profile ii (x, t) = U (x —ct)
which is stationary in a frame of reference £ = x — ¢t co-moving with velocity c.
The wave profile U. satisfies the following ordinary differential equation (ODE),

DU/ (&) + cUL(E) — R(U(£)) =0, £ CR. (10.9)

The prime denotes differentiation with respect to £. Note that stationary solutions with
a vanishing propagation velocity ¢ = 0 are also considered as traveling waves. The
ODE for the wave profile, Eq. (10.9), can exhibit one or more homogeneous steady
states. Typically, the wave profile U, approaches either two different steady states
or the same steady state for & — Fo00. This fact can be used to classify traveling
wave profiles. Front profiles connect different steady states for & — 400 and are
found to be heteroclinic orbits of Eq.(10.9). Pulse profiles join the same steady
state and are found to be homoclinic orbits [43]. Furthermore, all TW solutions are
localized in the sense that their spatial derivatives of any order m > 1 decay to zero,
limg . +00 agnUC(g) =0.

We propose a spatio-temporal control signal f (x, t) which shifts the traveling
wave according to a prescribed protocol of motion ¢ () while simultaneously pre-
serving the uncontrolled wave profile ﬁc. Correspondingly, the desired trajectory
reads

lig(x, 1) = Uc(x — (1)). (10.10)
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Note that the desired trajectory is localized for all values of ¢ () because the TW
profile l}c is localized. The initial condition for the state is i (x, 1)) = l}c (x — xp)
which fixes the initial value of the protocol of motion as ¢ (f)) = x¢. Then, the solution
Eq. (10.8) for the control signal becomes

fe, 1) =B (=p)U.(x —p(1)) — DU/ (x — $(1)) + R(U.(x — p(1)))
(10.11)

with q'ﬁ(t) denoting the derivative of ¢ (¢) _yvith respect to time ¢. Using Eq.(10.9) to
eliminate the non-linear reaction kinetics R, we finally obtain the following analytical
expression for the control signal

fe, 1) =(c—¢p)B'U(x — (1)) = fun- (10.12)

Remarkably, any reference to the reaction function R drops out from the expres-
sion for the control. This is of great advantage for applications without or with only
incomplete knowledge of the underlying reaction kinetics R. The method is applica-
ble as long as the propagation velocity ¢ is known and the uncontrolled wave profile
U can be measured with sufficient accuracy to calculate the derivative U !

Being an open loop control, a general problem of the proposed position control is
its possible inherent instability against perturbations of the initial conditions as well
as other data uncertainty. However, assuming protocol velocities ¢(r) close to the
uncontrolled velocity ¢, ¢ ~ c, the control signal Eq. (10.12) is small in amplitude
and enforces a wave which is relatively close to the uncontrolled TW. Since the
uncontrolled TW is presumed to be stable, the controlled TW might benefit from that
and a stable open loop control is expected. This expectation is confirmed numerically
for a variety of controlled RD systems [28] and also analytically in Ref. [29].

Despite the advantages of our analytical solution stated above, there are limits
for it as well. The restriction to fully actuated systems, i.e., systems for which B~!
exists, is not always practical. In experiments with RD systems, the number of state
components is usually much larger than one, while the number of control signals
is often restricted to one or two. Thus, the question arises if the approach can be
extended to underactuated systems with a number of independent control signals
smaller than the number of state components. This is indeed the case but entails
additional assumptions about the desired trajectory. In the context of position control
of TWs, it leads to a control which is not able to preserve the TW profile for all state
components, see Ref. [28]. The general case is discussed in the thesis [32] and is not
part of this paper.

Moreover, in applications, it is often necessary to impose inequality constraints
in form of upper and lower bounds on the control. For example, the intensity of
a heat source deployed as control is bounded by technical reasons. Even worse, if
the control is the temperature itself, it is impossible to attain negative values. Since
the control signal fm for position control is proportional to the slope of the con-
trolled wave profile U /, the magnitude of the applied control may locally attain
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non-realizable values. In our analytic approach no bounds for the control signal are
imposed. The control signal f as given by Eq. (10.8) is optimal only in case of a van-
ishing Tikhonov-regularization parameter v = 0, cf. Eq.(10.4). Moreover, desired
trajectories iZ; which do not comply with initial as well as boundary conditions or
are non-smooth might be requested. Lastly, the control signal f cannot be used in
systems where only a restricted region of the spatial domain £2 is accessible by con-
trol. While all these cases cannot be treated within the analytical approach proposed
here, optimal control can deal with many of these complications.

