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Preface

This book summarizes state-of-the-art research on the control of self-organizing
nonlinear systems by a selection of contributions from leading international experts
in this new emerging field. The first focus concerns recent methodological devel-
opments from both the physical and the mathematical side, including control of
networks and of noisy and time-delayed systems. As a second focus, the book
features novel innovative concepts of application including control of quantum
systems, soft condensed matter, biological systems, and complex networks. Special
topics reflecting the active research in the field are the analysis and control of
chimera states in classical networks and in quantum systems, the mathematical
treatment of multiscale systems, the control of colloidal and quantum transport, and
the control of epidemics and of neural network dynamics.

The International Conference on Control of Self-Organizing Nonlinear Systems
held from August 25–28, August 2014 in Rostock-Warnemünde, Germany, was
organized by the Collaborative Research Center (Sonderforschungsbereich) SFB
910 Control of Self-Organizing Nonlinear System—Theoretical Methods and
Concepts of Application, Berlin, to provide a forum for such topics. We took this
opportunity to assemble a list of world-leading experts which now enables us to
present perspectives of the cutting-edge-research in this field. The book covers
mathematical foundations as well as applications. The individual contributions
summarize recent research results and also address the broader context. Thus, the
presentation is kept accessible for a large audience. The 24 chapters cover various
aspects, ranging from fundamental aspects like synchronization and control of
complex networks, time-delayed feedback control, interplay of noise and delay,
optimal control, effective models, and multiscale systems, to applications of feed-
back control and chimera patterns in quantum transport and photonics, colloidal
systems and liquid films, neuroscience, epidemiology, and evolutionary dynamics.
The chapters are grouped into two parts: I Theoretical Methods and II Concepts of
Applications.

The first part addresses fundamental issues of controlling nonlinear dynamical
systems. The contribution by Zakharova et al. discusses the interplay of structure,
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noise, and delay in the control of chimera patterns, in particular amplitude chimeras
and chimera death, in networks of Stuart–Landau oscillators. Olmi and Torcini
analyze the synchronization transition of a globally coupled network of phase
oscillators with inertia, whose natural frequencies are unimodally or bimodally
distributed. Hövel et al. present an adaptive control scheme, based on the
speed-gradient method, for in-phase and cluster synchronization in delay-coupled
networks of Stuart–Landau oscillators, adapting the topology by changing the link
weights. Atay investigates the problem of controlling oscillations in nonlinear
systems by delayed feedback, thus driving the system to a stable limit cycle with
prescribed amplitude and frequency. Purewal et al. treat global effects of
time-delayed feedback control applied to the Lorenz system, and demonstrate the
stabilization of one of its two saddle periodic orbits. Schneider and Fiedler study the
symmetry-breaking stabilization of rotating waves, i.e., unstable periodic orbits in
ring networks of Stuart–Landau oscillators, by time-delayed feedback control.
D’Huys et al. focus on the interplay of noise and delay in delay-coupled oscillators,
in particular on delay-induced multistability and noise-induced switching between
different periodic orbits. Just et al. develop some basic analytical perturbation
schemes for noisy dynamical systems with time delay, and apply this to
time-delayed feedback control, coherence resonance, and the computation of power
spectra. Li et al. develop a computationally efficient numerical method for the study
of noise-induced bifurcations in nonautonomous dynamical systems, and apply it to
explosive and dangerous stochastic bifurcations, characterized by sudden jumps
of the response probability distribution. Ryll et al. deal with optimal control of
traveling wave solutions of reaction–diffusion systems, in particular with the
position control of selected spatiotemporal patterns. Curran et al. report recent
rigorous results on reaction–diffusion equations with discontinuous hysteretic
nonlinearities and treat the pattern formation mechanism of rattling as an applica-
tion. Mielke develops mathematical tools for deriving effective models for multi-
scale systems via evolutionary C-convergence and applies them to perturbed
gradient systems, e.g., the homogenization of reaction–diffusion systems. Kuehn
presents a review of moment closure methods which enable the derivation of a
closed hierarchy of coupled differential equations in the modeling of complex
systems.

The second part discusses a number of recent innovative applications, starting
with feedback control on the quantum scale. The contribution of Emary summarizes
theoretical strategies to manipulate the properties of electron flows and states in
quantum transport devices, covering both, measurement-based, and coherent con-
trol. Strasberg et al. present two measurement-based feedback schemes for a
paradigmatic nonlinear quantum system and discuss their application on stabiliza-
tion of steady states. The contribution of Bastidas et al. extends the phenomenon of
chimera states, i.e., partially synchronized patterns, to the quantum regime, and
uncovers intriguing quantum signatures of these states in the quantum correlations
and the quantum information. Moving towards classical systems, Weicker et al.
present a combined theoretical and experimental study of a time-delayed FitzHugh–
Nagumo system exhibiting a threshold nonlinearity related to multirhythmicity. The
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theoretical observations are supported by parallel experiments involving an elec-
trical circuit. Based on a semiclassical approach, Böhm and Lüdge investigate small
networks of semiconductor lasers with optical all-to-all coupling, focusing on
synchronization patterns and the occurrence of chimera states. As a first application
to soft condensed matter, Gernert et al. discuss feedback control strategies to
manipulate transport properties and transport efficiency in colloidal systems,
including systems with non-negligible interactions. Another type of soft-matter
system, namely thin films containing self-propelled particles is discussed by
Pototsky et al., focusing on the interplay of self-propulsion and linear stability
of the film. On a more methodological level, Kraft and Gurevich address the
formation and control of spatiotemporal patterns in a Swift–Hohenberg equation
subject to time-delayed feedback. The contribution of Belik et al. involves control
of a large-scale hospital network. Based on a large number of real, patient referral
patterns they propose an agent-based computational model of hospital-related
infections and analyze the model predictions including the effect of various control
strategies. Ladenbauer et al. present an overview of control strategies with
time-delayed feedback for neural networks, focusing on the impact of plasticity of
synaptic coupling strengths and changes of neuronal adaptation properties. Finally,
Claussen discusses examples of macroscopic evolutionary dynamics, particularly
the stabilization of steady states of coexistence via payoff and global feedback.

Owing to the cross-disciplinary nature of the topic, we hope that this book will
have substantial impact across field boundaries. It is aimed to bring together the
nonlinear dynamics control concepts, the classical mathematical control theory, and
quantum control. In particular, we envisage to stimulate future developments and
interactions in the areas of control theory, functional differential equations,
dynamical network science, hard and soft condensed matter, nonlinear optics,
neuroscience, and socio-economic systems. This book thus provides a snapshot
of the vibrant research related to controlling nonlinear systems from across different
fields. It will not only be of great interest to specialists working on related problems,
but also provide a valuable resource for other scientists and newcomers to the field.

Berlin Eckehard Schöll
November 2015 Sabine H.L. Klapp

Philipp Hövel
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Chapter 1
Controlling Chimera Patterns in Networks:
Interplay of Structure, Noise, and Delay

Anna Zakharova, Sarah A.M. Loos, Julien Siebert,
Aleksandar Gjurchinovski, Jens Christian Claussen and
Eckehard Schöll

Abstract We investigate partially coherent and partially incoherent patterns
(chimera states) in networks of Stuart-Landau oscillators with symmetry-breaking
coupling. In particular, we study two types of chimera states, amplitude chimeras and
chimera death, under the influence of time delay and noise. We find that amplitude
chimeras are long-living transients, whose lifetime can be controlled by varying the
noise intensity and the value of time delay.

1.1 Introduction

Collective behavior of coupled nonlinear dynamical systems can take diverse forms,
ranging fromvarious synchronization patterns and oscillation suppression to chimera
states, which have been receiving growing interest of researchers from different fields
during the past decade [1]. Originally found for the model of phase oscillators [2,
3], chimera states imply spatial coexistence of coherent (synchronized) and inco-
herent (desynchronized) domains in a dynamical network and have been found in
a large variety of different systems [4–29]. The most intriguing feature of chimera
states is that they appear for networks of identical elements and symmetric coupling
configurations.

Numerous experimental reports on chimera states [30–40] have stimulated further
investigations in the field. Additionally, the burst of activity in chimera research is
motivated by the wide range of its possible applications. In neural networks, for
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example, chimeras can be associated with bump states [41] and in the dynamics of
the heart they may be used to model ventricular fibrillation [42]. In the investigation
of power grids it is important to understand how to avoid chimera states, since they
may initiate a blackout—partial or full desynchronization of the power network [43].
For social systems chimeras may be linked to the situation of partial consensus in
the two-population network of social agents [44]. Unihemispheric sleep of some sea
mammals and birds can be related to chimera behavior [45]. Chimeras have also
been suggested as a mechanism for the termination of epileptic seizure [46].

In recent studies chimera states have been extended to systems which involve not
only phase but also amplitude dynamics and named amplitude-mediated chimeras
in the case when both amplitude and phase are characterized by chimera behavior
[20, 21]. More complicated patterns in which chimera structures are formed with
respect to the amplitudes while the phases remain correlated for the whole network
have been first reported in [47]. This particular type of chimera states, amplitude
chimeras, is investigated in the present work.

While modelling real-world systems it is important to take stochasticity and time
delay into account. Arising naturally, these two factors lead to a plethora of complex
phenomenawith applications to various fields.Moreover, bothmay result in opposite
effects and can be exploited for control purposes.Our objective is to establish efficient
controlmechanisms based on noise and time delay. In particular, we address the ques-
tion of how time delay and noise influence the behavior of amplitude chimera states
in networks of Stuart-Landau oscillators. Additionally, we study another recently
discovered type of chimera states, chimera death [47], which, through death of the
oscillations, generalizes the chimera feature of coexistence of spatially coherent and
incoherent domains to steady states.

1.2 Model

We consider a network of N Stuart-Landau oscillators [2, 47–50] under the impact of
external white noise ξ j (t) and in the presence of time delay τ . The local deterministic
dynamics of each node j ∈ {1, . . . , N } is given by ż j = f (z j ), with the normal form
of a supercritical Hopf bifurcation

f (z j ) = (λ + iω − |z j |2)z j , (1.1)

where z j = x j + i y j = r j eiφ j ∈ C, with x j , y j , r j , φ j ∈ R, and λ, ω > 0. At λ =
0 a Hopf bifurcation occurs, so that for λ > 0 the single Stuart-Landau oscillator
exhibits self-sustained oscillations with frequency ω and radius r j = √

λ, and the
unique fixed point x j = 0, y j = 0 is unstable.

We investigate a ring of N non-locally coupled Stuart-Landau oscillators, where
each node is coupled to its P nearest neighbors in both directions with the strength
σ > 0, and is subject to noise of intensity D > 0:
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ż j = f (z j ) + σ

2P

j+P∑

k= j−P

(Rezk − Rez j ) + √
2Dξ j (t) (1.2)

where j = 1, 2, . . . , N and all indices are modulo N . The normalized number of
nearest neighbors P/N is denoted as coupling range. The coupling and the noise
are only applied to the real parts, and ξ j (t) ∈ R is additive Gaussian white noise
[51], i.e., 〈ξ j (t)〉 = 0, ∀ j , and 〈ξi (t)ξ j (t ′)〉 = δi jδ(t − t ′), ∀i, j , where δi j denotes
the Kronecker-Delta and δ(t − t ′) denotes the Delta-distribution. Hence the noise is
spatially uncorrelated.

Further we study the impact of time delay using the following model:

ż j = f (z j ) + σ

2P

j+P∑

k= j−P

(Rezk(t − τ) − Rez j (t)), (1.3)

where τ is time delay.

1.3 Deterministic Amplitude Chimera and Chimera Death

For a deterministic networkwith instantaneous coupling as demonstrated in [47], var-
ious different states can be found in the network given by Eq. (1.2). Which particular
state actually arises, depends on the specific values of the coupling parameters and
the initial conditions, as Eq. (1.2) describes amultistable system. Among the possible
states, two different types of asymptotically stable states can be found, on the one
hand oscillatory states, and on the other hand steady state patterns which are related
to oscillation death. The latter are represented by completely coherent or completely
incoherent oscillation death patterns, as well as by chimera death patterns consisting
of coexisting domains of coherent and incoherent steady states. The asymptotically
stable oscillatory states appear in two different spatio-temporal patterns: in-phase
synchronized oscillations and coherent traveling waves. Besides these, long lasting
oscillatory transients with interesting features occur, i.e., amplitude chimera states.
In this work we demonstrate that all these states can also be observed under the influ-
ence of noise and time delay. Before an asymptotic oscillatory state is approached,
amplitude chimera states can appear as long transients, potentially lasting for hun-
dreds or even thousands of oscillation periods. In contrast to classical phase chimeras,
all nodes (including the ones within the incoherent domains) oscillate with the same
period, T = 2π

ω
, and a spatially correlated phase, but they show spatially incoher-

ent behavior with respect to the amplitudes in part of the system. Figure1.1 shows
an exemplary amplitude chimera configuration. The nodes within the two coherent
domains (here 13 ≤ j ≤ 85 and 113 ≤ j ≤ 185) perform synchronized oscillations,
all with the same amplitudes. The coherent domains always appear pairwise, such
that for every time t , all nodes within one coherent domain have a phase lag of π with
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Fig. 1.1 Amplitude chimera state in system (1.2) with N = 200 nodes, for coupling range P/N =
0.04 and coupling strength σ = 18: a snapshot (top x j , bottom y j ), b space-time plot, c phase plot
in the complex plane: trajectories of 12 nodes of the incoherent (red and green), and 12 nodes of
the coherent (blue) domains, the arrows indicate the direction of the motion. Initial condition: See
Sect. 1.4. Other parameters: D = 0, λ = 1, ω = 2

respect to all nodes of the other, antipodal domain. Hence they always fulfill the “anti-
phase partner” condition z j = −z j+N/2, j mod N , assuming even N . As visible in
Fig. 1.1c, the trajectories in the complex plane of all nodes are cycles, illustrating that
all nodes have periodic dynamics in time. This is a fundamental difference between
the classical phase chimera states where a part of the network demonstrates chaotic
temporal behavior. The nodes of the coherent domains all oscillate on a perfect circle
around the origin. Both coherent domains are represented by one single blue line in
Fig. 1.1c, which as well represents time the trajectory of all nodes when the com-
pletely in-phase synchronized oscillatory solution is approached. The two antipodal
coherent domains are separated by incoherent domains. There, neighboring nodes
can be in completely different states at a given time t . Their trajectories are deformed
circles, whose centers are shifted from the origin. The completely arbitrary sequence
of nodes that oscillate around centers in the upper and in the lower half-plane reflects
the incoherent nature. Transient amplitude chimeras with very narrow incoherent
domains can be observed, as well as with broad ones.

If the coupling strength and coupling range exceeds certain values, the oscilla-
tions of the Stuart-Landau nodes can be suppressed due to the stabilization of a
new inhomogeneous steady state created by the coupling. Instead of performing
oscillations, each node approaches a fixed point close to one of the following two
branches: (x∗1, y∗1)≈(−0.1,+0.85) or (x∗2, y∗2)≈(+0.1,−0.85) (for λ = 1), and
remains there for all times. The oscillation death states exhibit a huge variety of spa-
tial patterns, including multiple coherent and multiple incoherent oscillation death
states [47, 50, 52, 53]. Two exemplary configurations of completely coherent oscilla-
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Fig. 1.2 Snapshots of coherent oscillation death states: a coupling strength σ = 18 and coupling
range P/N = 0.14 (2-cluster),bσ = 8, P/N = 0.04 (10-cluster). Initial condition:Nodes 0 ≤ j ≤
24 and 50 ≤ j ≤ 74 are set to (x j , y j ) = (0.1,−1), all other nodes are set to (x j , y j ) = (−0.1,+1).
Other parameters: N = 100, D = 0, λ = 1, ω = 2

tion death patterns are shown in Fig. 1.2 (2-cluster and 10-cluster oscillation death).
The oscillation death regime is characterized by very high multistability. Among
the oscillation death states, chimera death patterns can be found, which combine
the characteristics of both phenomena: chimera state and oscillation death. These
patterns consist of coexisting domains of coherent and incoherent populations of
the inhomogeneous steady state branches. Within the incoherent domains, the pop-
ulation of the two branches (upper and lower) follows a random sequence, as for
example visible in Fig. 1.3. Within the coherent domains, the number of clusters of
neighboring nodes that populate the same branch of the inhomogeneous steady state
can vary. An m-cluster chimera death state (m-CD), with m ∈ {1, 3, 5, 7, 9, . . .}, is
characterized by the occurrence of m clusters i.e., sets of neighboring nodes that
populate the same branch of the inhomogeneous steady state within each coherent
domain. The coherent domains always appear pairwise with anti-phase symmetry
z j = −z j+N/2, similarly to the coherent domains of the amplitude chimera configu-
rations. Our numerical results confirm that the stable oscillation death patterns fulfill
the “anti-phase partner” condition.

1.4 The Impact of Initial Conditions

For D = 0, Eq. (1.2) is known to describe a multistable system [47]. Both types of
chimera states appear in coupling parameter regimes, where other oscillation death
patterns and coherent oscillatory states can be found as well. In order to increase
the probability of finding chimera states, we use specially prepared initial conditions
[54]. A very simple initial condition that produces transient amplitude chimeras in a
certain parameter regime (of about 0.01 < P/N < 0.05, σ < 33), is when all nodes
of one half of the network (1 ≤ j ≤ N

2 ) are set to the same value (x j , y j ) = (x1
0 , y10)
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Fig. 1.4 Specially prepared initial conditions for amplitude chimeras: a point-symmetric type, b
fully-symmetric type. Top panels x j , bottom panels y j . Dashed lines indicate the point-symmetry
about the center, solid green lines indicate the axial symmetry within both network halves. System
size N = 100

(excluding the choice (0, 0)), and the rest is set to (x2
0 , y20 ) = (−x1

0 ,−y10). Hence,
amplitude chimera states can evolve out of initial configurations that only consist of
two completely coherent parts. We choose the values (x1

0 , y10) = (
√
0.5,−√

0.5), so
that the nodes start on the limit cycle with r = √

λ = 1, which is the solution for
the in-phase synchronized oscillation. The amplitude chimera lifetime nevertheless
appears to be of the same order for other values (e. g. (x1

0 , y10) = (1,−1)).
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Fig. 1.5 Transient times of amplitude chimera states ttr for 20 realizations of specially prepared
random initial conditions (no symmetry, point-symmetry, full symmetry, depicted by different sym-
bols) with Q = 10, V = 2. Horizontal solid lines Mean values. Dashed line ttr for the initial
condition with V = 0 (no randomization). System parameters N = 100, σ = 14, P/N = 0.04,
D = 0, λ = 1, ω = 2

By adding random numbers to y j , we construct a more general class of specially
prepared random initial conditions for amplitude chimeras. In particular, we add a
random number drawn from a Gaussian distribution with variance V to y j of the
Q nodes on the left and on the right side of the borders between both halves (at
j = N

2 and j = N ), as indicated in Fig. 1.4a, with Q ∈ N and 0 < Q ≤ N
4 . Besides

the range Q of incoherence, we also vary V ≥ 0. For a proper choice of the two
initial condition parameters (Q and V ), we obtain amplitude chimeras. Using the
achieved amplitude chimera lifetime as a quality measure for the initial condition,
we compare multiple realizations of the specially prepared random initial conditions
for the deterministic system with P/N =0.04 and N =100. We observe that among
all considered kinds of initial conditions (different choices for Q and V , symmetry
conditions, x j randomized as well, a different underlying distribution for the random
numbers), the applied symmetry of the initial condition has the greatest effect upon
the transient time.

Figure1.5 shows the transient times and their mean value (solid lines) for multiple
realizations of the initial conditions following three different symmetry schemes. For
the particular choice (Q = 10, V = 2) all symmetry types lead on average to shorter
lifetimes than an initial condition without random component (black dashed line).
For the initial configurations without symmetry, a random number is chosen inde-
pendently for each node within the four incoherent intervals. These configurations
clearly create the shortest amplitude chimera lifetimes, lasting at most for a couple of
oscillation periods. This symmetry type also leads to the shortest transients in other
regimes of Q, and V (not shown here). In contrast, for the point-symmetric initial
conditions, we mirror the random numbers used for j ∈ {1, . . . , N

2 } with respect to
the center j = 0, y j = 0, and use their negative counterparts for the second half.
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We hence only generate 2Q random numbers in total. The initial configurations are
point-symmetric with respect to the center, see Fig. 1.4a. The lifetimes of the occur-
ring amplitude chimeras are much longer than in the non-symmetric case. However,
the symmetry type which leads to the longest lifetimes is the one referred to as full
symmetry; the initial conditions fulfill two symmetries: The randomly chosen values
of the positions of the nodes within the first incoherent interval 1 ≤ j ≤ Q are mir-
rored to the nodes N

2 − Q ≤ j ≤ N
2 , by setting: z j = z N

2 +1− j . To obtain the positions
of the second network half, then a phase shift ofπ is applied, such that the “anti-phase
partner” condition is fulfilled (z j = −z j+ N

2
and j mod N ). Thus, we only generate

Q different random numbers in total. The configurations are again point-symmetric
with respect to the center, and have an additional axial symmetry with orthogonal
axes through j = N

4 and j = 3N
4 , as indicated in Fig. 1.4b. Of course, the simple

initial condition with no randomization also fulfills these symmetry conditions and
can therefore be regarded as one special type of the fully-symmetric specially pre-
pared initial conditions (with V = 0). We have further tested another type of initial
condition that solely fulfills the anti-phase partner condition: z j = −z j+ N

2
, but has

no other symmetries. This type of initial condition also certainly leads to transient
amplitude chimeras, but only within very narrow ranges of Q and V . For Q = 10,
V = 2, the mean lifetime (of about ttr ≈49) is only slightly increased compared to
the non-symmetric initial condition (not shown here). Since the symmetry which is
applied to the initial conditions remains preserved during the dynamic evolution, this
observation means that the fully-symmetric amplitude chimeras are most stable and
have the longest lifetimes.

By decreasing the variance in the interval 0.1 ≤ V ≤ 2, the mean amplitude
chimera lifetimes increase. In the range of small variances of about V < 0.5, ampli-
tude chimeras occur for all choices of the incoherence range Q, and the particular
choice of Q does not influence the transient time much. For Q = N

4 , all nodes are
randomized, see Fig. 1.6a, which appears to be a natural choice. Figure1.6b shows
the corresponding transient times belonging to a set of 40 realizations of the spe-
cially prepared random initial condition with Q = N

4 and V = 0.5, and for a set with
V = 0.1. The mean transient times are much longer than for V = 2 (cf. Fig. 1.5).
They are at least of the same order (and can be larger) as the transient time for the
simple initial condition with no randomization, V = 0 (dashed black line). For the
choice V = 0.1, the transient times are increased as compared to V = 0.5. We use
the fully-symmetric initial conditions with Q = N

4 and V = 0.1 for all investigations
presented in this chapter.

Besides oscillatory states, oscillation death states can occur in a large variety
of different spatial patterns. Our numerical results suggest that in the appropriate
parameter regime every amplitude chimera snapshot can be used as initial condition
to certainly produce a chimera death state. Howmany clusters in the coherent domain
of the chimera death pattern occur, depends on the initial condition as well as on the
parameter choice (see Sect. 1.5.2).
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ttr for V = 0. System parameters: N = 100, σ = 14, P/N = 0.04, D = 0, λ = 1, ω = 2

1.5 Stochastic Case

1.5.1 Control of Amplitude Chimera Lifetime by Noise

In this section we will study the role of noise for chimera patterns [54]. By using the
same initial conditions which lead to amplitude chimera states and chimera death in
the deterministic case, we also observe these states in Eq. (1.2) in the presence of
noise in a wide range of the coupling parameters. Figure1.7 shows one exemplary
configuration for an amplitude chimera which occurs in a system under the impact
of noise of intensity D = 5 · 10−3.

In general, the transient times of amplitude chimeras decrease with increasing
noise intensity. Figure1.8 shows the average transient times and the corresponding
standard deviations in dependence of the noise intensity D, for three choices of the
coupling strength σ , in a semi-logarithmic plot. The average is over 50 different
fully symmetric initial conditions (with Q = N

4 , see Sect. 1.4) drawn from different
realizations of the associated random distribution. For each one of those realizations
of the initial conditions, a different realization of the Gaussian white noise ξ j (t) is
considered. The average transient times show a clear linear decrease as a function
of the logarithmic noise intensity. This behavior is found throughout the range 6 ≤
σ ≤ 24, i.e., ttr = − 1

μ
ln(D) + η with slope − 1

μ
and axis intercept η. This gives the

scaling law
D ∼ e−μttr . (1.4)

The lines in Fig. 1.8 show the linear fits, and the inset depicts the slope in dependence
on the coupling strength σ . For the same set of 50 initial conditions, Fig. 1.9a depicts
the mean transient time in dependence of the coupling strength for four different
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values of coupling strength σ . Symbols: Average over 50 fully symmetric initial conditions (with
Q = N

4 ), each associated with a different realization of the random force ξ(t); error bars: standard
deviations; lines: linear fits from Eq. (1.4). Inset: Slope versus σ . Parameters: N = 100, P/N =
0.04, λ = 1, ω = 2

noise intensities D, and Fig. 1.9b shows a color-coded density plot of the mean tran-
sient times of amplitude chimeras in the (σ, D)-plane. The transient times generally
decrease with increasing noise, and increase with increasing coupling strength up to
a saturation value at about σ ≈15. The vertical error bars in panel (a) show that
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(a) (b)

Fig. 1.9 Transient times of amplitude chimeras ttr averaged over 50 initial conditions and noise
realizations (the same set of initial conditions as used in Fig. 1.8): a ttr versus coupling strength σ

for different noise intensities. Symbols: Mean transient times; error bars: standard deviations. The
lines serve as a guide to the eye. b ttr in the plane of coupling strength σ and noise intensity D.
Other parameters: N = 100, P/N = 0.04, λ = 1, ω = 2

the transient times are less sensitive to the initial condition, the larger the noise is.
We generally find that the spread of the amplitude chimera lifetimes for different
initial conditions (and different noise realizations), is smaller with increasing noise
strength.

Transient amplitude chimeras can last for thousands of oscillation periods until
they disappear. Even under disturbance by external noise they persist for a significant
time. Noise does not essentially change their spatial configuration. If noise throws the
system onto an adjacent trajectory in the underlying high-dimensional phase space
of the network, this does not normally lead to a flow into a completely different direc-
tion in phase space. Geometrically speaking, this shows that there are some attracting
directions in phase space along which the system dynamics is pushed towards the
amplitude chimera. Furthermore, amplitude chimeras can evolve out of initial con-
figurations that do not show the characteristic coexistence of coherent and incoherent
domains (see Sect. 1.4). In fact, they can be observed when completely incoherent
initial configurations are used, as well as when the initial condition consists of two
completely coherent parts. These dynamical properties indicate that the flow within
a certain volume of the phase space is directed towards the amplitude chimera state.
From the perspective of the amplitude chimera, there must exist some associated
“stable directions”. However, even in the absence of any external perturbation, for
all system sizes, the amplitude chimera states disappear after some time, and the
system approaches a coherent oscillatory state. Accordingly, there must also exists
at least one “unstable direction” in phase space. These findings can be explained by
the structure of the phase space, which is schematically depicted in Fig. 1.10.
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Fig. 1.10 Schematic
phase-space structure of an
amplitude chimera (AC) as a
saddle-point. Thick solid
lines: Stable directions, thick
dashed lines: unstable
directions, thin solid lines:
different trajectories, with
arrows denoting the direction
of time evolution. Grey
shaded region: Scheme of
amplitude chimera
configuration, green disk: set
of initial conditions (IC),
yellow area: impact of
Gaussian white noise

The lifetime of amplitude chimeras in the deterministic case strongly depends on
the choice of initial conditions as discussed in Sect. 1.4. In general the sensitivity
of chimera states to the initial configurations is explained by the fact that classical
chimera states typically coexist with the completely synchronized state, for which the
basin of attraction is significantly larger. For amplitude chimeras, all our numerical
results support the idea that amplitude chimera patterns can be seen as a saddle state
composed of stable (solid lines in Fig. 1.10) and unstable (dashed lines Fig. 1.10)
manifolds. The set of initial conditions leading to amplitude chimeras can be repre-
sented as a volume restricted in phase space (green disk in Fig. 1.10). The observed
amplitude chimera corresponds to trajectories starting from this set and passing the
saddle-point from the stable direction towards the unstable manifold. The lifetime
of an amplitude chimera, therefore, depends on the chosen trajectory: the closer
to the saddle-point it gets, the longer is the lifetime. In other words, the transient
time is determined by the time the system spends in the vicinity of the saddle-point
where coherent and incoherent oscillating domains coexist before it escapes to the
in-phase synchronized regime along the direction of the unstable manifold. Such a
phase space scenario explains the sensitivity of transient times to initial conditions
since they determine the particular path the system takes.

Our numerical investigations of the stochastic model Eq. (1.2) show that Gaussian
white noise dramatically reduces the impact of initial conditions on the lifetime of
amplitude chimeras. In more detail, we have tested a set of realizations of initial con-
ditions which lead to significantly different lifetimes of amplitude chimeras without
random forcing. In the presence of relatively weak noise D = 5 · 10−13 all realiza-
tions result in amplitude chimeras with similar lifetime. This again supports our view
of the amplitude chimera as a saddle-point, and allows for the following explanation.
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The stochastic force, which continuously perturbs the system, makes it randomly
switch between different trajectories close to the saddle-point. Therefore, the sys-
tem’s dynamics is not determined by a single trajectory anymore, but rather affected
by a set of trajectories belonging to the N -dimensional hyper-sphere. This reduces
the sensitivity of the amplitude chimera lifetime to specific initial conditions. In
Fig. 1.10 the impact of noise is illustrated by yellow shading, denoting the stochastic
forces applied to the system at one instant of time.

1.5.2 Maps of Dynamic Regimes: Interplay of Noise
and Coupling

For a large range of the coupling parameters σ and P we calculate the asymptot-
ically stable state and the transient time of amplitude chimeras for N = 100. For
each choice of (σ, P) we start with the same amplitude chimera configuration as
initial condition. For an exemplary initial condition, the results belonging to four
different noise intensities are shown in Fig. 1.11. For very small coupling strength
σ or very small coupling range P/N the asymptotic states are coherent oscillatory
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Fig. 1.11 Map of dynamic regimes in the plane of coupling strength σ and number of nearest
neighbors P for noise intensities: a D = 0, b D = 5 · 10−21, c D = 5 · 10−11, d D = 5 · 10−3.
Color code: 1-cluster chimera death (1-CD), 3-cluster chimera death (3-CD), multi-cluster chimera
death (n-CD, n >3), in-phase synchronized oscillations and coherent traveling waves (SYNC).
Initial condition: Snapshot of an amplitude chimera calculated for D = 0, P = 4, σ = 14, t = 150.
Maximum simulation time: t = 5000. Parameters: N = 100, λ = 1, ω = 2
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states, either in-phase synchronized oscillations or traveling waves (dark blue region,
labeled SYNC). For very small coupling range, we observe amplitude chimeras as
transients. For larger σ and P , we find chimera death states (yellow, orange, and
red regions) with one coherent domain (1-CD), or for slightly smaller P , with three
(3-CD), or more (n-CDwith n > 3) coherent domains. For all noise intensities, there
exists a chimera death regime (1-CD, 3-CD, n-CD), as well as a coherent oscillatory
regime (SYNC).

The regime of chimera death states is characterized by high multistability. The
boundary between the oscillatory regime and the chimera death regime is roughly
independent of the particular amplitude chimera snapshot used as initial condition. In
contrast, for many values of (σ, P), the particular type of chimera death depends on
the realization of the initial condition. Note that there is nevertheless a clear tendency
that the m-CD patterns (with m < k) are generally found for larger coupling ranges
than the k-CD states (k, m ∈ {1, 3, n}). This tendency is especially pronounced for
large coupling strengths. Noise influences the dynamic regimes in different ways.
First, the boundaries between the different cluster types of chimera death appear to be
almost unaffected by the applied external noise.We do not observe any noise-induced
switching between the different types of chimera death. The applied noise does not
influence the asymptotic chimera death state. Second, with increasing noise inten-
sity, the boundary between the oscillatory regime and the oscillation death regime
is shifted towards higher coupling strengths. This means that the stochastic force
pushes the system out of the deterministic inhomogeneous steady state into the basin
of attraction of the stable coherent oscillatory state, and induces oscillations in a para-
meter regime where in the absence of noise the steady state is a stable asymptotic
solution. The size of this parameter regime depends on the applied noise intensity.
In order to facilitate the comparison, the boundaries between the oscillatory regime
and the chimera death regime are depicted for different noise intensities in Fig. 1.12.

Fig. 1.12 Boundary between the oscillatory regime and the chimera death regime for different
noise intensities D, extracted from the maps of dynamic regimes shown in Fig. 1.11
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(a)

(c)

(b)

Fig. 1.13 Transient times of amplitude chimeras ttr in the plane of coupling strength σ and number
of nearest neighbors P , for the noise intensities: a D = 0,b D = 5 · 10−21, c D = 5 · 10−11. System
parameters, initial condition and simulation time as in Fig. 1.11

Generally, the stronger the applied noise is, the smaller is the regime of chimera
death states.

In the oscillatory regime, we observe transient amplitude chimeras. In Fig.1.13
their lifetimes are depicted, obtained from the same simulations described above.
One can see that generally the transient time decreases with decreasing coupling
strength, and with increasing noise intensity, as shown already in Figs. 1.8 and 1.9
for a restricted range of coupling parameters. Note that Fig. 1.13b (D = 5 · 10−11)
and Fig. 1.13c (D = 5 · 10−21) look very similar up to rescaling of the transient
times. This illustrates that the impact of the applied noise upon the dynamics is
rather independent of the strength and range of the coupling.

In the deterministic case (Fig. 1.13a) there is a regime of high values of the cou-
pling strength, at the border between the oscillatory regime and the chimera death
regime, where the transient amplitude chimeras last longer than the maximum sim-
ulation time of t = 5000 (bright orange). For several values of (σ, P) in this region,
we have simulated much longer time series until t = 40,000 (more than 12,700 oscil-
lation periods T ), and have found that the amplitude chimeras persist. However, they
disappearmuch earlier as soon as a tiny amount of external noise is applied. This indi-
cates that the amplitude chimera states are also unstable in this region. The extremely
long transient times might simply be related to our choice of initial conditions in the
deterministic system.
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(a)

(b)

Fig. 1.14 Map of dynamic regimes in the plane of number of nearest neighbors P and coupling
strength σ a for τ = 0 and b τ = π . Color scale: 1-CD 1-cluster chimera death; 3-CD 3-cluster
chimera death; n-CD n-cluster chimera death. SYNC coherent states (synchronized oscillations,
traveling waves). AC amplitude chimera. Parameters: N = 100, λ = 1, ω = 2

1.6 Control of Chimeras by Time Delay

We have shown that amplitude chimeras are preserved in the stochastic case and
their lifetime can be decreased by tuning the noise intensity. Next we demonstrate
that amplitude chimeras are also observed for the time-delayed coupling and their
lifetime can be significantly enlarged by an appropriate choice of delay time.

As initial condition for the simulation of the systemEq. (1.3)we choose a snapshot
of an amplitude chimera. The corresponding phase diagram for τ = 0 is illustrated
in Fig. 1.14a. Since the integration time used for this plot is rather large (t = 5000),
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(a)

(b)

Fig. 1.15 Transient times ttr in the plane of number of nearest neighbors P and coupling strength
σ : color code indicates the time of transition from incoherent states (amplitude chimera) to coherent
states for a τ = 0 and b τ = π . The black region marks chimera death states. Integration time until t
= 5000. Thewhite dots are amplitude chimeras and related structures that are stable in the simulation
timespan. Parameters: λ = 1, ω = 2, N = 100

amplitude chimeras do not survive for that long in the absence of time-delayed
coupling and transform into the in-phase synchronized regime (green region in
Fig. 1.14a). Therefore, for τ = 0 the phase diagram contains only chimera death
states with different number of clusters and asymptotic coherent states (in-phase
synchronized oscillations and coherent travelling waves).

In the presence of delay, however, amplitude chimeras live significantly longer.
In particular, for τ = π , which corresponds to the period of the single Stuart-Landau
oscillator, they still exist at t = 5000 for a certain range of coupling strength 7 < σ <

19 and number of nearest neighbors 2 < P < 20, see Fig. 1.14b. Moreover, chimera
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Fig. 1.16 Transient times ttr
of amplitude chimeras in
dependence on time delay τ

for different values of
coupling strength
σ = 4, 5, 6, 7. Other
parameters: N = 100,
ω = 2, λ = 1, P = 2

death patterns with large number of clusters now dominate while the region of 1-
cluster chimera death is strongly reduced. Additionally, the in-phase synchronized
state observed in the deterministic system for small number of nearest neighbors
(P < 6) and large coupling strength (σ > 15) in the presence of timedelay is replaced
by chimera death patterns with the number of clusters exceeding 9 (red region in
Fig. 1.14b).

To compare directly the results for the lifetime of amplitude chimeras we calculate
transient times ttr in the plane of number of nearest neighbors P and coupling strength
σ for τ = 0 and τ = π (Fig. 1.15a, b, respectively). In both cases chimera death states
are the dominating patterns in the phase diagram (black color in Fig. 1.15). The
long-living amplitude chimeras (ttr � 5000) appear only when the links between the
nodes include time delay (white region in Fig. 1.15b), while for τ = 0 the lifetime
of amplitude chimera is relatively short (ttr < 900).

In order to quantitatively characterize the impact of the time-delayed coupling
we calculate the lifetime of amplitude chimeras in dependence on time delay for
different values of coupling strength σ = 4, 5, 6, 7 (Fig. 1.16). The transient times
increase with time delay for all considered values of σ . Therefore, by appropriately
choosing the value of time delay one can realize a desired lifetime of amplitude
chimeras.

1.7 Conclusions

We have investigated two types of chimera states for a paradigmatic network of
oscillators under the influence of noise and time delay. We have presented numerical
results demonstrating that transient amplitude chimeras and chimera death states
in a ring network of identical Stuart-Landau oscillators with symmetry-breaking



1 Controlling Chimera Patterns in Networks: Interplay of Structure, Noise, and Delay 21

coupling continue to exist in the presence of Gaussian white noise or if time delay
is introduced to the coupling.

In the presence of external noise, transient amplitude chimeras occur in the same
range of coupling parameters as in the deterministic case. The key quantity we use
to characterize them is the transient time. The latter decreases logarithmically with
the applied noise intensity. For a constant noise intensity, the transient times increase
with the coupling strength up to a saturation value. The amplitude chimera lifetimes
depend sensitively on the particular realization of the randomized initial condition.
We have introduced a class of specially prepared random initial conditions that pro-
duce long lasting amplitude chimeras. We have shown that initial configurations that
fulfill a symmetry conditions which is also found in oscillation death patterns result
in the longest living amplitude chimera transients.

The chimera death patterns also persist under the impact of stochastic forces.
However, the coupling parameter regime where they occur is reduced with increas-
ing noise intensity. The boundary between the coherent oscillatory regime and the
chimera death regime is shifted towards higher values of the coupling strength. That
means that the system favors oscillatory behavior for a larger coupling parameter
regime. In contrast, this boundary appears to be independent on the particular real-
ization of the initial condition. The number of clusters within the coherent domains
appears to be unaffected by the external noise, but depends on the particular initial
condition.

In the presence of time delay the lifetime of amplitude chimera patterns is essen-
tially enlarged. Moreover, time delay induces amplitude chimeras for the coupling
parameter values for which in the absence of time delay no chimera patterns are
observed.

Thus, the lifetime of amplitude chimeras can be controlled by tuning the noise
intensity and the value of time delay, which, therefore, play the role of control para-
meters. Noise allows one to decrease the lifetime of amplitude chimeras, while time
delay can significantly increases it.

Our numerical findings can be explained by the underlying phase space structure.
More specifically, we propose that amplitude chimera states can be represented by
saddle states in the phase space of the network. This elucidates the behavior of their
lifetime, and explains that generally the initial conditions become less important
under the influence of noise.
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Chapter 2
Dynamics of Fully Coupled Rotators
with Unimodal and Bimodal Frequency
Distribution

Simona Olmi and Alessandro Torcini

Abstract We analyze the synchronization transition of a globally coupled network
of N phase oscillators with inertia (rotators) whose natural frequencies are uni-
modally or bimodally distributed. In the unimodal case, the system exhibits a dis-
continuous hysteretic transition from an incoherent to a partially synchronized (PS)
state. For sufficiently large inertia, the system reveals the coexistence of a PS state
and of a standing wave (SW) solution. In the bimodal case, the hysteretic synchro-
nization transition involves several states. Namely, the system becomes coherent
passing through traveling waves (TWs), SWs and finally arriving to a PS regime.
The transition to the PS state from the SW occurs always at the same coupling, inde-
pendently of the system size, while its value increases linearly with the inertia. On
the other hand the critical coupling required to observe TWs and SWs increases with
N suggesting that in the thermodynamic limit the transition from incoherence to PS
will occur without any intermediate states. Finally a linear stability analysis reveals
that the system is hysteretic not only at the level of macroscopic indicators, but also
microscopically as verified by measuring the maximal Lyapunov exponent.
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2.1 Introduction

The renowned Kuramoto model [1] for phase oscillators was generalized in 1997 by
Tanaka, Lichtenberg and Oishi (TLO) [2, 3] by including an additional inertial term.
The TLO model revealed, at variance with the usual Kuramoto model, first order
synchronization transitions even for unimodal distributions of the natural frequen-
cies. TLO have been inspired in their extension by a work of Ermentrout published
in 1991 [4]; in this paper Ermentrout has introduced a pulse coupled phase oscillator
model with inertia to mimic the perfect synchrony achieved by a specific type of fire-
flies, thePteroptixMalaccae (but also by certain species of crickets and humans). The
peculiarity of these fireflies is that they are able to synchronize their flashing activity
to some forcing frequency (even quite distinct from their own intrinsic flashing fre-
quency) with an almost zero phase lag. This happens because they adapt their period
of oscillation to that of the driving oscillator. After its introduction, the Kuramoto
model with inertia has been employed to describe synchronization phenomena in
crowd synchrony on Londons Millennium bridge [5], as well as in Huygens pendu-
lum clocks [6]. Furthermore, phase oscillators with inertia (rotators) have recently
found application in the study of self-synchronization in power and smart grids
[7–11], as well as in the analysis of disordered arrays of underdamped Josephson
junctions [12]. Cluster explosive synchronization has been reported for an adaptive
network of Kuramoto oscillators with inertia, where the natural frequency of each
oscillator is assumed to be proportional to the degree of the corresponding node [13].
Rotators arranged in two symmetrically coupled populations have recently revealed
the emergence of intermittent chaotic chimeras [14], imperfect chimera states have
been found in a ring with nonlocal coupling [15], and transient waves have been
observed in regular lattices [16].

There is a wide literature devoted to coupled rotators with an unimodal frequency
distribution, however only a really limited number of studies have been devoted to
this model with a bimodal distribution, despite the subject being extremely relevant
for the modeling of the power grids [8, 9, 17]. To our knowledge the synchronization
transition in populations of globally coupled rotators with bimodal distribution has
been previously analyzed only by Acebrón et al. in [18]. More specifically, the authors
considered a model with white noise and a distribution composed by two δ-functions
localized at ±Ω0. As suggested in [19], the presence of noise blurs the δ-functions in
bell-shaped functions analogous to Gaussian distributions. Therefore one expects a
similar phenomenology to the one observable for deterministic systems with bimodal
Gaussian distributions of the frequencies. A multiscale analysis of the model, in the
limit of sufficiently large Ω0, reveals the emergence, from the incoherent state, of
stable standing wave solutions (SWs) and of unstable traveling wave solutions (TWs)
via supercritical bifurcations, while partially synchronized stationary states (PSs)
bifurcates subcritically from incoherence. However, the authors affirm that in the
considered limit the bifurcation diagram coincides with that of the usual Kuramoto
model without inertia [20].
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In this article we analyze the synchronization transitions observable for unimodal
and bimodal frequency distributions for a population of globally coupled rotators in a
fully deterministic system. In particular, we will analyze the influence of inertia and
of finite size effects on the synchronization transitions. Moreover, we will study the
macroscopic and microscopic characteristics of the different regimes emerging dur-
ing adiabatic increase and decrease of the coupling among the rotators. In particular,
Sect. 2.1 will be devoted to the introduction of the model, of the indicators used to
characterize the synchronization transition, and of the different protocols employed
to perform adiabatic simulations. The Lyapunov linear stability analysis is intro-
duced in Sect. 2.2.1. The results for unimodal distributions are reported in Sect. 2.3,
with a particular emphasis to the TLO mean field theory and its extension to any
generic state observable within the hysteretic region (Sect. 2.3.2). The emergence
of clusters of locked and whirling oscillators is described in details in Sect. 2.3.3.
The dynamics of the network for bimodal distributions is analyzed in Sect. 2.4. In
particular, Sect. 2.4.1 is devoted to two non overlapping distributions and Sect. 2.4.2
to largely overlapping Gaussian distributions. Section 2.5 report the result of linear
stability analysis for the considered distributions. Finally, in Sect. 2.6 the reported
results are briefly summarized and discussed.

2.2 Model and Indicators

By following Refs. [2, 3], we study the following version of the Kuramoto model
with inertia for N fully coupled rotators :

mθ̈i + θ̇i = Ωi + K

N

∑

j

sin(θ j − θi ), (2.1)

where θi and Ωi are, respectively, the instantaneous phase and the natural frequency
of the i-th oscillator, K is the coupling. In the following we will consider random
natural frequencies Ωi Gaussian distributed according to: an unimodal distribution

g(Ω) = 1√
2π

e− Ω2

2 with zero average and an unitary standard deviation or a bimodal

symmetric distribution g(Ω) = 1
2
√

2π

[
e− (Ω−Ω0)2

2 + e− (Ω+Ω0)2

2

]
, which is the overlap

of two Gaussians with unitary standard deviation and with the peaks located at a
distance 2Ω0 (see Fig. 2.4).

To measure the level of coherence between the oscillators, we employ the complex
order parameter [21]

r(t)eiφ(t) = 1

N

∑

j

eiθ j , (2.2)

where r(t) ∈ [0 : 1] is the modulus and φ(t) the phase of the macroscopic indicator.
An asynchronous state, in a finite network, is characterized by r � 1√

N
, while for



28 S. Olmi and A. Torcini

r ≡ 1 the oscillators are fully synchronized and intermediate r -values correspond to
partial synchronization.

Another relevant indicator for the state of the rotator population is the number of
locked oscillators NL , characterized by a vanishingly small average phase velocity

ω̄i ≡ ¯dθi
dt , and the maximal locking frequency ΩM , which corresponds to the maximal

natural frequency |Ωi | of the locked oscillators.
In general we will perform sequences of simulations by sweeping up/down adi-

abatically the coupling parameter K with two different protocols. Namely, for the
first protocol (I) the series of simulations are initialized for the decoupled system
by considering random initial conditions for {θi } and {ωi }. Afterwards the coupling
is increased in steps ΔK until a maximal coupling KM is reached. For each value
of K , apart the very first one, the simulations is initialized by employing the last
configuration of the previous simulation in the sequence. For the second protocol
(II), starting from the final coupling KM achieved by employing the protocol (I),
the coupling is swept down in steps ΔK until K = 0 is recovered. At each step the
system is simulated for a transient time TR followed by a period TW during which
the average value of the order parameter r̄ and of the velocities {ω̄i }, as well as ΩM ,
are estimated.

2.2.1 Lyapunov Analysis

The stability of Eq. (2.1) can be analyzed by following the evolution of infinites-
imal perturbations T = (δθ̇1, . . . , δθ̇N , δθ1, . . . , δθN ) in the tangent space, whose
dynamics is ruled by the linearization of Eq. (2.1) as follows:

m δθ̈i + δθ̇i = K

N

N∑

j=1

cos
(
θ j − θi

)
(δθ j − δθi ). (2.3)

We will limit to estimate the maximal Lyapunov exponent λM , by employing the
method developed by Benettin et al. [22]. This amounts to follow the dynamical
evolution of the orbit and of the tangent vector T for a time lapse TW by normalizing
at fixed time intervals Δt , after discarding an initial transient evolution TR .

Furthermore, the values of the components of the maximal Lyapunov vector T can
give important information about the oscillators that are more actively contributing
to the chaotic dynamics. It is useful to introduce the following squared amplitude
component of the normalized vector for each rotator [14, 23]

ξi (t) = [δθ̇i (t)]2 + [δθi (t)]2 , i = 1, . . . , N . (2.4)

The time average ξ̄i of this quantity gives a measure of the contribution of each
oscillator to the chaotic dynamics.
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2.3 Unimodal Frequency Distribution

2.3.1 Hysteretic Synchronization Transitions

In Fig. 2.1 the results for a sequence of simulations obtained by following protocol
(I) and (II) are reported for a not too small inertia (namely, m = 2) and unimodal
frequency distribution. For the first protocol the system remains incoherent up to a
critical value K = Kc

1 � 2, where r̄ jumps to a finite value and then increases with
K reaching r̄ � 1 for sufficiently large coupling. Starting from the last state and by
reducing K one notices that r̄ assumes larger values than during protocol (I) and the
system becomes incoherent at a smaller coupling, namely Kc

2 < Kc
1 . This is a clear

indication of the hysteretic nature of the synchronization transition in this case.
For the chosen values of the inertia, we observe the creation of an unique cluster

of NL locked oscillators with ω̄i � 0, for larger m the things will be more complex,
as we will discuss in the following. The maximal locking frequency ΩM becomes
finite for K > Kc

1 and increases with K . The frequency ΩM attains a maximal value
when r̄ � 1, no more oscillators can be recruited in the large locked cluster. Once
reached this value, even if K is reduced following the protocol (II), ΩM remains
constant for a wide K interval. Then ΩM shows a rapid decrease towards zero by
approaching Kc

2 . This behavior will be explained in the following two sub-sections.
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Fig. 2.1 Unimodal frequency distribution. a Maximal locking frequency ΩM (blue triangles) and
b time averaged order parameter r̄ (black circles) as a function of the coupling K for two series
of simulations performed following the protocol (I) (filled symbols) and the protocol (II) (empty
symbols). The data refer to inertia: m = 2, for which we set ΔK = 0.2 and KM = 10; moreover

N = 500, TR =5,000 and TW = 200. The (magenta) diamonds indicate ΩP = 4
π

√
Kr̄
m for protocol

(I) and the (green) squares ΩD = Kr̄ for protocol (II)
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2.3.2 Mean-Field Theory

In order to derive a mean field description of the dynamics of each single rotator, we
can rewrite Eq. (2.1) by employing the order parameter definition (2.2) as follows

mθ̈i + θ̇i = Ωi − Kr sin(θi − φ), (2.5)

this corresponds to the evolution equation for a damped driven pendulum. Equation
(2.5) admits, for sufficiently small forcing frequency Ωi , two fixed points: a stable

node and a saddle. At larger frequencies Ωi > ΩP � 4
π

√
Kr
m the saddle, via a homo-

clinic bifurcation, gives rise to a limit cycle. The stable limit cycle and a stable fixed
point coexist until a saddle node bifurcation, taking place at Ωi = ΩD = Kr , leads
to the disappearance of the fixed points and for Ωi > ΩD only the limit cycle per-
sists. This scenario is correct for sufficiently large inertia; at small m one has a direct
transition from a stable node to a periodic oscillating orbit at Ωi = ΩD = Kr [24].
Therefore for sufficiently large m there is a coexistence regime where, depending on
the initial conditions, the single oscillator can rotate or stay quiet. The fixed point
(limit cycle) solution corresponds to locked (drifting) rotators.

The TLO theory [2, 3] has explained the origin of the first order hysteretic tran-
sitions by considering two opposite initial states for the network: (I) the completely
incoherent phase (r = 0) and (II) the completely synchronized one (r ≡ 1). In case
(I) the oscillators are all initially drifting with finite velocities ωi ; by increasing K
the oscillators with smaller natural frequencies |Ωi | < ΩP begin to lock (ω̄i = 0),
while the other continue to drift. This is confirmed by the data reported in Fig. 2.1,
where it is clear that the locking frequency ΩM is well approximated by ΩP . The
process continues until all the oscillators are finally locked, leading to r = 1 and to
a plateau in ΩM .

In the second case, initially all the oscillators are already locked, with an associated
order parameter r ≡ 1. Therefore, the oscillators can start to drift only when the
stable fixed point solution will disappear, leaving the system only with the limit
cycle solution. This happens, by decreasing K , whenever |Ωi | ≥ ΩD = Kr . This is
numerically verified, indeed, as shown in Fig. 2.1, where it is clear that the maximal
locked frequency ΩM remains constant until, by decreasing K , it encounters the
curve ΩD and then ΩM follows this latter curve down towards the asynchronous
state. The case (II) corresponds to the situation observable for the usual Kuramoto
model, where there is no bistability [1].

In both the considered cases there is a group of desynchronized oscillators and
one of locked oscillators separated by a frequency, ΩP (ΩD) in case (I) (case (II)).
At variance with the usual Kuramoto model, both these groups contribute to the total
level of synchronization, namely

r = rL + rD (2.6)

where rL (rD) is the contribution of the locked (drifting) population.
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The contribution of the locked population is simply given by

r I,I IL = Kr
∫ θP,D

−θP,D

cos2 θg(Kr sin θ)dθ, (2.7)

where θP = sin−1(ΩP/Kr) and θD = sin−1(ΩD/Kr) ≡ π/2.
The contribution rD of the drifting rotators is negative and it has been estimated

analytically by TLO by performing a perturbative expansion to the fourth order in
1/(mK ) and 1/(mΩ). The obtained expression, valid for sufficiently large inertia,
reads as

r I,I ID � −mKr
∫ ∞

ΩP,D

1

(mΩ)3
g(Ω)dΩ, (2.8)

with g(Ω) = g(−Ω).
By considering an initially desynchronized (fully synchronized) system and by

increasing (decreasing) K one can get a theoretical approximation for the level of
synchronization in the system by employing the mean-field expression (2.7), (2.8)
and (2.6) for case I (II). In this way, two curves are obtained in the phase plane (K , r),
namely r I (K ) and r I I (K ). For a certain coupling K the system can attain all the
possible levels of synchronization between r I (K ) and r I I (K ).

Let us notice that the expression for rL and rD reported in Eqs. (2.7) and (2.8)
are the same for case (I) and (II), only the integration extrema change in the two
cases. These are defined by the frequency which discriminates locked from drifting
oscillator, that in case (I) is ΩP and in case (II) ΩD . It should be noticed that the
value of these frequencies is a function of the order parameter r and of the coupling
constant K , therefore one should solve implicit integrals to obtain r .

However, one could also fix the discriminating frequency to some arbitrary value
Ω0 and solve self-consistently the equations Eqs. (2.6), (2.7), and (2.8) for different
values of the coupling K . This corresponds to solve the equation

∫ θ0

−θ0

cos2 θg(Kr0 sin θ)dθ − m
∫ ∞

Ω0

1

(mΩ)3
g(Ω)dΩ = 1

K
, (2.9)

with θ0 = sin−1(Ω0/Kr0). A solution r0 = r0(K ,Ω0) exists provided that Ω0 ≤
ΩD(K ) = r0K . Therefore the part of the plane delimited by the curve r I I (K ), will
be filled with the curves r0(K )obtained for differentΩ0 values (as shown in Fig. 2.2a).
These solutions represent clusters of NL oscillators for which the maximal locking
frequency and NL do not vary upon changing the coupling strength. In particular, for
K > Kc

2 these states can be observed in numerical simulations in the portion of the
phase space delimited by the two curves r I (K ) and r I I (K ) (see Fig. 2.2b).
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Fig. 2.2 Unimodal Distribution. Panel a: Average order parameter r̄ versus the coupling constant
K . Theoretical mean field estimates: the dashed (solid) grey curves refer to r I = r IL + r ID (r I I =
r I IL + r I ID ) as obtained by employing Eqs. (2.7) and (2.8) following protocol (I) (protocol (II)); the
(black) dot-dashed curves are the solutions r0(K ,Ω0) of Eq. (2.9) for different Ω0 values. The
employed values from bottom to top are: Ω0 = 0.79, 1.09, 1.31 and 1.79. Numerical simulations
(black) filled circles have been obtained by following protocol (I) and then (II) starting from K = 0
until KM = 20 with steps ΔK = 0.5; (black) empty triangles refer to simulations performed by
starting from a final configuration obtained during protocol (I) and by decreasing the coupling
from such initial configurations. The Panel (b) displays NL versus K for the numerical simulations
reported in (a). The numerical data refer to m = 6, N = 500, TR = 5000, and TW = 200

2.3.3 Clusters of Locked and Whirling Oscillators

By observing the results reported in Fig. 2.2a for m = 6, it is evident that the numer-
ical data obtained by following the procedure (II) are quite well reproduced from
the mean field approximation r I I (solid grey curve). This is not the case for the the-
oretical estimation r I (dashed grey curve), which does not reproduce the step-wise
structure revealed for the data corresponding to protocol (I). This step-wise structure
emerges only for sufficiently large inertia (as it is clear from Fig. 2.1b, where it is
absent for m = 2); this is due to the break down of the independence of the whirling
oscillators: namely, to the formation of clusters of drifting oscillators moving coher-
ently at the same non zero velocity [2]. Oscillators join in small groups to the locked
stationary cluster and not individually as it happens for smaller inertia; this is clearly
revealed by the behavior of NL versus the coupling K as reported in Fig. 2.2b.

Furthermore, once formed, these stationary locked clusters are particularly robust,
as it can be appreciated by considering as initial condition a partially synchronized
state obtained following protocol (I) for a certain coupling KS > K1. This state is
characterized by a cluster of NL locked; if now we reduce the coupling K , the number
of locked oscillators remain constant until we do not reach the descending curve
obtained with protocol (II), see the black empty triangles in Fig. 2.2. On the other
hand r̄ decreases slightly with K , this behavior is well reproduced by the mean field

solutions of Eq. (2.9), namely r0(K ,Ω0) with Ω0 = ΩP(Ks, r I (KS)) = 4
π

√
Ksr I

m ,
these are shown in Fig. 2.2a as black dot-dashed lines. As soon as, by decreasing
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K , the frequency Ω0 becomes equal or smaller than ΩD , the order parameter has a
rapid drop towards zero following the upper limit curve r I I . These results indicate
that hysteretic loops of any size are possible within the region delimited by the two
curves r̄ obtained by following protocol I and II respectively, as shown in [17].

For sufficiently small m, the synchronization occurs starting from the incoherent
state via the formation of an unique cluster of locked oscillators, and the size of this
cluster increases with K , as evident from Fig. 2.3a for m = 2. At the same time the
value of r also increases with K and its evolution is characterized only by finite
size fluctuations vanishing in the thermodynamic limit (see the inset of Fig. 2.3a).
As already mentioned, the situation is different for sufficiently large inertia, now
the partially synchronized phase is characterized by the coexistence of the main
cluster of locked oscillators with ω̄i � 0, but also by the emergence of clusters
composed by drifting oscillators with common finite velocities, see the data for ω̄i

reported in Fig. 2.3b for m = 6. In particular, the clusters of whirling oscillators
emerge always in couple and they are characterized by the same average velocity
but opposite sign. These states are indicated as standing waves (SWs), therefore we
have a SW coexisting with a partially synchronized stationary state (PS) (as shown
in Fig. 2.3b).

The effect of these extra clusters on the collective dynamics is to induce oscilla-
tions in the temporal evolution of the order parameter, as one can see from the inset of
Fig. 2.3b. In presence of drifting clusters characterized by the same average velocity
(in absolute value), as for m = 6 and K = 5 in Fig. 2.3b, r exhibits almost regular
oscillations and the period of these oscillations corresponds to the one associated to
the oscillators in the drifting cluster.
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Fig. 2.3 Unimodal Distribution. Average phase velocity ω̄i of the rotators versus their natural
frequencies Ωi for N = 500 and inertia m = 2 (a) and m = 6 (b). In panel (a) (panel (b)) magenta
triangles refer to K = 1.5 (K = 2.5), green diamonds to K = 2.5 (K = 5), red squares to K = 5.5
(K = 10) and black circles to K = 9.5 (K = 15). The insets report the time evolution of the order
parameters r(t) for the corresponding coupling constants, apart for the extra blue line shown in the
inset in (b) which refers to K = 1. For each simulation an initial transient TR �5,500 has been
discarded and the time averages have been estimated over a window TW =5,000
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2.4 Bimodal Distribution

In this section we consider a bimodal distribution, we will initially focus on two
almost non overlapping Gaussians (see Fig. 2.4c), namely we consider Ω0 = 2,
while Sect. 2.4.2 is devoted to overlapping Gaussians (see Fig. 2.4b), examined for
Ω0 = 0.2.

2.4.1 Non-overlapping Gaussians

For Ω0 = 2 and sufficiently small inertia (m = 1 and 2), we observe a very rich syn-
chronization transition, as shown in Fig. 2.5a. In particular, by following protocol
(I) we observe that the system leaves the incoherent state abruptly by exhibiting a
jump to a finite r̄ value at KTW ; above such value in the network emerges a single
cluster of oscillators, drifting together with a finite velocity � Ω0, this corresponds
to Traveling Wave (TW) solution. By further increasing K a second finite jump of
the order parameter at K SW denotes the passage to a Standing Wave (SW) solu-
tion, corresponding to two clusters of drifting oscillators with symmetric opposite
velocities � ±Ω0. A final jump at K PS leads the system to a Partially Synchronized
(PS) phase, characterized by an unique cluster of locked rotators with zero average
velocity. By increasing the coupling the PS state smoothly approaches the fully syn-
chronized regime. Starting from this final state the return sequence of simulations,
following protocol (II), displays a simpler phenomenology. The network stays in the
PS regime, characterized by an order parameter larger than that measured during
protocol (I) simulations, until K DS < KTW . For smaller coupling, the system leaves
the PS state; however, depending on the realization of the natural frequencies and on
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Fig. 2.4 Panel (a): Unimodal frequency distribution centered in Ω = 0. Panel (b): The solid line
represents a bimodal frequency distribution for two overlapping Gaussians (dashed and dot-dashed
lines) and Ω0 = 0.2. Panel (c): The solid line represents bimodal frequency distribution for non
overlapping Gaussians (dashed and dot-dashed lines) and Ω0 = 2
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Fig. 2.5 Bimodal frequency distribution. Panel (a): Average order parameter r̄ versus K for two
series of simulations performed following the protocol (I) (filled symbols) and (II) (empty symbols).
The dotted vertical blue line refers to KTW ; the dashed-dotted magenta line to K SW . Panel (b):
Maximal locking frequency ΩM (blue triangles) versus K for simulations reported in (a) for protocol

(I) (filled symbols) and (II) (empty symbols). The magenta diamonds indicate ΩP = 4
π

√
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protocol (I) and the (green) squaresΩD = Kr̄ for protocol (II). The dashed magenta line represents
the curveΩP + Ω0 and the dashed green curveΩD + Ω0. In both panels the dashed orange vertical
line denotes the critical value K PS . The data refer to m = 2, Ω0 = 2, N = 2000, TR = 10,000 and
TW = 200, for the sequence of simulations we employed ΔK = 0.4 until K = 14.8 and ΔK = 0.4
for 14.8 < K < 39.8

the initial conditions, it can ends up or in a TW (most of the cases) or in a SW, or it
can even reach directly the incoherent state (as shown in Figs. 2.5a and 2.7a). This
first analysis clearly shows hysteretic effects and coexistence of macroscopic states
with different level of synchronization for a wide range of couplings.

Let us now try to examine the observed transitions in terms of the maximal locking
frequency, ΩM . This frequency is now defined in a different way with respect to the
unimodal distribution, in the present case ΩM represents the maximal absolute value
of the natural frequencies of the oscillators belonging to the main clusters present in
the system, therefore in this estimation are considered both stationary and drifting
clusters. As shown in Fig. 2.5b, ΩM increases with K for protocol (I) simulations.
In particular ΩM shows a finite jump in correspondence of K = KTW , and then
its evolution is reasonably well approximated by the curve ΩP + Ω0, where ΩP =
4
π

√
Kr̄
m . By approaching K PS the maximal frequency displays a constant plateau

which extends beyond K PS , this indicates that the two symmetric drifting clusters
merge at K = K PS giving rise to an unique locked cluster with zero average velocity,
however no other oscillators join this cluster up to a larger coupling. Whenever this

happens , ΩM starts again to increase, but this time it follows the curve ΩP = 4
π

√
Kr̄
m .

Finally, for r̄ � 1 the maximal locking frequency attains a maximal value. Moreover,
by reducing the coupling, following now protocol (II), ΩM remains stacked to such a
value for a wide K interval. The fully synchronized cluster is difficult to break down
due to the inertia effects. Finally, ΩM reveals a rapid decrease towards zero whenever
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it encounters the curve ΩD = Kr̄ , initially it follows this curve, however as soon
as the system desynchronizes towards a TW the decrease of ΩM is better described
by the curve ΩD + Ω0. The observed behavior can be explained by the fact that for
K < K PS (K < K (DS)) for protocol (I) (protocol (II)), the network behaves as two
independent sub-networks each characterized by an unimodal frequency distribution,
one centered at Ω0 and the other one at −Ω0. The extension of the analysis reported in
Sect. 2.3.2 for an unimodal distribution not centered around zero simply amounts to
shift the limiting curves ΩP and ΩD by Ω0. However, for sufficiently large coupling
constant, once the system exhibits only one large cluster with zero velocity, the
network behaves as a single entity and ΩM closely follows ΩP or ΩD as for a single
unimodal distribution centered in zero.

Let us now describe the TW and SW states in more details with the help of
the examples reported in Fig. 2.6 for inertia m = 2 and N = 2000. The TW is an
asymmetrical cluster of whirling oscillators with a finite velocity ω̄i � Ω0, in par-
ticular in Fig. 2.6a the oscillators have natural frequencies in a range around Ω0,
namely 0.67 ≤ Ωi ≤ 3.34. The effect of this cluster on the collective dynamics is
to increase the average value of the order parameter without inducing any clear
oscillating behavior in r(t). However, oscillators with positive natural frequencies
are much more synchronized with respect to the ones with negative frequencies, as
can be inferred by observing the order parameter rp (rn) estimated only on the sub-
population of oscillators with positive (negative) natural frequencies and reported
in Fig. 2.6b. We believe that the emergence of the TW state is related to the finite
sampling of the distribution of the natural frequencies, which due to finite size effects
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Fig. 2.6 Bimodal frequency distributions. Average phase velocity ω̄i of the rotators versus their
natural frequencies Ωi for coupling strength K=6.2 (a) and K=6.8 (c). Panels (b) and (d) display
the order parameter r(t) (black line) versus time for the same coupling constants as in (a) and (c),
respectively. The dashed black (continuous grey) line denotes the time evolution of rp (rn). For each
simulation an initial transient time TR = 1000 has been discarded and the average are estimated
over a time interval TW = 200. In both cases m = 2, N = 2000 and Ω0 = 2
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can be non perfectly symmetric. The asymmetric cluster will emerge around +Ω0

(−Ω0) depending on the positive (negative) sign of the average natural frequency.
The SWs are observable at larger coupling constants, this is characterized by two

symmetrical clusters with opposite average velocities � ±Ω0, as shown in Fig. 2.6c.
The presence of these two clusters now induces clear periodic oscillations in the order
parameter r(t), as observable in Fig. 2.6d. The period of the oscillations is related
to |Ω0|, i.e. the average frequency of the clustered oscillators. However, at variance
with the results reported in Fig. 2.3b for the unimodal distribution the two symmetric
clusters do not coexist with a cluster of locked oscillators with zero average velocity.
By examining separately rp and rn reported in Fig. 2.3d, we notice that each sub-
population is much more synchronized than the global one, in fact rp and rn have a
higher average value than r with superimposed irregular oscillations.

The data reported so far refer to a single system size, however finite size effects are
quite relevant for this model, as shown in [17] for unimodal distributions. In Fig. 2.7a
we report the synchronization transition for several system sizes, namely 1,000 ≤
N ≤ 50,000 for a small inertia value (m = 1). We observe that KTW and K SW

increase with the size N ; in particular, the incoherent state is observable on a wider
coupling interval by increasing N (similarly to what reported in [17] for unimodal
distributions). Finite size fluctuations induce transitions from the incoherent branch
to the TW branch and from this to the SW branch. The fact that we do not observe
transition back to the original states indicates that the energy barriers are higher from
these sides. A quite astonishing result is the fact that the transition value K PS and
K DS seem completely independent from N . The combination of these results seem
to suggest that in the thermodynamic limit the incoherent state will loose stability at
K PS and therefore the two branches corresponding to TW and SW will be no more
visited, at least by following protocol (I).
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Fig. 2.7 Bimodal frequency distribution with Ω0 = 2. Average order parameter r̄ versus K for
various system sizes N : a m = 1, b m = 6. The numerical data have been obtained by following
protocol (I) and then protocol (II) from K = 0 up to KM = 20 (KM = 200) for inertia m=1 (m=6)
with ΔK = 0.2 (ΔK = 0.5). The vertical dashed blue line refers to K PS . The average has been
performed over a time window TW = 200, after discarding a transient time TR = 5,000−50,000
depending on the system size; the larger TR have been employed for the larger N
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By observing all the data reported in Fig. 2.7a for various N and for protocol (I)
and (II), it seems that there are clear indications that the two branches of solutions,
corresponding to TW and SW, emerge via a supercritical bifurcation at the same
coupling, namely K � 3.8, while the transition to PS is clearly subcritical. These
results confirm the analysis reported in [18] for a system with noise (in particular,
see Fig. 17 in that paper). However, Acebrón et al. affirm that the SW is stable, while
the TW is unstable. From our results, both branches seem to become inaccessible (in
absence of noise) from the incoherent state, while at least a part of these branches
appear to be reachable from the PS state by decreasing K below K DS following
protocol (II). Another important difference with respect to the results reported in [18]
is that the PS regime is clearly hysteretic revealing two coexisting branches of PS
states visited by following protocol (I) or (II).

As shown in Fig. 2.7b, for larger inertia (namely, m = 6), the transition from
the incoherent state following protocol (I) occurs via the emergence of many small
clusters leading finally to a SW state. In this case the critical value at which the
incoherent state looses stability seems to saturate to a constant value already for
N ≥ 2,000. The value of K PS is also in this case insensible to the system size. For
large inertia values, the TWs seem no more observable.

As a further aspect, we will report the numerical results of the dependence on
the inertia of the critical coupling constant K PS , while the value of K DS � 4.9 is
independent not only by N , but also by the inertia. As shown in Fig. 2.8, K PS increases
linearly with the inertia and this scaling is already valid for not too large inertia
values. The linear scaling with the inertia is analogous to the scaling recently found
within a theoretical mean-field analysis for the coupling KMF

1 , which delimits the
range of linear stability of the asynchronous state [18, 25]. In particular, the authors
in [17] have shown for a Gaussian unimodal distribution of width σ that KMF

1 �
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Fig. 2.8 Critical value K PS as a function of the inertia. The dashed line represents the fit of
the numerical data and indicates a linear increasing of K PS as a function of the inertia being the
fit K PS = 4(1.245 + 1.0525m). For all cases N = 2000, Ω0 = 2. The data have been obtained
by employing protocol (I) and for each simulation an initial transient time TR = 5000 has been
discarded and data are averaged over a time TW = 200
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Fig. 2.9 Bimodal frequency distribution. Average order parameter r̄ versus the coupling constant K
for m = 1 and N =10,000 (panel (a)) and for m = 10 and N =2,000 (panel (b)). The filled circles
have been obtained by following protocol (I) and then (II) starting from K = 0 until KM = 20
(KM = 100) with steps ΔK = 0.2 (ΔK = 0.5); the empty triangles refer to simulations performed
by starting from a final configuration obtained during protocol (I) and by decreasing the coupling
from such initial configurations. The numerical data refer to Ω0 = 2, TR =50,000 (TR = 5000),
and TW = 2000

2σ(0.64 + mσ), which shows a linear dependence on the inertia and a quadratic
dependence on the variance of the frequency distribution.

In the final part of this sub-section we perform an analysis analogous to that
reported in Sect. 2.3.3, in particular starting from states with a finite level of synchro-
nization obtained by following protocol (I) we decrease the coupling and observe
how these states evolve. In Fig. 2.9, we report the results of these simulations (shown
as empty triangles) for two different inertia values, namelym = 1 andm = 10. Start-
ing from PS states we observe that the cluster survives until the descending curve
obtained with protocol (II) is encountered, analogously to the results reported in
Fig. 2.3 for the unimodal distribution. Therefore any part of the hysteretic portion of
the (K , r)-plane delimited by the PS curves obtained via protocol (I) or (II) is acces-
sible. However, if one starts for m = 1 from a TW or a SW state, one observes only
two curves (corresponding to the TW and SW branches previously discussed) which
seem to end up at the same critical coupling which is smaller than K DS . Therefore it
seems that there are no evidences of hysteresis for this small inertia for SW and TW
solutions (as shown in Fig. 2.9a). For large inertia values m = 10, since now, apart
the SW solutions, there are solutions with many small clusters, the situations is much
more complex. By starting from different values of K < K PS and by decreasing K ,
these curves seem all to end up at the same critical coupling smaller than K PS , see
Fig. 2.9b. These results suggest that for large inertia values is possible to observe
a continuum of possible states even starting from states characterized by (many)
drifting clusters and that these states coexist in a wide range of coupling.
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2.4.2 Overlapping Gaussians

In this sub-section, we analyze a bimodal distribution, where the two Gaussians
are largely overlapping, since Ω0 = 0.2. In this case we expect to observe a phe-
nomenology of the synchronization transition quite similar to the one seen for the
unimodal case. In Fig. 2.10a is reported the average order parameter r̄ versus the
coupling constant K estimated by following protocol (I) and (II) for various inertia
values and for a fixed system size, namely N = 10,000. We observe that all the curves
obtained for protocol (II) almost overlap irrespectively of the used inertia, while the
protocol (I) curves reveal a strong dependence on m. In particular, the hysteretic
region widens with m. For small inertia values, namely m = 1 and 2, there is a sud-
den transition from the asynchronous state to a PS state at K PS and neither traveling
waves nor standing waves are observable: a single cluster at zero velocity emerges
in correspondence of K PS and the order parameter never shows oscillating behavior
in time.

For m = 6, it is possible to observe a scenario similar to the one reported in
Fig. 2.3b, where not only a cluster at zero velocity is present, but also two sym-
metrical clusters at finite velocities emerge. In particular, following protocol (I) for
K > 2.4 a small cluster of locked oscillators emerges; at larger coupling, namely
K ≥ 3, two symmetrical clusters of whirling oscillators emerge and coexist with the
zero velocity cluster. Finally, at K = 10.8 the PS regime arises, corresponding to a
single large cluster of locked oscillators. Furthermore, in the range 3 ≤ K < 10.8
the order parameter reveals irregular oscillations. A more detailed analysis is needed
to understand the origin of these oscillations as done in the next section.
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Fig. 2.10 Bimodal frequency distribution forΩ0 = 0.2. Panel (a): Average order parameter r̄ versus
K for various inertia values and N=1000. The numerical data have been obtained by following
protocol (I) and then protocol (II) from K = 0 up to KM = 20 for all inertia values with ΔK = 0.2.
Panel (b): Average order parameter r̄ versus the coupling constant K for various system sizes N and
m=1. Data have been obtained by averaging the order parameter over a time window TW = 200,
after discarding a transient time TR =5,000–50,000 depending on the system size
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Finally, we examine the influence of the system size on the studied transitions:
for m = 1 the results for the protocol (I) [protocol (II)] simulations are reported in
Fig. 2.10b for sizes ranging from N = 1,000 to N = 10,000. It is immediately evi-
dent that the transition from synchronized state to the asynchronous state, following
protocol (II), does not depend on N: for all considered sizes the transition happens
in correspondence of K � 2, analogously to what reported for unimodal distribu-
tions [17]. Starting from the incoherent regime and following protocol (I) the system
reveals a jump to a finite r̄ value for critical couplings increasing with N , quite similar
once more to the results reported for unimodal distributions. We can conclude this
sub-section by affirming that the phenomenology seen for bimodal, but largely over-
lapping, distributions should not differ much from the one observed for unimodal
distributions.

2.5 Linear Stability Analysis

To better characterize the synchronization transitions and the stability of the observed
states it is worth estimating the maximal Lyapunov exponent λM following protocol
(I) and (II) for an unimodal and a bimodal distributions. This quite time consuming
analysis has been performed for a single inertia value m = 6 and a single system size
N = 1,000, the scaling of λM with N will be discussed in the following for specific
coupling constant values.

In general, we observe that once the system fully synchronizes, λM vanishes;
therefore for most of the simulations associated to protocol (II) corresponding to
fully synchronized cluster down to the desynchronization transition, λM is zero. This
is not the case for protocol (I) simulations which reveal a positive λM as soon as r̄
is non zero. Thus indicating that not only the dynamics characterized in terms of the
macroscopic order parameter r̄ is hysteretic, but also at the level of the microscopic
dynamics, investigated via λM , the system has a clear hysteretic behavior.

The behavior of λM with K exhibits chaotic dynamical states with windows
of regularity for both unimodal and bimodal distribution with Ω = 2, as shown
in Fig. 2.11a, b. As a general aspect, we observe the maximal level of chaoticity
immediately after the transition from the incoherent state to partially coherence,
where small clusters of synchronized oscillators and drifting oscillators coexist. The
increase of r̄ is accompanied by a trend of λM to decrease and finally to vanish for
r̄ → 1.

An important aspect to understand is if this dynamics is weakly chaotic or not, in
particular this amounts to verify if, in the thermodynamic limit, λM will vanish or
will remain finite. In order to test for this aspect, we have considered a configuration
obtained by following protocol (I) for a specific coupling and analyzed λM versus the
system size for 200 ≤ N ≤ 32,000. The results for unimodal distributions, as well
as for bimodal ones with Ω0 = 2 and Ω0 = 0.2 are shown in Fig. 2.11e. It is clear for
all the considered cases that the system remains chaotic for diverging system sizes.
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Fig. 2.11 Maximal Lyapunov exponent λM and the average order parameter r̄ versus K for uni-
modal (bimodal with Ω0 = 2) are shown in panel (a) (panel (b)) and in panel (c) (panel (d)), respec-
tively. The numerical data have been obtained by following protocol (I) (black circles) and then
protocol (II) (red diamonds) from K = 0 up to KM = 30 (KM = 80) with ΔK = 0.2 (ΔK = 0.8).
For panels (a), (c) TR = 500, and TW = 50,000; for panels (b), (d) TR = 500, and TW = 400,000.
The different symbols in (a) and (b) denote the value for which the further analysis reported in
panel (e) has been done. Panel (e): λM versus N for different couplings and frequency distributions.
Blue circles refer to unimodal distribution and coupling constant K = 6.5; magenta squares (green
diamonds) refer to binomial distributions with Ω0 = 0.2 and K = 6.7 (Ω0 = 2 and K = 9.5).
λM has been averaged over a time window TW =4,000–400,000, after discarding a transient time
TR =1,000–10,000 depending on the system size. For all panels m = 6 and N =1,000.

As a final aspect we would like to understand which oscillators contribute more to
the chaotic dynamics of the system; this can be understood by measuring the average
squared amplitude of the components of the maximal Lyapunov vector ξ̄i (see the
definition reported in Eq. 2.4). In particular, we consider the three cases analyzed
in Fig. 2.11e for N = 1,000. The corresponding results are shown in Fig. 2.12. From
panel (a) and (b) of the figure it is clear that for the unimodal distribution, as well as
for the largely overlapping bimodal distributions, the chaotic activity is associated
almost exclusively to the rotators which are outside the large clusters of locked
oscillators with ω̄i � 0. Thus confirming recent results reported for two coupled
populations of rotators with identical natural frequencies [14].

However, the situation for the bimodal distribution with Ω0 = 2 is different; in
particular, as shown in Fig. 2.12c, the network for this large value of the inertia and
the considered coupling does not exhibit a cluster of locked oscillators with ω̄i � 0,
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Fig. 2.12 Average squared amplitude of the components of the maximal Lyapunov vector ξ̄i (black
circles) and average frequencies ω̄i (grey diamonds) versus the rotator index for unimodal (a) and
bimodal distribution with Ω0 = 0.2 (b). In both panels the oscillators are rdered according to the
values of ξ̄i . Panel (c): ξ̄i (black circles) and average frequencies ω̄i (grey diamonds) of the oscillators
as a function of their natural frequency for bimodal distribution with Ω0 = 2. Oscillators are ordered
according to the values of ω̄i and not to the values of ξ̄i as in panels (a), (b). Panel (a) refers to
coupling constant K = 6.5, panel (b) to K = 6.7 and panel (c) to K = 9.5. For all panels inertia
m = 6 and N =1,000, TR = 500, and TW = 400,000

but only drifting clusters. In this case the rotators outside and inside the clusters seem
to contribute equally to the maximal Lyapunov vector, with the possible exclusion
of a group of rotators with Ωi � Ω0.

2.6 Conclusions

We have studied the synchronization transition for a globally coupled Kuramoto
model with inertia for different frequency distributions. For the unimodal frequency
distribution we have shown that clusters of locked oscillators of any size coexist
within the hysteretic region. This region is delimited by two curves in the plane
defined by the coupling and the average value of the order parameter. Each curve
corresponds to the synchronization (desynchronization) profile obtained starting from
the fully desynchronized (synchronized) state. For sufficiently large inertia values,
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clusters composed by drifting oscillators with opposite velocities (standing wave
state) emerge in addition to the locked oscillators clusters. The presence of clusters
of whirling rotators induces oscillatory behavior in the order parameter.

For bimodal frequency distribution the scenario can become more complex since
it is possible to play with an extra parameter: the distance between the peaks of
the distributions. For simplicity we have analyzed only two cases: largely overlap-
ping distributions (Ω0 = 0.2), and almost not overlapping distributions (Ω0 = 2).
The phenomenology observed for Ω0 = 0.2 resembles strongly that found for the
unimodal distribution. The analysis of the non overlapping case reveals new inter-
esting features. In particular, the transition from incoherence to coherence occurs
via several states: namely, traveling waves, standing waves and finally partial syn-
chronization. This scenario resembles that reported for the usual Kuramoto model
for a bimodal distribution [19, 26, 27]. However, in our case the transition is always
largely hysteretic, and for non overlapping distributions, traveling waves are clearly
observable at variance, not only with the results for the Kuramoto model [19, 26,
27], but also with the theoretical phase diagram reported in [18] for oscillators with
inertia. A peculiar aspect is that in the thermodynamic limit we expect a direct dis-
continuous jump from the incoherent to the coherent phase, without passing through
any intermediate state. The critical coupling K PS required to pass from incoherence
to partial synchronization is independent of the system size and grows linearly with
inertia, while the partially synchronized state looses its stability at a smaller coupling
K DS < K PS which is the same for any inertia value and system size.

Furthermore, by performing a linear stability analysis we have been able to show
that the hysteretic behavior is not limited to macroscopic observables, as the level
of synchronization, but it is revealed also by microscopic indicators as the maximal
Lyapunov exponent. In particular, we expect that in a large interval of coupling values
chaotic and non chaotic states will coexist.

Finally, it would be challenging to apply optimal control schemes to increase
stability and/or to enhance synchronization in a network of oscillators. As a first
step time-delay in the coupling can be used to control the collective dynamics, and in
particular to stabilize the synchronization of clusters or groups of oscillators, similarly
to what done in [28, 29]. In order to control the synchronization of a whole globally
coupled system, a time delayed mean field term can be fed-back into the ensemble
[30] or an adaptive control strategy can be implemented with non-stationary, time-
varying parameters [31]; in particular tuning the amplification and the delay of the
feed-back loop will be possible to change the critical point at which the system
synchronizes.

However, the onset of synchronization is mostly desired in realistic systems, like
power grids, characterized by a sparse connectivity and a bimodal frequency distri-
bution [9]. If a realistic, diluted network is considered, it will be worth investigating
the presence of possible mesoscale symmetries, since mesoscale subgraphs can have
precise and distinct consequences for the system-level dynamics [32]. In particular,
if mesoscale symmetries are present, dynamical instabilities associated with these
subgraphs can be analyzed without considering the topology of the embedding net-
work, even though the instabilities generally do not remain confined to the subgraphs.



2 Dynamics of Fully Coupled Rotators … 45

Therefore the application of adaptive control to engineer mesoscale structure will
play a central role in influencing the entire network behavior, thus resulting funda-
mental also to control decentralized, widely distributed power grids.
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Chapter 3
Adaptively Controlled Synchronization
of Delay-Coupled Networks

Philipp Hövel, Judith Lehnert, Anton Selivanov,
Alexander Fradkov and Eckehard Schöll

Abstract We discuss an adaptive control delay-coupled networks of Stuart-Landau
oscillators, an expansion of systems close to a Hopf bifurcation. Based on the con-
sidered, automated control scheme, the speed-gradient method, the topology of a
network adjusts itself by changing the link weights in a self-organized manner such
that the target state is realized. We find that the emerging topology of the network
is modulated by the coupling delay. If the delay time is a multiple of the system’s
eigenperiod, the coupling within a cluster and to neighboring clusters is on average
positive (excitatory), while the coupling to clusters with a phase lag close to π is
negative (inhibitory). For delay times equal to odd multiples of half of the eigenpe-
riod, we find the opposite: Nodes within one cluster and of neighboring clusters are
coupled by inhibitory links, while the coupling to clusters distant in phase state is
excitatory. In addition, the control scheme is able to construct networks such that they
exhibit not only a given cluster state, but also oscillate with a prescribed frequency.
Finally, we demonstrate the efficiency of the speed-gradient method in cases where
only part of the network is accessible.
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3.1 Introduction

Networks are ubiquitous. They can be found in a large variety of different research
areas such as social science, economics, psychology, biology, physics, and mathe-
matics [1–3], where networks are used to model the interactions of coupled systems
or large number of agents. Two important lines of research have formed: (i) inves-
tigations of network topologies including data-mining and constructive models of
their generation [1–6] and (ii) studies of dynamics on networks with fixed topology
[7–16]. The concept of adaptive networks aims to bring these two directions together
by considering topologies that evolve according to the states of the network nodes,
which are in turn influenced by the topology [17].

In the wide spectrum of dynamical scenarios of coupled systems, zero-lag syn-
chronization, which is also known as in-phase or complete synchronization, has been
at the center of attention for a long time. Within the last decade, other, more complex
synchronization patterns have moved into the focus of increasing research activities.
These include cluster and group synchronization, which was studied in theory [11,
18–21] and realized in experiments [22, 23]. Prominent examples of these types of
synchrony have been reported in many biological systems including dynamics of
neurons [24], central pattern generation in animal locomotion [25], or population
dynamics [26]. The difference between cluster and group synchronization can be
described as follows: Group synchronization corresponds to the case where each
cluster potentially exhibits different local dynamics. This dynamical state is more
general than an M-cluster state, for which the compound system exhibits M clusters
with zero-lag synchronization between the nodes within one cluster, but—in the case
of oscillating dynamics—with a constant phase lag of 2π/M between the clusters.

If the network dynamics does not settle in the desired cluster state in a self-
organized way, control methods can help to adaptively change the topology of the
network in order to realize the target state. This has previously been investigated,
to our knowledge, only by a few researchers: Lu et al., for instance, considered the
control of cluster synchronization by means of changing topology. As a limiting
restriction for the applicability, their method requires a-priori knowledge to which
cluster each node should belong in the final state [27]. Furthermore, the majority of
algorithms, which have been developed to control synchrony by adaptation of the
network topology, take advantage of local mechanisms. A large number of these
control schemes can be related to Hebb’s rule: Cells that fire together, wire together
[28]. The method that we propose below, however, uses a global goal function to
realize self-organized control. It is hence a powerful alternative and complements
existing control schemes.

In short, we will present an algorithm that adapts the weights of the links in the
network such that a desired cluster state is reached. We will show that our method is
robust towards different initial conditions and also works for a large parameter range.
This includes the potential adding of new links, if the initial weight had been zero, or
the removal of links, if the respective weight is set to zero. The adaptation algorithm
for the network structure is based on the speed-gradient method [29, 30]. The goal
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function, which we employ, has a strong advantage compared to other methods: it
does not rely on a-priori ordering of nodes, i.e., it is not necessary to assign each
node to a specific cluster in advance.

As a proof of concept, we will consider the normal form of a Hopf bifurcation,
which is also known as Stuart-Landau oscillator. This model is generic for many
oscillating systems present in nature and technological applications. In addition, we
take into account time delays in the coupling between the nodes because delays nat-
urally arise in many applications. Note that our scheme also works for instantaneous
coupling. Furthermore, we will demonstrate that our method does not require to
control all links of a network. The control scheme is still successful if only a subset
of links is accessible, which we will explicitly illustrate for random networks [31].
We will also show how networks can be constructed in which cluster states oscillate
with a prescribed frequency. This includes zero frequency and gives rise to a freez-
ing of the dynamical motion. The final topology, i.e., distribution of link weights,
of these controlled networks will contain some randomness because we start with
random initial conditions for the state of the nodes. Despite this randomness, we will
show that on average the topology is characterized by common features. As a crucial
parameter shaping a topology, which enables synchronization, we identify the delay
time.

Delay is an ubiquitous phenomenon in nature and technology and arises whenever
time in the propagation or the processing of a signal is needed [32, 33]. For example,
in laser networks the finite speed of light gives rise to a propagation delay [34–36].
Time delay in neural networks emanates from the finite speed of the transmission of
an action potential between two neurons where the propagation velocity of an action
potential varies between 1 and 100 m/s depending on the diameter of the axon and
whether the fibers are myelinated or not [37]. The influence of delay on the dynamics
on networks has been investigated by several authors [13, 16, 19, 38–57]. Depending
on the context, delay can play a constructive or a destructive role [58–69].

The rest of this chapter is organized as follows: In Sect. 3.2 we introduce the
model of Stuart-Landau oscillator and discuss the application of the speed-gradient
method on the coupling matrix. In Sect. 3.3, we present the main results including
applications of the control scheme to select a frequency of the ensemble of oscillators
and restricted accessibility of the controller. We wrap up in Sect. 3.4 and finish with
an outlook for future research directions and additional questions.

3.2 Model Equation and Control Scheme

In this chapter, we will first introduce the model equations of the Hopf normal form.
Then, we will show the application of the speed-gradient method for an automated
adjustment of the network topology by changing the weights of the links. The control
scheme is based on a goal function that will be designed such that it becomes minimal
for the desired M-cluster state.
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3.2.1 Stuart-Landau Oscillator

We consider the Stuart-Landau oscillator given by the following equations

ż = [
λ + iω − |z|2] z (3.1)

with the complex variable z ∈ C and parameters λ, ω ∈ R [70]. This system arises
generically in a center manifold expansion close to a supercritical Hopf bifurcation
with λ as the bifurcation parameter. Below the bifurcation, i.e., for negative λ, the
system exhibits a stable focus at the origin, which becomes unstable at the bifurcation
point λ = 0. Above the bifurcation, a stable limit cycle with radius r = √

λ coexists
with the unstable focus. The parameter ω is the frequency of the limit cycle and
determines the intrinsic timescale.

Throughout this chapter, we discuss networks of N delay-coupled Stuart-Landau
oscillators z j , j = 1, . . . , N , described by

ż j (t) = [λ + iω − |z j |2]z j + K
N∑

n=1

G jn(t)[zn(t − τ) − z j (t)] (3.2)

with a real coupling strength K and coupling delay τ . For notational convenience, we
use in the following the abbreviation zn,τ ≡ zn(t − τ). The matrix {G jn(t)} j,n=1,...,N

describes the topology of the network. Its elements might change over time, because
it is subject to the adaptive control as discussed in Sect. 3.2.2 below.

In order to investigate the amplitude and phase dynamics of the complex variable
z, it is convenient to rewrite Eq. (3.1) using r j = |z j | and ϕ j = arg(z j ):

ṙ j (t) = [
λ − r2

j

]
r j + K

N∑

n=1

G jn
{
rn,τ cos

[
ϕn,τ − ϕ j

]− r j
}
, (3.3a)

ϕ̇ j (t) = ω + K
N∑

n=1

G jn

{
rn,τ

r j
sin

[
ϕn,τ − ϕ j

]}
. (3.3b)

One class of solutions of Eqs. (3.3) are M-cluster states that exhibit a common
amplitude r j ≡ r0. The phases of the oscillators in an M-cluster state are given by
ϕ j = ΩMt + j2π/M , where ΩM is the collective frequency. A special cluster state
is complete, in-phase, or zero-lag synchronization, i.e., M = 1, where all nodes are
in one cluster. The other extreme case are splay states with M = N , where each
cluster consists of a single node only. In the continuum limit, the splay state on a
unidirectionally coupled ring corresponds to a rotating wave. For a schematic diagram
of (a) in-phase synchronization, (b) a 3-cluster state, and (c) a splay state, see Fig. 3.1.
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Fig. 3.1 Schematic examples of a in-phase synchronization (M = 1), b a 3-cluster (M = 3), and
c a splay state (M = N ). Each cluster consists of the same number of nodes

3.2.2 Speed-Gradient Method

For a dynamical system in general notation

ẋ(t) = F (x, u, t) , (3.4)

an additional set of equations for the control vector u can be derived using the
gradient (with respect to the accessible parameters) of the speed (temporal change)
of an appropriately chosen goal function Q [29]:

du
dt

= −Γ ∇u Q̇ (x, u, t) (3.5)

with a positive definite gain matrix Γ . Intuitively, the control scheme works as
follows: The speed Q̇ may decrease along the direction of its negative gradient. As Q̇
becomes negative, the control function Q will decrease as well and will finally reach
its minimum indicating that the control goal is realized. For details and conditions,
see Refs. [71, 72].

In the following, we will apply this speed-gradient control to the elements of the
coupling matrix {G jn(t)} j,n=1,...,N of Eq. (3.2), i.e.,

Ġ jn = −γ
∂

∂G jn
Q̇M

with γ > 0 and choose the goal function QM to realize the M-cluster state as [73]:

QM = 1 − 1

N 2

N∑

j=1

eMiϕ j

N∑

k=1

e−Miϕk

︸ ︷︷ ︸
I

+ 1

2

M−1∑

p=1

N∑

j=1

epiϕ j

N∑

k=1

e−piϕk

︸ ︷︷ ︸
I I

+ 1

2

N∑

i,k=1

(ri − rk)
2

︸ ︷︷ ︸
I I I

+ c

2

t∫

0

N∑

k=1

(
N∑

i=1

Gki − 1

)2

dt

︸ ︷︷ ︸
I V

(3.6)
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Fig. 3.2 Effects of the penalty term (II) in Eq. (3.6). Both Q1 and Q2 without penalty terms have
a minimum for ϕ1 = ϕ2. Taking the penalty terms for p < M = 2 into account, this minimum
vanishes and Q2 becomes zero only for anti-phase synchronization

with c > 0. The goal function becomes minimized, once an M-cluster state is
reached, and consists of the following terms: (I) a Kuramoto-type order parame-
ter generalized for an M-cluster state, (II) a penalty term for all p-cluster states with
p < M , (III) a penalty term to realize identical amplitudes of all oscillators, and (IV)
a term added to guarantee a constant row-sum of {G jn(t)} j,n=1,...,N designed such
that

∑N
n=1 G jn = 1. Figure 3.2 illustrates the effects of the penalty term (II) for in-

phase and anti-phase synchronization of a network motif of two coupled nodes. The
penalty term (IV) takes into account all deviations from the unity row-sum during
the growth of the network, such that QM will not vanish completely in the goal state.
Thus, we define qM ≡ QM − c

2

∫ t
0

∑
k

(∑
i Gki − 1

)2
dt , i.e., the sum over the terms

(I)–(III), as better measure for the quality of synchronization.
Calculating the derivation of QM and the gradient with respect to the matrix ele-

ments G jn , we obtain the following N 2 equations after some algebraic manipulation
[73]

Ġ jn = − γ K

[
rn,τ

r j
sin(ϕn,τ − ϕ j )

]

×
N∑

k=1

⎧
⎨

⎩
∑

1≤p<M

p sin[p(ϕk − ϕ j )] − 2M

N 2
sin[M(ϕk − ϕ j )]

⎫
⎬

⎭

− 2γ K
N∑

k=1

(r j − rk)
[
rn,τ cos(ϕn,τ − ϕ j ) − r j

]− γ c

(
N∑

i=1

G ji − 1

)
.

(3.7)

The case, when not all N 2 elements of the coupling matrix are accessible, will be
discussed in Sect. 3.3.3.

Next, we will present some results on the generation of various cluster states, that
is, different combinations of number of elements N and number of clusters M .
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3.3 Results

In this chapter, we will present the main findings of our study. At first, we will demon-
strate the success of the proposed control method along the lines of an exemplary
8-cluster state. Then, we will address the impact of the time delay on the distribution
of the coupling weights. Finally, we will discuss two applications of the controller:
(i) a frequency selection of the cluster state and (ii) targeted control, when only a
fraction of the network is accessible.

3.3.1 Automated Adjustment of Network Topology

Figure 3.3 presents a successful realization of an 8-cluster state and depicts the time
series of the radii, the phase differences with respect to the reference node 0, the
weights of the coupling matrix, and the goal function with (Q8) and without (q8)
the unity row-sum term IV of Eq. (3.6) during the growth of the network. The
simulations starts from a unidirectional ring as initial topology and random initial
conditions z j (−50) = r j (−50)eiϕ j (−50), j = 1, . . . , N . The control is switched on
at time t = 0. One can see that after a short transient, the radii and phases rapidly
converge to the desired 8-cluster state, and Q8 and q8 approach their minimum. Once
the target state is reached, the coupling weights do not change anymore. The specific
choice of the parameter γ influences the transient times to reach the final network
that supports the desired cluster state. Note that the generated network contains
excitatory links, i.e., G jn > 0, and inhibitory ones with G jn < 0. The distribution
of the weights in the final topology and the perturbation of the network (marked by
the dotted line at t = 80) will be discussed in detail in Sect. 3.3.2.

Fig. 3.3 Control of an 8-cluster state for N = 40. Parameters: λ = 0.1, ω = 1, c = 0.01, K = 0.1,
τ = π , γ = 10
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We also study the fraction of successful realizations fc and the time to reach the
target state tc in dependence on the coupling strength K and the delay time τ . We
find that the fraction of successfully controlled networks fc is close to 1 and tc is
roughly 10 units in the considered range 0.1 < K ≤ 5, 0 ≤ τ ≤ 3π (cf. Fig. 10.4 in
Ref. [74]), demonstrating that our method works very reliably independently of the
coupling parameters. The quantities fc and tc will be helpful in Sect. 3.3.3, where
we will apply the control only to a fraction of the links in the network.

3.3.2 Dependence on Time Delay

In the following, we discuss the structural properties of the networks after successful
control for different coupling delays. For this purpose, we consider the coupling
weights of the final topology as a function of the final phase difference between
all pairs of oscillators. This will allow us to investigate the influence of delay on
networks that enable synchronization in the prescribed cluster state.

Figure 3.4 shows the weights G jn of an 8-cluster state as an average over 100 real-
izations. This ensemble average 〈G jn〉 is presented in dependence on the final phase
difference Δ jn ≡ limt→∞[ϕ j (t) − ϕn(t)], where the different colors correspond to
different coupling delays. The network of the exemplary case shown in Fig. 3.3 is
included in the dark-blue curve for τ = π .

It can be seen that the curves have the form of a shifted cosine, i.e., 〈G jn〉 ∝
cos

(
2π( j − n)

M − τ
)

. Focusing on the 8-cluster states of Fig. 3.3, we find a nega-

tive coupling between nodes with a small phase difference and a positive coupling
between nodes with a phase equal or close to π .

For further insight into the network structure, we consider a row-wise discrete
Fourier transform of the coupling matrix

{
G jn

}
after successful control. For this

Fig. 3.4 Dependence of the
elements of coupling matrix
averaged over 100
realizations on the phase
difference Δ jn =
limt→∞ [ϕ j (t) − ϕn(t)] for
N = 30, M = 10, and
different time delays τ . Other
parameters as in Fig. 3.3
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purpose, we introduce an auxiliary N × M matrix Γ jk = ∑m−1
l=0 G̃ j,k+lM , where m

is the number of nodes in one cluster, i.e., m = N/M , and the final topology of the
network is given by G̃ = G(t∞). For notational convenience, we label the nodes such
that the synchronized state can be described by r j ≡ r0,M and ϕ j ≡ ΩMt + j 2π

M ,
j = 1, . . . , N , where r0,M and ΩM denote the common radius and the common
frequency, respectively. In other words, Γ jn represents the total input which node j
receives from all nodes in cluster n. Representing each row of Γ as a discrete Fourier
series, the corresponding Fourier coefficients are given by

a j
l = 2

M

M∑

k=1

Γ jk sin

(
l(k − j)2π

M
− ΩMτ

)

= 2

N

N∑

k=1

G̃ jk sin

(
l(k − j)2π

M
− ΩMτ

)
, (3.8a)

b j
l = 2

M

M∑

k=1

Γ jk cos

(
l(k − j)2π

M
− ΩMτ

)

= 2

N

N∑

k=1

G̃ jk cos

(
l(k − j)2π

M
− ΩMτ

)
, (3.8b)

where l labels the lth coefficient in the Fourier series of the j th row. Note that the
coefficients a j

0 are equal to zero and due to the constant row-sum condition of G jn ,
we have b j

0 = 1
2M cos(ΩM τ)

.
It is straight-forward, but lengthy to perform a linear stability analysis to compute

the impact of perturbation on the radii, phases, and Fourier coefficients on the desired
cluster state. One will finally derive a characteristic equation, whose infinite number
of roots are the Floquet exponents. We are only interested in the one with the largest
real part, which we denote by ReΛ. If this quantity is negative, the cluster solution
will be stable, otherwise the solution is unstable. For details, on the derivation see
Sect. 10.6.2 of Ref. [74].

Figure 3.5 shows the result of this stability analysis for (a) all higher Fourier
coefficients being zero, i.e., a j

l = b j
l = 0 for l > 1 and j = 1, . . . , N , (b) random

higher Fourier coefficients, and (c) constant higher Fourier coefficients, i.e., a j
l =

b j
l = 10 for a j

l = b j
l = 10 and j = 1, . . . , N , in dependence on the common radius

r0,M and the common frequency ΩM . Random means that for each value of r0,M and
ΩM the coefficients are drawn from a uniform distribution on the interval [−10, 10].
We find that the stability is only affected by the higher Fourier coefficients if r0,M

is small: For small r0,M the unstable regions (yellow to orange color code) have a
qualitatively different form in panels (a), (b), and (c), while for large r0,M stability
is found in all three cases.
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Fig. 3.5 Stability as a function of common frequency ΩM and radius r2
0,M for a vanishing higher

Fourier coefficients, i.e., a j
l = b j

l = 0 for l > 1, b random higher Fourier coefficients, c constant

higher Fourier coefficients, i.e., a j
l = b j

l = 10 for l > 1. N = 8, M = 4. Other parameters as in
Fig. 3.3

Another possibility to test the influence of the higher coefficients is to disturb them
during or after the course of the adaptation process. This is shown for the 8-cluster
state in Fig. 3.3, where at t = 80, we set each of the higher Fourier coefficients to a
random value in the interval [−3, 3]. One can see that the common frequency and
radius do not change as a result of this perturbation.

In summary, these results can be seen as evidence that the higher Fourier coeffi-
cients do not affect the stability of the desired cluster state. Analyzing the first Fourier
coefficients, one can derive the following equations for the common radius r0,M and
frequency ΩM [73, 74]:

r2
0,M = λ + K

[
b j

1N

2
− 1

]
, (3.9a)

ΩM = ω + K

[
a j

1 N

2

]
. (3.9b)

Considering that these equations have to be satisfied for all j = 1, . . . , N , we
conclude that a solution with a common radius and a common frequency exists,
only if a1

1 = a2
1 = . . . = aN

1 ≡ a and b1
1 = b2

1 = . . . = bN
1 ≡ b. In fact, the aver-

age topology is mainly given by b, because a and b0 are typically small and the
higher coefficients average out as discussed above. Therefore, we obtain G jn ≈
b cos

(
2π( j − n)

M − ΩMτ
)

, which explains the cosine form of the curves shown in

Fig. 3.4.
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3.3.3 Applications of Controller

3.3.3.1 Frequency Selection

In the following, we will exploit Eq. (3.9b) to select a common frequency via con-
structing an appropriate matrix. For this purpose, we set a = 2

N

(
ΩM−ω

K

)
. To demon-

strate the effect of this choice, we consider the case of a stationary cluster with a
common frequency ΩM . Figure 3.6 depicts the corresponding time series of the radii,
phases, coupling weights, goal function, and ΩM . At t = 0 (first dotted line), we start
the adaptive control with M = N , that is, with the goal function leading to a splay
state. Then, at t = 40 (second dotted line), the adaptive control is switched off and
a is set to a = 2ω

NK forcing ΩM to approach zero.

3.3.3.2 Targeted Control

In the previous sections, we have assumed that every link of the network is subject to
the control scheme, that is, all elements of the coupling matrix {G jn(t)} j,n=1,...,N are
accessible. This might be not realistic for applications. We will show in the following
that it suffices to control a subset of links, while the other links are left unchanged.
This will be demonstrated for the example of a directed random network that consists
of P links chosen from the L = N (N − 1) possible links excluding self-coupling.
From this set of P links, we select, again randomly, A links which are subject to
adaptation as given by Eq. (3.7).

Fig. 3.6 Freezing of the motion of a splay state with N = 12 = M . Parameters: λ = 0.1, ω = 1,
c = 0.01, K = 0.1, τ = π , γ = 10
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Fig. 3.7 Control of A/L = 30 % of the links for N = 15, M = 3, and P/L = 0.4. Parameters:
λ = 0.1, ω = 1, c = 0.01, K = 0.1, τ = π , γ = 10

Figure 3.7 depicts the realization of 3-cluster state in a network of 15 nodes with the
time series of the radii, the phase differences, the elements of the coupling matrix, and
the goal function shown in the different panels, respectively. The nodes are coupled
on a random network with density 0.4 and with 30 % of the links accessible, i.e.,
A/L = 0.3. It can be seen that using the goal function Q3 the network consists of 3
equally sized clusters after successful control.

Next, we explore the performance of our method with respect to the links present
in the networks and the fraction of these links subject to adaptation. Figure 3.8a
depicts the fraction fc of successfully controlled networks as a function of P/L and
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Fig. 3.8 a Fraction fc of successfully controlled networks and b times tc needed to reach the control
goal as a function of number of random links P and number of controlled links A, normalized by
L = N (N − 1). We simulated 10 realizations for each parameter combination. K = 0.2. Other
parameters as in Fig. 3.7
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A/L . We define a network as successfully controlled in an M-cluster state at time tc
if it was in this state for t ∈ [tc − 1, tc]. Figure 3.8b shows the corresponding control
time tc.

One can see that the success rate fc does not depend strongly on the total number of
links P in the network and is rather constant for fixed A. The rate, however, depends
on the ratio of adapted links A/L . We conclude that the links additionally present in
the network, but not subject to control, have very little effect on the synchronizability
of the network. For example, consider a horizontal cut at A/L = 0.4. Then, the
control still works in more than 90 % of the cases.

Figure 3.9 further corroborates these results. A good approximation of the success
rate fc can be obtained if we assume that for successful control each node in the
networks needs at least two incoming links which are subject to adaptation. One
adapted link is not sufficient because it is not able to change due to the unity row-
sum condition. Only if a second incoming link is present, the links can change in order
to control the dynamics of the node because the effect of the adaptation of the first
link on the row-sum can be counterbalanced by the second link. Figure 3.9 depicts
fc versus A/L as red circles for a fixed ratio of P/L = 0.4, 0.6, 1 in panels (a)–(c),
respectively. The blue circles depict the fraction p>1 of networks where all nodes
have at least two incoming links. Obviously, p>1 well approximates fc although
they are not identical indicating that cases exist where the network can be controlled
though one node has less than two adapted incoming links, or where the control fails
although each node has two incoming links. Note that an analytic expression for p>1

can be derived, which yields the blue curves in Fig. 3.9. For details, see Sect. 10.8 in
Ref. [74].
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Fig. 3.9 Control of a subset of links for fixed ratio of a P/L = 0.4, b P/L = 0.6, and c P/L = 1.
Red circles Success rate fc. Blue circles Probability p>1 that no node in the network has less than
2 incoming links which are adapted. Blue line Analytic calculation of p>1 (cf. [74]). K = 0.2. 80
realizations for each value of A/L . Other parameters as in Fig. 3.7



60 P. Hövel et al.

3.4 Summary and Conclusions

We have applied a speed-gradient algorithm to adapt the topology of time-delay
coupled oscillators to control cluster synchronization. The controller minimizes a
goal function that is based on a generalized Kuramoto order parameter. The goal
function is chosen according to the target cluster state, but independent of the ordering
of the nodes. An additional term ensures amplitude synchronization. We find that this
speed-gradient control scheme is very robust with respect to perturbations, different
initial conditions, and coupling parameters. We have focused on the dependence on
the coupling strength and delay time.

We have found that the distribution of link weights of the successfully controlled
network is modulated by the coupling delay. A row-wise discrete Fourier transform of
the coupling matrix gives insight into these delay modulations. Necessary conditions
for the existence of a common radius and a common frequency give rise to restrictions
affecting the first Fourier coefficients, while there is no restriction for the higher
Fourier coefficients. We also found that the stability of the cluster states is only weakly
affected by the higher Fourier coefficients. Thus, we conclude that the higher Fourier
coefficients are mainly dependent on the random initial conditions and are therefore
randomly distributed. On average, the network topology is therefore dominated by
the first Fourier coefficients leading to the observed delay modulation.

Appropriate selection of the first Fourier coefficients leads to cluster states with
a given common frequency. As an example, we have quenched the oscillations in
a Stuart-Landau oscillator. This allows for construction of networks that exhibit a
desired dynamical behavior.

In many real-world networks not all links are accessible to control. Therefore, we
have considered random networks, where we have chosen a random subset of links
to which we applied the adaptation algorithm. The other links remained fixed. We
have found that the control is successful if the number of adapted links is equal or
higher than approximately 30 % of all possible links, independently of the number
of actual fixed links. For practical applications this opens up the possibility to apply
the method more easily.

Since we have considered the paradigmatic Stuart-Landau oscillator as a generic
model of the Hopf bifurcation, we expect broad applicability to control, for instance,
synchronization of networks in medicine, chemistry or mechanical engineering or
as self-organizing mechanisms in biological networks.
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Chapter 4
Controlling Oscillations in Nonlinear
Systems with Delayed Output Feedback

Fatihcan M. Atay

Abstract We discuss the problem of controlling oscillations in weakly nonlinear
systems by delayed feedback. In classical control theory, the objective of the control
action is typically to drive the system to a stable equilibrium. Here we also study the
possibility of driving the system to a stable limit cycle having a prescribed ampli-
tude and frequency, as well as suppressing unwanted oscillations, using partial state
information in the feedback. The presence of the delay in the output feedback turns
out to play a crucial role in achieving these goals.

4.1 Introduction

Controlling the behavior of dynamical systems is a problem of practical importance
in many applications. In classical control theory, the basic goal is usually stated as a
regulator problem, namely, to obtain an asymptotically stable equilibrium solution
which attracts all nearby initial conditions. A more sophisticated aim in oscillation
control can be defined as obtaining a stable periodic solution with desired properties,
such as oscillation at a given amplitude or frequency. We call this goal the oscil-
lator problem. This chapter deals with the oscillator problem under delayed output
feedback.

Feedback delays are an inevitable feature of many natural and man-made control
mechanisms. While they are often seen as an undesired characteristic that can desta-
bilize the system or complicate the analysis, positive uses of delays have also been
studied. These go back to the 1950s [1], followed by other works in later years [2–5],
where delays were used to enhance the system performance in various ways. Most
of the analytical studies have so far focused on linear systems and stability. In the
present chapter we consider feedback laws to control the amplitude and stability of
oscillations in nonlinear systems. Moreover, we consider the problem from an output
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feedback point of view, where only partial information about the state of the system
is available for the feedback control.

The main results we present can be rigorously derived in full generality for weak
nonlinearities, such as for systems near a Hopf bifurcation, which is an important
mechanism for generating oscillations in nonlinear systems. The analysis then starts
by projecting the dynamics onto a center manifold and proceeds by investigating
the resulting two-dimensional system. This general approach for oscillation control
can be found in [6–8]. For the purpose of simplicity, here we will assume that such
a reduction step has already been done and a two-dimensional system has been
obtained. Therefore, we will study systems described by equations of the form

ẍ + ω2x + εg(x, ẋ, ε) = ε f (x(t − τ)). (4.1)

Here x ∈ R, and ω and ε � 1 are positive parameters. The left hand side of (4.1)
describes the dynamics of the system after projection onto a two-dimensional center
manifold corresponding to a pair of imaginary eigenvalues ±iω, whereas the right
hand side represents a feedback of position that is delayed by τ ≥ 0. The feedback
is, at the moment, scaled by the parameter ε so that it has a comparable magnitude
with the nonlinearity g; however, we will relax this assumption in Sect. 4.5 when we
study frequency control.

The form of left hand side of (4.1) is quite general and includes several para-
digmatic systems as special cases, for instance the van der Pol (with g(x, ẋ, ε) =
(x2 − 1)ẋ) and the Duffing oscillators (with g(x, ẋ, ε) = αx + βx3+γ ẋ). Equations
of the form (4.1) also come up in various biological and industrial settings, for
example in the production of proteins [9, 10], orientation control in the fly [11, 12],
neuromuscular regulation of movement and posture [10, 13, 14], acousto-optical
bistability [15], metal cutting [16], vibration absorption [17], and control of the
inverted pendulum [18]. Feedback loops with only partial state information is typical
in many biological control mechanisms. Furthermore, the classical control-theoretic
approach of using an observer to reconstruct the full state is not an option in natural
systems. Hence, it is an interesting and challenging goal to discover the theoretical
basis for control under partial and delayed information.

The regulator and oscillator problems under delayed feedback have been studied
for nonlinear equations of type (4.1) in several previous works. Some of the most
relevant ones for the purposes of this chapter using similar techniques can be listed as
follows. Controlling the amplitude of oscillations was investigated in [19] for the van
der Pol oscillator and later in [20] for more general oscillators (4.1). Controlling the
frequency of oscillations is studied in [6]. Suppressing oscillations in networks has
been treated in [21]. A general study for controlling systems near Hopf bifurcation
using distributed delays is given in [7], and for networks of oscillators in [21].

In the following we will analyze (4.1) and show that the goal of the regulator
problem (stabilizing the zero solution) can be achieved by a linear delayed feedback
of the variable x , and the goal of the oscillator problem (obtaining a stable limit cycle
at a given amplitude and/or modifying its frequency) can be achieved by a nonlinear
feedback function. The conclusion holds for general nonlinearities g and using only
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the feedback of the position x . On the other hand, the presence of a positive delay in
(4.1) turns out to be essential in attaining most of these goals.

4.2 Averaging Theory and Periodic Solutions

For notation, we will use ‖·‖ for the usual Euclidean norm and Dig for the partial
derivative of the function gwith respect to its i th argument.Without loss of generality,
it will be assumed throughout that ω = 1 in (4.1), which can always be achieved by
a rescaling of the time t �→ ωt . Furthermore, it will be assumed that the functions
f : R → R and g : R3 → R are C2, f (0) = 0, and g(0, 0, ε) = 0 for all ε.
The main tool for the analysis of (4.1) will be averaging theory for delay differ-

ential equations. Consider amplitude-phase variables (r, θ) defined by the transfor-
mation

x(t) = r(t) cos(t + θ(t))
ẋ(t) = −r(t) sin(t + θ(t)).

(4.2)

In these new coordinates, (4.1) takes the form

ṙ = ε sin(t + θ)( g − f )

θ̇ = ε
1

r
cos(t + θ)( g − f ),

(4.3)

where the arguments of f and g are expressed in terms of r and θ , i.e.,

g = g (r(t) cos(t + θ(t)),−r(t) sin(t + θ(t)), ε)
f = f (r(t − τ) cos(t − τ + θ(t − τ))).

(4.4)

When ε = 0, the solutions of (4.3) are constants, which correspond by (4.2) to the
usual harmonic oscillations. Thus, (4.3) can be viewed as a time-dependent pertur-
bation of a simple harmonic oscillator in the amplitude-phase variables, which can
be analyzed by the method of averaging for small ε.

Letting y = (r, θ) ∈ R
2, the system (4.3) and (4.4) is a delay differential equation

describing the relation between the instantaneous derivative ẏ(t) and the present and
past values of y(t). A solution y(t) of (4.3) describes a trajectory in the infinite-
dimensional state space C := C([−τ, 0],R2), namely, the Banach space of continu-
ous functionsmapping the interval [−τ, 0] toR2, equippedwith the supremum norm,
‖ f ‖ = sup

x∈[−τ,0]
f (x). A point yt on a trajectory is a piece of the solution function over

an interval of length τ , defined by yt (s) = y(t + s), s ∈ [−τ, 0]. In this notation,
(4.3) can be written as

ẏ(t) = εh(t, yt , ε) (4.5)

where h is periodic in t with period T = 2π . The averaged equation corresponding
to (4.5) is defined as
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ż(t) = εh̄(zt ) (4.6)

where

h̄(ϕ) := 1

T

∫ T

0
h(t, ϕ, 0) dt. (4.7)

In (4.6) zt is understood as a constant element of C. One can intuitively understand
this by noting that y is slowly changing by (4.5), so that yt (s) ≡ y(t)+ O(ε) for s ∈
[−τ, 0], i.e., y is almost constant over an interval of length τ . Thus, (4.6) is an ordinary
differential equation. In this way, averaging reduces the infinite-dimensional system
(4.5) to a finite dimensional one, (4.6). Furthermore, by the averaging theorem,
hyperbolic equilibrium points of (4.6) correspond to hyperbolic periodic solutions
of (4.5), with the same stability type [22].

We now return to our main equation (4.1) and its equivalent formulation (4.3) to
apply averaging theory. We average the equation for r given in (4.3) in the sense of
(4.7) to obtain

ṙ = ε
1

2π

∫ 2π

0
sin(t + θ) g(r cos(t + θ),−r sin(t + θ), 0) dt− (4.8)

ε
1

2π

∫ 2π

0
sin(t + θ) f (r cos(t − τ + θ)) dt.

Here, in accordance with (4.6), r and θ are treated as constants over one period.
With the change of variables u = −(t + θ), and using the fact that the integrand is
2π -periodic in u, the first integral in (4.8) becomes

ε
1

2π

∫ −θ−2π

−θ

(sin u )g(r cos u, r sin u, 0) du.

Similarly, with u = t − τ + θ , the second integral in (4.8) can be written as

− ε
1

2π

∫ 2π+θ−τ

θ−τ

sin(u + τ) f (r cos u) du

= −ε
sin τ

2π

∫ 2π

0
f (r cos u) cos u du − ε

cos τ

2π

∫ 2π

0
f (r cos u) sin u du (4.9)

where we have used the fact that the second integral in (4.9) is zero. Combining, we
see that the averaged equation for r has the form

ṙ = −ε(F(r) + G(r)), (4.10)



4 Controlling Oscillations in Nonlinear Systems with Delayed Output Feedback 69

where

F(r) = sin τ

2π

∫ 2π

0
f (r cos t) cos t dt, (4.11)

G(r) = 1

2π

∫ 2π

0
g(r cos t, r sin t, 0) sin t dt. (4.12)

By the averaging theorem for delay differential equations [22] and the transforma-
tion (4.2), positive hyperbolic equilibria R of (4.10) yield hyperbolic periodic solu-
tions of (4.1) of the form x(t) ≈ R cos t , with the same stability type. In other words,
if R > 0 is such that F(R) + G(R) = 0 and F ′(R) + G ′(R) �= 0, then (4.1) has a
periodic solution which is orbitally asymptotically stable if F ′(R) + G ′(R) > 0, and
unstable if F ′(R) + G ′(R) < 0, as long as ε > 0 is sufficiently small. In this way,
studying nontrivial hyperbolic periodic solutions of (4.1) is reduced to investigating
positive and hyperbolic equilibrium points of (4.10).

The stability argument extends to R = 0 and can be used to deduce the stability
of the zero solution of (4.1). In fact, this can be done directly without resorting to
averaging, but it is interesting to relate the conditions to the averaged quantities (4.11)
and (4.12). Thus, linearization of (4.1) about the zero solution gives the characteristic
equation

Δ(λ, ε) := λ2 + 1 + ε(D1g(0, 0, ε) + λD2g(0, 0, ε)) − ε f ′(0)e−λτ = 0. (4.13)

When ε = 0, there are two roots on the imaginary axis: λ = ±i . By the implicit
function theorem, the roots depend smoothly on ε in a neighborhood of ε = 0, and
implicit differentiation of (4.45) gives

Re[λ′(ε)|ε=0] = −1

2
( f ′(0) sin τ + D2g(0, 0, 0)) (4.14)

= − (
F ′(0) + G ′(0)

)
. (4.15)

Hence, the roots λ move into the left (respectively, right) complex half-plane if
F ′(0) + G ′(0) is positive (resp., negative), and remain there for all sufficiently
small ε > 0, indicating that the zero solution of (4.1) is asymptotically stable if
F ′(0) + G ′(0) > 0 and unstable if F ′(0) + G ′(0) < 0. Thus, the stability of equi-
librium solutions (regulator problem) and periodic orbits (oscillator problem) can be
conveniently expressed within the same framework.

Remark 1 For calculations it is worthwhile to note that F and G defined in (4.11)
and (4.12) are both odd functions of r ; i.e.

F(−r) = −F(r) and G(−r) = −G(r) for all r ∈ R. (4.16)

For details, see [20].
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4.3 Linear Feedback

Classical control theory has been extensively developed for linear systems or their
linearizations at suitable operating points. Hence, it is natural to first consider a linear
feedback law, namely the case when f has the form

f (x) = k1x, (4.17)

for some feedback gain k1 ∈ R. Then by (4.11),

F(r) = 1

2
rk1 sin τ. (4.18)

We first consider the regulator problem of stabilizing of the zero solution. From
(4.14),

Re[λ′(ε)|ε=0] = −1

2
(k1 sin τ + D2g(0, 0, 0)).

We thus immediately obtain that, for small ε > 0, the zero solution of (4.1) is asymp-
totically stable if k1 sin τ > −D2g(0, 0, 0), and unstable if k1 sin τ < −D2g(0, 0, 0).

For periodic solutions, we seek positive fixed points R of the averaged equation
(4.10), i.e., of

ṙ = −ε

(
1

2
rk1 sin τ + G(r)

)
, (4.19)

which gives

k1 sin τ = −2
G(R)

R
. (4.20)

We define the function

Ḡ(r) := G(r)

r
(4.21)

and note that

Ḡ ′(r) = rG ′(r) − G(r)

r2
= 1

r
(G ′(r) − Ḡ(r)). (4.22)

Combining (4.18), (4.20), and (4.21), we have

F ′(R) + G ′(R) = RḠ ′(R).

Therefore, a positive solution R of (4.20) is a fixed point of the averaged equation
(4.10) and its stability is determined only by the sign of Ḡ ′(R). By the averaging the-
orem, such points correspond to periodic solutions of the original equation (4.1) with
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amplitude R, which are orbitally asymptotically stable if Ḡ ′(R) > 0, and unstable if
Ḡ ′(R) < 0, for sufficiently small ε > 0.

Now the important observation is that, for any desired amplitude R > 0, it is
possible to find a feedback gain k1 such that (4.20) is satisfied, provided sin τ �= 0.
Hence, delayed linear feedback can be effective in modifying the amplitude of peri-
odic solutions. The condition sin τ �= 0 shows that a nonzero delay in the feedback is
essential for this task. However, the stability of these periodic solutions depends only
on the function Ḡ, and hence on the nonlinearity g. So, linear feedback is helpful in
solving the oscillator problem only to the extent allowed by the nonlinearity g (for
an example see [19]). On the other hand, linear feedback is effective in the regulator
problem since it can stabilize the zero solution. We illustrate with examples.

Example 2 Consider the celebrated van der Pol oscillator under delayed feedback

ẍ(t) + ε(x2 − 1)ẋ + 1 = εk1x(t − τ). (4.23)

It is well known that the uncontrolled system (k1 = 0) has an attracting limit cycle
solution x(t) ≈ 2 cos t for small ε whereas the origin is unstable. We will show that
we can modify the amplitude of limit cycle oscillations or make the origin stable
by an appropriate choice of feedback gain k1. Now, (4.23) has the form (4.1) with
g(x, ẋ, ε) = (x2 − 1)ẋ and f (x) = k1x . The averaged quantities are

G(r) = 1

2
r

(
r2

4
− 1

)
(4.24)

and F as in (4.18); so the averaged equation for (4.23) is

ṙ = −ε
r

2

(
r2

4
− 1 + k1 sin τ

)
. (4.25)

This equation has a fixed point at zero, and another one at r = R = 2
√
1 − k1 sin τ

if k1 sin τ < 1. We have Ḡ ′(r) = r/4, which is clearly positive for all r > 0; so the
fixed point R is stable whenever it exists. Therefore, for 0 < ε � 1, (4.23) can have
a stable periodic solution with amplitude approximately R = 2

√
1 − k1 sin τ . In the

absence of feedback, i.e., when k1 = 0, we recover the familiar periodic solution
x(t) ≈ 2 cos t of (4.23), but we also see that we can set the amplitude arbitrarily by
changing k1. Moreover, by choosing k1 sin τ > −D2g(0, 0, 0) = 1, the limit cycle
oscillations can be destroyed and the origin can be made stable. Both situations are
depicted in Fig. 4.1.

Example 3 Wemake a small modification to the van der Pol oscillator of Example 2
and consider the nonlinearity g with reversed sign, i.e., g = −(x2 − 1)ẋ , again with
linear delayed feedback:

ẍ(t) − ε(x2 − 1)ẋ + 1 = εk1x(t − τ). (4.26)
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Fig. 4.1 Van der Pol oscillator under delayed feedback. Choosing a feedback gain of k1 = 0.75
reduces the amplitude of limit cycle oscillations to 1 (blue curve), whereas increasing the gain to
k1 = 2 destroys the limit cycle and stabilizes the equilibrium point (black curve). Parameter values
τ = π/2 and ε = 0.1; random initial conditions

Now the averaged equation becomes

ṙ = −ε
r

2

(
1 − r2

4
+ k1 sin τ

)
, (4.27)

which has a positive fixed point at R = 2
√
1 + k1 sin τ if k1 sin τ > −1. As before,

the amplitude of periodic solutions can be changed by appropriate choice of k1 and
τ . However, these solutions are all unstable because Ḡ ′(R) = −R/4 < 0. Thus, in
this case the nonlinearity g does not allow the linear feedback to set up stable limit
cycle oscillations at any amplitude R. (Note that the origin is locally stable as long as
k1 sin τ > −D2g(0, 0, 0) = −1.) In the next section we shall show how to overcome
this limitation by adding a nonlinear term to the feedback function.

4.4 Nonlinear Feedback

As we have seen in Sect. 4.3, linear feedback is sufficient for the regulator problem
but in general not for the oscillator problem. Therefore, we now turn to nonlinear
feedback schemes.We show that, by adding a cubic term to the feedback function, the
possibility of controlling oscillations through delayed feedback is greatly improved.

We consider a feedback function of the form

f (x) = k1x + k3x
3. (4.28)
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We will show that the coefficients ki can be chosen so that the averaged equation
(4.10) has a stable equilibrium point at a desired value R.

The averaged function F corresponding to (4.28) is also a cubic polynomial,

F(r) = q1r + q3r
3, (4.29)

with

q1 = 1

2
k1 sin τ and q3 = 3

8
k3 sin τ . (4.30)

Consequently,
F(r) + G(r) = r(q1 + q3r

2 + Ḡ(r)), (4.31)

where the function Ḡ is defined in (4.21). Now let R > 0 be given. We will choose
q1 in a suitable manner, to be described shortly, and define q3 in terms of q1 as

q3 = −q1 − Ḡ(R)

R2
. (4.32)

With this choice of q3, it follows from (4.31) that F(R) + G(R) = 0; so, R is an
equilibrium point of the averaged equation (4.10). We will choose q1 to ensure that
R is a stable equilibrium, i.e., F ′(R) + G ′(R) > 0. From (4.31),

F ′(R) + G ′(R) = R(2Rq3 + Ḡ ′(R)), (4.33)

which is positive provided

q3 > − Ḡ ′(R)

2R
. (4.34)

Using (4.34) in (4.32), the condition on q1 is found as

q1 <
1

2
RḠ ′(R) − Ḡ(R). (4.35)

From conditions (4.34) and (4.35), the feedback coefficients of (4.28) can then
be calculated, using (4.30), as k1 = 2q1(sin τ)−1 and k3 = 8q3(3 sin τ)−1, whenever
sin τ �= 0. We thus have a procedure for feedback design to create a stable periodic
solution with a prescribed amplitude R: First choose k1 and/or τ so that

k1 sin τ < RḠ ′(R) − 2Ḡ(R). (4.36)

Subsequently, calculate k3 through the formula

k3 = − 8

3R2

(
1

2
k1 + Ḡ(R)

sin τ

)
. (4.37)
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Then, for all sufficiently small ε > 0, the nonlinear feedback (4.28) ensures that the
system (4.1) has an asymptotically orbitally stable periodic solutionwhose amplitude
is R + O(ε). By a similar reasoning it can be seen that, by reversing the inequality
in (4.36), one obtains an unstable periodic solution with amplitude R + O(ε).

Example 4 We consider the modified van der Pol equation of Example 3, this time
with a nonlinear feedback:

ẍ(t) − ε(x2 − 1)ẋ + 1 = εk1x(t − τ) + εk3x
3(t − τ). (4.38)

The averaged equation is

ṙ = −ε
r

2

(
1 − r2

4
+ k1 sin τ + 3r2

4
k3 sin τ

)
, (4.39)

which has the positive fixed point

r = R = 2

√
1 + k1 sin τ

1 − 3k3 sin τ
(4.40)

whenever the radicand is positive. Furthermore,

RḠ ′(R) − 2Ḡ(R) = − R2

4
− 2

(
1

2
− R2

8

)
= −1;

so, choosing k1 sin τ < −1 satisfies (4.36) and ensures that the fixed point R is
stable. Formula (4.37) then determines the remaining coefficient k3. For instance, if
it is desired to create stable oscillations at an amplitude of R = 3 with τ = π/2, we
can choose, e.g., k1 = −2, and find k3 = 13/27 from (4.40). Figure4.2 shows the
resulting limit cycle.

Remark 5 One may wonder why we have chosen to add a cubic term in (4.28).
We note that if f is an even function, then (4.11) gives F(−r) = F(r), so that, in
view of (4.16), one has F(r) ≡ 0. Hence, F only depends on the odd part fo(x) =
1
2 ( f (x) − f (−x)) of f . Since for small ε the dynamics of (4.1) is determined by
G and F , there is no loss of generality in assuming that f is an odd function. In
this sense, (4.28) represents the simplest nonlinear feedback function (at least in the
ring of polynomials). Together with the results of the previous section, it is seen that
simple delayed feedback schemes can be quite powerful in oscillation control.
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Fig. 4.2 Themodified van der Pol oscillator (4.38) under nonlinear feedback exhibiting stable limit
cycle oscillations at the prescribed amplitude 3. Parameter values are τ = π/2, ε = 0.1, k1 = −2,
and k3 = 0.48; random initial conditions

4.5 Controlling the Frequency of Oscillations

The results of the foregoing sections indicate that the control law (4.28) can be
effective for controlling the stability of periodic solutions as well as specifying their
amplitude. However, so far we have not discussed controlling the frequency of the
oscillations. For this latter goal, it turns out that the feedback magnitude in (4.1)
needs to be modified. Namely, we need to relax the assumption that the forcing term
on the right hand side of (4.1) is of order ε. Therefore, we will now consider the
slightly modified equation

ẍ + x + εg(x, ẋ, ε) = f (x(t − τ)). (4.41)

The reason for this change of right hand side can be understood as follows. The
previous system (4.1) was viewed as an ε-perturbation of a simple harmonic oscil-
lator. There, by using a suitable feedback function, we were able to create a stable
limit cycle at a prescribed amplitude because the harmonic oscillator has periodic
solutions of all amplitudes. However, all these solutions have the same frequency 1.
Therefore, forcing the system with a feedback magnitude of order ε cannot change
the frequency appreciably. In the case of (4.41), however, the unperturbed system

ẍ + x = f (x(t − τ)). (4.42)

is no longer the simple harmonic oscillator; in fact, it is not a planar system anymore
if τ �= 0. This may offer more possibilities for choosing a desired periodic solution
at a certain amplitude and frequency. The price to be paid is that (4.42) is an infinite-
dimensional system.
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We can proceed in a similar way using averaging theory and the insight gained
from the previous sections. From Sect. 4.4 we know that a cubic function of the form
f (x) = ε(k1x + k3x3) can be used in (4.42) to control amplitude of oscillations, and
we have observed that we would need a feedback term of higher magnitude if we are
to have any hope of modifying frequencies significantly. We are therefore naturally
led to trying the following feedback form

f (x) = kx + ε(k1x + k3x
3) (4.43)

in (4.41).
With the choice (4.43) and small ε, (4.41) can be viewed as an perturbation of the

linear system
ẍ + x = kx(t − τ). (4.44)

Just like for the harmonic oscillator, we would like to know what variety of stable
periodic solutions (4.44) has. For this purpose we seek purely imaginary solutions
of the corresponding characteristic equation

χ(λ) := λ2 + 1 − ke−λτ = 0. (4.45)

The following result summarizes the frequency range about such solutions; for a
proof see [6].

Lemma 6 ([6]) Let Ω ∈ (
√
2/5,

√
2) and k = Ω2 − 1. Let τ be an arbitrary non-

negative number ifΩ = 1, otherwise let τ = π/Ω . Then the characteristic equation
(4.45) has precisely two roots λ = ±iΩ on the imaginary axis and no roots with
positive real parts.

Thus, unlike the simple harmonic oscillator which has periodic solutions only with a
single frequency, (4.44) has periodic solutionswith a range of frequencies in the inter-
val (

√
2/5,

√
2). Coming from a linear equation, these solutions can have arbitrary

amplitudes since anymultiple of a solution is also a solution.We are now in a familiar
setting: after fixing one of these frequencies by choosing k as in the above Lemma,
we can addO(ε) terms to the feedback to account forO(ε) nonlinearities in order to
obtain stable limit cycles in (4.41) with a prescribed amplitude. In other words, we
activate the coefficients k1 and k2 in the feedback law (4.43). We note, however, that
the calculation of the averaged equations involves quite a different technique than
the previous sections, namely the projection of the dynamics of (4.41) onto a center
manifold corresponding to the roots λ = ±iΩ of the characteristic equation (4.45).
As the theory of center manifold reduction for delay differential equations is beyond
our scope here, we refer the interested reader to [6] for details. The important thing
to note is that the averaged quantities Fand G are now given by
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F(r) = 1

2π

4Ω sin(Ωτ) − 2τ
(
1 − Ω2

)
cos(Ωτ)

τ 2(1 − Ω2)2 + 4Ω2

∫ 2π

0
cos t f (r cos t) dt (4.46)

G(r) = 1

2π

∫ 2π

0

4Ω sin t + 2τ
(
1 − Ω2

)
cos t

τ 2(1 − Ω2)2 + 4Ω2
g (r cos t,Ωr sin t, 0) dt (4.47)

instead of (4.11) and (4.12). With this change, the averaged equation still has the
form (4.10) and the stability of its fixed points can be calculated as before.

More concretely, a nonlinear feedback function (4.43) can be constructed as fol-
lows: Given amplitude R > 0 and frequency Ω ∈ (

√
2/5,

√
2), take k = Ω2 − 1,

and choose τ = π/Ω if Ω �= 1 (see Lemma 6) or take any τ such that sin τ �= 0 if
Ω = 1. For O(ε) linear and cubic terms (4.28) in the feedback, (4.46) gives

F(r) = 1

2
γ k1r + 3

8
γ k3r

3, (4.48)

where

γ = 4Ω sin(Ωτ) − 2τ
(
1 − Ω2

)
cos(Ωτ)

τ 2(1 − Ω2)2 + 4Ω2
, (4.49)

which has a form similar to (4.29) with γ replacing sin τ . As in Sect. 4.4, choose
the feedback coefficient k1 satisfying (4.36) and determine k3 through the formula
(4.37), this time using (4.47) and (4.48) to calculate G and F . This determines all
the feedback coefficients in (4.43). Then the averaging theorem yields that, for all
sufficiently small ε > 0, the system (4.41) under the nonlinear feedback (4.43) has
an asymptotically orbitally stable periodic solution of the form x(t) ≈ R cos(Ωt).

Remark 7 Recall that, by our standing assumption, time is rescaled in (4.41) so that
the uncontrolled system ( f ≡ 0) has frequency 1 in the rescaled time. Thus, the fact
that the feedback term can set the frequency of the limit cycle to anyΩ ∈ (

√
2/5,

√
2)

implies that it can reduce the frequency of the uncontrolled oscillator by as much as
about 37% or increase it by about 41%.

Example 8 We return to the van der Pol oscillator used in Example 2, this time with
the aim of changing both the frequency and amplitude of oscillations by delayed
linear feedback. The controlled system is given by

ẍ(t) + ε(x2 − 1)ẋ + 1 = (k + εk1)x(t − τ). (4.50)

From g(x, ẋ, ε) = (x2 − 1)ẋ and (4.47) we calculate

G(r) = 4Ω2

τ 2(1 − Ω2)2 + 4Ω2
× r

2

(
r2

4
− 1

)

(compare with (4.24)), and from (4.48) and (4.49) we have F(r) = 1
2γ k1r . IfΩ �= 1

and τ is to be chosen according to Lemma 6 as τ = π/Ω , then (4.49) simplifies to
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γ = 2πΩ
(
1 − Ω2

)

π2(1 − Ω2)2 + 4Ω4
,

and the averaged equation (4.10) becomes

ṙ = −ε
Ω4

π2(1 − Ω2)2 + 4Ω4
× r

2

(
r2 − 4 + 2π

(
1 − Ω2

)

Ω3
k1

)
.

There exists a positive fixed point

R =
√
4 − 2π

(
1 − Ω2

)
k1/Ω3 , (4.51)

provided the radicand is positive. Note that Ḡ ′(r) > 0 for all r > 0, as in Example 2,
so R is a stable fixed point. From (4.51) the value of k1 can be determined as

k1 = Ω3(4 − R2)

2π
(
1 − Ω2

) (4.52)

for given values of R andΩ . For instance, to create a stable limit cycle at about 75%of
the frequency (Ω = 3/4) and twice the amplitude (R = 4) of the uncontrolled van der
Pol oscillator, we calculate k = Ω2 − 1 = −7/16 and τ = 4π/3 from Lemma 6 and
k1 = −81/14π from (4.52). Figure4.3 shows the resulting limit cycle oscillations
obtained for ε = 0.01 and random initial conditions.
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Fig. 4.3 Van der Pol oscillator of Example 8 exhibiting stable limit cycle oscillations at reduced
frequency and increased amplitude
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4.6 Conclusion

We have shown how delayed output feedback can be effectively used in the control
of oscillatory behavior in weakly nonlinear systems. While the local stability of an
equilibrium solution can be studied through a linear stability analysis, controlling
periodic behavior in general requires nonlinear techniques. Here we have seen that
linear feedback is capable of stabilizing the zero solution. Moreover, by adding
nonlinear terms to the feedback function, it is possible to create stable limit cycle
oscillations with any prescribed amplitude. In addition, delayed feedback can also
modify the frequency of oscillations to a certain extent. In many cases these feats
cannot be accomplished by undelayed feedback of position, exhibiting a positive use
of delays in control.
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Chapter 5
Global Effects of Time-Delayed Feedback
Control Applied to the Lorenz System

Anup S. Purewal, Bernd Krauskopf and Claire M. Postlethwaite

Abstract Time-delayed feedback control was introduced by Pyragas in 1992 as
a general method for stabilizing an unstable periodic orbit of a given continuous-
time dynamical system. The analysis of Pyragas control focused on its application
to the normal form of a subcritical Hopf bifurcation, and it was initially concerned
with stabilization near the Hopf bifurcation. A recent study considered this normal
form delay differential equation model more globally in terms of its bifurcation
structure for any values of system and control parameters. This revealed families of
delay-induced Hopf bifurcations and secondary stability regions of periodic orbits.
In this contribution we show that these results for the normal form are relevant
in an application context. To this end, we present a case study of the well-known
Lorenz system subject to Pyragas control to stabilize one of its two (symmetrically
related) saddle periodic orbits. We find that, for a suitably chosen value of the 2π -
periodic feedback phase, the controlled Hopf normal form describes qualitatively
the bifurcation set and relevant stability regions that exist in the controlled Lorenz
system down to the homoclinic bifurcation where the target saddle periodic orbit
is born. In particular, there are secondary stability regions of periodic orbits in the
Lorenz system. Finally, the normal form also describes correctly the effect of a delay
mismatch.

5.1 Introduction

The control of unstable dynamics has been an area of significant research in recent
years [1–4]. The control or stabilization of unstable periodic orbits, which occur
naturally in many nonlinear dynamical systems, has been a particular focus [5–9],
and a number of control schemes have been designed for this purpose. These include
notably themethod byOtt et al. [7] and time-delayed feedback control introduced by
Pyragas [8, 10–12]—the subject of this investigation. The Pyragas control scheme
adds a continuous time-delayed feedback term to the system to be stabilised, which
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drives the dynamics to the target unstable periodic orbit. More formally, consider a
system of autonomous ordinary differential equations (ODEs)

ẏ(t) = g(y(t), μ), (5.1)

where y ∈ R
n , g : Rn × R

m �→ R
n is a smooth function and μ ∈ R

m is a vector of
scalar parameters. Suppose (5.1) has an unstable periodic orbit � with the (parameter
dependent) period T (μ). Adding Pyragas control to (5.1) gives

ẏ(t) = g(y(t), μ) + K [y(t − τ) − y(t)],
τ = T (μ).

(5.2)

A control force is generated from the difference between the two signals y(t) and
y(t − τ), where τ is set to the period T (μ) of the target periodic orbit �; the actual
feedback is determined by the n × n feedback gain matrix K . If the control is suc-
cessful the feedback signal becomes smaller as� is approached and, at�, it becomes
zero. Hence, the Pyragas control scheme is non-invasive.

Pyragas control has been implemented successfully in a number of applications,
including laser [13, 14], electronic [15, 16] and engineering [17, 18] systems. The
control scheme has also been modified to include spatial feedback [19, 20] and to
control synchronization in coupled systems [21]. Recently, Postlethwaite et al. [22]
and Schneider and Bosewitz [23] have extended the standard Pyragas scheme to
systems with symmetries, which allows for the selection and stabilization of peri-
odic solutions via their spatio-temporal pattern; this extension is particularly useful
for stabilizing periodic orbits of networks. For a comprehensive review of Pyragas
control and its various applications and extensions see [24] and the references therein.

It is important to realise that system (5.2) with Pyragas control is a delay differen-
tial equation (DDE) with a single fixed delay τ , rather than an ODE. For a DDE such
as (5.2), a continuous function φ(t) on the interval [−τ, 0] must be specified as an
initial condition [25], meaning that its phase space is the infinite dimensional space
C([−τ, 0];Rn) of continuous functions from [−τ, 0] intoRn . For DDEs with a finite
number of fixed delays any equilibrium has at most a finite number of unstable eigen-
values; similarly, any periodic solution has at most a finite number of Floquet mul-
tipliers outside of the unit circle in the complex plane [25, 26]. Therefore, standard
bifurcation theory (as known for ODEs) applies to DDEs such as (5.2); in particular,
one finds the usual codimension-one bifurcations: saddle-node, Hopf, saddle-node
of limit cycle (SNLC), period-doubling and torus (Neimark-Sacker) bifurcations.
On the other hand, it is quite difficult to study a DDE analytically, and a number of
numerical tools have been specifically designed for their bifurcation analysis [27].
Throughout this work, we use the package DDE-Biftool [28, 29], which is imple-
mented in Matlab and allows for the numerical continuation of equilibria, periodic
orbits and their bifurcations of codimension one.
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Most of the analysis of Pyragas control has concentrated on its application to the
subcritical Hopf normal form

ż = (λ + i)z(t) + (1 + iγ )|z(t)|2z(t) + b0e
iβ[z(t − τ) − z(t)], (5.3)

introduced by Fiedler et al. [30]. Here z = x + iy ∈C and λ, γ ∈R. The com-
plex number b0eiβ is the feedback gain, with feedback strength b0 ∈ R and 2π -
periodic phase β. System (5.3) has a Hopf bifurcation at λ = 0, denoted
HP, where an unstable periodic orbit �P bifurcates from the origin (which is always
an equilibrium). The periodic orbit �P exists for λ < 0; it has amplitude

√−λ and
period

T (λ) = 2π

1 − γ λ
, (5.4)

which is used in (5.3) by setting τ = T (λ). The analysis in [30] provided a coun-
terexample to the so-called odd-number limitation [31], which states that the Pyragas
scheme cannot stabilize periodic orbits with an odd number of Floquet multipliers.
Subsequently, system (5.3) has become the standard example for the analysis of Pyra-
gas control [23, 32–35]. Initially, the analysis was concerned with the stabilization
of the target periodic orbit �P near the Hopf bifurcation. Fiedler et al. [30] found
that for small values of feedback gain b0 the target periodic orbit �P is stabilized in
a transcritical bifurcation with a stable delay-induced periodic orbit. Just et al. [34]
found that immediately above the threshold level of feedback strength

bc0 = −1

2π(cosβ + γ sin β)
, (5.5)

the periodic orbit �P bifurcates stably from HP; the local bifurcation diagram near
the point bc0 on HP was presented in [32].

In [36] we presented a detailed global bifurcation analysis of (5.3) throughout
the parameter space, that is, well beyond a neighbourhood of the subcritical Hopf
bifurcation. It revealed an overall structure with infinitely many delay-induced Hopf
bifurcations and further bifurcations, including saddle-node of limit cycle and torus
bifurcations. The overall domain of stability of the target periodic orbit was identified
in parameter space, and we also found regions of stability of secondary periodic
orbits. In other words, one must carefully choose parameter values to ensure that the
control scheme is successful.

The question arises whether these global findings for the normal form system
(5.3) have predictive power for any other system with a subcritical Hopf bifurcation.
Indeed, normal form theory states that this will be the case, and Pyragas control will
be successful, in the direct vicinity of the Hopf bifurcation. However, it is unclear
a priori whether and how the overall bifurcation structure discussed in [36], away
from the initial Hopf bifurcation, manifests itself in another context.

To address this question, we perform here a bifurcation analysis of the Lorenz sys-
tem subject to Pyragas control to stabilize one of its saddle-periodic orbits. Postleth-
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waite and Silber [37] considered this system near its subcritical Hopf bifurcation and
found that the mechanism of stabilization is the same as that for (5.3). Furthermore,
Brown [38] showed that, close to the Hopf bifurcation, applying feedback directly
to the Lorenz system is equivalent to applying feedback to the system after it has
been reduced to the Hopf normal form. In other words, the dynamics locally near the
Hopf bifurcation are the same for both ways of applying delayed feedback control.

These results form the starting point of our investigation into the global bifurcation
structure of the Lorenz system with Pyragas control. We present one- and two-
parameter bifurcation diagrams of the controlled Lorenz DDE and compare them
directly with those of (5.3). We identify the overall domain of stability of the target
periodic orbit in the controlled Lorenz system; it agrees well with that for the normal
form when the feedback phase is chosen appropriately. Moreover, we find several
domains of stability of further delay-induced periodic orbits; these exist between the
subcritical Hopf bifurcation and the homoclinic bifurcation where the periodic orbit
is created. Lastly, we also consider the effects of a delay mismatch in the Lorenz
system subject to Pyragas control, where the delay τ is not exactly the period of
the target periodic orbit. As for the controlled Hopf normal form, at least a linear
approximation of the target period is required for Pyragas control to be successful.
Overall, we conclude that the global bifurcation structure of the normal form (5.3)
must be considered as relevant in an application context.

This contribution is organized as follows. Section5.2 describes how Pyragas con-
trol is implemented in theLorenz system. Section5.3 presents the bifurcation analysis
of the Lorenz system and compares it with that of theHopf normal form. In Sect. 5.3.1
we recall from [36] the bifurcation set of (5.3) in the (λ, b0)-plane. The bifurcation
set of the controlled Lorenz system in the corresponding (ρ, b0)-plane is presented
in Sect. 5.3.2 for the standard values of the parameters; we illustrate the local nature
of the control in Sect. 5.3.3 and investigate the influence of the feedback phase in
Sect. 5.3.4. The effect of a delay mismatch is discussed briefly in Sect. 5.4. Some
conclusions can be found in Sect. 5.5.

5.2 The Controlled Lorenz System

The Lorenz equations were derived by Lorenz [39] as a simplified model of thermal
convection in the atmosphere; they take the form

ẋ(t) = σ(y(t) − x(t)),

ẏ(t) = ρx(t) − y(t) − x(t)z(t),

ż(t) = −αz(t) + x(t)y(t).

(5.6)

Note that we use α, rather than the standard β, in the third equation of (5.6) to
avoid confusion with the feedback phase β of (5.3). System (5.6) is perhaps the most
famous example of a chaotic system. In particular, the well-known butterfly-shaped
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Lorenz attractor can be found for the classical parameter values σ = 10, α = 8
3 and

ρ = 28.
System (5.6) is most often studied for the parameter regime σ = 10, α = 8

3 and
ρ > 0, that is, ρ is taken as the primary bifurcation parameter; this choice is also
adopted here. The origin is always an equilibrium; it is stable for ρ < 1 and it loses
stability in a supercritical pitchfork bifurcation at ρ = 1. For ρ > 1, there exist the
two further equilibria

p± =
(
±√

α(ρ − 1),±√
α(ρ − 1), ρ − 1

)
, (5.7)

which are each other’s counterparts under the symmetry (x, y, z) → (−x,−y, z) of
the Lorenz system. The equilibria p± lose stability in a subcritical Hopf bifurcation at

ρH = σ(σ + α + 3)

(σ − α − 1)
≈ 24.7368, (5.8)

for σ = 10 and α = 8
3 . For ρ > ρH , the equilibria p± are saddle points. From the

Hopf bifurcation atρH emanate two saddle periodic orbits�±, which exist forρhom <

ρ < ρH ; at ρhom ≈ 13.926 the two periodic orbits disappear (for decreasing ρ) in a
homoclinic bifurcation of the origin. This homoclinic bifurcation is also referred to as
a homoclinic explosion point [40], and it is the source of the complicated dynamics
exhibited in the Lorenz system. This type of dynamics is initially not attracting but of
saddle type until, at ρ = ρhet ≈ 24.0579, there is a heteroclinic connection between
the origin and�±. This heteroclinic bifurcation creates the chaotic attractor; for more
information on this transition see, for example, [40–42] and references therein.

We apply Pyragas control to the Lorenz system in the manner first suggested by
Postlethwaite and Silber [37] to stabilize the periodic orbit �P = �+ that bifurcates
from the positive secondary equilibrium p+ at the Hopf bifurcation given by (5.8)
and is also denotedHP. After a coordinate transformation thatmoves p+ to the origin,
the Lorenz system takes the form

u̇(t) = σ(v(t) − u(t)),

v̇(t) = u(t) − v(t) − (ρ − 1)w(t) − (ρ − 1)u(t)w(t),

ẇ(t) = α(u(t) + v(t) − w(t) + u(t)v(t)).

(5.9)

When the Pyragas control term is added to (5.9) the system becomes

⎛

⎝
u̇(t)
v̇(t)
ẇ(t)

⎞

⎠ = J (ρ)

⎛

⎝
u(t)
v(t)
w(t)

⎞

⎠ +
⎛

⎝
0

−(ρ − 1)u(t)w(t)
αu(t)v(t)

⎞

⎠ + Π

⎛

⎝
u(t − τ) − u(t)
v(t − τ) − v(t)
w(t − τ) − w(t)

⎞

⎠ ,

(5.10)
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where

J (ρ) =
⎛

⎝
−σ σ 0
1 −1 −(ρ − 1)
α α −α

⎞

⎠ (5.11)

and the feedback gain matrix Π is yet undetermined.
Close to the Hopf bifurcation point HP, the target unstable periodic orbit �+ lies

on the two-dimensional centre manifold with an extra stable direction. One approach
to applying Pyragas feedback would be to reduce the uncontrolled three-dimensional
Lorenz system (5.9) to a two-dimensional system that governs the dynamics on the
centre manifold. A normal form transformation (up to the cubic term) would then
remove all nonlinear terms except the one that is proportional to |z|2z, which is
the cubic term of the Hopf normal form. Thereby, the reduced system would be in
Hopf normal form as in Eq. (5.3). Pyragas feedback control could then be applied
to this system in exactly the same way as for the normal form case. However, it is
unpractical from an application point of view to perform this reduction to normal
form for every system to which one would like to apply Pyragas control—especially
in an experimental setting, where the governing equations may even be unknown.

Here we consider the alternative approach of applying the Pyragas scheme, where
feedback control is added to the original system but only applied in the respec-
tive unstable directions. This is achieved by defining the feedback gain matrix Π

in (5.10) as
Π = EGE−1, (5.12)

where

G =
⎛

⎝
0 0 0
0 b0 cos η −b0 sin η

0 b0 sin η b0 cos η,

⎞

⎠ (5.13)

and E is the matrix of eigenvectors that puts J (ρH ) in Jordan normal form, that is,

E−1 J (ρH )E =
⎛

⎝
μS

H 0 0
0 0 −ωH

0 ωH 0

⎞

⎠ . (5.14)

The matrix G corresponds to the feedback gain of the Hopf normal form (applied to
the last two coordinates), where b0 ∈ R is the control amplitude with the convention
that b0 ≥ 0. The parameter η is the 2π -periodic feedback phase. Note that, for ease
of comparison later, we use the symbol η instead of the standard β as in the Hopf
normal form case. Namely, due to the coordinate transformation (5.12), choosing a
value of η in (5.13) is not the same as choosing the same value of β in (5.3). This is
of course also true for the parameter b0; however, since b0 undergoes only a linear
scaling, we use the same symbol for simplicity. Finally, conjugation with the matrix
E ensures that the feedback is applied only in the centre eigenspace; a more detailed
explanation for this choice of feedback gain can be found in [37].
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A key ingredient of Pyragas control is a priori knowledge of a functional form of
the period of the target periodic orbit in the underlying ODE, which needs to be set
as the delay τ of the feedback term. As is the case for most nonlinear systems, and in
contrast to the normal form, for theLorenz system (5.6) there is no analytic expression
for the period of the target period orbit �+. Therefore, we proceed as in [37] by
taking advantage of the fact that �+ and its period can be continued numerically.
More specifically, for fixed σ = 10 and α = 8

3 we continue �+ in the parameter ρ in
the interval ρhom < ρ < ρH where �+ exists; this single computation for the ODE
(5.6) can be performed, for example, with the package AUTO [43]. The resulting
data set forms the basis for defining T (ρ) over the extended range ρhom < ρ. Very
close to the homoclinic bifurcation at ρhom ≈ 13.926, where numerical continuation
becomes difficult, we use the approximation T (ρhom) = −0.974 log(ρ − ρhom) to
represent the period of �+ going to infinity at the homoclinic bifurcation. Moreover,
for ρH < ρ we extrapolate the data set with the function

T (ρ) = TH

1 + 0.0528(ρ − ρH )
, (5.15)

where TH ≈ 0.6528 is the period of �+ at the Hopf bifurcation at ρH ≈ 24.7368.
Taking a spline through the overall data set ensures that the thus defined function
T (ρ) is continuous and has a continuous first derivative for all ρhom < ρ, and we set
τ = T (ρ) in (5.10).

5.3 Global Bifurcation Analysis

We now compare the bifurcation set and stability regions of equilibria and periodic
solutions of the controlled Lorenz system (5.10) in the (ρ, b0)-plane with those of
the controlled Hopf normal form (5.3) in the (λ, b0)-plane.

5.3.1 Bifurcation Set of the Controlled Hopf Normal Form

Figure5.1 illustrates how the initially unstable periodic orbit of the controlled Hopf
normal form (5.3) is stabilized in a transcritical bifurcation when the feedback
strength b0 is chosen below bc0; here we consider the standard choice of γ = −10
and β = π

4 for the other parameters. Panel (a) shows the one-parameter bifurcation
diagram in λ. The origin, that is, the equilibrium solution, appears along the bottom
axis; it is initially stable before becoming unstable at the Hopf bifurcation point
HP. The unstable periodic orbit �P bifurcates from the point HP. The addition of
feedback induces a further Hopf bifurcation HL, from which a stable periodic orbit
�L bifurcates. The periodic orbits �P and �L exchange stability at the transcritical
bifurcation TC. Thus, the target periodic orbit �P is stabilized for λ-values below
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Fig. 5.1 Stabilization of the target periodic orbit�P of (5.3) forb0 = 0.022. Panel (a) shows the one-
parameter bifurcation diagram in λ with the Hopf bifurcation points HP (black dot) and HL (black
dot); the bifurcating periodic orbits �P (green) and �L (red) exchange stability at the transcritical
bifurcation TC (black square); solid (dashed) curves represent stable (unstable) periodic orbits.
Panels (b) and (c) show �P and �L , respectively, in projection onto the (x, y)-plane, in color when
stable, grey when unstable, and black at TC. Here γ = −10 and β = π

4

TC. This exchange of stability is illustrated further in Fig. 5.1b, c with a selection of
periodic orbits from the families �P and �L . The respective periodic orbit is unstable
when shown in grey and stable when shown in colour; the origin from which they
bifurcate is marked with a black dot. The thicker black periodic orbit is the one at the
transcritical bifurcation TC, which is common to both families. Note that all periodic
orbits of the contolled Hopf normal form (5.3) are exact circles.

Figure5.2 shows the bifurcation set in the two-parameter (λ, b0)-plane of (5.3),
which will serve as a benchmark for comparison with the corresponding bifurcation
set of the controlled Lorenz system. Figure5.2a shows an overview of the (λ, b0)-
plane; its lower boundary is b0 = 0 and its left-hand boundary is at λ = 1

γ
= −0.1,

where the delay τ in (5.4) goes to infinity and becomes undefined. The Hopf bifur-
cation HP is the vertical line at λ = 0. It is intersected at the point bc0 by the Hopf
bifurcation curve HL, which actually forms a loop that intersects the curve HP again
at the double-Hopf bifurcation point HH0; here the origin has two pairs of purely
imaginary eigenvalues [44]. Both ends of HL extend to the special point b∗

0 on the
left boundary of the (λ, b0)-plane. In addition to HL there exist further delay-induced
Hopf bifurcation curves, which can be split into two distinct families, Hk

J and Hk
R.

All of these curves of Hopf bifurcation emerge from the point b∗
0. Each curve in the

family Hk
J has a J-shape with a vertical asymptote for a specific value of λ, while

curves in Hk
R extend to infinity in both λ and b0.

As is indicated by blue shading in Fig. 5.2, to the left of HP the origin (the equi-
librium) is stable in the region below the envelope formed by the curves HL and Hk

J ;
to the right of HP it is stable in the region bounded by HL. Note that, since only some
of the curves Hk

J are shown, this stability region is approximated near the left-hand
boundary of the (λ, b0)-plane by the line b0 = 0.35.
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Fig. 5.2 Bifurcation set in the (λ, b0)-plane of (5.3) for λ > 1/γ , showing the curves of Hopf
bifurcation HP (green), HL, Hk

J and H
k
R (red), transcritical bifurcation TC (purple), torus bifurcation

T0
P (grey) and T1

J (black), and SNLC bifurcation SkJ (blue); also shown are points of double Hopf
bifurcation HHk (dark green dots) and HHk

D (violet dots), of degenerate Hopf bifurcation DHL and
DHk (asterisks), and of 1 :1 resonance R1 (green dot); notice also the point bc0 (black dot) on the
curve HP. The stability region of the origin is indicated by blue shading, and regions where periodic
orbits are stable are shaded grey. Panel (a) provides an overview of the (λ, b0)-plane, and panels (b)
and (c) are enlargements near the stability regions of �P and �1

J , respectively. Here γ = −10 and
β = π

4

Above the point HH0 the target periodic orbit �P bifurcates unstably from HP,
because it has an additional complex conjugate pair of unstable Floquet multipliers.
Between the points bc0 and HH0, on the other hand, �P bifurcates stably from HP

for decreasing λ. As we have already seen in Fig. 5.1, the stability region of �P
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is bounded, for b0 below bc0, by a transcritical bifurcation. In fact, the transcritical
bifurcation curve TC emerges from the point bc0 and ends at the left-hand boundary of
the (λ, b0)-plane at b0 = 0. The left-hand boundary of the stability region is formed
by a torus bifurcation curve T0

P, which starts at HH0 and ends on the transcritical
bifurcation curve TC at the 1 :1 resonance point R1; this right-most part of the curve
TC forms the lower boundary of the domain of stability of the target periodic orbit�P .
In other words, exactly in this region, which is shaded grey in Fig. 5.2 and enlarged in
panel (b), the Pyragas control scheme achieves the stabilization of �P . In the region
between the curves TC, HL and T0

P both the equilibrium and �P are stable.
Each curve in the family Hk

R intersects HP at further double-Hopf bifurcation
point, above each of which �P bifurcates with yet another complex conjugate pair of
unstable Floquet multipliers. The curves in the family Hk

J also intersect in double-
Hopf bifurcation points; the lowest of these give rise to curves Tk

J of torus bifurcation
that extend to the left boundary at b0 = 0; see Fig. 5.2a, b. Moreover, near the mini-
mum of each curve in Hk

J there is a degenerate Hopf bifurcation, from which a curve
SkJ of SNLC bifurcation emanates that also connects to the left boundary at b0 = 0.
Between these two codimension-two points on the curve Hk

J a stable delay-induced
periodic orbit �k

J bifurcates. Its region of stability is bounded on the left by Tk
J and

below by SkJ . Figure5.2c shows an enlargement of the stability region of �1
J (shaded

grey); notice that there is a small region of bistability, between the curves H1
J , T

1
J and

S1J , where both the equilibrium and �1
J are stable.

Overall, Fig. 5.2 shows a complicated bifurcation set in the (λ, b0)-plane of (5.3)
for the standard choice of fixed β = π

4 and γ = −10. It is organized by infinitely
many curves of delay-inducedHopf bifurcations that extend to the left-handboundary
at 1/γ where the period T (λ) goes to infinity. Double-Hopf and degenerate Hopf
bifurcation points give rise to curves of torus and SNLC bifurcations that also extend
to the left-hand boundary of the (λ, b0)-plane. This allows us to characterize the
stability region of the target periodic orbit �P , as well as stability regions of delay-
induced periodic orbits �k

J ; more details, including a study of the influence of β and
γ on the bifurcation set, can be found in [36].

5.3.2 Bifurcation Set of the Controlled Lorenz System

Postlethwaite and Silber [37] studied the controlled Lorenz system (5.10) near its
subcritical Hopf bifurcation HP. They showed that the mechanism of stabilization
of the target periodic orbit �P is locally as that of the controlled Hopf normal form
(5.3). More specifically, there also exists a critical level bc0 of feedback amplitude b0,
immediately above which �P bifurcates stably from HP. Subsequently, Brown [38]
performed a centremanifold reduction of (5.10) and derived the analytical expression

bc0 = −ω0

2π(cos(η) + (−10.82 sin(η)))
, (5.16)
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Fig. 5.3 Stabilization of the target periodic orbit �P of (5.10) for b0 = 0.19. Panel (a) shows
the one-parameter bifurcation diagram in ρ with the periodic orbits �P (green) and �L (red) that
bifurcate from HP and HL (black dots) and exchange stability at TC (black square); solid (dashed)
curves represent stable (unstable) periodic orbits. Panels (b) and (c) show �P and �L , respectively,
in projection onto the (x, y)-plane, in color when stable, grey when unstable, and black at TC. Here
σ = 10, α = 8

3 and η = π
4

where ω0 is the linear frequency. Moreover, close to HP, considering the controlled
Lorenz system in the form (5.10) is equivalent to first computing the Hopf normal
formof theLorenz systemon the centremanifold and then applyingPyragas feedback
control. In particular, the local bifurcation structure in the (ρ, b0)-plane of (5.10) near
the point bc0 on HP is as found in (5.3); that is, it involves the delay-induced Hopf
bifurcation HL and the transcritical bifurcation curve TC. These results from [37,
38] are for σ = 10, α = 8

3 with the standard choice of η = π
4 .

For the same choice of parameters, Fig. 5.3 shows the one-parameter bifurcation
diagramof (5.10) inρ for b0 = 0.19,which is below bc0 ≈ 0.2206. The target periodic
orbit �P bifurcates unstably from HP, while the delay-induced periodic orbit �L

bifurcates stably from HL. Their amplitudes grow (as ρ is decreased) until �P and
�L meet at the transcritical bifurcation TC, where they exchange stability. Hence, �P

is stabilized successfully for ρ-values below TC. A selection of periodic orbits from
the families �P and �L along the respective branches is shown in projection onto the
(u, v)-plane in Fig. 5.3b, c, respectively.

Direct comparison of Fig. 5.3 with Fig. 5.1 clearly illustrates that the mechnism of
stabilization of the target periodic orbit�P is indeed qualitatively exactly as predicted
by the controlled Hopf normal form. The difference is that the periodic orbits �P and
�L of (5.10) are not circular; notice, in particular, that the outer-most periodic orbits
for ρ = 16.0 in Fig. 5.3b, c are already starting to deform characteristically as they
approach the homoclinic bifurcation at ρ = ρhom.

We now present in Fig. 5.4 the bifurcation set and stability regions of the con-
trolled Lorenz system (5.10) over a wide range of parameter values in the (ρ, b0)-
plane for the standard values of the other parameters. This figure is designed to
allow for a direct, panel-by-panel comparison with the bifurcation set in the (λ, b0)-
plane of (5.3) in Fig. 5.2. The (ρ, b0)-plane in Fig. 5.4 is bounded below by b0 = 0.
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Fig. 5.4 Bifurcation set of (5.10) in the (ρ, b0)-plane for ρ > ρhom, for η = π
4 . Shown are curves

of Hopf bifurcation HP (green), HL, H1
J and Hk

R (red), transcritical bifurcation TC (purple), torus
bifurcation T0

P (grey) and T1
J (black), and SNLC bifurcation SkJ (blue); also shown are points of

doubleHopf bifurcationHHk (dark green dots) andHH1
D (violet dot), of degenerateHopf bifurcation

DHL and DH1 (asterisks), and of 1 :1 resonance R1 (green dot); notice also the point bc0 (black dot)
on the curve HP. The stability region of the origin is shaded blue, and regions where periodic orbits
are stable are shaded grey. Panel (a) provides an overview of the (λ, b0)-plane, and panels (b)
and (c) are enlargements near the stability regions of �P and �1

J , respectively. Here σ = 10 and
α = 8

3

Its left-hand boundary is ρhom ≈ 13.926, where �P undergoes a homoclinic bifur-
cation and disppears and, hence, τ = T (ρ) goes to infinity as ρhom is approached
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from above; note that this is very similar to what happens at the left-hand boundary
at λ = 1

γ
in the (λ, b0)-plane of (5.3) in Fig. 5.2.

As theory predicts [37, 38], in a strip around the vertical Hopf bifurcation curve
HP the bifurction set and stability regions in the (ρ, b0)-plane in Fig. 5.4a agree with
those in the (λ, b0)-plane of in Fig. 5.2a. In particular, HP is intersected twice by a
curve HL of delay-induced Hopf bifurcation, at the point bc0 and at the double-Hopf
bifurcation point HH0. Along the interval between these points the target periodic
orbit �P bifurcates stably for decreasing values of ρ. The upper boundary of its
stability region is the torus bifurcation curve T0

P emanating from HH0, and the lower
stability boundary is the curve TC emanating from the point bc0; see also Fig. 5.4b.
Notice that �P is unstable when it bifurcates from HP above the point HH0; as we
found for the controlled Hopf normal form,�P has an increasing number of complex-
conjugate pairs of unstable Floquet multipliers for b0 above the points HHk , which
are points of intersection of HP with curves Hk

R.
There is actually considerable qualitative agreement between Figs. 5.4 and 5.2

beyond a small vertical strip around HP. The Hopf bifurcation curves HL and Hk
R and

the curve H1
J in the (ρ, b0)-plane of (5.10) are qualitatively as those in the (λ, b0)-

plane of (5.3), but with the difference that they have different end points (limiting
values of b0) on the left-hand boundary of the (ρ, b0)-plane where ρ = ρhom. Note,
in particular, that HL forms a loop that intersects HP twice. However, we only found
the curve H1

J and no further curves of the family Hk
J . The stability region of p+

in Fig. 5.4 is therefore bounded by only HL and H1
J ; otherwise it is qualitatively as

that in Fig. 5.2. Colloquially speaking, the structure of Hopf bifurcation curves in
Fig. 5.4a is a ‘chopped-off’ version of that in Fig. 5.2a, with parts of curves to the left
of λ ≈ −0.065 missing. It seems reasonable to conjecture that this truncation effect
is due to the presence of the homoclinic bifurcation at ρhom, where all periodic orbits
of (5.10) disappear.