10.3 Optimal Control

In the following, we recall the optimal control problem and sketch the most important
analytical results to provide the optimality system.

10.3.1 The Control Problem

For simplicity, we explicitly state the optimal control problem for the FitzHugh-
Nagumo system [39, 40]. The FitzHugh-Nagumo system is a two-component model
i = (u, v)T for an activator u and an inhibitor v,

u(x, 1) — Au(X, 1) + Ru(x, 1)) + av(x, 1) = f(X,1), (10.13)
v, 1)+ BuvX,t) —yul,t)+8=0, ’
in a bounded Lipschitz-domain £2 C RY of dimension 1 < N < 3. Since the single-
component control f appears solely on the right-hand side of the first equa-
tion, this system is underactuated. Allowing a control in the second equation
is fairly analogous. The kinetic parameters «, B, y, and § are real numbers
with B > 0. Moreover, the reaction kinetics are given by the nonlinear function
R(u) =u(m —a)(u — 1) for 0 < a < 1. Note that the equation for the activator u
decouples from the equation for the inhibitor v for ¢ = 0, cf. Eq.(10.13), result-
ing in the Schlégl model [1, 38], sometimes also called the Nagumo model.
We assume homogeneous Neumann-boundary conditions for the activator # and
u(¥,0) = ug(¥), v(¥,0) = vo(X) are given initial states belonging to L°°(£2), i.e.,
they are bounded.

The aim of our control problem is the tracking of desired trajectories ily =
(g, v4)T in the space-time cylinder Q and to reach desired terminal states ii; =
(ur, vr)T at the final time T. In contrast to the analytic approach from Sect. 10.2,
these desired trajectories are neither assumed to be smooth nor compatible with the
given initial data or boundary conditions. For simplicity, we assume their bounded-
ness, i.e., (g, va)7 € (L®°(Q))?* and (ur, vr)” € (L®(£2))%. The goal of reaching
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the desired states is expressed as the minimization of the objective functional

_ 1 U 2 14 2
Jw,v, f)= E (CT lu(-, T) — uT”LZ(Q) +cr fv(-, T) — vT“LZ(.Q))
(10.14)

+ % (et lln = a1y + el v = vallEz o)) + 51 B
This functional is slightly more general than the one given by Eq. (10.2) because it
also takes into account the terminal states. We emphasize that the given non-negative
coefficients cg, c}{, clT], and c‘T/ can also be chosen as functions depending on space
and time. In some applications, this turns out to be very useful [44]. The control
signals can be taken out of the set of admissible controls

Fa={f LD : fu = f(X,1) < fp, for(x,1) € O} (10.15)

The bounds —co < f, < f, < oo model the technical capacities for generating con-
trols.

Under the previous assumptions, the controlled RD equations (10.13) have a
unique weak solution denoted by (u ¢, v;)” foragiven control f € F,q. This solution
isbounded,i.e.,uys, vy € L*(Q),cf. [44].If the initial data (uo, vo)T are continuous,
then u ; and v are continuous on 2 x [0, T]with 2 = £ U 32 as well. Moreover,
the control-to-state mapping G := f > (uy, vs)” is twice continuously (Fréchet-)
differentiable. A proof can be found in Ref. [44, Theorem 2.1, Corollary 2.1, and
Theorem 2.2]. Expressed in terms of the solution (u ¢, vf)T, the value of the objective
functional depends only on f, J(u, v, f) = J(uy, vy, f) =: F(f), and the optimal
control problem can be formulated in a condensed form as

(P) Min F(f), f e Fu. (10.16)

Referring to [44, Theorem 3.1], we know that the control problem (P) has at least
one (optimal) solution f for all v > 0. To determine this solution numerically, we
need the first and second-order derivatives of the objective functional F. Since the
mapping f +— (u, v)7 is twice continuously differentiable, sois F : L”?(Q) — R.
Its first derivative F'(f) in the direction & € L?(Q) can be computed as follows:

T
F'(f)h = // dxdt {(g; +vf)h}, (10.17)
02

where ¢ r denotes the first component of the so-called adjoint state (¢ ¢, ¥ ). It solves
a linearized FitzZHugh-Nagumo system, backwards in time,

—py — Apy + Rup)ps —y vy =c (up —ua), (10.18)
— Vs +BYs+agr=cy(vy—va)
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with homogeneous Neumann-boundary and terminal conditions ¢/ (X, T) = c¥
(g (F, T) —ur@) and Y 3. T) = cf (v (&, T) — vr(@)) in £2.

This first derivative is used in numerical methods of gradient type. Higher order
methods of Newton type need also the second derivative F”( f). It reads

F(f)h? = / 4% (LR T + V3. T))

2
T T
+//dfcdt {[cY — R'(up)opln; +cf i} + v//d)?dt {n?}
02 02

(10.19)
in a single direction & € L?(Q). In this expression, the state (n;, &) := G'(f)h
denotes the solution of a linearized FitzHugh-Nagumo system similar to Eq. (10.18),
see Ref. [44, Theorem 2.2] for more information.

10.3.2 First-Order Optimality Conditions

We emphasize that the control problem (P) is not necessarily convex. Although the
objective functional J (u, v, f) is convex, in general, the nonlinearity of the mapping
fr(up,v f)T will lead to a non-convex functional, F'. Therefore, (P) is a problem
of non-convex optimization, possibly leading to several local minima instead of a
single global minimum.

As in standard calculus, we invoke first-order necessary optimality conditions to
find a (locally) optimal control f, denoted by f. In the case of unconstrained control,
i.e., Fag := LP(Q), the first derivative of F must be zero, F'(f) = 0. Computation-
ally, this condition is better expressed in the weak formulation

T
F'(f)f ://d;édr {@+v)f}=0 VfeL(Q) (10.20)
02

where ¢ denotes the first component of the adjoint state associated with f. If f is
not locally optimal, one finds a descent direction d such that F'(f)d < 0. This is
used for methods of gradient type.

If the restrictions JF,q are given by Eq. (10.15), then Eq. (10.20) does not hold true
in general. Instead, the variational inequality

T
F()(f-f)= // didt {(@+v ) (f— )} =0 VfeFanUW)
02

(10.21)
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must be fulfilled, cf. [45]. Here, U( f ) C LP(Q) denotes a neighborhood of f .
Roughly speaking, it says that in a local minimum we cannot find an admissible
direction of descent. A gradient method would stop in such a point. A pointwise
discussion of Eq. (10.21) leads to the following identity:

B} 1
FG&E. 1) = Proj,, (—;[(ZJ()?, t)]) for v > 0. (10.22)

Here, Proj ;. ,,(x) = min{max{f,, x}, f,} denotes the projection to the interval
[f2, f»] such that f (X, t) belongs to the set of admissible controls F,q defined in
Eq.(10.15). According to Eq.(10.22), as long as ¢ does not vanish, a decreasing
value v > 0 yields an optimal control growing in amplitude until it attains its bounds
fa or fp, respectively. Thus, the variational inequality Eq. (10.21) leads to so-called
bang-bang-controls [45] for v = 0 and ¢ # 0. These are control signals which attain
its maximal or minimal possible values for all times and everywhere in the spatial
domain £2. A notable exception is the case of exactly realizable desired trajecto-
ries and v = 0, already discussed in Sect. 10.2. In this case, it can be shown that ¢
vanishes [32] and Eq. (10.22) cannot be used to determine the control signal f.

Numerically, solutions to optimal control are obtained by solving the controlled
RD system Eq. (10.13) and the adjoint system, Eq. (10.18), such that the last identity,
Eq.(10.22), is fulfilled. In numerical computations with very large or even missing
bounds f,, f», Eq.(10.22) becomes ill-conditioned if v is close to zero. This might
lead to large roundoff errors in the computation of the control signal and can affect
the stability of numerical optimal control algorithms.

10.3.3 Example 1: Analytical and Optimal Position Control

In 1972, Schlogl discussed the auto-catalytic trimolecular RD scheme [1, 38] as
a prototype of a non-equilibrium first order phase transition. The reaction kinetics
R for the chemical with concentration u(x, t) is cubic and can be casted into the
dimensional form R(#) = u(u — a)(u — 1). The associated controlled RD equation
reads

du—ut+uw—ayu—1)= fx, 1), 0<a<l,

in one spatial dimension, £2 = R. A linear stability analysis of the uncontrolled
system reveals that u = 0 and u = 1 are spatially homogeneous stable steady states
(HSS), while u = a is an unstable homogeneous steady state. In an infinite one-
dimensional domain, the Schlogl model possesses a stable traveling front solution
whose profile is given by

Uu€) =1/ (1 +exp (s/ﬁ)) (10.23)
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in the frame of reference & = x — ¢t co-moving with front velocity c¢. This front
solution establishes a heteroclinic connection between the two stable HSS for & —
+00 and travels with a velocity ¢ = (1 — 2a) /+/2 from the left to the right.