As is the case for the controlled Hopf normal form, the curve H1
J is associated with

a region of stability of the delay-induced periodic orbit�1
J ; see Fig. 5.4c.More specif-

ically, on H1
J there is also a point of double Hopf bifurcation HH

1
D with an emerging

curve T1
J of torus bifurcation, as well as a point of degenerate Hopf bifurcation DH1

with an emerging curve S1J of SNLC bifurcation. Together with the segment of H1
J

between the points HH1
D and DH1, the curves T1

J and S1J form the boundary of the
stability region of the bifurcating periodic orbit �1

J ; note also that T1
J and S1J end at

practically the same point on the left boundary of the (ρ, b0)-plane. Comparison of
Fig. 5.4c with Fig. 5.2c shows that the stability region of Hk

J is topologically the same
for both controlled systems, meaning that it is bounded by the same configuration of
bifurcation curves. Since we did not find further curves �k

J for k ≥ 2 of (5.10), we
also did not find stability regions of associated delay-induced periodic orbits.

There is a notable difference between Figs. 5.4 and 5.2 when it comes to the
stability region of the target periodic orbit �P . As already discussed, the regions and
its boundary curves T0

P and TC agree near HP; however, the curve T0
P does not end

at a 1 :1 resonance point on the curve TC, but rather on a 1 :2 resonance point R2

on a curve PD0
P of period doubling bifurcation. The curve PD0

P was found in the
local bifurcation analysis of (5.10) performed in [37]. This curve starts and ends
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Fig. 5.5 Illustration of period-doubling of �P in (5.10) for b0 = 1.5. Panel (a) is the one-parameter
bifurcation diagram inρ, representing�P and the period-doubled periodic orbits�k

P by their periods.
Panels (b) and (c) for ρ = 22 show �P (green) and �2

P (black), respectively, in projection onto
(u, v)-plane; also shown is p+, which is a saddle point. Here σ = 10, α = 8

3 and η = π
4

at ρ = ρhom and forms the left-hand boundary of the stability region of �P in the
(ρ, b0)-plane, connecting to the point where b0 = 0; see Fig. 5.4b. Also shown are
curves PD1

P and PD
2
P of further period-doubling bifurcations, which also start on the

left-hand boundary of the (ρ, b0)-plane, extend to the right and end at (ρhom, 0).
The associated sequence of period-doublings of �P is illustrated in Fig. 5.5. Panel

(a) shows the one-parameter bifurcation diagram inρ with�P and the period-doubled
orbits that bifurcate at PD0

P to PD
2
P. Panels (b) and (c) show the saddle periodic orbit

�P and the stable first period-doubled orbit �2
P , which coexist immediately after the

first period-doubling PD0
P (as ρ is decreased). We found evidence of further period-

doubling bifurcations, suggesting that there may be a small chaotic attractor that
contains the saddle periodic orbits �k

P . This attractor is localised near p
+, is induced

by the delay and should not be confused with the Lorenz attractor (which surrounds
both p+ and p−); see also Sect. 5.3.3.

In spite of the differences discussed above, we can conclude from this compar-
ison that the controlled Hopf normal form (5.3) has considerable predictive power
well beyond the immediate vicinity of the Hopf bifurcation curve HP where normal
form theory applies. Indeed, the agreement between the bifurcation sets of (5.10) in
the (ρ, b0)-plane and of (5.3) in the (λ, b0)-plane is quite remarkable for the stan-
dard parameter choice of β = η = π

4 ; the influence of the feedback phase η on this
agreement will be investigated in Sect. 5.3.4.

5.3.3 Local Nature of the Control

As was explained in Sect. 5.2, Pyragas control is applied to the equilibrium p+,
which has been shifted to the origin in (5.10). In other words, the control acts only
locally near p+. Figure5.6 shows with two phase portraits that the effect of Pyragas
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(a)

(b)

Fig. 5.6 Phase portraits of (5.10) in projection onto the (u,w)-plane for b0 = 0.3 and ρ = 24.5
(a) and ρ = 31 (b). Shown are the equilibrium p+ (black dot), the periodic orbits �P (green) and
�L (red) and a trajectory (blue) on a chaotic attractor. Here σ = 10, α = 8

3 and η = π
4

control of �P coexists with a chaotic attractor of (5.10). Panel (a) is for a parameter
point from the region of stability of �P in the (λ, b0)-plane. The point p+ is a saddle,
as is the delay-induced periodic orbit �L , whose stable manifold (not shown) bounds
the points that converge to the stable orbit �P . Figure5.6b is for a parameter point
from the region of stability of p+ to the right of HP. Now p+ is an attractor, and the
stable manifold (not shown) of the saddle periodic orbit �L bounds the points that
converge to p+; see also the inset in panel (b).

The noteworthy feature of the two phase portraits of Fig. 5.6 is the fact that all
points outside the stable manifold of �L , which is a topological cylinder near �L ,
converge to a chaotic attractor that switches irregularly between rotations around
p− and rotations around �L ; hence, this attractor has the same qualitative feature
as the Lorenz attractor, and it can be regarded as its continuation or remainder in
the controlled Lorenz system (5.10). The existence of this chaotic attractor is clear
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evidence that the addition of feedback only effects the dynamics of (5.10) close to p+.
In particular, the equilibrium p− is still a saddle in the presence of feedback, because
the control is not symmetric. Clearly, the controlled Hopf normal form (5.3) cannot
be expected to describe this type of dynamics far from p+. In fact, Fig. 5.6 shows
that, when it is of codimension one, the stable manifold of �L can be interpreted as
the boundary of validity of the Hopf normal form.

5.3.4 Influence of the 2π-Periodic Feedback Phase η

So far we have kept the 2π -periodic phase η in (5.10) fixed at η = π
4 , as is the

convention [30, 34, 37] that is also used for fixing the feedback phase β in (5.3) to
β = π

4 . However, it is important to realise that, while η enters the feedback matrix G
in a canonical way, G then undergoes the coordinate transformation (5.12) to enter
(5.10) as the feedback gain matrix Π . Therefore, the actual phase of the feedback
will not be η in general, and would need to be determined via a centre manifold
and normal form reduction near the subcritical Hopf bifurcation HP. Since we are
interested in the overall dynamics, also away fromHP, we now consider η as an extra
parameter. The idea is to check whether there is a value of η for which the associated
bifurcation set of (5.10) in (ρ, b0)-plane shows an even better qualitative agreement
with the bifurcation set for β = π

4 of (5.3) in the (λ, b0)-plane. For this purpose, we
focus on the properties of the region of stability of the target periodic orbit �P , for
which we found a considerable difference between the two systems. A study of how
the global bifurcation set of the controlled normal form (5.3) changes with β can be
found in [36].

Figure5.7 shows how the region of stability of�P (shaded) changes in the (ρ, b0)-
plane as the feedback phaseη is increased. The starting point is panel (a),which shows
the domain of stability for η = π

4 from Fig. 5.4b where the stability region is bounded
by the relavant parts of the curvesHP, TC, T0

P and PD
0
P.When η is increased, the curve

PD0
P moves left in the (ρ, b0)-plane, while the point R2, where T0

P and PD0
P meet,

moves along PD0
P towards the left-hand boundary of the (ρ, b0)-plane; see Fig. 5.7b

forη = 2.50. For aboutη = 2.71, as in Fig. 5.7c, the point R2 has just reached the left-
hand boundary at ρ = ρhom and b0 = 0; hence, the curve T0

P now extends all the way
to this end point. As η is increased further, T0

P connects to the transcritical bifurcation
curve TC at the 1 :1 resonance point R1, whichmoves to the right; hence, the stability
region of �P is no longer bounded by a curve of period-doubling bifurcation. This
situation is depicted in Fig. 5.7d for η = 2.80, which we identified as the value where
the stability region of �P of (5.10) agrees almost perfectly with that of the controlled
Hopf normal form for β = π

4 ; compare with Fig. 5.4b. Notice, in particular, that
the two stability regions and their boundary curves are topologically equivalent. We
remark that, when η is increased even further, the stability region of �P of (5.10)
disappears at η = π , where the points bc0, HH0 and R1 all meet on HP; this is the
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(a) (b)

(c) (d)

Fig. 5.7 The region of stability of �P (shaded) in the (ρ, b0)-plane of (5.10) for different values of
increasing η as indicated in panels (a)–(d); shown are the curves HP (green), HL (red), T0

P (grey),
TC (purple) and PD0

P (dark blue), and the points bc0 (black dot), HH0 (dark green dot), R2 (black
dot) and R1 (green dot). Panel (a) is as Fig. 5.4b; here σ = 10 and α = 8

3

same mechanism that was identified in [36] for the controlled Hopf normal form,
also for β = π .

We now consider the bifurcation set of (5.10) throughout the (ρ, b0)-plane for
the selected value η = 2.80. It is shown in Fig. 5.8 and should be compared with
Fig. 5.2. Apart from the much better agreement between the respective regions of
stability of �P , enlarged in panel (b), the new feature with respect to Fig. 5.4 for
η = π

4 is the existence of the second curve H2
J of the family Hk

J . However, this curve
is extremely close to the left-hand boundary where ρ = ρhom, and we did not find a
region of stability of the associated periodic orbit �2

J . Note that the stability region
of �1

J near the minimum of the curve H1
J remains qualitatively unchanged, except

for the small difference that the curves T1
J and S

k
J now end at slightly different points

on the left-hand boundary; compare Figs. 5.8c and 5.4c. Overall, we conclude that
the controlled Hopf normal form (5.3) provides an excellent and global description
of the controlled Lorenz system (5.10) over a very wide region of the (ρ, b0)-plane
when its feedback phase η is chosen as discussed.
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(a)

(b) (c)

Fig. 5.8 Bifurcation set of (5.10) in the (ρ, b0)-plane for ρ > ρhom, where η = 2.8. Shown are
curves of Hopf bifurcation HP (green), HL, H1

J , H
2
J and Hk

R (red), transcritical bifurcation TC
(purple), torus bifurcation T0

P (grey) and T1
J (black), and SNLC bifurcation SkJ (blue); also shown

are points of double Hopf bifurcation HHk (dark green dots) and HH1
D (violet dot), of degenerate

Hopf bifurcation DHL and DH1 (asterisks), and of 1 :1 resonance R1 (green dot); notice also the
point bc0 (black dot) on the curve HP. The stability region of the origin is shaded blue, and regions
where periodic orbits are stable are shaded grey. Panel (a) provides an overview of the (λ, b0)-plane,
and panels (b) and (c) are enlargements near the stability regions of �P and �1

J , respectively. Here
σ = 10 and α = 8

3
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5.4 Delay Mismatch in the Controlled Lorenz System

When Pyragas control is implemented in practice, the functional form of the
parameter-dependent period is often not known and needs to be approximated; see,
for example, [13–15]. In [35]we studied the effect of the resulting delaymismatch on
the overall stablity region of the target periodic orbit�P of the controlledHopf normal
form (5.3). More specifically, we considered a constant and a linear approximation
to the target period T (λ) near the subcritical Hopf bifurcation HP; the corresponding
control scheme is considered successful in this context when the following three
criteria are satisfied:

(i) there exists a periodic orbit �̂P with amplitude and period close to �P when it
is stable;

(ii) any residual control force is sufficiently small;
(iii) in some suitably large vertical strip around theHopf bifurcationHP, the stability

region of �̂P in the (λ, b0)-plane is sufficiently close to that of �P .

The main result of [35] is that the approximation of T (λ) by its constant value
TC(λ) = 2π at HP does not result in a successful stabilization of the target peri-
odic orbit according to the above criteria. However, for the linear approximation
τ = TL(λ) = 2π(1 + γ λ) all three stability criteria are satisfied and successful sta-
bilization is achieved.

We now briefly consider the effect of delay mismatch in the controlled Lorenz
system (5.10), where we again use η = 2.80. When the constant approximation of
the period TC = T (ρH ) = 0.6528 is used for the delay τ of the Pyragas feedback
then, as for the controlled Hopf normal form, stabilization is not successful. A linear
approximation of T (ρ) is given by

TL(ρ) = −0.0345(ρ − ρH ) + T (ρH ) = −0.0345ρ + 1.5062 (5.17)

(again for σ = 10 and α = 8
3 ), where the slope−0.0345 of T (ρ) at ρH is determined

from the continuation data.
Figure5.9 provides evidence that the controlled Lorenz system (5.10) with

τ = TL(ρ) does achieve successful stabilization of the periodic solution bifurcat-
ing from HP; specifically, criteria (i)–(iii) are satisfied, where (iii) is now considered
in the (ρ, b0)-plane and with respect to the target period T (ρ). We denote by �̂P the
stabilized periodic orbit of (5.10) with τ = TL(ρ) as given by (5.17); it needs to be
compared with the target periodic orbit �P of (5.10) with the exact period T (ρ).

Figure5.9a, b are one-parameter bifurcation diagrams in ρ, shown in terms of the
norm and period, respectively. The branches of �̂P and �P both bifurcate from HP

and agree very well in amplitude and period along the segment where they are stable,
until T0

P is reached. Hence criterion (i) is satisfied, but notice that �̂P and �P diverge
considerably for ρ � 22.5. Panel (c) illustrates that, when �̂P is stable, the residual
control forces Ku[u(t − τ) − u(t)], Kv[v(t − τ) − v(t)] and Kw[w(t − τ) − w(t)]
are small compared to the amplitudes of the corresponding components u, v and
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(a)

(c)

(d)

(b)

Fig. 5.9 System (5.10) with linear approximation of T (ρ). Panels (a) and (b) show one-parameter
bifurcation diagrams in ρ for b0 = 1.4 with the branch of periodic orbits �̂P (green); also shown
is the branch �P (black) for the exact-period case; solid (dashed) curves indicate stable (unstable)
periodic orbits. Panel (c) shows the u, v and w components of the solution profile of the stable peri-
odic orbit �̂P (green) for ρ = 24 and b0 = 1.4, together with the corresponding residual feedback
components Ku[u(t − τ) − u(t)], Kv[v(t − τ) − v(t)] and Kw[w(t − τ) − w(t)] (red). Panel (d)
shows the region of stability of �̂P (shaded) in the (ρ, b0)-plane, which is bounded by the curves
HP (green), H1

D (red) and T0
P (grey). Here σ = 10, α = 8

3 and η = 2.8
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w of this periodic solution. Here we define Ku as the sum of the terms in the first
column of the matrix Π from (5.10), that is, of the feedback gain with respect to the
variable u; the residuals Kv and Kw with respect to v and w are defined in the same
way by summing over the second and third columns of Π , respectively. Specifically,
the maximum amplitude of each residual control force is approximately 4% of the
amplitude of the corresponding solution; this is evidence that criterion (ii) is also
satisfied. Finally, Fig. 5.9d shows the overall stablity region of �̂P in the (ρ, b0)-
plane. It is bounded by the segment of the curve HP between bc0 and HH0, and it lies
entirely to the left of HP. Its upper boundary is the torus bifurcation curve T0

P, which
connects the double-Hopf points HH0 on HP and HHc on H1

D. The lower boundary of
the stability region of �̂P is the curve H1

D, which intersects HP at bc0 and has the point
of self-intersection HHc. A comparison reveals that for 18 � ρ � 26 the stability
region in the (ρ, b0)-plane of �̂P in Fig. 5.9d is in close quantitative agreement with
that of �P in Fig. 5.8b. The main difference is that the lower boundary is formed by
the Hopf bifurcation curve H1

D, rather than the transcritical bifurcation curve TC.
Nevertheless, we argue that criterion (iii) is satisfied as well.

Overall, we have shown that the controlled Hopf normal form (5.3) also correctly
predicts the properties of the controlled Lorenz system (5.10) with regard to the effect
of using a constant or linear approximation of the period T (ρ) as the delay τ in the
Pyragas control term.

5.5 Conclusions

The work presented here shows that the controlled Hopf normal form correctly pre-
dicts the observed dynamics of the controlled Lorenz system over a very large area of
the relevant two-parameter plane—effectively, over the entire range where the target
periodic orbit exists. Because the Pyragas control term is subject to a coordinate
transformation when it is applied to the three-dimensional Lorenz system, its feed-
back phase needs to be adjusted to achieve the best overall agreement. Specifically,
we confirmed the predicted existence of a further stable delay-induced periodic orbit
in the controlled Lorenz system and showed that the effect of a delay mismatch is
qualitatively the same for the two controlled systems. These results can be interpreted
as a considerable extension of those of Brown [38], who showed that the controlled
Hopf normal form accurately describes the dynamics in the vicinity of the subcritical
Hopf bifurcation.

More generally, users of Pyragas control should be aware of the overall bifurcation
set of the controlledHopf normal form and the associated stability regions of different
solutions. Depending on the system or experiment under consideration, there may
well be some differences but, in principle, all global features of the controlled Hopf
normal form should be expected in any system with Pyragas control where the target
periodic orbit bifurcates from a subcritical Hopf bifurcation.
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An interesting direction for future research is the study of Pyragas control applied
to systems where an unstable periodic orbit bifurcates from a different bifurcation.
Fiedler et al. [45] successfully stabilized rotating waves near a fold bifurcation, and
it would be interesting to study the dynamics induced by Pyragas control near a fold
bifurcation locally and globally.
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Chapter 6
Symmetry-Breaking Control
of Rotating Waves

Isabelle Schneider and Bernold Fiedler

Abstract Our aim is the stabilization of time-periodic spatio-temporal synchroniza-
tion patterns. Our primary examples are coupled networks of Stuart-Landau oscilla-
tors. We work in the spirit of Pyragas control by noninvasive delayed feedback. In
addition we take advantage of symmetry aspects. For simplicity of presentation we
first focus on a ring of coupled oscillators.We show how symmetry-breaking controls
succeed in selecting and stabilizing unstable periodic orbits of rotating wave type.
Standard Pyragas control at minimal period fails in this selection task. Instead, we
use arbitrarily small noninvasive time-delays. As a consequence we succeed in sta-
bilizing rotating waves—for arbitrary coupling strengths, and far from equilibrium.

6.1 Introduction

In their 1990 publication “Controlling Chaos” [1], Ott, Grebogi and Yorke pre-
sented a first control scheme to stabilize unstable periodic orbits in chaotic systems.
Another particularly successful method for stabilizing periodic orbits was introduced
by Kestutis Pyragas in 1992 using time-delayed feedback [2], as follows. Consider
any autonomous system

ż(t) = F(z(t)), (6.1)

say on a state space z ∈ RN orCN . Suppose that there exists a solution z∗(t)which is
an unstable periodic orbit with minimal period p > 0. Pyragas suggests to stabilize
the periodic orbit z∗(t) by adding a delayed control term. It consists of the difference
between the current state z(t) and a delayed state z(t − τ) of the system (6.1). The
resulting delayed feedback system takes the form
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ż(t) = F(z(t)) + b
(
z(t − mp) − z(t)

)
. (6.2)

Here b is a scalar control parameter, or a control matrix. The time-delay τ = mp > 0
is an integer multiple m of the minimal period p. By periodicity of z(t) the control
term in (6.2) vanishes on the periodic orbit and is therefore called noninvasive.

Many theoretical investigations and experimental implementations have shown
the success of Pyragas control in stabilizing unstable periodic orbits. For an overview,
see for example the survey paper by Pyragas [3]. Pyragas control can be applied
without any explicit knowledge of the model (6.1), or its solutions z(t). This is one
of the main reasons for its widespread use in experiments.

Analytic results included the odd-number-limitation, which was formulated and
proven by Nakajima in 1997 [4]. It states that in (generic) non-autonomous systems
Pyragas control fails for periodic orbits with an odd number of unstable Floquet
exponents, counting algebraic multiplicities of exponents with positive real part; see
Just et al. [5]. Genericity basically requires the absence of a trivial zero Floquet
exponent.

Autonomous systems do not depend on time, explicitly. Hence their nonstation-
ary periodic solutions do possess a trivial Floquet exponent zero. For autonomous
systems, the odd-number-limitation was in fact refuted by Fiedler et al. [6] in 2007.
Subcritical Hopf bifurcation for the Stuart-Landau oscillator provided an analytically
accessible counterexample.

Pyragas control for networks of coupled oscillators is a wide open subject of
research. In fact the periodic solutions may exhibit various spatio-temporal symme-
tries, besides trivial complete synchrony. In diffusively coupled networks with posi-
tive coupling strength, stabilization by standard Pyragas control frequently turns out
to fail, however, except for fully synchronized periodic orbits.

Symmetry-breaking control terms can overcome this limitation, and can target
periodic orbits of prescribed spatio-temporal symmetry, separately.Our control terms
still follow the main idea of Pyragas [2]—they are noninvasive and time-delayed.
However the new control terms are able to select specific prescribed spatio-temporal
patterns of the periodic orbits, as we will describe in more detail in Sect. 6.2.

A first step in the direction of using spatio-temporal symmetries was already
proposed by Nakajima and Ueda in 1998 [7]. It was intended as a remedy to the odd-
number-limitation [4], originally, which was believed to also hold for autonomous
systems, at that time. Though the odd-number limitation has been refuted for
autonomous systems, their approach remains a first paradigm for symmetric sys-
tems. For odd nonlinearities, F(−z) = −F(z), p-periodic odd oscillationsmay arise
which satisfy

z∗(t) = −z∗(t − p/2) (6.3)

at half period. The delayed feedback system is of the form

ż(t) = F(z(t)) + b
(
z(t) + z(t − p/2)

)
. (6.4)
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Note how the control term (6.2) is noninvasive on odd oscillations (6.3), even though
the time-delay τ = p/2 has been reduced to half the minimal period p.

Using the network structure, another control term with half-period delay τ has
been applied to a system of two diffusively coupled Stuart-Landau oscillators. See
Fiedler et al. in 2010 [8]. The controlled system is of the following form:

ż0(t) = f (z0(t)) + a(z1 − z0) + b
(
z0(t) − z1(t − p/2)

)
(6.5)

ż1(t) = f (z1(t)) + a(z0 − z1) + b
(
z1(t) − z0(t − p/2)

)
. (6.6)

Here the state vectors z0 and z1 denote the first and the second oscillator, respectively,
for z = (z0, z1). The parameter a > 0 denotes diffusive coupling. Note how this
control scheme is noninvasive on p-periodic anti-phase oscillations

z∗
1(t) = z∗

0(t − p/2), (6.7)

where the two oscillators are phase-locked at half-period p. In 2013, slightly more
general control schemes were used by Bosewitz [9] and Bubolz [10] for the same
system, overcoming certain limitations.Wewill review their contribution in Sect. 6.4.

Already for three equilaterally coupled Stuart-Landau oscillators, new challenges
arise. Two different types of spatio-temporal symmetries arise, for p-periodic solu-
tions (z0, z1, z2) which are not fully synchronous. First we may encounter discrete
rotating waves

z∗
1(t) = z∗

0(t − p/3), z∗
2(t) = z∗

0(t − 2p/3). (6.8)

Their reflected counterpart

z∗
2(t) = z∗

0(t − p/3), z∗
1(t) = z∗

0(t − 2p/3), (6.9)

rotates in the opposite direction. Another spatio-temporal symmetry type features
double frequency oscillation of one node:

z∗
0(t) = z∗

0(t − p/2), z∗
2(t) = z∗

1(t − p/2). (6.10)

Here the oscillators z1 and z2 of minimal period p are phase-locked at half-periods,
whereas z0 oscillates at double frequency. Again permutation of indices produces
related solutions of analogous spatio-temporal symmetry type. See [11] and Fiedler
[12] for an in-depth discussion in local and global bifurcation settings, respectively.

This simple example already demonstrates why the control term should be able
to select periodic solutions with the desired symmetry type. We call a control term
pattern-selective or symmetry-breaking, if it is noninvasive on exactly one periodic
solution with a prescribed spatio-temporal pattern. First successful controls in this
sense were presented by Schneider in 2011 [13]; see also [14] and closely related
work by Postlethwaite et al. [15].
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Choe et al. considered delay-coupled networks in [16, 17]. Theywere able to show
that by tuning the coupling phase it is possible to control the stability of synchronous
periodic orbits. Later they generalized their results by using arbitrary and distributed
time-delays as well as nonlinear coupling terms [18].

Unifying all control terms, a general equivariant formulation has been presented,
and its success has been proven near equivariant Hopf bifurcation in [14, 19] as well
as in [15] in 2013:

ż(t) = F(z(t)) + b
( − z(t) + hz(t − Θ(h) p)

)
. (6.11)

Here h and Θ(h) describe the spatio-temporal pattern of the periodic orbit such that
the control term is again noninvasive on the periodic orbit. Again b denotes a suitably
chosen control matrix. For details on the group theoretic formulation see Golubitsky,
Stewart [11, 20], Fiedler [12], and Sect. 6.2.

For a ring of coupled oscillators, the most complete results on Pyragas stabiliza-
tion, to date, have been presented in [21]. For rotationally symmetric oscillators, non-
linear controls have been constructed by Bosewitz [22]. Additionally, a sharp upper
bound on the unstable Floquet multiplier allowing stabilization has been established
in [22]. This upper bound depends on the time-delay τ ; see also [23].

Our survey is organized as follows. We describe some general background on
spatio-temporal patterns in Sect. 6.2. Sections6.3 and 6.4 focus on a ring of n iden-
tical, diffusively coupled oscillators zk , k mod n,

żk = f (zk) + a(zk+1 − 2zk + zk−1), (6.12)

where a > 0 is the diffusive coupling strength. The stabilization results for this
model system will be discussed in Sect. 6.4. We emphasize the aspect of symmetry-
breaking and compare different control schemes. We show that standard Pyragas
control is indeed not able to stabilize any but the totally synchronous periodic orbit
in our model system. In Sect. 6.5 we discuss results for general networks consisting
of rotationally symmetric oscillators. In particular we establish that pattern-selective
Pyragas control of rotating waves always succeeds, with sufficiently small delay τ

and nonlinear control of order 1/τ . Section6.6 summarizes our conclusions.

6.2 Spatio-Temporal Patterns: Theory

In this section we explain our concept of spatio-temporal symmetry patterns for time
periodic solutions z∗(t) of equivariant systems. We illustrate the abstract and rather
general mathematical concept for the specific system (6.12) of a ring of diffusively
coupled identical oscillators; see also Sect. 6.3. Our presentation follows [12].
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For simplicity let us consider a linear action z �→ gz of some group G of matrices
g on z ∈ RN or CN . We call the ODE system (6.1), ż = F(z), equivariant under G,
if gz(t) is a solution of the ODE whenever z(t) is, for any g ∈ G. Since the action
of G is linear, this simply means that

F(gz) = g F(z) (6.13)

for all elements z ∈ RN or CN , and for all g ∈ G. We also call G an equivariance
group of F in (6.1).

Consider our ring (6.12) of diffusively coupled oscillators, for example. Let Dn

denote the dihedral group of n rotations and n reflections which leave the regular
planar n-gon invariant. Then G = Dn is an equivariance group of the oscillator ring
(6.12). The n-gon is represented by the ring structure of the network. The vertices
k = 0, . . . , n − 1 indicate the oscillators zk , and the edges define symmetric diffusion
coupling. More precisely Dn = 〈ρ, κ〉 is generated by the rotation ρ over 2π/n, and
the reflection κ through the bisector of some fixed n-gon vertex angle. The linear
action of g ∈ Dn on z = (z0, . . . , zn−1) is given by index permutation:

(ρz)k = zk−1 (6.14)

(κz)k = z−k (6.15)

for k mod n.

We now describe the spatio-temporal symmetry of any periodic solution z∗(t) of
any G-equivariant system ż = F(z). Let p > 0 again denote the minimal period of
z∗(t), and letO∗ = {z∗(t) | 0 ≤ t < p} denote the periodic orbit, as a set.We can then
describe the spatio-temporal symmetry of z∗(t) by a triplet (H, K ,Θ), as illustrated
in Fig. 6.1.

Fig. 6.1 Spatio-temporal symmetry HΘ = {(h,Θ(h)) ∈ H × S1} of any periodic orbit z∗(t) with
minimal period p. The group H fixes the periodic orbit as a set. The map h �→ Θ(h) indicates the
(normalized) temporal phase shift on z∗ effected by the spatial transformation h ∈ H . The kernel
K = kerΘ fixes any individual point on the periodic orbit, one by one
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Let H denote the set of those group elements h in the equivariance groupG which
fix the orbit O∗, as a set. In other words,

hz(t0) = z(t0 + ϑ) (6.16)

for some t0, ϑ ∈ R. This definition makes sense because (6.16) holds for all t0 ∈ R,
once it holds for any, by G-equivariance. Indeed, both τ �→ hz(t0 + τ) and τ �→
z(t0 + τ + ϑ) are solutions of ż = F(z) with the same initial condition at τ = 0.
Moreover the phase shift ϑ = Θ(h)p is unique, for any given h ∈ H and with nor-
malized Θ(h) mod 1, by minimality of the period p of z∗(t). This defines the phase
map

Θ : H → S1 = R/Z . (6.17)

In fact G-equivariance implies that Θ is a group homomorphism:

Θ(h1h2) = Θ(h1) + Θ(h2) mod 1 , (6.18)

for all h1, h2 ∈ H . Finally, let K = kerΘ = {h ∈ H | Θ(h) = 0} denote the kernel
of the homomorphism Θ . Then K ≤ H is the set of group elements h ∈ G which
fix the periodic orbit O∗, pointwise. In other words,

hz∗(t0) = z(t0) (6.19)

for some (and hence for all) t0 ∈ R.
To summarize, the spatio-temporal symmetry of a periodic orbit z∗(t) with mini-

mal period p is characterized by a triplet (H, K ,Θ). The phase map homomorphism
Θ : H → S1 describes the normalized time shifts

hz(t) = z
(
t + Θ(h)p

)
(6.20)

for all t ∈ R, h ∈ H , and the normal subgroup K := kerΘ of H describes the purely
spatial symmetry of any periodic point z∗(t0). We sometimes abbreviate the triplet
by the twisted symmetry

HΘ := {(h,Θ(h)
) | h ∈ H} . (6.21)

The range of the phase map Θ is a subgroup of S1, and range Θ ∼= H/K by the
homomorphism theorem. For compact (and in particular for finite) subgroups H ,
continuity of Θ implies compactness of range Θ . Therefore range Θ ≤ S1 is either
finite, or else coincides with S1. We call z∗(t) a discrete wave, in the former case, and
a rotating wave, in the latter. Of course, finite equivariance G cannot lead to rotating
waves.
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By equivariance, gz∗(t) is time periodic ofminimal period p, whenever z∗(t) itself
is, for any fixed g ∈ G. The spatio-temporal symmetry HΘ

g of gz∗(z) is conjugate to
the twisted symmetry HΘ of z∗(t) itself, i.e.

HΘ
g = (gHg−1)Θ, with Θ(ghg−1) := Θ(h). (6.22)

We also say that z∗(t) and gz∗(t) possess the same spatio-temporal symmetry type,
differing only by conjugacy.

Let us now return to our example (6.12) of an oscillator ringwith dihedral equivari-
ance group G = Dn . The case H = 〈ρ〉 ∼= Zn of the cyclic subgroup of rotations
suggests Θ(ρ) := ±1/n mod 1 as a phase map with trivial kernel K = {id}. Golu-
bitsky and Stewart coined the term “ponies-on-a-merry-go-round” for such discrete
rotating waves. These are spatially discrete analogues of the above rotating waves
where range Θ = S1. See (6.7), for the case n = 2, and (6.8), (6.9) for n = 3. Note
how the casesΘ(ρ) = ±1/n are conjugate by the reflection g = κ; the right and left
rotating discrete rotating waves belong to the same symmetry type.

More generally, we might observe discrete waves of the form

Θ(ρ) = s/n mod 1, (6.23)

for any integer 0 ≤ s < n, and we do! Then Θ possesses trivial kernel, if and only
if s ∈ Z∗

n is a multiplicative unit. In general K ∼= Z(s,n), where (s, n) denotes the
greatest common divisor of s and n. Again ±s belong to the same symmetry type,
conjugated by the reflection κ .

Example (6.10) is of a different type: H = κ ∼= Z2 andΘ(κ) = 1/2.Of course the
example generalizes to any n-ring, n ≥ 3. We call z∗(t)with this symmetry standing
waves. For even n, only, the vertex zn/2(t) then oscillates at double frequency, as
z0(t) always does. The reflection ρκ is nonconjugate to κ in G = Dn , for even n,
and H = 〈ρκ〉 ∼= Z2 with Θ(ρκ) = 1/2 does not feature any vertices with double
frequency oscillations, in general.

Suppose next that H = Dn arises in a spatio-temporal symmetry triplet (H, K ,Θ)

in the n-oscillator ring (6.12). Of course this is possible for Θ = 0, i.e. for total
synchrony z0 ≡ z1 ≡ · · · ≡ zn−1. We claim there is only one other possibility.

Indeed, Dn/K = H/K ∼= range Θ ≤ S1 must be a nontrivial Abelian (in fact,
cyclic) factor of Dn . Therefore K contains the commutator groupC(Dn) = [Dn, Dn]
generated by all elements g1g2g

−1
1 g−2

2 with g1, g2 ∈ Dn . It is well-known that the
commutator of Dn is generated by ρ2. In particular the abelianization Dn/C(Dn) of
Dn is Z2, for odd n, and the Klein 4-group Z2 × Z2 for even n. Because Dn/K =
H/K ≤ S1 is cyclic this implies range Θ = {0, 1/2}. Moreover K = Zn for odd n.
This already implies z0 ≡ z1 ≡ · · · ≡ zn−1 and triviality Θ = 0. Next suppose n is
even. Then K corresponds to one of the Z2 factors in Dn/C(Dn), i.e. K = Zn or
K = Dn/2. We can discard total synchrony K = Zn , as before.

The only remaining option, n even and K = Dn/2, corresponds to clustering into
the two clusters z0 = z2 = · · · = zn−2 and z1 = z3 = · · · = zn−1, each of size n/2.
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By range Θ = {0, 1/2} the two clusters are half a period out of phase: Θ(ρ) =
1/2. Note how our conclusions did not rely on any specific information about the
underlying equations other than the symmetry aspect.

In Sects. 6.3 and 6.4 we focus on discrete right and left rotating waves of the
type (6.23), as a target of Pyragas control. Rotating waves, i.e. range Θ = S1, are
addressed in Sect. 6.5. We plan to treat standing waves elsewhere.

6.3 Spatio-Temporal Patterns: Application
to Rings of Oscillators

We have seen how, both, standing waves and discrete rotating waves may appear,
hand-in-hand and at the same parameters. Hopf bifurcation in oscillator rings (6.12)
provides an example. To be specific, and for simplicity of presentation, let us consider
identical Stuart-Landau oscillators,

f (z) = (λ + i + γ |z|2) z, (6.24)

for the individual dynamics in (6.12). Here λ is the real bifurcation parameter and the
cubic coefficient γ is complex. In total, there are n types of discrete rotating waves
and they all appear at equivariant Hopf bifurcations.

Proposition 1 (Equivariant Hopf bifurcations, [21]) Consider the coupled oscilla-
tor ring (6.12), (6.24) of n ≥ 3 identical, and identically diffusion coupled, Stuart-
Landau oscillators. Hopf bifurcation occurs at the parameter values

λ = λs = 2a
(
1 − cos(2πs/n)

)
, s = 0, . . . , n − 1. (6.25)

The purely imaginary eigenvalues are normalized to ±i, i.e. to unit frequency. They
are of algebraic and geometric real multiplicity 4, for s /∈ {0, n/2}. The associated
eigenspace possesses complex dimension 2 and real dimension four. Both, standing
waves and discrete rotating waves bifurcate, for each s /∈ {0, n/2}. The discrete
rotating waves are harmonic,

zk(t) = rs exp

(
2π i

(
t

ps
+ s

k

n

))
, (6.26)

for oscillators zk , k = 0, . . . , n − 1, respectively, and are phase shifted by 2πs/n
between adjacent oscillators. See (6.23). Amplitudes rs and minimal periods ps are
given explicitly by

r2s = (λs − λ) /Re γ, (6.27)

ps = 2π/
(
1 + r2s Im γ

)
. (6.28)
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Fig. 6.2 Parameter-dependent stability of the equilibria and the bifurcating periodic orbits. The
upper row shows the bifurcations for n = 4, while the lower row is for n = 5. In a and c subcritical
bifurcations occur for Re γ = 0.1. In b and d supercritical bifurcations are plotted for Re γ = −0.1.
The coupling parameter is a = 0.2. In brackets the number of unstable dimensions is denoted. Stable
objects are colored in green, unstable ones in red. This figure, including its caption, has previously
been published in [21]

In particular the discrete rotatingwaves bifurcate supercritically, i.e. towardsλ > λs ,
for Re γ < 0, and subcritically, i.e. towards λ < λs , for Re γ > 0.

The minimal period ps grows with amplitude (soft spring) if Im γ < 0, and
decreases with amplitude (hard spring) if Im γ > 0.

Not surprisingly, the waves with index s and index n − s bifurcate at the same
point λs = λn−s . The resulting discrete left and right rotating waves are conjugate by
reflection κ . See (6.22). See also Fig. 6.2 for n = 4 and n = 5 oscillators. Standing
waves are known to also bifurcate at λs = λn−s , for s /∈ {0, n/2}; see [12, 20]. They
are not harmonic and their bifurcation direction and stability may differ from the
discrete rotating waves. The Hopf bifurcation at λ0 = 0 is a standard bifurcation
with simple complex eigenvalues ±i and real two-dimensional eigenspace. This
leads to the bifurcation of fully synchronous periodic solutions.

An elementary proof of Proposition 1 relies on the Ansatz (6.26). The harmonic
character of the Ansatz (6.26) in time t is justified by the S1-equivariance of the
identical Stuart-Landau oscillators (6.24); see also Sect. 6.5. The discrete harmonic
character of the Ansatz (6.26) in the oscillator nodes k is justified by the imposed
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discrete rotatingwave symmetryΘ : Zn → S1 = R/Z in (6.12). In fact, both aspects
can also be unified by studying the ansatz (6.26) as the definition of a rotating wave
under the full equivariance group G = Dn × S1 of (6.12), (6.24). Insertion of (6.26)
into (6.12) implies all other claims. For a more general analysis, in the framework
of Sect. 6.2, see again [12, 20].

The fully synchronous periodic solution is the only one which may be stable in
the uncontrolled system, locally at Hopf bifurcation.

Proposition 2 (Stability of the periodic orbits, [21]) For s �= 0, the bifurcating dis-
crete rotating waves (6.26), enumerated by s, are unstable, both in the sub- and
the supercritical case. For s = 0, i.e. the synchronous case, the periodic solution is
unstable in the subcritical and stable in the supercritical case.

For a complete proof of Proposition 2 see [21]. The essential step of the proof is
to study the n dynamically invariant complex irreducible representation subspaces

Xs = {
(z0, . . . , zn−1)

∣∣ zk = e−2π is/nzk−1 for all k mod n
}
. (6.29)

On each subspace xs ∈ Xs the system (6.12), (6.24) reduces to one single complex-
valued equation

ẋs = f (xs) − 2a
(
1 − cos(2πs/n)

)
xs . (6.30)

Here xs ∈ Xs . Hopf bifurcation occurs at λ = λs = 2a(1 − cos(2πs/n)), with the
spatio-temporal symmetry of the bifurcating periodic solution inheriting the sym-
metry of the invariant subspace Xs .

6.4 Pyragas Stabilization for a Ring of Coupled
Stuart-Landau Oscillators

In this section we aim to stabilize unstable discrete rotating waves with prescribed
spatio-temporal symmetry pattern

zk(t) = zk−1(t − sps/n), (6.31)

k mod n. In other words, an index shift ρ by 1 corresponds to a normalized phase shift
Θ(ρ) = s/n. The minimal period of the selected discrete rotating wave is denoted
by ps . The periodic orbit is uniquely determined by the choice of the parameter
s ∈ {1, . . . , n − 1} mod n. We recall how the solutions for s and −s are conjugate
by reflection κ : k ↔ −k, mod n.

The stabilization problem has first been addressed for two coupled oscillators
by Fiedler et al. [8], then for three coupled oscillators by Schneider [13, 14] and
Postlethwaite et al. [15]. The general case of n oscillators has recently been discussed
by Schneider and Bosewitz [21].
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For an equivariant control term we choose

b
( − z(t) + h z(t − τ)

)
(6.32)

with suitable b, h and τ = Θ(h)ps . Note how the control term is noninvasive, by
definition, on the periodic orbit (6.31); see also (6.20).

To achieve large stabilization regions, and preserve equivariance under H = Zn ,
it is suitable to employ complex circulant control matrices with constant diagonals,
i.e.

b =

⎛

⎜⎜⎜⎜⎜⎝

b0 b1 b2 · · · bn−1

bn−1 b0 b1 · · · bn−2

bn−2 bn−1 b0 · · · bn−3
...

...
...

. . .
...

b1 b2 b3 · · · b0

⎞

⎟⎟⎟⎟⎟⎠
(6.33)

with constant diagonal coefficients bk ∈ C. Note the highly nonlocal character of
(6.33) with all-to-all coupling. Equivalently to (6.33) we may employ n com-
plex control parameters β0, . . . , βn−1, one in each representation subspace Xs ,
s = 0, . . . , n − 1. The matrix b and the coefficients β are related via the invertible
linear transformation

bk :=
n−1∑

s=0

βs exp (2π isk/n). (6.34)

The control parameters βs diagonalize the Zn-equivariant circulant matrix b via the
representations of Zn = 〈ρ〉 on Xs , but represent inherently nonlocal coupling.

In the control term (6.32) we are still free to choose h = ρm . Noninvasivity on
the discrete rotating wave (6.32) of type s is guaranteed by the delay

τ = Θ(h)ps = Θ(ρm)ps = msps/n, mod ps, (6.35)

and only by any such choice.
To bemore precise suppose the control (6.32) with h = ρm , delay τ , and invertible

circulant control matrix b is noninvasive on some solution z∗(t) of the oscillator ring
(6.12). Let ν denote the order of h = ρm inZn , i.e. ν > 0 isminimal such that νm ≡ 0
mod n. Then noninvasivity implies

z∗(t) = hνz(t) = z∗(t + ντ). (6.36)

Therefore z∗ is time-periodic with minimal period p dividing

ντ = s ′ p, (6.37)
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for some positive integer s ′. Let (H, K ,Θ) denote the spatio-temporal symmetry of
z∗. Of course hz(t) = z(t − τ) only guarantees H ≥ 〈h〉. To ensure 〈h〉 ≥ Zn let us
choose m and n co-prime. In particular the order ν of h becomes n. Let m ′m = 1
mod n denote the multiplicative inverse of m. Then

s := nΘ(ρ) = nΘ(ρmm ′
) = nΘ(hm

′
) = nm ′Θ(h) = nm ′τ/p = νm ′τ/p = m ′s ′

(6.38)
mod n. We have used mm ′ = 1, ρm = h, the definition of the phase map Θ , ν = n,
and (6.37), successively, in this line. This readily identifies s in (6.31) from the
Pyragas data h = ρm and τ , via (m ′,m) = 1 and s ′ = nτ/p.

In principle, it is possible to use a time-delay τ > ps . However, in [21] it was
found that larger time-delay diminishes the stabilization regions.

The following theorem tells us that the constructed control is indeed stabilizing.

Theorem 3 (Successful stabilization of discrete rotating waves [21]) Consider the
Hopf bifurcation of discrete rotating waves

z∗
k(t) = z∗

k−1(t − sps/n), (6.39)

of the Stuart-Landau ring

żk = (λ + i + γ |zk |2) zk + a(zk−1 − 2zk + zk+1), (6.40)

k mod n, with λ ∈ R, a > 0 and γ ∈ C \ R+.
Then for every combination of s and m, with s,m ∈ {1, . . . , n − 1} and m co-

prime to n, there exists a positive constant am,s such that the following conclusion
holds for all real coupling constants 0 < a < am,s , and sufficiently near the selected
Hopf bifurcation at λs = 2a(1 − cos(2πs/n)).

There exist open regions of complex control parameters β0, . . . , βn−1 such that in
the delayed feedback system

ż = f (z) + a(�z − 2z + �−1z) + b
( − z(t) + �mz(t − τ)

)
(6.41)

with circulant controlmatrix b = (bkl), bkl = ∑n−1
j=1 β j exp

(
2π i j (l − k)/n

)
, the dis-

crete rotating wave solution (6.39) is stabilized for a time-delay

τ = msps/n mod ps, (6.42)

0 < τ ≤ ps. The stabilization is noninvasive and pattern-selective, i.e. the control
vanishes only on the discrete rotating wave (6.39).

If m is not co-prime to n, then the control term is noninvasive on more than
one discrete rotating wave. This can obstruct stabilization, as we will see below for
standard Pyragas control, m = n, τ = ps .

Theorem 3 is proved in [21]. Some examples for stabilization regions in the
complex parameters β0, . . . , βn−1 are depicted in Fig. 6.3, for n = 4 oscillators, and
in Fig. 6.4, for n = 5 oscillators.
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Fig. 6.3 Stabilization curves and regions for n = 4 coupled oscillators (6.12), (6.24) controlled as
in (6.41) with index shift m = 1, for the third Hopf bifurcation (i.e. s = 2). The coupling constant
was chosen as a = 0.08 in (a–e) and a = 0.01 in (f). The curve belonging to the parameter βs = β2
is drawn in red, while the curves corresponding to β1, β3 and β4 are drawn in green. These figures
have previously been published in [21]
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Fig. 6.4 Stabilization curves and regions for n = 5 coupled oscillators (6.12), (6.24) with coupling
constant a = 0.2, controlled as in (6.41) with index shift m = 1, for s = 1. The curve belonging
to the parameter βs = β1 is drawn in red, and the green curve corresponds to those parameters β j
for which λ j < λs = λ1 (see also Fig. 6.3). Blue is used for the curves β2 and β3, which occur for
λ2 = λ3 > λs = λ1. For the black curve in (f), corresponding to β4, we find λ4 = λs = λ1. Note
that we only find four different types of stabilization regions for the parameters β j , depending on
the relative positions of λs and λ j . See also Fig. 6.2 (c) and (d). These figures have previously been
published in [21]
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(a)

(b)

Fig. 6.5 Figure (a) shows themaximal coupling constant a for n = 40,m = 1, s = 8 andΘ = 1/5.
It is given by the minimum of A j := A j/|2 cos(2π j/n) − 2 cos(2πs/n)| for j < 8 and j > 32.
The gray area given by 8 ≤ j ≤ 32 is not relevant for theminimum. Themaximal coupling constant
a allowing stabilization of the system is marked as a horizontal (green) line. The solid (red) curve
corresponds to the solutions for real j ∈ [0, n]. This red curve can also be seen in (b), where we
see the general dependence of the threshold A j on j as well as on Θ , for arbitrary n

The constants am,s limit the maximal coupling strength for which a stabilization
region exists. They depend on the spatio-temporal pattern, identified by s, and the
chosen control term, identified by the index shiftm. The following theorem describes
this upper bound am,s as a solution to a system of trigonometric equations. For a
graphical depiction see Fig. 6.5.

Theorem 4 (Maximal coupling constant for a given control scheme [21]) Under
the above conditions, the maximal coupling constant am,s is given implicitly by the
minimum of all

A j/|2 cos(2π j/n) − 2 cos(2πs/n)|, (6.43)
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with either 0 ≤ j < s or n − s < j < n. Here (A j , ω j ), j = 0, . . . , n − 1, is the
implicit solution of the system

sin� j cos� j = −ω jπΘ (6.44)

sin2 � j = A jπΘ, (6.45)

with � j := π(mj/n − Θ(1 + ω j )), and Θ = ms/n mod 1, 0 < Θ ≤ 1.

The upper bound am,s for the coupling parameter a is strictly positive for the
equivariant control type, and equal to zero for standard Pyragas control. For infini-
tesimal time-delay τ ↘ 0 the threshold tends to infinity.

From Theorem 4, we can directly conclude that standard Pyragas control fails to
stabilize any spatio-temporal pattern which is not completely synchronous. Indeed
h = id and τ = ps for standard Pyragas control. The system (6.44), (6.45) then
simplifies to

sin(π(1 + ω j )) cos(π(1 + ω j )) = ω jπ (6.46)

sin2(π(1 + ω j )) = A jπ. (6.47)

For any j , we only obtain the trivial solution (A j , ω j ) = (0, 0). Hence we conclude
a0,s = 0 for all s > 0 and we obtain the following corollary.

Corollary 5 (Failure of standard Pyragas control [21]) The discrete rotating wave

zk(t) = zk−1(t − sps/n), (6.48)

with s �= 0 cannot be stabilized by standard Pyragas control, i.e. by any delayed
feedback system of the form

ż = f (z) + a(�z − 2z + �−1z) + b
( − z(t) + z(t − ps)

)
(6.49)

which preserves at least Zn-equivariance. In fact the solution (6.48) is unstable,
sufficiently close to Hopf bifurcation, for any complex circulant n × n control matrix
b as in (6.33), and any coupling constant a > 0.

In the above control schemes, we have only used a single noninvasive control term.
Linear combinations of such noninvasive control terms are an interesting extension.
For example we may consider weighted sums of all noninvasive control terms,

ż = f (z) + a(�z − 2z + �−1z) (6.50)

+
n−1∑

m=0

bm
( − z(t) + �mz(t − τm)

)
, (6.51)
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β1,2,3,4

β
1,
2,
3,
4

Fig. 6.6 Stabilization curves and regions for the sum of the delays as in with n = 4, s = 1, and
a = 0.2 are shown. In accordance with the color coding of the other figures, β0 is green, β1 red, β2
blue and β3 black. This figure has previously been published in [21]

with appropriate time-delays τm = msps/n mod ps and control matrices bm . Such
control terms also yield stabilization regions, see Fig. 6.6. However, the existence
of non-empty control regions for not necessarily small enough coupling constants a
remains an open problem.

6.5 Rotating Waves Under Free S1-Actions

From an abstract view point we return to the general G-equivariant dynamics

ż = F(z) (6.52)

of Sect. 6.2. We assume the group G to take the direct product form

G = Γ × S1 (6.53)

g = (γ, ϑ) (6.54)

with elements γ ∈ Γ and ϑ ∈ S1 = R/Z. We assume the linear action of the factor
S1 on z to be free; i.e. ϑ(z) = z only if ϑ = 0 or z = 0. In other words, we can
assume z ∈ R2n ∼= Cn and

ϑ(z) := exp(2π iϑ)z. (6.55)

For simplicity we will assume the other factor Γ to be a finite group.
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Our task, in the present section, will be the Pyragas stabilization of a hyperbolic
rotating wave solution

hz∗(t) = z∗(t + Θ(h)p) (6.56)

of (6.52), in the sense of Sect. 6.2. See in particular (6.16)–(6.21). For rotating waves
z∗ with spatio-temporal symmetry HΘ , we recall that the homomorphism

Θ : H → S1 (6.57)

is assumed to be surjective. We will first observe that

z∗(t) = eiωt z∗(0) (6.58)

is necessarily harmonic with frequency ω = ±2π/p. We then show how nonlinear
Pyragas stabilization of the form

ż(t) = F(z(t)) + B(eiωτ z(t − τ), z(t)) (6.59)

can always succeed, in this setting, for any small enough τ > 0 and suitably chosen
complex B of order 1/τ . Here B(z1, z2) is a vector-valued nonlinear and nonlocal
control which vanishes on the diagonal

B(z, z) = 0. (6.60)

We will only sketch the relevant arguments; for further mathematical details we refer
to [21–23].

Any finite graph of linearly or nonlinearly coupled, neither necessarily identical
nor identically coupled, Stuart-Landau oscillators z0, . . . zn−1 provides an example
for our setting. Here Γ is the automorphism group of the coupled oscillator system;
the elements γ of Γ are those permutations of the vertex indices 0, . . . , n − 1 which
leave the system of coupled oscillators invariant. Recall Γ = Dn for the symmetric
diffusion coupling in a ring (6.12) of identical and identically coupled oscillators.
Slightly more generally than the Stuart-Landau choice (6.24), we only require the
nonlinearities fk(zk) to satisfy the S1-equivariance

fk(e
2π iϑζ ) = e2π iϑ fk(ζ ) (6.61)

for all ζ ∈ C, ϑ ∈ S1.
To illustrate our abstract approach, we first consider the elementary planar case

of a single S1-equivariant oscillator

ż(t) = f (z(t)) + b(eiωτ z(t − τ) − z(t)), (6.62)
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z ∈ C. For absent complex scalar control b = 0, any nonstationary periodic solution
z = z∗(t) with minimal period p > 0 must be harmonic,

z∗(t) = eiωt z∗(0), (6.63)

with amplitude z∗(0) = r∗ > 0 and frequency ω = ±2π/p. Note

Re f (r∗) = 0, (6.64)

Im f (r∗) = ω. (6.65)

We do not assume small amplitude r∗, here or below. In co-rotating coordinates
ζ(t) := exp(−iωt)z(t) we obtain

ζ̇ (t) = f (ζ(t)) − iωζ(t) + b(ζ(t − τ) − ζ(t)). (6.66)

Note how (6.66) remains autonomous, by S1-equivariance of (6.62). The circle of
stationary solutions ζ ∗ = exp(iϕ)r∗, ϕ ∈ S1, testifies to noninvasivity of the Pyragas
control scheme (6.62) on the harmonic rotating wave z∗, for all b.

Pyragas stabilization of z∗ in (6.62) is equivalent to stabilization of the equilibrium
ζ ∗ = r∗ in (6.66), by some complex b. For small τ , we Taylor expand

ζ(t − τ) − ζ(t) = −τ ζ̇ (t) + · · · (6.67)

with higher terms of order τ 2. In other words (6.66) reads

(1 + bτ)ζ̇ = f (ζ ) − iωζ + · · · . (6.68)

Fix β := bτ and consider τ → 0. Then a remarkably early result by Kurzweil in
1971 indeed justifies (6.68) as anODE approximation, even in the nonlinear case; see
[24]. In modern language the ODE reduction (6.68) corresponds to a center manifold
reduction with rapid attraction in the infinitely many remaining directions. For the
characteristic equation of the linearization of (6.66) at ζ = ζ ∗ = r∗ the justification
is trivial, by an exponential Ansatz. Note how the trivial zero eigenvalue of the
linearization at ζ ∗ remains unaffected by (6.68). The only other eigenvalue μ, alias
the nontrivial Floquet exponents of z∗, can be rotated at will by a suitably fixed choice
of β = bτ ∈ C. This choice stabilizes z∗, for sufficiently small τ > 0, because all
omitted terms are of order bτ 2 = βτ = O(τ ) or higher. This completes noninvasive
Pyragas stabilization of large rotating waves, in the planar case.

The above result is in marked contrast with controls based on z(t) and z(t − p),
only. In fact suppose the controls are even allowed to be of the nonlinear form (6.59),
(6.60). In the general S1-equivariant planar case, the nontrivial Floquet exponent μ

must then satisfy a constraint
pReμ < 9, (6.69)
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in order to enable noninvasive control; see [23]. In [22] the analogous bound
ϑpReμ < 9 was established for controls based on z(t) and z(t − ϑp), in the S1-
equivariant case.

Let us now return to the general case of G = Γ × S1-equivariant systems ż =
F(z). Our task is to stabilize a rotating wave z∗ of spatio-temporal symmetry HΘ .
Wepursue the nonlinear Pyragas scheme (6.59)with small delaysϑ > 0 and bounded
control ϑB.

The spatio-temporal symmetry HΘ of the rotatingwave z∗ possesses the following
general structure:

H = H0 × S1, and (6.70)

Θ(γ, ϑ) = Θ0(γ ) ± ϑ (6.71)

with a suitable finite subgroup H0 ≤ Γ , and a homomorphism Θ0 : H0 → S1. Here
we use that G = Γ × S1 with Γ finite, and the free action z �→ e2π iϑ z of S1 on
z ∈ C. We omit mere mathematical details. Fixing γ = id, Θ0(γ ) = 0 in (6.71) and
letting t = ±ϑp, we obtain

z∗(t) = z∗(±ϑp) = z∗(0 + Θ(id, ϑ)p) = (id, ϑ)z∗(0) (6.72)

= e2π iϑ z∗(0) = eiωt z∗(0)

with frequency ω = ±2π/p. In particular z∗(t) is harmonic, as claimed in (6.58),
and the nonlinear Pyragas control scheme (6.59) is noninvasive on z∗(t).

Noninvasive nonlinear Pyragas stabilization will be based on the pair

(z1, z2) = (hz(t − Θ(h)p), z(t)) (6.73)

for some suitable h = (γ,±ϑ) ∈ H = H0 × S1, ϑ > 0. By (6.70) wemay pick γ =
id. Then the pair (6.73) becomes

(
(±ϑ)z(t − ϑp), z(t)

) = (
eiωτ z(t − τ), z(t)

)
(6.74)

with delay τ = ϑp > 0. This shows that the noninvasive control scheme (6.59) is
indeed based on the Pyragas difference (6.73).

To establish the success of (6.73) for small τ = ϑp > 0 we proceed very much
as in the planar case. In co-rotating coordinates ζ(t) := e−iωt z(t), which freeze the
harmonic rotation of z∗(t), we obtain

ζ̇ (t) = F(ζ(t)) − iωζ(t) + B(ζ(t − τ), ζ(t)). (6.75)

Here we have replaced the complex scalar b by the complex vector nonlinearity B.
We have assumed that B commutes with the S1-action on z ∈ CN . The justifiable
approximation (6.68) then reads
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(id + β)ζ̇ = F(ζ ) − iωζ + · · · . (6.76)

with the complex nonlinearity β := τ∂1B(ζ, ζ ) chosen to be τ -independent.
Naively, at first, we might attempt to choose β to be a complex scalar multiple

of an eigenprojection Q onto the strictly unstable eigenspace of the linearization
f ′(ζ ∗) − iω at ζ ∗ = z∗(0). Unfortunately the Jacobian f ′(ζ ∗) itself need not be
complex linear, but will only be real linear in general. Indeed S1-equivariance

f (eiϑ z) = eiϑ f (z), (6.77)

for all ϑ ∈ R/2πZ and all z ∈ Cn , only implies conjugacy

f ′(eiϑ z) = eiϑ f ′(z)e−iϑ (6.78)

at z �= 0, but not complex linearity. In particular, the Floquet eigenprojection Q =
Q(z∗(t)) depends on the footpoint z∗(t) of the linearization and satisfies the same
conjugacy

Q(eiϑζ ∗) = eiϑ Q(ζ ∗)e−iϑ . (6.79)

However, by hyperbolicity of ζ ∗ the unstable eigenspace is transverse to the group
orbit z∗(t) = exp(iωt)ζ ∗ of ζ ∗; the tangent ż∗(0) = iωζ ∗ to that group orbit provides
the trivial Floquet exponentμ = 0 which remains unaffected by Q, B, and β. There-
forewe can define a nonlinear control B = B(z1, z2), which vanishes on the diagonal
z1 = z2, stays S1-equivariant, and provides the appropriate linearization β in a full
neighborhood of the group orbit z∗(t), for z1 = exp(iωτ)z∗(t − τ) = z∗(t) = z2.

In conclusion,noninvasive nonlinearPyragas stabilization of large rotatingwaves
also succeeds in the general Γ × S1-equivariant case with free S1-action. In the
general case, our result requires a nonlinear vector-valued control term of the form
(6.59), (6.60).

In [19], Schneider has studied the above problem with complex linear control
matrices B = b based on (6.59), (6.60), for rotating waves of small amplitudes near
Hopf bifurcation from z = 0. In the supercritical case, control was successful in
open regions of b. The subcritical case required an additional condition: the minimal
period had to depend sufficiently strongly on amplitude ζ ∗. This condition is satisfied,
essentially, for a sufficiently nonlinear soft spring or hard spring case.

6.6 Summary

In this chapter, we have commented, and added to, recent results which show how
equivariant Pyragas control succeeds in networks where standard Pyragas control
fails. For a ring of n diffusively coupled Stuart-Landau oscillators, explicit complex
linear control termswere constructed for each periodic orbit of discrete rotating wave
type. These control terms are nonlocal. They use an interplay between index shifts
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h and temporal phase shifts Θ(h) to select the spatio-temporal pattern, and they
break the symmetry of the complete system. The control term is noninvasive only
for exactly one type of discrete rotating waves. For full pattern-selectivity, the index
shift m of h = ρm must be chosen co-prime to the number n of oscillators coupled
in the ring. For each discrete rotating wave, this provides several control terms for
which a control is successful. In this case we have also provided an upper threshold
on the maximally admissible coupling parameter, depending on the specific index
shift.

For coupled Stuart-Landau oscillators, the additional S1-equivariance of each
oscillator allows additional conclusions. In this case, the existence of a noninvasive
stabilizing control scheme on rotating waves can be guaranteed by choosing the
time-delay small enough.

The control term will, however, become nonlocal and nonlinear in general. Only
near Hopf bifurcation, results on stabilization by linear control have been obtained.
The general results, on the other hand, are not limited to small amplitude. They do
not require ring architecture. These results are based on equivariance under a free
S1-action as is provided by, but by no means limited to, the paradigm of coupled
Stuart-Landau oscillators.
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Chapter 7
On the Interplay of Noise and Delay
in Coupled Oscillators

Otti D’Huys, Thomas Jüngling and Wolfgang Kinzel

Abstract Coupling delays can play an important role in the dynamics of various
networks, such as coupled semiconductor lasers, communication networks, genetic
transcription circuits or the brain. A well established effect of a delay is to induce
multistability: In oscillatory systems a delay gives rise to coexistent periodic orbits
with different frequencies and oscillation patterns. Adding noise to the dynamics,
the network switches stochastically between these delay-induced orbits. For phase
oscillators, we compute analytically the distribution of frequencies, the robustness
to noise and their dependence on system parameters as the coupling strength and
coupling delay.

7.1 Introduction

In many areas of physics, biology and technology delay differential equations play
an increasingly important role, as many systems can be modeled with a time-delay
[1, 2]. For example between coupled semiconductor lasers [3], a time delay can arise
due to the traveling time of light, while in gene regulatory networks a time-delay
accounts for transcription and translation times [4]. Especially in networks a time
delay can arise due to the traveling time of a signal from one node to another, as it is
the case in neural, electronic, social, or communication networks [5–7].

One of the main effects of a delay is to induce multistability [8, 9]. In particular in
oscillatory systems, a delay induces multiple periodic orbits. A well known example
are the external cavity modes in a laser with delayed feedback [10], but the effect is
universal for any dynamical system with a limit cycle [11, 12]. We highlight here the
interaction of a coupling delay with network symmetry. The possible oscillation pat-
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terns, or spatio-temporal symmetries in the network dynamics, are determined by its
topology [13]: In a ring topology, in-phase, anti-phase and out-of-phase oscillations
are allowed. We show here how, in a delay system, these patterns can be mapped
onto each other.

We discuss in Sect. 7.2 the oscillation patterns in coupled Kuramoto oscillators.
The Kuramoto phase oscillator model has become a paradigmatic model to describe
synchronization phenomena, as many limit cycle oscillators can be reduced to phase
oscillators in the weak coupling regime [14–17]. Thanks to its simplicity, analytic
calculations are possible, and we obtain explicit expressions for the phase relations
and frequency of the oscillators, and their stability. The results for phase oscillators
are shown to apply in a general context: we sketch the multistability mechanism and
the interaction of a coupling delay and the ring topology in a general periodic system
in Sect. 7.3.

In Sect. 7.4, we focus on the influence of noise, which is unavoidable in real net-
works. As in any multistable system, due to noise the oscillators can switch between
different stable attractors. For phase oscillators it is possible to approximate the oscil-
lators by a delay-free system; this allows to compute analytically the distribution of
frequencies over the different periodic orbits and their average residence times. Espe-
cially in neural networks, coexistent patterns could be related to memory storage and
temporal pattern recognition [18–20]; their robustness to noise is thus relevant in this
context.

7.2 Periodic Orbits in a Ring of Delay-Coupled Phase
Oscillators

In an oscillator network the possible oscillation patterns are determined by the net-
work topology [13]. In a unidirectional ring, the topology allows for fully symmetric
solutions, or in-phase oscillations, in which the oscillators behave all identically.
Secondly, solutions with a spatio-temporal symmetry are possible; in this case the
system is invariant under the combination of time-shift and a cyclic permutation of
the elements, these are out-of-phase oscillations. In both cases the oscillators all have
the same period and only differ by their relative phase.

Without delay, attractive coupling between oscillators typically leads to stable
in-phase oscillations and repulsive coupling to stable anti-phase or out-of-phase
oscillations. When the coupling is delayed, the coexistence of stable in-phase, anti-
phase and out-of-phase oscillations has been reported analytically for Kuramoto and
Stuart-Landau oscillators [21–23], numerically for, among/amongst others, neural
and Stuart-Landau oscillators [18, 23–25] and experimentally in opto-electronic
oscillators [26]. This multistability effect can be particularly easily illustrated in
Kuramoto phase oscillators, which describe the oscillating dynamics by a single
phase variable. We discuss here the periodic orbits in the most basic network, a
single oscillator with feedback, the synchronized orbits of two delay-coupled oscil-
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Fig. 7.1 Graphical determination of the different coexisting frequencies of a single oscillator with
delayed feedback (Eq.7.2). The intersections with the thick decreasing slopes of the sine function
correspond to stable orbits, and are marked with a circle. Parameters are ω0 = 6, κ = 2 and τ = 10

lators, and its generalization to a unidirectional ring. A single oscillator with delayed
feedback is modeled by

φ̇(t) = ω0 + κ sin(φ(t − τ) − φ(t) + θ). (7.1)

The oscillator has a natural frequencyω0, the other parameters are the coupling delay
τ , the coupling strength κ > 0 and the coupling phase θ . As the dynamics is invariant
under a transformation φ(t) → φ(t)+ ω̃t, ω0 → ω0 + ω̃, θ → θ − ω̃τ , the coupling
phase θ can be omitted without loss of generality.

We seek solutions with a constant frequency of the form φ(t) = ωk t . Substituting
such a solution in the model (7.1), we find the locking frequencies ωk by solving a
transcendental equation

ωk = ω0 − κ sin(ωkτ). (7.2)

The stability of an orbit with a locking frequency ωk is determined by the character-
istic equation for the growth rate λ of a small perturbation,

λ = −κ cos(ωkτ)(1 − e−λτ ). (7.3)

Thus, frequencies forwhich κτ cosωkτ > 1 holds, are stable. A graphical determina-
tion of the frequenciesωk is shown in Fig. 7.1. Clearly, the number of coexisting orbits
increases with coupling strength κ , as the frequencies range between ωmax = ω0 +κ

and ωmin = ω0 − κ , and with the delay time τ . In the long delay limit κτ � 1, the
stable frequencies ωk are approximated by 2nπ/τ .

Coupling two identical oscillators, two spatio-temporal symmetric periodic pat-
terns are possible: in the fully symmetric state the oscillators are in-phase with each
other φ1(t) = φ2(t). In the anti-phase state we have φ1(t) = φ2(t + T/2) =
φ2(t) + π , where T = 2π/ωk denotes the period of oscillation. The anti-phase
state is invariant under the spatio-temporal symmetry φ1 → φ2, t → t + T/2. Two
mutually coupled phase oscillators with delay are modeled as
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(a) (b)

Fig. 7.2 Graphical determination of the locking frequencies of two a identical and b nonidentical
delay-coupled phase oscillators. Intersections with the thick full (dashed) line, marked by a black
(gray) dot, correspond to stable in-phase (anti-phase) orbits. In panel (b) a stable orbit is labeled as
in-phase if −π/2 < δ < π/2. Parameters are ω0 = 6, κ = 2, τ = 10 and (b) Δ = 0.8

φ̇1(t) = ω0 + κ sin(φ2(t − τ) − φ1(t))

φ̇2(t) = ω0 + κ sin(φ1(t − τ) − φ2(t)). (7.4)

The in-phase periodic states are identical to the solutions of a single oscillator with
feedback, for the anti-phase oscillations we have ωk = ω0 + κ sin(ωkτ). As shown
in Fig. 7.2a, the frequencies of stable in-phase and anti-phase orbits alternate each
other over the whole frequency range. For long delays the stable frequencies are
hence approximated as ωk = nπ/τ .

It is straightforward to extend the results of two identical coupled phase oscillators
to a unidirectional ring of N oscillators. Such a system is then modeled as

φ̇n(t) = ω0 + κ sin(φn+1(t − τ) − φn(t)), (7.5)

with N + 1 ≡ 1. The coupling topology allows for in-phase oscillations φn(t) =
φn+1(t) = ωk t and several out-of-phase oscillation patterns φn(t) = φn+1(t −
mT/N ) = ωk t + nΔφ, with Δφ = 2mπ/N . The corresponding frequencies are
given by ωk = ω0 − κ sin(ωkτ + Δφ). For strong coupling and long delay, the fre-
quencies are approximated byωk ≈ 2mπ/(Nτ). Comparing the different oscillation
patterns, we find that all solutions have the same range [ω0 − κ, ω0 + κ], and dif-
ferent oscillation patterns alternate each other. Moreover, solutions with a different
spatio-temporal symmetry can be mapped onto each other by adjusting the coupling
phase θ → θ + Δφ [24].

The stability of the different solutions is similar in a single feedback system and
in a unidirectional ring of any number of elements [21, 22, 27]. By applying a master
stability function approach [28], and decomposing the system into the eigenmodes
of a unidirectional ring, we find a characteristic equation for the growth rate λ of a
small perturbation

λ = −κ cos(ωkτ − Δφ)(1 − γme
−λτ ), (7.6)
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where γ = e2mπ i/N denotes the eigenvalue of the adjacency matrix in the mth
direction. In the long delay limit, only the magnitude of this factor γ plays a role
[29, 30]. Hence, for long enough delay, a solution is stable if cos(ωkτ − Δφ) > 0,
irrespective of the number of oscillators in the ring or oscillation pattern of the specific
solution.

When the symmetry between the oscillators is broken, the oscillators can still
lock to a common frequency if the coupling is strong enough [31]. Their phase
differences are however no longer equal to 2π/N . We sketch here the solution for
two nonidentical delay-coupled phase oscillators, modeled as

φ̇n(t) = ω0n + κ sin(φn+1(t − τ) − φn(t)), (7.7)

with ω01,02 = ω0 ± Δ/2, and Δ being the detuning between the oscillators. The
oscillators can then lock to a solution φ1(t) = φ2(t) + δ = ωk t , with the phase
difference δ and the locking frequency ωk given by

ωk = ω0 − κ sin(ωkτ) cos δ

sin δ = Δ

2κ cos(ωkτ)
. (7.8)

The graphical solution of Eq. (7.8) is shown in Fig. 7.2b: The locking frequencies
and their stability properties are similar as for identical oscillators, the frequency
range is smaller due to detuning. We find the same locking condition Δ < 2κ
as for instantaneous coupling; for vanishing detuning we recover the in-phase and
anti-phase states for identical oscillators. However, in the delayed case locked and
desynchronized solutions can coexist [32].

7.3 Delay, Multistability and Oscillation Patterns

For phase oscillators, a delay induces multistability: as discussed in the previous
section, the number of coexistent stable solutions scales with the frequency range
and thus the coupling strength, the delay time, and in a unidirectional ring, with
the number of elements. Moreover, in-phase and out-of-phase solutions share the
same stability properties. We show here that these properties extend to periodic
orbits in delay-coupled systems in general. Following the approach of Yanchuk and
Perlikowski [11], we assume a general oscillator with delayed feedback

ẋ = f (x(t), x(t − τ)), (7.9)

with x ∈ R
m . If the system has a periodical solution x(t) = x(t + T ) for a given

delay τ = τ0, by construction, this is also a solution when the delay is equal to
τn = τ0 + nT . This mechanism leads to a structure in the (ω, τ)-plane of repeating
branches of solutions. With varying delay, the frequency of the original periodic
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Fig. 7.3 Alternating branches of in-phase (full line) and anti-phase (dashed line) periodic orbits
of two identical coupled phase oscillators in the (ω, τ)-plane. The minimal and maximal period,
which are the upper and lower distance between the branches, are also indicated. Parameters are
ω0 = 1 and κ = 0.3

orbit varies between a maximal value ωmax = 2π/Tmin, for τ = τ01 and a minimal
frequency ωmin = 2π/Tmax occurring at τ = τ02, forming a branch stretching over a
delay interval [τ01, τ02]. The nth branch is then stretched over a larger delay interval
[τ01 + nTmin, τ02 + nTmax]. The number of coexisting orbits at a particular (large)
delay τ can then be estimated in the following way: Assuming τ ≈ lTmin ≈ mTmax,
the number of orbits approximated as l − m ≈ (ωmax − ωmin)

τ
2π . Consequently, the

difference between the frequencies can be approximated as 2π/τ .
Extending this study to unidirectional rings of delay coupled oscillators, we con-

sider a set of N identical nonlinear systems coupled with delay

ẋn = f (xn(t), xn−1(t − τ)), (7.10)

where 0 ≡ N . Suppose that this network allows for an in-phase periodic solution
xn(t) = xn−1(t) = xn(t + T ) for a coupling delay τ = τ0. This implies that there
exists an out-of-phase periodic solution xn(t) = xn−1(t − T/N ) = xn(t + T ) at a
delay τ1 = τ0 + T/n. Similarly, we find out-of-phase branches associated to all the
other out-of-phase patterns that are allowed in the ring: a pattern corresponding to
xn(t) = xn−1(t − kT/N ) = xn(t + T ) can be found at a delay τk = τ0 + kT/N .
Consequently, in-phase and out-of-phase branches alternate each other in the (ω, τ)-
plane. For two mutually delay-coupled Kuramoto oscillators, these characteristic
branches are shown in Fig. 7.3.

These in-phase and out-of-phase branches share the same stability properties.
Linearizing Eq. (7.10) around an in-phase periodic solution at τ = τ0, we obtain a
set of equations for a perturbation δ(t)

δ̇(t) = D1 f (x(t))δ(t) + γmD2 f (x(t − τ0))δ(t − τ0), (7.11)

where D1 f (x(t)) and D2 f (x(t − τ0)) are the derivatives of f (x(t), x(t − τ)) with
respect to the first and second variable respectively, evaluated along the periodic orbit
x(t); These matrices are time-dependent and have a period equal to the oscillation
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period T . The factor γm = e2miπ/N arises from the master stability function [28],
as we evaluate the perturbation along the eigenvectors of the adjacency matrix. It
does not play a role for the stability in the long delay limit, as only its magnitude
matters [29]. To solve such equation (7.11), we assume a perturbation of the form
δ(t) = p(t)eλt , with p(t) being T -periodic. We find a stability equation

ṗ(t) = (D1 f (x(t)) − λ1) p(t) + γme
−λτ0D2 f (x(t − t0))p(t − t0), (7.12)

where we used the periodicity of the x(t) and p(t) to replace τ0 by t0 = τ0 mod T
when possible. The delay hence only appears in the exponential term, as the value of
t0 depends only on the frequency of the orbit (i.e. on the position on the the branch)
and not on the number of the branch.

At a delay τk = τ0 + kT/N , the same solution x(t) reappears as an out-of-
phase state xn(t) = xn−1(t − kT/N ) ≡ x(t). Applying a perturbation δ(t) =
(p(t), γm p(t + kT/N ), . . .)eλt , we find a stability equation

ṗ(t) = (D1 f (x(t)) − λ1) p(t) + γme
−λτk D2 f (x(t + kT/N − τk ))p(t + kT/N − τk )

= (D1 f (x(t)) − λ1) p(t) + γme
−λτk D2 f (x(t − t0))p(t − t0). (7.13)

Upon a factor eλkT/N , this stability equation for out-of-phase oscillations is the same
as for the in-phase oscillations. The stability equations for solutions with the same
frequency only differ by the value of the delay, irrespective of the oscillation pattern.
As the solutions of Eq. (7.11) scale as λ = iσ + γ (σ )/τ in the long delay limit [11],
the stability of a solution solely depends on its frequency and neither on the branch
on which a solution is located nor on the oscillation pattern. Thus, for long enough
delay, if in-phase oscillations are stable (over a finite delay interval), and their period
is sufficiently shorter than the delay time T � τ , this implies that other oscillation
patterns, with a similar waveform and a frequency difference of 2kπ/Nτ , are stable
as well, and vice versa.

One can apply these ideas as well to the unstable periodic orbits (UPOs) that
lie densely in a chaotic attractor: if an attractor of a chaotic delay system contains
an orbit with a period T � τ , one will find orbits with slightly different stability
properties at frequenciesω = 2π/T ±kΔω, withΔω = 2π/τ0. The chaotic attractor
for two delay-coupled units contains then at least twice as many UPOs as the single
system: it contains all the in-phase orbits that exist in the single attractor, and these
in-phase orbits are alternated with anti-phase orbits having very similar (in)stability
properties. A ring of N elements has a chaotic attractor containing minimally N
times as many periodic orbits as the single system.

7.4 Interaction of Noise and Delay

Multistability is an inherent property of delayed oscillatory systems, as shown in
the previous sections. Consequently, due to the presence of noise in the system, the
oscillator can switch between coexistent orbits. Such switching behavior has been
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observed experimentally between the external cavity modes of a semiconductor laser
subject to delayed external feedback [33], or numerically, between different chaotic
attractors in the Lang-Kobayashi model [8] or between periodic orbits in a ring of
neurons [19]. In neuroscience these multistable orbits have been linked to memory
storage: the average residence times of the orbits would then relate to the length of
memory.

We describe these mode hopping statistics in coupled phase oscillators. Since
the periodic orbits are explicitly known, it is possible to construct a potential and
compute the distribution of frequencies and their respective lifetimes [34]. We add
Gaussian white noise ξn(t), with a variance 2D, to each phase oscillator described
as in Eq. (7.5)

φ̇n = ω0n + κ sin(φn+1(t − τ) − φn(t)) + ξn(t). (7.14)

7.4.1 Mode Hopping in a Single Oscillator with Feedback

We first discuss a single oscillator with delayed feedback. A typical timetrace of the
phaseφ(t), with several hoppings between the deterministic frequenciesωk , is shown
in Fig. 7.4a. Numerically the mode hoppings are determined by evaluating ω(t) ≡
(φ(t) − φ(t − τ))/τ (shown in Fig. 7.4b), as this frequency measure distinguishes
clearly between the different ωk , and appears as a driving term of the dynamics.

To describe the mode hopping dynamics, the delay system is approximated by an
undelayed system. It is then possible to define aLangevin equation and to compute the
frequency distributions and average residence times of the different periodic orbits
analytically. We follow the method of Mørk et al. [35] for the description of mode
hopping between external cavity modes in a laser with delayed feedback. Assuming
that the oscillator resides in one of the periodic orbits during a delay interval, we
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Fig. 7.4 a Phase evolution φ(t) − ω0t of a Kuramoto oscillator with delayed feedback and white
noise. We subtracted the natural frequency ω0t for better visibility of the mode hoppings. b The
frequencymeasureω(t) = (φ(t)−φ(t−τ))/τ is a good indicator for themodehoppings. Parameters
areω0 = 6, κ = 2, τ = 10 and D = 0.5; the oscillator has six stable periodic orbits, with respective
frequencies ω1 ≈ 4.48, ω2 ≈ 5.07, ω3 ≈ 5.67, ω4 ≈ 6.27, ω5 ≈ 6.87 and ω6 ≈ 7.46, shown in
Fig. 7.1
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Fig. 7.5 Potential for a
Kuramoto oscillator with
feedback (Eq. 7.16).
Parameters are ω0 = 6,
κ = 2, τ = 10

approximate the instantaneous frequency φ̇(t − τ) by the frequency averaged over
the future delay interval plus its noise source

φ̇(t − τ) ≈ φ(t) − φ(t − τ)

τ
+ ξ(t − τ). (7.15)

Using this approximation, one obtains a closed equation for the phase difference
x(t) = φ(t) − φ(t − τ), that can be written in terms of a potential,

ẋ(t) = −dV (x)

dx
+ ξ̃ (t) with

V (x) = 1

2τ
(x − x0)

2 − κ cos x, (7.16)

with x0 = ω0τ and ξ̃ (t) = ξ(t) − ξ(t − τ). As the noise sources ξ(t) and ξ(t − τ)

are independent, the simplified oscillator is effectively subject to a magnified noise
strength of 〈ξ̃ 2(t)〉 = 4D. The potentialV (x), which has a parabolic shapemodulated
by a cosine function, is shown in Fig. 7.5. The local minima xk = ωkτ correspond
to the deterministic frequencies, while the local maxima xm correspond to unstable
solutions: By calculating the potential extrema, Eq. (7.2) is recovered.

The distribution of frequencies p(ω) is then given by

p(ω) ∝ e− V (ωτ)

2D = e− τ
4D (ω−ω0)

2
e

κ cosωτ
2D . (7.17)

This distribution p(ω) has a Gaussian envelope with mean ω0 and variance σ 2 =
2D/τ , corresponding to the probability distribution of a Wiener process. The feed-
back term, which only appears in the second factor of Eq. (7.17), determines the
location and the shape of the different peaks: With increasing feedback strength the
extrema in the distribution become more pronounced, for vanishing feedback the
Wiener process distribution is recovered. In contrast to the deterministic system, the
number of attended orbits grows as

√
Dτ , and is independent of the coupling strength

κ . In Fig. 7.6a the analytical result for the simplified system (Eq. 7.17) is compared
with numerical simulations of the original delay system (Eq. 7.15); the theoretical
results provide an excellent approximation for the distribution of frequencies.
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Fig. 7.6 The frequency
distribution (gray) for an
oscillator with feedback,
together with its analytical
approximation (Eq.7.17) in
black. The dash-dotted line
shows the Gaussian
envelope. The parameters are
κ = 2, τ = 10, ω0 = 6,
D = 0.5. Reprinted figure
with permission from [34],
Copyright (2014) by the
American Physical Society

5 6 7
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Also the average residence times can be estimated by the potential model (7.16):
In the limit of low noise, the escape rates from an orbit with frequency ωk are given
by the Kramers rate [36, 37]

r(ωk) =
√−V ′′(ωkτ)V ′′(xm)

2π
e− ΔV

2D .

The average residence time T0(ωk) reads then

T0(ωk) ≈ 1

r+(ωk) + r−(ωk)
,

where the suffix denotes whether the oscillator hops to a mode with a higher or a
lower frequency. For strong coupling and large feedback delay κτ � 1, using the
approximations ωkτ ≈ 2nπ and xm = (2n + 1)π , the average residence time is
further approximated as

T0(ωk) ≈ π

κ

e
κ
D + π2

4τD

cosh
(

π(ωk−ω0)

2D

) . (7.18)

Thus, the average residence time T0(ωk), as to be expected, increases exponentially
with the feedback strength κ , which determines the depth of the potential wells, and
decreases with the noise strength D. The feedback delay τ has little influence on the
residence times (for long delays the average residence time no longer depends on τ ).
Moreover, the range of frequencies with a long lifetime scales with the noise strength
D, the number of relatively robust orbits thus scales as Dτ . A comparison between the
theoretical and the numerical average residence times (Eq. 7.18) is shown in Fig. 7.7,
and the approximation gives good results. However, upon the typical exponential
decay predicted by theory, there are maxima at multiples of the delay time, which
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Fig. 7.7 a Logarithm of the residence time distribution ln(p(T )), for a Kuramoto oscillator with
delayed feedback, for the orbits with frequencies ω2 and ω3. b Mean residence time of the orbits
ω2,3,4,5 versus their frequency for a single oscillator (upper black dots) together with the theoretical
approximation (Eq. 7.18) (upper dashed gray curve). The lower gray dots and the lower dashed
curve represent the mean average residence times of the orbits and their theoretical approximation
(Eq. 7.22) respectively for two identical coupled systems. The parameters are κ = 3, τ = 10,
ω0 = 6 and D = 0.5. Reprinted figure with permission from [34], Copyright (2014) by the
American Physical Society

are not captured by the delay-free approximation (shown in the inset). These peaks
result from a known stochastic resonance effect in delay systems [8, 38, 39]: A
mode hopping causes a perturbation, which repeats itself a delay time later, thereby
increasing the probability for another mode hopping.

7.4.2 Mode Hopping in Two Mutually Delay-Coupled
Oscillators

As a next step we consider two mutually delay-coupled phase oscillators. The phase
evolution of two identical delay-coupled oscillators is shown in Fig. 7.8. In the cou-
pled system, a frequency transition takes place in two steps: first one oscillator, the
leader, changes its frequency, a delay time later the other oscillator, the laggard,
follows. Such leader-laggard behavior is a typical signature of a stochastic phenom-
enon in delay-coupled systems [40]. Looking at the evolution of the driving terms
φ1,2(t) − φ2,1(t − τ), shown in Fig. 7.8b, we find that during a mode hopping the
driving term of the leader increases or decreases with approximately 2π , while the
laggard changes its frequency without a phase jump. To quantify the frequency of
the coupled oscillators we use the mean frequency of the two nodes averaged over
the past delay interval ω(t) = (φ1(t) + φ2(t) − φ1(t − τ) − φ2(t − τ))/(2τ); we
thus capture the frequency transition of the leading oscillator. If the oscillators are
identical, leader and laggard changes role randomly. This is still the case for detuned
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Fig. 7.8 a The phase evolution φ1 − ω0t (gray) and φ2 − ω0t (black) of two identical noisy
Kuramoto oscillators coupledwith delay.We subtracted the natural frequencyω0 for better visibility
of the mode hoppings. b The time evolution of the frequency ω(t) = (φ1(t) + φ2(t) − φ1(t −
τ) − φ2(t − τ))/(2τ) for two coupled oscillators (black), together with the phase differences
x1(t)/τ = (φ1(t) − φ2(t − τ))/τ (upper gray curve) and x2(t)/τ = (φ2(t) − φ1(t − τ))/τ (lower
gray curve). The dashed lines indicate the mode hoppings. Parameters are ω0 = 6, κ = 3, τ = 10
and D = 0.5

oscillators, however, the oscillator with the higher natural frequencymore often leads
the transition to a faster frequency, while the slower oscillator plays more often the
role of leader, if the system switches to a lower frequency.