As an example, we aim to accelerate a traveling front according to the following
protocol of motion

10—1/\/§t2

— 1
o) O+ct+ 200

(10.24)
while keeping the front profile as close as possible to the uncontrolled one. In
other words, our desired trajectory reads uy(x,t) = U.(x — ¢(t)) and, conse-
quently, the initial conditions of both the controlled and the desired trajectory are
up(x) = uy(x,0) = U.(x + 10). In our numerical simulations, we set T = 20 for
the terminal time T, 2 = (—25, 25) for the spatial domain, and the threshold para-
meter is kept fixed at a = 9/20. Additionally, we choose the terminal state to be
equal to the desired trajectory, ur(x) = ugy(x, T'), and set the remaining weighting
coefficients to unity, ¢ = ¢¥ = 1, in the optimal control problem. The space-time
plot of the desired trajectory u, is presented in Fig. 10.1a for the protocol of motion
¢ () given by Eq.(10.24).

Below, we compare the numerically obtained solution to the optimal control prob-
lem (P) with the analytical solution from Sect. 10.2 for the Schlégl model. The Schlogl
model arises from Eq. (10.12) by setting « = 0 and ignoring the inhibitor variable v.
Consequently, all weighting coefficients associated with the inhibitor trajectory are
set to zero, ¢} = ¢y = 0, in the functional J, Eq.(10.14).

Figure 10.1b depicts the solution for the analytical position control f,, which
is valid for a vanishing Tikhonov regularization parameter v = 0. The numerically
obtained optimal control f forv = 10>, shown in Fig. 10.1c, does not differ visually
from the analytic one. Both are located at the front position where the slope is maxi-

IO.S

10.2

(a)
20

ia lo.a

0.6

-~ 10
0.4

-20 0 20

Fig. 10.1 a Space-time plot of the desired trajectory ug(x, t) = U.(x — ¢ (¢)) with the protocol
of motion ¢ () as given in Eq.(10.24), b analytic position control signal fa(x, t), Eq.(10.12),
and ¢ numerically obtained optimal control f for Tikhonov regularization parameter v = 10> are
presented. The magnitude of the control signal is color-coded. In the center panel (b), the dashed line
represents ¢ (). The remaining parameter values are a = 9/20, T = 20, and cg = c¥ =1
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Table 10.1 The distance |/ — fanll2 between the analytical control signal f;y,, valid for v =0,
and the optimal control f obtained numerically for finite v > 0 decreases with decreasing values of
v (top row). Similarly, the optimally controlled state trajectory u s approaches the desired trajectory
ug, measured by |u y — uy||2, for smaller values of v (bottom row)

v 1 E-1 E-2 E-3 E-4 E-5 E-6

|f = fanll2 | 4.57E-4 | 1.14E-4 | 2.50E-5 | 1.01E-5 | 8.40E-6 8.30E-6 8.29E-6

lug —uqlla | 4.77E-4 | 7.49E-5 | 8.34E-6 | 8.52E-7 | 8.55E-8 8.56E-9 8.56E-10

mal, iiy = 0.5 (dashed line in Fig. 10.1b), and their magnitudes grow proportional to
é(t). For a quantitative comparison, we compute the distance between analytical and
optimal control signal || f — full2 in the sense of L>(Q), Eq.(10.3), and normalize
it by the size of the space-time-cylinder |Q| = T |2,

1

h|, =
17212 0]

171l z2c0)- (10.25)

The top row of Table 10.1 displays the distance || f — fun |2 as a function of the regu-
larization parameter v. Even for alarge value v = 1, the distance is less than 5 x 1074,
Decreasing the value of v results in a shrinking distance || f — funll2 until it saturates
at ~8 x 107%. The saturation is due to numerical and systematic errors. Numerical
computations are affected by errors arising in the discretization of the spatio-temporal
domain and the amplification of roundoff errors by the ill-conditioned expression for
the control, Eq. (10.22). A systematic error arises because the optimal control is com-
puted for abounded interval £2 = (—25, 25) with homogeneous Neumann-boundary
conditions while the analytical result is valid only for an infinite domain.

Another interesting question is how close the controlled state u ; approaches the
desired trajectory u,. The bottom row of Table 10.1 shows the distance between the
optimally controlled state trajectory u ; and the desired trajectory for different values
v. Similarly as for the control signal, the difference lessens with decreasing values
v. Note that the value does not saturate and becomes much smaller than the corre-
sponding value for the difference between control signals. Here, no discretization
errors arise because a discretized version of the desired trajectory is used as the
target distribution. Nevertheless, systematic errors arise because neither the initial
and final desired state nor the desired trajectory obey Neumann-boundary condi-
tions. This results in an optimal control signal exhibiting bumps close to the domain
boundaries. However, the violation of boundary conditions can be reduced by specif-
ically designed protocols of motion. The further the protocol of motion keeps the
controlled front away from any domain boundary the smaller is the violation of
homogeneous Neumann-boundary conditions since the derivatives of traveling front
solution Eq. (10.23) decay exponentially for large |x|. An alternative way of rigor-
ously avoiding artifacts due to the violation of boundary conditions is the introduction
of additional control terms acting on the domain boundaries, see Ref. [31].
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For the example discussed above, the numerically obtained optimal control f
for v > 0 is computed with a Newton-Raphson-type root finding algorithm. This
iterative algorithm relies on an initial guess for the control signal which is often
chosen to be random or uniform in space. The closer the initial guess is to the final
solution, the fewer steps are necessary for the Newton-Raphson method to converge
to the final solution. The similarity of the numerically obtained and analytical control
solution, see Fig. 10.1 and Table 10.1, motivates the utilization of the analytical result
fan as an initial guess in numerical algorithms. Even for a simple single component
RD system defined on a relatively small spatio-temporal domain Q as discussed in
this section, the computational speedup is substantial. The algorithm requires only
2/3 of the computation time compared to random or uniform starting values for the
control. In particular, we expect even larger speedups for simulations with larger
domain sizes.

10.4 Sparse Optimal Control

In applications, it might be desirable to have localized controls acting only in some
sub-areas of the domain. So-called sparse optimal controls provide such solutions
without any a priori knowledge of these sub-areas. They result in a natural way
because the control has the most efficient impact in these regions to minimize the
objective functional.

For inverse problems, it has been observed that the use of an L!-term in addition
to the L?-regularization leads to sparsity [46—48]. The idea to use the L'-term goes
back to Ref. [49].

To our knowledge, sparse optimal controls were first discussed in the context of
optimal control in Ref. [34]. In that paper, an elliptic linear model was discussed.
Several publications followed, investigating semi-linear elliptic equations, parabolic
linear, and parabolic semi-linear equations; we refer, for instance, to Refs. [35-37]
among others.

In this section, we follow the lines of Refs. [44, 50] and recall the most important
results for the sparse optimal control of the Schlogl-model and the FitzHugh-Nagumo
equation.

10.4.1 The Control Problem

In optimal control, sparsity is obtained by extending the objective functional J by
amultiple of j(f) := || fll1(g), the L'-norm of the control f. Therefore, recalling
that J(uy, vy, f) =: F(f), we consider the problem

(Psp) Mln]:(f)-i-K](f), fefad
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for k > 0. The first part F' of the objective functional is differentiable, while the
L'-part is not.

Our goal is not only to derive first-order optimality conditions as in the previous
section but also to observe the behavior of the optimal solutions for increasing « and
v is tending to zero. For that task, we also need to introduce second-order optimality
conditions.

As before, there exists at least one locally optimal solution f to the problem
(Pgp), denoted by f . We refer to Ref. [44, Theorem 3.1] for more details. While F
is twice continuously differentiable, the second part j(f) is only Lipschitz convex
but not differentiable. For that reason, we need the so-called subdifferential of j (f).
By subdifferential calculus and using directional derivatives of j( f), we are able to
derive necessary optimality conditions.

10.4.2 First-Order Optimality Conditions

We recall some results from Refs. [44, 50]. Due to the presence of j(f) in the
objective functional, there exists a A € dj(f) such that the variational inequality
Eq.(10.21) changes to

T
//d;‘c’dt {@+vFi+e(f—H}=0 VfeFanU. (10.26)
0

For the problem (Py;), a detailed and extensive discussion of the first-order necessary
optimality condition leads to very interesting conclusions, namely

f(X,t) =0, if and only if |¢(X, 1)| < «, (10.27)
= o . r_ . - o

f(x, 1) =Proj; 4 (—;[go(x, t) + kA(x, t)]) , (10.28)
== . I_ .