To define a delay-free Langevin formalism, we rewrite the system as a function
of the driving terms x1(t) and x2(t), defined as x1,2(t) = (φ1,2(t) − φ2,1(t − τ)).
We assume that the oscillators are locked to the same fixed frequency over the delay
interval, and thus, φ̇1(t −τ) and φ̇2(t −τ) only differ in the contribution of the noise.
Using the main reduction

φ̇1,2(t − τ) ≈ (x1(t) + x2(t))/(2τ) + ξ1,2(t − τ), (7.19)

the system can be rewritten as a function of a two-dimensional potential:

ẋ1,2(t) = −∂V1,2

∂x1,2
+ ξ̃1,2(t) with

V (x1, x2) = 1

4τ
(2x0 − x1 − x2)

2 + Δ

2
(x1 − x2)

−κ (cos x1 + cos x2) , (7.20)

with x0 = ω0τ and ξ̃1,2(t) = ξ1,2(t)− ξ2,1(t − τ). The potential is shown in Fig. 7.9.
The wells are located at (x1, x2) = (ωkτ + 2nπ − δ, ωkτ − 2nπ + δ), with δ being
determined by (7.8). The phase difference between the two oscillators, and hence
the delay phase differences x1 and x2, are only determined upon multiples of 2π ,
leading to a 4π -periodic potential with respect to x1 − x2 = xA. The frequency of
the system is given by the average frequency ω = (x1 + x2)/(2τ), and a single
frequency ωk corresponds to multiple potential minima (x1, x2). There are thus two
pathways for a transition ωk → ωk±1: x1 changes with almost 2π , while x2 remains
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Fig. 7.9 Two-dimensional potential for two coupled Kuramoto oscillators, without (a) and with (b)
detuning. The arrows indicate the two pathways for a transition between two frequencies, thicker
arrows correspond to more probable pathways. Parameters are ω0 = 6, κ = 2, τ = 10 and (b)
Δ = 0.8

almost constant, and φ1(t) is the leader in the transition, and vice versa. For identical
oscillators these pathways are equally probable and transitions always take place
between orbits with a different oscillation pattern, as these have a minimal potential
barrier between them.

If the oscillators are identical, we obtain the frequency distribution p(ω) by inte-
grating over the double phase difference xA. We find

p(ω) ∝ e− τ
2D (ω−ω0)

2
I0(κ cosωτ/D), (7.21)

with I0(y) being the modified Bessel function of the first kind, I0(y) = ∑ y2n

22n(n!)2 .
Like for the single oscillator, the frequency distribution can be written as the

product of a Gaussian envelope, which depends on the delay time and noise strength,
and a factor which involves the coupling strength, and determines the shape and
location of the separate peaks. However, the variance of the envelope is only half
of the variance of the single feedback system. Moreover, the Bessel function I0(y)
is symmetric: peaks corresponding to in-phase and anti-phase orbits alternate each
other, their height only depends on their respective frequencies ωk and not on the
oscillation pattern. Numerical and theoretical results for the frequency distribution
are compared in Fig. 7.10a. The agreement is excellent.

To calculate the average residence times for identicalmutually coupled oscillators,
we use that, in the low noise limit, all the transitions take place via the two optimal
pathways. We obtain

T0(ωk) = 1

2r+(k) + 2r−(k)
≈ π

2κ

e
κ
D + π2

8τD

cosh
(

π(ωk−ω0)

2D

) . (7.22)
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Fig. 7.10 The frequency distributions (gray) a two coupled identical identical oscillators and b
two detuned oscillators. The analytical approximation Eq. (7.21) is plotted in black, the dash-dotted
lines show the respective Gaussian envelopes. The parameters are κ = 2, τ = 10,ω0 = 6, D = 0.5,
and c Δ = 0.8. Reprinted figure with permission from [34], Copyright (2014) by the American
Physical Society

This corresponds to half of the lifetime of the orbits of a single oscillator with a
feedback delay 2τ ; As we have two oscillators, the transition probability doubles.
The numerical and theoretical results are compared in Fig. 7.7b.

For nonzero detuning Δ > 0, the potential (Eq. 7.20) is tilted, as is shown in
Fig. 7.9b. As a result, the phase difference xA(t) between the oscillators preferentially
increases during amode hopping. Themost probable, and the least probable transition
pathway between two frequencies are also sketched on Fig. 7.9b. If the detuning is
large enough we assume that for all the transitions to a higher frequency the faster
oscillator x2 is the leader, and for the transitions to a lower frequency the slow
oscillator x1 leads the dynamics. For κτ sufficiently large, the envelope can then be
approximated by assuming detailed balance

p(ωk)r+(ωk) = p(ωk+1)r−(ωk+1) ⇔
p(ωk+1)

p(ωk)
≈ e− ΔV (ωk+1→ωk )−ΔV (ωk→ωk+1)

2D

≈ e− τ
2D ((ωk+1−ω0)

2−(ωk−ω0)
2+ 2δ

τ
(2ω0−ωk+1−ωk ))

≈ e− τ
2D (1− 2δ

π )((ωk+1−ω0)
2−(ωk−ω0)

2). (7.23)

This corresponds to a Gaussian envelope of the frequency distribution with mean ω0

and variance σ 2 = D/(τ(1−ε)), with ε = 2 arcsin(Δ/2κ)/π > 0. The distribution
of frequencies broadens due to the detuning. In Fig. 7.10b we show the approximated
Gaussian envelope together with the simulated distribution of frequencies.
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7.4.3 Generalization to a Unidirectional Ring

This formalism can easily be generalized to a unidirectional ring of identical
oscillators. Defining xn = φn(t) − φn+1(t − τ) as the respective driving terms and
approximating the instantaneous frequencies of the oscillators by themean frequency
averaged over the delay interval and their noise source,

φ̇n(t − τ) ≈ 1

Nτ

N∑

l=1

xl + ξn(t − τ),

one finds an N-dimensional potential

V (x1, . . . , xN ) = N

2τ
(x0 − xS)

2 + κ

N∑

l=1

cos xl , (7.24)

with xS = 1
N

N∑

l=1

xl . The frequency of the system is then measured by ω(t) =
xS(t)/τ . Although it is not possible to calculate the frequency distribution explicitly,
it is straightforward to show that the parabolic term in Eq. (7.24) results in a Gaussian
envelope. Its variance is given by σ 2 = 2D/(Nτ), and thus scales inversely with the
total delay in the ring Nτ . As the frequency difference between the orbits is approx-
imated by 2π/(Nτ), the number of attended orbits scales as

√
DNτ . Moreover, the

potential is symmetric with respect to the different oscillation patterns, so that each
pattern is equally often visited in the long delay limit.

For low noise and large κτ , the average residence times scale inversely with the
number of transition pathways, and thus with the number of oscillators in the ring,
and they depend weakly on the total roundtrip delay. They are approximated by

T0(ωk) = 1

Nr+(ωk) + Nr−(ωk)
≈ π

Nκ

e
κ
D + π2

4NτD

cosh
(

π(ωk−ω0)

2D

) . (7.25)

7.4.4 Mode Hopping in Coupled FitzHugh-Nagumo
Oscillators

The Kuramoto model is a weak coupling approximation for general limit cycle oscil-
lators. In particular, the Kuramoto approximation applies when the coupling mainly
influences the oscillation phase,while thewaveformor oscillation amplitude is hardly
affected. To confirm whether the analytic results obtained for Kuramoto oscillators
apply in such a general context, we compared the analytic results for phase oscillators
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Fig. 7.11 a Time trace and b frequency evolution of a FitzHugh-Nagumo oscillator with feedback.
Parameters are ε = 0.01, a = 0.9, k = 0.2, τ = 20 and D̃ = 0.0145

to a delay-coupled FitzHugh-Nagumo system. This oscillator is frequently used to
model neural dynamics, and has a spiking rather than a sinusoidal waveform. A ring
of FitzHugh-Nagumo oscillators is modeled by

εv̇n(t) = vn(t) − vn3(t)

3
− wn(t) + k(vn+1(t − τ) − vn(t))

ẇn(t) = vn(t) + a + ξn(t), (7.26)

with (vN+1, uN+1) ≡ (v1, u1), and ξn(t) being Gaussian white noise with a vari-
ance 2D̃. In Fig. 7.11 we show a timetrace, which shows two frequency transitions,
together with the frequency evolution.

The mode hopping can be analyzed in a similar way as for phase oscillators.
Defining the phase of the oscillators by the Hilbert-transform of the fast variable,
φn(t) = arg(H(vn(t))), the frequency is measured by ω(t) = ∑

(φn(t) − φn(t −
τ))/(Nτ). Looking at the distribution of frequencies, and their respective residence
times (Fig. 7.12), a similar picture as for phase oscillators, with multiple peaks,
separated by a difference of 2π/N is recovered. The analytic results provide an
accurate description for themode hopping statistics: the scaling properties with delay
time and number of elements are reproduced, both for the frequency distribution and
the average residence times; the single and coupled system can be fitted by a single
set of parameters for a Kuramoto system.

7.5 Final Remarks

For stochastic delay systems there is no corresponding theory yet to the well-known
Fokker-Planck formalism. Although the reduction technique used here is far from
precise, the correspondence between the analytic delay-free results and the numerical
results of the delay system is excellent. The underlyingmechanism for this agreement
remains to a large extent an open question. However, it is related to the fact that on
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Fig. 7.12 Frequency distribution p(ω) for one (a) and two (b) coupled FitzHugh-Nagumo oscil-
lators with delay, with ε = 0.01, a = 0.9, k = 0.2, τ = 40 and D̃ = 0.0145. The dashed curves
show the Gaussian envelope for the corresponding Kuramoto system with ω0 = 2.55, D = 0.2 and
τ = 40. In panel (c) the corresponding average residence times are shown for one (upper black dots)
and two (lower gray dots) oscillators, the dashed curves represent the Kuramoto approximation for
one (Eq. 7.18, upper curve) and two (7.22, lower curve) elements for ω0 = 2.55, D = 0.2, τ = 40
and κ = 0.815. Reprinted figure with permission from [34], Copyright (2014) by the American
Physical Society

timescales much shorter than the delay t0 � τ , the influence of the feedback is not
visible: the two point distribution of φ(t) − φ(t − t0) is identical to the one of a
random walk; the instantaneous frequency can thus be approximated as such. Only
on timescales equal or larger than the delay, the dynamics (i.e. the timetrace) of an
oscillator with delayed feedback differs significantly from a random walk. A similar
phenomenon is observed in other stochastic systems driven by a nonlinear delay term
[41].

The comparison between the deterministic and the stochastic system is notewor-
thy: The deterministic range of frequencies depends on the coupling strength. In
contrast, in the stochastic system it is determined by the noise level and delay time;
the frequency range is the same as for a random walk. The robustness of the periodic
orbits against noise, measured by the average residence time, depends mainly on the
coupling strength and only weakly on the delay time. Moreover, we found that the
number of attended orbits scales as

√
DNτ , whereas the number of orbits with a

reasonably long residence time scales as DNτ .
There are similarities between delay-coupled stochastic and chaotic systems as

well, in the sense that they show similar correlation functions. Coupled in a unidi-
rectional ring, the oscillators are almost always synchronized, in the sense that they
have the same frequency ωk . However, they spend, for long enough coupling delays,
as much time in in-phase as in out-of-phase orbits. Consequently the oscillators are
not correlated at zero lag, but the cross-correlation shows maxima at multiples of
the coupling delay corresponding to the traveling time between the nodes. Also in a
chaotic attractor a delay induces multiple periodic orbits, and thus, it is not surprising
that we find the same correlation pattern [42, 43]. However, the analogy between
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chaotic and stochastic systems does not go any further, as they show different scaling
behavior with the delay time and the number of elements in the ring.

Wediscussed here only unidirectional rings: these are the only networks, forwhich
a potential can be constructed. As soon as one of the oscillators receives multiple
inputs, the formalism fails. The unidirectional is also the only network, where the
delay introduces a mapping between different oscillation patterns.

For more complicated networks, such as bidirectional rings or globally coupled
oscillators, or even twonodeswith feedback, the dynamics becomesmuch richer.One
of the main effects observed in globally coupled oscillators is the strong preference
for in-phase oscillations; they are more often attended and more robust to noise
than out-of-phase oscillations. Besides in-phase and out-of-phase oscillations, other
dynamical patterns can be observed.
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Chapter 8
Noisy Dynamical Systems with Time Delay:
Some Basic Analytical Perturbation Schemes
with Applications

Wolfram Just, Paul M. Geffert, Anna Zakharova and Eckehard Schöll

Abstract Systems with time delay, a rather prominent branch in applied dynami-
cal systems theory, constitute a special case of functional differential equations for
which the general mathematical theory is fairly well developed and largely parallels
the theory of ordinary differential equations. Hence analytic concepts like bifurcation
theory, adiabatic elimination, global attractors, invariant manifolds and others can be
used to study dynamical behaviour of systems with time delay if some care is applied
to take special features of infinite dimensional phase spaces into account. Simple ana-
lytic perturbation schemes, frequently used to gain insight for ordinary differential
equations, can be applied to time delay dynamics as well. However, such approaches
seem to be used infrequently within the physics community, probably because of
a lack of easily accessible expositions. Here we review some elementary and well
established concepts for the analytical treatment of time delay dynamics, even when
subjected to noise. We cover normal form reduction and adiabatic elimination, sto-
chastic linearisation of time delay dynamicswith noise, and some elements ofweakly
nonlinear- and bifurcation analysis. These tools will be illustrated with applications
in control problems, time delay autosynchronisation, coherence resonance, and the
computation and structure of power spectra in noisy time delay systems.

8.1 Introduction

At about half a century ago the notion of chaos and the importance of nonlinear prop-
erties has become relevant in quite diverse branches of science, with the effect that
the well developed specialised mathematical discipline of dynamical systems theory
became one of the major subjects in applied sciences. Since then, dynamical systems
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theory has been enriched and diversified by the incorporation of other, important
aspects. Noise and imperfections are certainly one of the major issues appearing in
applications. The emphasis of this aspect can be traced back for about a century
[1–3]. The constructive role of noise becomes apparent when nonlinear dynamical
behaviour is considered (see e.g. [4, 5]), and this aspect plays a major role for the
theory of systems far from equilibrium which is still under development (see e.g.
[6]). The various facets of rigorous approaches and a functional analytic setting are
rather well developed, with even quite accessible expositions being available [7, 8]
at the expense of some rigour. In addition, stochastic dynamics has been cast into the
language of modern dynamical systems theory, using tools like invariant manifolds
and bifurcations [9].

The inclusion of time-delayed interactions and the investigation of the corre-
sponding non-Markovian dynamics has as well a fairly long tradition, mainly trig-
gered by topics in engineering (see e.g. [10] and references therein) or by linear
response theories in solid state physics [11, 12]. The proper inclusion of nonlin-
ear dynamical aspects has added additional stimulus to this branch of dynamical
systems theory [13–17], in particular, for applications in fast optical systems and
communication networks where the speed of light becomes a dynamically relevant
quantity [18]. Rigorous mathematical approaches for time delay systems are fairly
well developed within a suitable functional theoretical setting [19], underpinning
the numerical approaches which largely parallel developments in finite dimensional
systems, like, e.g., numerical continuation for uncovering bifurcation structures in
time delay dynamics [20].

Herewewant to consider analytical approaches for dynamical systemswhichmay
have both of the previouslymentioned facets in conjunction, i.e., nonlinear stochastic
time delay systems. We will focus on simple analytical perturbation schemes and
therefore sacrifice to a large extent any mathematical rigour. Instead we focus on for-
mal expansion schemes, which have been well developed and which are in fact quite
well known in the context of ordinary differential equations. What we present here is
not completely new and can be found, at least indirectly, in the existing specialised lit-
erature. However, we have the impression that such approaches are probably not very
well known within an applied dynamical systems community. As a consequence of
our strategy wewill largely skip recent topical developments in time delay dynamics,
as these topics normally still defy any systematic analytical treatment. For instance,
the general theory of systems with distributed and time dependent delays is well
developed and can be dealt with by numerical tools, but analytical results in closed
form are rare. Most challenging are systems with state dependent delays were even
the fundamental theory is still not completely developed. As for synchronisation
in coupled time delay systems master stability function techniques [21] can be
applied in the case of uniform time delay and nice results, e.g., in the limit of large
delay times can be deduced analytically [22, 23], emphasising the role of strong and
weak instabilities. However, the power of this approach to disentangle the topology
of the coupling from the properties of the single site dynamics disappears when
more complicated delay structures are considered. For these advanced cases one still
relies largely on numerical simulations with little input from systematic analytical
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expansions. Similar caveats apply if one intends to generalise Fokker-Planck tech-
niques to noisy time delay dynamics. While it is still possible to derive an equation
of motion for the distribution function, the approach suffers from the shortcoming
that no closed simple equation of motion can be obtained. Nevertheless, such ideas
can be used to study linear dynamical systems [24] and the limit of small delay and
thus can quantitatively capture corrections to the Markovian limit [25].

The aim of our contribution is modest. We want to summarise some elementary
formally consistent analytic perturbation tools for the analysis of delay dynamicswith
and without noise, which are valid beyond the limit of small time delay. To some
extent our approach can be illustrated by the intuitive averaging technique. Averaging
techniques, multiple scaling expansions, and weakly nonlinear analysis all describe
similar approaches to deal with oscillatory systemswhich are in some sense close to a
linear case. These concepts have the appeal of an immediate intuitive interpretation,
they are quite flexible, they have appeared in various contexts, such as nonlinear
oscillators (see, e.g., [26] for an introduction) or coherent pattern formation [27], and
can be easily generalised to capture time delay dynamics as well (see, e.g., [28, 29]
for some examples in time-delayed feedback control). Multiple scaling techniques
are closely related and often largely identical to adiabatic elimination schemes [30],
which at the rigorous level can be formalised in terms of centre manifold and normal
form reductions. For deterministic time delay dynamics the entire setup is very well
established, but not easy to apply by non specialists as one has to master a fairly
heavy technical framework which is involved in a rigours description [19]. Some
of the more traditional and less general literature is probably easier to access for
non-mathematicians [10, 31] and it is this kind of approach we intend to pursue
here.

The analytic expansion schemes which are at focus of our interest will largely be
based on a thorough understanding of linear time delay dynamics. Even though linear
systems are straightforward to solve, either in the deterministic or in the stochastic
case, we will summarise the essential features in Sect. 8.2. For those readers familiar
with expansion schemes in dynamical systems theory it will not come as a surprise
that the proper understanding of the adjoint equation will turn out to be the key for
analytic perturbation schemes. As one by-product of our discussion we will describe
as well the essential structure of an adiabatic elimination scheme, i.e., the centre
manifold reduction in weakly nonlinear noisy time delay systems. We will use two
particular examples to illustrate a few aspects of the analytic expansion schemes.
Section8.3 is devoted to time-delayed feedback control, a simple setup for the study
of deterministic time delay dynamics. We will use this case to discuss in some detail
the analytic investigation of instabilities in time delay systems. The results will show
a few, probably general, features shared by time-delayed feedback control systems.
As an example for stochastic time delay dynamics we will analyse in Sect. 8.4 a
simple model for coherence resonance subjected to time-delayed feedback. We will
use this case to illustrate centre manifold reduction and adiabatic elimination in a
noisy time delay system, to finally compute the stationary distribution. Correlation
functions will be dealt with by stochastic linearisation, to demonstrate the benefit of
mean-field methods in a weakly nonlinear setting.
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8.2 Some Basic Features of Linear and Weakly Nonlinear
Systems

Analytic perturbation schemes for dynamical systems rely to a large extent on the
detailed analysis of linear systems. Let us recall some of those ideas in the context
of time delay dynamics. All these issues can be found in the literature with various
degrees of rigour, and here we largely follow the approach used in [32]. We will
focus on an elementary formally consistent approach which does not require any
sophisticated mathematical background.

8.2.1 Linear Equations and Eigenvalue Decompositions

Consider a linear inhomogeneous delay differential equation with a single time delay
τ

ẋ = A x + B x(t − τ) + h(t) (8.1)

where we allow for a vector valued variable x ∈ R
n with the coefficients being given

by square matrices A and B. The inhomogeneity h(t) can be either a deterministic
drive or a stochastic forcing. In fact, with a slight abuse of notation wemean by linear
equation a linear equation with constant coefficients. The case of time dependent
coefficients would require a completely different approach and would hardly allow
for explicit solutions in closed form.

As usual, the corresponding homogeneous system can be reduced to a nonlinear
eigenvalue problem

ΛuΛ =
(
A + exp(−Λτ)B

)
uΛ (8.2)

when using a particular solutions of exponential type, x(t) = exp(Λt)uΛ. The eigen-
values are determined by the quasipolynomial

det
(
A − ΛI + exp(−Λτ)B

)
= 0 (8.3)

where I denotes the identity matrix. Such a transcendental characteristic equation
is not straightforward to solve (see, e.g., [10, 19, 33] for some approaches) as it
normally has an infinite set of complex valued solutions. It is however fairly straight-
forward to see that the real parts of the eigenvalues cannot become arbitrarily large.
If that would be the case then the exponential contribution exp(−Λτ) in Eq. (8.3)
tends to zero and the eigenvalues would need to tend towards the finite eigenvalues
of A. A similar argument shows that eigenvalues with large imaginary part nec-
essarily have their real parts tending to minus infinity. Hence, even though there
are infinitely many eigenmodes almost all are exponentially damped, meaning that
the delay dynamics becomes essentially finite dimensional. In Eq. (8.1) we have



8 Noisy Dynamical Systems with Time Delay … 151

considered delays appearing in the state variable x(t) only, the so called “retarded”
case. Let us add a remark on time delays appearing in the derivative. If we replace the
second term in Eq. (8.1), say, by B ẋ(t − τ) then the corresponding quasipolynomial
(8.3) contains a term Λ exp(−Λτ)B. If we now apply the previous reasoning then
it is easily possible to have eigenvalues with large imaginary parts and finite neg-
ative real parts by keeping Λ exp(−Λτ) finite. Hence, for such types of equations
we have a huge number of modes which are weakly damped, a case which reminds
us of properties of Hamiltonian systems. That is one of the reasons why systems
with the delay appearing in the highest derivative behave differently and have been
somehow misleadingly termed as “neutral” delay systems. Here we entirely focus
on the retarded case.

For solving the original problem, Eq. (8.1), i.e., to perform a decomposition in
eigenmodes the adjoint equation plays a central role. The adjoint dynamics is in fact
a dynamical system running backwards in time, and it seems to be quite challenging
to find elementary expositions for time dependent cases in the literature [31]. Here
we will just need the adjoint eigenvalue equation which reads

v†ΛΛ = v†Λ

(
A + exp(−Λτ)B

)
. (8.4)

The eigenvectors obey a kind of “pseudo orthogonality” in the sense that forΛ �= Λ′

v†Λ′uΛ +
∫ 0

−τ

exp(−Λ′(θ + τ)) exp(Λθ)v†Λ′ B uΛdθ

= v†Λ′
Λ − Λ′ + (

exp(−Λ′τ) − exp(−Λτ)
)
B

Λ − Λ′ uΛ = 0. (8.5)

For the last step we used the eigenvalue equations (8.2) and (8.4). We are now
able to decompose the inhomogeneous system into eigenmodes if we introduce an
appropriate bilinear form which is inspired by Eq. (8.5)

(VΛ|Xt ) = v†Λx(t) +
∫ 0

−τ

exp(−Λ(θ + τ))v†ΛB x(t + θ)dθ. (8.6)

One can consider Eq. (8.6) to be just a useful abbreviation. Naively, it could be viewed
as a kind of scalar product, even though one has to keep in mind that the underlying
phase space is not a Hilbert space. By straightforward differentiation of Eq. (8.6) one
easily verifies that Eq. (8.1) reduces to

d

dt
(VΛ|Xt ) = Λ(VΛ|Xt ) + v†Λh(t) (8.7)

i.e., we have decomposed the original problem into a set of decoupled scalar equa-
tions. It is possible to reconstruct the solution x(t) given the expressions (8.6).
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However, in the linear case it is often simpler to use alternative methods to com-
pute solutions, e.g., by Laplace or Fourier transforms.

8.2.2 Adiabatic Elimination and Centre Manifold Reduction

Dynamical systems with slow modes allow for the adiabatic elimination of fast
degrees of freedom. Such a case occurs for instance in the neighbourhood of time
independent states when almost all eigenvalues of the linear part are negative and just
a few eigenvalues have small positive or vanishing real part. Within the context of
time delay dynamics let us assume that by an appropriate coordinate transformation
the time independent state is the trivial solution x = 0, and that the linear part of the
equations of motion is given by Eq. (8.1), i.e.,

ẋ(t) = A x(t) + B x(t − τ) + f (x(t), x(t − τ)) + g(x(t), x(t − τ))ξ(t). (8.8)

Here f denotes the higher order nonlinear terms, and we allow as well for the
inclusion of a Gaussian white noise with correlation function 〈ξ(t)ξ T (t ′)〉 = δ(t −
t ′)I . We assume that all eigenvalues of the linear equation have negative real part
apart from a complex conjugate purely imaginary pair ±iΩ . The corresponding
two eigenfunctions constitute the slow modes, and we are able to reduce the original
system (8.8) effectively to the dynamics on this two-dimensionalmanifold. In order to
keep the notation as simple as possible and to avoid the functional analytic description
of the phase space let us just recall that the integration of a delay differential equation
requires the knowledge of the solution at times t + θ with θ ∈ [−τ, 0) denoting the
history. Hence, on our slow manifold we express the solution in the form

x(t + θ) = C(t) exp(iΩθ)uiΩ + C̄(t) exp(−iΩθ)ūiΩ + R(C(t), θ) (8.9)

where exp(iΩθ)uiΩ is the relevant slow eigenmode,C(t) ∈ C denotes the coordinate
on the slow manifold, C̄(t) its complex conjugate, and R abbreviates the terms of
higher than first order in C . In geometric terms the higher order contributions take
care of the deviation of the centre manifold from the linear eigenspace, i.e., R takes
the curvature of the centre manifold into account. The splitting given by Eq. (8.9)
has some ambiguity and we have some flexibility to define the higher order terms.
We use this freedom to require that the higher order terms are “orthogonal” to the
linear eigenspace in the sense of the bilinear form, Eq. (8.6). Hence, the condition
(ViΩ |R) = 0 results in
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(ViΩ |Xt ) = C(t)

(
v†iΩuiΩ +

∫ 0

−τ

exp(iΩθ) exp(−iΩ(θ + τ))v†iΩB uiΩdθ

)

+ C̄(t)

(
v†iΩ ūiΩ +

∫ 0

−τ

exp(−iΩθ) exp(−iΩ(θ + τ))v†iΩB ūiΩdθ

)

= C(t)
(
v†iΩuiΩ + τ exp(−iΩτ)v†iΩB uiΩ

)
. (8.10)

The contribution containing the complex conjugate amplitude C̄(t) vanishes because
of the orthogonality (8.5). Since the abbreviation, Eq. (8.6) or (8.10), obeys the equa-
tion of motion (8.7) when we identify the inhomogeneous part h with the nonlinear
and stochastic contributions in Eq. (8.8), we arrive at

Ċ(t) = iΩC(t) +
v†iΩ f (x(t), x(t − τ)) + v†iΩg(x(t), x(t − τ))ξ(t)

v†iΩuiΩ + τ exp(−iΩτ)v†iΩB uiΩ
. (8.11)

If we take into account that we consider solutions on our slow manifold, i.e., x
obeys Eq. (8.9), we obtain a closed ordinary stochastic differential equation for the
amplitude C . The impact of the time delay is contained in the coefficients via the
spectrum and the eigenvectors. If our original system has only cubic nonlinearities,
a case which for simplicity is often considered in applications, see e.g. [34, 35],
then the lowest order linear approximation in Eq. (8.9) is sufficient. Otherwise, one
would need to compute the nonlinear corrections R to the invariant manifold using
dynamical invariance. The details are essentially identical to the procedure used for
ordinary differential equations. In addition, some greater care is needed when one
deals with stochastic dynamics. In fact, the underlying mathematical considerations
may become quite involved (see, e.g., [9] for an introduction in the case of stochastic
differential equations).

The goal to arrive at an effective equation of motion can be achieved by different,
largely equivalent, methods. Multiple scaling techniques (e.g. [26, 36]) are rather
efficient to derive equations of motion on slow time scales, even though one needs to
identify first a small expansion parameter. To some extent these methods inherently
involve a time scale argument which eliminates as well nonresonant terms from
equations of motion and thus perform both, a centre manifold and a normal form
reduction in one step. Above all, the approaches sketched here rely on a detailed
understanding of linear equations of motion, which to a large extent is the backbone
of most analytical perturbation schemes.
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8.2.3 Linear Stochastic Equations and Power Spectral
Density

An important example of a linear driven system is a stochastic system where the
driving force is given by white noise

h(t) = g ξ(t), 〈ξ(t)ξ T (t ′)〉 = δ(t − t ′)I (8.12)

with 2D = g gT denoting the corresponding diffusion matrix. If we require in addi-

tion the noise to be Gaussian, then the two-point correlations entirely determine the
stationary behaviour of the system. In fact, Eqs. (8.1) and (8.12) define a stochastic
process (see, e.g., [37] for a detailed rigorous account). Here we just concentrate
on the formal computation of correlation functions and power spectral densities.
The simplest approach is along the lines of signal processing and uses a Fourier
representation of the noise

ξ(t) = 1√
2π

∫ ∞

−∞
ξ

ω
exp(iωt)dω. (8.13)

The expansion coefficients are assumed to be uncorrelated Gaussian random vari-
ables 〈ξ

ω
ξ̄
T

ω′ 〉 = δ(ω − ω′)I to ensureGaussianwhite noise. The condition ξ
ω

= ξ̄−ω
keeps the noise real-valued. The formal Fourier transform of Eq. (8.1) immediately
results in

xω =
(
iωI − A − B exp(−iωτ)

)−1
g ξ

ω
(8.14)

where we implicitly assume that all the eigenvalues of the homogeneous equation
have negative real part and that we just focus on the stationary properties of the
process. Using the properties of the Fourier coefficients ξ

ω
the correlation matrix is

then easily evaluated as

〈x(t)xT (t ′)〉 = 1

2π

∫ ∞

−∞

∫ ∞

−∞
〈xωx

T
ω′ exp(iωt + iω′t ′)dωdω′

= 1

2π

∫ ∞

−∞
Σ

ω
exp(iω(t − t ′))dω (8.15)

where we have introduced the resolvent matrix

Σ
ω

=
(
iωI − A − B exp(−iωτ)

)−1
2D

(
−iωI − AT − BT exp(iωτ)

)−1
.

(8.16)

The diagonal elements of the matrix (8.16) are just the power spectral densities
of the individual components, whereas the off-diagonal elements are the Fourier
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transform of the corresponding cross correlation function. It is of course obvious
that the time delay enters in the same way as in the eigenvalue problem (8.2), and
that the eigenvalues determine the complex poles of the resolvent matrix.

8.3 Weakly Nonlinear Analysis of Time-Delayed Feedback
Control

Time-delayed feedback control [38, 39] is a convenient setup to control the stability
of periodic solutions. As a paradigmatic example we will use a Duffing-Van der
Pol oscillator to illustrate various aspects of the analytic perturbation schemes. The
equations of motion are given by

ẋ1(t) = ωx2(t)

ẋ2(t) = −ωx1(t) + ε(σ x1(t) − νx31(t) − μx2(t)(1 − x21 (t)))

−κ(x1(t) − x1(t − τ)). (8.17)

Here ω denotes the linear frequency, ν governs the nonlinear part of the potential,
and μ the nonlinear damping. Time-delayed feedback with control amplitude κ and
delay time τ is applied to stabilise periodic orbits with period T = τ , where the
equality between period T and time delay τ ensures the control method to be non-
invasive. For the purpose of a perturbation expansion ε denotes a small expansion
parameter. In the leading order, ε = 0, and without time-delayed feedback, κ =
0, the system admits a continuum of harmonic solutions, x1(t) = |a| cos(ωt + ϕ),
x2(t) = −|a| sin(ωt + ϕ) for any a ∈ R. Including the nonlinear terms only a few
of those, if at all, will result in periodic orbits. Typically the period T of those orbits
will depend on nonlinear contributions as well, and multiple scaling techniques or
Lindsted type expansions are required to cope with these issues. It is technically
simpler, in particular in the presence of time delay, if we include a small detuning σ

in the perturbation and require that the resulting orbit, at least at first order, still has
period T = 2π/ω.

We can perform the perturbation expansion even in a more general setup if we
use vector notation. Then Eq. (8.17) reads

ẋ(t) = A x(t) + ε f (x(t)) − K (x(t) − x(t − τ)), τ = 2π/ω (8.18)

where the linear part admits a pair of imaginary eigenvalues with right- and left-
eigenvectors u and v†, respectively

A u = iωu, v†A = iωv†. (8.19)
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8.3.1 Computation of Periodic Orbits

For ε = 0 Eq. (8.18) clearly admits harmonic solutions a exp(iωt)u + c.c.. Hence,
for the nonlinear system we first seek to compute periodic solutions by a simple
series expansion

x∗(t) = x (0)(t) + εx (1)(t) + · · ·
x (0)(t) = a exp(iωt)u + ā exp(−iωt)ū

x (1)(t) = x (1)(t + T ). (8.20)

Equation (8.18) in first order gives the inhomogeneous system

ẋ (1)(t) = A x (1)(t) + f (x (0)(t)). (8.21)

In the case considered here, T = τ , the delay termdrops from this existence condition
because the control term is finally non-invasive. Since the solution of Eq. (8.21) has to
be periodic, seeEq. (8.20), a solvability or Fredholmcondition applies. The condition
can be derived straightforwardly if we multiply Eq. (8.21) with exp(−iωt)v†, the
solution of the adjoint problem. Then the time derivative and the linear contribution
combine to result in the total derivative of exp(−iωt)v†x (1)(t) and integration over
the period T = τ = 2π/ω yields

0 =
∫ τ

0

d

dt

(
exp(−iωt)v†x (1)(t)

)
dt =

∫ τ

0
exp(−iωt)v† f (x (0)(t))dt. (8.22)

The condition, Eq. (8.22), can be expressed in terms of an effective drift

0 = 1

τv†u

∫ τ

0
exp(−iωt)v† f (x (0)(t))dt = aF(|a|2). (8.23)

A simple phase argument shows that the integral in Eq. (8.23) depends only on the
modulus |a| apart from a single amplitude factor. If we denote by FR and FI the real
and the imaginary part of F , respectively, then the condition for the periodic orbit
results in

FR(|a|2) = 0, FI (|a|2) = 0. (8.24)

The first of these conditions determines the value of the amplitude of the periodic
orbit, Eq. (8.20), whereas the second equation states the constraint that the period of
this orbit is not renormalised by the nonlinear contributions. Such a constraint can
be, for instance, satisfied by including a small linear part εA(1)x in the perturbation,
which properly renormalises the linear frequency. In addition, there exists of course
the trivial solution a = 0 resulting in a small amplitude periodic orbit according to
Eq. (8.20). For the system without delayed feedback, K = 0, the expression FR acts
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as the derivative of an effective potential and the stability of the orbit is directly
related to the derivative of FR .

For our model system, Eq. (8.17), the eigenvectors in Eq. (8.19) are given by u =
(1, i)T and v† = (1,−i). From the definition (8.23) and the perturbation according
to Eq. (8.17) we obtain

F(|a|2) = FR(|a|2) + i FI (|a|2) = −μ(1 − |a|2)/2 + i(3ν|a|2 − σ)/2. (8.25)

Hence the finite amplitude periodic orbit has amplitude |a| = 1. It will turn out to be
an unstable orbit for μ > 0 as one expects to be the case for a weakly nonlinear Van
der Pol oscillator. The second condition in Eq. (8.24) on the frequency renormalisa-
tion requires σ = 3ν. In fact, the nonlinear potential part of the Duffing oscillator
introduces a chirp (anisochronicity), a dependence of the period on the amplitude of
the oscillation, which is then compensated by the appropriate detuning σ .

8.3.2 Linear Stability and Strongly Stable Domain

So far the time delay has not played any essential role for the existence of periodic
orbits, because of the noninvasive character of the feedback. Of course, the situation
is different when stability considerations become relevant. Assume the periodic orbit,
Eq. (8.20), is known. Linear stability is governed by the variational equation, which
in turn using an exponential ansatz, δx(t) = exp(Λt)w(t), can be converted into a
Floquet eigenvalue problem

ẇ(t) + Λw(t) = (A + εDf (x∗(t)) − K (1 − exp(−Λτ)))w(t), w(t) = w(t + τ).

(8.26)

The symbol Df denotes the Jacobian matrix. If we consider Eq. (8.26) in lowest
order, i.e., for ε = 0, then the time dependence drops and the equation reduces to an
ordinary (nonlinear) eigenvalue problem. The exponents in this order are determined
by the usual quasipolynomial (see Eq. (8.3))

det
(
A − ΛI − K (1 − exp(−Λτ))

)
= 0. (8.27)

The condition that all the solutions of Eq. (8.27) have nonpositive real part is a
necessary constraint for the stability of the orbit. If we use Λ = iΩ in Eq. (8.27) we
are able to determine the stability boundaries in the parameter space. Our stability
condition so far is determined by the control matrix and the dominant linear part of
the dynamics, and thus essentially reflects the stability of the control loop. In the
leading order, ε = 0, neither the nonlinear part of the dynamics nor the actual shape
of the orbit has entered the analysis.
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For our example, Eq. (8.17), the characteristic equation (8.27) in leading order
reads

0 = det

( −Λ ω

−ω − κ(1 − exp(−Λτ)) −Λ

)
= Λ2 + ω2 + κω(1 − exp(−Λτ)).

(8.28)
If we chooseΛ = iΩ to determine the boundaries of the control domain, it is evident
that Ωτ = π + 2πn, n ∈ Z. Hence we obtain from Eq. (8.28) the thresholds κ =
ω(n + 3/2)(n − 1/2)/2. The stable interval where Eq. (8.28) has no solution with
positive real part is given by

κ ∈ (−3ω/8, 5ω/8). (8.29)

Outside this interval there exists at least one Floquet exponent with positive real part
of order one. As our stability condition has been derived in leading order we call
Eq. (8.29) the strongly stable domain.

8.3.3 Perturbation Expansion of the Eigenvalue Problem
and Weak Instabilities

Floquet exponents which in leading order already have a nonvanishing real part do
not change the stability properties if the small perturbation is taken into account.
Hence the strongly stable domain, Eq. (8.29), is a necessary constraint for stability.
However, within this interval and in order ε = 0 there still occur two neutral modes
with leading Floquet exponent zero. It is easy to verify that

w(0)(t) = α exp(iωt)u + ᾱ exp(−iωt)ū (8.30)

solvesEq. (8.26) for ε = 0 andΛ = 0. Equation (8.30) determines a two-dimensional
subspace, parametrised by α and ᾱ, which contains the Goldstone mode of the peri-
odic orbit. That means no matter what kind of perturbation we apply one of the Flo-
quet exponents remains zero. However, the second exponent may become nonzero
and thus results in an additional stability condition. We aim for computing such a
Floquet exponent using the straightforward series expansions

w(t) = w(0)(t) + εw(1)(t) + · · · , Λ = 0 + εΛ(1) + · · · . (8.31)

Then Eq. (8.26) in first order reads

ẇ(1)(t) = Aw(1)(t) + h(t), w(1)(t) = w(1)(t + τ) (8.32)

with inhomogeneous part
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h(t) =
(
Df (x (0)(t)) − Λ(1) − Λ(1)τK

)
w(0)(t). (8.33)

As in the previous section the existence of a periodic solution of Eq. (8.32) puts
secular constraints on the inhomogeneous part, which can be easily derived if we
use the neutral modes of the adjoint problem, exp(−iωt)v† and exp(iωt)v̄†. If we
multiply Eq. (8.32) with one of these, the time derivative and the linear term combine
to give a total derivative and integration over one period finally yields the secular
conditions

∫ τ

0
exp(−iωt)v†h(t)dt = 0,

∫ τ

0
exp(iωt)v̄†h(t)dt = 0. (8.34)

In view of Eqs. (8.30) and (8.33) these conditions constitute a two-dimensional linear
system for α and ᾱ. The vanishing of the determinant yields the condition for the
eigenvalue Λ(1) at first order. The integrals occurring in Eq. (8.34) can, in fact, be
written in terms of the previously introduced effective drift, Eq. (8.23). If we take in
Eq. (8.23) derivatives with respect to a or ā we obtain

a2F ′(|a|2) =
∫ τ

0
exp(−iωt)v†D f (x(0)(t))ū exp(−iωt)dt/(τv†u)

F(|a|2) + |a|2F ′(|a|2) =
∫ τ

0
exp(−iωt)v†D f (x(0)(t))u exp(iωt)dt/(τv†u). (8.35)

Employing the property (8.24) the two secular conditions, Eq. (8.34), can be written
as the homogeneous system

( |a|2F ′(|a|2) − Λ(1) − γΛ(1) a2F ′(|a|2)
ā2 F̄ ′(|a|2) |a|2 F̄ ′(|a|2) − Λ(1) − γ̄ Λ(1)

)(
α

ᾱ

)
= 0, (8.36)

where the abbreviation
γ = τv†K u/(v†u) (8.37)

takes the effect of the control loop into account. Equation (8.36) finally results in the
characteristic polynomial

0 = (
Λ(1)

)2 |1 + γ |2 − 2Λ(1)Re
(
(1 + γ̄ )|a|2F ′(|a|2)) (8.38)

which determines the two small Floquet exponents in first order. Clearly one of
the solutions Λ(1) = 0 corresponds to the Goldstone mode, while the other may take
nontrivial values and may induce a weak instability of the orbit. Without control γ =
0 we have Λ(1) = 2|a|2F ′

R(|a|2) which, as already mentioned above, determines the
stability properties of the periodic orbit without delayed feedback. In cases when the
coefficient of the leading term in Eq. (8.38) vanishes the results have to be considered
with some care.

For our model, Eq. (8.17), the effective drift, Eq. (8.25), gives F ′(|a|2) = (μ +
3iν)/2 so that the orbit with amplitude |a| = 1 and without delayed feedback κ = 0
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is unstable for μ > 0, as already mentioned. With the eigenvectors stated above we
obtain from Eq. (8.37) γ = −iτκ/2, and the polynomial (8.38) results in the nontriv-
ial eigenvalue Λ(1)|1 + iτκ/2|2 = μ − 3τκν/2. Thus the weak stability condition
induced by this branch reads

κν > μω/(3π). (8.39)

In this particular example a nonzero value for the nonlinear potential, i.e., a chirp
is required for stabilisation. The two conditions, Eqs. (8.29) and (8.39), give a fairly
simple shape for the control domain in the parameter space. The perturbative results
are in quite good agreementwith numerical results obtained for finite but small values
of the expansion parameter, see Fig. 8.1. Overall the perturbative results can provide
some insight which type of feedback could be used to achieve stabilisation, even
though the analytic expressions are limited to the weakly nonlinear regime

Theweakly nonlinear analysis of themodel (8.17) has verymuch in commonwith
the discussion of the corresponding Hopf normal form (Stuart Landau oscillator)
subjected to time delayed feedback [40–42]. The analysis provided here is able to
link the control domain with the actual parameters of the original equation of motion.
In fact, the procedure applied to our example can be almost verbatim transferred to
the discussion of the general weakly nonlinear system

ẋ(t) = A x(t) + B x(t − τ) + ε f (x(t), x(t − τ)) (8.40)

if we assume that the linear part, i.e., the equation for ε = 0 supports periodic solu-
tions.
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Fig. 8.1 Control domain for the periodic orbit of the Duffing-Van der Pol oscillator, Eq. (8.17),
for μ = 1.0, ω = 1.0, σ = 3ν, and delay τ coinciding with the period of the orbit. Dashed lines:
Analytic result of the strong stability boundary, Eq. (8.29). Solid lines: Analytic result for the weak
stability boundary, Eq. (8.39). Shading indicates numerical results for the real part of the leading
Floquet exponent for ε = 0.05
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8.4 Coherence Resonance Modulated by Time-Delayed
Feedback

The counterintiuitive phenomenon of coherence resonance [4, 43] was originally dis-
covered for excitable systems. It implies that noise-induced oscillations becomemost
regular for an optimum non-zero value of the noise intensity. It has been shown that
coherence resonance can be enhanced or suppressed by applying time-delayed feed-
back in systems with type-I [44] and type-II [45] excitability. Recently, coherence
resonance has also been found in non-excitable systemswith a subcritical Hopf bifur-
cation [46–48] and its modulation by time-delayed feedback has been demonstrated
theoretically for a subcritical Hopf normal form [29], and confirmed in experiments
with an electronic circuit for a generalised Van der Pol system [49]. It is important to
note that the pure coherence resonance effect for non-excitable systems is observed
for a subcritical Hopf bifurcation and not for the supercritical case. The standard Van
der Pol model close to a supercritical Hopf bifurcation has been investigated in the
presence of delay and noise [45, 50, 51], but here no coherence resonance, i.e., no
non-monotonic dependence of the correlation time upon the noise intensity, is found.
Coherence resonance has also been observed in real-world systems, for instance, in
microwave dynamical systems such as a five-cavity delayed-feedback klystron oscil-
lator at the self-excitation threshold [52], in lasers with saturable absorber [53], with
optical feedback [54–56], with optical injection [57], or in semiconductor superlat-
tices [58, 59].

Here we investigate the impact of time-delayed feedback in a non-excitable model
of coherence resonance. We will apply perturbation techniques to a model which can
be considered as the normal form of a subcritical Hopf bifurcation, see [29]. The
calculation of the stationary amplitude probability distribution and of correlation
functions will be at the centre of interest. Consider a two-variable quintic normal
form of a nonlinear oscillator

ẋ1(t) = (λ + r2(t) − r4(t))x1(t) − 2πx2(t) − K (x1(t) − x1(t − τ)) + √
2Dξ1(t)

ẋ2(t) = (λ + r2(t) − r4(t))x2(t) + 2πx1(t) − K (x2(t) − x2(t − τ)) + √
2Dξ2(t)

r2(t) = x21 (t) + x22 (t) (8.41)

subjected to time-delayed feedback with control amplitude K and to isotropic
Gaussian white noise of strength D, with vanishing mean 〈ξk(t)〉 = 0 and corre-
lation function 〈ξk(t)ξ�(t ′)〉 = δ(t − t ′)δk�. The timescale has been adjusted such
that the linear frequency is given by ω = 2π , and λ denotes the bifurcation parame-
ter. For simplicity of the perturbative treatment we will only allow integer values of
the delay τ . The system mimics a subcritical Hopf bifurcation, including the saddle
node bifurcation of the unstable limit cycle at λ = −1/4, which is the main cause
for the coherence resonance phenomenon.



162 W. Just et al.

8.4.1 Adiabatic Elimination and Stationary Probability
Distribution

To derive an effective simple stochastic differential equation let us first analyse the
bifurcations of the trivial stationary state x1 = x2 = 0 of the deterministic part of the
model (8.41). The variational equation results in an eigenvalue problem of the form
Eq. (8.2) and the characteristic equation (8.3) reads

0 = det

(
λ − Λ − K (1 − exp(−Λτ)) −2π

2π λ − Λ − K (1 − exp(−Λτ))

)

= (λ − Λ − 2π i − K (1 − exp(−Λτ))) (λ − Λ + 2π i − K (1 − exp(−Λτ))) . (8.42)

Obviously, for integer values for the delay τ and λ = 0, Λ = ±iΩ = ±2π i is a
purely imaginary pair of eigenvalues, giving rise to a Hopf bifurcation at λ = 0.
It is in fact possible to show that all the other eigenvalues have negative real part
if K is sufficiently small, for instance, the condition |K τ | ≤ 1 is sufficient. But
the corresponding techniques are fairly nontrivial and a discussion of the related
algebraic and numerical concepts can be found, e.g., in [10, 19, 60]. We can apply
the techniques to derive the effective stochastic differential equation, Eq. (8.11),when
rewriting the model (8.41) using the notation of Eq. (8.8)

A =
(−K −2π

2π −K

)
, B =

(
K 0
0 K

)

f (x(t), x(t − τ)) = (λ + r2(t) − r4(t))

(
x1(t)
x2(t)

)

g(x(t), x(t − τ)) = √
2D

(
1 0
0 1

)
. (8.43)

For Λ = iΩ = 2π i the eigenvectors of the linear part (see Eqs. (8.2) and (8.4)) are
easily computed as uiΩ = (1,−i)T and v†iΩ = (1, i). Equation (8.9) then tells us
that on the slow manifold the phase space variables can be expressed in terms of the
amplitude C(t)

x1(t + θ) = C(t) exp(i2πθ) + C̄(t) exp(−i2πθ) + R1(C(t), θ)

x2(t + θ) = −iC(t) exp(i2πθ) + i C̄(t) exp(−i2πθ) + R2(C(t), θ). (8.44)

In particular, neglecting the nonlinear contributions in Eq. (8.44) we have x1(t) =
2Re(C(t)) + · · · , x2(t) = 2Im(C(t)) + · · · and r2(t) = 4|C(t)|2 + · · · . Thus, the
amplitudeC has a a directmeaning in termsof the original phase space values. Finally,
using the higher order terms given in Eq. (8.43) the effective stochastic differential
equation (8.11) reads
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Ċ(t) = 2π iC(t) + (λ + |2C(t)|2 − |2C(t)|4)2C(t) + √
2D(ξ1(t) + iξ2(t))

2(1 + K τ)
(8.45)

where we have evaluated the nonlinear terms using the lowest order linear approx-
imation on the slow manifold, Eq. (8.44). The time-delayed feedback results in an
effective rescaling of the time scale, which in turn can be converted to a rescaling
of the noise intensity D. As the system (8.45) has a phase symmetry, the stationary
distribution is spherically symmetric as well and can be computed by standard meth-
ods quite easily [8]. If we use the radial variable r = 2|C | the stationary distribution
reads

P(r) = Nr exp

(
r2(λ/2 + r2/4 − r4/6)

D/(1 + K τ)

)
(8.46)

where N denotes the normalisation factor. The analytic approximation, which has
been obtained as an expansion at the bifurcation point, gives in fact a rather accurate
description even if parameter values deviate substantially from the bifurcation point
(see Fig. 8.2).

The formal derivation of the effective stochasticmodel (8.45) has not been entirely
systematic, as we were including higher order nonlinear terms to keep the system
globally stable. Such kind of heuristic approach is often used in the physics literature,
and can in principle be dealt with by computing the higher order nonlinear corrections
to the slow manifold (8.44).
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8.4.2 Dynamical Correlations and Power Spectral Density

Correlation functions and power spectral densities are at the heart of detecting coher-
ence resonance phenomena. The evaluation of dynamical correlation functions in
nonlinear stochastic systems is an inherently difficult task. If time delay is added
then one cannot even resort to spectral theories, e.g., using Fokker-Planck operators.
On the contrary, the evaluation of correlations in linear systems is almost trivial by
comparison. Hence, one often aims at approximating the original nonlinear dynamics
by a suitable linear system [61], even at the expense of a systematic approximation
scheme. Following ideas developed in the context of Fokker-Planck systems with
nonlinear drift [62] one tries to approximate nonlinear terms in the equations of
motion by linear ones, using some kind of optimisation approach. To illustrate the
main idea let us consider the stochastic time delay equation

ẋ(t) = f (x(t)) + B x(t − τ) + g ξ(t) (8.47)

which covers as well the model of interest, Eq. (8.41) when we choose the nonlinear
term f (x) appropriately. We intend to replace this nonlinear function by a linear
contribution A x by making the “best choice” for the coefficient matrix in the sense
that we minimise the mean square deviation 〈( f (x) − A x)T ( f (x) − A x)〉. The
minimisation yields

A = 〈 f (x)xT 〉〈x xT 〉−1 (8.48)

with Eqs. (8.1) and (8.12) being the “best” linear approximation of Eq. (8.47). The
evaluation of Eq. (8.48) requires the computation of static expectation values, a fea-
ture which is quite common in dynamical theories of this kind. One could deduce
such values either from simulations or from alternative theories, like, e.g., those
developed in the previous section. The impact of the nonlinearity on the dynamics
has been effectively condensed in the few parameters, Eq. (8.48). The computation
of dynamical correlation functions now becomes a trivial task as we can resort to
the exact result available for linear systems, see Eqs. (8.15) and (8.16). There are
certainly alternatives to arrive at a suitable linear model, i.e., the scheme outlined
here is by no means a unique way to solve the task. In addition, the accuracy of the
method is difficult to predict a priori. Like most mean-field schemes the approach
does not rely on a small expansion parameter. But the scheme has the potential to
capture at least qualitatively the main features of the correlations as the impact of
the time delay has been fully taken into account.

For our model (8.41) we have, using the notation of Eq. (8.47)

B =
(
K 0
0 K

)
, g = √

2D

(
1 0
0 1

)
(8.49)

while the components of the nonlinear part are given by f1 = (λ + r2 − r4 − K )

x1 − 2πx2 and f2 = (λ + r2 − r4 − K )x2 + 2πx1. Since our model is
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spherically symmetric all static cross correlations vanish, i.e., 〈xkx�〉 = 0 and
〈(r2 − r4)xkx�〉 = 0 for k �= �. The diagonal components coincide and expecta-
tion values can be written in terms of the radial variable, 〈xkxk〉 = 〈r2〉/2 and
〈(r2 − r4)xkxk〉 = 〈(r2 − r4)r2〉/2. Thus, Eq. (8.48) results in

A =
(

λe f f − K −2π
2π λe f f − K

)
, λe f f = λ + 〈(r4 − r6)〉/〈r2〉. (8.50)

Within our approximation the entire impact of the nonlinear contributions is a static
renormalisation of the bifurcation parameter. The required expectation values can
be either obtained from the approximation, Eq. (8.46), or from simulations. One can
also aim at a self-consistent computation using the Gaussian stationary solution of
the effective model, Eqs. (8.1) and (8.12), even though the actual stationary density
is by no means well approximated by a normal distribution, see Fig. 8.2. Finally,
the correlation matrix is easily evaluated from Eq. (8.16). The result is conveniently
stated if we introduce the abbreviation

z(ω) = iω − λe f f + K (1 − exp(−iωτ)). (8.51)

The diagonal elements coincide, (Σω)11 = (Σω)22 = S(ω), and represent the power
spectral density of each component

S(ω) = 2D
|z(ω)|2 + (2π)2

|z(ω) − 2π i |2|z(ω) + 2π i |2 = D(|z(ω) − 2π i |−2 + |z(ω) + 2π i |−2).

(8.52)
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For the cross correlations we obtain

(Σω)12 = −(Σω)21 = 2D
2π(z(ω) − z(−ω))

|z(ω) − 2π i |2|z(ω) + 2π i |2
= 2D

4π i(ω + K sin(ωτ))

|z(ω) − 2π i |2|z(ω) + 2π i |2 . (8.53)

The results of this phenomenological approximation scheme are quite encouraging
as the main features of the power spectral density are captured quantitatively to a
fairly high degree of precision, see Fig. 8.3.

8.5 Concluding Remarks

Formal analytic expansion schemes, even if they just cover very simple setups, play
their role for the investigation of dynamical systems, in particular for models includ-
ing noise and time delay. Initially, the methods have been largely developed within
an engineering context for ordinary differential equations. The tools turn out to be
useful for the understanding of basic mechanisms in dynamical systems and provide
an analytic overview of structures in phase- and parameter space. Even for contem-
porary research questions, such as the relevance of coupling topologies in networks
with noise or time delay, or global dynamical aspects such as manifolds determining
basins of attraction, simple analytic perturbation schemes could give viable input.
For instance,Melnikov’s method has been empirically generalised to cope with noise
and time delay, but systematic studies are still lacking.

Our selection of perturbation expansion schemes was of course incomplete, and
there are plenty of related approaches available in the literature. Essentially all of
these have limitations from a mathematical point of view. Unlike the impression
which is sometimes given in the physics literature formal expansions do not provide
rigorous proofs. Caveats apply as well when applications are considered. Most real
world problems do not come in a setting which allows for the application of analytic
expansion schemes. Hence, numerical approaches, say either direct simulations or
sophisticated continuation techniques to track bifurcations, are certainly often the
method of choice to determine the behaviour of a particular dynamical systems.
Having said that, simple analytic formal expansion schemes such as those sketched
above, combined with rigorous methods or numerical approaches can provide useful
insight for complex dynamical behaviour of systems with noise and time delay.
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Chapter 9
Study on Critical Conditions and Transient
Behavior in Noise-Induced Bifurcations

Zigang Li, Kongming Guo, Jun Jiang and Ling Hong

Abstract In this work, the stochastic sensitivity function method, which can
describe the probabilistic distribution range of a stochastic attractor, is extended to
the non-autonomous dynamical systems by constructing a 1/N-period stroboscopic
map to discretize a continuous cycle into a discrete one. With confidence ranges of a
stochastic attractor and the global structure of the deterministic nonlinear system, like
chaotic saddle in basin of attraction and/or saddle on basin boundary as well as its sta-
ble and unstablemanifolds, the critical noise intensity for the occurrence of transition
behavior due to noise-induced bifurcations may be estimated. Furthermore, to effi-
ciently capture the stochastic transient behaviors after the critical conditions, an idea
of evolving probabilistic vector (EPV) is introduced into the Generalized Cell Map-
ping method (GCM) in order to enhance the computation efficiency of the numerical
method. A Mathieu-Duffing oscillator under external and parametric excitation as
well as additive noise is studied as an example of application to show the validity
of the proposed methods and the interesting phenomena in noise-induced explosive
and dangerous bifurcations of the oscillator that are characterized respectively by an
abrupt enlargement and a sudden fast jump of the response probability distribution
are demonstrated. The insight into the roles of deterministic global structure and
noise as well as their interplay is gained.

9.1 Introduction

Noise is ubiquitous in nature and engineering systems that are all inherently nonlinear.
Uncertain disturbances or noise on nonlinear dynamical systems often evoke some
unexpected and even coherent responses. Various noise-induced behaviors have been
found, such as noise-induced chaos [1, 2], stochastic bifurcation [3, 4], noise-induced
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intermittency [5, 6], noise-induced hopping [7, 8] and so on. It is well accepted now
that the interplay between the global structure of a deterministic nonlinear system and
the noise determines the final forms of noise-induced responses. The global structure
of the deterministic nonlinear system includes attractors and unstable invariant sets as
well as their stable and unstable manifolds, and usually sets a basic frame for noise-
induced responses. Depending upon the noise intensity, the noise-induced responses
may completely follow the frame of the structure or alter it by inducing connection
or collision within its sub-structures, which can induce bifurcations quite similar to
its deterministic counterparts.

An interesting classification on the bifurcations in deterministic (dissipative) non-
linear dynamical systems is presented in [9], where three categories are defined as
safe, explosive and dangerous bifurcations. The explosive bifurcations are defined
as catastrophic global bifurcations with an abrupt enlargement of the attracting set
but with no jump to a remote disconnected attractor. The dangerous bifurcations are
catastrophic bifurcations with blue-sky disappearance of the attractor with a sudden
fast jump to a distant unrelated attractor. Undoubtedly, these two kinds of bifurca-
tions have very important engineering meaning since they imply an abrupt and large
shift of the operation state in a machine or system with the continuous variation of
a parameter that may even induce possible damage or destruction on it.

Since uncertain disturbance is generally unavoidable in the real engineering envi-
ronment, it is thus of great interest to exploit if noise-induced bifurcations, like
their deterministic counterparts, may occur, possibly even at the system parameters
that are far from the bifurcation points of the corresponding deterministic nonlinear
dynamical system. It is also crucial to predict when such bifurcations, if they exist,
may take place when the noise intensity works as the bifurcation parameter, and to
determine how the transient responses of the noise-induced large transitions evolve
when such bifurcations occur. The present work will tackle the problems.

As known when a dynamical system is under excitation of Gaussian white noise,
the probabilistic description of the stochastic responses is governed by the Fokker-
Planck-Kolmogorov (FPK) equation. It is also known that it is quite difficult to solve
FPK equation analytically even for quite simple stochastic systems. For the case of
weak noise, the probability density can be well approximated through quasipotential
[10]. On basis of this method, the stochastic sensitivity function (SSF) was proposed
in [11] and successfully applied to analyze the sensitivity of stationary points and
periodic cycles in differential dynamical systems as well as that of fixed points
and periodic solutions in discrete dynamical systems [12]. Compared with other
FPK equation-based methods, SSF is useful and easier for obtaining an approximate
analytical description of the probability distribution. However, when the sensitivity
of periodic attractors in non-autonomous dynamical systems under external and/or
parametric excitations is analyzed, a boundary value problem of matrix differential
equations must be solved. In this work a method that discretizes a periodic attractor
of a non-autonomous nonlinear dynamical system into a discrete map by 1/N-period
stroboscopic map is proposed, and so only the matrix algebra equations need to be
solved in order to get the stochastic sensitivity function of the periodic attractor.With
the stochastic sensitivity functions, confidence ellipses along every sections of the
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periodic attractor at each 1/N-period interval can be constructed for a given fiducial
probability and used to depict the distribution ranges of the stochastic attractor in the
state space. Furthermore, by combining the confidence ellipses and the deterministic
global structure of the system, the critical conditions for the occurrence of noise-
induced transition phenomena under a given fiducial probability can be estimated,
for instance, when a confidence ellipse starts to touch the manifolds of a certain
saddle-typed invariant set [13].

For the case with large noise intensity, Monte-Carlo simulation (MCS) is a well-
known method to get the distribution of a stochastic attractor, and can be applied
in a straightforward manner and to different kinds of stochastic systems. But it is
too expensive in computations to carry out a systematic investigation. Thus, several
approximated numerical methods on solving FPK equation have been developed,
including Finite Element Method [14], path integral method [15, 16], and General-
ized Cell Mapping method (GCM) [17, 18]. Like many other numerical methods for
stochastic analysis, computation efficiency is still a crucial problem that GCM needs
to be solved with effort.

In this study, a method is proposed in order to enhance the computation efficiency
ofGCMwhen the problem that the noise-induced responsewith the initial probability
distribution focusing around a given deterministic attracting set is dealt with. From
a practical point of view, the given deterministic attracting set may represent the
designed operating state of an engineering system and the working state will be
adjusted with effort just near it in the real engineering environment. So the evolution
of a stochastic response that starts from an initial probability distribution occupying
only a very small region in the state space and gradually converges to a stochastic
steady-state occupying a certain region in the state space within a given fiducial
probability is of interest. Thus, the traditional GCM that deals with a priori defined
sufficiently large chosen region in the state space is not quite efficient for the problem.
Therefore, an idea of evolving probabilistic vector (EPV) is introduced in this work.
By using EPV, only the one-step transition probability of the cells in the chosen
region, whose probabilities are within a given fiducial probability, will be calculated,
instead of all the cells within the chosen region in the state space. In this way, the
dimension of the probabilistic vector in the present GCMmethod (GCMwith EPV),
which varies with the evolution of the stochastic response, is greatly reduced and
usually much smaller than that of the corresponding fix-sized probabilistic vector.

This work is organized as follows: In Sect. 9.2, we first briefly introduce the con-
cept of stochastic sensitivity function (SSF) and then present the algorithm to obtain
SSF of periodic attractors in non-autonomous nonlinear system by constructing a
1/N-period stroboscopic map. In Sect. 9.3, we briefly introduce the GCM method
with short-time Gaussian and then describe the idea of evolving probabilistic vector
and devise the corresponding algorithm. In Sect. 9.4, we apply the proposed methods
to a Mathieu-Duffing oscillator under parametric and external excitation as well as
additive noise to study the transient behavior of the noise-induced explosive and
dangerous bifurcations. Finally, the conclusions are drawn in Sect. 9.5.
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9.2 An Analytical Method for Stochastic Responses
to Weak Noise

9.2.1 Concept of Stochastic Sensitivity Function

Consider a continuous noise-disturbed dynamical system

�̇x = �f (�x) + ε�σ(�x)�ξ(t) (9.1)

where �ξ is n-dimensional Gaussian white noise, �σ is n × n matrix which defines the
relation between the noise and the system state, ε is the noise intensity.

The stationary probability density function ρ of a stochastic attractor for system
(Eq.9.1) obeys the steady-state FPK equation

ε2

2

n∑

i, j=1

∂2[�σ�σT ]i j ρ
∂xi∂x j

−
n∑

i=1

∂ fi ρ

∂xi
= 0 (9.2)

when the limit ε →0 is taken, theWentzel-Kramers-Brillouin approximation [19] of
ρ can be made

ρ ≈ Kexp

(
−Φ(�x)

ε2

)
(9.3)

where Φ(�x) is the so-called quasi-potential [20] and K is the normalizing factor.
In a small neighborhood of a stationary point or cycle, the first approximation of
quasi-potential is made and ρ takes the form as a Gaussian distribution [10]

ρ ≈ Kexp

(
−

1
2Δ(�x)T �W+(�x)Δ(�x)

ε2

)
(9.4)

with covariance matrix ε2 �W , while Δ(�x) is the deviation of point x from the deter-
ministic attractor. So matrix �W characterizes the spatial arrangement and size of the
stochastic attractor around the corresponding deterministic attractor and is defined
as stochastic sensitivity function (SSF) of the deterministic attractor, while �W+ is
its pseudo-inverse matrix (If �W is full-rank, using its inverse matrix �W− instead).
Through eigenvalue or singular value decomposition of �W , the most and least sen-
sitive directions and the degree of sensitiveness in these directions of every point in
the attractor can be obtained.

Similarly, SSF can also be utilized to analyze the sensitivity of attractors in discrete
stochastic dynamical systems [12], which will help to get SSF in non-autonomous
dynamical system in next section.
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9.2.2 Stochastic Sensitivity Function of Periodic Attractors
in the Non-autonomous Systems

Consider a continuous non-autonomous dynamical system with the form

�̇x = �f (�x, t) (9.5)

where �f (�x, t) is n-dimensional non-autonomous vector field depending on both state
�x and time t.

When there is a periodic attractor with period T in non-autonomous system
(Eq.9.5), a stroboscopic map is often used to investigate the character of the attractor
(a cycle in the state space). Let ϕt (�x) be the flow generated by the vector field of
Eq. (9.5), and denote the periodic attractor by ϕt ( �x0) where �x0 is any point passed
by the cycle when t = t0. So, ϕnT �(x0) = �x0. Taking a snapshot of the flow at dis-
crete times t = t0 + kΔt (k is positive integer), a continuous time trajectory �x(t) is
divided into a discrete time trajectory �xk . Point �xk+1 is determined only by �xk through
integrating (Eq.9.5) forward with time Δt from �xk . So a map can be defined as

�xk+1 = ϕΔt (�xk) (9.6)

which is called stroboscopic map. And sections

Σk = {(�x, t) ∈ Rn × R | t = t0 + kΔt} (9.7)

are stroboscopic sections.
Traditionally, the sampling time intervalΔt will be chosen to coincide with period

of ϕt ( �x0), say, Δt = T , and recall that ϕnT ( �x0) = �x0, it can be seen that a periodic
attractor in Eq. (9.5) forms a fixed point in map Eq. (9.6) and all the stroboscopic
sections Σk share the same character. So it is regarded as only one section and the
subscript k can be omitted. In the following text this kind of stroboscopic map is
called 1-period stroboscopic map. The sensitivity analysis of any point �x0 in the
cycle of a periodic attractor can be used to calculate SSF of the fixed point in
1-period stroboscopicmap,whose stroboscopic section contains �x0.However, though
the algorithm to get SSF of fixed point ofmaps is raised in [12], formost of the nonlin-
ear dynamical systems, the explicit expression of 1-period stroboscopic map cannot
be obtained.

Note that, if Δt → 0, the linear approximation of map Eq. (9.6) can be taken in
the interval [t0 + kΔt, t0 + (k + 1)Δt]

�xk+1 = exp( �JkΔt)�xk (9.8)

where �Jk = ∂ �f
∂ �x |x=xk ,t=t0+kΔt is Jacobian matrix of Eq. (9.5) at point �xk and time

t0 + kΔt .
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So, the sampling time interval Δt of stroboscopic map can be set to

Δt = T/N , N � 1 (9.9)

and a new stroboscopic map can be written in the form Eq. (9.8). This new map
is named a 1/N-period stroboscopic map. Because of the period-N character, let
Σk = Σk+N , there are only N stroboscopic sections to be considered. Through this
new map, the original periodic attractor Γ in Eq. (9.5) is discretized into a period-N
cycle Γ ∗ = { �x1, ..., �xN } by N stroboscopic sections {Σ1, ..., ΣN }.

Now consider system Eq. (9.5) subject to stochastic disturbance

�̇x = �f (�x, t) + ε�σ(�x)�ξ(t) (9.10)

The 1/N-period stroboscopic map of system Eq. (9.10) is written as

�xk+1 = exp( �JkΔt)�xk + ε�σ(�xk)Δ�w (9.11)

where

Δ�w = √
Δt�ξ

is an increment of Wiener process during time interval [t0 + kΔt, t0 + (k + 1)Δt].
So Eq. (9.10) is discretized into a map disturbed by noise with intensity ε

√
Δt .

According to [12], if the deterministic period-N cycle in Eq. (9.8) is an attractor,
it is always exponentially stable. The SSF of period point �xk satisfies:

�Wk+1 = �Fk �Wk �FT
k + �Q (9.12)

where
�Fk = exp( �JkΔt), �Q = �σ �σ T (9.13)

For period-N cycle, it is obvious that:

�Wk = �Wk+N (9.14)

Without loss of generality, let k = 1, based on Eq. (9.12), it can be deduced that:

�W1+N = �B �W1 �BT + �Q (9.15)

where { �B = �FN �FN−1... �F2 �F1

�Q = �Q + �FN �Q �FT
N + ... + �FN ... �F2 �Q �FT

2 ... �FT
N

(9.16)

According to Eq. (9.14), �W1 can be calculated using matrix equation:
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�W1 = �B �W1 �BT + �Q (9.17)

and �W2, �W3, ..., �WN can then be calculated by the recurrence relation described by
Eq. (9.12).

After �Wk is calculated, a confidence ellipse that represents the spatial distribution
of stochastic states concentrated near point �xk in stroboscopic section Σk can be
obtained using the following equation:

(�x − �xk)T �W−1
k (�x − �xk) = ε2Δtχ2

P (9.18)

where χ2
P computes the inverse of n-dimensional Chi-square cumulative distrib-

ution function with fiducial probability density Pf , with which the points in the
stochastic attractor are contained in the ellipse. Specially, when n = 2, namely, for
two-dimensional system, χ2

P = −2 ln(1 − Pf ). In Eq. (9.18) the SSF, �Wk , also relies
on time interval Δt . When Δt → 0, the confidence ellipse described by Eq. (9.18)
will converges [21].

9.2.3 Estimation of Critical Conditions for Noise-Induced
Transition

As it is known, under the (small) stochastic disturbances or noise, random trajectories
will leave deterministic attractors and form probabilistic distribution around them.
That is, the system is expected to spend most of its time in the vicinity of one of
the stable states. However, when the intensity of noise exceeds some critical values,
the large noise-induced transition phenomena will be detected and the stochastic
response probability will no longer distribute around the corresponding deterministic
attractors. It is found that the collision between the stochastic response around a
deterministic attractor and the unstable manifolds of a chaotic saddle in the basin of
attraction of the attractor will cause an abrupt increase of probabilistic distribution
of the stochastic response and form the so-call noise-induced chaos with positive
Lyapunov exponents [22]. It is also well known that the system will escape from a
basin of attraction following an optimal escape path during the activation process
[23]. For the purpose of the present work, the noise-induced transition phenomena
with a given fiducial probability near 1 are of interest. So the critical noise intensity
under a given fiducial probability is estimated by using the knowledge from the
confidence ellipses and the global structure of the deterministic system.

To judge if a stochastic attractor around a deterministic attractor will evolve into
a noise-induced chaos by colliding with a chaotic saddle in its basin of attraction, a
critical noise intensity is estimated, from Eq. (9.18), as

εc =
√

min
(�xcs − �xk)T �W−1

k (�xcs − �xk)
2Δt ln(1 − Pf )

(9.19)
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where �xcs denotes the points on the chaotic saddle, min stands for minimization.
It is relatively difficult to estimate the critical noise intensity for a given fiducial

probability by which system will escape from the stable states across the boundary
of their attraction basin. It is found, also see Figs. 9.6 and 9.7 below, that the optimal
escape path with dominant probability is usually around the unstable manifolds of
the saddle on the boundary of the attraction basin. Thus, it is important to understand
why the activation process can start, during which trajectories will leave the stable
states and escape to the saddle on the boundary of attraction basin along the direction
of its unstable manifold under noise. We believe that the global structure of the cor-
responding deterministic nonlinear system might provide some useful information,
besides a boundary problem needs to be solved with challenge to get the activation
energy [23].

9.3 An Efficient Method for Transient Stochastic Responses

9.3.1 Generalized Cell Mapping with Short-Time Gaussian
Approximation

The response of a N-dimensional nonlinear system subjected to additive and/or mul-
tiplicative Gaussian white noise excitations is well known to be a diffusion Markov
process. Based on the Generalized Cell Mapping method (GCM), the continuous
state spaces RN is discretized into a cell space with a countably infinite number of
hyper-cubes that are called cells. The cells used to cover a pre-defined chosen region
in the state space are finite and called global cells, which will be indexed by integers
from 1 to N. The probability evolution of the stochastic system is described by a
homogeneous Markov chain in the cell space as

P · p(n) = p(n + 1) (9.20)

where p(n) denotes the probabilistic vector describing the probability of each cell at
nth step, and P the one-step transition probability matrix of the stochastic system.
Let pi (n) be the ith element of p(n) that indicates the probability of the response
in ith cell at n-step mappings. Let Pi j be the (i, j)th element of P that describes
the probability in ith cell after one-step mapping from jth cell. Pi j and pi (n) can be
determined by the following formulae

Pi j =
∫

Ci

p(x, t |x j , t0)dx =
∫

Ci

p(x, τ |x j , t0)dx, pi (n) =
∫

Ci

p(x, nτ)dx

(9.21)
where τ = t − t0 denotes a mapping time step; Ci is the domain occupied by ith cell
in RN , and p(x, τ |x j , t0) and p(x, nτ) represent the one-step transition probability
and the probability under n-steps mapping in RN , respectively.
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A Gauss-Legendre quadrature is applicable to estimate the above integral in
domain Ci because the domain is finite and the weight function is one. This means
that probabilities in ith cell are discretely expressed by that at Gauss quadrature
points in the cell. Therefore, based on this rule

Pi j =
Si∑

k=1

Ak p(xk, τ |x j , t0), pi (n) =
Si∑

k=1

Ak p(xk, nτ ) (9.22)

where x j is the geometrical center of jth cell; xk is the kth Gauss quadrature point,
namely, the zeros of the Legendre polynomials of chosen order; Si is the number of
Gauss quadrature points in ith cell, and Ak is the quadrature factor. The advantages
of this method are that appropriate accuracy and high efficiency can be achieved
since only Gauss points, which are of unequal division characteristics, are chosen,
instead of large number of random points within each cell, to determine the one-step
transition probability matrix.

To release the difficulty of huge time-consumption in solving nonlinear stochastic
equations based on samplingmethods, like straightforwardMCS to estimate the one-
step transition probability matrix Pi j , a short-time Gaussian approximation approach
proposed in [24] is adopted. This method considers the fact that p(x, τ |x j , t0) is
approximately Gaussian when an additive and/or a multiplicative noise excitation
is applied as Gauss white noises and the mapping time-step τ is sufficiently small.
The distribution can be approximately specified by the mean and the variance. The
moment evolution equations can be derived by applying the Itô calculus and the
Gaussian closure or higher order cumulant-neglect closure methods for an appro-
priate accuracy [25, 26]. The first and second order moments of x(t) need to be
evaluated by integrating moment equations from t = 0 to t = τ .

In the simulation, only the geometrical center of each cell is taken as the initial
mapping point, instead of all inner points in a cell. For an N-dimensional stochastic
system, Pi j is expressed as

Pi j =
Si∑

k=1

1

(2π)N/2|B(τ )|1/2 exp
{
−1

2

[
xk − m(τ )

]T
B(τ )−1

[
xk − m(τ )

]}

(9.23)

where m(τ ) represents the short-time mean value vector and B(τ ) the short-time
covariance matrix at time τ , which can be solved from the moment evolution equa-
tions.
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9.3.2 Generalized Cell Mapping with Evolving
Probabilistic Vector

For many practical problems with noise-induced transitions phenomena, more atten-
tions are focused on probability evolution initially localized around a given deter-
ministic attracting set. In this case, most of the response realizations are concentrated
within a finite local region in the state space, especially by considering a prescribed
fiducial probability Pf . Thus, the cells within the chosen region in the state space
need not be treated equally. Borrowing the idea from Point Mapping under Cell Ref-
erence method [27, 28], the cells in the chosen region will be classified into active
cells and inactive cells. An active cell represents the cell whose probability density
function (PDF) is within the prescribed fiducial probability, and an inactive cell is the
cell whose PDF is outside the prescribed fiducial probability, as shown in Fig. 9.1.
The cells outside the chosen region are defined as a sink cell, which is assumed to
have a zero probability.

Traditionally, P in GCM is a matrix of dimension N × N with (i, j)th element of
Pi j being the transition probability from jth cell to ith cell. According to the Markov
chain formulation Eq. (9.20), if the probability pr (n) of rth cell in the probabilistic
vector p(n) is too small (whose probability is outside prescribed fiducial probability),
the probability of its image cells, say ith cell denoted by pi (n + 1), will be almost
close to zero. So the corresponding one-step transition probability Pir in P need not
to be computed and stored. The cells, like rth cell, are the inactive cells and can be
neglected in the computation of the short-time mapping, that is, Pir pr = 0 when rth
cell is an inactive cell (see Fig. 9.1b).

So the probabilistic vector p(n) in the present work is no longer a vector with a
fixed length N as in the traditional GCM, rather its length will vary and equal the
number of active cells at nth-step mapping evolving with the system response from
the initial probability distribution. Let r denotes the inactive cell whose probability
is outside the fuducial probability, then the evolving probabilistic vector is governed
by

{
Pi j p j (n) = 0 j = r

Pi j p j (n) = pi (n + 1) j 	=r
j = 1, 2, 3, ..., N (9.24)

The fiducial probability in each mapping is expressed by

Pf =
∑

i

∑

j 	=r

Pi j p j (n) (9.25)

In this way, a Generalized Cell Mapping method with an evolving probabilistic
vector, or GCM with EPV in short, is set up, by which only the active cells, whose
number is much less than that of the global cells N, are involved in the computation
of one-step transition probability matrix. So the computation and the storage of a
very large fixed-size one-step transition probability matrix are avoided, and both
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(a)

(b)

Fig. 9.1 Schematic representations of fiducial probability and active cell, inactive cell, sink cell:
a fiducial probability; b active cells (red), inactive cells and sink cell

computation consumption and memory storage are much more reduced to make
the method even more suitable for investigation of high-dimensional systems. Fur-
thermore, the computational efficiency is seldom influenced by extending of chosen
region while using the same cell size, which is very useful for detecting the transient-
state responses and large transition problems in stochastic systems as shown by the
example below.

9.4 Noise-Induced Bifurcations: An Example
of Application

To demonstrate the capability of the proposed method in efficiently capturing tran-
sient responses in noise-induced bifurcations, a Mathieu-Duffing oscillator under
excitations of additive noises, which has the following form, is studied:
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d2x

dt2
+ 25x3 + 0.173

dx

dt
+ [2.62 − 0.456S(1 − cos 2t)] x = 0.92S(1 − cos 2t) + εw(t)

(9.26)

where S is a bifurcation parameter, ε is the noise intensity and w(t) is Gaussian with
its mean and correlation function satisfying

{
E[w(t)] = 0

E[w(t)w(t + τ)] = δ(τ )
(9.27)

For the purpose of stochastic analysis, Eq. (9.26) will be first converted to a set of sto-
chastic differential equation in the Itô sense, following rules of Itô and Stratonovich
stochastic calculus,

⎧
⎪⎨

⎪⎩

dx1
dt = x2
dx2
dt = −25x31 − 0.173x2 − 2.62x1 + 0.456S(1 − cos 2t)x1

+ 0.92S(1 − cos 2t) + εw(t)

(9.28)

9.4.1 Dynamics of the Deterministic System

When ε = 0, Eq. (9.28) becomes a deterministic nonlinear system under both forced
and parameter excitations. The bifurcation diagram of Eq. (9.28) with the variation
of S is drawn in Fig. 9.2. As can be seen, there are two response branches in the
parameter range S ∈ [3.3, 4.4]. The upper response branch in Fig. 9.2 consists of
a period-doubling cascade to chaos, a period-3 window, another period-doubling
cascade to chaos and ends with a boundary crisis at about S = 4.26. The lower
response branch is a period-1 motion starting from about S = 3.46 though saddle-
node bifurcation. According to the classification in [9], dangerous bifurcation occurs
at S = 4.26when increasing S on the upper branch, and at S = 3.46when decreasing
S following the lower branch.

To see the global structure within the parameter range with the coexistence of
period-3 and period-1 attractor, the two-scaled global analysis method [27, 28] is
employed to determine the attractors, saddles and their manifolds. Figure9.3 shows
the global structure at S = 3.80.

9.4.2 Transient Responses in Noise-Induced Bifurcations

Below the transient responses in noise-induced bifurcations are studied by the pro-
posed method, GCM with EPV, in case that ε 	= 0.

Letmpq = E[x p ẋq ], basedon the short-timeGaussian approximation, themoment
evolution equations for Eq. (9.28) are derived by applying Gaussian closure as
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Fig. 9.2 Bifurcation diagram of the deterministic Mathieu-Duffing oscillator with the
variation of S

Fig. 9.3 Global structure of deterministic Mathieu-Duffing oscillator when S = 3.80, where a
black dot stands for period-1 (P-1) attractor, three black triangles for period-3 (P-3) attractor, dark
blue points for chaotic saddle, and green dot for a saddle point on basin boundary with its stable
and unstable manifolds being the red and light blue solid curves respectively

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṁ10 = m01

ṁ01 = −25(3m20m10 − 2m3
10) − 0.173m01 − [2.62 − 0.456S(1 − cos 2t)]m10

+ 0.92S(1 − cos 2t)

ṁ20 = 2m11

ṁ11 = m02 − 25(3m2
20 − 2m4

10) − 0.173m11 − [2.62 − 0.456S(1 − cos 2t)]m20

+ 0.92S(1 − cos 2t)m10

ṁ02 = −50(3m20m11 − 2m3
10m01) − 0.346m02 − [5.24 − 0.912S(1 − cos 2t)]m11

+ 1.84S(1 − cos 2t)m01 + ε2

(9.29)

By using the proposed GCM with EPV, the chosen region of x and ẋ in the state
space is taken to be [−1.0, 1.0]× [−3.0, 2.0], which will be covered by 500 × 500
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(a) (b) (c)

(d) (e) (f)

Fig. 9.4 Noise-induced explosive bifurcation: pseudo-color images of the evolving PDFs of system
Eq. (9.28) when S = 3.80 and ε = 0.05 from initial PDF around (0.5, −1): a t = T ; b t = 4T ; c
t = 6T ; d t = 28T ; e t = 29T ; f t = 30T

cells with the resolution of 0.004 × 0.012. The fiducial probability Pf = 0.95 is
used in all of the computations below. The noise intensity is taken as the bifurcation
parameter to see when the noise-induced bifurcations occur, what kind of noise-
induced bifurcation takes place and how the transient responses of the system evolve.

It is not hard to imagine that the stochastic responses will mainly concentrate
around the deterministic attractors when the noise intensity is sufficient small. For
instance, when ε = 0.02, the stationary PDFs of Eq. (9.28) at S = 3.80 will mainly
concentrate within a small vicinity around attractor P-1 or P-3, depending upon
in which basin of attraction the initial PDF locates. In this case no noise-induced
bifurcation occurs and the stochastic responses canbewell estimated by the stochastic
sensitivity function technique introduced in the above section.