Ax, 1) = Proj_y 4 (—Eq)(x, t)) (10.29)

if v > 0. We refer to Refs. [36, Corollary 3.2] and [51, Theorem 3.1] in which the
case v = 0 is discussed as well.

The relation in Eq. (10.27) leads to the sparsity of the (locally) optimal solution
f, depending on the sparsity parameter «. In particular, the larger the choice of
k is, the smaller does the support of f become. To be more precise, there exists
a value ko > oo such that for every k > ko the only local minimum f is equal to
zero. Obviously, this case is ridiculous and thus, one needs some intuition to find a
suitable value . We emphasize that A is unique, see Eq.(10.29), which is important
for numerical calculations.
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10.4.3 Example 2: Optimal and Sparse Optimal
Position Control

For the numerical computations, we follow the lines of Ref. [44] and use a non-linear
conjugate gradient method. The advantage of using a (conjugate) gradient method
lies in the simplicity in its implementation and in the robustness of the method to
errors in the solution process. Moreover, it allows to solve the systems Eq.(10.13)
and the adjoint system separately. The disadvantage is clearly the fact that it might
cause a huge amount of iterations to converge, cf. Ref. [44, Sect.4].

Hence, we modify our approach by the use of Model Predictive Control [52, 53].
The idea is quite simple: Instead of optimizing the whole time-horizon, we only take
a very small number of time steps, formulate a sub-problem, and solve it. Then, the
first computed time-step of the solution f of this smaller problem is accepted on
[0, #;] and is fixed. A new sub-problem is defined by going one time-step further and
so on. Although the control gained in this way is only sub-optimal, it leads to a much
better convergence-behavior in many computations.

Next, we revisit the task to extinguish a spiral wave by controlling its tip
dynamics such that the whole pattern moves out of the spatial domain towards
the Neumann boundaries [9, 21, 54]. To this goal, following Ex. 6 from Ref.
[44, Sect.4], we set the protocol of motion to qg(t) = (0, min{120, 1/16})” and
ug(X,1) := thpu(X — ¢(t), 1), where uy denotes the naturally developed spiral wave
solution of the activator u to Eq.(10.13) for f = 0. In our numerical simulation,
we take only 4 time-steps in each sub-problem of the receding horizon. More-
over, we set the kinetic parameters in the FHN model, Eq.(10.13), to a = 0.005,
a=1,8=0.01,y = 0.0075,and § = 0. Further, we fix the simulation domain §2 =
(=120, 120) x (—120, 120), the terminal time T = 2000, v = 10~¢ as Tikhonov
parameter, and f, = —5 and f;, = 5 as bounds for the control, respectively. As ini-
tial states (ug, vo)” a naturally developed spiral wave whose core is located at (0, 0)
is used; uy is presented in Fig. 10.2a.

In addition, an observation-function cf,’ € L*(Q) instead of the constant factor
cY € Ris used with a support restricted to the area close to the desired spiral-tip. To
be more precise, cf/ (X, t) = 1 holds only in the area defined by all (X, t) € Q such
that |xX — ):c(t)| < 20 and vanishes identically otherwise. The other coefficients c“,/,
c¥, and ¢} are set equal to zero.

The reason for the choice of such an observation-function is clear: a most intrigu-
ing property of spiral waves is that, despite being propagating waves affecting all
accessible space, they behave as effectively localized particles-like objects [55]. The
particle-like behavior of spirals corresponds to an effective localization of so called
response functions [56, 57]. The asymptotic theory of the spiral wave drift [58] is
based on the idea of summation of elementary responses of the spiral wave core
position and rotation phase to elementary perturbations of different modalities and at
different times and places. This is mathematically expressed in terms of the response
functions. They decay quickly with distance from the spiral wave core and are almost
equal to zero in the region where the spiral wave is insensitive to small perturbations.
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Fig. 10.2 a Spiral wave solution of the activator u to Eq. (10.13) with f = 0. The latter is used as
initial state #((X) = una (X — ¢(0), 0) in the problem (Psp). b Numerically obtained sub-optimal
control (x = 0) and ¢ sparse sub-optimal control solution (x = 1), both shown in the x,—f—plane
for x; = 0 with associated spiral-tip trajectory (black line). The magnitude of the control signal is
color-coded. The remaining system parameters are @ = 0.005, « = 1, 8 = 0.01, y = 0.0075, and
6 = 0. In the optimal control algorithms, we set v = 109, fa=-5and f, =5

The numerical results for the sup-optimal control (x = 0) and for the sparse sub-
optimal control (x = 1) are depicted in Fig. 10.2b, c, respectively. One notices that the
prescribed spiral tip trajectory is realized for both choices for the sparsity parameter
k,viz., k = 0 and k = 1. The traces of the spiral tip is indicated by the solid lines in
both panels. Since the spiral tip rotates rigidly around the spiral core which moves
itself on a straight line according to q;(t), one observes a periodic motion of the tip in
the x,—t—plane. In addition, the area of non-zero control (colored areas) is obviously
much smaller for non-zero sparsity parameter x compared to the case k =0 , cf.
Fig. 10.2b, c. However, in this example we observed that the amplitude of the sparse
control is twice as large compared to optimal control (k = 0).

10.4.4 Second-Order Optimality Conditions
and Numerical Stability

To avoid this subsection to become too technical, we only state the main results from
Ref. [50]. We know for an unconstrained problem with differentiable objective-
functional that it is sufficient to show F’(f) = 0 and F”(f) > 0 to derive that f isa
local minimizer of F if F is a real-valued function of one real variable. More details
about the importance of second order optimality conditions in the context of PDE
control can be found in Ref. [59].

In our setting, considering all directions /2 # 0 out of a certain so-called critical
cone C, the condition for v > 0 reads

F"(f)h* > 0.
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Then, f isalocally optimal solution of (Pyp). The detailed structure of C s is described
in Ref. [50]; also the much more complicated case v = 0 is discussed there.

The second-order sufficient optimality conditions are the basis for interesting
questions, e.g., the stability of solutions for perturbed desired trajectories and desired
states [50]. Moreover, we study the limiting case of Tikhonov parameter v tending
to zero.

10.4.5 Tikhonov Parameter Tending to Zero

In this section, we investigate the behavior of a sequence of optimal controls and
the corresponding states as solutions of the problem (Py,) as v — 0. For this reason,
we denote our control problem (P,), the associated optimal control with f,, and its
associated states with (i,, v,) for a fixed v > 0. Since F,q is bounded in L*°(Q),
any sequence of solutions { f,},-0 of (P,) has subsequences converging weakly* in
L*(Q). For a direct numerical approach, this is useless, but we can deduce inter-
esting consequences of this convergence using second order sufficient optimality
conditions.

Assume that the second order sufficient optimality conditions of Ref. [50, Theorem
4.7] are satisfied. Then, we derive a Holder rate of convergence for the states

1
lim —= {ll@, = aoll20) + 5y = Boll 2} = 0 (10.30)

with (i, v,) = G(f,) and (ito, vo) = G(fo). We should mention that this estimate is
fairly pessimistic. All of our numerical tests show that the convergence rate is of order
v, i.e., we observe a Lipschitz rather than a Holder estimate [S0]. As mentioned in
Ref. [50], it should also be possible to prove Lipschitz stability and hence, to confirm
the linear rate of convergence for v — 0 with a remarkable amount of effort.

10.4.6 Example 3: Sparse Optimal Control with Tikhonov
Parameter Tending to Zero

Finally, we consider a traveling pulse solution in the FitzHugh-Nagumo system in one
spatial dimension N = 1. Here, the limiting case of vanishing Tikhonov parameter,
v = 0, is of our special interest. We observe that Newton-type methods yield very
high accuracy even for very small values of v > 0. This allows us to study the
convergence behavior of solutions for v tending to zero as well.