Noise-induced explosive bifurcation: As the noise intensity increases, say to ε =
0.05, while no qualitative change takes place on the stochastic responses around P-1
attractor, the stochastic responses around P-3 attractor have a significant qualitative
change, by which the most of response realizations start to escape from the vicinity
of P-3 attractor and evolve along the chaotic saddle and then go back to P-3 attractor
repeatedly. Figure9.4 shows a transient evolution of the response PDF from the initial
PDF around point (0.5,−1) that locates in the basin of attraction of P-3 attractor (see
Fig. 9.3). It is found that the PDF of the responses in this case gradually goes out
of the region of the initial PDF and evolves on a region covering both P-3 attractor
and chaotic saddle only after 6 time periods (see Fig. 9.4c). The stationary PDF of
the stochastic responses undertakes a recurrent transition in a periodic way in period
three as shown by Fig. 9.4d–f. Since the stochastic response increases the response
region abruptly through the connection of P-3 attractor and the chaotic saddle when
the noise intensity exceeds certain critical value, we will call the phenomenon a
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Fig. 9.5 Stationary PDFs
when ε = 0.10: the initial
PDF lays around (−0.5, −1)
for P-1 attractor, and around
(0.5, −1) for P-3 attractor

noise-induced explosive bifurcation in accordance to the deterministic definition in
[9].

If the noise intensity is further increased to ε = 0.10, the stationary PDF of sto-
chastic responses starting from an initial PDF in the basin of attraction of P-3 attractor
will lose the periodic recurrent feature and become a noise-induced chaos as shown
by Fig. 9.5. Meanwhile, the PDF of other stochastic responses around the coexisting
period-1 attractor is unchanged when the initial PDF is put in its basin of attraction
as shown by Fig. 9.5.

Noise-induced dangerous bifurcation: As the noise intensity further increases,
for instance, ε = 0.15 there will be only one steady-state PDF of the stochastic
responses in system (9.25) when S = 3.80. Especially, when the initial PDF locates
in the basin of attraction of P-1 in Fig. 9.3, the stochastic response is no longer in the
region around the P-1 attractor but jumps to the region around the distant unrelated
stochastic attractor around P-3 and chaotic saddle. Figure9.6 shows the transient
evolution of the PDF at the parameters. This suggests that a noise-induced saddle-
node bifurcation occurs due to the collision between the stochastic P-1 attractor with
a stochastic saddle on the basin boundary and causes the blue-sky disappearance of
PDF for the stochastic responses around P-1 attractor. In accordance to the definition
in [9], we will call it a noise-induced dangerous bifurcation.

Wewill show another type of noise-induced dangerous bifurcation, namely, noise-
induced boundary crisis at the same noise intensities as above, that is, ε = 0.15. The
only difference lies on that S = 4.18. This means that we shift the deterministic
parameter a little closer to the bifurcation point of the deterministic boundary crisis
that however still locates in the period-3 window (see Fig. 9.2). In this case the
stochastic chaoswill collide the stochastic saddle on thebasin boundary anddisappear
abruptly. Figure9.7 shows the transient evolution of the PDF at the parameters, by
which the PDF evolves from the initial one in the basin of P-3 attractor with chaotic
saddle as a noise-induced chaos response, and almost surely escapes from the region
and goes into the region around P-1 attractor. In both of above cases, it is seen that the
noise-induced transitions go across basin boundary through the stochastic saddle on
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(a) (b) (c)

(d) (e) (f)

Fig. 9.6 Noise-induced dangerous bifurcation: pseudo-color images of the evolving PDFs of
system Eq. (9.28) when S = 3.80 and ε = 0.15 from initial PDF around (−0.5, −1): a t = T ; b
t = 3T ; c t = 5T ; d t = 20T ; e t = 35T ; f t = 50T

(a) (b) (c)

(d) (e) (f)

Fig. 9.7 Noise-induced dangerous bifurcation: pseudo-color images of the evolving PDFs of
system Eq. (9.28) when S = 4.18 and ε = 0.15 from initial PDF around (0.5, −1): a t = T ; b
t = 3T ; c t = 4T ; d t = 10T ; e t = 18T ; f t = 50T

it, which serves as a bridge. The noise-induced dangerous bifurcation has profound
engineering meaning because it indicates that even though the system is designed
far from the deterministic dangerous bifurcation points, the bifurcation can still be
induced by noise.
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(a) (b)

Fig. 9.8 a Stationary PDFs around P-1 attractor when ε = 0.10 with the initial PDF lays near
(−0.5, −1), and around P-3 attractor when ε = 0.03 with the initial PDF lays near (0.5, −1). b
Corresponding confidence ellipses (dark red circles) for the two attractors,with a fiducial probability
Pf = 0.95

9.4.3 Estimation of the Critical Noise Intensity

Asmentioned above that the sensitivity character of the periodic attractors underweak
noise can be well determined through the method introduced in Sect. 9.2.2 (see also
[21]). Figure9.8a shows the stochastic attractors around period-1 attractor when ε =
0.10 and around period-3 attractor when ε = 0.03 calculated byGCMwith EPV for a
fiducial probability Pf = 0.95.Actually, the twonoise intensities for the twodifferent
attractors give the approximate critical noise intensities for the occurrance of the
noise-induced dangerous bifurcation around period-1 attactor and the noise-induced
explosive bifurcation around period-3 attractor respectively. Figure9.8b draws the
corresponding confidence ellipses, with a fiducial probability Pf = 0.95, on the
global structure of the deterministic system. It can be seen that the confidence ellipses
for period-3 attractor at ε = 0.03 almost touch with the chaotic saddle in its basin
of attraction. When ε = 0.04, the noise-induced explosive bifurcation is detectable
by our numerical method. Depending upon the points depicting the chaotic saddle,
formula (9.16) indicates the critical noise intensity should be in between 0.03 and
0.04. For the confidence ellipse around period-1 attractor with ε = 0.10, it is found
that the ellipse just grows outside the spiral loop of the unstablemanifold of the saddle
around the attractor. By considering that the period-1 attractor possesses stronger
capability of attraction within the spiral part of the unstable manifold, it is not hard
to imagine that the stochastic trajectories must well get out of the restriction with
the help of stronger noise before they can escape. When ε = 0.11, the noise-induced
dangerous bifurcation is detectable with a fiducial probability Pf = 0.95 by our
numerical method. So intuitively, the critical noise intensity for the occurrance of the
noise-induced dangerous bifurcation is estimated inbetween 0.10 and 0.11. Certainly,
there are still a lot of works to do in order to more accurately predict the critical noise
intensity for the escape in a more rigorous way.
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9.5 Conclusions

In practical engineering problems, the transient probability density function (PDF)
of stochastic responses under noise excitation of an engineering system, starting
from an initial distribution localizes near a given deterministic attracting set that
represents its operating state, is of great interest. The sensitivity of the periodic
attractors is analyzed by discretizing the non-autonomous system into a discrete
1/N-period stroboscopic map in this work. In this way, boundary value problems of
matrix differential equations were avoided by solving only matrix algebra equations.
The method can provide analytical description on the sensitivity character and the
probabilistic distribution of a stochastic attractor in the case of weak noise. In order
to obtain the critical noise intensity of noise-induced transition phenomena, SSF is
used to judge if the corresponding confidence ellipse is in touch with the manifolds
of certain saddle-typed invariant sets or their manifolds.

In order to efficiently capture the transient behaviors in noise-induced bifurcations
in the case of large noise, an idea of evolving probabilistic vector (EPV) is introduced
into the Generalized Cell Mapping method (GCM) in this paper in the form of
a Generalized Cell Mapping method with evolving probabilistic vector, or GCM
with EPV. So much smaller evolving probabilistic vector and one-step probability
transition matrix are used in the proposed method in comparison with the fix-sized
one in the traditional GCM. Thus, the efficiency in both computation and storage is
largely enhanced making the method applicable for high-dimensional systems.

AMathieu-Duffing oscillator under excitation of additive noise is studied to show
the noise-induced explosive and dangerous bifurcations of the oscillator. The tran-
sient and stationary PDFs are captured by the GCM with EPV either with an abrupt
enlargement or a sudden fast jump of the probability distribution of the stochastic
responses. The profound engineering meaning of the noise-induced dangerous bifur-
cation is emphasized because it indicates that even though the system is designed
far from the deterministic dangerous bifurcation points, the bifurcation can still be
induced by noise.
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Chapter 10
Analytical, Optimal, and Sparse Optimal
Control of Traveling Wave Solutions
to Reaction-Diffusion Systems

Christopher Ryll, Jakob Löber, Steffen Martens,
Harald Engel and Fredi Tröltzsch

Abstract This work deals with the position control of selected patterns in reaction-
diffusion systems. Exemplarily, the Schlögl and FitzHugh-Nagumo model are dis-
cussed using three different approaches. First, an analytical solution is proposed. Sec-
ond, the standard optimal control procedure is applied. The third approach extends
standard optimal control to so-called sparse optimal control that results in very local-
ized control signals and allows the analysis of second order optimality conditions.

10.1 Introduction

Beside the well-known Turing patterns, reaction-diffusion (RD) systems possess a
rich variety of self-organized spatio-temporal wave patterns including propagating
fronts, solitary excitation pulses, and periodic pulse trains in one-dimensional media.
These patterns are “building blocks” of wave patterns like target patterns, wave
segments, and spiral waves in two as well as scroll waves in three spatial dimensions,
respectively. Another important class of RD patterns are stationary, breathing, and
moving localized spots [1–7].

Several control strategies have been developed for purposeful manipulation of
wave dynamics as the application of closed-loop or feedback-mediated control loops
with and without delays [8–11] and open-loop control that includes external spatio-
temporal forcing [10, 12–14], optimal control [15–17], and control by imposed geo-
metric constraints and heterogeneities on the medium [18, 19]. While feedback-
mediated control relies on a continuous monitoring of the system’s state, open-loop
control is based on a detailed knowledge of the system’s dynamics and its parameters.

Experimentally, feedback control loops have been developed for the photosensi-
tive Belousov-Zhabotinsky (BZ) reaction. The feedback signals are obtained from
wave activity measured at one or several detector points, along detector lines, or in
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a spatially extended control domain including global feedback control [8, 9, 20].
Varying the excitability of the light-sensitive BZ medium by changing the globally
applied light intensity forces a spiral wave tip to describe a wide range of hypocy-
cloidal and epicycloidal trajectories [21, 22]. Moreover, feedback-mediated control
loops have been applied successfully in order to stabilize unstable patterns in experi-
ments such as unstable traveling wave segments and spots [11]. Two feedback loops
were used to guide unstable wave segments in the BZ reaction along pre-given tra-
jectories [23]. An open loop control was successfully deployed in dragging traveling
chemical pulses of adsorbed CO during heterogeneous catalysis on platinum single
crystal surfaces [24]. In these experiments, the pulse velocity was controlled by a
laser beam creating amovable localized temperature heterogeneity on an addressable
catalyst surface, resulting in a V-shaped pattern [25]. Dragging a one-dimensional
chemical front or phase interface to a new position by anchoring it to a movable
parameter heterogeneity was studied theoretically in [26, 27].

Recently, an open-loop control for controlling the position of traveling waves over
time according to a prescribed protocol of motion �φ(t) was proposed that preserves
simultaneously thewaveprofile [28].Althoughposition control is realizedby external
spatio-temporal forcing, i.e., it is an open-loop control, no detailed knowledge about
the reaction dynamics as well as the system parameters is needed. We have already
demonstrated the ability of position control to accelerate or decelerate traveling
fronts and pulses in one spatial dimension for a variety of RD models [29, 30].
In particular, we found that the analytically derived control function is close to a
numerically obtained optimal control solution. A similar approach allows to control
the two-dimensional shape of traveling wave solutions. Control signals that realize a
desired wave shape are determined analytically from nonlinear evolution equations
for isoconcentration lines as the perturbed nonlinear phase diffusion equation or the
perturbed linear eikonal equation [31]. In the work at hand, we compare our analytic
approach for position control with optimal trajectory tracking of RD patterns in more
detail. In particular, we quantify the difference between an analytical solution and a
numerically obtained result to optimal control. Thereby, we determine the conditions
under which the numerical result approaches the analytical result. This establishes a
basis for using analytical solutions to speed up numerical computations of optimal
control and serves as a consistency check for numerical algorithms.

We consider the following controlled RD system

∂t �u(�x, t) − DΔ�u(�x, t) + �R(�u(�x, t)) = B �f (�x, t). (10.1)

Here, �u(�x, t) = (u1(�x, t), . . . , un(�x, t))T is a vector of n state components in a
bounded or unbounded spatial domain Ω ⊂ R

N of dimension N ∈ {1, 2, 3}. D
is an n × n matrix of diffusion coefficients which is assumed to be diagonal,
D = diag(D1, . . . , Dn), because the medium is presumed to be isotropic. Δ rep-
resents the N -dimensional Laplace operator and �R denotes the vector of n reaction
kinetics which, in general, are nonlinear functions of the state. The vector of control
signals �f (�x, t) = ( f1(�x, t), . . . , fm(�x, t))T acts at all times and everywhere within
the spatial domain Ω . The latter assumption is rarely justified in experiments, where
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the application of control signals is often restricted to subsets ofΩ . However, notable
exceptions as, e.g., the alreadymentioned photosensitive BZ reaction, exist. Here, the
light intensity is deployed as the control signal such that the control acts everywhere
within a two-dimensional domain.

Equation (10.1) must be supplemented with an initial condition �u(�x, t0) = �u0(�x)
and appropriate boundary conditions. A common choice are no-flux boundary con-
ditions at the boundary Σ = ∂Ω × (0, T ), ∂n �u(�x, t) = �0, where ∂n �u denotes the
component-wise spatial derivative in the direction normal to the boundary Γ = ∂Ω

of the spatial domain.
Typically, the numberm of independent control signals inEq. (10.1) is smaller than

the number n of state components. We call such a system an underactuated system.
The n × m matrix B determines which state components are directly affected by the
control signals. If m = n and the matrix B is regular, it is called a fully actuated
system.

Our main goal is to identify a control �f such that the state �u follows a desired
spatio-temporal trajectory �ud , also called a desired distribution, as closely as possible
everywhere in space Ω and for all times 0 ≤ t ≤ T . We can measure the distance
between the actual solution �u of the controlled RD system Eq. (10.1) and the desired
trajectory �ud up to the terminal time T with the non-negative functional

J (�u) =‖�u − �ud‖2L2(Q), (10.2)

where ‖ · ‖2L2(Q)
is the L2-norm defined by

‖�h‖2L2(Q) =
T∫

0

∫

Ω

d �x dt
{�h(�x, t)2

}
, (10.3)

in the space-time-cylinder Q: = Ω × (0, T ). The functional Eq. (10.2) reaches its
smallest possible value, J = 0 if and only if the controlled state �u equals the desired
trajectory almost everywhere in time and space.

In many cases, the desired trajectory �ud cannot be realized exactly by the control,
cf. Ref. [32], for examples. However, one might be able to find a control which
enforces the state �u to follow �ud as closely as possible as measured by J . A control
�f = �̄f is optimal if it realizes a state �u which minimizes J . The method of optimal
control views J as a constrained functional subject to �u satisfying the controlled RD
system Eq. (10.1).

Often, theminimum of the objective functional J , Eq. (10.2), does not exist within
appropriate function spaces. Consider, for example, the assumption that the con-
trolled state, obtained as a solution to the optimization problem, is continuous in
time and space. Despite that a discontinuous state �u, leading to a smaller value for
J (�u) than any continuous function, might exist, this state is not regarded as a solu-
tion to the optimization problem. Furthermore, a control enforcing a discontinuous
state may diverge at exactly the points of discontinuity; examples in the context of
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dynamical systems are discussed in Ref. [32]. For that reason, the unregularized
optimization problem, Eq. (10.2), is also called a singular optimal control problem.
To ensure the existence of a minimum of J within appropriate function spaces and
bounded control signals, additional (inequality) constraints such as bounds for the
control signal can be introduced, cf. Ref. [33]. Alternatively, it is possible to add a so-
called Tikhonov-regularization term to the functional Eq. (10.2) which is quadratic
in the control,

J (�u, �f ) = ‖�u − �ud‖2L2(Q) + ν‖ �f ‖2L2(Q). (10.4)

The L2-norm of the control �f is weighted by a small coefficient ν > 0. This term
might be interpreted as a control cost to achieve a certain state �u. Since the control �f
does not come for free, there is a “price” to pay. In numerical computations, ν > 0
serves as a regularization parameter that stabilizes the algorithm. For the numerical
results shown in later sections, we typically choose ν in the range 10−8 ≤ ν ≤ 10−3.
While ν > 0 guarantees the existence of an optimal control �f in one and two spatial
dimensions even in the absence of bounds on the control signal [33], it is not known
whether Tikhonov-regularization alone also works in spatial dimensions N larger
than two. Here, we restrict our investigations to one and two spatial dimensions.
The presence of the regularization term causes the states to be further away from
the desired trajectories than in the case of ν = 0. Thus, the case ν = 0 is of special
interest. Naturally, the solution �u for ν = 0 is the closest (in the L2(Q)-sense) to
the desired trajectory �ud among all optimal solutions associated with any ν ≥ 0.
Therefore, it can be seen as the limit of realizability of a certain desired trajectory �ud .

In addition to the weighted L2-norm of the control, other terms can be added to
the functional Eq. (10.4). An interesting choice is the weighted L1-norm such that
the functional reads

J (�u, �f ) = ‖�u − �ud‖2L2(Q) + ν‖ �f ‖2L2(Q) + κ‖ �f ‖L1(Q). (10.5)

For appropriate values of κ > 0, the corresponding optimal control becomes sparse,
i.e., it only acts in some localized regions of the space-time-cylinder, while it vanishes
identically everywhere else. Therefore, it is also called sparse control or sparse
optimal control in the literature, see Refs. [34–37]. In some sense, we can interpret
the areaswith non-vanishing sparse optimal control signals as themost sensitive areas
of the RD patterns with respect to the desired control goal. A manipulation of the RD
pattern in these areas is most efficient, while control signals applied in other regions
have only weak impact. Furthermore, the weighted L1-norm enables the analysis of
solutions with a Tikhonov-regularization parameter ν tending to zero. This allows
to draw conclusions about the approximation of solutions to unregularized problems
by regularized ones.

In Sect. 10.2, we present an analytical approach for the control of the position of
RD patterns in fully actuated systems. These analytical expressions are solutions to
the unregularized (ν = 0) optimization problem, Eq. (10.2), and might provide an
appropriate initial guess for numerical optimal control algorithms. Notably, neither
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the controlled state nor the control signal suffering from the problems are usually
associatedwith unregularized optimal control; both expressions yield continuous and
bounded solutions under certain assumptions postulated in Sect. 10.2. In Sect. 10.3,
we explicitly state the optimal control problem for traveling wave solutions to the
Schlögl [1, 38] and the FitzHugh-Nagumo model [39, 40]. Both are well-known
models to describe traveling fronts and pulses in one spatial dimension, solitary
spots and spiral waves in two spatial dimensions, and scroll waves in three spatial
dimensions [4, 10, 41, 42].We compare the analytical solutions from Sect. 10.2 with
a numerically obtained regularized optimal control solution for the position control
of a traveling front solution in the one-dimensional Schlögl model in Sect. 10.3.3. In
particular, we demonstrate the convergence of the numerical result to the analytical
solution for decreasing values ν. The agreement becomes perfect within numerical
accuracy if ν is chosen sufficiently small. Section10.4 discusses sparse optimal con-
trol in detail and presents numerical examples obtained for the FitzHugh-Nagumo
system. Finally, we conclude our findings in Sect. 10.5.

10.2 Analytical Approach

Below, we sketch the idea of analytical position control of RD patterns proposed
previously in Refs. [28, 29]. For simplicity, we consider a single-component RD
system of the form

∂t u(x, t) − D∂2
x u(x, t) + R(u(x, t)) = f (x, t), (10.6)

in a one-dimensional infinitely extended spatial domain Ω = R. The state u as well
as the control signal f are scalar functions and the system Eq. (10.6) is fully actuated.
Usually, Eq. (10.6) is viewed as a differential equation for the state u with the control
signal f acting as an inhomogeneity. Alternatively, Eq. (10.6) can also be seen as
an expression for the control signal. Exploiting this relation, one simply inserts the
desired trajectory ud for u in Eq. (10.6) and obtains for the control

f (x, t) = ∂t ud(x, t) − D∂2
x ud(x, t) + R(ud(x, t)). (10.7)

In the following, we assume that the desired trajectory ud is sufficiently smooth
everywhere in the space-time-cylinder Q such that the evaluation of the derivatives
∂t ud and ∂2

x ud yields continuous expressions. We call a desired trajectory ud exactly
realizable if the controlled state u equals ud everywhere in Q, i.e., u(x, t) = ud(x, t).
For the control signal given by Eq. (10.7), this can only be true if two more condi-
tions are satisfied. First, the initial condition for the controlled state must coincide
with the initial state of the desired trajectory, i.e., u(x, t0) = ud(x, t0). Second, all
boundary conditions obeyed by u have to be obeyed by the desired trajectory ud as
well. Because of u(x, t) = ud(x, t), the corresponding unregularized functional J ,
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Eq. (10.2), vanishes identically. Thus, the control f is certainly a control which min-
imizes the unregularized functional J and, in particular, it is optimal.

In conclusion, we found a solution to the unregularized optimization problem
Eq. (10.2). The solution for the controlled state is simply u(x, t) = ud(x, t), while the
solution for the control signal is given by Eq. (10.7). Even thoughwe are dealing with
an unregularized optimization problem, the control signal as well as the controlled
state are continuous and bounded functions, provided that the desired trajectory ud
is sufficiently smooth in space and time.

Generalizing the procedure to multi-component RD systems in multiple spatial
dimensions, the expression for the control reads

�f (x, t) = B−1(∂t �ud(x, t) − �DΔ�ud(x, t) + �R(�ud(x, t))). (10.8)

Once more, the initial and boundary conditions for the desired trajectory �ud have to
comply with the initial and boundary conditions of the state �u. Clearly, the inverse
of �B exists if and only if �B is a regular square matrix, i.e., the system must be fully
actuated. We emphasize the generality of the result. Apart from mild conditions on
the smoothness of the desired distributions �ud , Eq. (10.8) yields a simple expression
for the control signal for arbitrary �ud .

Next, we exemplarily consider the position control of travelingwaves (TW) in one
spatial dimension. Traveling waves are solutions to the uncontrolled RD system, i.e.,
Eq. (10.1)with �f = �0.They are characterizedby awaveprofile �u(x, t) = �Uc(x − c t)
which is stationary in a frame of reference ξ = x − ct co-moving with velocity c.
The wave profile �Uc satisfies the following ordinary differential equation (ODE),

�D �U ′′
c (ξ) + c �U ′

c(ξ) − �R( �Uc(ξ)) = �0, ξ ∈ Ω ⊂ R. (10.9)

Theprimedenotes differentiationwith respect to ξ .Note that stationary solutionswith
a vanishing propagation velocity c = 0 are also considered as traveling waves. The
ODE for the wave profile, Eq. (10.9), can exhibit one or more homogeneous steady
states. Typically, the wave profile �Uc approaches either two different steady states
or the same steady state for ξ → ±∞. This fact can be used to classify traveling
wave profiles. Front profiles connect different steady states for ξ → ±∞ and are
found to be heteroclinic orbits of Eq. (10.9). Pulse profiles join the same steady
state and are found to be homoclinic orbits [43]. Furthermore, all TW solutions are
localized in the sense that their spatial derivatives of any order m ≥ 1 decay to zero,
limξ→±∞ ∂m

ξ
�Uc(ξ) = 0.

We propose a spatio-temporal control signal �f (x, t) which shifts the traveling
wave according to a prescribed protocol of motion φ(t) while simultaneously pre-
serving the uncontrolled wave profile �Uc. Correspondingly, the desired trajectory
reads

�ud(x, t) = �Uc(x − φ(t)). (10.10)
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Note that the desired trajectory is localized for all values of φ(t) because the TW
profile �Uc is localized. The initial condition for the state is �u(x, t0) = �Uc(x − x0)
whichfixes the initial value of the protocol ofmotion asφ(t0) = x0. Then, the solution
Eq. (10.8) for the control signal becomes

�f (x, t) = B−1(−φ̇(t) �U ′
c(x − φ(t)) − D �U ′′

c (x − φ(t)) + �R( �Uc(x − φ(t)))
(10.11)

with φ̇(t) denoting the derivative of φ(t) with respect to time t . Using Eq. (10.9) to
eliminate the non-linear reaction kinetics �R, we finally obtain the following analytical
expression for the control signal

�f (x, t) = (c − φ̇(t))B−1 �U ′
c(x − φ(t)) =: �fan. (10.12)

Remarkably, any reference to the reaction function �R drops out from the expres-
sion for the control. This is of great advantage for applications without or with only
incomplete knowledge of the underlying reaction kinetics �R. The method is applica-
ble as long as the propagation velocity c is known and the uncontrolled wave profile
�Uc can be measured with sufficient accuracy to calculate the derivative �U ′

c.
Being an open loop control, a general problem of the proposed position control is

its possible inherent instability against perturbations of the initial conditions as well
as other data uncertainty. However, assuming protocol velocities φ̇(t) close to the
uncontrolled velocity c, φ̇ ∼ c, the control signal Eq. (10.12) is small in amplitude
and enforces a wave which is relatively close to the uncontrolled TW. Since the
uncontrolled TW is presumed to be stable, the controlled TWmight benefit from that
and a stable open loop control is expected. This expectation is confirmed numerically
for a variety of controlled RD systems [28] and also analytically in Ref. [29].

Despite the advantages of our analytical solution stated above, there are limits
for it as well. The restriction to fully actuated systems, i.e., systems for which B−1

exists, is not always practical. In experiments with RD systems, the number of state
components is usually much larger than one, while the number of control signals
is often restricted to one or two. Thus, the question arises if the approach can be
extended to underactuated systems with a number of independent control signals
smaller than the number of state components. This is indeed the case but entails
additional assumptions about the desired trajectory. In the context of position control
of TWs, it leads to a control which is not able to preserve the TW profile for all state
components, see Ref. [28]. The general case is discussed in the thesis [32] and is not
part of this paper.

Moreover, in applications, it is often necessary to impose inequality constraints
in form of upper and lower bounds on the control. For example, the intensity of
a heat source deployed as control is bounded by technical reasons. Even worse, if
the control is the temperature itself, it is impossible to attain negative values. Since
the control signal �fan for position control is proportional to the slope of the con-
trolled wave profile �U ′

c, the magnitude of the applied control may locally attain
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non-realizable values. In our analytic approach no bounds for the control signal are
imposed. The control signal �f as given by Eq. (10.8) is optimal only in case of a van-
ishing Tikhonov-regularization parameter ν = 0, cf. Eq. (10.4). Moreover, desired
trajectories �ud which do not comply with initial as well as boundary conditions or
are non-smooth might be requested. Lastly, the control signal �f cannot be used in
systems where only a restricted region of the spatial domain Ω is accessible by con-
trol. While all these cases cannot be treated within the analytical approach proposed
here, optimal control can deal with many of these complications.

10.3 Optimal Control

In the following, we recall the optimal control problem and sketch themost important
analytical results to provide the optimality system.

10.3.1 The Control Problem

For simplicity, we explicitly state the optimal control problem for the FitzHugh-
Nagumo system [39, 40]. The FitzHugh-Nagumo system is a two-component model
�u = (u, v)T for an activator u and an inhibitor v,

∂t u(�x, t) − Δu(�x, t) + R(u(�x, t)) + α v(�x, t) = f (�x, t),
∂tv(�x, t) + β v(�x, t) − γ u(�x, t) + δ = 0,

(10.13)

in a bounded Lipschitz-domain Ω ⊂ R
N of dimension 1 ≤ N ≤ 3. Since the single-

component control f appears solely on the right-hand side of the first equa-
tion, this system is underactuated. Allowing a control in the second equation
is fairly analogous. The kinetic parameters α, β, γ , and δ are real numbers
with β ≥ 0. Moreover, the reaction kinetics are given by the nonlinear function
R(u) = u(u − a)(u − 1) for 0 ≤ a ≤ 1. Note that the equation for the activator u
decouples from the equation for the inhibitor v for α = 0, cf. Eq. (10.13), result-
ing in the Schlögl model [1, 38], sometimes also called the Nagumo model.
We assume homogeneous Neumann-boundary conditions for the activator u and
u(�x, 0) = u0(�x), v(�x, 0) = v0(�x) are given initial states belonging to L∞(Ω), i.e.,
they are bounded.

The aim of our control problem is the tracking of desired trajectories �ud =
(ud , vd)T in the space-time cylinder Q and to reach desired terminal states �uT =
(uT , vT )T at the final time T . In contrast to the analytic approach from Sect. 10.2,
these desired trajectories are neither assumed to be smooth nor compatible with the
given initial data or boundary conditions. For simplicity, we assume their bounded-
ness, i.e., (ud , vd)T ∈ (L∞(Q))2 and (uT , vT )T ∈ (L∞(Ω))2. The goal of reaching
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the desired states is expressed as the minimization of the objective functional

J (u, v, f ) = 1

2

(
cUT ‖u( ·, T ) − uT ‖2L2(Ω) + cVT ‖v( ·, T ) − vT ‖2L2(Ω)

)

+ 1

2

(
cUd ‖u − ud‖2L2(Q) + cVd ‖v − vd‖2L2(Q)

)
+ ν

2
‖ f ‖2L2(Q).

(10.14)

This functional is slightly more general than the one given by Eq. (10.2) because it
also takes into account the terminal states. We emphasize that the given non-negative
coefficients cUd , cVd , cUT , and c

V
T can also be chosen as functions depending on space

and time. In some applications, this turns out to be very useful [44]. The control
signals can be taken out of the set of admissible controls

Fad = { f ∈ L∞(Q) : fa ≤ f (�x, t) ≤ fb, for (�x, t) ∈ Q}. (10.15)

The bounds−∞ < fa < fb < ∞model the technical capacities for generating con-
trols.

Under the previous assumptions, the controlled RD equations (10.13) have a
uniqueweak solution denoted by (u f , v f )

T for a given control f ∈ Fad. This solution
is bounded, i.e., u f , v f ∈ L∞(Q), cf. [44]. If the initial data (u0, v0)T are continuous,
then u f and v f are continuous on Ω̄ × [0, T ]with Ω̄ = Ω ∪ ∂Ω as well. Moreover,
the control-to-state mapping G := f → (u f , v f )

T is twice continuously (Frèchet-)
differentiable. A proof can be found in Ref. [44, Theorem 2.1, Corollary 2.1, and
Theorem 2.2]. Expressed in terms of the solution (u f , v f )

T , the value of the objective
functional depends only on f , J (u, v, f ) = J (u f , v f , f ) =: F( f ), and the optimal
control problem can be formulated in a condensed form as

(P) Min F( f ), f ∈ Fad. (10.16)

Referring to [44, Theorem 3.1], we know that the control problem (P) has at least
one (optimal) solution f̄ for all ν ≥ 0. To determine this solution numerically, we
need the first and second-order derivatives of the objective functional F . Since the
mapping f → (u, v)T is twice continuously differentiable, so is F : L p(Q) −→ R.
Its first derivative F ′( f ) in the direction h ∈ L p(Q) can be computed as follows:

F ′( f )h =
T∫

0

∫

Ω

d �x dt {
(ϕ f + ν f )h

}
, (10.17)

where ϕ f denotes the first component of the so-called adjoint state (ϕ f , ψ f ). It solves
a linearized FitzHugh-Nagumo system, backwards in time,

−∂tϕ f − Δϕ f + R′(u f )ϕ f − γ ψ f = cUd (u f − ud),
−∂tψ f + β ψ f + α ϕ f = cVd (v f − vd)

(10.18)
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with homogeneous Neumann-boundary and terminal conditions ϕ f (�x, T ) = cUT
(u f (�x, T ) − uT (�x)) and ψ f (�x, T ) = cVT (v f (�x, T ) − vT (�x)) in Ω .

This first derivative is used in numerical methods of gradient type. Higher order
methods of Newton type need also the second derivative F ′′( f ). It reads

F ′′( f )h2 =
∫

Ω

d �x {
cUT ηh(�x, T )2 + cVT ζh(�x, T )2

}

+
T∫

0

∫

Ω

d �x dt {[cUd − R′′(u f )ϕ f ]η2
h + cVd ζ 2

h

} + ν

T∫

0

∫

Ω

d �x dt {
h2

}

(10.19)
in a single direction h ∈ L p(Q). In this expression, the state (ηh, ζh) := G ′( f )h
denotes the solution of a linearized FitzHugh-Nagumo system similar to Eq. (10.18),
see Ref. [44, Theorem 2.2] for more information.

10.3.2 First-Order Optimality Conditions

We emphasize that the control problem (P) is not necessarily convex. Although the
objective functional J (u, v, f ) is convex, in general, the nonlinearity of the mapping
f → (u f , v f )

T will lead to a non-convex functional, F . Therefore, (P) is a problem
of non-convex optimization, possibly leading to several local minima instead of a
single global minimum.

As in standard calculus, we invoke first-order necessary optimality conditions to
find a (locally) optimal control f , denoted by f̄ . In the case of unconstrained control,
i.e., Fad := L p(Q), the first derivative of F must be zero, F ′( f̄ ) = 0. Computation-
ally, this condition is better expressed in the weak formulation

F ′( f̄ ) f =
T∫

0

∫

Ω

d �x dt {
(ϕ̄ + ν f̄ ) f

} = 0 ∀ f ∈ L p(Q) (10.20)

where ϕ̄ denotes the first component of the adjoint state associated with f̄ . If f̄ is
not locally optimal, one finds a descent direction d such that F ′( f̄ )d < 0. This is
used for methods of gradient type.

If the restrictionsFad are given by Eq. (10.15), then Eq. (10.20) does not hold true
in general. Instead, the variational inequality

F ′( f̄ )( f − f̄ ) =
T∫

0

∫

Ω

d �x dt {
(ϕ̄ + ν f̄ )( f − f̄ )

} ≥ 0 ∀ f ∈ Fad ∩U ( f̄ )

(10.21)
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must be fulfilled, cf. [45]. Here, U ( f̄ ) ⊂ L p(Q) denotes a neighborhood of f̄ .
Roughly speaking, it says that in a local minimum we cannot find an admissible
direction of descent. A gradient method would stop in such a point. A pointwise
discussion of Eq. (10.21) leads to the following identity:

f̄ (�x, t) = Proj[ fa , fb]

(
−1

ν
[ϕ̄(�x, t)]

)
for ν > 0. (10.22)

Here, Proj[ fa , fb](x) = min{max{ fa, x}, fb} denotes the projection to the interval
[ fa, fb] such that f̄ (�x, t) belongs to the set of admissible controls Fad defined in
Eq. (10.15). According to Eq. (10.22), as long as ϕ̄ does not vanish, a decreasing
value ν ≥ 0 yields an optimal control growing in amplitude until it attains its bounds
fa or fb, respectively. Thus, the variational inequality Eq. (10.21) leads to so-called
bang-bang-controls [45] for ν = 0 and ϕ̄ �= 0. These are control signals which attain
its maximal or minimal possible values for all times and everywhere in the spatial
domain Ω . A notable exception is the case of exactly realizable desired trajecto-
ries and ν = 0, already discussed in Sect. 10.2. In this case, it can be shown that ϕ̄

vanishes [32] and Eq. (10.22) cannot be used to determine the control signal f̄ .
Numerically, solutions to optimal control are obtained by solving the controlled

RD system Eq. (10.13) and the adjoint system, Eq. (10.18), such that the last identity,
Eq. (10.22), is fulfilled. In numerical computations with very large or even missing
bounds fa, fb, Eq. (10.22) becomes ill-conditioned if ν is close to zero. This might
lead to large roundoff errors in the computation of the control signal and can affect
the stability of numerical optimal control algorithms.

10.3.3 Example 1: Analytical and Optimal Position Control

In 1972, Schlögl discussed the auto-catalytic trimolecular RD scheme [1, 38] as
a prototype of a non-equilibrium first order phase transition. The reaction kinetics
R for the chemical with concentration u(x, t) is cubic and can be casted into the
dimensional form R(u) = u(u − a)(u − 1). The associated controlled RD equation
reads

∂t u − ∂2
x u + u (u − a) (u − 1) = f (x, t), 0 < a < 1,

in one spatial dimension, Ω = R. A linear stability analysis of the uncontrolled
system reveals that u = 0 and u = 1 are spatially homogeneous stable steady states
(HSS), while u = a is an unstable homogeneous steady state. In an infinite one-
dimensional domain, the Schlögl model possesses a stable traveling front solution
whose profile is given by

Uc(ξ) = 1/
(
1 + exp

(
ξ/

√
2
))

(10.23)
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in the frame of reference ξ = x − c t co-moving with front velocity c. This front
solution establishes a heteroclinic connection between the two stable HSS for ξ →
±∞ and travels with a velocity c = (1 − 2 a) /

√
2 from the left to the right.

As an example, we aim to accelerate a traveling front according to the following
protocol of motion

φ(t) = −10 + c t + 10 − 1/
√
2

200
t2, (10.24)

while keeping the front profile as close as possible to the uncontrolled one. In
other words, our desired trajectory reads ud(x, t) = Uc(x − φ(t)) and, conse-
quently, the initial conditions of both the controlled and the desired trajectory are
u0(x) = ud(x, 0) = Uc(x + 10). In our numerical simulations, we set T = 20 for
the terminal time T , Ω = (−25, 25) for the spatial domain, and the threshold para-
meter is kept fixed at a = 9/20. Additionally, we choose the terminal state to be
equal to the desired trajectory, uT (x) = ud(x, T ), and set the remaining weighting
coefficients to unity, cUd = cUT = 1, in the optimal control problem. The space-time
plot of the desired trajectory ud is presented in Fig. 10.1a for the protocol of motion
φ(t) given by Eq. (10.24).

Below, we compare the numerically obtained solution to the optimal control prob-
lem (P)with the analytical solution fromSect. 10.2 for theSchlöglmodel. TheSchlögl
model arises from Eq. (10.12) by setting α = 0 and ignoring the inhibitor variable v.
Consequently, all weighting coefficients associated with the inhibitor trajectory are
set to zero, cVd = cVT = 0, in the functional J , Eq. (10.14).

Figure10.1b depicts the solution for the analytical position control fan which
is valid for a vanishing Tikhonov regularization parameter ν = 0. The numerically
obtained optimal control f̄ for ν = 10−5, shown in Fig. 10.1c, does not differ visually
from the analytic one. Both are located at the front position where the slope is maxi-

(a) (b) (c)

Fig. 10.1 a Space-time plot of the desired trajectory ud (x, t) = Uc(x − φ(t)) with the protocol
of motion φ(t) as given in Eq. (10.24), b analytic position control signal fan(x, t), Eq. (10.12),
and c numerically obtained optimal control f̄ for Tikhonov regularization parameter ν = 10−5 are
presented. Themagnitude of the control signal is color-coded. In the center panel (b), the dashed line
represents φ(t). The remaining parameter values are a = 9/20, T = 20, and cUd = cUT = 1
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Table 10.1 The distance ‖ f̄ − fan‖2 between the analytical control signal fan, valid for ν = 0,
and the optimal control f̄ obtained numerically for finite ν > 0 decreases with decreasing values of
ν (top row). Similarly, the optimally controlled state trajectory u f approaches the desired trajectory
ud , measured by ‖u f − ud‖2, for smaller values of ν (bottom row)

ν 1 E-1 E-2 E-3 E-4 E-5 E-6

‖ f̄ − fan‖2 4.57E-4 1.14E-4 2.50E-5 1.01E-5 8.40E-6 8.30E-6 8.29E-6

‖u f − ud‖2 4.77E-4 7.49E-5 8.34E-6 8.52E-7 8.55E-8 8.56E-9 8.56E-10

mal, �ud = 0.5 (dashed line in Fig. 10.1b), and their magnitudes grow proportional to
φ̇(t). For a quantitative comparison, we compute the distance between analytical and
optimal control signal ‖ f̄ − fan‖2 in the sense of L2(Q), Eq. (10.3), and normalize
it by the size of the space-time-cylinder |Q| = T |Ω|,

‖h‖2 := 1

|Q| ‖h‖L2(Q). (10.25)

The top row of Table10.1 displays the distance ‖ f̄ − fan‖2 as a function of the regu-
larization parameter ν. Even for a large value ν = 1, the distance is less than5 × 10−4.
Decreasing the value of ν results in a shrinking distance ‖ f̄ − fan‖2 until it saturates
at �8 × 10−6. The saturation is due to numerical and systematic errors. Numerical
computations are affected by errors arising in the discretization of the spatio-temporal
domain and the amplification of roundoff errors by the ill-conditioned expression for
the control, Eq. (10.22). A systematic error arises because the optimal control is com-
puted for a bounded intervalΩ = (−25, 25)with homogeneous Neumann-boundary
conditions while the analytical result is valid only for an infinite domain.

Another interesting question is how close the controlled state u f approaches the
desired trajectory ud . The bottom row of Table10.1 shows the distance between the
optimally controlled state trajectory u f and the desired trajectory for different values
ν. Similarly as for the control signal, the difference lessens with decreasing values
ν. Note that the value does not saturate and becomes much smaller than the corre-
sponding value for the difference between control signals. Here, no discretization
errors arise because a discretized version of the desired trajectory is used as the
target distribution. Nevertheless, systematic errors arise because neither the initial
and final desired state nor the desired trajectory obey Neumann-boundary condi-
tions. This results in an optimal control signal exhibiting bumps close to the domain
boundaries. However, the violation of boundary conditions can be reduced by specif-
ically designed protocols of motion. The further the protocol of motion keeps the
controlled front away from any domain boundary the smaller is the violation of
homogeneous Neumann-boundary conditions since the derivatives of traveling front
solution Eq. (10.23) decay exponentially for large |x |. An alternative way of rigor-
ously avoiding artifacts due to the violation of boundary conditions is the introduction
of additional control terms acting on the domain boundaries, see Ref. [31].
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For the example discussed above, the numerically obtained optimal control f̄
for ν > 0 is computed with a Newton-Raphson-type root finding algorithm. This
iterative algorithm relies on an initial guess for the control signal which is often
chosen to be random or uniform in space. The closer the initial guess is to the final
solution, the fewer steps are necessary for the Newton-Raphson method to converge
to the final solution. The similarity of the numerically obtained and analytical control
solution, see Fig. 10.1 and Table10.1, motivates the utilization of the analytical result
fan as an initial guess in numerical algorithms. Even for a simple single component
RD system defined on a relatively small spatio-temporal domain Q as discussed in
this section, the computational speedup is substantial. The algorithm requires only
2/3 of the computation time compared to random or uniform starting values for the
control. In particular, we expect even larger speedups for simulations with larger
domain sizes.

10.4 Sparse Optimal Control

In applications, it might be desirable to have localized controls acting only in some
sub-areas of the domain. So-called sparse optimal controls provide such solutions
without any a priori knowledge of these sub-areas. They result in a natural way
because the control has the most efficient impact in these regions to minimize the
objective functional.

For inverse problems, it has been observed that the use of an L1-term in addition
to the L2-regularization leads to sparsity [46–48]. The idea to use the L1-term goes
back to Ref. [49].

To our knowledge, sparse optimal controls were first discussed in the context of
optimal control in Ref. [34]. In that paper, an elliptic linear model was discussed.
Several publications followed, investigating semi-linear elliptic equations, parabolic
linear, and parabolic semi-linear equations; we refer, for instance, to Refs. [35–37]
among others.

In this section, we follow the lines of Refs. [44, 50] and recall the most important
results for the sparse optimal control of the Schlögl-model and the FitzHugh-Nagumo
equation.

10.4.1 The Control Problem

In optimal control, sparsity is obtained by extending the objective functional J by
a multiple of j ( f ) := ‖ f ‖L1(Q), the L1-norm of the control f . Therefore, recalling
that J (u f , v f , f ) =: F( f ), we consider the problem

(Psp) Min F( f ) + κ j ( f ), f ∈ Fad
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for κ > 0. The first part F of the objective functional is differentiable, while the
L1-part is not.

Our goal is not only to derive first-order optimality conditions as in the previous
section but also to observe the behavior of the optimal solutions for increasing κ and
ν is tending to zero. For that task, we also need to introduce second-order optimality
conditions.

As before, there exists at least one locally optimal solution f to the problem
(Psp), denoted by f̄ . We refer to Ref. [44, Theorem 3.1] for more details. While F
is twice continuously differentiable, the second part j ( f ) is only Lipschitz convex
but not differentiable. For that reason, we need the so-called subdifferential of j ( f ).
By subdifferential calculus and using directional derivatives of j ( f ), we are able to
derive necessary optimality conditions.

10.4.2 First-Order Optimality Conditions

We recall some results from Refs. [44, 50]. Due to the presence of j ( f ) in the
objective functional, there exists a λ̄ ∈ ∂ j ( f̄ ) such that the variational inequality
Eq. (10.21) changes to

T∫

0

∫

Ω

d �x dt {
(ϕ̄ + ν f̄ + κλ̄)( f − f̄ )

} ≥ 0 ∀ f ∈ Fad ∩U ( f̄ ). (10.26)

For the problem (Psp), a detailed and extensive discussion of the first-order necessary
optimality condition leads to very interesting conclusions, namely

f̄ (�x, t) = 0, if and only if |ϕ̄(�x, t)| ≤ κ, (10.27)

f̄ (�x, t) = Proj[ fa , fb]

(
−1

ν
[ϕ̄(�x, t) + κλ̄(�x, t)]

)
, (10.28)

λ̄(�x, t) = Proj[−1,+1]

(
− 1

κ
ϕ̄(�x, t)

)
(10.29)

if ν > 0. We refer to Refs. [36, Corollary 3.2] and [51, Theorem 3.1] in which the
case ν = 0 is discussed as well.

The relation in Eq. (10.27) leads to the sparsity of the (locally) optimal solution
f̄ , depending on the sparsity parameter κ . In particular, the larger the choice of
κ is, the smaller does the support of f̄ become. To be more precise, there exists
a value κ0 > ∞ such that for every κ ≥ κ0 the only local minimum f̄ is equal to
zero. Obviously, this case is ridiculous and thus, one needs some intuition to find a
suitable value κ . We emphasize that λ̄ is unique, see Eq. (10.29), which is important
for numerical calculations.
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10.4.3 Example 2: Optimal and Sparse Optimal
Position Control

For the numerical computations, we follow the lines of Ref. [44] and use a non-linear
conjugate gradient method. The advantage of using a (conjugate) gradient method
lies in the simplicity in its implementation and in the robustness of the method to
errors in the solution process. Moreover, it allows to solve the systems Eq. (10.13)
and the adjoint system separately. The disadvantage is clearly the fact that it might
cause a huge amount of iterations to converge, cf. Ref. [44, Sect. 4].

Hence, we modify our approach by the use ofModel Predictive Control [52, 53].
The idea is quite simple: Instead of optimizing the whole time-horizon, we only take
a very small number of time steps, formulate a sub-problem, and solve it. Then, the
first computed time-step of the solution f̄ of this smaller problem is accepted on
[0, t1] and is fixed. A new sub-problem is defined by going one time-step further and
so on. Although the control gained in this way is only sub-optimal, it leads to a much
better convergence-behavior in many computations.

Next, we revisit the task to extinguish a spiral wave by controlling its tip
dynamics such that the whole pattern moves out of the spatial domain towards
the Neumann boundaries [9, 21, 54]. To this goal, following Ex. 6 from Ref.
[44, Sect. 4], we set the protocol of motion to �φ(t) = (0,min{120, 1/16 t})T and
ud(�x, t) := unat(�x − �φ(t), t),where unat denotes the naturally developed spiral wave
solution of the activator u to Eq. (10.13) for f = 0. In our numerical simulation,
we take only 4 time-steps in each sub-problem of the receding horizon. More-
over, we set the kinetic parameters in the FHN model, Eq. (10.13), to a = 0.005,
α = 1,β = 0.01, γ = 0.0075, and δ = 0. Further, we fix the simulation domainΩ =
(−120, 120) × (−120, 120), the terminal time T = 2000, ν = 10−6 as Tikhonov
parameter, and fa = −5 and fb = 5 as bounds for the control, respectively. As ini-
tial states (u0, v0)T a naturally developed spiral wave whose core is located at (0, 0)
is used; u0 is presented in Fig. 10.2a.

In addition, an observation-function cUd ∈ L∞(Q) instead of the constant factor
cUd ∈ R is used with a support restricted to the area close to the desired spiral-tip. To
be more precise, cUd (�x, t) = 1 holds only in the area defined by all (�x, t) ∈ Q such
that |�x − �̄x(t)| ≤ 20 and vanishes identically otherwise. The other coefficients cVd ,
cUT , and cVT are set equal to zero.

The reason for the choice of such an observation-function is clear: a most intrigu-
ing property of spiral waves is that, despite being propagating waves affecting all
accessible space, they behave as effectively localized particles-like objects [55]. The
particle-like behavior of spirals corresponds to an effective localization of so called
response functions [56, 57]. The asymptotic theory of the spiral wave drift [58] is
based on the idea of summation of elementary responses of the spiral wave core
position and rotation phase to elementary perturbations of different modalities and at
different times and places. This is mathematically expressed in terms of the response
functions. They decay quickly with distance from the spiral wave core and are almost
equal to zero in the region where the spiral wave is insensitive to small perturbations.
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(a) (b) (c)

Fig. 10.2 a Spiral wave solution of the activator u to Eq. (10.13) with �f = 0. The latter is used as
initial state u0(�x) = unat(�x − �φ(0), 0) in the problem (Psp). b Numerically obtained sub-optimal
control (κ = 0) and c sparse sub-optimal control solution (κ = 1), both shown in the x2–t–plane
for x1 = 0 with associated spiral-tip trajectory (black line). The magnitude of the control signal is
color-coded. The remaining system parameters are a = 0.005, α = 1, β = 0.01, γ = 0.0075, and
δ = 0. In the optimal control algorithms, we set ν = 10−6, fa = −5, and fb = 5

The numerical results for the sup-optimal control (κ = 0) and for the sparse sub-
optimal control (κ = 1) are depicted in Fig. 10.2b, c, respectively.One notices that the
prescribed spiral tip trajectory is realized for both choices for the sparsity parameter
κ , viz., κ = 0 and κ = 1. The traces of the spiral tip is indicated by the solid lines in
both panels. Since the spiral tip rotates rigidly around the spiral core which moves
itself on a straight line according to �φ(t), one observes a periodic motion of the tip in
the x2–t–plane. In addition, the area of non-zero control (colored areas) is obviously
much smaller for non-zero sparsity parameter κ compared to the case κ = 0 , cf.
Fig. 10.2b, c. However, in this example we observed that the amplitude of the sparse
control is twice as large compared to optimal control (κ = 0).

10.4.4 Second-Order Optimality Conditions
and Numerical Stability

To avoid this subsection to become too technical, we only state the main results from
Ref. [50]. We know for an unconstrained problem with differentiable objective-
functional that it is sufficient to show F ′( f̄ ) = 0 and F ′′( f̄ ) > 0 to derive that f̄ is a
local minimizer of F if F is a real-valued function of one real variable. More details
about the importance of second order optimality conditions in the context of PDE
control can be found in Ref. [59].

In our setting, considering all directions h �= 0 out of a certain so-called critical
cone C f , the condition for ν > 0 reads

F ′′( f̄ )h2 > 0.
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Then, f̄ is a locally optimal solution of (Psp). The detailed structure ofC f is described
in Ref. [50]; also the much more complicated case ν = 0 is discussed there.

The second-order sufficient optimality conditions are the basis for interesting
questions, e.g., the stability of solutions for perturbed desired trajectories and desired
states [50]. Moreover, we study the limiting case of Tikhonov parameter ν tending
to zero.

10.4.5 Tikhonov Parameter Tending to Zero

In this section, we investigate the behavior of a sequence of optimal controls and
the corresponding states as solutions of the problem (Psp) as ν → 0. For this reason,
we denote our control problem (Pν), the associated optimal control with f̄ν , and its
associated states with (ūν, v̄ν) for a fixed ν ≥ 0. Since Fad is bounded in L∞(Q),
any sequence of solutions { f̄ν}ν>0 of (Pν) has subsequences converging weakly∗ in
L∞(Q). For a direct numerical approach, this is useless, but we can deduce inter-
esting consequences of this convergence using second order sufficient optimality
conditions.

Assume that the secondorder sufficient optimality conditions ofRef. [50,Theorem
4.7] are satisfied. Then, we derive a Hölder rate of convergence for the states

lim
ν→0

1√
ν

{‖ūν − ū0‖L2(Q) + ‖v̄ν − v̄0‖L2(Q)

} = 0 (10.30)

with (ūν, v̄ν) = G( f̄ν) and (ū0, v̄0) = G( f̄0).We shouldmention that this estimate is
fairly pessimistic. All of our numerical tests show that the convergence rate is of order
ν, i.e., we observe a Lipschitz rather than a Hölder estimate [50]. As mentioned in
Ref. [50], it should also be possible to prove Lipschitz stability and hence, to confirm
the linear rate of convergence for ν → 0 with a remarkable amount of effort.

10.4.6 Example 3: Sparse Optimal Control with Tikhonov
Parameter Tending to Zero

Finally,we consider a traveling pulse solution in the FitzHugh-Nagumo system in one
spatial dimension N = 1. Here, the limiting case of vanishing Tikhonov parameter,
ν = 0, is of our special interest. We observe that Newton-type methods yield very
high accuracy even for very small values of ν > 0. This allows us to study the
convergence behavior of solutions for ν tending to zero as well.

Following Ref. [50] and in contrast to the last example in Sect. 10.4.3, we solve
the full forward-backward-system of optimality. We stress that this is numerically
possible solely for non-vanishing value of ν. However, we constructed examples
where an exact solution of the optimality system for ν = 0 is accessible as shown in
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Fig. 10.3 a Segment of a traveling pulse solution (u0, v0)T in the uncontrolled FitzHugh-Nagumo
system, Eq. (10.13) with f = 0. b Numerically obtained sparse optimal control solution f̄ν for
almost vanishing Tikhonov parameter, ν = 10−10, and c the associated optimal state ūν . The ampli-
tude of the control signal is color-coded. The kinetic parameter values are set to α = 1, β = 0,
γ = 0.33, δ = −0.429, and R(u) = u(u − √

3)(u + √
3)

Ref. [50, Sect. 5.3]. In this sequel, our reference-solution, denoted by ūref, will be the
solution of (Pν) for ν := νref = 10−10. For smaller values, the numerical errors do
not allow to observe a further convergence. The distance ‖ūν − ūref‖L2(Q) stagnates
between ν = 10−10 and νref < 10−10.

Next, we treat the well-studied problem of pulse nucleation [60, 61] by sparse
optimal control. We aim to start and to stay in the lower HSS for the first two time-
units, i.e., ud(�x, t) = −1.3 for t ∈ (0, 2). Then, the activator state shall coincide
instantaneously with the traveling pulse solution unat, i.e., ud(�x, t) = unat(�x, t − 2).
To get the activator profile unat, we solve Eq. (10.13) for f = 0 and its profile is
shown in Fig. 10.3a.

In our optimal control algorithms, we set the parameters toΩ = (0, 75), T = 10,
α = 1, β = 0, γ = 0.33, and δ = −0.429. Moreover, here we use a slightly different
nonlinear reaction kinetics R(u) = u(u − √

3)(u + √
3) in Eq. (10.13) but this does

not change the analytical results. The upper and lower bounds for the control f are
set to very large values, viz., fa = −100 and fb = 100. In addition, the coefficients
in Eq. (10.14) are kept fixed, viz., cUd = 1 and cUT = cVd = cVT = 0.

Our numerical results obtained for a sparse optimal control f̄ν acting solely on
the activator u, cf. Eq. (10.13), are presented in Fig. 10.3b, c. In order to create a
traveling pulse solution from the HSS ud = −1.3, the optimal control resembles a
step-like excitation with high amplitude at x � 40. Since the Tikhonov parameter is
set to ν = 10−10, large control amplitudes are to be expected and indicate that in the
unregularized case, even a delta distribution might appear. Because this excitation
is supercritical, a new pulse will nucleate. In order to inhibit the propagation of this
nucleated pulse to the left, the control must act at the back of the pulse as well.
Thus, we observes a negative control amplitude acting in the back of the traveling
pulse.We emphasize that the desired shape of the pulse is achieved qualitatively. The
realization of the exact desired profile can not be expected due to a non-vanishing
sparse parameter κ = 0.01. Even for this respectively small value, the sparsity of the
optimal control shows.
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Table 10.2 The comparison of the distance ‖ūν − ūref‖L2(Q) between the numerically obtained
states ūν and the numerically obtained reference-solution ūref, computed for ν = 10−10, for decreas-
ing values of ν > 0

ν 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 1E-9

‖ūν − ūref‖L2(Q) 1.58E-1 1.16E-2 1.33E-3 1.35E-4 1.35E-5 1.34E-6 1.31E-7

Since the displayed control and state are computed for an almost vanishing value
ν = 10−10, we take the associated state as reference-state ūref in order to study the
dependence of the distance ‖ūν − ūref‖L2(Q) on ν > 0. From Table10.2, one notices
the already mentioned Lipschitz-rate of convergence for decreasing values ν > 0,
‖ūν − ūref‖L2(Q) ∝ ν. This observation is consistentwith results from [50] for various
other examples.

10.5 Conclusion

Optimal control of traveling wave patterns in RD systems according to a prescribed
desired distribution is important for many applications.

Analytical solutions to an unregularized optimal control problem can be obtained
with ease from the approach presented in Sect. 10.2. In particular, the control signal
can be obtained without full knowledge about the underlying nonlinear reaction
kinetics in case of position control. Moreover, they are a good initial guess for the
numerical solution of regularized optimal control problems with small regularization
parameter ν > 0, thereby achieving a substantial computational speedup as discussed
in Sect. 10.3.3. Generally, the analytical expressionsmay serve as consistency checks
for numerical optimal control algorithms.

For the position control of fronts, pulses, and spiral waves, the control signal is
spatially localized. By applying sparse optimal position control to reaction-diffusion
systems, as discussed in Sect. 10.4, the size of the domainswith non-vanishing control
signals can be further decreased. Importantly, the method determines sparse controls
without any a priori knowledge about restrictions to certain subdomains. Addition-
ally, sparse control allows to study second order optimality conditions that are not
only interesting from the theoretical perspective but also for numerical Newton-type
algorithms.
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Chapter 11
Recent Advances in Reaction-Diffusion
Equations with Non-ideal Relays

Mark Curran, Pavel Gurevich and Sergey Tikhomirov

Abstract We survey recent results on reaction-diffusion equations with discon-
tinuous hysteretic nonlinearities. We connect these equations with free boundary
problems and introduce a related notion of spatial transversality for initial data and
solutions. We assert that the equation with transverse initial data possesses a unique
solution, which remains transverse for some time, and also describe its regularity. At
a moment when the solution becomes nontransverse, we discretize the spatial vari-
able and analyze the resulting lattice dynamical system with hysteresis. In particular,
we discuss a new pattern formation mechanism—rattling, which indicates how one
should reset the continuous model to make it well posed.
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11.1 Introduction

11.1.1 Motivation

In this chapter we will survey recent results on reaction-diffusion equations with a
hysteretic discontinuity defined at every spatial point. We also refer to [1–3] and the
more recent surveys by Visintin [4, 5] for other types of partial differential equations
with hysteresis.

The equations we are dealing with in the present chapter were introduced in
[6, 7] to describe growth patterns in colonies of bacteria (Salmonella typhirmurium).
In these experiments, bacteria (non-difussing) are fixed to the surface of a petri
dish, and their growth rate responds to changes in the relative concentrations of
available nutrient and a growth-inhibiting by-product. The model asserts that at a
location where there is a sufficiently high amount of nutrient relative to by-product,
the bacteria will grow. This growth will continue until the production of by-product
and diffusion of the nutrient lowers this ratio below a lower threshold, causing growth
to stop. Growth will not resume until the diffusion of by-product raises the relative
concentrations above an upper threshold that is distinct from the lower. Numerics in
[6] reproduced the formation of distinctive concentric rings observed in experiments,
however the question of the existence and uniqueness of solutions, as well as a
thorough explanation of the mechanism of pattern formation, remained open.

Another application in developmental biology can be found, e.g., in [8], and an
analysis of the corresponding stationary solutions in [9].

11.1.2 Setting of the Problem

In this chapter we will treat the following prototype problem:

ut = Δu + f (u, v), v = H(ξ0, u), (x, t) ∈ QT , (11.1)

u|t=0 = ϕ, x ∈ Q, (11.2)

∂u

∂ν

∣∣∣∣
∂ ′ QT

= 0. (11.3)

Here Q ⊂ R
n is a domain with smooth boundary, QT := Q × (0, T ), where T > 0,

∂ ′ QT := ∂ Q × (0, T ), u is a real-valued function on QT , and H(ξ0, u) is a hys-
teresis operator defined as follows (see Fig. 11.1a). Fix two real numbers α < β,
an integer ξ0 ∈ {−1, 1}, and two continuous functions H1 : (−∞, β] → R and
H−1 : [α,∞) → R such that H1(u) �= H−1(u) for u ∈ [α, β]. Define the sets

Σ1 := {(u, v) ∈ R
2 | u ∈ (−∞, β), v = H1(u)},

Σ−1 := {(u, v) ∈ R
2 | u ∈ (α,∞), v = H−1(u)}.
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Definition 11.1.1 Let u, v : [0, T ] → R, where u is a continuous function. We say
that v = H(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 for every t ∈ [0, T ].
2. If u(0) ∈ (α, β), then v(0) = Hξ0(u(0)).
3. If u(t0) ∈ (α, β), then v(t) is continuous in a neighorhood of t0.

The operatorH(ξ0, u) is called the non-ideal relay and item 3means that the non-
ideal relay jumps up (or down) when u = α (or u = β). This definition is equivalent
to the definitions of non-ideal relay found in [1, 10, 11]. IfH(ξ0, u)(t) = Hj (u(t)),
then we call ξ(t) := j the configuration of H at the moment t , and we call ξ0 the
initial configuration. Now let u : QT → R be a function of (x, t) and ξ0 : Q →
{−1, 1} a function of x , then H(ξ0, u)(x, t) is defined in the same way by treating
x as a parameter, i.e., there is a non-ideal relay at every x ∈ Q with input u(x, t),
configuration ξ(x, t), and initial configuration ξ0(x).

11.1.3 Set-Valued Hysteresis

First results on the well-posedness of (11.1)–(11.3) were obtained in [12, 13] for
set-valued hysteresis, and their model problems are worth explaining in more detail.
In both papers, the uniqueness of solutions as well as their continuous dependence
on initial data remained open.

First we discuss the work of Visintin [13], which treats (11.1)–(11.3) for arbitrary
n ≥ 1 withH(ξ0, u) replaced by a set-valued operator called a completed relay (see
Fig. 11.1b). We still use the thresholds α < β, and will consider constant hysteresis
branches H1(u) ≡ 1, and H−1(u) ≡ −1. We also define the setΣ0 := {(u, v) ∈ R

2 |
u ∈ [α, β], v ∈ (−1, 1)}.
Definition 11.1.2 Let u, v : [0, T ] → R, where u is a continuous function, and let
ξ0 ∈ [−1, 1]. We say v ∈ HVis(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 ∪ Σ0 for every t ∈ [0, T ].
2. If u(0) ∈ (α, β), then v(0) = ξ0; if u(0) = α (or β), then v(0) ∈ [ξ0, 1] (or v(0) ∈

[−1, ξ0]).

(a) (b) (c)

Fig. 11.1 The hysteresis operator with H1(u) ≡ 1 and H−1(u) ≡ −1



214 M. Curran et al.

3. If u(t0) ∈ (α, β), then v(t) is constant in a neighborhood of t0.
4. If u(t0) = α (or β), then v(t) is non-decreasing (or non-increasing) in a neigh-

borhood of t0.

By treating x as a parameter, HVis(ξ0, u) is defined for u : QT → R as we have
done previously forH(ξ0, u). Visintin [13] proved the existence of u and v such that
the equation

ut = Δu + v, v ∈ HVis(ξ0, u),

with n ≥ 1, Dirichlet boundary conditions, and initial data ϕ is satisfied in a weak
sense in QT . Visintin [13] and more recently Aiki and Kopfova [14] proved the exis-
tence of solutions to modified versions of [6, 7], where the hysteretic discontinuity
was a completed relay responding to a scalar input. A non-ideal relay with vector
input, as in [6, 7], behaves almost identically to a non-ideal relay with scalar input,
but for clarity of exposition we only consider scalar inputs in this chapter.

Let us now turn to the model hysteresis operator HAlt(ξ0, u) proposed by Alt in
[12] (see Fig. 11.1c). We still consider H1(u) ≡ 1 and H−1(u) ≡ −1, and introduce
the set

Σ̃0 := {(u, v) ∈ R
2 | u = α, v ∈ [−1, 1)} ∪ {(u, v) ∈ R

2 | u = β, v ∈ (−1, 1]}.

Definition 11.1.3 Let u, v : [0, T ] → R, where u is a continuous function, and let
ξ0 ∈ {−1, 1}. We say that v ∈ HAlt(ξ0, u) if the following hold:

1. (u(t), v(t)) ∈ Σ1 ∪ Σ−1 ∪ Σ̃0 for every t ∈ [0, T ].
2. If u(0) ∈ [α, β], then v(0) = ξ0.
3. If u(t0) ∈ (α, β), then v(t) is constant in a neighborhood of t0.
4. If u(t0) = α (or β), then v(t) is non-decreasing (or non-increasing) in a neigh-

borhood of t0.

One can define HAlt(ξ0, u) for u : QT → R by treating x as a parameter as we did
when defining H(ξ0, u) and HVis(ξ0, u).

To highlight the main difference between the completed relay HVis(ξ0, u) and
Alt’s relay HAlt(ξ0, u), suppose that HVis(ξ0, u)(t0),HAlt(ξ0, u)(t0) ∈ (−1, 1) and
u(t0) = β has a local maximum at time t0. Then, as soon as u decreases,HAlt jumps
to −1, however HVis remains constant.

Let us introduce the notation {u = α} := {(x, t) ∈ QT | u(x, t) = α}, with {u =
β} defined analogously. Alt’s existence theorem can, omitting the technical assump-
tions, be stated in the following way. Let n = 1 and suppose (ϕ, ξ0) ∈ Σ1 ∪ Σ−1.
Then the following holds:

1. There exists u and v such that v ∈ HAlt(ξ0, u) a.e. in QT and

ut = uxx + v a.e. on {(x, t) ∈ QT | u(x, t) /∈ {α, β}}.



11 Recent Advances in Reaction-Diffusion Equations with Non-ideal Relays 215

2. We have
ut = uxx a.e. on {(x, t) ∈ QT | u(x, t) ∈ {α, β}},

v ∈ [−1, 0] on {u = β}, and v ∈ [0, 1] on {u = α}.
3. Items 2–4 of Definition 11.1.3 hold in the following weak sense:

For everyψ ∈ C∞
0 (Q × [0, T ))withψ ≥ 0 on {Q × [0, T )} ∩ {u = α} andψ ≤

0 on {Q × [0, T )} ∩ {u = β},
∫

QT

(v − v0)ψt dxdt ≤ 0.

11.1.4 Slow-Fast Approximation

Equations of the type (11.1)–(11.3) are deeply connected with slow-fast systems
where the variable v is replaced by a fast bistable ordinary differential equation with
a small parameter δ > 0

δvt = g(u, v). (11.4)

A typical example are the FitzHugh–Nagumo equations, where g(u, v) = v − v3

3 − u
and the hysteresis branches H1(u) and H−1(u) are the stable parts of the nullcline of g
(see Fig. 11.2). The question of whether the hysteresis operator approximates the fast
variable v as δ → 0 has been addressed for systems of ordinary differential equations
(see, e.g., [15, 16] and further references in [17]), however the correspondingquestion
for partial differential equations is still open.

11.1.5 Free Boundary Approach

Problem (11.1)–(11.3) with hysteresis has two distinct phases and a switching mech-
anism, hence it can be considered as a free boundary problem. First observe that the
hysteresisH naturally segregates the domain into two subdomains depending on the
value of ξ(x, t). Denote

Fig. 11.2 a The nullcline of
the S-shaped nonlinearity
g(u, v). b Hysteresis with
nonconstant branches H1(u)

and H−1(u)

(a) (b)
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(a) (b) (c)

Fig. 11.3 An example of the hysteresis configuration ξ responding to an input u

Q j := {x ∈ Q | ξ0(x) = j}, j = ±1. (11.5)

Let us look at how the free boundary Q1 ∩ Q−1 can evolve for a simple example on
the interval Q = (0, 1). Consider a neighborhood U of x ∈ Q, and suppose at time
t = 0, Q1 ∩ U and Q−1 ∩ U are subintervals separated by a point b ∈ U (Fig. 11.3a).
Let u(x, t0) > β for x < b, u(x, t0) < β for x > b, and let x = a(t) be the unique
solution of u(x, t) = β in U . If at time t1 > 0 the value of u at points x > b have
already risen above β, then ξ(x, t) has switched from 1 to −1. These are the points
x such that b < x ≤ a(t1) (Fig. 11.3b). Now if at time t2 > t1 the value of u at the
switched points has fallen below β again, ξ(x, t) remains switched. These are the
points x such that a(t2) < x < a(t1) (Fig. 11.3c). More succinctly, ξ(x, t) = −1 if
x ≤ b(t) and ξ(x, t) = 1 if x > b(t), where b(t) = max0≤s≤t a(s).

The point of this example is to illustrate that the free boundary does not in general
coincide with the points where u is equal to one of the threshold values. This is
different from the two-phase parabolic obstacle problem (see, e.g., [18, 19]), which
(11.1)–(11.3) reduces to if α = β.

Assume the derivative ϕ′(b) in the above example was non-vanishing on the
boundary {b} = Q1 ∩ Q−1. This is an example of transverse initial data, andwhether
the initial data is transverse or not will play an important role in the analysis of
problem (11.1)–(11.3).

11.1.6 Overview

This chapter is organized in the following way.
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In Sect. 11.2wewill investigate thewell-posedness of (11.1)–(11.3) for transverse
initial data. For n = 1 the existence of solutions and their continuous dependence
on initial data was established in [11], uniqueness of the solution in [20] and the
analogous results for systems of equations in [21]. Preliminary results for n ≥ 2
were obtained in [22].

In Sect. 11.3 we consider the regularity of solutions u, in particular, whether the
generalized derivatives uxi x j and ut are uniformly bounded. We will summarize the
results of [23], where the authors proved that these derivatives are locally bounded
in a neighborhood of a point not on the free boundary. They also showed that this
bound depends on the parabolic distance to the parts of the free boundary that do not
contain the sets {u = α} or {u = β}.

In Sect. 11.4 we consider non-transverse data and the results of [24]. We will
analyze a spatio-temporal pattern (called rattling) arising after spatial discretization
of the reaction-diffusion equation and discuss its connection with the continuous
model with hysteresis operators H,HVis, and HAlt.

11.2 Transverse Initial Data

11.2.1 Setting of a Model Problem

In this section we will discuss the well-posedness of problem (11.1)–(11.3) under
the assumption that ϕ is transverse with respect to ξ0, a notion which we will make
precise shortly. In order to illustrate the main ideas, we will treat the following
model problem in detail and then discuss generalizations at the end of this section
(see Sect. 11.2.4). Let h−1 ≤ 0 ≤ h1 be two constants, and let the hysteresis branches
be given by H1(u) ≡ h1 and H−1(u) ≡ h−1. Consider the prototype problem

ut = Δu + H(ξ0, u), (x, t) ∈ QT , (11.6)

u|t=0 = ϕ, x ∈ Q, (11.7)

∂u

∂ν

∣∣∣∣
∂ ′ QT

= 0. (11.8)

We will treat n = 1 in Sect. 11.2.2 (see [11, 20]) and n ≥ 2 (see [22]) in Sect. 11.2.3.
Throughout this subsection we will always assume that ϕ and ξ0 are consistent
with each other, i.e., if ϕ(x) < α (or ϕ(x) > β), then ξ0(x) = 1 (or ξ0(x) = −1). In
particular, this means that for every x ∈ Q, ξ(x, t) is continuous from the right as a
function of t ∈ [0, T ).

Since in general H(ξ0, u) ∈ Lq(QT ), we will look for solutions in the Sobolev
space W 2,1

q (QT ) with q > n + 2. This is the space consisting of functions with
two weak spatial derivatives and one weak time derivative from Lq(QT ) (see [25,
Chap.1]). If u ∈ W 2,1

q (QT ), then for every t ∈ [0, T ] the trace is well defined and
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u(·, t) ∈ W 2−2/q
q (Q) (see, e.g., [25, p. 70]). To ensure that ϕ is regular enough to

define the spatial transversality property,we henceforth fix aγ such that 0 < γ < 1 −
(n + 2)/q. It follows that if ϕ ∈ W 2−2/q

q (Q), then ϕ ∈ Cγ (Q) and ∇ϕ ∈ (Cγ (Q))n ,
where Cγ is the standard Hölder space (see [26, Sect. 4.6.1]).

The subspace W 2−2/q
q,N (Q) ⊂ W 2−2/q

q (Q) of functions with homogeneous Neu-
mann boundary conditions is a well-defined subspace, and in this section we always
assume that ϕ ∈ W 2−2/q

q,N (Q).

Definition 11.2.1 A solution to problem (11.6)–(11.8) on the time interval [0, T ) is
a function u ∈ W 2,1

q (QT ) such that (11.6) is satisfied in Lq(QT ) and u satisfies (11.7)
and (11.8) in terms of traces. A solution on [0,∞) is a function u : Q × [0,∞) → R

such that for any T > 0, u|QT is a solution in the sense just described.

We note that if u ∈ W 2,1
q (QT ), then H(ξ0, u) is a measurable function on QT (see

[1, Sect. 6.1]).

11.2.2 Case n = 1

Let Q = (0, 1) and Q j be given by (11.5).

Definition 11.2.2 Let ϕ ∈ C1(Q). We say ϕ is transverse with respect to ξ0 if the
following hold:

1. There is ab ∈ (0, 1) such that Q−1 = {x | 0 ≤ x ≤ b} and Q1 = {x | b < x ≤ 1}.
2. If ϕ(b) = β, then ϕ′(b) < 0.

An example of ϕ and ξ0 satisfying Definition 11.2.2 is given in Fig. 11.3a.

Definition 11.2.3 A solution u is called transverse if for all t ∈ [0, T ], u(·, t) is
transverse with respect to ξ(·, t).

Theorem 11.2.4 (See [11, Theorems 2.16 and 2.17]) Suppose the initial data ϕ ∈
W 2−2/q

q,N (Q) is transverse with respect to ξ0. Then there is a T > 0 such that the
following hold:

1. Any solution u ∈ W 2,1
q (QT ) of problem (11.6)–(11.8) is transverse.

2. There is at least one transverse solution u ∈ W 2,1
q (QT ) of problem (11.6)–(11.8).

3. If u ∈ W 2,1
q (QT ) is a transverse solution of problem (11.6)–(11.8), then it can be

continued to a maximal interval of transverse existence [0, Tmax), i.e., u(x, Tmax)

is not transverse or Tmax = ∞.

We will sketch the proof of Theorem 11.2.4, part 2, assuming that ϕ(b) = β and
ϕ′(b) < 0.

Let us define the closed, convex, bounded subset of C[0, T ]

B := {b ∈ C[0, T ] | b(t) ∈ [0, 1], b(0) = b}.
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For any b0 ∈ B, define the function

F(x, t) :=
{

h−1 if 0 ≤ x ≤ b0(t),
h1 if b0(t) < x ≤ 1.

(11.9)

Let u ∈ W 2,1
q (QT ) be the solution to problem (11.6)–(11.8) with nonlinearity F

in place of H(ξ0, u). We claim that T can be chosen small enough such that the
configuration ξ(x, t) of H(ξ0, u) is defined by a unique discontinuity point b(t).
Note that we do not yet claim that F = H(ξ0, u).

To prove the claim, first fix T0 > 0. It is a result of classical parabolic theory [25,
Chap.4] that for all T ∈ [0, T0]

‖u‖Cγ (QT ) + ‖ux‖Cγ (QT ) ≤ C1

(
‖F‖Lq (QT ) + ‖ϕ‖W 2−2/q

q,N (Q)

)
≤ C2, (11.10)

whereC1, C2, . . . > 0 depend only on T0 and q. The claim now follows from (11.10)
with the help of the implicit function theorem.

Observe that u is a solution of problem (11.6)–(11.8) ifH(ξ0, u) = F , i.e., b0 = b.
We therefore look for a fixed point of the map R : B → B, R(b0) := b.

Consider b01, b02 ∈ B and define F1, F2 via b01, b02 similarly to (11.9), and let
u1, u2 be the corresponding solutions. Observe that F1 �= F2 only if

min(b01(t), b02(t)) < x < max(b01(t), b02(t)),

in particular,

‖u1 − u2‖Cγ (QT ) + ‖u1x − u2x‖Cγ (QT ) ≤ C1‖F1 − F2‖Lq (QT ),

≤ C3‖b01 − b02‖1/q
C[0,T ].

(11.11)

Applying (11.10) again, and using ϕ′(b) > 0 and the implicit function theorem, we
see that the left hand side of (11.11) bounds ‖a1 − a2‖C[0,T ]. One can additionally
show that ‖a1 − a2‖C[0,T ] bounds ‖b1 − b2‖C[0,T ], hence

‖b1 − b2‖C[0,T ] ≤ ‖a1 − a2‖C[0,T ] ≤ C4‖b01 − b02‖1/q
C[0,T ]. (11.12)

In particular (11.12) shows thatR is a continuous map on B. Moreover, one can use
(11.10) to show thatR(B) is bounded in Cγ [0, T ], and since Cγ [0, T ] is compactly
embedded into C[0, T ], the Schauder fixed point theorem implies thatR has a fixed
point.

Theorem 11.2.5 (see [20, Theorem 2.2]) If u1 and u2 are transverse solutions of
problem (11.6)–(11.8) with the same ϕ, then u1 ≡ u2.

We prove the theorem by expressing solutions as a convolution with the Green
function G(x, y, t, s) for the heat equation with Neumann boundary conditions.
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Let us use this function to estimate the solution w = u1 − u2 of the heat equation
with zero initial data, Neumann boundary conditions, and the right hand side h =
H(ξ0, u1) − H(ξ0, u2):

|w(x, t)| ≤
∫ t

0

∫

Q
|G(x, y, t, s)||h(y, s)| dyds. (11.13)

Also note that G satisfies the inequality (see, e.g., [27])

|G(x, y, t, s)| ≤ C1

(t − s)1/2
, x, y ∈ Q, 0 ≤ s < t, (11.14)

where C1 > 0 does not depend on x , y, t or s.
Similarly to the proof of Theorem 11.2.4, for every s ≤ t the integral of |h(y, s)|

over Q is bounded by ‖b1 − b2‖C[0,t] and hence by ‖a1 − a2‖C[0,t] and hence by
‖u1 − u2‖C(Qt )

. Combining this with (11.13) and (11.14), and taking the supremum
over (x, t) ∈ QT we get

‖w‖C(QT ) ≤ C2

√
T ‖w‖C(QT ),

where C2 > 0 does not depend on T . Thus w = 0 for T small enough. A passage to
arbitrary T is standard.

Theorem 11.2.6 (See [11, Theorem 2.9]) Let u ∈ W 2,1
q (QT ) be a transverse solu-

tion of problem (11.6)–(11.8). If ‖ϕ − ϕn‖W 2−2/q
q,N (Q)

→ 0 and |bn − b| → 0 as n →
∞, then for sufficiently large n, problem (11.6)–(11.8) has a solution un ∈ W 2,1

q (QT )

with initial data ϕn and initial configuration ξ0n defined via bn. Furthermore,
‖un − u‖W 2,1

q (QT ) → 0 as n → ∞.

The crux of the proof is showing that for sufficiently large n, all the solutions
exist on the same time interval [0, T ]. To this end we note that we have in fact
given an explicit construction of T , and that this T depends on b, ‖ϕ‖W 2−2/q

q (Q)
, and

if ϕ(b) = β, also on ϕ′(b). Hence for ϕn and bn close enough to ϕ and b in their
respective norms, the same T can be used.

11.2.3 Case n ≥ 2

For the case n ≥ 2 a notion of transversality has been studied in a model problem.
For clarity we will define transversality for the case where the threshold β is adjoined
to the free boundary between Q1 and Q−1, and α is not. In what follows, let int(A)

denote the topological interior of a subset A ⊂ Q, and let {ϕ = α} be defined simi-
larly to {u = α} but taking x ∈ Q instead of (x, t) ∈ QT . In [22] the existence and
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(a) (b) (c)

Fig. 11.4 An example of a the sets Q±1, b transverse data, and c non-transverse data

uniqueness of solutions were studied for initial data transverse in the following sense
(see Fig. 11.4a, b, and recall that Q j is given by (11.5)).

Definition 11.2.7 We say the function ϕ is transverse with respect to ξ0 if the fol-
lowing hold:

1. Q1 and Q−1 aremeasurable, ∂ Q−1 ⊂ Q, ∂ Q1 = ∂ Q−1 ∪ ∂ Q, and ∂ Q−1 has zero
Lebesgue measure.

2. ϕ(x) < β for x ∈ int(Q1) ∪ ∂ Q.
3. ϕ(x) > α for x ∈ Q−1.
4. If x ∈ {u = β} ∩ ∂ Q−1, then there is a neighbourhood A of x , a set A′ ⊂ R

n−1,
a κ > 0, and a map ψ such that

(a) ψ is a composition of a translation and a rotation. and

ψ(A) = A′ × [−κ, κ], ψ(x) = (0, 0).

(b) There is a continuous function b : A′ → [−κ, κ] such that the configuration
function ξ0 ◦ ψ−1 inψ(A) (which we denote by ξ0(y′, yn), y′ ∈ A′) is given
by

ξ0(y′, yn) =
{−1 if − κ ≤ yn ≤ b(y′),
1 if b(y′) < yn ≤ κ.

(c) ϕ ◦ ψ−1, which we write as ϕ(y′, yn), satisfies ϕyn (0, 0) < 0.

We observe that in Sect. 11.2.2, the boundary between Q1 and Q−1 was a single point
b. But when n ≥ 2, this boundary is assumed to have the structure of a continuous
codimension 1 submanifold in a neighborhood of a point on the free boundary where
ϕ takes a threshold value. Also note that for n ≥ 2 non-transversality can be caused
by the geometry of ∂ Q−1 in addition to the possible degeneracy of∇ϕ (see Fig. 11.4c
and Sect. 11.2.4 for further discussion).

Theorem 11.2.8 (see [22, Theorems 3.18 and 3.19]) Assume that n ≥ 2 and ϕ ∈
W 2−2/q

q,N (Q) is transverse with respect to ξ0. Then there is a T > 0 such that any
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solution u ∈ W 2,1
q (QT ) to problem (11.6)–(11.8) is transverse and there is at least one

such solution. Moreover, if for some T ′ > 0, u1 and u2 are two transverse solutions
to problem (11.6)–(11.8) on QT ′ , then u1 ≡ u2.

The main ideas of the proof are similar to those for the case n = 1. Since
(ϕ(y′, ·), ξ0(y′, ·)) is transverse in the 1d sense for every y′ ∈ A′, one can prove
continuity of a map R that now maps functions u0 ∈ Cλ(QT ) (λ < γ ) to solu-
tionsR(u0) := u of problem (11.6)–(11.8) with the right hand sideH(ξ0, u0). Esti-
mate (11.10) implies that u ∈ Cγ (QT ), and the compactness of the embedding
Cγ (QT ) ⊂ Cλ(QT ) and the Schauder fixed point theorem together imply that R
has a fixed point in Cγ (QT ).

11.2.4 Generalizations and Open Problems

Let us list some generalizations for the case n = 1.
Change of topology. Suppose u(x, t) becomes non-transverse at some time T

in the sense of Definition 11.2.2. Then one of two possibilities arise. Either u(x, T )

has touched a threshold with zero spatial derivative at some point in (0, 1), or this
is not the case but limt→T b(t) = 1. In the latter case, one can continue the solu-
tion, and it remains unique, by redefining the problem effectively without hysteresis
[11, Theorem 2.18]. We say that the topology of the hysteresis has changed at time
T , in the sense that ξ transitions from piecewise constant to uniformly constant.

Continuous dependence on initial data. If u is a solution such that the topology
has changed for some t1 < T , then u need not continuously depend on the initial
data since a sequence of approximating solutions un may become non-transverse
at moments τn with τn < t1 and limn→∞ τn = t1 (the dashed line in Fig. 11.5). But

Fig. 11.5 A solution u (drawn as solid lines in the lower picture) and its configuration ξ (the upper
picture) that remain transverse as a discontinuity of ξ disappears at time t1. The dashed line in
the lower picture is a series of non-transverse approximations un that become non-transverse at
moments τn with τn < t1 and limn→∞ τn = t1
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if we also assume that each un is a transverse solution, then solutions do depend
continuously on their initial data.

Finite number of discontinuities. The results in Sect. 11.2.2 remain valid if the
hysteresis topology is defined by finitely many discontinuity points. The hysteresis
changing topology in the sense we described for one point of discontinuity corre-
sponds to these points merging together in the general case (see Fig. 11.6).

Fig. 11.6 Discontinuities merging as t → t1

General nonlinearity. The results in this section also hold for the more general
problem (11.1)–(11.3). First one must assume that f is locally Lipschitz and dissipa-
tive (see [11, Condition 2.11]). With such an f , and if H1 and H−1 are locally Hölder
continuous, then transverse solutions exist and can be continuted up to a maximal
interval of transverse existence. If one additionally assumes that transverse solutions
are unique, they can be shown to continuously depend on their initial data. To prove
the uniqueness of solutions the authors of [20, 22] make the stronger assumption on
H1 and H−1, namely that

|H1(u1) − H1(u2)| ≤ M

(β − u1)σ + (β − u2)σ
|u1 − u2|,

for u1, u2 in a left neighborhood of β, with M > 0 and σ ∈ (0, 1), plus an analogous
inequality for H−1 and a right neighborhood of α. This condition covers the case
where H1 and H−1 are the stable branches in the slow-fast approximation as in
Fig. 11.2 (see the appendix of [20] for further discussion).

Systems of equations. In [21, Theorem 2.1], the results of Sect. 11.2.2 were
generalized to systems of equations of the type in problem (11.1)–(11.3). It was also
shown therein that problem (11.1)–(11.3) can be coupled to ordinary differential
equations to cover the Hoppensteadt–Jäger model from [6, 7].

Let us conclude this subsection by discussing an open problem.
Openproblem. In Fig. 11.4c, one can see that for every y′ �= 0, (ϕ(y′, ·), ξ0(y′, ·))

is transverse in the 1d sense (with two discontinuties), but since the free boundary
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cannot be represented as a graph with codomain yn at the point y′ = 0, this initial
data is not transverse. Whether Definition 11.2.7 can be generalized to include such
cases is the subject of future work, and at this stage the authors strongly suspect that
item 4 of Definition 11.2.7 can be replaced by the following statement: if x ∈ {u =
β} ∩ ∂ Q−1, then ∇ϕ(x) �= 0. In other words, the assumption that the free boundary
is a graph is not necessary, and hence Fig. 11.4c would also be transverse. This
question is intimately linked to the topology of the free boundary. Whether solutions
can be continued to a maximal interval of existence and how to pose continuous
dependence of initial data is unclear for the quite general conditions on Q−1 and Q1

in Definition11.2.7. These questions also apply to the case where n = 1 and ξ0 has
infinitely many discontinuities.

11.3 Regularity of Strong Solutions

To begin with let us discuss what we mean by regularity of solutions in this context.
First observe that we cannot expect a classical solution sinceH has a jump disconti-
nuity. Therefore the “optimal” regularity we expect is W 2,1∞ . In this section we obtain
W 2,1∞ “locally”, for points (x, t) ∈ QT outside of the static part of the free boundary.
We will also assume the following condition:

Condition 11.3.1 H1(u) ≡ 1 and H−1(u) ≡ −1.

Let us introduce the notation Q±1
T := {(x, t) | ξ(x, t) = ±1} and observe that u is

smooth on the interior of Q±1
T .

The free boundary is defined as the set Γ := ∂ Q1
T ∩ ∂ Q−1

T . Moreover, we define
Γα := {u = α} ∩ Γ and Γβ := {u = β} ∩ Γ . Note that both Γα and Γβ have zero
Lebesgue measure whenever u is a solution of problem (11.6)–(11.8). This follows
from the fact that ut − Δu = 0 a.e. on Γα ∪ Γβ and Condition 11.3.1 (see Alt’s
argument in the introduction and [12]).

The estimates we obtain will depend critically on the static part of the free bound-
ary Γv := Γ \(Γα ∪ Γβ). If (x, t) ∈ Γv, then u(x, t) �= α, β and by continuity of u,
u(x, t ± τ) �= α, β for τ sufficiently small. This means ξ(x, t ± τ) = ξ(x, t) and so
if we draw the t-axis vertically as in Fig. 11.7, Γv looks like a vertical strip.

Next we recall the definition of a parabolic cylinder

Pr (x0, t0) := {x ∈ R
n | ‖x0 − x‖Rn < r} × (t0 − r2, t0 + r2), r > 0.

We define the parabolic distance between (x0, t0) and a set A ⊂ QT as

distp((x0, t0), A) := sup{r > 0 | Pr (x0, t0) ∩ {t ≤ t0} ∩ A = ∅}.

This is all the notation we need to state the main result of [23].
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Fig. 11.7 A possible
scenario where
Γ �= Γα ∪ Γβ and Γv
appears. White and grey
indicate the regions Q1

T and
Q−1

T respectively

Theorem 11.3.2 (see [23, Theorem 2.3]) We assume that n ≥ 1 and u is a solution
of problem (11.6)–(11.8). Then

|ut (x, t)| +
n∑

i, j=1

|uxi x j (x, t)| ≤ C(ρv, ρb, M), a.e. (x, t) ∈ QT \Γv,

where C depends on ρv := distp((x, t), Γv), ρb := distp((x, t), ∂ ′ QT ∪ (Q × {0})),
and M := sup(x,t)∈QT

|u(x, t)|.
To explain the main ideas in the proof we define some further notation. Let Γ 0

α =
Γα ∩ {∇u = 0} and Γ ∗

α = Γα\Γ 0
α , with Γ 0

β and Γ ∗
β defined similarly. Furthermore,

define Γ 0 = Γ 0
α ∪ Γ 0

β and Γ ∗ = Γ ∗
α ∪ Γ ∗

β .
The crucial point in the proof is the quadratic growth estimate

sup
Pr (x,t)

|u − β| ≤ C1(ρv, ρb, M)r2 for r ≤ min {ρv, ρb} , (11.15)

and (x, t) ∈ Γ 0
β (the estimate on Γ 0

α is similar). The main tool for showing the
quadratic bound (11.15) is the local rescaled version of the Caffarelli monotonicity
formula, see [23, 28, 29].

Furthermore, the quadratic growth estimate (11.15) implies the corresponding
linear bound for |∇u|

sup
Pr (x,t)

|∇u| ≤ C2(ρv, ρb, M)r for all r ≤ min {ρv, ρb} , (11.16)

with (x, t) ∈ Γ 0. The dependence of C1 and C2 on the distance ρv in (11.15) and
(11.16) arises due to the monotonicity formula. Near Γv neither the local rescaled
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version of Caffarelli’s monotonicity formula nor its generalizations (such as the
almost monotonicity formula) are applicable to the positive and negative parts of the
spatial directional derivatives Deu, with e ∈ R

n .
Besides estimates (11.15) and (11.16), one also needs information about the

behaviour of ut near Γ ∗. Although ut may have jumps across the free boundary,
one can show that ut is a continuous function in a neighborhood of (x, t) ∈ Γ ∗\Γv.
In addition, themonotonicity of the jumps ofH(ξ0, u) in the t-direction provides one-
sided estimates of ut near Γα and Γβ . Combining these results with the observation
that ut ≤ 0 on Γ ∗

α \Γv, and ut ≥ 0 on Γ ∗
β \Γv gives

sup
Γ ∗\Γv

|ut | ≤ C3(ρb, M). (11.17)

Inequalities (11.15)–(11.17) allow one to apply methods from the theory of free
boundary problems (see, e.g., [18, 19]) and estimate |ut (x, t)| and |uxi x j (x, t)| for
a.e. (x, t) ∈ QT \ Γv.

11.4 Non-transverse Initial Data

11.4.1 Setting of a Problem

In this section we summarize the recent work [24], where the nontransverse case is
analyzed for x ∈ R, and indicate directions for further research. We will be inter-
ested in the behavior of solutions near one of the thresholds, say β. Therefore,
we set α = −∞ and β = 0 (see Fig. 11.8) and assume that the initial data satisfy
ϕ(x) = −cx2 + o(x2) in a small neighborhood of the origin, ϕ(x) < 0 everywhere
outside of the origin, ξ0(x) = −1 for x = 0, and ξ0(x) = 1 for x �= 0. In particular,
we assume c > 0. In this situation, the theorems in Sect. 11.2.2 are not applicable.
Hence, to understand the dynamics of the solution near the origin,we approximate the
continuous equation (11.6) by its spatial discretization and the initial data by the dis-
crete quadratic function. Namely, we choose a grid step ε > 0, set uε

n(t) := u(εn, t),
n ∈ Z, and consider the system of infinitely many ordinary differential equations
with hysteresis

Fig. 11.8 Hysteresis with
thresholds α = −∞ and
β = 0
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duε
n

dt
= uε

n+1 − 2uε
n + uε

n−1

ε2
+ H(uε

n), t > 0, n ∈ Z, (11.18)

supplemented by the nontransverse (quadratic) initial data

uε
n(0) = −c(εn)2, n ∈ Z. (11.19)

Here we do not explicitly indicate the dependence of H on ξ0, assuming that
H(uε

n)(t) = h1 if uε
n(s) < 0 for all s ∈ [0, t] and H(uε

n)(t) = h−1 otherwise. As
before, we assume that h−1 ≤ 0 < h1.

Due to [24, Theorem 2.5], problem (11.18), (11.19) admits a unique solution in
the class of functions satisfying

sup
s∈[0,t]

|uε
n(s)| ≤ AeB|n|, n ∈ Z, t ≥ 0,

with some A = A(t, ε) ≥ 0 and B = B(t, ε) ∈ R. Thus, we are now in a position
to discuss the dynamics of solutions for each fixed grid step ε and analyze the limit
ε → 0.

First, we observe that ε in (11.18), (11.19) can be scaled out. Indeed, setting

un(t) := ε−2uε
n(ε

2t) (11.20)

reduces problem (11.18), (11.19) to the equivalent one

⎧
⎨

⎩

dun

dt
= un+1 − 2un + un−1 + H(un), t > 0, n ∈ Z,

un(0) = −cn2, n ∈ Z.

(11.21)

Using the comparison principle, it is easy to see that if h1 ≤ 2c, then un(t) < 0
for all n ∈ Z and t > 0 and, therefore, no switchings happen for t > 0. Let us assume
that

h−1 ≤ 0 < 2c < h1. (11.22)

It is easy to show that un(t) ≤ 0 for all n ∈ Z and t > 0. However, some nodes can
now reach the threshold β = 0 and switch the hysteresis. The main question is which
nodes do this and according to which law.

11.4.2 Numerical Observations

The following pattern formation behavior is indicated by numerics (see Fig. 11.9).
As time goes on, the spatial profile of un(t) forms two symmetric hills propagating
away from the origin. At the same time, the whole spatial profile oscillates up and
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(a) (b) (c)

Fig. 11.9 Upper graphs represent spatial profiles of the hysteresis H(un) and lower graphs the
spatial profiles of the solution un . a Nontransverse initial data. b Spatial profiles at a moment t > 0
for h−1 = 0. c Spatial profiles at a moment t > 0 for h−1 = −h1 < 0

down (never exceeding the threshold β = 0) and touches the threshold β = 0 in such
a way that

lim
j→∞

Nns( j)

Ns( j)
= |h−1|

h1
, (11.23)

where Ns( j) and Nns( j) are integers denoting the number of nodes in the set
{u0, u±1, . . . , u± j } that switch and do not switch, respectively, on the time inter-
val [0,∞). In [24], such a spatio-temporal pattern was called rattling.

A more specific pattern occurs if |h−1|/h1 = pns/ps, where ps and pns are co-
prime integers. In this case, for any j large enough, the set {u j+1, . . . , u j+ps+pns}
contains exactly ps nodes that switch and pns nodes that do not switch on the time
interval [0,∞).

If a node un switches on the time interval [0,∞), then we denote its switching
moment by tn; otherwise, set tn := ∞. In particular, finite values of tn characterize
the propagation velocity of the two hills mentioned above. Numerics indicates that,
for the nodes where tn is finite, we have

tn = an2 +
{

O(
√

n) if h−1 = 0,

O(n) if h−1 < 0,
as n → ∞, (11.24)

and
|uk+1(t) − uk(t)| ≤ b, |k| ≤ n, t ≥ tn, n = 0, 1, 2, . . . , (11.25)

where a, b > 0 do not depend on k and n. In particular, (11.24) and (11.25) mean
that the hills propagate with velocity of order t−1/2, while the cavity between the
hills has a bounded steepness, which distinguishes the observed phenomenon from
the “classical” traveling wave situation.
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11.4.3 Rigorous Result

The recent work [24] provides a rigorous analysis of the rattling in the case h−1 = 0,
where, according to (11.24), all the nodes are supposed to switch at time moments
satisfying

tn = an2 + qn, |qn| ≤ E
√

n, (11.26)

where E > 0 does not depend on n ∈ Z. In [24], the authors found the coeffi-
cient a and proved that if finitely many nodes un(t), n = 0,±1, · · · ± n0, switch
at time moments tn satisfying (11.26), then all the nodes un(t), n ∈ Z, switch at
time moments tn satisfying (11.26) (see the rigorous statement below). One of the
main tools in the analysis is the so-called discrete Green function yn(t) that is a
solution of the problem

⎧
⎪⎨

⎪⎩

ẏ0 = Δy0 + 1, t > 0,

ẏn = Δyn, t > 0, n �= 0,

yn(0) = 0, n ∈ Z.

(11.27)

The important property of the discrete Green function is the following asymptotics
proved in [30]:

yn(t) = √
t f

( |n|√
t

)
+ O

(
1√
t

)
as t → ∞, (11.28)

where

f (x) := 2x

∞∫

x

Z
−2h(Z) dZ, h(x) := 1

2
√

π
e− x2

4 , (11.29)

and O(·) does not depend on n ∈ Z.
Now if we (inductively) assume that the nodes u0, u±1, . . . u±(n−1) switched at

the moments satisfying (11.26), while no other nodes switched on the time interval
[0, tn−1], then the dynamics of the node

un(t) for t ≥ tn−1 (and until the next switching in the system occurs) is given by

un(t) = −cn2 + (h1 − 2c)t − h1

n−1∑

k=−(n−1)

yn−k(t − tk). (11.30)

At the (potential) switching moment tn = an2 + qn , the relations tk = ak2 + qk
(|k| ≤ n − 1), equality (11.30), the Taylor formula, and asymptotics (11.28) yield
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0 = −cn2 + (h1 − 2c)an2 − h1

n−1∑

k=−(n−1)

yn−k

(
a(n2 − k2)

)
+ l.o.t.

= −cn2 + (h1 − 2c)an2 − h1

n−1∑

k=−(n−1)

√
a(n2 − k2) f

(
n − k√

a(n2 − k2)

)

+ l.o.t.

= (−c + (h1 − 2c)a − h1Rn(a)) n2 + l.o.t.,

(11.31)

where

Rn(a) :=
n−1∑

k=−(n−1)

1

n

√
a(1 − (k/n)2) f

(
1 − k/n√

a(1 − (k/n)2)

)

and “l.o.t.” stands for lower order terms that we do not explicitly specify here. Note
that Rn(a) is the Riemann sum for the integral

I f (a) :=
1∫

−1

√
a(1 − x2) f

(
1 − x√

a(1 − x2)

)
dx . (11.32)

Therefore, equality (11.31) can be rewritten as

0 = (−c + (h1 − 2c)a − h1 I f (a)
)

n2 + l.o.t. (11.33)

It is proved in [24] that there exists a unique a > 0 for which the coefficient at
n2 in (11.33) vanishes. The most difficult part is to analyze the lower order terms
in (11.33) that involve:

1. the remainders q0, q±1, . . . , qn from (11.26) arising from (11.30) via the appli-
cation of the Taylor formula,

2. the remainder in the asymptotic (11.28) for the discrete Green function yn(t),
3. the remainders arising from approximating the integral I f (a) by the Riemann

sum Rn(a).

In particular, one has to prove that if |q j | ≤ E
√| j | for j = 0,±1, . . . ,±(n − 1),

then the lower order terms vanish for a specified above and |qn| ≤ E
√|n|. This

allows one to continue the inductive scheme and (after an appropriate analysis of the
nodes u±(n+1)(t), u±(n+2)(t), . . . for t ∈ [tn−1, tn]) complete the proof.

The rigourous formulation of the main result in [24] is as follows.

Theorem 11.4.1 (see [24, Theorem 3.2]) Assume that (11.22) holds and that
h−1 = 0. Let a = a(h1/c) > 0 be a (unique) root of the equation

− c + (h1 − 2c)a − h1 I f (a) = 0 (11.34)
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(a) (b) (c)

Fig. 11.10 Dependence on h1 of the values of a, E , and n0(E) that fulfill assumptions (11.35)
for c = 1/2. a The values of a are found as roots of (11.34). b, c The values of E and n0(E) are
calculated for discrete values h1 = 1.1, 1.2, 1.3, . . . , 2.5

with I f (a) given by (11.32). Then there exists a constant E0 = E0(h1, c, a) > 0
and a function n0 = n0(E) = n0(E, h1, c, a) (both explicitly constructed) with the
following property. If

finitely many nodes u0(t), u1(t), . . . , un0(t) switch at moments tn
satisfying (11.26) with the above a and some E ≥ E0,

(11.35)

then each node un(t), n ∈ Z, switches; moreover, the switching occurs at a time
moment tn satisfying (11.26) with a and E as in (11.35).

Wenote that the explicit formula (11.30) for the solution un(t) allows one to verify
the fulfillment of finitely many assumptions (11.35) numerically with an arbitrary
accuracy for any given values of h1 and c. The graphs in Fig. 11.10 taken from [24]
represent the values of a, E , and n0(E) that fulfill assumption (11.35) for c = 1/2
and h1 = 1.1, 1.2, 1.3, . . . , 2.5.

(a) (b)

Fig. 11.11 A snapshot for a time moment t > 0 of a two-dimensional spatial profile of hysteresis
taking values h1 > 2c > 0 and h−1 = −h1 < 0. The nontrasverse initial data is given by ϕ(x) =
−c(x21 + x22 ). Grey (black) squares or hexagons correspond to the nodes that have (not) switched
on the time interval [0, t]. a Discretization on the square lattice. b Discretization on the triangular
lattice
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11.4.4 Open Problems

To conclude this section, we indicate several directions of further research in the
nontransverse case.

Case h−1 < 0. In this case, one has to additionally prove a specific switching
pattern (11.23). We expect that the tools developed in [24] will work for rational
h1/h−1. The irrational case appears to be a much more difficult problem.

Multi-dimensional case. Numerics indicates that the behavior analogous to
(11.23) occurs in higher spatial dimensions for different kinds of approximating
grids. Figure11.11 illustrates the switching pattern for a two-dimensional analog of
problem (11.21), where the Laplacian is discretized on the square and triangular
lattices, respectively.

Limit ε → 0. We introduce the function

uε(x, t) := uε
n(t), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

(which is piecewise constant in x for everyfixed t).Making the transformation inverse
to (11.20) and assuming (11.23) and (11.24), we can deduce that, as ε → 0, the
function uε(x, t) approximates a smooth function u(x, t), which satisfies u(x, t) = 0
for x ∈ (−√

t/a,
√

t/a). In other words, u(x, t) sticks to the threshold line β = 0
on the expanding interval x ∈ (−√

t/a,
√

t/a).
Similarly to uε(x, t), we consider the function

H ε(x, t) := H(uε
n)(t), x ∈ [εn − ε/2, εn + ε/2), n ∈ Z,

which is supposed to approximate the hysteresis H(u)(x, t) in (11.6). We see that
the spatial profile of H ε(x, t) for x ∈ (−√

t/a,
√

t/a) is a step-like function taking
values h1 and h−1 on alternating intervals of length of order ε. Hence, it has no
pointwise limit as ε → 0, but converges in a weak sense to the function H(x, t) given
by H(x, t) = 0 for x ∈ (−√

t/a,
√

t/a) and H(x, t) = h1 for x /∈ (−√
t/a,

√
t/a).

We emphasize that H(x, t) does not depend on h−1 (because a does not). On the
other hand, if h−1 < 0, the hysteresis operator H(u)(x, t) in (11.6) cannot take
value 0 by definition, which clarifies the essential difficulty with the well-posedness
of the original problem (11.6) in the nontransverse case. To overcome the non-
wellposedness, one need to allow the intermediate value 0 for the hysteresis operator,
cf. the discussion of modified hysteresis operators due to Visintin and Alt in the
introduction. A rigorous analysis of the limit ε → 0 is an open problem, which may
lead to a unique “physical” choice of an appropriate element in the multi-valued
Visintin’s hysteresis HVis(ξ0, u) in Definition 11.1.2.

Rattling in slow-fast systems. One may think that the rattling occurs exclusively
due to the discontinuous nature or hysteresis. This is not quite the case. Consider an
equation of type (11.6) with the hysteresis H(ξ0, u) replaced by the solution v of a
bistable ordinary differential equation of type (11.4), e.g.,
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ut = uxx + v, δvt = g(u, v). (11.36)

Numerical solution of system (11.36) with a nontransverse initial data u(x, 0) =
−cx2 + o(x2) and v(x, 0) = H1(β) near the origin reveals a behavior analogous to
that for a spatially discrete system (see Fig. 11.12). As the spatial profile of u(x, t)
touches the threshold β at some point x0, the spatial profile of v(x, t) forms a peak-
like transition layer around x0 that rapidly converges to a plateau. Thus, as time goes
on, the spatial profile of v(x, t) converges to a step-like function taking values H1(β)

and H−1(β) on alternating intervals, whose length tends to zero as δ → 0. A rigorous
analysis of the limit δ → 0 is an open problem.

Fig. 11.12 Lower and upper graphs are spatial profiles of the solution u(x, t) and v(x, t), respec-
tively, for problem (11.36) with initial data u|t=0 = −cx2 + o(x2), v|t=0 = H1(β)
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15. P. Krejčí, J. Physics.: Conf. Ser. (22), 103 (2005)
16. E. Mischenko, N. Rozov, Differential Equations with Small Parameters and Relaxation Oscil-

lations (Plenum, New York, 1980)
17. C. Kuehn, Multiple Time Scale Dynamics, Applied Mathematical Sciences, vol. 191 (Springer

International Publishing, 2015)
18. D. Apushkinskaya, N. Uraltseva, St. Petersbg. Math. J. 25(2), 195 (2014)
19. H. Shahgholian, N. Uraltseva, G.S. Weiss, Adv. Math. 221(3), 861 (2009)
20. P. Gurevich, S. Tikhomirov, Nonlinear Anal. 75(18), 6610 (2012)
21. P. Gurevich, S. Tikhomirov, Mathematica Bohemica (Proc. Equadiff 2013) 139(2), 239 (2014)
22. M. Curran, Local well-poseness of a reaction-diffusion equation with hysteresis. Master’s

thesis, Fachbereich Mathematik und Informatik, Freie Universität Berlin (2014)
23. D. Apushkinskaya, N. Uraltseva, Interfaces and Free Boundaries 17(1), 93 (2015)
24. P. Gurevich, S. Tikhomirov, arXiv:1504.02385 [math.AP] (2015)
25. O.Ladyzhenskaya,V. Solonnikov,N.Uraltseva,Linear and Quasilinear Equations of Parabolic

Type (American Mathematical Society, Providence, Rohde Island, 1968)
26. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Carnegie-Rochester

Conference Series on Public Policy (North-Holland Publishing Company, 1978)
27. S. Ivasishen, Math. USSR-Sb (4), 461 (1981)
28. L. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems. Graduate Studies

in Mathematics (American Mathematical Soc., 2005)
29. D. Apushkinskaya, H. Shahgholian, N. Uraltseva, J. Math. Sci. 115(6), 2720 (2003)
30. P. Gurevich, arXiv:1504.02673 [math.AP] (2015)

http://arxiv.org/abs/1504.02385
http://arxiv.org/abs/1504.02673


Chapter 12
Deriving Effective Models for Multiscale
Systems via Evolutionary Γ -Convergence

Alexander Mielke

Abstract Wediscuss possible extensions of the recently established theory of evolu-
tionaryΓ -convergence for gradient systems to nonlinear dynamical systems obtained
by perturbation of a gradient systems. Thus, it is possible to derive effective equations
for pattern forming systems with multiple scales. Our applications include homog-
enization of reaction-diffusion systems, the justification of amplitude equations for
Turing instabilities, and the limit from pure diffusion to reaction-diffusion. This is
achieved by generalizing the Γ -limit approaches based on the energy-dissipation
principle or the evolutionary variational estimate.

12.1 Introduction

The theory of evolutionary Γ -convergence was developed for families of gradient
systems (X, Eε,Rε)ε∈[0,1], which define the family of gradient flows

Du̇Rε(u
ε, u̇ε) = −DEε(u

ε), uε(0) = u0ε.

The aim of the theory is to provide as general conditions as possible for the conver-
gence of the energy functionals Eε � E0 and of the dissipation potentialsRε � R0

for ε → 0, that still guarantee that the solutions uε : [0, T ] → X converge to a solu-
tion u0 : [0, T ] → X of the limiting gradient flow as ε → 0. We refer to the surveys
[6, 23, 34–36]. We emphasize here that there are numerous much older works relat-
ing to the case that X is a Hilbert space H and Rε(u, u̇) = 1

2‖u̇‖2H is independent
of ε such that only equation has the form u̇ = −DEε(u) where Aε is a maximal
monotone operator, see [3, 7].
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Here we are interested in perturbed gradient systems, where we allow the energy
functional Eε to depend on the time t ∈ [0, T ] and the equation to contain a non-
gradient term hε. We use the quadruple (X, Eε,Rε, hε) to denote the perturbed
gradient system, which then defines an evolutionary equation

Du̇Rε(u
ε, u̇ε) = −DEε(u

ε) + hε(t, u
ε), uε(0) = u0ε. (12.1)

Here we understand that hε is a lower order perturbation of the gradient system
obtained for hε ≡ 0. Thus, the hope is that it is possible to generalize the strong results
on evolutionary convergence of gradient systems (see [23, 35]) to the perturbed case
without adding too much technicalities.

Hence, there are two major motivations for considering perturbed gradient sys-
tems. On the one hand, there may be cases where a given system has a particular
gradient structure (X̂, Êε, R̂ε), but it may be easier to treat it as a perturbed gradient
system (X, Eε,Rε). We highlight this by looking at the reaction-diffusion system

u̇ = div
(
aε(x)∇u

) + cε(x)(1 − uv)

dε(x) + u + v
, v̇ = div

(
bε(x)∇v

) + cε(x)(1 − uv)

dε(x) + u + v
,

where u, v > 0 are densities and aε, bε, cε and dε are positive ε-periodic coefficients.
It was shown in [21] that this system is has a gradient system with

Ê(u, v) =
∫

Ω

λB(u) + λB(v)dx with λB(u) := u log u − u + 1,

R̂∗
ε(u, v, μ, ν) =

∫

Ω

(aε

2
|∇ξ |2 + bε

2
|∇ν|2 + Cε(x, u, v)(ξ + ν)2

)
dx,

where cε(x, u, v) = cε(x)uv
(dε(x) + u + v)(log(uv)− 1) > 0, andR∗

ε is the Legendre dual potential
ofRε, see (12.15). However, doing a multiscale analysis for the limit ε → 0 is very
difficult because of the dependence of R̂∗

ε on u and v.
For a perturbed gradient structure we may choose the classical L2 gradient struc-

ture for the leading terms and treat the reactions as perturbations, i.e.

Eε(u, v) =
∫

Ω

(aε

2
|∇u|2 + bε

2
|∇v|2

)
dx, Rε(u̇, v̇) = 1

2
‖u̇‖2L2 + 1

2
‖v̇‖2L2 ,

and the perturbation hε(x, u, v) = cε(x)(1− uv)
dε(x) + u + v

(
1, 1

)�
. For such a system the limit

ε → 0 can be taken much more easily, see Sect. 12.5.1 and [27, 31].
On the other hand, the treatment of perturbed gradient systems is important, since

the dynamics of pure gradient systems is completely different from perturbed ones.
In gradient systems, typical solutions converge to local minimizer of the energy for
t → ∞. In a perturbed s gradient system, much more complicated dynamics can
happen, like Hopf bifurcations or chaos, see e.g. [16].
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Section12.2 provides a priori estimates for the perturbed gradient system (X, Eε,

Rε, hε). In additions to the standard conditions on gradient systems the new assump-
tion is an estimate of the form R∗

ε(u, 1
c hε(t, u)) ≤ CE(t, u) (cf. (12.3)). Based

only on these simply estimates we provide two abstract results on evolutionary Γ -
convergence.

The first result on evolutionary Γ -convergence for perturbed gradient systems
is given in Theorem 4 and relies on the rather strong assumption of λ-convexity.
For this we assume that X is a Hilbert space H , that the dissipation potentials have
the quadratic form Rε(u, u̇) = 1

2 〈Gεu̇, u̇〉, and that there exists a λ ∈ R such that
u → Eε(u) − λRε(u) is convex for all ε ∈ [0, 1]. Otherwise the assumptions are

rather weak, since the simple Γ -convergence of Eε(t, ·) Γ−→ E0(t, ·) and pointwise
convergence of Rε are essentially sufficient.

The second result on evolutionary Γ -convergence for perturbed gradient systems
relies on De Giorgi’s energy-dissipation principle. It is much more flexible, since no
λ-convexity is needed and Rε can be much more general. The major new quantity
in this approach is the dissipation functional

Dε(u(·)) :=
∫ T

0

(
Rε(u(t), u̇(t)) + R∗

ε

(
u(t), hε(t, u(t)) − DuEε(t, u(t))

))
dt.

As a major assumption of the abstract result in Theorem 7 one needs the liminf
estimate lim infε→0 Dε(uε(·)) ≥ D(u(·)) if uε ⇀ u in W1,p([0, T ]; X).

In Sect. 12.5 we discuss a few possible applications of the general results. We first
consider the classical question of homogenization of reaction-diffusion systems as
a didactical example. There we treat the diffusion part as a gradient part associated
with the convex and quadratic Dirichlet energy. Because of the semilinear structure,
all the nonlinear reaction terms can be treated as non-gradient perturbations. We
are able to apply the λ-convex theory and refer to [19] for a comparison of the
strengths and weaknesses of the two different approaches discussed on the basis of
the homogenization of a Cahn–Hilliard-type problem.

In Sect. 12.5.2 we reconsider the theory developed in [22] for pure gradient sys-
tems. There it was shown that the Ginzburg–Landau equations can be understood
as the evolutionary Γ -limit of the suitable scaled Swift-Hohenberg equation. We
discuss the usage of perturbed gradient systems to analyze a coupled system of
Swift-Hohenberg equations introduced in [33].

Finally we speculate concerning the usage of evolutionary Γ -convergence to
derive a nonlinear reaction-diffusion system from a single Fokker–Planck-type mas-
ter equation of diffusion in physical space as well as along a chemical reaction path.
This follows the spirit of [2, 20, 29, 30], where chemical reaction is understood as
a limit of diffusion.
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12.2 Energy Control and a Priori Estimates

As was announced earlier, we will consider the non-gradient term hε as a lower-
order perturbation of the gradient system. Before specifying this, we fix the major
properties of the energy functionals Eε. We assume that the reflexive and separable
Banach space Z is compactly embedded into X and

domEε := { (t, u) | Eε(t, u) < ∞} = [0, T ] × Dε, Dε := domEε(0, ·), (12.2a)

∃ c0, α > 0 ∀ (ε, t, u) ∈ [0, 1] × [0, T ] × X : Eε(t, u) ≥ c0‖u‖α
Z, (12.2b)

∃ Λna ≥ 0 ∀ (ε, t, u) ∈ [0, 1] × [0, T ] × Dε : |∂tEε(t, u)| ≤ ΛnaEε(t, u),

(12.2c)

where ‖u‖Z = ∞ for u ∈ X \ Z. Note that the energies are only defined up to a
constant, so we can choose C = 0 in the usual condition of coercivity Eε(t, u) ≥
c0‖u‖α

Z − C .
In this section we consider general dissipation potentialsRε : X × X → [0,∞],

whichmeans thatRε(u, ·) : X → [0,∞] is a lower semicontinuous and convex func-
tional satisfying additionally Rε(u, 0) = 0. The first condition on the perturbation
hε : [0, T ] × X → X∗ is the following bound:

∃ Λng ≥ 0, c ∈ ]0, 1[ ∀ (ε, t, u) ∈ [0, 1] × [0, T ] × X : (12.3)

R∗
ε

(
u,

1

c
hε(t, u)

)
≤ Λng

c
E(t, u).

Based on these assumptions we first derive a control of the energy Eε for fixed w
and along solutions u : [0, T ] → X of the perturbed gradient flow

Du̇Rε(u, u̇(t)) = −DuEε(t, u(t)) + hε(t, u(t)) for a.a. t ∈ [0, T ]. (12.4)

Note that all the estimates are uniform in ε ∈ [0, 1].
Proposition 1 If (12.2c) holds, then for all (ε, s, t,w) ∈ [0, 1] × [0, T ]2 × Dε:

e−Λna|t−s|Eε(s,w) ≤ Eε(t,w) ≤ eΛna|t−s|Eε(s,w). (12.5)

Assuming additionally (12.3) and setting Λ := Λna + Λng, every solution
u : [0, T ] → X of (12.4) satisfies, for 0 ≤ s < t ≤ T , the estimate

Eε(t, u(t)) +
∫ t

s
(1 − c)Rε(u(r), u̇(r))dr ≤ eΛ(t−s)Eε(s, u(s)). (12.6)

Proof Equation (12.5) follows by a simple Gronwall estimate based on (12.2c).
For the second resultwe apply 〈·, u̇〉 to (12.4) and use 〈Du̇Rε(u, u̇), u̇〉 ≥ Rε(u, u̇)

and the chain rule for Eε to obtain the energy estimate
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Eε(t, u(t)) +
∫ t

s
Rε(u, u̇)dr ≤ Eε(s, u(s)) +

∫ t

s
∂rEε(r, u(r)) + 〈hε(r, u(r)), u̇(r)〉dr.

Estimating 〈hε, u̇(r)〉 ≤ cR∗
ε(u, 1

c hε) + cRε(u, u̇) ≤ ΛngEε(t, u) + cRε(u, u̇) we
find the purely energetic a priori estimate

Eε(t, u(t)) +
∫ t

s
(1 − c)Rε(u, u̇)dr ≤ Eε(s, u(s)) +

∫ t

s
ΛEε(r, u(r))dr. (12.7)

NeglectingRε, Gronwall’s estimate gives Eε(t, u(t)) ≤ eΛ(t−s)Eε(s, u(s)) for all t ∈
[s, T ]. Next we replace t by r in the latter relation and insert it into the right-hand
side of (12.7), which provides the assertion (12.6). �

The main point of this proposition is that we are able to derive uniform a priori
estimates as follows:

Corollary 2 (Uniform a priori estimates) Assume that the dissipation potentials are
equicoercive:

∃ cR > 0, p > 1 ∀ (ε, u, v) ∈ [0, 1] × X2 : Rε(u, v) ≥ cR‖v‖p
X , (12.8)

and that the initial energies satisfy Eε(0, u0ε) ≤ CE < ∞. Then, there exists C∗ < ∞
such that the solutions uε : [0, T ] → X of (12.4) satisfy

‖uε(·)‖L∞([0,T ];Z) + ‖uε(·)‖W1,p([0,T ];X) ≤ C. (12.9)

Proof We use (12.6) for s = 0 and t ≤ T , where the right-hand side is estimated by
eΛTCE < ∞. Now, the coercivity (12.2b) of Eε gives the bound in L∞([0, T ]; Z).
Then, the coercivity (12.8) of Rε gives the bound in W1,p([0, T ]; X). �

12.3 Perturbed Evolutionary Variational Estimate

In this section we consider a simple Hilbert-space setting, i.e. the dynamic space X
is a Hilbert space H with norm ‖ · ‖, and the dissipation potentials Rε are one-half
of the square of Hilbert-space norms. Nevertheless, we do not work with one Hilbert
space but with a family of norms:

∃ C > 0 ∀ ε ∈ [0, 1] ∃ Gε = G
∗
ε ∈ Lin(H, H) : (12.10)

Rε(v) = 1

2
〈Gεv, v〉 and 1

2C
‖v‖2 ≤ Rε(v) ≤ C

2
‖v‖2.

For the energiesEε : [0, T ] × H → R∞ weassume that they are uniformlyλ-convex:
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∃ λ∗ ∈ R ∀ (ε, t) ∈ [0, 1] × [0, T ] : Eε(t, ·) + λ∗Rε(·) is convex on H; (12.11)

Eε(t, uθ ) ≤ (1 − θ)Eε(t, u0) + θEε(t, u1) + λ∗θ(1 − θ)Rε(u1 − u0),

where uθ := (1 − θ)u0 + θu1. For sufficiently smooth Eε condition (12.11) simply
means

Eε(t,w) ≥ Eε(t, u) + 〈DEε(t, u),w − u〉 + λ∗Rε(w − u). (12.12)

For the non-gradient term hε : [0, T ] × H → H∗ we assume that it is controlled by
the gradient parts as in (12.3).

Here we do not address the question of existence and uniqueness of solutions,
which we assume to hold. (For this one may additionally impose a global Lipschitz
continuity of hε.) Our concern is the convergence of the solutions uε : [0, T ] → H
for the perturbed gradient system (H, Eε,Rε, hε), i.e. uε satisfies (12.4).

Our next result provides a reformulation of this equation in terms of a perturbed
evolutionary variational estimate (PEVE), which is a direct generalization of the
metric theory in [1, 10], where Λna = Λng = 0. Since it is a statement for fixed
ε ∈ [0, 1], we can drop the index ε here.

Proposition 3 Assume that the assumptions (12.10), (12.2), (12.11), and (12.3) hold
and set Λ := Λna + Λng. Then, a function u ∈ H1([0, T ]; H) ∩ L∞(0, T ; Z) solves
(12.4) if and only if (PEVE) holds:

∀ 0 ≤ s < t ∀ w ∈ H :
eλ∗(t−s)R(u(t) − w) − R(u(s) − w) + A+

∗ (t − s)E(t, u(t))

≤ A−
∗ (t − s)E(t,w) −

∫ t

s
eλ∗(r−s)〈h(r, u(r)),w − u(r)〉dr,

(PEVE)

where A±∗ (r) = (
eλ∗r − e∓Λr

)
/(λ∗ ± Λ) (givingA±∗ (0) = 0 and (A±∗ )′(0) = 1).

Proof We first show that (12.4) implies (PEVE). For this, we choose arbitrary w and
apply 〈·, u(t) − w〉 to (12.4) to obtain

d

dt
R(u(t) − w)

(12.10)= 〈DR(u̇), u − w〉 (12.4)= 〈DE(t, u) − h(t, u),w − u〉
(12.12)≤ E(t,w) − E(t, u) − λ∗R(w − u) − 〈h(t, u),w − u〉.

Moving −λ∗R(w − u) to the left-hand side and multiplying by eλ∗(t−s) we can inte-
grate over t ∈ [s, t1]. Renaming t and t1 into r and t , respectively, we find

eλ∗(t−s)R(u(t) − w) − R(u(s) − w)

≤
∫ t

s
eλ∗(r−s)

(
E(r,w) − E(r, u(r)) − 〈h(r, u(r)),w − u(r)〉

)
dr.
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From (12.5) we obtain E(r,w) ≤ eΛ(t−r)E(t,w), and (12.6) implies E(r, u(r)) ≥
e−Λ(t−r)E(t, u(t)). Inserting this into the last estimate and doing the integration in
r ∈ [s, t] explicitly for the first two terms leads to the desired result (PEVE).

We now show that PEVE implies (12.4). For this we divide both sides by t −
s > 0 and then take the limit s ↗ t . Using A±∗ (r)/r → 1 for r ↘ 0 we obtain the
differential form again, namely

d

dt
R(u − w) = 〈Gu̇, u − w〉 = 〈DuE(t, u),w − u〉

≤ E(t,w) − E(t, u) − λ∗R(u − w) + 〈h(t, u), u − w〉.

Keeping t fixed and inserting the test function w = u(t) − δv with δ > 0, we divide
by δ first and then pass to the limit to obtain 〈u̇, v〉 ≤ 〈−DE(t, u) + h(t, u), v〉.
Since v is arbitrary, we also have the opposite sign (replace v by −v), and (12.4) is
established. �

The above characterization of solutions of the perturbed gradient system (H, Eε,

Rε, hε), which give rise to the evolution equation (12.4), allows us to formulate a
result concerning evolutionary Γ -convergence. For this we use the notion of (strong)
Γ -convergence of the energies, continuous convergence of the dissipation potentials,
and strong convergence of the perturbations:

Eε
Γ−→ E0, i.e.

{
wε → w in H =⇒ lim inf

ε→0
Eε(t,wε) ≥ E0(t,w0),

∀ ŵ0 ∃ ŵε → ŵ0 in H : Eε(t,wε) → E0(t, ŵ0);
(12.13a)

Rε
C−→ R0, i.e. wε ⇀ w0 in Z =⇒ Rε(wε) → R0(w0); (12.13b)

wε ⇀ w0 in Z =⇒ hε(t,wε) ⇀ h0(t,w0) in H∗. (12.13c)

Concerning the static Γ -convergence in (12.13a) we refer to the standard textbooks
[4, 6, 9]. In these statements the weak convergence in Z can be replaced by the
more general and maybe more flexible statement of convergence within sublevels
of Eε, namely wε → w0 in H and Eε(t,wε) ≤ C . Clearly, the equicoercivity (12.2b)
implies weak convergence in Z.

The following result relies on PEVE and the a priori estimate provided in
Corollary 2. The latter shows that the desired accumulating points exist, since the unit
ball inW1,p([0, T ]; Z) is weakly compact, i.e. converging subsequences as assumed
in the following result always exist.

Theorem 4 (Evolutionary Γ -convergence via PEVE) Let the assumptions of
Proposition 3 and (12.13) hold. If for a family of solutions uε : [0, T ] → H of (12.4)
a subsequence (uεk )k∈N satisfies

εk → 0 and uεk ⇀ u in H1([0, T ]; H),

then u is a solution of the limiting perturbed gradient system (H, E0,R0, h0), i.e. u
solves (12.4) for ε = 0.
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Proof By the apriori estimate inCorollary 2wecan assumeuεk ⇀ u inH1([0, T ]; H)

and
∀ t ∈ [0, T ] : uεk (t) ⇀ u(t) in Z and uεk (t) → u(t) in H .

We now exploit that the perturbed evolutionary variational estimate (PEVE) holds
with λ∗ and Λ independently of ε. For 0 ≤ s < t ≤ T and w ∈ H we have

eλ∗(t−s)Rε(u
εk (t) − w) − Rε(u

εk (s) − w) + A+
∗ (t − s)Eε(t, u

εk (t))

≤ A−
∗ (t − s)Eε(t,w) −

∫ t

s
eλ∗(r−s)〈hε(r, u

εk (t)),w − uεk (r)〉dr. (12.14)

Fixing s and t we may now choose a suitable test function w = wεk , namely such
that wεk → w0 and E(t,wεk ) → E(t,w0) (cf. (12.13a)). Note that the equicoercivity
implies wεk ⇀ w0 in Z.

Hence, we can pass to the limit inferior for εk → 0 in (12.14). Indeed, on the left-
hand side the first two terms converge to eλ∗(t−s)R0(u(t) − w0) − R0(u(s) − w0)

because of (12.13b), whereas the third term has a liminf bounded from below by
A+∗ (t − s)E0(t, u(t)), where we use A+∗ (t − s) > 0. On the right-hand side the first
term converges to A−∗ (t − s)E0(t,w0) by the choice of wεk , whereas the second
term converges to

∫ t
s e

λ∗(r−s)〈h0(r, u(r)),w0 − u(r)〉dr by strong convergence of
wεk − uεk (r) and weak convergence of hεk (r, u

εk (r)). Thus, since w0 is arbitrary,
(PEVE) is established for u, and by Proposition 3 we know that u is a solution of
(12.4) for ε = 0. �

12.4 De Giorgi’s Energy-Dissipation Principle

To prepare for De Giorgi’s reformulation of gradient flows in terms, we recall the
following fact from convex analysis. For a convex function Ψ : X → R∞ := R ∪
{∞} the Legendre–Fenchel dual Ψ ∗ : X∗ → R∞ is defined via

Ψ ∗(ξ) := sup{ 〈ξ, v〉 − Ψ (v) | v ∈ X } (12.15)

and the convex subdifferential via

∂Ψ (v) = { ξ ∈ X∗ | Ψ (w) ≥ Ψ (v) + 〈ξ,w − v〉 for all w ∈ X }. (12.16)

Proposition 5 Let X be a reflexive Banach space and Ψ : X → R∞ be proper,
convex, and lower semi-continuous. Then, the following holds:
(A) Young-Fenchel estimate: ∀ (v, ξ) ∈ X × X∗ : Ψ (v) + Ψ ∗(ξ) ≥ 〈ξ, v〉.
(B) Fenchel equivalence ([13, 15]): for all (v, ξ) ∈ X × X∗ we have

(i) ξ ∈ ∂Ψ (v) ⇐⇒ (ii) v ∈ ∂Ψ ∗(ξ) ⇐⇒ (iii) Ψ (v) + Ψ ∗(ξ) = 〈ξ, v〉.
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We emphasize that the relation (i) is a relation in dual space X∗, (ii) is a relation
in X , and (iii) is a relation in R. Using (A), it is immediate that (iii) can be replaced
by the estimate (iii)′ Ψ (v) + Ψ ∗(ξ) ≤ 〈ξ, v〉.

We can apply these equivalences with Ψ (·) = Rε(u, ·) to the formulation of the
gradient flow associated with our perturbed gradient system (X, Eε,Rε, hε) and
obtain three equivalent formulations:

force balance Du̇Rε(u, u̇) = −DuEε(t, u) + hε(t, u);
rate equation u̇ = DξR∗

ε

(
u, −DuEε(t, u) + hε(t, u)

);
power balance Rε(u, u̇) + R∗

ε (u, hε(t, u) − DuEε(t, u))=〈hε(t, u) − DuEε(t, u), u̇〉.

Themainpoint is that a time-integrated versionof the third formulation canbeused
to characterize solutions of perturbed gradient systems. For this we need an abstract
chain rule for Eε. We say that (X, E) satisfies the chain rule if for all p ≥ 1 the
following holds. If u ∈ W1,p([0, T ]; X), E(·, u(·)) ∈ L1([0, T ], and DuE(·, u(·)) ∈
Lp∗([0, T ]; X∗), then t → E(t, u(t)) is absolutely continuous and

d

dt
E(t, u(t)) = 〈ξ(t), u̇(t)〉 + ∂tE(t, u(t)) a.e. in [0, T ]. (12.17)

We refer to [26, 32] for general treatments and derivations of such abstract chain
rules. Using this chain rule, we can integrate the power balance in time and replace
〈DuEε(t, u), u̇〉 by the difference of the initial and final energies plus an integral
over ∂tEε. De Giorgi’s energy-dissipation principle (EDP) states that this integrated
version of the power estimate (iii)′ is equivalent to the force balance (12.4) for a.a.
t ∈ [0, T ]. Again we can drop the parameter ε > 0.

Theorem 6 (De Giorgi’s EDP) Assume that (X, E) satisfies the chain rule (12.17)
and that there exists C, p > 1 such that (1 + ‖u̇‖p)/C ≤ R(u, u̇) ≤ C(1 + ‖u̇‖p).
Then a function u ∈ W1,p([0, T ]; X) is a solution of the perturbed gradient system
(X, E,R, h) if and only if it satisfies the Upper Energy-Dissipation Estimate

E(T, u(T )) + D(u(·)) ≤ E(0, u(0)) +
∫ T

0
∂tE(t, u(t)) + 〈h(t, u(t)), u̇(t)〉dt,

(UEDE)
where De Giorgi’s dissipation functional D is given by

D(u(·)) :=
∫ T

0
R(u(t), u̇(t)) + R∗(u(t), h(t, u(t)) − DuE(t, u(t))

)
dt. (12.18)

This result is a simple generalization of [23, Theorem3.3], where the proof
for the case h ≡ 0 is given. We remark that the EDP relates the final energy
E(T, u(T )) plus the dissipated energy

∫ T
0 R + R∗ dt to the initial energy E(0, u(0))

plus the external work
∫ T
0 ∂tE(t, u(t))dt and the work due to the non-gradient terms
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∫ T
0 〈h(t, u(t)), u̇(t)〉dt . It is sufficient to establish the UEDE, then by the chain rule
one obtains an equality in UEDE giving the power balance.

The EDP is ideal for proving evolutionary Γ -convergence. In fact, it is the basis
of the famous Sandier–Serfaty approach, see [34, 35]. For this we look at the ε-
dependent UEDE:

Eε(T, uε(T )) + Dε(u
ε(·)) ≤ Eε(0, u

0
ε) +

∫ T

0
∂tEε(t, u

ε(t)) + 〈hε(t, u
ε(t)), u̇ε(t)〉dt.

(12.19)

The main importance of the EDP is that it involves the UEDE, which states that the
final and the dissipated energies only need to have a good upper bound. Hence, in
passing to the Γ -limit it will be sufficient to have good liminf estimates for these
terms, while the right-hand side can be controlled by the well-preparedness of the ini-
tial conditions and proper assumptions on the power of the external forces ∂tEε(t, u)

and the power 〈hε(t, u), u̇〉. The following result gives sufficient conditions for evo-
lutionary Γ -convergence, in fact for “pE-convergence” in the sense of [23].

Theorem 7 (Evolutionary Γ -convergence via EDP) Assume that the perturbed
gradient systems (X, Eε,Rε, hε) satisfy (12.2), (12.3), (12.8) and that

Eε(t, ·) Γ−→ E0(t, ·) and Eε(0, u
0
ε) → E0(0, u00); (12.20a)

(X, E0) satisfies the chain rule; (12.20b)

wε

Z
⇀ w0 =⇒ (

∂tEε(t,wε)→∂tE0(t,w0) & hε(t,wε)
Z∗→ h0(t,w0)

); (12.20c)

ŵε(·) ⇀ ŵ0(·) inW1,p([0, T ]; X) =⇒ D0(ŵ0) ≤ lim inf
ε→0

Dε(ŵ
ε). (12.20d)

If uε : [0, T ] → X is a family of solutions for (12.4) with uε(0) = u0ε and

εk → 0 and uεk ⇀ u inW1,p([0, T ]; X) as k → ∞,

then u is a solution for the perturbed system (X, E0,R0, h0) with u(0) = u00.

The crucial and most difficult condition here is the liminf estimate for De Giorgi’s
dissipation potential, whereD0 againmust have the form (12.18). The liminf estimate
is then sufficient, since the duality of R0 and R∗

0 and the chain rule (12.20b) imply
equality again.

Proof Because of the assumptions we can use the a priori estimates of Corollary 2
and may assume the additional convergences

∀ t ∈ [0, T ] : uεk (t) ⇀ u(t) in Z and uεk (t) → u(t) in X .

Using the EDP in Theorem 6 we know that uε satisfies the UEDE (12.19). Using
the assumptions (12.20a) and (12.20b) and the a priori estimates, we easily see
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that the right-hand side in (12.19) converges to E0(0, u00) + ∫ T
0 ∂tE0(t, u(t)) +

〈h0(t, u(t)), u̇(t)〉dt .
On the left we have E0(T, u(T )) ≤ lim infεk→0 Eεk (T, uεk (T )) and D0(u(·)) ≤

lim infεk→0 Dεk (u
εk (·)). Thus, the UEDE for u with ε = 0 is established, and the

EDP in Theorem 6 implies that u solves (12.4) for ε = 0. �

Based on the philosophy of this result, the notion of “EDP-convergence” was

introduced in [20] by asking Dε

Γ
⇀ D0 in W1,p([0, T ]; X). This convergence is in

fact much more than what is needed for evolutionary Γ -convergence. In principle,
in (12.20d) it is sufficient to obtain the desired liminf estimate only along solutions.
In contrast, EDP-convergence asks for a Γ -convergence along arbitrary functions.
This is physically justified by fluctuation theory, which gives the proper justification
of gradient structures, see e.g. [28].

Remark 8 A similar theory may be derived for perturbed gradient systems in the
form

u̇ = DξR∗
ε

(
u,−DuEε(t, u)

) + gε(t, u).

The corresponding energy-dissipation principle takes the form

Eε(T, u(T )) + D̂ε(u) ≤ Eε(0, u(0)) +
∫ T

0

(
∂tEε(t, u) + 〈DuEε(t, u), gε(t, u)〉)dt,

where D̂ε(u) =
∫ T

0

(
Rε(u, u̇ − gε(t, u)) + R∗

ε(u,−DuEε(u))
)
dt.

We refer to [8, 11, 12] for the usage of this variational principle, where the term
〈DuEε(t, u), gε(t, u)〉 even disappears because of a Hamiltonian structure of gε.

12.5 Applications of Evolutionary Γ -Convergence

We provide a few possible applications of the two theories developed above.

12.5.1 Homogenization of Reaction-Diffusion System

We only discuss a few simple results, where we emphasize that scalar reaction-
diffusion equations can easily be treated as unperturbed gradient systems. How-
ever, for general systems no gradient structure exists. We consider a vector u =
(u1, . . . , uI ) ∈ R

I of concentrations depending on (t, x) ∈ [0, T ] × Ω , where Ω is
a bounded smooth domain inRd , which wemay consider as a periodically structured
solid, surface or interface. The reaction-diffusion system reads
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Mε(x)u̇ = div
(
Aε(x)∇u

) − Fε(x, u) in Ω, Aε(x)∇u · ν = 0 on ∂Ω. (12.21)

Here Mε, Aε, and Fε depend periodically on x in the form

Mε(x) = M

(
1

ε
x

)
, Aε(x) = A

(
1

ε
x

)
, Fε(x, u) = F

(
1

ε
x, u

)
,

where the functions M, A, and F are 1-periodic in the variable y = 1
ε
x ∈ R

d , viz.
M(y + k) = M(y) for all y ∈ R

d and all k ∈ Z
d .

We can apply the theory of perturbed gradient systems by using the spaces X =
L2(Ω;RI ) and Z = H1(Ω;RI ) and the functionals

Eε(u) =
∫

Ω

1

2
∇u · Aε(x)∇u + 1

2
|u|2 dx and Rε(u̇) =

∫

Ω

1

2
u̇ · Mε(x)u̇ dx .

For the perturbation hε we choose hε(t, x, u) = u − Fε(x, u).
In addition to the 1-periodicity, the main assumptions on the functionsM, A, and

F are the following. There exists C, c0 > 0 such that

M = M
� ∈ L∞(Rd;RI×I ), ξ · M(y)ξ ≥ c0|ξ |2,

A = A
� ∈ L∞(Rd;R(I×d) × (I×d)), Ξ : A(y)Ξ ≥ c0|Ξ |2,

F(·, u) ∈ L∞(Rd;RI ), |F(y, u) − F(y, ũ)| ≤ C |u − ũ|,

for all u, ũ ∈ R
I , y, ξ ∈ R

d , and Ξ ∈ R
I × d .

First we observe that the general assumptions (12.2) hold with Dε = Z =
H1(Ω;RI ), α = 2, and Λna = 0. Moreover, (12.3) holds since

R∗
ε(u, hε) ≤ C1‖hε‖2L2 ≤ C(1 + ‖u‖2L2) ≤ ΛngEε(u).

We now show that the theory developed in Sect. 12.3 for the perturbed evolutionary
variational estimate holds. By the definition ofRε it is quadratic on the Hilbert space
H = L2(Ω;RI ), i.e. (12.10) holds. Moreover, Eε is convex, so (12.11) holds with
λ∗ = 0.

To apply Theorem 4 we need to establish convergence for Eε,Rε, and hε. Strong
Γ -convergence of Eε in H (or similarly weak Γ -convergence in Z) holds with

E0(u) =
∫

Ω

(1
2
∇u : Aeff∇u + 1

2
|u|2

)
dx,

where the effective tensor follows from linear homogenization, see e.g. [5, 9].
Since weak convergence in Z = H1(Ω;RI ) implies strong convergence in H =
L2(Ω;RI ), it is easy to show that wε ⇀ w0 in Z implies
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Rε(wε) → R0(w0) =
∫

Ω

1

2
w0 · Meffw0 dx with Meff =

∫

[0,1]d
M(y)dy,

hε(wε) → h0(w0) = w0 − Feff(w0) in H, where Feff(w) =
∫

[0,1]d
F(y,w)dy.

We refer to [27] for the last convergence. Thus, assumption (12.13) is established,
Theorem 4 is applicable, and the limiting perturbed gradient system (H, E0,R0, h0)
is identified by using Aeff, Meff, and Feff in its definition. In particular, the limiting
perturbed gradient flow is given by the effective reaction-diffusion system

Meffu̇ = div
(
Aeff∇u

) − Feff(u).

Of course, the above homogenization problemonly serves as a didactical example,
since the result is well known. However, the theory allows for significant general-
izations. We first mention the homogenization of the Cahn-Hilliard equation in [19],
where also a comparison between the two abstract approaches (PEVE versus EDP)
is done. In [27, 31] the case of ε-dependent diffusion constants is two-scale conver-
gence and proving strong convergence via a suitable Gronwall estimates.

12.5.2 Justification of Amplitude Equations

An application of the theory developed in Sect. 12.3 to the justification of amplitude
equations is given in [22] for the case of pure gradient systems. The suitably rescaled
fourth-order Swift-Hohenberg equation with periodic boundary condition on the
circle S reads

ẇ = − 1

ε2

(
1 + ε2∂2

x )
2w + μw + βεwx − w3 on S := R/2πZ (12.22)

and is a gradient system for β = 0 on the Hilbert space L2(S) for the energy func-
tional FSH

ε (w) = ∫
S

1
2ε2 (w + ε2wxx )

2 − μ

2w
2 + 1

4w
4 dx and the dissipation potential

RSH(ẇ) = 1
2‖ẇ‖2L2 . Here we show that the case β �= 0 can be treated as a perturbed

gradient system.
Because of the special form of the linear operator all typical solutions of (12.22)

will spatially oscillate on the scale ε and are approximately of the form w(t, x) ≈
Re

(
A(t, x)eix/ε

)
. Using a suitable bijection Mε between L2(S) and a proper sub-

space of H := L2(S; ), which satisfies w = Re
(
(Mεw)eix/ε

)
, one can define the

amplitudes Aε = Mεwε ∈ H and finds perturbed gradient systems (H, Eε,Rε, hε)

with Eε(Mεw) = FSH
ε (w),Rε(Mεẇ) = RSH(ẇ), and the non-gradient part hε(A) =

β
(
iA + ε∂x A)/2.
Using the theory developed in [22] (cf. Theorem2.3 there with γ = 0) one

can show that Theorem 4 applies with Z = H1(S; ), and we find evolutionary Γ -
convergence to the perturbed gradient system (H, EGL,RGL, h0) with
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EGL(A) =
∫

S

(
|A′|2 − μ

4
|A|2 + 3

32
|A|4

)
dx and RGL( Ȧ) = 1

4
‖ Ȧ‖2L2

and h0(A) = iβA/2, which leads to the limiting perturbed gradient flow given by
the Ginzburg-Landau equation

Ȧ = 4Axx + (μ + iβ)A − 3
4 |A|2A.

This result is not too surprising, since the perturbation introduced by β �= 0 can be
compensated by a rotation of the form w(t, x) = w̃(t, x − εβt), which then trans-
forms into a phase shift A(t, x) = Ã(t, x)eiβt via Mε.

The theory for perturbed gradient systems can be used in much more general sit-
uations. We may consider a system of two Swift-Hohenberg equations with different
critical wave lengths that are coupled in a non-gradient manner:

u̇ = − 1

ε2

(
1 + ε2∂2

x

)2
u + μ1u + (η + β)w − u3,

ẇ = − 1

ε2

(
1 + μ2ε2∂2

x

)2
w + μ2w + (η − β)u − w3.

We refer to [33] for this model in the caseμ1 = μ2 and η = 0. Here u has the critical
wave length 2πε while that of w is 2πμε. The coupling between the two system
occurs through a gradient term η or a non-gradient term β.

Thus, we can define the associated perturbed gradient system via

H = L2(S)2, RcSH(u̇, ẇ) = 1

2
‖u̇‖2L2 + 1

2
‖ẇ‖2L2 , h(u,w) = β

(
w

−u

)
,

EcSH
ε (u,w) =

∫

S

( (u + ε2uxx )
2 + (w + μ2ε2wxx )

2

2ε2
+ E(u,w)

)
dx

with E(u,w) = −(μ1u2 + μ2w2)/2 − ηuw + (u4 + w4)/4. It is clear that the theory
developed in Sect. 12.3 is principally applicable and that the induced limiting system
for ε → 0 will again be a perturbed gradient system given in terms of two possibly
coupled Ginzburg–Landau equations. However, the critical bifurcations do no longer
occur atμ j = 0. So, one needs to do a careful linear bifurcation analysis first. This and
the justification of the arising amplitude equations will be the content of subsequent
work.

12.5.3 From Diffusion to Reaction

In a series of papers it was shown that simple reactions can be understood as evo-
lutionary Γ -limits of diffusion systems, if the occurrence of a reaction is measured
moving along a reaction path. In particular, for an interchange reaction A � B one
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should consider A and B are minima, which are separated by a saddle point. We refer
to [2, 29, 30] for a series of papers along this spirit.

In [20] a systematic approach based on the energy-dissipation principle was
developed allowing for a simultaneous treatment of diffusion in a physical domain
Ω ∈ R

d with points x ∈ Ω and the diffusion along the chemical reaction variable
y ∈ [0, 1] =: Υ . Denoting by u(t, x, y) the concentration of particles one can write
the master equation based on a gradient system, where the energy functional is the
relative entropy with respect to the equilibrium state wε, namely

Eε(u) =
∫

Ω × Υ

λB
(
u(x, y)/wε(y)

)
wε(y)dy dx with λB(z) := z log z − z + 1,

where the equilibrium state is wε(y) = e−V (y)/ε/Zε with Zε = ∫
Υ
e−V (y)/ε dy. Here

y = 0 corresponds to the pure state A, while y = 1 corresponds to the pure state B.
We assume V (0) = V (1) = 0 and 0 < V (y) < 1 = V (1/2) for y ∈ Υ \ {0, 1/2, 1}.
The full state space X is the set M(Ω ×Υ ) of all non-negative Radon measures on
Ω × Υ .

Since in general the mass per particle can change during reactions we define a
function m : Υ → R>0 such that the total mass

∫
Ω × Υ

m(y)u(t, x, y)dy dx is con-
served. E.g. for the reaction 3O2 � 2O3 one may set m(0) = 2, m(1/2) = 1, and
m(1) = 3, where we assume that y = 1/2 corresponds to O1. Using the function m
we can define a dissipation potential Rε via its Legendre dual

R∗
ε(u, ξ) =

∫

Ω ×Υ

1

2

(
μ(y)|∇xξ |2 + τε

[ ∂yξ

m(y)

]2)
u dy dx,

where μ is a possibly y-dependent spatial mobility and τε � 1 is the chemical
mobility. The latter has to be scaled in a suitable manner to allow the particles to
overcome the potential barrier of size 1/ε at y = 1/2.

Using that DEε(u) = log(u/wε), the master equation (Kolmogorov’s forward
equation) for u is given via u̇ = DξR∗

ε(u,−DEε(u)) and takes the explicit form

u̇ = μ(y)Δxu + τε

m(y)
∂y

(
u ∂y

[ log u + V (y)/ε

m(y)

])
.

Generalizing the results in [20], where only the case m ≡ 1 was treated, it should be
possible to show that the gradient systems (M(Ω × Υ ), Eε,Rε) have the evolution-
ary Γ -limit (M(Ω ×Υ ), E0,R0), where the limit energy E0 is only finite if all the
particles are in pure states y = 0 or y = 1, i.e.

E0(u) =
∫

Ω

(
λB(c0/c

∗
0)c

∗
0 + λB(c1/c

∗
1)c

∗
1

)
dx if u = c0δy=0 + c1δy=1

and +∞ else. This means that we now have two concentrations c0 and c1 depending
only on time t and the physical position x ∈ Ω .
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Fixing m(1/2) = 1 the limiting dissipation potential R∗
0 takes the form

R∗
0(c0, c1; η0, η1) =

∫

Ω

⎛

⎝
1∑

j=0

μ j c j
2 |∇xη j |2 + k

(
cm1
0 cm0

1

)1/2
S∗(m1η0 − m0η1)

⎞

⎠dx

where S∗(η) = 4(cosh(η/2) − 1), μ j = μ( j), and m j = m( j). Thus, we expect
evolutionary convergence to the nonlinear reaction-diffusion system

ċ0 = μ0Δxc0 + m1k
(
(c0/c

∗
0)

m1 − (c1/c
∗
1)

m0
)
,

ċ1 = μ1Δxc1 − m0k
(
(c0/c

∗
0)

m1 − (c1/c
∗
1)

m0
)
.

It is interesting to note that R∗
0 is no longer quadratic in the chemical potentials η j ,

but contains exponential terms throughS∗. This seems to correspond nicely to the de
Donder–Marcelin kinetics as described in [14, Definition3.3], [17, Equation (11)], or
[18, Equation (69)], and generalizes the usual quadratic fluctuation theory, cf. [28].
The importance of the function S∗ for fluctuations in reactions and jump processes
was first highlighted in [25] based on large-deviation principles. Further discussions
are found in [20, 24].
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Chapter 13
Moment Closure—A Brief Review

Christian Kuehn

Abstract Moment closure methods appear in myriad scientific disciplines in the
modelling of complex systems. The goal is to achieve a closed form of a large, usu-
ally even infinite, set of coupled differential (or difference) equations. Each equation
describes the evolution of one “moment”, a suitable coarse-grained quantity com-
putable from the full state space. If the system is too large for analytical and/or
numerical methods, then one aims to reduce it by finding a moment closure relation
expressing “higher-order moments” in terms of “lower-order moments”. In this brief
review, we focus on highlighting how moment closure methods occur in different
contexts. We also conjecture via a geometric explanation why it has been difficult
to rigorously justify many moment closure approximations although they work very
well in practice.

13.1 Introduction

The idea ofmoment-basedmethods ismost easily explained in the context of stochas-
tic dynamical systems. Abstractly, such a system generates a time-indexed sequence
of random variables x = x(t) ∈ X , say for t ∈ [0,+∞) on a given state space X .
Let us assume that the random variable x has a well-defined probability density
function (PDF) p = p(x, t). Instead of trying to study the full PDF, it is a natural
step to just focus on certain moments m j = m j (t) such as the mean, the variance,
and so on, where j ∈ J and J is an index set and M = {m j : j ∈ J } is a fixed
finite-dimensional space of moments. In principle, we may consider any moment
space M consisting of a choice of coarse-grained variables approximating the full
system, not just statistical moments. A typical moment-closure based study consists
of four main steps:
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(S0) Moment Space Select the space M containing a hierarchy of moments m j .
(S1) Moment Equations The next step is to derive evolution equations for the

moments m j . In the general case, such a system will be high-dimensional and
fully coupled.

(S2) Moment ClosureThe large, often even infinite-dimensional, systemofmoment
equations has to be closed tomake it tractable for analytical and numerical tech-
niques. In the general case, the closed system will be nonlinear and it will only
approximate the full system of all moments.

(S3) Justification and Verification One has to justify, why the expansion made in
step (S1) and the approximationmade in step (S2) are useful in the context of the
problem considered. In particular, the choice of the m j and the approximation
properties of the closure have to be answered.

Each of the steps (S0)–(S3) has its own difficulties. We shall not focus on (S0)
as selecting what good ‘moments’ or ‘coarse-grained’ variables are creates its own
set of problems. Instead, we consider some classical choices. (S1) is frequently a
lengthy computation. Deriving relatively small moment systems tends to be a man-
ageable task. For larger systems, computer algebra packages may help to carry out
some of the calculations. Finding a good closure in (S2) is very difficult. Different
approaches have shown to be successful. The ideas frequently include heuristics,
empirical/numerical observations, physical first-principle considerations or a-priori
assumptions. This partially explains, why mathematically rigorous justifications in
(S3) are relatively rare and usually work for specific systems only. However, compar-
isons with numerical simulations of particle/agent-based models and comparisons
with explicit special solutions have consistently shown that moment closure methods
are an efficient tool. Here we shall also not consider (S3) in detail and refer the reader
to suitable case studies in the literature.

Although moment closure ideas appear virtually across all quantitative scientific
disciplines, a unifying theory has not emerged yet. In this review, several lines of
research will be highlighted. Frequently the focus of moment closure research is to
optimize closure methods with one particular application in mind. It is the hope that
highlighting common principles will eventually lead to a better global understanding
of the area.

In Sect. 13.2 we introduce moment equations more formally. We show how to
derive moment equations via three fundamental approaches. In Sect. 13.3 the basic
ideas for moment closure methods are outlined. The differences and similarities
between different closure ideas are discussed. In Sect. 13.4 a survey of different
applications is given. As already emphasized in the title of this review, we do not aim
to be exhaustive here but rather try to indicate the common ideas across the enormous
breadth of the area.
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13.2 Moment Equations

The derivation ofmoment equations will be explained in the context of three classical
examples. Although the examples look quite different at first sight, we shall indicate
how the procedures are related.

13.2.1 Stochastic Differential Equations

Consider a probability space (Ω,F ,P) and letW = W (t) ∈ R
L be a vector of inde-

pendent Brownian motions for t ∈ R. A system of stochastic differential equations
(SDEs) driven by W (t) for unknowns x = x(t) ∈ R

N = X is given by

dx = f (x) dt + F(x) dW (13.1)

where f : RN → R
N , F : RN → R

N×L are assumed to be sufficiently smoothmaps,
and we interpret the SDEs in the Itô sense [1, 2]. Alternatively, one may write (13.1)
usingwhite noise, i.e., via the generalized derivative ofBrownianmotion, ξ := W ′ [1]
as

x ′ = f (x) + F(x)ξ, ′ = d

dt
. (13.2)

For the equivalent Stratonovich formulation see [3]. Instead of studying (13.1)–(13.2)
directly, one frequently focuses on certain moments of the distribution. For example,
one may make the choice to consider

m j (t) := 〈x(t) j 〉 = 〈x1(t) j1 · · · xN (t) jN 〉, (13.3)

where 〈·〉 denotes the expected (or mean) value and j ∈ J , j = ( j1, . . . , jN ), jn ∈
N0, where J is a certain set of multi-indices so that M = {m j : j ∈ J }. Of course,
it should be noted that J can be potentially a very large set, e.g., for the cardinality
of all multi-indices up to order J we have

∣∣∣∣∣

{
j ∈ N

N
0 : | j | =

∑

n

jn ≤ J

}∣∣∣∣∣ =
(
J + N

J

)
= (J + N )!

J !N ! .

However, the main steps to derive evolution equations for m j are similar for every
fixed choice of J, N . After defining m j = m j (t) (or any other “coarse-grained”
variables),wemay just differentiatem j . Consider as an example the case N = 1 = L ,
andJ = {1, 2, . . . , J }, where we write the multi-index simply as j = j ∈ N0. Then
averaging (13.2) yields

m ′
1 = 〈x ′〉 = 〈 f (x)〉 + 〈F(x)ξ 〉,
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which illustrates the problem that we may never hope to express the moment equa-
tions explicitly for any nonlinear SDE if f and/or F are not expressible as convergent
power series, i.e., if they are not analytic. The term 〈F(x)ξ 〉 is not necessarily equal
to zero for general nonlinearities F as

∫ t
0 F(x(s)) dW (s) is only a local martingale

under relatively mild assumptions [2]. Suppose we simplify the situation drastically
by assuming a quadratic polynomial f and constant additive noise

f (x) = a2x
2 + a1x + a0, F(x) ≡ σ ∈ R. (13.4)

Then we can actually use that 〈ξ 〉 = 0 and get

m ′
1 = 〈x ′〉 = a2〈x2〉 + a1〈x〉 + a0 = a2m2 + a1m1 + a0.

Hence, we also need an equation for the moment m2. Using Itô’s formula one finds
the differential

d(x2) = [2x f (x) + σ 2] dt + 2xσ dW

and taking the expectation it follows that

m ′
2 = 2〈a2x3 + a1x

2 + a0x〉 + σ 2 + σ 〈2xξ 〉
= 2(a2m3 + a1m2 + a0m1) + σ 2, (13.5)

where 〈2xξ 〉 = 0 due to themartingale property of
∫ t
0 2x(s) dWs . The key point is that

theODE form2 depends uponm3. The same problem repeats for highermoments and
we get an infinite system of ODEs, even for the simplified case considered here. For
a generic nonlinear SDE, the moment system is a fully-coupled infinite-dimensional
system of ODEs. Equations at a given order | j | = J depend upon higher-order
moments | j | > J , where | j | := ∑

n jn .
Another option to derive moment equations is to consider the Fokker-Plank (or

forward Kolmogorov) equation associated to (13.1)–(13.2); see [3]. It describes the
probability density p = p(x, t |x0, t0) of x at time t starting at x0 = x(t0) and is given
by

∂p

∂t
= −

N∑

k=1

∂

∂xk
[p f ] + 1

2

N∑

i,k=1

∂2

∂xi∂xk
[(FFT )ik p]. (13.6)

Consider the case of additive noise F(x) ≡ σ , quadratic polynomial nonlinearity
f (x) and N = 1 = L as in (13.4), then we have

∂p

∂t
= − ∂

∂x
[(a2x2 + a1x + a0)p] + σ 2

2

∂2 p

∂x2
. (13.7)

The idea to derive equations form j is to multiply (13.7) by x j , integrate by parts and
use some a-priori known properties or assumptions about p. For example, we have
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m ′
1 = 〈x ′〉 =

∫

R

x
∂p

∂t
dx

=
∫

R

−x
∂

∂x
[(a2x2 + a1x + a0)p] dx +

∫

R

x
σ 2

2

∂2 p

∂x2
dx .

If p and its derivative vanish at infinity, which is quite reasonable for many densities,
then integration by parts gives

m ′
1 =

∫

R

[(a2x2 + a1x + a0)p] dx = a2m2 + a1m1 + a0

as expected. A similar calculation yields the equations for other moments. Using the
forwardKolmogorov equation generalizes in a relatively straightforwardway to other
Markov process, e.g., to discrete-time and/or discrete-space stochastic processes; in
fact, many discrete stochastic processes have natural ODE limits [4–7]. In the context
of Markov processes, yet another approach is to utilize the moment generating func-
tion or Laplace transform s 
→ 〈exp[isx]〉 (where i := √−1) to determine equations
for the moments.

13.2.2 Kinetic Equations

A different context where moment methods are used frequently is kinetic theory
[8–10]. Let x ∈ Ω ⊂ R

N and consider the description of a gas via a single-particle
density � = �(x, t, v), which is nonnegative and can be interpreted as a probabil-
ity density if it is normalized; in fact, the notational similarity between p from
Sect. 13.2.1 and the one-particle density � is deliberate. The pair (x, v) ∈ Ω × R

N

is interpreted as position and velocity. A kinetic equation is given by

∂�

∂t
+ v · ∇x� = Q(�), (13.8)

where ∇x =
(

∂
∂x1

, . . . , ∂
∂xN

)�
, suitable boundary conditions are assumed, and � 
→

Q(�) is the collision operator acting only on the v-variable at each (x, t) ∈ R
N ×

[0,+∞) with domain D(Q). For example, for short-range interaction and hard-
sphere collisions [11] one would take for a function v 
→ G(v) the operator

Q(G)(v) =
∫

SN−1

∫

RN

‖v − w‖[G(w∗)G(v∗) − G(v)G(w)] dw dψ

where v∗ = 1
2 (v + w + ‖v − w‖ψ), w∗ = 1

2 (v + w + ‖v − w‖ψ) for ψ ∈ S
N−1 and

S
N−1 denotes the unit sphere in RN . We denote velocity averaging by
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〈G〉 =
∫

RN

G(v) dv,

where the overloaded notation 〈·〉 is again deliberately chosen to highlight the similar-
ities with Sect. 13.2.1. It is standard to make several assumptions about the collision
operator such as the conservation ofmass,momentum, energy aswell as local entropy
dissipation

〈Q(G)〉 = 0, 〈vQ(G)〉 = 0, 〈‖v‖2Q(G)〉 = 0, 〈ln(G)Q(G)〉 ≤ 0. (13.9)

Moreover, one usually assumes that the steady states of (13.8) are Maxwellian
(Gaussian-like) densities of the form

ρ∗(v) = q

(2πθ)N/2
exp

(
−‖v − v∗‖2

2θ

)
, (q, θ, v∗) ∈ R

+ × R
+ × R

N (13.10)

and that Q commutes with certain group actions [8] implying symmetries. Note that
the physical constraints (13.9) have important consequences, e.g., entropy dissipation
implies the local dissipation law

∂

∂t
〈� ln � − �〉 + ∇x · 〈v(� ln � − �)〉 = 〈ln �Q(�)〉 ≤ 0. (13.11)

while mass conservation implies the local conservation law

∂

∂t
〈�〉 + ∇x · 〈v�〉 = 0 (13.12)

with similar local conservation laws for momentum and energy. The local conserva-
tion law indicates that it could be natural, similar to the SDE case above, to multiply
the kinetic equation (13.8) by polynomials and then average. Let {m j = m j (v)}Jj=1
be a basis for a J -dimensional space of polynomials M. Consider a column vector
M = M(v) ∈ R

J containing all the basis elements so that every elementm ∈ M can
be written as m = α�M for some vector α ∈ R

J . Then it follows

∂

∂t
〈�M〉 + ∇x · 〈v�M〉 = 〈Q(�)M〉 (13.13)

by multiplying and averaging. This is exactly the same procedure as for the for-
ward Kolmogorov equation for the SDE case above. Observe that (13.13) is a
J -dimensional set of moment equations when viewed component-wise. This set
is usually not closed. We already see by looking at the case M ≡ v that the second
term in (13.13) will usually generate higher-order moments.
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13.2.3 Networks

Another common situation where moment equations appear are network dynamical
systems. Typical examples occur in epidemiology, chemical reaction networks and
socio-economic models. Here we illustrate the moment equations [12–15] for the
classical susceptible-infected-susceptible (SIS) model [16] on a fixed network; for
remarks on adaptive networks see Sect. 13.4. Given a graph of K nodes, each node
can be in two states, infected I or susceptible S. Along an SI -link infections occur
at rate τ and recovery of infected nodes occurs at rate γ . The entire (microscopic)
description of the system is then given by all potential configurations x ∈ R

N = X
of non-isomorphic graph configurations of S and I nodes. Even for small graphs,
N can be extremely large since already just all possible node configurations without
considering the topology of the graph are 2K . Therefore, it is natural to consider a
coarse-grained description. Let mI = 〈I 〉 = 〈I 〉(t) and mS = 〈S〉 = 〈S〉(t) denote
the average number of infected and susceptibles at time t . From the assumptions
about infection and recovery rates we formally derive

dmS

dt
= γmI − τ 〈SI 〉, (13.14)

dmI

dt
= τ 〈SI 〉 − γmI , (13.15)

where 〈SI 〉 =: mSI denotes the average number of SI -links. In (13.14) the first term
describes that susceptibles are gained proportional to the number of infected times
the recovery rate γ . The second term describes that infections are expected to occur
proportional to the number of SI -links at the infection rate τ . Equation (13.15) can
be motivated similarly. However, the system is not closed and we need an equation
for 〈SI 〉. In addition to (13.14)–(13.15), the result [14, Theorem 1] states that the
remaining second-order motif equations are given by

dmSI

dt
= γ (mI I − mSI ) + τ(mSSI − mI SI − mSI ), (13.16)

dmI I

dt
= −2γmI I + 2τ(mI SI + mSI ), (13.17)

dmSS

dt
= 2γmSI − 2τmSSI , (13.18)

where we refer also to [12, 13]; it should be noted that (13.16)–(13.18) does not seem
to coincide with a direct derivation by counting links [17, (9.2)–(9.3)]. In any case, it
is clear that third-order motifs must appear, e.g., if we just look at the motif I S I then
an infection event generates two new I I -links so the higher-order topological motif
structure does have an influence on lower-order densities. If we pick the second-order
space of moments

M = {mI ,mS,mSI ,mSS,mI I } (13.19)
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the Eqs. (13.14)–(13.15) and (13.16)–(13.18) are not closed. We have the same
problems as for the SDE and kinetic cases discussed previously. The derivation of the
SISmoment equations can be based upon formalmicroscopic balance considerations.
Another option is write the discrete finite-size SIS-model as a Markov chain with
Kolmogorov equation

dx

dt
= Px, (13.20)

which can be viewed as an ODE of 2K equations given by a matrix P . One defines
the moments as averages, e.g., taking

〈I 〉(t) :=
K∑

k=0

kx (k)(t), 〈S〉(t) :=
K∑

k=0

(K − k)x (k)(t),

where x (k)(t) are all states with k infected nodes at time t . Similarly one can define
higher moments, multiply the Kolmogorov equation by suitable terms, sum the equa-
tion as an analogy to the integration presented in Sect. 13.2.2, and derive the moment
equations [14]. For any general network dynamical systems, moment equations can
usually be derived. However, the choice which moment (or coarse-grained) variables
to consider is far from trivial as discussed in Sect. 13.4.

13.3 Moment Closure

We have seen that moment equations, albeit being very intuitive, do suffer from the
drawback that the number of moment equations tends to grow rapidly and the exact
moment system tends to form an infinite-dimensional system given by

dm1
dt = h1(m1,m2, . . .),
dm2
dt = h2(m2,m3, . . .),
dm3
dt = · · · ,

(13.21)

where we are going to assume from now on the even more general case h j =
h j (m1,m2,m3, . . .) for all j . In some cases, working with an infinite-dimensional
system of moments may already be preferable to the original problem. We do not
discuss this direction further and instead try to close (13.21) to obtain a finite-
dimensional system. The idea is to find a mapping H , usually expressing the higher-
order moments in terms of certain lower-order moments of the form

H(m1, . . . ,mκ) = (mκ+1,mκ+2, . . .) (13.22)
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for some κ ∈ J , such that (13.21) yields a closed system

dm1
dt = h1(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)),
dm2
dt = h2(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)),
... = ...

dmκ

dt = hκ(m1,m2, . . . ,mκ , H(m1, . . . ,mκ)).

(13.23)

The two main questions are

(Q1) How to find/select the mapping H?
(Q2) How well does (13.23) approximate solutions of (13.21) and/or of the orig-

inal dynamical system from which the moment equations (13.21) have been
derived?

Here we shall focus on describing the several answers proposed to (Q1). For
a general nonlinear system, (Q2) is extremely difficult and Sect. 13.3.4 provides a
geometric conjecture why this could be the case.

13.3.1 Stochastic Closures

In this section we focus on the SDE (13.1) from Sect. 13.2.1. However, similar prin-
ciples apply to all incarnations of the moment equations we have discussed. One
possibility is to truncate [18] the system and neglect all moments higher than a
certain order, which means taking

H(m1, . . . ,mκ) = (0, 0, . . .). (13.24)

Albeit being rather simple, the advantage of (13.24) is that it is trivial to implement
and does not work as badly as one may think at first sight for many examples. A
variation of the theme is to use the method of steady-state of moments by setting

0 = hκ+1(m1,m2, . . . ,mκ ,mκ+1, . . .),

0 = hκ+2(m1,m2, . . . ,mκ ,mκ+1, . . .),
... = ...

(13.25)

and try to solve for all higher-order moments in terms of (m1,m2, . . . ,mκ) in the
algebraic equations (13.25). As we shall point out in Sect. 13.3.4, this is nothing but
the quasi-steady-state assumption in disguise. Similar ideas as for zero and steady-
sate moments can also be implemented using central moments and cumulants [18].

Another common idea formoment closure principles is tomake an apriori assump-
tion about the distribution of the solution. Consider the one-dimensional SDE exam-
ple (N = 1 = L) and suppose x = x(t) is normally distributed. For a normal distri-
bution with mean zero and variance ν2, we know the moments
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〈x j 〉 = ν j ( j − 1)!!, if j is even, 〈x j 〉 = 0, if j is odd, (13.26)

so one closure method, the so-called Gaussian (or normal) closure, is to set

m j = 0 if j ≥ 3 and j is odd,

m j = (m2)
j/2 ( j − 1)!! if j ≥ 4 and j is even.

A similar approach can be implemented using central moments. If x turns out to
deviate substantially from a Gaussian distribution, then one has to question whether
a Gaussian closure is really a good choice. The Gaussian closure principle is one
choice of a wide variety of distributional closures. For example, one could assume
the moments of a lognormal distribution [19] instead

x ∼ exp[μ̃ + ν̃ x̃], x̃ ∼ N (0, 1), ⇒ 〈x j 〉 = m j = exp

[
jμ̃ + 1

2
j2ν̃2

]
(13.27)

where ‘∼’means ‘distributed according to’ a given distribution andN (0, 1) indicates
the standard normal distribution. Solving for (μ̃, ν̃) in (13.27) in terms of (m1,m2)

yields a moment closure (m3,m4, . . .) = H(m1,m2). The same principle also works
for discrete state space stochastic process, using a-prior distribution assumption. A
typical example is the binomial closure [20] and mixtures of different distributional
closure have also been considered [21, 22].