Following Ref. [50] and in contrast to the last example in Sect. 10.4.3, we solve
the full forward-backward-system of optimality. We stress that this is numerically
possible solely for non-vanishing value of v. However, we constructed examples
where an exact solution of the optimality system for v = 0 is accessible as shown in
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Fig. 10.3 a Segment of a traveling pulse solution (i, vo)7 in the uncontrolled FitzHugh-Nagumo
system, Eq.(10.13) with f = 0. b Numerically obtained sparse optimal control solution f, for
almost vanishing Tikhonov parameter, v = 10719, and ¢ the associated optimal state iz,,. The ampli-
tude of the control signal is color-coded. The kinetic parameter values are setto @ = 1, 8 =0,
y =0.33,8 = —0.429, and R(u) = u(u — ~/3)(u + +/3)

Ref. [50, Sect. 5.3]. In this sequel, our reference-solution, denoted by ¢, will be the
solution of (P,) for v := vr = 107'°, For smaller values, the numerical errors do
not allow to observe a further convergence. The distance ||i, — £l 12(p) Stagnates
between v = 10710 and v, < 10719,

Next, we treat the well-studied problem of pulse nucleation [60, 61] by sparse
optimal control. We aim to start and to stay in the lower HSS for the first two time-
units, i.e., ug(x,t) = —1.3 for ¢t € (0, 2). Then, the activator state shall coincide
instantaneously with the traveling pulse solution up, i.€., g (X, 1) = (X, 1 — 2).
To get the activator profile u,,, we solve Eq.(10.13) for f = 0 and its profile is
shown in Fig. 10.3a.

In our optimal control algorithms, we set the parameters to £2 = (0, 75), T = 10,
a=1,=0,y =0.33,and § = —0.429. Moreover, here we use a slightly different
nonlinear reaction kinetics R (u) = u(u — ~/3)(u 4 +/3) in Eq. (10.13) but this does
not change the analytical results. The upper and lower bounds for the control f are
set to very large values, viz., f, = —100 and f;, = 100. In addition, the coefficients
in Eq.(10.14) are kept fixed, viz., cg = 1and clT] = c;/ = C¥ =0.

Our numerical results obtained for a sparse optimal control f, acting solely on
the activator u, cf. Eq.(10.13), are presented in Fig. 10.3b, c. In order to create a
traveling pulse solution from the HSS u,; = —1.3, the optimal control resembles a
step-like excitation with high amplitude at x >~ 40. Since the Tikhonov parameter is
setto v = 107!°, large control amplitudes are to be expected and indicate that in the
unregularized case, even a delta distribution might appear. Because this excitation
is supercritical, a new pulse will nucleate. In order to inhibit the propagation of this
nucleated pulse to the left, the control must act at the back of the pulse as well.
Thus, we observes a negative control amplitude acting in the back of the traveling
pulse. We emphasize that the desired shape of the pulse is achieved qualitatively. The
realization of the exact desired profile can not be expected due to a non-vanishing
sparse parameter x = 0.01. Even for this respectively small value, the sparsity of the
optimal control shows.
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Table 10.2 The comparison of the distance ||i, — urefl|12() between the numerically obtained

states 1, and the numerically obtained reference-solution uf, computed forv = 10~ 10 for decreas-
ing values of v > 0

v 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E9
@y — dtretll 12 ) 1.58E-1 | 1.16E-2 | 1.33E-3 | 1.35E-4 | 1.35E-5 | 1.34E-6 | 1.31E-7

Since the displayed control and state are computed for an almost vanishing value
v = 10719 we take the associated state as reference-state iior in order to study the
dependence of the distance ||it, — itresl|r2(0) on v > 0. From Table 10.2, one notices
the already mentioned Lipschitz-rate of convergence for decreasing values v > 0,
lit, — tretll22¢0) o< v. This observationis consistent with results from [50] for various
other examples.

10.5 Conclusion

Optimal control of traveling wave patterns in RD systems according to a prescribed
desired distribution is important for many applications.

Analytical solutions to an unregularized optimal control problem can be obtained
with ease from the approach presented in Sect. 10.2. In particular, the control signal
can be obtained without full knowledge about the underlying nonlinear reaction
kinetics in case of position control. Moreover, they are a good initial guess for the
numerical solution of regularized optimal control problems with small regularization
parameter v > 0, thereby achieving a substantial computational speedup as discussed
in Sect. 10.3.3. Generally, the analytical expressions may serve as consistency checks
for numerical optimal control algorithms.

For the position control of fronts, pulses, and spiral waves, the control signal is
spatially localized. By applying sparse optimal position control to reaction-diffusion
systems, as discussed in Sect. 10.4, the size of the domains with non-vanishing control
signals can be further decreased. Importantly, the method determines sparse controls
without any a priori knowledge about restrictions to certain subdomains. Addition-
ally, sparse control allows to study second order optimality conditions that are not
only interesting from the theoretical perspective but also for numerical Newton-type
algorithms.
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