13.3.2 Physical Principle Closures

In the context of moment equations of the form (13.13) derived from kinetic equa-
tions, a typical moment closure technique is to consider a constrained closure based
upon a postulated physical principle. The constraints are usually derived from the
original kinetic equation (13.8), e.g., if it satisfies certain symmetries, entropy dissi-
pation and local conservation laws, then the closure for the moment equations should
aim to capture these properties somehow. For example, the assumption

span{1, v1, . . . , vN , ‖v‖2} ⊂ M

turns out to be necessary to recover conservation laws [8], while assuming that the
spaceM is invariant under suitable transformations is going to preserve symmetries.
However, even by restricting the space of moments to preserve certain physical
assumptions, this usually does not constraint the moments enough to get a closure.
Following [8] suppose that the single-particle density is given by

� = M(α) = exp[α�M(v)], m = m(v) ∈ M s.t.m(v) = α�M(v) (13.28)

for some moment densities α = α(x, t) ∈ R
J . Using (13.28) in (13.13) leads to
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∂

∂t
〈M(α)M〉 + ∇x · 〈vM(α)M〉 = 〈Q(M(α))M〉. (13.29)

Observe that we may view (13.29) as a system of J equations for the J unknowns
α. Hence, one has formally achieved closure. The question is what really motivates
the exponential ansatz (13.28). Introduce new variables η = 〈M(α)M〉 and define a
function

H(η) = −〈M(α)〉 + α�η

and one may show that α = [DηH ](η). It turns out [8] that H(η) can be computed
by solving the entropy minimization problem

min
�

{〈� ln � − �〉 : 〈M�〉 = η} = H(η), (13.30)

where the constraint 〈M�〉 = η prescribes certainmoments;we recall thatM = M(v)
is the fixed vector containing the moment space basis elements and the relation
α = [DηH ](η) holds. From a statistical physics perspective, it may be more natural
to view (13.30) as an entropy maximization problem [23] by introducing another
minus sign. Therefore, the choice of the exponential function in the ansatz (13.28)
does not only guarantee non-negativity but it was developed as it is the Legendre
transform of the so-called entropy density � 
→ � ln � − � so it naturally relates to
a physical optimization problem [8].

To motivate further why using a closure motivated by entropy corresponds to
certain physical principles, let us consider the ‘minimal’ moment space

M = span{1, v1, . . . , vN , ‖v‖2}

The closure ansatz (13.28) can be facilitated using the vectorM(v) = (1, v1, . . . , vN ,

‖v‖2) but then [24] the ansatz is related to the Maxwellian density (13.10) since

ρ∗(v) = exp[α�M(v)], α =
(
ln

(
q

(2πθ)3/2

)
− ‖v∗‖

2θ
,
v∗
θ

,− 1

2θ

)�

but Maxwellian densities are essentially Gaussian-like densities and we again have
a Gaussian closure. Using a Gaussian closure implies that the moment equations
become the Euler equations of gas dynamics, which can be viewed as a mean-field
model near equilibrium for the mesoscopic single-particle kinetic equation (13.8),
which is itself a limit of microscopic equations for each particle [25, 26].

Taking a larger moment space M one may also get the Navier-Stokes equation
as a limit [8], and this hydrodynamic limit can even be justified rigorously under
certain assumptions [27]. This clearly shows that moment closure methods can link
physical theories at different scales.
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13.3.3 Microscopic Closures

Since there are limit connections between the microscopic level and macroscopic
moment equations, it seems plausible that starting from an individual-based network
model, one may motivate moment closure techniques. Here we shall illustrate this
approach for the SIS-model from Sect. 13.2.3. Suppose we start at the level of first-
order moments and let M = {mI ,mS}. To close (13.14)–(13.15) we want a map

mSI = H(mI ,mS). (13.31)

If we view the density of the I nodes and S nodes as very weakly correlated random
variables then a first guess is to use the approximation

mSI = 〈SI 〉 ≈ 〈S〉〈I 〉 = mSmI . (13.32)

Plugging (13.32) into (13.14)–(13.15) yields the mean-field SIS model

m ′
S = γmI − τmSmI ,

m ′
I = τmSmI − mI .

(13.33)

The mean-field SIS model is one of the simplest examples where one clearly sees
that although the moment equations are linear ODEs, the moment-closure ODEs are
frequently nonlinear. It is important to note that (13.32) is not expected to be valid
for all possible networks as it ignores the graph structure. A natural alternative is to
consider

mSI = 〈SI 〉 ≈ md〈S〉〈I 〉 = mdmSmI , (13.34)

where md is the mean degree of the given graph/network. Hence it is intuitive
that (13.32) is valid for a complete graph in the limit K → ∞ [15].

If we want to find a closure similar to the approximation (13.32) for second-order
moments with M as in (13.19), then the classical choice is the pair-approximation
[28–30]

mabc ≈ mabmbc

mb
, a, b, c ∈ {S, I } (13.35)

which just means that the density of triplet motifs is given approximately by counting
certain link densities that form the triplet. In (13.35) we have again ignored pre-
factors from the graph structure such as the mean excess degree [12, 17]. As before,
the assumption (13.35) is neglecting certain correlations and provides a mapping

(mSSI ,mI SI ) = H(mI I ,mSS,mSI ) =
(
mSSmSI

mS
,
mSImSI

mS

)
(13.36)

and substituting (13.36) into (13.16)–(13.18) yields a system of five closed nonlinear
ODEs. Many other paradigms for similar closures exist. The idea is to use the inter-
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pretation of the moments and approximate certain higher-order moments based upon
certain assumptions for each moment/motif. In the cases discussed here, this means
neglecting certain correlation terms from random variables. At least on a formal
level, this is approach is related to the other closures we have discussed. For exam-
ple, forcing maximum entropy means minimizing correlations in the system while
assuming a certain distribution for the moments just means assuming a particular
correlation structure of mixed moments.

13.3.4 Geometric Closure

All the moment closure methods described so far, have been extensively tested in
many practical examples and frequently lead to very good results; see Sect. 13.4.
However, regarding the question (Q2) on approximation accuracy ofmoment closure,
no completely general results are available. To make progress in this direction I
conjecture that a high-potential direction is to considermoment closures in the context
of geometric invariant manifold theory. There is very little mathematically rigorous
work in this direction [31] although the relevance [32, 33] is almost obvious.

Consider the abstract moment equations (13.21). Let us assume for illustration
purposes that we know that (13.21) can be written as a system

dm1
dt = h1(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .),
dm2
dt = h2(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .),
... = ...

dmκ

dt = hκ(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).
dmκ+1

dt = 1
ε
hκ+1(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).

dmκ+2

dt = 1
ε
hκ+2(m1,m2, . . . ,mκ ,mκ+1,mκ+2, . . .).

... = ...

(13.37)

where 0 < ε � 1 is a small parameter and each of the component functions of the
vector field h is of orderO(1) as ε → 0. Then (13.37) is a fast-slow system [34, 35]
with fast variables (mκ+1,mκ+2, . . .) and slow variables (m1, . . . ,mκ). The classical
quasi-steady-state assumption [36] to reduce (13.37) to a lower-dimensional system
is to take

0 = dmκ+1

dt
, 0 = dmκ+2

dt
, · · · .

This generates a system of differential-algebraic equations and if we can solve the
algebraic equations

0 = hκ+1(m1,m2, . . .), 0 = hκ+2(m1,m2, . . .), · · · (13.38)

via a mapping H as in (13.22) we end up with a closed system of the form (13.23).
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The quasi-steady-state approach hides several difficulties that are best understood
geometrically from the theory of normally hyperbolic invariant manifolds, which
is well exemplified by the case of fast-slow systems. For fast-slow systems, the
algebraic equations (13.38) provide a representation of the critical manifold

C0 = {(m1,m2, . . .) : h j = 0 for j > κ, j ∈ N}.

However, it is crucial to note that, despite its name, C0 is not necessarily a manifold
but in general just an algebraic variety. Even if we assume that C0 is a manifold
and we would be able to find a mapping H of the form (13.22), this mapping is
generically only possible locally [34, 37]. Even if we assume in addition that the
mapping is possible globally, then the dynamics on C0 given by (13.22) does not
necessarily approximate the dynamics of the full moment system for ε > 0. The
relevant property to have a dynamical approximation is normal hyperbolicity, i.e.,
the ‘matrix’ (

∂h j

∂ml

)∣∣∣∣
C0

, j, l ∈ {κ + 1, κ + 2, . . .}

has no eigenvalues with zero real parts; in fact, this matrix is just the total derivative
of the fast variables restricted to points on C0 but for moment equations it is usually
infinite-dimensional. Even if we assume in addition that C0 is normally hyperbolic,
which is a very strong and non-generic assumption for a fast-slow system [34, 35],
then the dynamics given via the map H is only the lowest-order approximation. The
correct full dynamics is given on a slow manifold

Cε = {(mκ+1,mκ+2, . . .) = H(m1,m2, . . . ,mκ) + O(ε)} (13.39)

so H is only correct up to order O(ε). This novel viewpoint on moment closure
shows why it is probably quite difficult [38] to answer the approximation question
(Q2) since for a general nonlinear system, the moment equations will only admit a
closure via an explicit formula locally in the phase space of moments. One has to
be very lucky, and probably make very effective use of special structures [39, 40]
in the dynamical system, to obtain any global closure. Local closures are also an
interesting direction to pursue [41].

13.4 Applications and Further References

Historically, applications of moment closure can at least be traced back to the clas-
sical Kirkwood closure [42] as well as statistical physics applications, e.g., in the
Ising model [43]. The Gaussian (or normal) closure has a long history as well [44].
In mechanical applications and related nonlinear vibrations questions, stochastic
mechanics models have been among the first where moment closure techniques for
stochastic processes have become standard tools [45, 46] including the idea to just
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discard higher-order moments [47]. By now, moment closure methods have perme-
ated practically all natural sciences as evidenced by the classical books [48, 49]. For
SDEs, moment closure methods have not been used as intensively as one may guess
but see [50].

For kinetic theory, closure methods also have a long history, particularly start-
ing from the famous Grad 13-moment closure [51, 52], and moment methods have
become fundamental tools in gas dynamics [53]. One particularly important appli-
cation for kinetic-theory moment methods is the modelling of plasmas [54, 55]. In
general, it is quite difficult to study the resulting kinetic moment equations analyti-
cally [56, 57] butmany numerical approaches exist [58–61]. Of course, themaximum
entropy closure we have discussed is not restricted to kinetic theory [62] and maxi-
mum entropy principles appear in many contexts [63–67].

One area where moment closure methods are employed a lot recently is math-
ematical biology. For example, the pair approximation [12] and its variants [68]
are frequently used in various models including lattice models [69–74], homoge-
neous networks [75, 76] and many other network models [77–80]. Several closures
have also included higher-order moments [81, 82] and truncation ideas are still used
[83–85]. Applications to various different setups for epidemic spreading are myr-
iad [85, 86]. A typical benchmark problem for moment methods in biology is the
stochastic logistic equation [87–93]. Furthermore, spatial models in epidemiology
and ecology have been a focus [94–97]. There are several survey and comparison
papers with a focus on epidemics application and closure-methods available [13,
98–100]. There is also a link from mathematical biology and moment closure to
transport and kinetic equations [101, 102], e.g., in applications of cell motion [103].
Also physical constraints, as we have discussed for abstract kinetic equations, play
a key role in biology, e.g., trying to guarantee non-negativity [86].

Another direction is network dynamics [104], where moment closure methods
have been used very effectively are adaptive, or co-evolutionary, networks with
dynamics of and on the network [30, 105]. Moment equations are one reason why
one may hope to describe self-organization of adaptive networks [106] by low-
dimensional dynamical systems models [107]. Applications include opinion forma-
tion [108, 109] with a focus on the classical voter model [110–112]; see [113] for a
review of closure methods applied to the voter model. Other applications are found
again in epidemiology [114–120] and in game theory [121–123]. The maximum
entropy-closure we introduced for kinetic equations has also been applied in the
context of complex networks [124] and spatial network models in biology [125]. An
overview of the use of the pair approximation, several models, and the relation to
master equations can be found in [126]. It has also been shown that in many cases
low-order or mean-field closures can still be quite effective [127].

On the level of moment equations in network science, one has to distinguish
between purely moment or motif-based choices of the space M and the recent pro-
posal to use heterogeneous degree-based moments. For example, instead of just
tracking the moment of a node density, one also characterizes the degree distrib-
ution [128] of the node via new moment variables [129]. Various applications of
heterogeneous moment equations have been investigated [130, 131].
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Another important applications are stochastic reaction networks [132–134],where
the mean-field reaction-rate equations are not accurate enough [135]. A detailed
computation of moment equations from the master equation of reaction-rate models
is given in [136]. In a related area, turbulent combustionmodels are investigated using
moment closure [137–141]. For turbulent combustion, one frequently considers so-
called conditional moment closures where one either conditions upon the flow being
turbulent or restricts moments to certain parts of phase space; see [142] for a very
detailed review.

Further applications we have not focused on here can be found in genetics [143],
client-server models in computer science [144, 145], mathematical finance [146],
systems biology [147], estimating transport coefficients [148], neutron transport
[149], and radiative transport problems [150, 151]. We have also not focused on
certain methods to derive moment equations including moment-generating functions
[152–154], Lie-algebraic methods [155], and factorial moment expansions [156].

In summary, it is clear that many different areas are actively using moment clo-
sure methods and that a cross-disciplinary approach could yield new insights on the
validity regimes of various methods. Furthermore, it is important to emphasize again
that only a relatively small snapshot of the current literature has been given in this
review and a detailed account of all applications of moment closure methods would
probably fill many books.
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Chapter 14
Feedback Control in Quantum Transport

Clive Emary

Abstract Quantum transport is the study of the motion of electrons through nano-
scale structures small enough that quantum effects are important. In this contribu-
tion I review recent theoretical proposals to use the techniques of quantum feed-
back control to manipulate the properties of electron flows and states in quantum-
transport devices. Quantum control strategies can be grouped into two broad classes:
measurement-based control and coherent control, and both are covered here. I dis-
cuss how measurement-based techniques are capable of producing a range of effects,
such as noise suppression, stabilisation of nonequillibrium quantum states and the
realisation of a nano-electronic Maxwell’s demon. I also describe recent results on
coherent transport control and its relation to quantum networks.

14.1 Introduction

Feedback control of quantum-mechanical systems is a rapidly emerging topic [1, 2],
developed most fully in the field of quantum optics [3]. Only recently have these
ideas been extended to quantum transport, a field which looks to understand and
control the motion of electrons through structures on the nano-scale [4]. The aim of
this contribution is to review these recent developments.

Broadly speaking, quantum feedback strategies may usefully be classified into
two types:

• Measurement-based control, where the quantum system is subject to measure-
ments, the classical information from which forms the basis of the feedback loop;

• Coherent control, where the system, the controller and their interconnections are
phase coherent such that the information flow in the feedback loop is of quantum
information [5].
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Mirroring the situation in optics, most of the work to-date on feedback in quan-
tum transport has been within the measurement-based paradigm. In Sect. 14.2 here,
we discuss a number of different measurement-based schemes and the physical
results they can produce. Initial studies of coherent control in quantum transport
have recently been performed and these are discussed in Sect. 14.3.

The scope of this review is limited to feedback schemes in which the target of
the feedback is the electrons involved in the transport process. We shall not discuss
situations where a transport device, such as a quantum point contact or single-electron
transistor, acts as the readout stage in the feedback control of closed quantum system,
e.g. a charge qubit. Such schemes have been extensively discussed elsewhere [6–9].

14.2 Measurement-Based Control

The basic idea behind measurement-based control in quantum transport is sketched
in Fig. 14.1. Generically, the transport system we are looking to control is a small
quantum system in the Coulomb blockade regime, weakly coupled to leads across
which a potential difference is applied. In this regime, transport takes place via a
series of discrete “jumps” in which electrons tunnel into or out of the system.

Our aim is to control some aspect of this process, be it the statistical properties of
the current flow or the electronic states inside the device, through the establishment
on a feedback loop based on the real-time detection of the electronic jumps using e.g.
a quantum point contact (QPC) [10, 11]. The information gained from this electron

Fig. 14.1 Schematic of a measurement-based feedback control scheme applied to transport through
a quantum dot (QD). The QD is connected to reservoirs (indicated by their chemical potentials μL
and μR) and the arrow indicates current flow. The occupation status of the QD is detected with a
quantum point contact (QPC), whose current gives rise to the time trace, top right. This information
is then processed by control circuitry that modulates the gate potentials VG1(t) and VG2(t) in
response, and in doing so alters the tunnel rates of electrons through the QD. In this way, a feedback
loop is set up to control aspects of charge transfer through the dot
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counting is processed and used to e.g. manipulate the gate voltages that serve to
define the various properties of the transport system such as the tunnel coupling
between dot and reservoirs. It should be noted that, although the system in question
may be a quantum-mechanical one, the feedback loop here is an entirely classical
affair.

14.2.1 Counting Statistics Formalism

The class of systems outlined above readily admits a description in terms of quantum
master equations. The full-counting statistics (FCS) formalism [12], as applied to
master equations [13], provides a convenient way to calculate transport properties,
as well as motivate in a very physical way, various feedback schemes.

Let us consider a transport system described by a Markovian master equation,

ρ̇(t) = Wρ(t), (14.1)

with ρ(t) the reduced density matrix of the system at time t , and W the Liouvillian
superoperator of the system [14]. In a weak-coupling approach, W describes a sim-
ple rate equation with transitions between system eigenstates. Alternatively, in the
infinite bias limit [15], W defines a quantum master equation of Lindblad form with
explicit unitary system dynamics and tunneling described in the local basis.

Irrespective of its precise form, the Liouvillian can be decomposed into terms that
describe jump processes and those that do not. Let us focus in on a single, particular
jump process and decompose the Liouvillian as

W = W0 + J , (14.2)

where J is the superoperator describing the jump process in question, and where W0

describes the remaining evolution without jumps of this kind. Defining ρ(n)(t) as the
density matrix of the system conditioned on n jumps of this type having occurred,
the original master equation can be transformed into the number-resolved master
equation [16]

ρ̇(n)(t) = W0ρ
(n)(t) + J ρ(n−1)(t). (14.3)

Through definition of the Fourier transform ρ(χ; t) ≡ ∑
n einχρ(n)(t), we obtain the

“counting-field-resolved” master equation

ρ̇(χ; t) = W(χ)ρ(χ; t); W(χ) = W0 + eiχJ . (14.4)

This equation forms the basis of FCS calculations in master-equation approaches.
Generalisation to counting more than one type of transition is straightforward.
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14.2.2 Wiseman-Milburn Control and the Stabilisation
of Non-equillibrium Pure States

Perhaps the simplest quantum-control scheme, well understood in quantum optics,
is that due to Wiseman and Milburn [3, 17]. In essence, this scheme monitors the
quantum jumps of the system and, directly after each, applies a fixed control operation
to the system, assumed to act instantaneously. With such a control loop in place,
counting and controlling a particular jump process, the dynamics of the system are
still described by a master equation of the form Eq. (14.4), but with the original
Liouvillian being replaced by its controlled counterpart

W(χ) → WC(χ) = W0 + eiχCJ , (14.5)

where C is the super-operator describing the control operation. This operation is
typically a unitary operation acting on the system, but could also include non-unitary
elements (with possible changes to the counting field structure, e.g. [18]).

Pöltl et al. [19] considered the application of Wiseman-Milburn control to trans-
port models and demonstrated that it could be used to stabilise (in the sense to be
defined below) a certain class of system state. They considered a generic infinite-
bias two-lead transport model with internal coherences, restricted to the zero or one
charge sectors. In this case the Liouvillian can be written as W = W0 + JL + JR

with JL describing electron tunneling in from the left and JR describing tunneling
out to the right. The “no-jump” part of the Liouvillian can then be written in terms
of a non-Hermitian Hamiltonian:

W0ρ = −i
{

H̃ρ − ρ H̃ †
}
. (14.6)

This Hamiltonian has eigenstates H̃ |ψ j 〉 = ε j |ψ j 〉 and 〈ψ̃ j |H̃ = ε j 〈ψ̃ j |, which, in
general, are non-adjoint. Pöltl et al. introduced a control operator C conditioned on
the incoming jumps of the electrons and defined to rotate the post-jump state of the
electron into one of the eigenstates |ψ j 〉. Since these states do not evolve under the
action of W0, an electron in state |ψ j 〉 will remain in it until it tunnels out. The
dynamics of the system with control can therefore described by a simple two-level
model with effective Liouvillian (in the basis of populations of empty and |ψ j 〉 states)

W ( j)
C =

(
−ΓL γ

( j)
R

ΓL −γ
( j)
R

)
, (14.7)

where ΓL is the original rate of tunneling into the system and γ
( j)
R = −2 Im(ε j ) is

the new effective outgoing rate. In the limit of high in-tunneling rate, ΓL → ∞, the
system spends the majority of the time in state |ψ j 〉 and the system is thus stabilized
in this state. The state |ψ j 〉 is a pure state and thus very different from the stationary
state of the system without control, which is typically mixed. Furthermore, due to the
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non-equillibrium character of the effective Hamiltonian, these states are also distinct
from the eigenstates of the original system Hamiltonian.

Reference [19] applied these ideas to a non-equillbrium charge qubit consisting
of a double quantum dot with coherent interdot tunneling. The stationary states of
this model are mixed, to a greater or lesser degree, depending on the interdot tunnel
coupling. By using the above feedback scheme with the appropriate choice of unitary
feedback operator, it was shown to be possible to stabilise states over the complete
surface of the Bloch sphere.

This model was also used to illustrate the effects of the control scheme on the
current flowing through the device. When exact stabilisation takes place and the
system is governed by Eq. (14.7), the FCS of the system naturally reduces to that of
a two-level system. In the limit ΓL → ∞, these statistics become Poissonian, with
all cumulants equal. This contrasts strongly with the FCS of the double quantum dot
without control or with control parameters that do not lead to stabilisation. Thus,
measurement of the output FCS can be used as part of a further (classical) feedback
loop to isolate the stabilising control operation by minimising the distance between
the system FCS distribution and that of a two-level system. The inverse problem
of how to find formally the control operation that stablises a particular state was
discussed for the general case in Ref. [9].

14.2.3 Current-Regulating Feedback

Historically, the first feedback control protocol to be proposed in quantum transport
was that due to Brandes [20], who considered a feedback loop which served to
modify the various elements of Eq. (14.3) such that they inherited a dependence on
the number of jumps to have occurred:

ρ̇(n)(t) = W (n)
0 ρ(n)(t) + J (n)ρ(n−1)(t). (14.8)

In particular, Brandes considered that the new elements in Eq. (14.8) were the same
as without feedback, but multiplied by analytic functions of the form

f [qn(t)]; qn(t) ≡ I0t − n; f [0] = 1. (14.9)

Here, the quantity qn(t) describes the deviation between the actual number of charges
to have flowed through the system, n, and a reference value, defined in terms of a
reference current, I0. In the linear feedback case, we have f (x) = 1 + gx with g a
small, dimensionless feedback parameter. Any rate multiplied by this function will
increase if the actual charge transferred lags behind the reference, and decrease if it
is in excess.

The results obtained with this current-regulating feedback are exemplified by
the simple model of a unidirectional tunnel junction where J (n) = −W (n)

0 = Γ

{1 + g (I0t − n)} is scalar. Without control, this is a Poisson process and all cumu-
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Fig. 14.2 The effect of current-governing feedback. Here is shown the distribution of the number
of electrons n transferred through a tunnel junction at times t = 30, 60, 100, 140, 180 (Γ = 1).
Shown are results for the case without (g = 0) and with linear (g = 0.02) feedback. Inclusion of
the current-governing feedback leads to a freezing of the distribution. From Ref. [20]

lants of the transfered-charge distribution are equal: Ck(t) = Γ t . In particular, the
width of the distribution grows linearly with time: C2(t) ≡ 〈n2〉(t) − 〈n〉2(t) = Γ t .
With control in place, and I0 set as the mean current without control, the first cumulant
is unaltered. However, the second cumulant becomes

C2(t) = 〈n2〉(t) − 〈n〉2(t) = 1

2g

(
1 − e−2gΓ t

)
. (14.10)

Thus, the width of the FCS distribution no longer grows in time, but rather tends
towards a fixed value. Figure 14.2 shows the FCS distribution with and without
control and illustrates that feedback of this type leads to a freezing of the shape of
the distribution. In the long-time limit, then, the relative fluctuation in the electron
number, becomes vanishing small since C2(t)/C1(t) ∼ (2gΓ t)−1. This effect was
also shown to hold for higher-dimensional models, in particular the single-electron
transistor.

One potential application of this effect might be in the control of single-electron
current sources [21], where reduction of the fluctuations in electron current is essen-
tial for the realisation of a useful quantum-mechanical definition of the ampere [22].
In this context, Fricke et al. have demonstrated the current locking of two electron
pumps through a feedback mechanism based on the charging an mesoscopic island
between them [23].
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Whilst the number-dependence of Eq. (14.8) was originally considered to be the
result of some external classical feedback circuit, subsequent work has shown that this
kind of dependence can also arise from microscopic considerations [24]. Recently,
Brandes has shown how the feedback coupling of Eq. (14.9) can arise autonomously
in a series of interacting transport channels [25].

14.2.4 Piecewise-Constant Feedback and Maxwell’s Demon

The idea of piecewise-constant feedback is best illustrated by direct consideration
of the Maxwell’s demon proposal of Ref. [18]. The set-up is exactly as in Fig. 14.1
with the quantum dot restricted to just two states (‘empty’ and ‘full’) and with the
two reservoirs at finite bias and temperature.

The population of the QD is monitored in real time and, with piecewise-constant
feedback, we apply one configuration of top-gate voltages when the QD is occupied,
and a different set when it is empty. The electrons thus experience a different Liou-
villian depending on whether the QD is empty or full. As shown in Refs. [18, 26],
however, it is possible to describe the evolution of the system in terms of a single
Liouvillian which, in the current case, written in the basis populations (empty, full),
reads:

W I
fb(χL , χR) = WE (χL , χR)

(
1 0
0 0

)
+ WF (χL , χR)

(
0 0
0 1

)
. (14.11)

Here WE is the Liouvillian when system in empty, and WF (χL , χR) the Liouvillian
when full. Both left (χL ) and right (χR) counting fields are required.

In Ref. [18] it was assumed that only the dot-lead tunneling rates (and not, for
example, the position of the energy level in the dot) are changed by the feedback
loop. It can easily be seen how this arrangement might lead to a Maxwell’s demon
if we imagine that when the dot is empty, we completely close off tunneling to the
right; and when the dot is full, we reverse the situation, and close tunneling to the left.
In this situation, irrespective of bias or temperature, electrons will be preferentially
transported from left to right through the QD. Even with less extreme modulation
of the barriers, this scheme was shown to still drive a current against an applied
bias, and thus extract work. In the classical limit, changing the barriers in the above
fashion performs no work on the system, and thus, the current flow arises from the
information gain of the feedback loop. This then is equivalent to Maxwell’s demon.
Two further feedback schemes, both based on Wiseman-Milburn style instantaneous
control pulses, were also considered and shown to also give rise to the demon effect.

Subsequently, Esposito and Schaller [27] have formalised the notion of “Maxwell-
demon feedbacks” and studied their thermodynamics. A physical, autonomous
implementation of these ideas was discussed in Ref. [28], where the demon was
realised by a second quantum dot connected to an independent electron reservoir.
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We note also that a similar proposal involving a three-junction electron pump has
also been proposed [29].

Tilloy et al. [30] have described a different method for generating a current through
a transport device at zero bias that combines feedback control with the quantum Zeno
effect [31]. They considered a double quantum dot in which the occupation of individ-
ual dots is continuously monitored. Conditioned on the outcome of this measurement,
the measurement strength is changed: if the electron is found in the right-hand dot,
the measurement strength is increased relative to the other possibilities. Then, due to
the coherent coupling between the dots, the quantum Zeno effect means that the tun-
neling rate to the left dot will be suppressed whilst the rate for the electron to leave
to the right lead remains untouched. The result is a flow of electrons through the
double quantum dot to the right. Unlike in the single-dot Demon considered above,
which may be perceived as a classical effect, the Zeno-based effect is irreducibly
quantum-mechanical in nature.

14.2.5 Feedback Control with Delay

The preceding schemes have all assumed that the control operation is effected on
the system immediately after the detection of a jump. In reality, however, there will
always be a delay, of a time τ say, between detection and actuation. Wiseman con-
sidered the effects of delay on the class of feedback schemes outlined in Sect. 14.2.2
and gave modifications to Eq. (14.5) correct to first order in the delay time [17].
In Ref. [32], I showed that Wiseman’s result actually holds for arbitrary delay time,
providing one makes an additional “control-skipping” assumption, which means that
if a jump occurs within the delay-time of an earlier jump, then the control operation
for the first jump is discarded. With this assumption, it is straightforward to show that
the delay-controlled system still obeys a master equation, but now a nonMarkovian
one. The appropriate replacement for the kernel reads

W(χ) → WDC(χ, z) = W0 + D(χ, z)J eiχ , (14.12)

with

D(χ, z) = 1 + [C − 1] e(W0−z)τ , (14.13)

the delayed control operation. In these expressions, z is the variable conjugate to time
in the Laplace transform. In the time domain, we obtain the delayed nonMarkovian
master equation

ρ̇(t) = Wρ(t) + (C − 1)eW0τJ ρ(t − τ)θ(t − τ), (14.14)

in which the time evolution of the density matrix ρ(t) depends not only on the state
of the system at time t but also at previous time t − τ .
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Reference [32] considered the effect of delay on the state-stabilisation protocol
of Ref. [19] and the Maxwell’s demon of Ref. [18]. The influence of delay on the
current governor was also discussed in [20]. In all these cases, the effects of delay
are deleterious, but some effect of the control loop persists in the presence of delay.
The influence of delay on the thermodynamics of Wiseman-Milburn feedback was
studied in Ref. [33].

14.3 Coherent Control

Coherent feedback seeks to control a quantum system without the additional dis-
turbance produced by the measurement step in measurement-based control. Various
forms of coherent control have been discussed in the literature, e.g. Refs. [5, 34,
35]. However, the only type currently proposed for quantum transport [36, 37] is the
quantum feedback network [35, 38–43], and this is the work we describe here.

14.3.1 Quantum Feedback Networks

In contrast to the measurement-based case, the quantum-feedback-network approach
of Ref. [36] assumes that the system is strongly coupled to the leads, that the motion
of the electrons through system and controller is phase coherent and that electron-
electron interactions can be neglected. In this limit, transport can be described by
Landauer-Büttiker theory [44].

Reference [36] considered that the system to be controlled was a four-terminal
device (see Fig. 14.3), whose scattering matrix could be written in block form as

SS

K

A BA B

C D

N NNN

MM

MM

(b)(a)

Fig. 14.3 a At the centre of the quantum feedback network discussed in Ref. [36] is a four-terminal
device with scattering matrix S. Four leads are labeled A through D: A and B possess N bidirectional
channels and leads C and D possess M . b The feedback loop is realised by connecting leads C and
D together via a controller with scattering matrix, K . Figure taken from Ref. [36]
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S =
(

SI SII

SIII SIV

)
. (14.15)

Here, for example, block SI describes all scattering processes between leads A and B,
SII describes all scattering processes starting in leads C and D and ending in leads A
and B, and so on. All leads support states travelling in both directions. The feedback
network is then formed by connecting leads C and D together through a controller
with scattering matrix K . By considering all possible paths between leads A and B,
the joint scattering matrix for the system-controller network is found to be:

Sfb = SI + SII
1

1 − K SIV
K SIII. (14.16)

One key result stemming from this is that if the control scattering matrix, K , has
the same dimension as the output matrix, Sfb, we can rearrange Eq. (14.16) to give

K = 1

SIV + SIII (Sfb − SI)
−1 SII

. (14.17)

Thus, given an arbitrary original system matrix, S, we can obtain any desired output
Sfb by choosing the control operator as in Eq. (14.17). This was dubbed “ideal control”
in Ref. [36].

14.3.2 Conductance Optimisation

As an example of the use of the feedback network described by Eq. (14.16), Ref. [36]
studied the optimisation of the conductance of chaotic quantum dots. The dots were
modeled with 4N × 4N scattering matrices taken from random matrix theory [45].
The number of active control channels in the controller was set as 1 ≤ M ≤ N and
the elements of K chosen to maximise the conductance of the system-controller
network. Results for the feedback network are shown in Fig. 14.4, and compared
with those for a second network where system and controller are placed in series.
Without control (M = 0), the conductance is given by the random-matrix-theory
result G/(N G0) = 1/2, with G0 the conductance quantum. When M = N , ideal
control is possible for both series and feedback setups and the ballistic conductance
G/(N G0) = 1 is obtained. For 0 < M < N there is a monotonic increase in the
conductance for both series and feedback geometries. However, it is the feedback loop
that offers the greater degree of conductance increase. The calculations of Ref. [36]
also indicate that the feedback-loop geometry is also more robust under the influence
of decoherence.
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Fig. 14.4 Optimised conductance G of an ensemble of chaotic quantum dots under coherent con-
trol plotted as a function of the ratio of control to output dimension, M/N . The conductance is
given in units of the ballistic conductance, N G0, with G0 = 2e2/h. Results are shown for both
feedback (solid circles) and series (open squares) configurations. Increasing the controller dimen-
sion increases the conductance gain towards the ideal-control limit of G = N G0 at M = N . The
feedback geometry outperforms its series counterpart for all 0 < M < N . From Ref. [36]

14.4 Conclusion

In the majority of the proposals reviewed here, the target of the control has been
the current flowing through the device. We have seen ways in which either the
magnitude of the current, as in the Maxwell-demon and coherent-control proposals,
or its statistical properties, as in the governor, can be modified by feedback. The
exception to this was the proposal in Sect. 14.2.2, where the target of the control was
the nonequillibrium states of the electrons inside the system itself. The manipulation
of these states, however, also had a knock-on effect for current, which proved useful
in diagnosing the effectiveness of the control procedure.

Of these proposals, the current-governor and Maxwell demon are the most hopeful
candidates for experimental realisation in the foreseeable future. Indeed, a Maxwell’s
demon, similar in many respects to the one described here, has recently been realised
in the single-electron box [46]. Such schemes are practicable because, although they
take place in quantum-confined nanostructures, they do not rely on quantum coher-
ence for their operation. The time-scales involved can therefore be relatively slow: in
the FCS experiments of Ref. [10], for example, the QD was very weakly coupled to
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the reservoirs so that the typical time between tunnel events was of the order of a mil-
lisecond. Given this sort of timescale, it should be possible to build a control circuit
fast enough to enact the required operations with a speed approximating the instanta-
neous ideal. By way of contrast, the pure-state stabilisation proposal of Ref. [19] can
only function if the control loop operates on a timescale faster than the coherence
time of the system being controlled. For charge coherences, this time is ∼1 ns [47],
rending the construction of the feedback loop a considerable challenge. Progress
could perhaps be made by controlling spin, rather than charge, degrees of freedom,
since spin coherence times in QDs are far longer. We note that all such questions
of external-circuits timescale are side-stepped by coherent-control protocols such as
that described in Sect. 14.3. Here, however, the challenge is to go beyond abstract
analysis and find appropriate physical systems to act as useful controllers.
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Chapter 15
Controlling the Stability of Steady States
in Continuous Variable Quantum Systems

Philipp Strasberg, Gernot Schaller and Tobias Brandes

Abstract For the paradigmatic case of the damped quantum harmonic oscillator
we present two measurement-based feedback schemes to control the stability of its
fixed point. The first scheme feeds back a Pyragas-like time-delayed reference signal
and the second uses a predetermined instead of time-delayed reference signal. We
show that both schemes can reverse the effect of the damping by turning the stable
fixed point into an unstable one. Finally, by taking the classical limit � → 0 we
explicitly distinguish between inherent quantum effects and effects, which would
be also present in a classical noisy feedback loop. In particular, we point out that
the correct description of a classical particle conditioned on a noisy measurement
record is given by a non-linear stochastic Fokker-Planck equation and not a Langevin
equation, which has observable consequences on average as soon as feedback is
considered.

15.1 Introduction

Continuous variable quantum systems are quantum systems whose algebra is
described by two operators x̂ and p̂ (usually called position and momentum), which
obey the commutation relation [x̂, p̂] = i�. Such systems constitute an important
class of quantum systems. They do not only describe the quantum mechanical ana-
logue of the motion of classical heavy particles in an external potential, but they also
arise, e.g., in the quantization of the electromagnetic field. Understanding them is
important, e.g., in quantum optics [1], for purposes of quantum information process-
ing [2, 3], or in the growing field of optomechanics [4]. Furthermore, due to the
pioneering work of Wigner and Weyl, such systems have a well-defined classical
limit and can be used to understand the transition from the quantum to the classical
world [5].
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Fig. 15.1 Generic sketch for a closed-loop feedback scheme, in which we wish to control the
dynamics of a given quantum system. Note that the feedback loop itself is actuated by a classical
controller, i.e., the information after themeasurement is classical (it is a number and not an operator).
Nevertheless, to obtain the correct dynamics of the quantum system one needs to pay additional
attention to the measurement and feedback step

To each quantum system there is an operator associated, called the Hamiltonian
Ĥ , which describes its energy and determines the dynamics of the system if it is
isolated. However, in reality each system is an open system, i.e., it interacts with a
large environment (we call it the bath) or other degrees of freedom (e.g., external
fields). Since the bath is so large that we cannot describe it in detail, it induces
effects like damping, dissipation or friction, which will eventually bring the system
to a steady state. Classically as well as quantummechanically it is often important to
be able to counteract such irreversible behaviour, for instance, by applying a suitably
designed feedback loop.

In the quantum domain, however, feedback control faces additional challenges
compared to the classical world [6], see also Fig. 15.1. Each closed loop control
scheme starts by measuring a certain output of the system and tries to feed the so
gained information back into the system by adjusting some system parameters to
influence its dynamics. In the quantum world—due to the measurement postulate of
quantum mechanics and the associated “collapse of the wavefunction”—the mea-
surement itself significantly disturbs the system and thus, it already influences the
dynamics of the system. If one does not take this fact correctly into account, one easily
arrives at wrong conclusions. Nevertheless, beautiful experiments have shown that
quantum feedback control is invaluable to protect quantum information and to stabi-
lize non-classical states of light and matter in various settings, see e.g. Refs. [7–12]
for a selection of pioneering work in this field.

In this contribution we will apply two measurement based control schemes to
a simple quantum system, the damped harmonic oscillator (HO), by correctly tak-
ing into account measurement and feedback noise at the quantum level (Sects. 15.3
and 15.4). These schemes will reverse the effect of dissipation and—to the best of
our knowledge—have not been considered in this form elsewhere. However, we will
see that our treatment is conceptually very close to a classical noisy feedback loop.
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With this contribution we thus also hope to provide a bridge between quantum and
classical feedback control. For pedagogical reasons we will therefore first present
the necessary technical ingredients (continuous quantummeasurement theory, quan-
tum feedback theory and the phase space formulation of quantum mechanics) in
Sect. 15.2. Due to a limited amount of space we cannot derive them here, but we
will try to make them as plausible as possible. Section 15.5 is then devoted to a
thorough discussion of the classical limit of our results showing which effects are
truly quantum and which can be also expected in a classical feedback loop. In the
last section we will give an outlook about possible applications and extensions of
our feedback loop.

15.2 Preliminary

15.2.1 The Damped Quantum Harmonic Oscillator

We will focus only on the damped HO in this paper, but we will discuss extensions
and applications of our scheme to other systems in Sect. 15.6. Using a canonical
transformation we can rescale position and momentum such that the Hamiltonian of
the HO reads Ĥ = ω( p̂2 + x̂2)/2 with [x̂, p̂] = i�. Introducing linear combinations
of position and momentum, called the annihilation operator â ≡ (x̂ + i p̂)/

√
2� and

its hermitian conjugate, the creation operator â†, we can express the Hamiltonian
as Ĥ = �ω(â†â + 1/2). Note that we explicitly keep Planck’s contant � to take the
classical limit (� → 0) later on.

The state of the HO is described by a density matrix ρ̂, which is a positive,
hermitian operator with unit trace: trρ̂ = 1. If the HO is coupled to a large bath of
different oscillators at a temperature T , it is possible to derive a so-called master
equation (ME) for the time evolution of the density matrix [1, 6, 13]:

∂

∂t
ρ̂(t) = − i

�
[Ĥ , ρ̂(t)] + κ(1 + nB)D[â]ρ̂(t) + κnBD[â†]ρ̂(t). (15.1)

Here, we introduced the dissipator D, which is defined for an arbitrary operator
ô by its action on the density matrix: D[ô]ρ̂ ≡ ôρ̂ô† − {ô†ô, ρ̂}/2 where {â, b̂} ≡
âb̂ + b̂â denotes the anti-commutator. Furthermore, κ > 0 is a rate of dissipation
characterizing how strong the time evolution of the system is effected by the bath
and nB denotes the Bose-Einstein distribution, nB ≡ (eβ�ω − 1)−1, where β ≡ 1/T
is the inverse temperature (we set kB ≡ 1). For later purposes we abbreviate the
whole ME (15.1) by

∂

∂t
ρ̂(t) ≡ L0ρ̂(t), (15.2)

where the “superoperator” L0 is often called the Liouvillian and the subscript 0
refers to the fact that this is the ME for the free time evolution of the HO without
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any measurement or feedback performed on it [6]. Furthermore, it will turn out to
be convenient to introduce a superoperator notation for the commutator and anti-
commutator:

C[ô]ρ̂ ≡ [ô, ρ̂], A[ô]ρ̂ ≡ {ô, ρ̂}. (15.3)

One easily verifies that the time evolution of the expectation values of position
〈x̂〉(t) ≡ tr{x̂ ρ̂(t)} and momentum 〈 p̂〉(t) ≡ tr{ p̂ρ̂(t)} is

d

dt
〈x〉(t) = ω〈p〉(t) − κ

2
〈x〉(t), (15.4)

d

dt
〈p〉(t) = −ω〈x〉(t) − κ

2
〈p〉(t),

as for the classical damped harmonic oscillator. More generally speaking, for an
arbitrary dynamical system these equations describe the generic situation for a two-
dimensional stable steady state (x∗, p∗) = (0, 0) within the linear approximation
around (0, 0). For κ < 0 this would describe an unstable steady state, but physically
we can only allow for positive κ . The positivity of κ is mathematically required
by Lindblad’s theorem [14, 15] to guarantee that Eq. (15.1) describes a valid time
evolution of the density matrix.1

Finally, a reader unfamiliar with this subject might find it instructive to verify that
the canonical equilibrium state

ρ̂eq ∼ e−β Ĥ ∼ e−β�ωâ†â (15.5)

is a steady state of the totalME (15.1) as it is expected from arguments of equilibrium
statistical mechanics.

15.2.2 Continuous Quantum Measurements

In introductory courses on quantum mechanics (QM) one only learns about projec-
tive measurements, which yield the maximum information but are also maximally
invasive in the sense that they project the total state ρ̂ onto a single eigenstate. QM,
however, also allows for much more general measurement procedures [6]. For our
purposes, so-called continuous quantum measurements are most suited. They arise
by considering very weak (i.e., less invasive) measurements, which are repeatedly
performed on the system. In the limit where the time between two measurements
goes to zero and the measurement becomes infinitely weak, we end up with a contin-

1The situation of an unstable fixed point would be modeled by exchanging the operators â and â†

in the dissipators. This would correspond to a negative κ in the equation for the mean position and
momentum. The feedback schemes presented here also work in that case.
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uous quantum measurement scheme. For a quick introduction see Ref. [16]. Using
their notation, one needs to replace k 	→ γ /(4�) to obtain our results.

For our purposes we want to continuously measure (or “monitor”) the position
of the HO. Details of how to model the system-detector interaction can be found
elsewhere [17–21]. Here, we restrict ourselves to showing the results and we try to
make them plausible afterwards. If we neglect any contribution from L0 (Eq. (15.2))
for the moment, the time evolution of the density matrix due to the measurement of
x̂ is [6, 16–21]

∂

∂t
ρ̂(t) = − γ

4�
C2[x̂]ρ̂(t) ≡ Lmeasρ̂(t), (15.6)

i.e., it involves a double commutator with the position operator x̂ as defined in
Eq. (15.3). Here, the new parameter γ has the physical dimension of a rate and
quantifies the strength of the measurement. For γ = 0 we thus recover the case
without any measurement. It is instructive to have a look how the matrix elements of
ρ̂(t) evolve in the measurement basis |x〉 of the position operator x̂ = ∫

dxx |x〉〈x |:
∂

∂t
〈x |ρ̂(t)|x ′〉 = − γ

4�
(x − x ′)2〈x |ρ̂(t)|x ′〉. (15.7)

We thus see that the off-diagonal elements (or “coherences”) are exponentially
damped whereas the diagonal elements (or “populations”) remain unaffected. This
is exactly what we would expect from a weak quantum measurement: the density
matrix is perturbed only slightly but finally, in the long-time limit, it becomes diago-
nal in the measurement basis. Note that in case of a standard projective measurement
scheme, the coherences would instantaneously vanish.

The ME (15.6) is, however, only half of the story because it tells us only about the
average time evolution of the system, i.e., about the whole ensemble ρ̂ averaged over
all possible measurement records. The distinguishing feature of closed-loop control
(as compared to open-loop control) is, however, that we want to influence the system
based on a single (and not ensemble) measurement record. We denote the density
matrix conditioned on a certain measurement record by ρ̂c and call it the conditional
density matrix. Its classical counterpart would be simply a conditional probability
distribution.

In QM, even in absence of classical measurement errors, each single measure-
ment record is necessarily noisy due to the inherent probabilistic interpretation of
measurement outcomes in QM. The measurement signal I (t) associated to the con-
tinuous position measurement scheme above can be shown to obey the stochastic
process [6, 16]

d I (t) = 〈x̂〉c(t)dt +
√

�

2γ η
dW (t). (15.8)
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Here, by 〈x̂〉c(t) we denoted the expectation value with respect to the conditional
density matrix, i.e., 〈x̂〉c(t) ≡ tr{x̂ ρ̂c(t)}. Furthermore, dW (t) is the Wiener incre-
ment. According to the standard rules of stochastic calculus, it obeys the relations
[6, 16]

E[dW (t)] = 0, dW (t)2 = dt (15.9)

where E[. . . ] denotes a (classical) ensemble average over all noisy realizations.
Furthermore, we have introduced a new parameter η ∈ [0, 1], which is used to model
the efficiency of the detector [6, 16, 20] with η = 1 corresponding to the case of a
perfect detector.

Finally, we need to know how the state of the system evolves conditioned on
a certain measurement record. This evolution is necessarily stochastic due to the
stochastic measurement record. The so-called stochastic ME (SME) turns out to be
given by [6, 16]

ρ̂c(t + dt) = ρ̂c(t) + Lmeasρ̂c(t)dt +
√

γ η

2�
A[x̂ − 〈x̂〉c(t)]ρ̂c(t)dW (t). (15.10)

Because it will turn out to be useful, we have written the SME in an “incremental
form”by explicitly using differentials as onewould also do for numerical simulations.
By definition we regard the quantity [ρ̂c(t + dt) − ρ̂c(t)]/dt as being equivalent to
∂t ρ̂c(t). Using Eq. (15.8) we can express the SME alternatively as

ρ̂c(t + dt) = ρ̂c(t) + Lmeasρ̂c(t)dt + γ η

�
A[x̂ − 〈x̂〉c(t)]ρ̂c(t)[d I (t) − 〈x̂〉c(t)dt],

(15.11)

which explicitly demonstrates how our knowledge about the state of the system
changes conditioned on a given measurement record I (t).2 We remark that the SME
for ρ̂c(t) is nonlinear in ρ̂c(t), due to the fact that this in an equation of motion for a
conditional density matrix.

To obtain the ME (15.6) for the average evolution, we only need to average the
SME (15.10) over all possible measurement trajectories. In fact, it can be shown
(see [6, 16]) that Eq. (15.10) has to be interpreted within the rules of Itô stochastic
calculus (as well as all the following stochastic equations unless otherwise men-
tioned) such that

E[ρ̂c(t)dW (t)] = E[ρ̂c(t)]E[dW (t)] = 0 (15.12)

holds. Defining ρ̂(t) ≡ E[ρ̂c(t)], one can readily verify that the SME (15.10) yields
on average Eq. (15.6).

2We explicitly adopt a Bayesian probability theory point of view in which probabilities (or more
generally the density matrix ρ̂) describe only (missing) human information. Especially, different
observers (with possibly different access to measurement records) would associate different states
ρ̂ to the same system.
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Taking the free evolution of the HO into account, Eq. (15.1), the total stochastic
evolution of the system obeys

ρ̂c(t + dt) =
{
1 + (L0 + Lmeas)dt +

√
γ η

2�
A[x̂ − 〈x̂〉c(t)]dW (t)

}
ρ̂c(t). (15.13)

Note that there are no “mixed terms” from the free evolution and the evolution due
to the measurement to lowest order in dt . Furthermore, we remark that a solution of
a SME is called a quantum trajectory in the literature [6, 13, 22].

15.2.3 Direct Quantum Feedback

In the following we will consider a form of quantum feedback control, which is
sometimes called direct quantum feedback control because the measurement signal
is directly fed back into the system (possibly with a delay) without any additional
post-processing of the signal as, e.g., filtering or parameter estimation [21]. Direct
quantum feedback based on a continuous measurement scheme was developed by
Wiseman and Milburn [23–25]. Experimentally, the idea would be to continuously
adjust a parameter of the Hamiltonian based on the measurement outcome (15.8) to
control the dynamics of the system. Theoretically, we define the feedback control
superoperator F

[ρ̇c(t)]fb = F ρ̂c(t) ≡ − i

�

d I (t)

dt
C[ẑ]ρ̂c(t), (15.14)

which describes a change of the free system Hamiltonian Ĥ = ω( p̂2 + x̂2)/2 to a
new effective Hamiltonian ω( p̂2 + x̂2)/2 + d I (t)

dt ẑ containing a new term propor-
tional to the measurement result and an arbitrary hermitian operator ẑ (with units
of ẋ). Here, we neglected any delay and assumed an instantaneous feedback of the
measurement signal, but a delay can be easily incorporated, too, see Sect. 15.3.

Because the action of the feedback superoperator F on the system was merely
postulated, we do not a priori know whether we have to interpret it according to the
Itô or Stratonovich rules of stochastic calculus, but it turns out that only the latter
interpretation gives senseful results [6, 23, 24]. Then, the effect of the feedback
on the total time evolution of the system (including the measurement and free time
evolution) can be found by exponentiating Eq. (15.14) [6, 23, 24]

ρ̂c(t + dt) = eFdt

{
1 + L0dt + Lmeasdt +

√
γ η

2�
H[x̂]dW (t)

}
ρ̂c(t) (15.15)

and this equation is again of Itô type. Note that by construction this equation assures
that the feedback step happens after the measurement as it must due to causality.
Now, expanding eFdt to first order in dt with d I (t) from Eq. (15.8) (note that this
requires to expand the exponential function up to second order due to the contribution
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from dW (t)2 = dt) and using the rules of stochastic calculus gives the effective SME
under feedback control:

ρ̂c(t + dt) = ρ̂c(t) + dt

{
L0 + Lmeas − i

2�
C[ẑ]A[x̂] − 1

4�γ η
C2[ẑ]

}
ρ̂c(t)

(15.16)

+ dW (t)

{√
γ η

2�
A[x̂ − 〈x̂〉c(t)] − i

�

√
�

2γ η
C[ẑ]

}
ρ̂c(t).

Ifwe take the ensemble average over themeasurement records,weobtain the effective
feedback ME

∂

∂t
ρ̂(t) =

{
L0 + Lmeas − i

2�
C[ẑ]A[x̂] − 1

4�γ η
C2[ẑ]

}
ρ̂(t) (15.17)

or more explicitly for our model

∂

∂t
ρ̂(t) = − i

�

{
[Ĥ , ρ̂(t)] + 1

2
[ẑ, x̂ ρ̂(t) + ρ̂(t)x̂]

}

+ κ(1 + nB)D[â]ρ̂(t) + κnBD[â†]ρ̂(t) (15.18)

− γ

4�
[x̂, [x̂, ρ̂(t)]] − 1

4�γ η
[ẑ, [ẑ, ρ̂(t)]].

Note that this equation is again linear in ρ̂(t) as it must be for a consistent statistical
interpretation.

Before we give a short review about the last technically ingredient we need, which
is rather unrelated to the previous content, we give a short summary. We have intro-
duced the ME (15.1) for a HO of frequency ω, which is damped at a rate κ due to the
interaction with a heat bath at inverse temperature β. We then started to continuously
monitor the system at a rate γ with a detector of efficiency η. This procedure gave
rise to a SME (15.13) conditioned on the measurement record (15.8). Finally, we
applied feedback control by instantaneously changing the system Hamiltonian using
the operator ẑ, which resulted in the effective ME (15.17).

15.2.4 Quantum Mechanics in Phase Space

The phase space formulation of QM is an equivalent formulation of QM, in which
one tries to treat position and momentum on an equal footing (in contrast, in the
Schrödinger formulation one has to work either in the position or (“exclusive or”)
momentum representation). By its design, phase space QM is very close to the
classical phase space formulation of Hamiltonian mechanics and it is a versatile tool
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for a number of problems. For a more thorough introduction the reader is referred to
Refs. [1, 5, 22, 26–28].

The central concept is to map the density matrix ρ̂ to an object called the Wigner
function:

W (x, p) ≡ 1

�π

∫ ∞

−∞
dy〈x − y|ρ̂|x + y〉e2i py/�. (15.19)

The Wigner function is a quasi-probability distribution meaning that it is properly
normalized,

∫
dxdpW (x, p) = 1, but can take on negative values. The expectation

value of any function F(x, p) in phase space can be computed via

〈F(x, p)〉 =
∫

R2

dxdpF(x, p)W (x, p) = tr{ f̂ (x̂, p̂)ρ̂}, (15.20)

where the associated operator-valued observable f̂ (x̂, p̂) can be obtained from
F(x, p) via the Wigner-Weyl transform [5, 22, 28]. Roughly speaking this transfor-
mation symmetrizes all operator valued expressions. For instance, if F(x, p) = xp,
then f̂ (x̂, p̂) = (x̂ p̂ + p̂x̂)/2.

Each ME for a continuous variable quantum system can now be transformed to
a corresponding equation of motion for the Wigner function. This is done by using
certain correspondence rules between operator valued expressions and their phase
space counterpart, e.g.,

x̂ ρ̂ ↔
(
x + i�

2

∂

∂p

)
W (x, p), (15.21)

which can be verified by applying Eq. (15.19) to x̂ ρ̂ and some algebraic manipula-
tions [22, 27].

The big advantage of the phase space formulation of QM is now that many MEs
(namely thosewhich can be called “linear”) transform into an ordinaryFokker-Planck
equation (FPE), for which many solution techniques are known [29]. We denote the
general FPE for two variables (x, p) as

∂

∂t
W (x, p, t) =

{
−∇T · d + 1

2
∇T · D · ∇

}
W (x, p, t) (15.22)

where∇T ≡ (∂x , ∂p), the dot denotes a matrix product, d is the drift vector and D the
diffusion matrix. It is then straightforward to confirm that theME (15.1) corresponds
to a FPE with

dx = ωp − κ

2
x, dp = −ωx − κ

2
p, (15.23)

Dxx = Dpp = κ�
1 + 2nB

2
, Dxp = Dpx = 0.
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The SME (15.10) instead transforms to an equation for the conditional Wigner func-
tion Wc(x, p, t) and reads

Wc(x, p, t + dt) =
{
1 + dt

γ �

4

∂2

∂p2
+ dW (t)

√
2γ η

�
[x − 〈x〉c]

}
Wc(x, p, t).

(15.24)

This does not have the standard form of a FPE. The additional term, however, does
not cause any trouble in the interpretation of the Wigner function because we can
still confirm that

∫
dxdpWc(x, p, t) = 1.

Finally, we point out that the transition from quantum to classical physics is
mathematically accomplished by the limit� → 0 [5]. Physically, of course, we do not
have � = 0 but the classical action of the particles motion becomes large compared
to �. We will discuss the classical limit of our equations in detail in Sect. 15.5.

15.3 Feedback Scheme I

The first feedback scheme we consider is the quantum analogue of the classical
scheme considered in Ref. [30]. There the authors used a time delayed reference
signal of the form 〈x̂〉(t) − 〈x̂〉(t − τ) to control the stability of the fixed point.3 In
our case we have to use the nosiy signal (15.8), i.e., we perform feedback based on

δ I (t, τ ) ≡ [I (t) − I (t − τ)]dt (15.25)

= [〈x̂〉(t) − 〈x̂〉τ (t)]dt +
√

�

2γ η
[dW (t) − dWτ (t)]

Here, a subscript τ indicates a shift of the time argument, i.e., fτ (t) ≡ f (t − τ).
Due to this special form such feedback schemes are sometimes called Pyragas-like
feedback schemes [33]. It should be noted however that we do not have a chaotic sys-
tem here and we do not want to stabilize an unstable periodic orbit. In this respect,
our feedback scheme is still an invasive feedback scheme, because the feedback-
generated force does not vanish even if our goal to reverse the effect of the damping
was achieved. We emphasize that such feedback schemes are widely used in clas-
sical control theory to influence the behaviour of, e.g., chaotic systems or complex
networks [34, 35] and quite recently, there has been also a considerable interest to
explore its quantum implications [36–43]. However, except of the feedback scheme
in Ref. [41], the feedback schemes above were designed as all-optical or coherent

3In fact, in Ref. [30] they did not only feed back the results from a position measurement, but also
from a momentum measurement. The simultaneous weak measurement of position and momentum
can be also incorporated into our framework [17, 31, 32], but this would merely add additional
terms without changing the overall message.
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control schemes, in which the system is not subjected to an explicit measurement, but
the environment is suitable engineered such that it acts back on the system in a very
specificway.Wewill compare our scheme (which is based on explicit measurements)
with these schemes towards the end of this section.

To see howour feedback scheme influences our system,we can still useEq. (15.15)
togetherwith themeasurement signal (15.25).Choosing ẑ = k p̂with k ∈ R andusing
that dW (t)dWτ (t) = 0 for τ �= 0 we obtain the SME

ρ̂c(t + dt) = {1 + dt[L0 + Lmeas]} ρ̂c(t)

− dt

{
ik

2�
C[ p̂]A[x̂ − 〈x〉c(t)] − ik

�
[〈x̂〉(t) − 〈x̂〉τ (t)]C[ p̂] − k2

2�γ η
C2[ p̂]

}
ρ̂c(t)

(15.26)

+ dW (t)

√
γ η

2�
A[x̂ − 〈x〉c(t)]ρ̂c(t) − ik√

2�γ η
[dW (t) − dWτ (t)]C[ p̂]ρ̂c(t).

It is important to emphasize that also time-delayed noise enters the equation ofmotion
for ρ̂c(t). Because we do not knowwhatE[ρ̂c(t)dWτ (t)] is in general, there is a priori
no ME for the average time evolution of ρ̂(t). Approximating E[ρ̂c(t)dWτ (t)] ≈ 0
yields nonsense (the resulting ME would not even be linear in ρ̂). This is, however,
not a quantum feature and is equally true for classical feedback control based on a
noisy, time-delayed measurement record (also see Sect. 15.5).

Due to the fact that there is no average ME, we are in principle doomed to simu-
lated the SME (15.26) and average afterwards. However, as it turns out Eq. (15.26)
can be transformed into a stochastic FPEwhose solution is expected to be a Gaussian
probability distribution. We will then see that the covariances indeed evolve deter-
ministicly. Furthermore, it is possible to analytically deduce the equation of motion
for the mean values on average. Within the Gaussian approximation we then have
full knowledge about the evolution of the system.

Using the results from Sect. 15.2.4 we obtain

Wc(x, p, t + dt) = Wc(x, p, t) + dt

(
−∇T · d + 1

2
∇T · D · ∇

)
Wc(x, p, t)

(15.27)

+
{√

2γ η

�
dW (x − 〈x〉c) − k

√
�

2γ η
(dW − dWτ )

∂

∂x

}
Wc(x, p, t)

with the nonvanishing coefficients

dx = ωp − κ

2
x + k[x − 〈x〉c,τ (t)], dp = −ωx − κ

2
p, (15.28)

Dxx = κ�
1 + 2nB

2
+ �k2

γ η
, Dpp = κ�

1 + 2nB

2
+ �γ

2
. (15.29)
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We introduce the conditional covariances by

Vx,c ≡ 〈x2〉c − 〈x〉2c, Vp,c ≡ 〈p2〉c − 〈p〉2c, Cc ≡ 〈xp〉c − 〈x〉c〈p〉c (15.30)

wherewedropped already any time argument for notational convenience (wekeep the
subscript τ to denote the time-delay though). The time-evolution of the conditional
means is then given by

d〈x〉c =
{
ω〈p〉c − κ

2
〈x〉c + k(〈x〉c − 〈x〉c,τ )

}
dt (15.31)

+ k

√
�

2γ η
(dW − dWτ ) +

√
2γ η

�
Vx,cdW,

d〈p〉c =
{
−ω〈x〉c − κ

2
〈p〉c

}
dt +

√
2γ η

�
CcdW (15.32)

Note that—for a stochastic simulation of these equations—we are required to sim-
ulate the equations for the covariances (Eqs. (15.35)–(15.37)), too. Interestingly,
however, because the time-delayed noise enters only additively, we can also average
these equations to obtain the unconditional evolution of the mean values directly:

d

dt
〈x〉 = ω〈p〉 − κ

2
〈x〉 + k(〈x〉 − 〈x〉τ ), (15.33)

d

dt
〈p〉 = − ω〈x〉 − κ

2
〈p〉. (15.34)

These equations are exactly the same as the classical equations in Ref. [30] if one
considers only position measurements. Hence, we can successfully reproduce the
classical feedback scheme on average. Unfortunately the treatment of delay differ-
ential equations is very complicated and our goal is not to study these equations
in detail now. However, the reasoning why we can turn a stable fixed point into
an unstable one goes like this: for k = 0 we clearly have a stable fixed point but
for k � κ we might neglect the term − κ

2 〈x〉 for a moment. If we choose τ = π/ω

(corresponding to half of a period of the undamped HO), we see that the “feedback
force” k(〈x〉 − 〈x〉τ ) is always positive if 〈x〉 > 0 and negative if 〈x〉 < 0 (we assume
k > 0). Hence, by looking at the differential equation it follows that the feedback
term generates a drift “outwards”, i.e., away from the fixed point (0, 0), which at
some point also cannot be compensated anymore by the friction of the momentum
− κ

2 〈p〉. From the numerics, see Fig. 15.2, we infer that the critical feedback strength,
which turns the stable fixed point into an unstable one is k ≥ κ

2 , also see Ref. [30]
for a more detailed discussion of the domain of control.

Turning to the time evolution of the conditional covariances we obtain4

4Pay attention to the fact that we are using an Itô stochastic differential equation where the ordinary
chain rule of differentiation does not apply. Instead, we have for instance for the stochastic change
of the position variance dVx,c = d〈x2〉c − 2〈x〉cd〈x〉c − (d〈x〉c)2.
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Fig. 15.2 Parametric plot of (〈x〉, 〈p〉)(t) as a function of time t ∈ [0, 20] for different feedback
strengths k based on Eqs. (15.33) and (15.34). The initial condition is (〈x〉, 〈p〉)(t) = (1, 0) for
t ≤ 0 and the other parameters are ω = 1, κ = 0.1 and τ = π . Note that the trajectory for k = κ is
not a perfect circle due to the asymmetric feedback, which is only applied to the x-coordinate and
not to p

dVx,c =
{
−κVx,c + 2ωCc − 2γ η

�
V 2
x,c + κ�

1 + 2nB

2

}
dt

+
√
2γ η

�

〈
(x − 〈x〉c)3

〉
c dW, (15.35)

dVp,c =
{
−κVp,c − 2ωCc − 2γ η

�
C2
c + κ�

1 + 2nB

2
+ �γ

2

}
dt

+
√
2γ η

�

〈
(x − 〈x〉c)(p − 〈p〉c)2

〉
c dW, (15.36)

dCc =
{
ω(Vp,c − Vx,c) − κCc − 2γ η

�
Vx,cCc

}
dt

+
√
2γ η

�

〈
(x − 〈x〉c)2(p − 〈p〉c)

〉
c
dW. (15.37)

Unfortunately, we see that all the stochastic terms proportional to dW involve third
order cumulants, which would in turn require to deduce equations for them as well.
However, if we assume that the state of our system isGaussian, these terms vanish due
to the fact that third order cumulants of a Gaussian are zero. In fact, the assumption
of a Gaussian state seems reasonable5: first of all, if the system is already Gaussian,
it will also remain Gaussian for all times because then the Eqs. (15.31) and (15.32) as
well as Eqs. (15.35)–(15.37) form a closed set. Second, even if we start with a non-
Gaussian distribution, the state is expected to rapidly evolve to a Gaussian due to the
continuous position measurement and the environmentally induced decoherence and

5We remark that a Gaussian state in QM, i.e., a system described by a Gaussian Wigner function,
might still exhibit true quantum features like entanglement or squeezing [2, 3].
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dissipation [44]. Then, the time evolution of the conditional covariances becomes
indeed deterministic, i.e., the covariances (but not the means) behave identically in
each single realization of the experiment:

d

dt
Vx,c = − κVx,c + 2ωCc − 2γ η

�
V 2
x,c + κ�

1 + 2nB

2
, (15.38)

d

dt
Vp,c = − κVp,c − 2ωCc − 2γ η

�
C2
c + κ�

1 + 2nB

2
+ �γ

2
, (15.39)

d

dt
Cc =ω(Vp,c − Vx,c) − κCc − 2γ η

�
Vx,cCc. (15.40)

Thus, we can fully solve the conditional dynamics of the system by first solving the
ordinary differential equations for the covariances and then, using this solution, we
can integrate the stochastic equations (15.31) and (15.32) for the means.

Because the time evolution of the conditional covariances is the same for the
second feedback scheme, we will discuss them in more detail in Sect. 15.4. Here,
we just want to emphasize that we cannot simply average the conditional covari-
ances to obtain the unconditional ones, i.e., E[Vx,c] �= Vx ≡ ∫

dxdpx2W (x, p) −
[∫ dxdpxW (x, p)]2 in general. In fact, the conditional and unconditional covari-
ances can behave very differently, see Sect. 15.4.

Finally, let us say a few words about our feedback scheme in comparison with the
coherent control schemes in Refs. [36–40, 42, 43], which are designed for quantum
optical systems and use an external mirror to induce an intrinsic time-delay in the
system dynamics. Clearly, the advantage of the coherent control schemes is that they
do not introduce additional noise because they avoid any explicit measurement. On
the other hand, in our feedback loop we have the freedom to choose the feedback
strength k at our will, which allows us to truely reverse the effect of dissipation. In
fact, due to simple arguments of energy conservation, the coherent control schemes
can only fully reverse the effect of dissipation if the external mirrors are perfect.
Otherwise the overall system and controller is still loosing energy at a finite rate such
that the system ends up in the same steady state as without feedback. Thus, as long
as the coherent control loop does not have access to any external sources of energy, it
is only able to counteract dissipation on a transient time-scale except one allows for
perfect mirrors, which in turn would make it unnessary to introduce any feedback
loop at all in our situation. It should be noted, however, that for transient time-scales
coherent feedback might have strong advantages or it might be the case that one is
not primarily interested in the prevention of dissipation (in fact, in Ref. [40] they
use the control loop to speed up dissipation). The question whether one scheme is
superior to the other is thus, in general, undecidable and needs a thorough case to
case analysis.
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15.4 Feedback Scheme II

Wewish to present a second feedback scheme, in which we replace the time-delayed
signal by a fixed reference signal such that no time-delayed noise enters the descrip-
tion and hence, we are not forced to work with a SME like Eq. (15.26). The mea-
surement signal we wish to couple back is thus of the form

δ I (t) = [I (t) − x∗(t)]dt = [〈x〉(t) − x∗(t)]dt +
√

�

2γ η
dW (t) (15.41)

and our aim is to synchronize the motion of the HOwith the external reference signal
x∗(t). Choosing ẑ = k p̂ and using Eq. (15.15) yields the SME

ρ̂c(t + dt) = ρ̂c(t)

+ dt

{
L0 + Lmeas − ik

2�
C[ p̂]{A[x̂] − 2x∗(t)} − k2

4�γ η
C2[ p̂]

}
ρ̂c(t)

(15.42)

+ dW (t)

{√
γ η

2�
H[x̂] − ik√

2�γ η
C[ p̂]

}
ρ̂c(t).

The associated FPE (15.22) for the conditional Wigner function is given by

Wc(x, p, t + dt) = Wc(x, p, t) + dt

(
−∇T · d + 1

2
∇T · D · ∇

)
Wc(x, p, t)

(15.43)

+ dW (t)

[√
2γ η

�
(x − 〈x〉c) − k

√
�

2γ η

∂

∂x

]
Wc(x, p, t)

with the nonvanishing coefficients

dx = ωp − κ

2
x + k[x − x∗(t)], dp = −ωx − κ

2
p, (15.44)

Dxx = κ�
1 + 2nB

2
+ �k2

2γ η
, Dpp = κ�

1 + 2nB

2
+ �γ

2
.

Because we have no time-delayed noise here, the average, unconditional evolution
of the system can be simply obtained by dropping all terms proportional to the noise
dW (t) due to Eq. (15.12). We thus have a fully Markovian feedback scheme here.
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The equation of motion for the conditional means are

d〈x〉c =
{
ω〈p〉 − κ

2
〈x〉 + k[〈x〉 − x∗(t)]

}
dt (15.45)

+
(√

2γ η

�
Vx,c + k

√
�

2γ η

)
dW (t),

d〈p〉c =
{
−ω〈x〉 − κ

2
〈p〉

}
dt +

√
2γ η

�
CcdW (t) (15.46)

from which the average evolution directly follows:

d

dt
〈x〉 = ω〈p〉 − κ

2
〈x〉 + k[〈x〉 − x∗(t)], (15.47)

d

dt
〈p〉 = −ω〈x〉 − κ

2
〈p〉. (15.48)

Again, it is not our purpose to investigate these equations in detail, but we will only
focus on the special situation k = κ/2 and x∗(t) = −y0 cos(ωt). Then,

d

dt
〈x〉 = ω〈p〉 + y0κ

2
cos(ωt), (15.49)

d

dt
〈p〉 = −ω〈x〉 − κ

2
〈p〉. (15.50)

These equations lookvery similar to the classical differential equation of an externally
forced harmonic oscillator.6 However, it is important to emphasize that we do not
have an open-loop control scheme here although it looks like it at the average level
of the means. The asymptotic solution of Eqs. (15.49) and (15.50) is given by

lim
t→∞ 〈x〉(t) = y0 cos(ωt) + κy0

2ω
sin(ωt), (15.51)

lim
t→∞ 〈p〉(t) = −y0 sin(ωt). (15.52)

Within the weak-coupling regime it is natural to assume that κ/ω � 1 and we
asymptotically obtain a circular motion (〈x〉, 〈p〉)(t) ≈ y0(cosωt,− sinωt). It is
worth to stress that we always reach the asymptotic solution independent of the
chosen initial condition, also see Fig. 15.3. As a consequence, the limit cycle given
by Eqs. (15.51) and (15.52) is stable. In contrast, the equations of motion for the
first scheme are completely scale-invariant, i.e., an arbitrary scaling of the form
(〈x̃〉, 〈 p̃〉) ≡ α(〈x〉, 〈p〉), α ∈ R, leaves the Eqs. (15.33) and (15.34) unchanged and
the effect of the feedback depends on the initial condition.

6Indeed, if we would choose the feedback operator ẑ = kx̂ , the resulting differential equations for
〈x〉 and 〈p〉 would exactly resemble the differential equation of a classical harmonic oscillator with
sinusoidal driving force.
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Fig. 15.3 Plot of the average mean values 〈x〉(t) and 〈p〉(t) as a function of time t (black, thick
lines) compared to the asymptotic solution given by Eqs. (15.51) and (15.52) (red, thin lines). The
upper panel corresponds to the initial condition (〈x〉, 〈p〉)(0) = (1/2, 1/2) and the lower one to
(〈x〉, 〈p〉)(0) = (3, 3). Other parameters are ω = 1, κ = 1/4 and y0 = 2

Within theGaussian assumption, the conditional covariances (i.e., the covariances
an observer with access to the measurement result would associate to the state of the
system) evolve as for the first scheme according to

d

dt
Vx,c = −κVx,c + 2ωCc − 2γ η

�
V 2
x,c + κ�

1 + 2nB

2
, (15.53)

d

dt
Vp,c = −κVp,c − 2ωCc − 2γ η

�
C2
c + κ�

1 + 2nB

2
+ �γ

2
, (15.54)

d

dt
Cc = ω(Vp,c − Vx,c) − κCc − 2γ η

�
Vx,cCc. (15.55)

In contrast, the unconditional covariances (which an observer without access to the
measurement results would associate to the state of the system) obey

d

dt
Vx = (2k − κ)Vx + 2ωC + κ�

1 + 2nB

2
+ �k2

2γ η
, (15.56)

d

dt
Vp = −κVp − 2ωC + κ�

1 + 2nB

2
+ �γ

2
, (15.57)

d

dt
C = ω(Vp − Vx ) + (k − κ)C. (15.58)

Comparing both sets of equations, the most striking difference is that Eqs. (15.53)–
(15.55) are nonlinear differential equations whereas Eqs. (15.56)–(15.58) are linear.
Especially note the term proportional to − 2γ η

�
V 2
x,c in Eq. (15.53), which tends to
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squeeze the wavepacket in the x-direction. This is the effect of the continuous mea-
surement performed on the system, which tends to localize the state. However, if we
average over (or, equivalently, ignore) themeasurement results, this effect is missing.
Furthermore, note that Eqs. (15.53)–(15.55) do not contain the parameter k, which
quantifies how strongly we feed back the signal.

Solving Eqs. (15.53)–(15.55) for its steady state is possible, but the exact expres-
sions are extremely lengthy. However, to see how the continuous measurement influ-
ences the conditional covariances we will have a look at the special case of no damp-
ing (κ = 0). To appreciate this casewe remind us that the steady state covariances of a
dampedHO for nomeasurement and no feedback are given byVx = Vp = �(nB + 1

2 )

and C = 0.7 Especially, at zero temperature (nB = 0), we have a minimum uncer-
tainty wave packet satisfying the lower bound of the Heisenberg uncertainty relation,
VxVp = �

2/4. Now, for κ = 0, we can expand the conditional covariances in powers
of γ :

lim
t→∞ Vx,c(t) = �

2
√

η
−

√
η�γ 2

16ω2
+ O(γ 3), (15.59)

lim
t→∞ Vp,c(t) = �

2
√

η
+ 3

√
η�γ 2

16ω2
+ O(γ 3), (15.60)

lim
t→∞Cc(t) = �γ

4ω
+ O(γ 3). (15.61)

We see that the uncertainty in position is reduced at the expense of an increased
uncertainty in momentum. This is exactly what we have to expect from a position
measurement due to Heisenberg’s uncertainty principle. Note that this effect is weak-
ened for larger frequencies ω of the oscillator because the continuous measurement
has problems to “follow” the state appropriately. Furthermore, an imperfect detec-
tor (η < 1) will always increase the variances. Finally, we remark that these results
become meaningless in the strict limit γ → 0 because in that case there is simply no
conditional dynamics. This becomes also clear by looking at Eq. (15.56), in which
the last term diverges in this limit because we would feed back an infinitely noisy
signal.

Thus, an observer with access to the measurement record would associate very
different covariances to the system in comparison to an observer without that knowl-
edge. However, a detailed discussion of the time evolution of the covariances is
beyond the scope of the present paper. Instead, we find it more interesting to dis-
cuss the relationship between the present quantum feedback scheme and its classical
counterpart, to which we turn now.

7We can obtain this result by computing the steady state of Eqs. (15.56)–(15.58) where we first
send k → 0 and then γ → 0.
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15.5 Classical Limit

To take the classical limit in our case we have to use a little trick because simply
taking � → 0 does not yield the correct result. In fact, for � → 0 we have from
Eq. (15.8) that I (t) = 〈x〉c(t), which only makes sense if we can observe the particle
with infinite accuracy, i.e., its conditional probability distribution is a delta function
with respect to the position x . We explicitly wish, however, to model a noisy classical
measurement. We thus additionally demand that η → 0. More specifically, we set
η ≡ �/σ with σ finite such that Eq. (15.8) becomes

d I (t) = 〈x〉c(t)dt +
√

σ

2γ
dW (t) (15.62)

and we remark that the case σ → 0 corresponds to an error-free measurement.
The FPE (15.22) for the free evolution of the HO with drift vector and diffusion

matrix from Eq. (15.23) becomes for � → 0 (note that the Bose-Einstein distribution
nB contains � as well and needs to be expanded)

∂

∂t
P(x, p, t) ≡ Lcl

0 P(x, p, t) (15.63)

=
{
−∇T ·

(
ωp − κ

2 x

−ωx − κ
2 x

)
+ κ

2βω
∇T · ∇

}
P(x, p, t).

To emphasize the fact that the Wigner function W (x, p) becomes an ordinary prob-
ability distribution in the classical limit, we denoted it by P(x, p). As expected, we
see that Eq. (15.63) corresponds to a FPE for a Brownian particle in a harmonic
potential where position and momentum are both damped (usually one considers
only the momentum to be damped [29]). This peculiarity is a consequence of an
approximation made in deriving the ME (15.1), which is known as the secular or
rotating-wave approximation. Nevertheless, one easily confirms that the canonical
equilibrium state Peq ∼ exp[−βω(p2 + x2)/2] is a steady state of this FPE as it must
be.

Next, it turns out to be interesting to discuss the classical limit of the SME (15.13)
describing the free evolution plus the influence of the continuous noisymeasurement.
Using Eq. (15.24) we obtain an equation for the conditional probability distribution
Pc(x, p)

Pc(x, p, t + dt) =
{
1 + Lcl

0 dt +
√
2γ

σ
(x − 〈x〉c)dW (t)

}
Pc(x, p, t). (15.64)

This is a stochastic FPE, which is nonlinear in Pc. It describes how our state of
knowledge changes if we take into account the measurement record (15.62). How-
ever, averaging Eq. (15.64) over all measurement results yields Eq. (15.63), which
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reflects the fact that a classical measurement does not perturb the system.8 This is
in contrast to the quantum case where the average evolution is still influenced by
Lmeas, see Eq. (15.6). Hence, the term Lmeas in Eq. (15.6) is purely of quantum orgin
and it describes the effect of decoherence on a quantum state under the influence of
a measurement. This effect is absent in a classical world. Exactly the same equation
and the same conclusions were already derived by Milburn following a different
route [45].

The impact of these conclusions is, however, muchmore severe if one additionally
considers feedback. As we will now show, applying feedback based on the use of
the stochastic FPE (15.64), does indeed yield observable consequences even on
average. Please note that trying tomodel the present situation by a classical Langevin
equation is nonsensical. If we would use a Langevin equation to describe our state of
knowlegde about the system, we would implicitly ascribe an objective reality to the
fact that there is a definite position x0 andmomentum p0 of the particle corresponding
to a probability distribution δ(x − x0)δ(p − p0). This is, however, not true from the
point of view of the observer who has to apply feedback control based on incomplete
information (i.e., the noisy measurement record). Results we would obtain from
a Langevin equation treatment can only be recovered in the limit of an error-free
measurement, i.e., for σ → 0, as we will demonstrate in Appendix 15.6.

For simplicity we will only have a look at the second feedback scheme from
Sect. 15.4 because we can directly obtain the classical limit for the average evolution
from Eq. (15.43). The same situation is, however, also encountered by considering
the first scheme. Taking � → 0 in Eq. (15.43) together with the coefficients (15.44)
then yields the FPE

∂

∂t
P(x, p, t) =

{
Lcl
0 − ∂xk[x − x∗(t)] + k2σ

2γ
∂2
x

}
P(x, p, t). (15.65)

The first term to the correction of Lcl
0 is the term one would expect for a noiseless

feedback loop, too. The second, however, only arises due to the noisy measurement
(we see that it vanishes for σ → 0) and causes an additional diffusion in the x
direction simply due to the fact that the observer applies a slightly wrong feedback
control compared to the “perfect” situation without measurement errors.

We thus conclude this section by noting that the treatment of continuous noisy
classicalmeasurements faces similar challenges as in the quantumsetting.Onaverage
the measurement itself does not influence the classical dynamics, but we see that we
obtain new terms even on average if we use this measurement to perform feedback
control. Most importantly, because a feedback loop has to be implemented by the
observer who has access to the measurement record, it is in general not possible
to model this situation with a Langevin equation. Furthermore, we remark that the
situation is expected to be even more complicated for time-delayed feedback, where
no average description is a priori possible.

8This is true at least in our context. In principle, it is of course possible to construct classical
measurements, which perturb the system, too [6].



15 Controlling the Stability of Steady States … 309

15.6 Summary and Outlook

Because we discussed the meaning of our results already during the main text in
detail, we will only give a short summary together with a discussion on possible
extensions and applications.

We have used two simple feedback schemes, which are known to change the
stability of a steady state obtained from linearizing a dynamical system around that
fixed point in the classical case. For the simple situation of a damped quantum HO
we have seen that on average we obtain the same dynamics for the mean values as
expected from a classical treatment and thus, classical control strategies might turn
out to be very useful in the quantum realm, too.

However, the fact that a classical control scheme works so well in the quantum
regime depends on two crucial assumptions. First of all, we have used a linear system
(theHO). Having a non-linear systemHamiltonian (e.g., a Hamiltonianwith a quartic
potential∼ x̂4) would complicate the treatment because already the equations for the
mean values would contain higher order moments, as e.g. 〈x3〉 in case of the quartic
oscillator. Simply factorizing them as 〈x3〉 ≈ 〈x〉3 would imply that we are already
using a classical approximation. However, as in the classical treatment, where the
equations of motion are obtained from linearizing a (potentially non-linear) dynam-
ical system around the fixed point, it might also be possible in the quantum regime
to neglect non-linear terms in the vicinity of the fixed point. Whether or not this is
possible crucially depends on the localization of the state in phase space, i.e., on
its covariances. Here, continuous quantum measurements can actually turn out to
be helpful because they tend to localize the wavefunction and counteract a possible
spreading of the state.

The second important assumption we used was that we restricted ourselves to
continuous variable quantum systems. The reason whywe obtained simple equations
of motion is related to the commutation relation [x̂, p̂] = i�, which we implicitly
used to obtain the evolution equation for the Wigner function. Formally, phase space
methods are also possible for other quantum systems, but the maps are much more
complicated [27]. For such systems themethods presented heremight be useful under
certain special assumptions, but in general one should expect them to fail.

Acknowledgments PS wishes to thank Philipp Hövel, Lina Jaurigue and Wassilij Kopylov for
helpful discussions about time-delayed feedback control. Financial support by the DFG (SCHA
1646/3-1, SFB 910, and GRK 1558) is gratefully acknowledged.

Appendix

We want to show that the stochastic FPE, which in general describes the incomplete
state of knowledge of an observer, reduces to a Langevin equation in the error-free
limit, i.e., in the limit in which we have indeed complete knowledge about the state
of the system. Because we are only interested in a proof of principle here, we will
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consider the simplified situation of an overdamped particle.9 The Langevin equation
of an overdamped Brownian particle in an external potential U (x) is usually given
as (see, e.g., [29])

ẋ(t) = − 2

κ
U ′(x) +

√
T

κ
ξ(t) (15.66)

with U ′(x) ≡ ∂U (x)
∂x and the Gaussian white noise ξ(t) ≡ dW (t)

dt . Furthermore, note
that our friction constant is κ

2 and not—as it is often denoted—γ because we use γ

already for the measurement rate. Now, it is important to remark that at this point
Eq. (15.66) simply describes a convenient numerical tool to simulate a stochastic
process. By the mathematical rules of stochastic calculus it is guaranteed that the
Langevin equation gives the same averages as the corresponding FPE, i.e., the ensem-
ble average E[ f (x)] over all noisy trajectories for some function f (x) is equal to
the expectation value 〈 f (x)〉 taken with respect to the solution of the FPE.

In Sect. 15.5 we have suggested that the correct state of the system based on a
noisy position measurement is given by the stochastic FPE (15.64), which for an
overdamped particle becomes (see also Ref. [45])

Pc(x, t + dt) =
{
1 + Lcl

0 dt +
√
2γ

σ
(x − 〈x〉c)dW (t)

}
Pc(x, t) (15.67)

with [29]

Lcl
0 = ∂

∂x

(
2U ′(x)

κ
+ ∂

∂x

2T

κ

)
. (15.68)

Furthermore, we have also claimed that the parameter σ in (15.62) quantifies the error
of the measurement. This suggests that we should be able to recover the Langevin
Eq. (15.66) in the limit σ → 0 in which we can observe the particle with infinite
precision.

To show this we compute the expectation value of the position according to
Eq. (15.67):

d〈x〉c(t) = − 2

κ
〈U ′(x)〉cdt +

√
2γ

σ
Vc(t)dW (t) (15.69)

where Vc = 〈x2〉c − 〈x〉2c denotes the variance of the particles position. Because the
conditional variance enters this equation, we compute its time evolution, too:

9The complete description of an underdamped particle (i.e., a particle descibed by its position x and
momentum p), which is based on a continuous measurement of its position x alone, Eq. (15.62),
faces the additional challenge that we have to first estimate the momentum p based on the noisy
measurement results.



15 Controlling the Stability of Steady States … 311

dVc = − 4

κ

[〈xU ′(x)〉c(t) − 〈x〉c(t)〈U ′(x)〉c(t)
]
dt + 4T

κ
dt − 2γ

σ
V 2
c dt (15.70)

+
√
2γ

σ

〈[x − 〈x〉c(t)]3
〉
dW (t).

Tomake analytical progresswe nowneed two assumptions. First, wewill assume that
Pc(x, t) is aGaussian probability distribution. In fact, because themeasurement tends
to localize the probability distribution and it is itself modeled as a Gaussian process,
this assumption seems reasonable. In addition, we expect Pc(x, t) to become a delta-
distribution in the limitσ → 0,which is aGaussian distribution, too. This assumption
allows us to drop the stochastic term in Eq. (15.70). Second, within the variance of
Pc(x, t)weassume thatwe can expandU (x) in aTaylor series and approximate it by a
quadratic function ax2 + bx + c. This implies 〈xU ′(x)〉c(t) ≈ a〈x2〉c(t) + b〈x〉c(t).
In fact, this assumption seems also reasonable because we expect the measurement
to be precise enough such that we can locally resolve the evolution of the particle
sufficiently well (especially for small σ ); or to put it differently: a measurement only
makes sense if the conditional variance Vc of Pc(x, t) is small enough. Using this
approximation, too, we can then write Eq. (15.70) as

d

dt
Vc(t) = 4κ

2
− 4a

κ
Vc − 2γ

σ
V 2
c . (15.71)

The only physical steady state solution of this equation is

lim
t→∞ Vc(t) = aσ

γ κ

(√
1 + 2T γ κ

a2σ
− 1

)
. (15.72)

Inserting this into Eq. (15.69) yields

d〈x〉c(t) = − 2

κ
〈U ′(x)〉cdt + a

κ

√
2σ

γ

(√
1 + 2T γ κ

a2σ
− 1

)
dW (t). (15.73)

In this equation we can take the limit σ → 0 such that

d〈x〉0c(t) = − 2

κ
〈U ′(x)〉0cdt +

√
4T

κ
dW (t), (15.74)

where we introduced a superscript 0 on all expectation values to denote the error-free
limit. This equation looks already very similar to the LE (15.66). In fact, mathemat-
ically this is the LE since from Eq. (15.62) we can see that the measurement result
becomes for σ → 0 d I (t) = 〈x〉0c(t)dt . This implies that the measurement result
is deterministic and not stochastic anymore, which is only compatible if the asso-
ciated probability distribution Pc(x, t) is a delta distribution δ(x − x∗) where x∗
describes the true instantaneous position of the particle without any uncertainty.
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Then, Eq. (15.69) becomes

dx∗(t) = − 2

κ
U ′(x∗)dt +

√
4T

κ
dW (t). (15.75)

Now, this equation is not just a numerical tool, but describes real physical objectivity
because x∗ coincides with the observed position in the lab. This distinction might
seem very nitpicking, but it is of crucial importance if we want to perform feedback
based on incomplete information.
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Chapter 16
Chimera States in Quantum Mechanics

Victor Manuel Bastidas, Iryna Omelchenko, Anna Zakharova,
Eckehard Schöll and Tobias Brandes

Abstract Classical chimera states are paradigmatic examples of partial synchro-
nization patterns emerging in nonlinear dynamics. These states are characterized by
the spatial coexistence of two dramatically different dynamical behaviors, i.e., syn-
chronized and desynchronized dynamics. Our aim in this contribution is to discuss
signatures of chimera states in quantum mechanics. We study a network with a ring
topology consisting of N coupled quantum Van der Pol oscillators. We describe the
emergence of chimera-like quantum correlations in the covariance matrix. Further,
we establish the connection of chimera states to quantum information theory by
describing the quantum mutual information for a bipartite state of the network.

16.1 Introduction

Self-organization is one of the most intriguing phenomena in nature. Currently, there
is a plethora of studies concerning pattern formation and the emergence of spiral
waves, Turing structures, synchronization patterns, etc. In classical systems of cou-
pled nonlinear oscillators, the phenomenon of chimera states, which describes the
spontaneous emergence of coexisting synchronized and desynchronized dynamics
in networks of identical elements, has recently aroused much interest [1]. These
intriguing spatio-temporal patterns were originally discovered in models of coupled
phase oscillators [2, 3]. The last decade has seen an increasing interest in chimera
states in dynamical networks [4–12]. It was shown that they are not limited to phase
oscillators, but can be found in a large variety of different systems including time-
discrete maps [13], time-continuous chaotic models [14], neural systems [15–17],
Van der Pol oscillators [18], and Boolean networks [19].

Chimera states were found also in systems with higher spatial dimensions
[7, 20–23]. New types of these peculiar states having multiple incoherent regions
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[15, 17, 24–26], as well as amplitude-mediated [27, 28], and pure amplitude chimera
states [29] were discovered.

The nonlocal coupling has been usually considered as a necessary condition for
chimera states to evolve in systems of coupled oscillators. Recent studies have shown
that even global all-to-all coupling [28, 30–32], as well as more complex coupling
topologies allow for the existence of chimera states [12, 33–37]. Furthermore, time-
varying network structures can give rise to alternating chimera states [38].

Possible applications of chimera states in natural and technological systems
include the phenomenon of unihemispheric sleep [39], bump states in neural sys-
tems [40, 41], epileptic seizure [42], power grids [43], or social systems [44]. Many
works considering chimera states have been based on numerical results. A deeper
bifurcation analysis [45] and even a possibility to control chimera states [46, 47]
were obtained only recently.

The experimental verification of chimera states was first demonstrated in opti-
cal [48] and chemical [49, 50] systems. Further experiments involved mechani-
cal [51], electronic [52, 53] and electrochemical [54, 55] oscillator systems, Boolean
networks [19], the optical comb generated by a passively mode-locked quantum dot
laser [56], and superconducting quantum interference devices [57].

While synchronization of classical oscillators has been well studied since the
early observations of Huygens in the seventeenth century [58], synchronization in
quantum mechanics has only very recently become a focus of interest. For example,
quantum signatures of synchronization in a network of globally coupled Van der Pol
oscillators have been investigated [59, 60]. Related works focus on the dynamical
phase transitions of a network of nanomechanical oscillatorswith arbitrary topologies
characterized by a coordination number [61], and the semiclassical quantization of
the Kuramoto model by using path integral methods [62].

Contrary to classical mechanics, in quantummechanics the notion of phase-space
trajectory is not well defined. As a consequence, one has to define new measures
of synchronization for continuous variable systems like optomechanical arrays [61].
These measures are based on quadratures of the coupled systems and allow one to
extend the notion of phase synchronization to the quantum regime [63]. Additional
measures of synchronization open intriguing connections to concepts of quantum
information theory [64, 65], such as decoherence-free subspaces [66], quantum dis-
cord [67], entanglement [68, 69], and mutual information [70]. Despite the intensive
theoretical investigation of quantum signatures of synchronized states, up to now the
quantum manifestations of chimera states are still unresolved.

Recently, we have studied the emergence of chimera states in a network of cou-
pled quantum Van der Pol oscillators [71], and here we review this work. Unlike in
previous studies [72], we address the fundamental issue of the dynamical properties
of chimera states in a continuous variable system. Considering the chaotic nature of
chimera states [9], we study the short-time evolution of the quantum fluctuations at
the Gaussian level. This approach allows us to use powerful tools of quantum infor-
mation theory to describe the correlations in a nonequilibrium state of the system.
We show that quantum manifestations of the chimera state appear in the covariance
matrix and are related to bosonic squeezing, thus bringing these signatures into the
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realm of observability in trapped ions [59], optomechanical arrays [61], and driven-
dissipative Bose-Einstein condensates [73, 74].We find that the chimera states can be
characterized in terms of Rényi quantummutual information [75]. Our results reveal
that the mutual information for a chimera state lies between the values for synchro-
nized and desynchronized states, which extends in a natural way the definition of
chimera states to quantum mechanics.

16.2 Nonlinear Quantum Oscillators

In this sectionwe describe a recent theoretical proposal to realize a quantum analogue
of the Van der Pol oscillator [59, 60].

16.2.1 The Classical Van der Pol Oscillator

The classical Van der Pol oscillator is given by the equation of motion [76]

Q̈ + ω2
0Q − ε(1 − 2Q2)Q̇ = 0, (16.1)

where Q ∈ R is the dynamical variable, ω0 is the linear frequency, and ε > 0 is
the nonlinearity parameter. One important aspect of this equation is that the inter-
play between negative damping proportional to −Q̇ and nonlinear damping Q2 Q̇
leads to the existence of self-sustained limit cycle oscillations. Similarly to the
method discussed in Ref. [59], we consider a transformation into a rotating frame
Q(t) = 2−1/2(α(t)eiω0t + α∗(t)e−iω0t ) with a slowly varying complex amplitude
α = 2−1/2(Q + iP), and Q and P = Q̇ denote position and conjugate momentum,
respectively. In the rotating frame, one can neglect fast oscillating terms in Eq. (16.1)
as long as the condition ε � 1 holds. This enables us to obtain an effective amplitude
equation which has the form of a Stuart-Landau equation

α̇(t) = ε

2
(1 − |α(t)|2)α(t) (16.2)

describing the dynamics of the oscillator. In the stationary state, i.e., when α̇(t) = 0,
it admits the existence of a limit cycle defined by |α(t)|2 = 1.

16.2.2 The Quantum Van der Pol Oscillator

To obtain a quantum analogue of the Van der Pol oscillator, we require a mechanism
to inject energy into the system in a linear way (negative damping) and to induce non-
linear losses. Such features can be accomplished by using trapped ions setups [77],
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as proposed in Ref. [59]. In the case of trapped ions, the dynamic degrees of freedom
are described by means of bosonic creation and annihilation operators a† and a,
respectively. The dissipative dynamics is governed by the Lindblad master equation

ρ̇(t) = 2κ1

(
a†ρa − 1

2
{ρ, aa†}

)
+ 2κ2

(
a2ρ(a†)2 − 1

2
{ρ, (a†)2a2}

)
, (16.3)

in a rotating frame with frequency ω0, where ρ is the density matrix. The rates
κ1 and κ2 describe one-photon and two-photon dissipative processes, respectively
[59]. These dissipative processes are the quantum analogue of negative damping and
nonlinear losses.

In the high-photon density limit 〈a†a〉 = |α|2 � 1, one can describe bosonic
quantum fluctuations ã, ã† about the mean field α. This approach enables us to study
the time evolution of the quantum fluctuations, which is influenced by the mean field
solution. Correspondingly, at mean-field level, the system resembles the classical
behavior of the Van der Pol oscillator in the ε � 1 limit. Unfortunately, to obtain
analytical results we must confine ourselves to the study of Gaussian quantum fluc-
tuations. This implies some limitations in the description of the long-time dynamics
of the fluctuations. For example, even if one prepares the system in a coherent state at
t = 0: ρ(0) = |α(0)〉〈α(0)|, i.e., a bosonic Gaussian state, there are quantum signa-
tures of the classical limit cycle leading to non-Gaussian effects. Therefore, within
the framework of a Gaussian description, one is able to describe only short-time
dynamics, where the non-Gaussian effects are negligible.

16.2.3 Gaussian Quantum Fluctuations and Semiclassical
Trajectories

Let us begin by considering the decomposition a(t) = ã + α(t) of the bosonic oper-
ator a in terms of the quantum fluctuations ã and the mean field α. For complete-
ness, in the appendix we calculate explicitly the Gaussian quantum fluctuations
for the quartic oscillator. To formalize this procedure from the perspective of the
master equation [78, 79], we define the density matrix in the co-moving frame
ρα(t) = D̂† [α(t)] ρ(t)D̂ [α(t)], where D̂ [α(t)] = exp

[
α(t)ã† − α∗(t)ã

]
is a dis-

placement operator. In the co-moving frame, we obtain a master equation with Liou-
ville operators L̂1 and L̂2

ρ̇α(t) = − i

�
[Ĥ (α)(t), ρα(t)] + 2κ1 D̂

† [α(t)]

(
ã†ρã − 1

2
{ρ, ãã†}

)
D̂ [α(t)]

+ 2κ2 D̂
† [α(t)]

(
ã2ρ(ã†)2 − 1

2
{ρ, (ã†)2ã2}

)
D̂ [α(t)]

≡ − i

�
[Ĥ (α)(t), ρα(t)] + L̂1ρα + L̂2ρα, (16.4)
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where we have defined Ĥ (α)(t) = −i�D̂† [α(t)] ∂t D̂ [α(t)] and the anticommutator
{ Â, B̂} = Â B̂ + B̂ Â. In the co-moving frame, the coherent dynamics is generated
by the Hamiltonian

Ĥ (α)(t) = − i�

2
[α̇(t)α∗(t) − α(t)α̇∗(t)] − i�[α̇(t)ã† − α̇∗(t)ã]. (16.5)

A next step in the calculation of the Gaussian quantum fluctuations is to expand
the Liouville operators L̂1 and L̂2 in terms of the quantum fluctuations. We begin by
considering the Liouville operator L̂1, which preserves the Gaussian character of the
initial state ρ(0) = |α(0)〉〈α(0)|. By using elementary properties of the displacement
operator we can decompose the dissipative term into coherent and incoherent parts:

L̂1ρα = 2κ1 D̂
† [α(t)]

(
ã†ρã − 1

2
{ρ, ãã†}

)
D̂ [α(t)]

= 2κ1

(
ã†ρα ã − 1

2
{ρα, ãã†}

)
− i

�

[
i�κ1αã

†, ρα

] − i

�

[−i�κ1α
∗ã, ρα

]
.

(16.6)

In the calculation of the dissipative term proportional to κ2, one needs to be partic-
ularly careful, because it causes non-Gaussian effects due to two-photon processes.
Interestingly, one can decompose the Liouville operator L̂2 into coherent terms given
by commutators of an effective Hamiltonian with the density operator and terms pre-
serving theGaussian character of the initial state. In addition,we also obtain explicitly
the non-Gaussian contributions:

L̂2ρα = 2κ2 D̂
† [α(t)]

(
ã2ρ(ã†)2 − 1

2
{ρ, (ã†)2ã2}

)
D̂ [α(t)]

= 2κ2

(
ã2ρα(ã†)2 − 1

2
{ρα, (ã†)2ã2}

)
+ 4κ2α

∗
(
ã2ρα ã

† − 1

2
{ρα, ã†ã2}

)

+ 4κ2α

(
ãρα(ã†)2 − 1

2
{ρα, (ã†)2ã}

)
+ 8κ2|α|2

(
ãρα ã

† − 1

2
{ρα, ã†ã}

)

− i

�

[
i�κ2(α

∗)2ã2, ρα

] − i

�

[−i�κ2α
2(ã†)2, ρα

]

− i

�

[
2i�κ2α(α∗)2ã, ρα

] − i

�

[−2i�κ2α
∗α2ã†, ρα

]
. (16.7)

In the semiclassical high-density limit |α|2 � 1, one can safely neglect the effect
of the non-Gaussian terms in Eqs. (16.6) and (16.7). Similarly to Refs. [78, 79], to
define the position α(t) of the co-moving frame, we require vanishing linear terms
in the coherent part of the master equation (16.4). This is achieved as long as the
condition

α̇(t) = κ1α(t) − 2κ2α(t)|α(t)|2 (16.8)
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is satisfied. After neglecting such terms, we obtain the master equation

ρ̇α(t) = −iκ2
[
i(α∗)2ã2 − iα2(ã†)2, ρα

] + 2κ1

(
ã†ρα ã − 1

2
{ρα, ãã†}

)

+ 8κ2|α(t)|2
(
ãρα ã

† − 1

2
{ρα, ã†ã}

)
. (16.9)

One can interpret this procedure from a geometrical point of view. An initial coher-
ent state ρ(0) = |α(0)〉〈α(0)| corresponds to the vacuum ρα(0) = |0〉〈0| in the co-
moving frame centered at α(0). On the other hand, α(0) plays the role of the ini-
tial condition for the classical equation of motion Eq. (16.8). The solution α(t) of
Eq. (16.8) not only gives us the position of the co-moving frame, but it is also
responsible for the emergence of time dependent rates in the master equation and
time dependent squeezing. In the stationary limit, however, the classical equations of
motion exhibit self-sustained oscillations with amplitude |α(t)|2 = κ1/2κ2. In this
limit, the master equation ceases to have time-dependent coefficients.

16.3 Quantum Description of a Network of Coupled
Van der Pol Oscillators

We consider a quantum network consisting of a ring of N coupled Van der Pol
oscillators. Such a network can be described by the master equation for the density
matrix ρ(t)

ρ̇ = − i

�
[Ĥ , ρ] + 2

N∑

l=1

[
κ1D(a†l ) + κ2D(a2l )

]
, (16.10)

where a†l , al are creation and annihilation operators of bosonic particles andD(Ô) =
Ôρ Ô† − 1

2 (Ô
† Ôρ + ρ Ô† Ô) describes dissipative processes with rates κ1, κ2 > 0,

which we have discussed in Sect. 16.2.2. In addition, we have imposed periodic
boundary conditions al = al+N for the bosonic operators. In contrast to Ref. [59],
we consider a nonlocal coupling between the oscillators. Therefore, the Hamiltonian
in the interaction picture reads Ĥ = �

∑N
l 	=m=1 Kl,m(a†l am + ala†m), where Kl,m =

V
2d Θ(d − |l − m|) is the coupling matrix of the network and Θ(x) is the Heaviside
step function. This kind of coupling implies that Eq. (16.10) has a rotational S1

symmetry as discussed in Ref. [29]. One can include counter-rotating terms such as
a†l a

†
m in the coupling, but this would lead to symmetry breaking.
This definition implies that the coupling is zero if the distance |l − m| between

the lth and mth the nodes is bigger than the coupling range d. On the other hand,
if |l − m| < d, then Kl,m = V

2d . In the particular case d = N/2 one has all-to-all
coupling and recovers the results of Ref. [59].
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Now we compare Eq. (16.10) with the general form of the Lindblad master equa-
tion [80]

ρ̇(t) = − i

�
[Ĥ , ρ] +

∑

μ

γμ

(
L̂μρ L̂†

μ − 1

2
{ρ, L̂†

μ L̂μ}
)

(16.11)

with Lindblad operators L̂μ. This enables us to introduce an effective Hamiltonian
which describes the dynamics between quantum jumps

Ĥeff = Ĥ − i�

2

∑

μ

γμ L̂
†
μ L̂μ. (16.12)

In the case of the master equation Eq. (16.10), the effective Hamiltonian reads

Ĥeff = −i�κ1

N∑

l=1

(a†l al + 1) − i�κ2

N∑

l=1

n̂l(n̂l − 1)

+ �

N∑

l 	=m=1

Kl,m(a†l am + ala
†
m), (16.13)

where n̂l = a†l al . TheHamiltonian Eq. (16.13) describes aBose-Hubbardmodelwith
long range interactions, where on-site energies and chemical potential are complex.
This kind of model arises naturally in the context of driven-dissipative Bose-Einstein
condensation [73, 74].

16.3.1 Gaussian Quantum Fluctuations and Master
Equation

We define the expansion bl(t)=D̂† [α(t)] al D̂ [α(t)]=ãl + αl(t), where D̂ [α(t)] =
exp

[
α(t) · ˆ̃a† − α∗(t) · ˆ̃a

]
, α(t) = [α1(t), . . . , αN (t)] and ˆ̃a = (ã1, . . . , ãN ) as in

Ref. [81]. In this work we consider the semiclassical regime, where the magnitude
of the mean field αl(t) is larger than the quantum fluctuations ãl as in Refs. [78, 79].
By using the expansion of the master equation about the mean-field α(t) described
in the previous section, we obtain a master equation for the density operator in a
co-moving frame ρα(t) = D̂† [α(t)] ρ(t)D̂ [α(t)]

ρ̇α ≈ − i

�
[Ĥ (α)

Q , ρα] + 2
N∑

l=1

[
κ1D(ã†l ) + 4κ2|αl |2D(ãl)

]
. (16.14)
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In addition, the coherent dynamics of the fluctuations are governed by the Hamil-
tonian

Ĥ (α)
Q (t) = �

N∑

l=1

(
iκ2(α

∗
l )

2ã2l − iκ2α
2
l (ã

†
l )

2 +
N∑

r=1

Kl,l+r (ã
†
l ãl+r + ãl ã

†
l+r )

)

+ �

N∑

l=1

(
−i[α̇l(t)ã

†
l − α̇∗

l (t)ãl] + iκ1αl ã
†
l − iκ1α

∗
l ã

)

+ �

N∑

l=1

(
2iκ2αl(α

∗
l )

2ãl − 2iκ2α
∗
l α

2
l ã

†
l

)

+ �

N∑

r=1

Kl,l+r (αl+r ã
†
l + α∗

l+r ãl + α∗
l ãl+r + αl ã

†
l+r ). (16.15)

To obtain the equations for the mean field, the linear terms in the expansion
Eq. (16.15) must vanish, which leads to the equation

α̇l(t) = αl(t)(κ1 − 2κ2|αl(t)|2) − i
N∑

s 	=l

Kl,sαs(t) (16.16)

with a similar equation for α̇∗
l (t). Finally, by using the master equation (16.14) we

can calculate the equations of motion as follows

d〈ãi 〉
dt

= tr[ãi ρ̇α(t)] = κ1〈ãi 〉 − 4κ2|αi |2〈ãi 〉 − 2κ2α
2
i 〈ã†i 〉 − i

N∑

s 	=i

Ki,s〈ãs〉.

(16.17)

16.3.2 Relation to the Continuum Limit and Linearization

To understand the meaning of the Gaussian quantum fluctuations we discuss the
continuum limit of the classical equations of motion Eq. (16.16). In the continuum
limit, N → ∞, the complex variable αl(t) = rl(t)eiφl (t) can be described by means
of a complex field α(x, t) = |α(x, t)|eiφ(x,t), where x is the continuous version of
the index l. Correspondingly, |α(x, t)| and φ(x, t) represent the amplitude and phase
fields, respectively [2].

In the continuum limit, a ring of N coupled nodes can be described by means
of a classical field α(x, t) defined on a circle of length L , where x is the position
coordinate. In addition, if one introduces the continuum version K (x − y) of the
coupling matrix Kl,m , the dynamics of such a field can be described by the equation
of motion
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∂α(x, t)

∂t
= α(x, t)(κ1 − 2κ2|α(x, t)|2) − i

∫ L

0
dy K (x − y)α(y, t), (16.18)

which is the continuum limit of Eq. (16.16) and resembles the field equation discussed
in Ref. [2]. In particular, if we assume the amplitude |α(x, t)| = r0 to be constant
after the system is trapped into the limit cycle, we obtain a differential equation for
the phases

i
∂φ(x, t)

∂t
= (κ1 − 2κ2r

2
0 ) − i

∫ L

0
dy K (x − y)e−i[φ(x,t)−φ(y,t)]. (16.19)

Following the method described in Ref. [2], one can introduce a mean field

r(x, t)eiΘ(x,t) =
∫ L

0
dy K (x − y)eiφ(y,t). (16.20)

This method works well in the case of phase chimeras. However, in the case of
amplitude-mediated chimeras [27, 28], one requires to study both phase φ(x, t) and
amplitude |α(x, t)| fields.

In order to have a better understanding of the quantum fluctuations, let us linearize
the equation of motion for the field Eq. (16.18) about a solution α0(x, t). For this
purpose, let us consider the decomposition of the field α(x, t) = α0(x, t) + ã(x, t),
where ã(x, t) is a small perturbation such that |α0(x, t)| � |ã(x, t)|. Now let us
assume that we expand Eq. (16.18) up to first order in the perturbation. After some
algebraic manipulations we obtain

∂ ã(x, t)

∂t
= κ1ã(x, t) − 4κ2|α0(x, t)|2ã(x, t)

− 2κ2[α0(x, t)]2ã∗(x, t) − i
∫ L

0
dy K (x − y)ã(y, t). (16.21)

One can observe that this equation is precisely the continuum limit of the equations
of motions Eq. (16.17) for the expectation values of the quantum fluctuations. In
particular, α0(x, t) plays the role of the mean field αl(t) and ã(x, t) is the continuum
limit of the expectation value 〈ãl(t)〉.

Now the role of the Gaussian quantum fluctuations is clear: By neglecting non-
Gaussian contributions in the master equation [78, 79], one constructs the master
equation (16.14) governing the evolution of the quantum fluctuations. Due to the
chaotic nature of the classical chimera states [9], one expects giant quantum fluc-
tuations about the semiclassical trajectories [82]. As a consequence, the Gaussian
approximation, i.e., the master equation Eq. (16.14) fails to describe the long-time
dynamics.
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16.3.3 The Gutzwiller Ansatz and the Master Equation

In this section we describe the different methods to tackle the emergence of chimera
states in the quantum regime. Due to the nature of the nodes of the network, one has
to truncate the Hilbert space up to a certain occupation number nt of the oscillator.
This implies that if one has a network with N nodes, one has to solve a system of
(nt + 1)2N coupled differential equations for the elements ρn,m of the density matrix
as follows from Eq. (16.10). Chimera states usually emerge in networks consisting
at least of N = 40 nodes. This means that if one truncates the Hilbert space of
the oscillator up to nt = 2 one has to solve a system of 380 coupled differential
equations. In the incoherent regime of the network one expects vanishing coherences.
As a consequence of this one has to solve only the evolution of the populations,
which involves the solution of 340 ordinary differential equations. From the previous
analysis we conclude that the complete solution of the master equation (16.10) is
not possible in order to find the quantum signatures of synchronization and even to
describe the incoherent regime. Therefore one has to invoke alternative methods of
solution as we describe below.

We start by considering the Gutzwiller ansatz ρ(t) = ⊗N
l=1 ρl(t) discussed in

Refs. [59, 61]. By inserting this in the master equation Eq. (16.10), we obtain a
self-consistent system of equations for the density matrix of the lth site

ρ̇l(t) = − i

�
[Ĥl, ρl] + 2κ1D(a†l ) + κ2D(a2l ), (16.22)

where we define the self-consistent local Hamiltonian

Ĥl = Γla
†
l + Γ ∗

l al . (16.23)

Motivated by the original approach of Kuramoto [2] and a recent work [68], we
have defined the mean field Γl = �

∑N
r=1 Kl,l+r 〈al+r 〉, which resembles the order

parameter Eq. (16.20). This order parameter takes into account the contributions of
the quantum coherences. In contrast to the complete solution of Eq. (16.10), the
Gutzwiller ansatz allows one to obtain the solution of the problem with polynomial
resources. More specifically, instead of solving 32N equations, one has to solve 32N
equations if one truncates the bosonic Hilbert space at nt = 2. The minimal size of
a chain that supports chimeras is of the order of N = 40, therefore one has to solve
only 360 equations of motion.

For completeness, we discuss briefly the equations of motion derived from
Eq. (16.10)

d〈al〉
dt

= tr[al ρ̇(t)] = κ1〈al〉 − 2κ2〈a†l a2l 〉 − i
N∑

r=1

Kl,l+r 〈al+r 〉. (16.24)
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Interestingly, the equations of motion Eq. (16.17) constitute a particular case of
Eq. (16.24), because if one only considers the contributions of the Gaussian fluctu-
ations, one obtains a natural way to factorize expectation values [59, 61].

16.4 Classical Chimera States and Phase-Space Methods

The equations of motion Eq. (16.16) resemble a system of coupled Stuart-Landau
oscillators [29]. The solution α(t) of the equations of motion Eq. (16.16), provides
us information about the dynamics of the mean field. Such a mean field plays a
fundamental role in the study of themaster equation Eq. (16.14).Within theGaussian
approximation, the mean field is responsible for coherent effects such as squeezing
in Eq. (16.15). In addition, the amplitude |αl(t)| determines the dissipation rates
which appear in Eq. (16.14). Therefore to investigate the evolution of the density
matrix, we require the time evolution α(t). In this section we show that the mean
field exhibits chimera-like dynamics. By using phase-space methods, we investigate
quantum signatures of these states.

16.4.1 Emergence of Classical Chimera States

In the case of the uncoupled system V = 0, i.e., Kl,m = 0, a single Van der Pol oscil-

lator [59, 60] exhibits a limit cycle with radius r0 =
√

κ1
2κ2

= 1.58 for the parameters

κ2 = 0.2κ1. For convenience, in the coupled system we consider initial conditions
at t = 0 in such a way that each oscillator has the same amplitude |αl(0)| ≈ 1.58.
In addition, we consider phases drawn randomly from a Gaussian distribution in
space φl(0) = θ√

2πσ
exp[− (l−μ)2

2σ 2 ], where −24π < θ < 24π is a random number,
μ = N/2 andσ = 9. Figure16.1a shows the initial conditions. In terms of the coordi-

natesαl(t) = Ql (t)+iPl (t)√
2�

, the initial conditionsmust satisfy
√
Q2

l (0) + P2
l (0) ≈ 2.24,

which defines the green circle in Fig. 16.1b.
Besides the description of chimera states, we also discuss completely synchro-

nized and completely desynchronized solutions. To obtain such solutions, we con-
sider different coupling strengths V . However, for every case, we restrict ourselves
to the same initial conditions as in Fig. 16.1.

From our previous discussion in Sect. 16.3.1, the classical equations of motion
Eq. (16.16) must be satisfied in order to investigate the evolution of the master
equation Eq. (16.14) in the co-moving frame. In the polar representation αl(t) =
rl(t)eiφl (t), the equations of motion couple amplitude rl(t) and phase φl(t) of the indi-
vidual oscillators.We numerically solve Eq. (16.16) for a network of N = 50 coupled
oscillators with coupling range d = 10. We consider initial conditions |αl(t0)| ≈ r0,
where r0 = 1.58, and phases drawn randomly from a Gaussian distribution in space.
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Fig. 16.1 Initial conditions used in the simulations. a Initial distribution of the phases φl (0) drawn
randomly from a Gaussian distribution in space. b Phase-space representation of the initial con-
ditions for the oscillators. The green circle represents the limit cycle with radius |αl (0)| ≈ 1.58,
where αl (t) = Ql (t) + iPl (t)√

2�
. Parameters: � = 1, d = 10, κ2 = 0.2κ1, and N = 50

(a) (b)

Fig. 16.2 Space-time representation of the classical chimera state. We consider a representation
αl (t) = rl (t)eiφl (t) of the individual oscillators in terms of amplitude rl (t) and phaseφl(t). aDepicts
the time evolution of the phase chimera, where we represent the phases {φl (t)}. Similarly, b depicts
the amplitudes {r2l (t)}. Parameters: d = 10, κ2 = 0.2κ1, V = 1.2κ1, and N = 50 [71]

Figure16.2 depicts the time evolution of a classical chimera state. In Fig. 16.2a we
show the space-time representation of the phases φl(t) of the individual oscillators.
One can observe that for a fixed time, there is a domain of synchronized oscillators
that coexists with a domain of desynchronized motion, which is a typical feature of
chimera states. Besides the phase, also the amplitude exhibits chimera dynamics as
we show in Fig. 16.2b. One can observe that the width of the synchronized region
changes with time. Similarly, the center of mass of the synchronized region moves
randomly along the ring. Chimera states with these features have been reported in
the literature and are referred to as breathing and drifting chimeras [9].
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16.4.2 Solution of the Fokker-Planck Equation

As discussed in the previous section, the classical equations of motion Eq. (16.16)
exhibit a chimera state. By using the knowledge we have about the mean field
α(t) in the semiclassical limit |αl | � 1, we can study the time evolution of the
quantum fluctuations ã(t) in the co-moving frame by solving the master equa-
tion Eq. (16.14). With this aim, we consider the pure coherent state as an initial
density matrix ρ(t0) = ⊗N

l=1 |αl(t0)〉〈αl(t0)|, where |αl(t0)| ≈ 1.58 and we choose
the phases as in the left panel of Fig. 16.3. This initial condition corresponds to a
fixed time t0 = 3000/κ1 in Fig. 16.2. In the co-moving frame, such initial condi-
tion reads ρα(t0) = ⊗N

l=1 |0l〉〈0l |. For convenience, let us consider a representation
of the bosonic operators al = (q̂l + i p̂l)/

√
2� and ãl = ( ˆ̃ql + i ˆ̃pl)/

√
2� in terms of

position andmomentum operators ˆ̃ql and ˆ̃pl , respectively.We also introduce the com-
plex variables zl = (ql + ipl)/

√
2�, z̃l = (q̃l + i p̃l)/

√
2�, which allow us to define

the coordinates zT = (z1, . . . , zN ) in the laboratory frame and z̃T = (z̃1, . . . , z̃N ) in
the co-moving frame. These coordinates are related via z = α(t) + z̃. The variables
ql , q̃l and pl, p̃l denote position and conjugate momentum, respectively.

Fig. 16.3 Quantum signatures of the classical chimera state. a Snapshot of the phase chimera
depicted in Fig. 16.2 at κ1t0 = 3000. We consider an initial density matrix ρ(t0) which is a tensor
product of coherent states centered around the positions of the individual oscillators as depicted in
the insets (Husimi function). bAfter a short-time interval κ1Δt = 0.5, quantum correlations appear
in the form of squeezing (black double arrows in the insets). Parameters: d = 10, κ2 = 0.2κ1,
V = 1.2κ1, and N = 50 [71]
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Now let us define the Wigner representation of the density operator ρα(t) [80]:

Wα( z̃) =
∫

d2Nλ

π2N
e−λ· z̃∗+λ∗· z̃tr

[
ρα(t)e−λ· ˆ̃a†+λ∗· ˆ̃a

]
, (16.25)

where λ = (λ1, . . . , λN ) denote the integration variables. The Husimi function
Q(z) = 1

π
〈z|ρ(t)|z〉 is intimately related to the Wigner function via the transfor-

mation [80]

Qα( z̃) = 2

π

∫
Wα(x̃)e−2| z̃−x̃|2d2N x̃. (16.26)

The Husimi function can be obtained numerically after solving the master equation
by using the Gutzwiller ansatz [59, 61] as we discussed in Sect. 16.3.3. The insets
in the right panel of Fig. 16.3 depict the Husimi functions of the individual nodes
after a short evolution time Δt = 0.5/κ1. One can observe that even if one prepares
the system in a separable state, quantum fluctuations arise in the form of bosonic
squeezing of the oscillators [80]. In the insets of Fig. 16.3, the arrows indicate the
direction perpendicular to the squeezing direction for the individual oscillators. For
oscillators within the synchronized region, the squeezing occurs almost in the same
direction. In contrast, the direction of squeezing is random for oscillators in the
desynchronized region, which reflects the nature of the chimera state.

By using standard techniques of quantum optics [80], the master equation
Eq. (16.14) can be represented as a Fokker-Planck equation for the Wigner function
Eq. (16.25), which depends on the mean field solution of Eq. (16.16) and contains
information of the chimera state

∂Wα

∂t
=

N∑

l=1

[
2κ2(α

∗
l )

2∂z̃∗
l
z̃l + (4κ2|αl |2 − κ1)∂z̃l z̃l +

(
2κ2|αl |2 + κ1

2

)
∂2
z̃l ,z̃∗

l

]
Wα

− i
V

2d

N∑

l=1

l+d∑

m=l−d
m 	=l

(∂z̃∗
m
z̃∗
l − ∂z̃l z̃l)Wα + H.c. (16.27)

For convenience, we consider the Wigner representation Wα(R̃, t) of the density

operator ρα(t) in terms of the new variables R̃
T = (q̃1, p̃1, . . . , q̃N , p̃N ). Corre-

spondingly, the Fokker-Planck equation can be written also in terms of the quadra-
tures q̃l and p̃l

∂Wα

∂t
= −

2N∑

i=1

Ai j (t)∂R̃i
(R̃ jWα) + 1

2

2N∑

i=1

Bi j (t)∂
2
R̃i ,R̃ j

Wα. (16.28)

Although this Fokker-Planck equation has time-dependent coefficients, one can
derive an exact solution [80]
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Wα(R̃, t) =
exp

(
− 1

2 R̃
T · C −1(t) · R̃

)

(2π)N
√
detC (t)

, (16.29)

where the covariance matrix C (t) is a solution of the differential equation Ċ (t) =
A (t)C (t) + C (t)A T (t) + B(t). The matrix elements

Ci j = 〈1
2

( ˆ̃Ri
ˆ̃R j + ˆ̃R j

ˆ̃Ri

)
〉α − 〈 ˆ̃Ri 〉α〈 ˆ̃R j 〉α (16.30)

of the covariancematrix contain information about the correlations between quantum

fluctuations ˆ̃R2l−1 = ˆ̃ql and ˆ̃R2l = ˆ̃pl . The angular brackets 〈Ô〉α = tr(ρα Ô) denote
the expectation value of an operator Ô calculated with the density matrix ρα . The
solution Wα(R̃, t) corresponds to a Gaussian distribution centered at the origin in
the co-moving frame. In the laboratory frame, the Wigner function is centered at the
classical trajectory α(t). However, due to the chaotic nature of the classical chimera
state [9], our exact solution is just valid for short-time evolution.

16.5 Chimera-Like Quantum Correlations
in the Covariance Matrix

Now let us study the consequences of the exact solution for the short-time evolution
of the Wigner function, where the time scale is given by the inverse of the linear dis-
sipation rate κ1. Once we obtain the solution of the equations of motion Eq. (16.16),
we can find the corresponding covariance matrix C (t). As we have defined in the
introduction, a chimera state is characterized by the coexistence in space of synchro-
nized and desynchronized dynamics. Therefore, in order to understand the quantum
manifestations of a chimera state, we need to study also quantum signatures of syn-
chronized and desynchronized dynamics.

Although we consider different coupling strengths V , we use the same initial
conditions as in Fig. 16.1 to obtain the chimera, and completely synchronized and
desynchronized states. In order to obtain the snapshot of the chimera state depicted
in Fig. 16.4a, we let the system evolve up to a time κ1t0 = 3000.5 for a coupling
strength V = 1.2. Correspondingly, to obtain the snapshot of the synchronized solu-
tion shown in Fig. 16.4b, we let the system evolve a time κ1tSyn = 25.5 for V = 1.6.
Finally, the snapshot of the desynchronized state in Fig. 16.4c is obtained after a
time evolution κ1tdesyn = 8000.5 for V = 0.8. The left column of Fig. 16.4 show
snapshots of the phases for (a) chimera, (b) completely synchronized, and (c) com-
pletely desynchronized mean-field solutions of Eq. (16.16). The central column of
Fig. 16.4 depicts the corresponding covariance matrices after a short evolution time
Δt = 0.5/κ1. For every plot, we have initialized the system at time ti as a tensor
product of coherent states |αl(ti )〉 centered at the positions αl(ti ) of the individual
oscillators. As a consequence, the covariance matrix at the initial time is diago-
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(a)

(b)

(c)

Fig. 16.4 Quantum fluctuations after a short-time evolution. Similarly to Fig. 16.3, we consider an
initial density matrix ρ(ti )which is a tensor product of coherent states centered around the classical
positions of the oscillators. Snapshots of the phase (left column) and covariance matrices (central
column) after short-time evolution κ1Δt = 0.5 of the states: a chimera for V = 1.2κ1, b synchro-
nized state for V = 1.6κ1, and c desynchronized state for V = 0.8κ1. Right column: Weighted
spatial average Ψl (t) of the covariance matrix for the states shown in a, b and c, respectively.
Parameters: d = 10, κ2 = 0.2κ1, and N = 50 [71]

nal C2l−1,2l−1(ti ) = 〈 ˆ̃q2
l 〉α = �/2 and C2l,2l(ti ) = 〈 ˆ̃p2l 〉α = �/2, which reflects the

Heisenberg uncertainty principle because 〈 ˆ̃ql〉α = 〈 ˆ̃pl〉α = 0.
After a short evolution time, quantum correlations are built up due to the coupling

between the oscillators, and the covariance matrix exhibits a nontrivial structure
which is influenced by the mean field solution. For example, the central panel of
Fig. 16.4a shows a matrix plot of the covariance matrix corresponding to a chimera
state obtained from the same initial condition as in Fig. 16.3. The covariance matrix
acquires a block structure, where the upper 40 × 40 block (corresponding to nodes
l = 1, . . . , 20) shows a regular pattern matching the synchronized region of the
chimera state. Similarly, the lower 60 × 60 block shows an irregular structure which
corresponds to the desynchronized dynamics of the oscillators l = 21, . . . , 50. In a
similar fashion, Fig. 16.4b, c show the matrix C for completely synchronized and
desynchronized states, respectively. In the case of a chimera state, this coincides
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with the results shown in Fig. 16.3, where the squeezing direction of the oscillators
is related to the classical solution. In order to quantify these observations we define
the weighted correlation as

Ψl(t) = V

2d

l+d∑

m=l−d
m 	=l

C2l,2m(t). (16.31)

This spatial average highlights the structure of the covariance matrix. The right col-
umn of Fig. 16.4 shows Ψl(t) for (a) chimera, (b) synchronized, and (c) desynchro-
nized states. The chimera state exhibits a regular and an irregular domain, exactly as
the classical chimera does.

16.6 Quantum Mutual Information and Chimera States

Now let us consider a partition of the network into spatial domains of size L and
N − L , which we call Alice (A) and Bob (B), respectively. This partition can be
represented by considering a decomposition of the covariance matrix

C (t) =
(

CA(t) CAB(t)
C T
AB(t) CB(t)

)
(16.32)

To study the interplay between synchronized and desynchronized dynamics,
which is characteristic of a chimera state, we propose the use of an entropy
measure [64, 65, 70]. Of particular interest is the Rényi entropy Sμ(ρ) = (1 −
μ)−1 ln tr(ρμ), μ ∈ N, of the density matrix ρ, which is discussed in Ref. [75].
The Rényi entropy is of enormous interest in quantum information theory because it
defines a family of additive entropies and enables us to quantify the amount of infor-
mation of a quantum state ρ [75]. In particular, it converges to the von Neumann-
Shannon entropy for μ → 1 and it is related to the purity of the quantum state for
μ = 2.

In terms of the Wigner representation of ρα , the Rényi entropy for μ = 2 reads

S2(ρα) = − ln
[∫

W 2
α (R̃, t)d2N R̃

]
. Now let us consider the bipartite Gaussian state

ρAB = ρα composed of Alice and Bob and define the tensor product ρRef = ρA ⊗ ρB

of the two marginals ρA and ρB.
TomeasureGaussianRényi-2mutual informationI2(ρA:B) = S2(ρA) + S2(ρB) −

S2(ρAB), we require the calculation of the relative sampling entropy between the total
density matrix ρAB and the reference state ρRef as shown in Ref. [75]. This leads to
a formula I2(ρA:B) = 1

2 ln (detCA detCB/ detC ) in terms of the covariance matrix
Eq. (16.32). Figure16.5a shows the variation of I2(ρA:B) as a function of the size
L of the partition after an evolution time Δt = 0.5/κ1. One can observe that for a
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Fig. 16.5 Rényi quantummutual information for the states shown in Fig. 16.4. The green dots, blue
diamonds, and purple triangles represent the chimera, synchronized, and desynchronized states,
respectively. a Gaussian Rényi-2 mutual information I2(ρA:B) as a function of the size L of Alice
after an evolution timeΔt = 0.5/κ1. bThe time evolution of themutual information during the time
intervalΔt for a fixed size Lc = 20. Inset: Scheme of the nonlocally coupled network. Parameters:
d = 10, κ2 = 0.2κ1, and N = 50 [71]

chimera state the mutual information is asymmetric as a function of L and there is a
critical size Lc = 20, where a dramatic change of the correlations occurs.

Now let us consider the chimera state shown in Fig. 16.3, and let us consider a
partition where the size of Alice is Lc = 20. Figure16.5b shows the time evolution
of mutual information for such a state. In addition, by using the same partition
as for the chimera state, we calculate the mutual information for the synchronized
and desynchronized states depicted in Fig. 16.4b, c, respectively. Our results reveal
that the chimera state has a mutual information which lies between the values for
synchronized and desynchronized states. This resembles the definition of a chimera
state given at the beginning of the article.

16.7 Summary and Outlook

We have shown that quantum signatures of chimera states appear in the covari-
ance matrix and in measures of mutual information. To quantify the structure of the
covariance matrix, we have introduced a weighted spatial average of the quantum
correlation, which reveals the nature of the classical trajectory, i.e., chimera, com-
pletely synchronized, or completely desynchronized state. The mutual information
for a bipartite stateI2(ρA:B) extends the definition of a chimera to the quantum regime
and highlights the relation to quantum information theory. A possible experimental
realization of our model could be carried out by means of trapped ions [77], as it was
suggested in Ref. [59]. Other experimental possibilities include SQUID metamateri-
als [57] and Bose-Einstein condensation in the presence of dissipation and external
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driving [73, 74, 83]. In this context our approach is particularly interesting, because
the continuum limit of the mean field Eq. (16.16) is a complex Ginzburg-Landau
equation, which is nonlocal in space [2]. In this sense, our linearized master equa-
tion Eq. (16.14) enables us to study the Bogoliubov excitations above the mean field
solution.
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Appendix

In this appendix we discuss the Gaussian quantum fluctuations of the quartic har-
monic oscillator

H = p2

2m
+ mωq2

2
+ λ

4
q4 = ω

(
a†a + 1

2

)
+ λ

(
1

4mω

)2

(a† + a)4. (16.33)

For simplicity, we consider units in such a way that � = 1. As in the main text,
we consider the decomposition a = ã + α(t), where ã describes quantum fluctua-
tions and α(t) is the mean field. We now consider the time-dependent displacement
operator [81]

D [α(t)] = exp
[
α(t)a† − α∗(t)a

] = exp
[
α(t)ã† − α∗(t)ã

]

= exp

[
−|α(t)|2

2

]
exp

[
α(t)ã†

]
exp

[−α∗(t)ã
]
. (16.34)

Under this Gauge transformation, the Schrödinger equation i∂t |Ψ (t)〉 = H |Ψ (t)〉 is
transformed to i∂t |Ψα(t)〉 = H (α)(t)|Ψα(t)〉, where |Ψα(t)〉 = D† [α(t)] |Ψ (t)〉 and

Ĥ (α)(t) = D† [α(t)] (H − i∂t)D [α(t)] . (16.35)

For later purposes, we need to use the identity

iD† [α(t)] ∂t D [α(t)] = i

2
[α̇(t)α∗(t) − α(t)α̇∗(t)] + i[α̇(t)ã† − α̇∗(t)ã]. (16.36)

After some algebraic manipulations we can write
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Ĥ (α)(t) = λ

16

(
1

mω

)2

(ã† + ã)4 + 1

2

(
1

mω

)2

(ã† + ã)3Re[α(t)]

+ ωã†ã + 3λ

2

(
1

mω

)2

(ã† + ã)2(Re[α(t)])2

− i[α̇(t)ã† − α̇∗(t)ã] + ω(α∗ã + αã†) + 2λ

(
1

mω

)2

(ã† + ã)(Re[α(t)])3

− i

2
[α̇(t)α∗(t) − α(t)α̇∗(t)] + ω|α(t)|2 + λ

(
1

mω

)2

(Re[α(t)])4.
(16.37)

To study the quantum fluctuations about a semiclassical trajectory, we assume that
|α(t)| � 1. To obtain the quadratic fluctuations we must neglect the non-Gaussian
terms in Eq. (16.37). In addition, the center of the co-moving frame α(t)must satisfy
the condition

α̇(t) = −i

(
ωα(t) + 2λ

(
1

mω

)2

(Re[α(t)])3
)

, (16.38)

which corresponds to the classical equations of motion. This condition is satisfied if
the linear terms in the quantum fluctuations ã of Eq. (16.37) vanish [78, 79]. We can
go a step further and define the classical Hamiltonian function

H(α, α∗) = ω|α(t)|2 + λ

(
1

mω

)2

(Re[α(t)])4

= ωα∗(t)α(t) + λ

(
1

mω

)2 [
α∗(t) + α(t)

2

]4

, (16.39)

from which we obtain the equations of motion Eq. (16.38). In so doing we define the
Poisson bracket {F(α, α∗),G(α, α∗)} = −i(∂αF∂α∗G − ∂αG∂α∗ F). By using this
definition we obtain the equations of motion Eq. (16.38) as α̇(t) = −i∂α∗ H(α, α∗).

Now the role of each one of the terms in Eq. (16.37) is clear. In contrast, the
quadratic terms give us the first quantum corrections about the semiclassical trajec-
tory. To study these quantum fluctuations we need to study the quadratic Hamiltonian

Ĥ (α)
Q (t) = ωã†ã + 3λ

2

(
1

mω

)2

(ã† + ã)2(Re[α(t)])2 + L(α, α∗), (16.40)

where L(α, α∗) = − i
2 [α̇(t)α∗(t) − α(t)α̇∗(t)] + H(α, α∗) is the Lagrangian.
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Chapter 17
Multirhythmicity for a Time-Delayed
FitzHugh-Nagumo System with Threshold
Nonlinearity

Lionel Weicker, Lars Keuninckx, Gaetan Friart,
Jan Danckaert and Thomas Erneux

Abstract A time-delayed FitzHugh-Nagumo (FHN) system exhibiting a threshold
nonlinearity is studied both experimentally and theoretically. The basic steady state
is stable but distinct stable oscillatory regimes may coexist for the same values of
parameters (multirhythmicity). They are characterized by periods close to an integer
fraction of the delay. From an asymptotic analysis of the FHN equations, we show
that the mechanism leading to those oscillations corresponds to a limit-point of
limit-cycles. In order to investigate their robustness with respect to noise, we study
experimentally an electrical circuit that is modeled mathematically by the same delay
differential equations. We obtain quantitative agreements between numerical and
experimental bifurcation diagrams for the different coexisting time-periodic regimes.

17.1 Introduction

Excitable systems play important roles in biology and medicine. Phenomena such as
the transmission of impulses between neurons, the cardiac arrhythmia, the aggre-
gation of amoebas, the appearance of organized structures in the cortex of egg
cells, all derive from the activity of excitable media [1–3]. The classical example
of an excitable phenomenon is the firing of a nerve. According to the Hodgkin and
Huxley (HH) equations [1, 4] a sub-threshold depolarization dies away monotoni-
cally, but a super-threshold depolarization initiates a spike potential. FitzHugh and
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Nagumo (FHN) [5, 6] later formulated a simplified version of the HH equations that
describes the essential features of the nerve impulse in terms of two differential equa-
tions. The phase-plane analysis of the possible trajectories clarifies the conditions
for excitability. A successful spike is generated only if a perturbation from the rest
state surpasses a critical threshold.

The effects of time delays in neurosystems have recently attracted a lot of
attention [7]. Delays are inherent in neuronal networks due to finite conduction
velocities and synaptic transmission. Small neurons transmit over short distances
<1 mm at velocities <2 m/s. Large neurons transmit over longer distances (cm to
meters) at velocities of 10–100 m/s [8]. Specific synchronization or desynchroniza-
tion patterns are essential for neural functioning and they have been investigated
by formulating network models. Early studies considered coupled phase oscillator
systems [9–12] that allowed analytical results. Biologically more realistic network
models are now explored showing how time delays affect the structural heterogeneity
of the network [13–16]. While most studies concentrated on populations of coupled
limit-cycle oscillators, work has also been done on coupled excitable units. The case
of two delayed coupled FHN systems has been examined in detail showing that stable
periodic oscillations may coexist with a stable steady state [17–19]. The bifurcation
phenomenon is fully induced by the delay τ and represents a new form of oscillatory
synchronization exhibiting a period close to 2τ . Physically, the delayed coupling
allows the sequential spiking of the two cells by controlling the timing of each pulse.
In [20], we applied asymptotic techniques appropriate for slow-fast systems and
constructed periodic solutions of a two delayed-coupled FHN system. We found
that in addition to the 2τ -periodic solution, there exist periodic solutions of period
2τ/n where n = 1, 2, . . . for the same values of the parameters. We experimentally
investigated their robustness with respect to noise by designing an electronic circuit
that simulates our two coupled FHN system. In this chapter, we consider only one
FHN system subject to a delayed feedback and wonder if a stable periodic solution
may still be an alternate to a stable steady state. This question was recently raised
by Hövel (Sect. 6.3 in [21]). His work was motivated by earlier studies of Schöll and
coworkers [22–24] who explored the effect of the delayed feedback on noise-induced
oscillations. Here, we deliberately consider a delayed FHN problem where no Hopf
bifurcation is possible even in the presence of a delayed feedback. We however
anticipate that a periodic solution may appear through a limit-point of limit-cycles.
Specifically, we consider the following FHN equations

εx ′ = −x − y + H [x(t − τ) − a], (17.1)

y′ = x, (17.2)

where H(x) is the Heaviside step function. 0 < a < 1/2 is a threshold parameter for
the onset of pulses. ε � 1 is a small parameter which implies that x is fast compared
to y. τ = O(1) is the delay of the feedback. The presence of a threshold nonlinearity
means that Eqs. (17.1) and (17.2) can effectively be treated as a piece-wise linear
system. The study of piece-wise FHN systems has allowed for important advances
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in the understanding of excitable systems when diffusion is included [1, 25, 26]
and/or delay [26, 27].

The multiplicity of periodic solutions of delay differential equations (DDE) is
not a new phenomenon for oscillators subject to a delayed feedback. It has been
shown for specific problems where the steady state is unstable that the period of the
limit-cycle oscillations exhibits multiple hysteresis loops as the delay increases [28].
It is a generic phenomenon for a large class of DDEs [29]. Here we consider a slow-
fast system with a stable steady state and with an arbitrary delay. We have found
numerically that the coexistence of periodic solutions persist even for small delays
[τ = O(ε)].

The steady state (x, y) = (0, 0) is a stable focus whatever the value of τ . By con-
trast to the analysis in [20], we do not immediately take advantage of the small para-
meter ε but construct a periodic solution by combining two partial solutions valid
for x(t − τ) < a and x(t − τ) > a, respectively. We obtain transcendental equa-
tions for key properties of the solution that we then analyze in terms of parameter a.
We show that the bifurcation mechanism for their emergence is a limit-point of
limit-cycles.

The organization of the chapter is as follows. In Sect. 17.2.1, we investigate
Eqs. (17.1) and (17.2) numerically and highlight the multirhythmicity phenomenon.
More precisely, we observe stable periodic solutions characterized by different peri-
ods for the same values of the fixed parameters. To this end, we use different initial
functions for the delayed variable x . In Sect. 17.2.2, we construct a time-periodic solu-
tion of Eqs. (17.1) and (17.2), and numerically determine bifurcation diagrams for all
the periodic regimes found in Sect. 17.2.1. The bifurcation mechanism is then inves-
tigated analytically in Sect. 17.2.3 where we explore the limit ε → 0. Section 17.3 is
devoted to experiments on an electronic circuit described by Eqs. (17.1) and (17.2).
We show that the periodic solutions predicted theoretically are robust to noise and
we compare quantitatively experimental and numerical bifurcation diagrams. Finally,
we summarize our main results in Sect. 17.4 and discuss how a specific regime has
been selected in real optical devices.

17.2 Theory

17.2.1 Numerical Observations

Equations (17.1) and (17.2) admit only one steady state solution (x, y) = (0, 0).
This state is always stable but under specific initial conditions and parameter values,
we observe different coexisting stable time-periodic solutions (multirhythmicity).
See Fig. 17.1. The different regimes have been obtained using the following initial
conditions
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Fig. 17.1 Time traces for x(t) (black) and y(t) (gray) obtained numerically from Eqs. (17.1) and
(17.2) with the initial conditions given by (17.3) and (17.4). The values of the fixed parameters
are τ = 1, ε = 10−2, and a = 0.2. From (a) to (d), the figure shows different periodic solutions
characterized by their period Tn � τ/n (n = 1, . . . , 4)

x (t) = cos

(
2πnt

τ

)
(−τ < t ≤ 0), (17.3)

y (0) = 0, (17.4)

where n is an integer. Increasing n leads to periodic solutions with smaller periods
and smaller orbits in the phase-plane. Figure 17.2 shows the τ -periodic limit-cycle in
the phase-plane. It consists of two slowly varying parts following the slow manifold
(broken lines)

y = −x + H(x − a) (17.5)

connected by two fast transition layers at nearly constant values of y.
Each periodic solution is characterized by its period Tn � τ/n. Oscillations with

smaller periods have also been found but are not shown for clarity. The extrema of
x do not change significantly as n increases. The change is more dramatic if we
examine the extrema of y and the bifurcation diagram is shown in Fig. 17.3a in terms
of the extrema of y using a as the bifurcation parameter. The bifurcation diagram
is obtained by a continuation method i.e., we integrate Eqs. (17.1) and (17.2) for a
large interval of time changing a by steps and by using the previous solution as the
new initial function.

We observe that the different solutions exist up to a critical value ac
n . Beyond this

value, the system either jumps to a periodic state exhibiting a larger period or to the
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Fig. 17.2 Limit-cycle in the (x, y) phase-plane together with the slow manifold (17.5) (broken
lines). Same values of the fixed parameters as in Fig. 17.1 and n = 1

stable steady state. The critical values ac
n are listed in Table 17.1. We note that the ac

n
decreases as n increases which suggests that a large number of coexisting regimes
are more likely to be found if a is close to 0. Table 17.1 also indicates the values
obtained experimentally using an electronic circuit (see Sect. 17.3). The agreement is
clearly quantitative. The bifurcation diagrams suggests that each branch of periodic
solutions terminates at a limit point of limit-cycles. In order to verify this bifurcation
mechanism, we construct an analytical solution in the next section.

17.2.2 Construction of the Periodic Solution

The numerical time integrations depend on the basins of attractions of each
periodic solution as well as their linear stability properties. Transients can be
very long near the limit points of periodic solutions which limit the accuracy
of our numerical solutions. In this section, we propose an alternative method based
on an analytical construction of each periodic solution.

Because Eqs. (17.1) and (17.2) are piecewise linear ordinary differential equa-
tions, we may construct a periodic solution by connecting two separate expressions
valid for x(t − τ) < a and x(t − τ) > a, respectively. We obtain strongly nonlin-
ear transcendental equations for different unknown quantities. They will be solved
numerically for a fixed value of ε and analytically in the limit ε small. Figure 17.4
shows the periodic solution of Fig. 17.1b for both x(t) and x(t − τ). Time t = 0 is
chosen as the time where x(t − τ) − a becomes positive causing a sudden increase
of x(t). Time t = t1 is defined as the time where x(t − τ) − a becomes negative
now causing a decrease of x(t). Time t = t2 is the total period where x(t − τ) − a
is again positive. We assume that the period is given by
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Fig. 17.3 Extrema of y as
functions of parameter a for
each Tn-periodic solution
(Tn � τ/n) for n = 1
(black), n = 2 (red), n = 3
(blue), and n = 4 (orange).
The critical points ac

n mark
the point where the
Tn-periodic solution is no
more observed. a Bifurcation
diagrams of the stable
periodic solutions of
Eqs. (17.1) and (17.2). The
fixed parameters are τ = 1
and ε = 10−2. b Bifurcation
diagrams obtained
experimentally using the
electronic circuit described
in Sect. 17.3. c Extrema of y
obtained from the analytical
construction of the periodic
solutions (see Sect. 17.2.2)
for the same values of the
fixed parameters

(b)

(a)

(c)

Tn = τ + δ(ε)

n
, (17.6)

where δ/n = O(ε) is defined as the small correction of τ/n. Consequently,

x(t − τ) = x(t − nTn + δ) = x(t + δ). (17.7)
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Table 17.1 ac
n obtained

numerically and
experimentally for the
Tn-periodic regimes

n ac
n numerical ac

n experimental

1 0.45 0.45

2 0.38 0.38

3 0.31 0.31

4 0.23 0.22

a

δδ

x (t)
x ( t)

x ( t-τ)

x ( t-τ)

(b) (c)

t

x ( t-τ) x ( t)

t2
t1

(a)

0 t1 t2

0 δ t1 t1+δ

Fig. 17.4 Time series corresponding to Fig. 17.1b showing both x(t) and x(t − τ). Times t = 0, t1,
and t2 mark the points where x(t − τ) − a first becomes positive, then negative, and again positive.
b and c are blow-ups of the fast transition layers at t = 0 and t1, respectively

Equation (17.7) implies that x(−τ) = x(δ) and x(t1 − τ) = x(t1 + δ), as illustrated
in Fig. 17.4b and c. In addition to the amplitude and waveform of the solution, we need
to determine t1 and δ.

17.2.2.1 0 < t < t1

During the time interval 0 < t < t1, x (t − τ) > a and the Heaviside function is
equal to 1 (see Fig. 17.4b). The equations for x and y are then given by

εx ′ = −x − y + 1, y′ = x . (17.8)
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They admit the solutions

x = Aeλ+t + Beλ−t , (17.9)

y = 1 − (1 + ελ+)Aeλ+t − (1 + ελ−)Beλ−t , (17.10)

where A and B are integration constants and

λ± = −1 ± √
1 − 4ε

2ε
. (17.11)

17.2.2.2 t1 < t < t2

During the time interval t1 < t < t2, x (t − τ) < a and the Heaviside function is
equal to 0 (see Fig. 17.4c). The equations for x and y now are

εx ′ = −x − y, y′ = x (17.12)

and admit the solutions

x = Ceλ+(t−t1) + Deλ−(t−t1), (17.13)

y = −(1 + ελ+)Ceλ+(t−t1) − (1 + ελ−)Deλ−(t−t1), (17.14)

where C and D are two new constants of integration. Our problem depends on
seven unknowns namely A, B, C , D, δ, t1, and t2. To obtain additional equations
for these unknowns, we apply connection conditions. The details are relegated in the
Appendix. We obtain a single equation relating t1 and δ given by

0 = 2 − eλ+t21 − eλ+t1

1 − eλ+t2
+

(
eλ−t21 − 2 + eλ−t1

1 − eλ−t2

)
e(λ−−λ+)δ. (17.15)

If we fix t1 and n, we may determine δ numerically from Eq. (17.15) using the
dichotomy method. From (17.47), we then evaluate t2. The coefficients A and B are
obtained from (17.44) and (17.39), respectively. The value of a is computed by using
(17.45). By taking the derivatives of (17.10) and (17.14), we determine the extrema
of y for a single value of t1 and n. If we apply the same procedure for different values
of t1 and n, we obtain bifurcation diagrams where a is the bifurcation parameter.

Figure 17.3c represents the extrema of y as function of the parameter a for dif-
ferent time-periodic regimes (n = 1, 2, 3 and 4). We clearly note that they emerge
from limit-points of limit-cycles located at a = ac

n . Comparing Fig. 17.3a and c, we
note that the extrema obtained numerically by integrating Eqs. (17.1) and (17.2) start
to slightly deviate from the extrema obtained by the analytical construction in the
vicinity of the limit points. Moreover, there are significant differences between ana-
lytical and numerical estimates of the ac

n . It suggests a possible change of stability of
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the branches of periodic solutions near the limit points although we didn’t find any
numerical evidence of a secondary bifurcation to quasi-periodic oscillations. It is
most likely that the periodic solutions are weakly stable in the vicinity of the limit
points.

17.2.3 The Limit ε → 0

In order to further progress analytically, we investigate the asymptotic limit ε → 0.
For τ = O (1), ε → 0 and a → ac

n , we note that |λ+| = O (1), |λ−| = O
(
ε−1

)
, t1 =

O (|ε ln (ε)|) � 1, and t2 = (τ + δ)/n = O (1). The two exponentials exp(λ−t21)

and exp(λ+t21) are then O
[
exp(−ε−1)

]
small quantities and Eq. (17.50) reduces to

1 − λ+t1 + λ2+t2
1

2

1 + eλ+τ/n

1 − eλ+τ/n
+ (−2 + eλ−t1

)
e(λ−−λ+)δ = 0. (17.16)

From (17.16), we extract δ as

δ = 1

(λ− − λ+)
ln

(
1 − λ+t1
2 − eλ−t1

)
,

� ln (2)

(λ+ − λ−)
. (17.17)

From (17.49) and using (17.16) and (17.17) in order to eliminate exp
[
(λ− − λ+) δ

]

and exp (−λ+δ), we obtain

a = 1

ε
[
λ+ (1 − ln (2)) − λ−

]
[

1

2
+ λ+t1

(
1

1 − eλ+τ/n
− 1

2

)
− eλ−t1

4

]
. (17.18)

We wish to find a limit point of limit-cycles. To this end, we analyze the condition
da/dt1 = 0. From Eq. (17.18), we find

t1c = 1

λ−
ln

[
2
λ+
λ−

(
1 + eλ+τ/n

1 − eλ+τ/n

)]
. (17.19)

Using λ+ � −1 and λ− � −ε−1 + 1, we simplify Eqs. (17.18) and (17.19), and
obtain

a = 1

[1 − 2ε + ε ln (2)]

[
t1

(
1

2
− 1

1 − e−τ/n

)
+ 1

2
− e−ε−1t1

4

]
, (17.20)
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Fig. 17.5 The different curves represent the interval of time t1 as functions of a for n = 1 (black),
n = 2 (red), n = 3 (blue), and n = 4 (orange). They are obtained from Eq. (17.20) which is the
leading approximation of the exact conditions for ε small. For each periodic solution, we note two
branches that emerge from a limit point

and

t1c = −ε ln

[
2ε

(
1 + e−τ/n

1 − e−τ/n

)]
. (17.21)

The critical values ac
n are obtained by inserting (17.21) into (17.20). Figure 17.5 is

obtained from Eq. (17.20) and represents the time t1 as function of a for n = 1, 2, 3,
and 4. As in Fig. 17.3c, we observe that oscillations of period τ/n beyond ac

n are
no more possible. Moreover, we note that the critical values obtained by evaluating
numerically the analytical conditions valid for arbitrary ε or their approximations
for ε small are very close. They are listed in the Table 17.2.

Table 17.2 ac
n obtained

analytically (exactly and in
the limit ε → 0) for the
Tn-periodic regimes

n ac
n exact ac

n (ε → 0)

1 0.462 0.461

2 0.434 0.433

3 0.411 0.409

4 0.391 0.388
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17.3 Experiments

17.3.1 Circuit

In order to test the experimental accessibility of our theoretical results, we have build
a nonlinear electronic circuit that simulate our FHN system (see Fig. 17.6).

Assuming the values of R1, R2 and R3 are sufficiently close to each other, the
evolution equations for Vx and Vy are given by

R2C2
dVx

dt
= −Vx − Vy − Vz + 3Vref , (17.22)

dVy

dt
= Vx

R4C4
− Vref

R4C4
+ Vref

R5C4
− Vy

R5C4
, (17.23)

while
Vz = −Vref H(Vx (T − TD) − Va) + Vref.

The Heaviside function is accomplished by comparator U3a . The circuit was built
on a ‘breadboard’ and connected to a commercially available Digilent Nexys 2 Field
Programmable Gate Array (FPGA) board. The FPGA board is programmed as a
digital delay line with provisions for storing and generating signals. The interfacing
between the digital FPGA and the analog circuit is done by using several ‘PMOD’

Fig. 17.6 A single FHN circuit. U3a is used as a comparator to build the Heaviside step function.
The delay is built using an FPGA equipped with AD and DA converters (not shown)
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AD0
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x(t −  )τ x(t)

delay line memory

Digital part

storage
’a’ value

memory

memory

storage

Fig. 17.7 Schematical view showing how the data flows in the experiment

analog-to-digital (AD) and digital-to-analog (DA) plug-in modules, also from Dig-
ilent. Figure 17.7 shows how the digital part is programmed and connected to the
analog FHN circuit. x(t) is read by AD0 and a delayed version x(t − τ) is output by
DA1. In between is a patch of memory, programmed as a digital delay line. At the
same time another patch of memory is used to store a time trace of x(t). DA1 is used
to output the value of a, which is fixed in each run of the experiment. Before each run
of the experiment, the initial function (17.3) is loaded in the delay line memory. y(t)
is read by AD1 and stored in another section of memory. A Python script running on
a host PC is responsible for controlling the experiment, initializing the FPGA board,
downloading the data, etc.

17.3.2 Voltage and Time Scaling

In order to compare experimental measures with theoretical results, we reformulate
Eqs. (17.22) and (17.23) in dimensionless form. Numerical simulations show the
dimensionless variables to be within the interval [−1,+1]. The micro-controller
uses voltages between 0 and 5 V as output and input on the DA and AD converters
respectively. Therefore, Vref = 2.5 V was chosen as ‘zero’. We introduce the new
variables x , y, and z as

x, y, z = Vx,y,z − Vref

Vref
. (17.24)

Va is generated by a DA1 and its value is between 2.5 and 5 V. This enables us
to vary Va in the Python script. The internal representation is signed sixteen bit,
having values between −32,768 and 32,767 with 0 being Vref. Comparison between
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Table 17.3 Measured values of different components

Component Nominal Measured

R4 47 k� 46.8 k�

C4 100 nF 104.9 nF

R2 47 k� 46.9 k�

C2 1 nF 1.02 nF

Eqs. (17.22) and (17.23), and the system equations shows that real and dimensionless
times are related as

treal = R4C4tdimensionless. (17.25)

Inserting (17.24) and (17.25) into Eqs. (17.22) and (17.23) leads to

εx ′ = −y − x + H [x(t − τ) − a], (17.26)

y′ = x − y

(
R4

R5

)
, (17.27)

where

ε = R2C2

R4C4
.

In order to properly obtain the Heaviside function, R10 must be much smaller than R3

to assure that Vz goes to Vref during the phase that the output of the comparator is not
sinking current. On the other hand, R10 cannot be too small so that the comparator
can adequately bring Vz low output during the other phase.

The ratio R4/R5 ≈ 0.006 is sufficiently small to ignore the last term in Eq. (17.27).
Equations (17.26) and (17.27) then have the same form as Eqs. (17.1) and (17.2).
We choose R2C2 = 50µs and R4C4 = 5 ms to fix ε to 0.01. The digital delay is
programmed to sample at Ts = 5µs. Since τ = N Ts/(R4C4), the length of the delay
line is N = 1000 samples.

To compensate for tolerances, actual component values were measured (see
Table 17.3) and the delay line length N set appropriately to yield ε ≈ 0.01 and τ ≈ 1.
R1, R2 and R3 were hand selected to have values very close to each other.

Since

τ = N Ts

R4C4
= 1, (17.28)

the delay line length N was set to

N = τ
R4C4

Ts
= 1 · 4.9093 ms

5µs
= 981.86. (17.29)
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Because N is an integer, we choose N = 982 which gives an actual τ = 1.0001. The
actual value for ε is

ε = R2C2

R4C4
= 47.738µs

4.9093 ms
= 0.00974 ≈ 0.01. (17.30)

17.3.3 Experimental Results

A scan over the parameter a = 0 . . . 0.5 was made for n = 1, 2, 3 and 4. Each value
for a and n was run for a time of 10 s, equivalent to 2000τ , to allow the circuit to
stabilize. The reported extrema of y are the averages of the extrema over the last
10 delay line recordings. See Fig. 17.3b. For n = 4, the running time was increased
by 1 min to conclude for stability, since even after 10 s, a jump could be observed.
The critical values ac

n for different n are listed in Table 17.1.

17.4 Discussion

In this chapter, we performed a theoretical and experimental study of a time-delayed
FHN system with threshold nonlinearity. Different coexisting stable periodic regimes
are observed for the same values of the parameters (multirhythmicity). The period of
the oscillations is close to Tn � τ/n, where τ is the delay and n is a positive integer.

From numerical simulations of Eqs. (17.1) and (17.2), we found that these solu-
tions exist from a = 0 to a critical value a = ac

n . Beyond this point, the oscillations
either jump to another oscillatory state with a larger period (smaller n) or to the sta-
ble steady state. We also noted that ac

n decreases as n increases. In order to test their
robustness with respect to noise, we built a system that is described mathematically
by the same FHN equations. We obtained quantitative agreement between numerical
and experimental bifurcation diagrams.

An analytical construction of the Tn-periodic solution is possible and leads to
a nonlinear transcendental equation. Using the dichotomy method, we determined
the bifurcation diagram and showed that the periodic solutions emerge from limit-
points of limit-cycles. Simple analytic expressions for the location of the limit points
are derived by considering the limit ε → 0. Although numerical and experimental
bifurcation diagrams are in good quantitative agreement, the point where a specific
periodic solution disappears doesn’t match the computed limit point. This difference
is likely due to the weak stability of the solutions near the limit points. However,
a possible instability near the limit point cannot be ruled out (see [29] for a sim-
ple example). We believe that this multirhythmicity is generic to a large class of
slow-fast delay systems. Recently, coexistence of stable oscillations of period close
to τ/n have been observed numerically and experimentally for an optoelectronic
oscillator [30] as well as for a laser subject to polarization rotated feedback [31].
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The stable periodic solutions however emerge from Hopf bifurcation points rather
than limit points. The mathematical model for the optoelectronic oscillator displays
quite similar equations as our FHN system. It is a two variables slow/fast system
with an S-shaped slow manifold. The small parameter ε results from the large delay
of the feedback loop.

For applications, the selection of a specific periodic solution is an important issue.
In [30], a pattern generator is included in the electric part of the optoelectronic
oscillator feedback loop. The system is then excited initially with a signal exhibiting
the chosen frequency. In [31], a weak conventional optical feedback is added to
the laser subject to a polarization rotated feedback. By controlling the delay of the
feedback control with respect to the delay of the rotated feedback a specific square-
wave with the desired period can be generated.
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and the Agence Nationale de la Recherche (ANR) TINO project (ANR-12-JS03-005). G.F. acknowl-
edges the Belgian F.R.I.A. T.E. acknowledges the support of the F.N.R.S. This work also benefited
from the support of the Belgian Science Policy Office under Grant No IAP-7/35.

Appendix

A Connection at t = t1 and t = t2

We first require that the solutions (17.9)–(17.10) and (17.13)–(17.14) are equal at
the critical times t = t1 and t = t2. This leads to the following four equations

C + D = Aeλ+t1 + Beλ−t1 , (17.31)

1 − (1 + ελ+)Aeλ+t1 − (1 + ελ−)Beλ−t1 = −(1 + ελ+)C − (1 + ελ−)D,

(17.32)

Ceλ+t21 + Deλ−t21 = A + B, (17.33)

−(1 + ελ+)Ceλ+t21 − (1 + ελ−)Deλ−t21 = 1 − (1 + ελ+)A − (1 + ελ−)B,

(17.34)

where t21 ≡ t2 − t1. We now determine the constants A, B, C , and D as functions of
t1 and t2.

From Eqs. (17.31) and (17.33), we determine

Aeλ+t1 = C + D − Beλ−t1 , (17.35)

Ceλ+t21 = A + B − Deλ−t21 . (17.36)
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Inserting these expressions of A exp(λ+t1) and C exp(λ+t21) into Eqs. (17.32) and
(17.34), respectively, leads to two coupled equations for B and D

Beλ−t1 = D − 1

ε (λ+ − λ−)
, (17.37)

Deλ−t21 = 1

ε (λ+ − λ−)
+ B. (17.38)

By using (17.37), we eliminate D into Eq. (17.38) and find

B = 1 − eλ−t21

ε (λ+ − λ−)
[
eλ−t2 − 1

] . (17.39)

Introducing then B given by (17.39) into Eq. (17.37), we obtain D as

D = eλ−t1 − 1

ε (λ+ − λ−)
[
eλ−t2 − 1

] . (17.40)

Inserting (17.37) into (17.35) and (17.38) into (17.36) provides two coupled equations
for A and C given by

Aeλ+t1 = C + 1

ε (λ+ − λ−)
, (17.41)

Ceλ+t21 = A − 1

ε (λ+ − λ−)
. (17.42)

Using (17.41), we eliminate C in Eq. (17.42) and find

A = eλ+t21 − 1

ε (λ+ − λ−)
[
eλ+t2 − 1

] . (17.43)

Finally, introducing A given by (17.43) into Eq. (17.41) provides C as

C = 1 − eλ+t1

ε (λ+ − λ−)
[
eλ+t2 − 1

] . (17.44)

From Fig. 17.4b, we note that x increases at time t = 0 when x(t − τ) = a. At time
t = δ, it is the turn of x to equal a. From Fig. 17.4c, we note that t = t1 and t = t1 + δ

mark the times where x(t − τ) and then x are equal to a. Using (17.9) with x(δ) = a
and (17.13) with x(t1 + δ) = a, we obtain

Aeλ+δ + Beλ−δ = a, (17.45)

Ceλ+δ + Deλ−δ = a. (17.46)
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Equations (17.31)–(17.46) with
t2 = Tn, (17.47)

defined by (17.6), are six equations for seven unknowns, namely A, B, C , D, t1,
and δ. We introduce the expressions of A, B, C , and D into Eqs. (17.45) and (17.46),
and find

aε (λ+ − λ−) = 1 − eλ+t21

1 − eλ+t2
eλ+δ + eλ−t21 − 1

1 − eλ−t2
eλ−δ, (17.48)

aε (λ+ − λ−) = eλ+t1 − 1

1 − eλ+t2
eλ+δ + 1 − eλ−t1

1 − eλ−t2
eλ−δ. (17.49)

Substracting side by side, we eliminate aε (λ+ − λ−). Multiplying then by e−λ+δ ,
we have

0 = 2 − eλ+t21 − eλ+t1

1 − eλ+t2
+

(
eλ−t21 − 2 + eλ−t1

1 − eλ−t2

)
e(λ−−λ+)δ. (17.50)
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Chapter 18
Exploiting Multistability to Stabilize
Chimera States in All-to-All Coupled
Laser Networks

Fabian Böhm and Kathy Lüdge

Abstract Large networks of optically coupled semiconductor lasers can be realized
as on-chip solutions. They serve as general testbeds for delay-coupled networks but
may also be candidates for new methods in signal processing. Our work focuses on
all-to-all networks where the individual units are coupled to each other by a common
mirror with very short delay times. Using the well-known Lang-Kobayashi-model
for the local laser dynamics, we investigate the occurring bifurcation structure of
the complex network in terms of numerical integration and path continuation tech-
niques. We especially focus on the interrelation between material parameters of the
laser and occurring synchronization patterns. In this respectwe identify the time scale
separation between photon and electron lifetimes T as well as the amplitude-phase
coupling α to be the driving forces for multi-stability between different cluster solu-
tions.As an example quantum-dot laserswith strongly damped relaxation oscillations
are found to present less rich dynamics when coupled to a network. Depending on
the initial conditions, one-color symmetric states (all lasers emit the same constant
waves), inhomogeneous one-color symmetry-broken states (clusters form that emit
at different constant wave intensities), andmulti-color symmetry-broken states (clus-
ters with different period pulsations) are found. Those solutions can be analytically
understood by reducing the equations to two coupled lasers, where the dynamic
bifurcation scenarios have been discussed (Clerkin et al. Phys Rev E 89:032919,
2014 [2]). Additionally we find chimera states, i.e. partially synchronized cluster
solutions, where the desynchronized clusters are chaotic in phase, amplitude and
carrier inversion (Böhm et al. Phys Rev E 91(4):040901(R), 2015 [1]). They form
from random initial conditions within the regions of multistability for the case of
large enough amplitude-phase coupling. These chimera states defy several of the
previously established existence criteria. While chimera states in phase oscillators
generally demand non-local coupling, large system sizes, and specially prepared ini-

K. Lüdge (B) · F. Böhm
Institut für Theoretische Physik, Technische Universität Berlin,
Hardenbergstr. 36,
10623 Berlin, Germany
e-mail: kathy.luedge@tu-berlin.de

F. Böhm
e-mail: boehm@itp.tu-berlin.de

© Springer International Publishing Switzerland 2016
E. Schöll et al. (eds.), Control of Self-Organizing Nonlinear Systems,
Understanding Complex Systems, DOI 10.1007/978-3-319-28028-8_18

355



356 F. Böhm and K. Lüdge

tial conditions, we find chimera states that are stable for global coupling in a network
of only four coupled lasers for random initial conditions.

18.1 Introduction

With the advance of technology, semiconductor lasers have become increasingly
important for numerous applications [3, 4]. Owning to their inexpensive fabrication,
energy efficiency and good modulation characteristics, they are the backbone of
modern communication technology. Optical interconnections with semiconductor
lasers as light sources have long replaced conventional electrical interconnections in
communication networks. However, they also find application in very different fields.
If semiconductor lasers are subjected to time-delayed self-feedback, a variety of
different rich dynamics can occur, i.e. periodic or chaotic dynamics, spiking behavior
andmultistability [3, 5–7]. These rich dynamics can be used for various applications.
They have for example been successfully studied in regards to chaos encryption
[8–12] and reservoir computing in the past [13, 14]. Furthermore, the analogy to
spiking in neuronal networks allows for the construction of all-optical neurons [15,
16]. Semiconductor laser are thus a promising system for the advancement of the
frontiers of optical signal processing and unconventional new computing paradigms
such as all-optical computing. However, as the required complex dynamical behavior
is induced by long feedback, experimental realization always requires long delay
lines and thus large and complex setups which greatly hinders easy implementation.
Another possibility to achieve the required richness in dynamics in semiconductor
lasers is by mutual coupling in a network [17–22]. Small laser networks have shown
that they can posses complex synchronization and dynamical behavior even for very
short delay lines and thus small spatial dimensions [2, 23–26]. The advancement
of epitaxial growth and lithographic techniques would allow for the construction of
such networks as powerful on-chip solutions in photonic circuits and at the same
time open the door for completely new ideas.

Networks of delay-coupled semiconductor lasers are also a promising platform
for the study of complex networks [3, 25, 27]. In particular the study of com-
plex partial synchronization patterns has recently become the focus of intense
research [3, 17, 22, 26, 28–32]. One very prominent example are chimera states
where an ensemble of identical elements self-organizes into spatially separated
coexisting domains of coherent (synchronized) and incoherent (desynchronized)
dynamics [33, 34]. Chimera states appear in many different fields of research
and are believed to be linked to several natural phenomena, e.g. in the unihemi-
spherical sleep of birds and dolphins [35], in neuronal bump states [36, 37],
in power grids [38], or in social systems [39]. At this point, the appearance of
chimera states has been reported in various systems in theoretical investigations
[40–47] as well as in experiments: [48–56]. However, no universal mechanism
for the formation of chimera states could yet be established. Many studies have
found that there are three essential requirements for long living chimera states:



18 Exploiting Multistability to Stabilize Chimera States … 357

(i) a large number of coupled elements, (ii) non-local coupling, and (iii) spe-
cific initial conditions. Recent studies however have shown, that these paradigms
can be broken and chimera states are observed also for for small system sizes
[1, 57], global coupling [47, 56, 58–60] and random initial conditions [61]. With
our work, we want to provide a bridge between laser networks and chimera patterns.
While laser networks pose a type of system, that has not been previously investigated
in relation with chimera states, they open up perspectives for application. In particu-
lar, laser networks raise the question how the specific features of the local dynamics of
semiconductor lasers, i.e. three degrees of freedom and amplitude-phase-coupling
influence the type of chimera states observable in these networks. By combining
ideas from network science and laser dynamics, we want to gain new insights into
these complex synchronization patterns and show that the dynamics of laser net-
works can give rise to interesting new types of chimera states that break all of the
three previously mentioned existence criteria simultaneously.

As the laser network is envisioned to be realized in a small-scale photonic circuit,
we choose a setup, where an array of Z identical oscillators is globally coupled
into a single external cavity (see Fig. 18.1a). The lasers receive feedback from one
common mirror at the end of the cavity. This particular setup has already been the
focus of previous studies [1, 24–26]. In terms of network topology it is a completely
connected network as sketched in the scheme in Fig. 18.1b. The advantages of such a
setup lie within the easy experimental realization. Instead of using interconnections
between all the units, coupling of all laser outputs into a single external cavity
reduces the number of required interconnections and is thus better suited for up-
scaling. The system incorporates an intrinsic time delay due to the finite speed of
light. It is given by the external cavity roundtrip time τ . Since the external cavity in a
photonic circuit is required to be very small (on the order ofmm), the feedback-delay
τ is much smaller than the intrinsic timescale of the internal dynamics (limit of short
delay). Thus, no additional bifurcations are induced by the small delay [23] and the
dynamics are not significantly altered.

The local dynamics of the system is modeled by dimensionless semi-classical
rate equations, i.e., Lang-Kobayashi equations that govern the complex electric field

(a) (b)

Fig. 18.1 a Setup of an all-to all coupled laser network. b Corresponding coupling scheme
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amplitude En of the n-th laser in the array, and the carrier inversion Nn , i = 1, ..., Z .

dEn

dt
= (1 + iα)EnNn + e−iCn

pκ

Z∑

j=1

e−iC j
p E j (t − τ) (18.1)

dNn

dt
= 1

T
(p − Nn − (1 + 2Nn)|En|2) (18.2)

The lasers are pumped electrically with the excess pump rate p. Note that p is
defined to yield a threshold pump current of p = 0. The feedback strength κ and
the feedback phase Cp are the bifurcation parameters, which are used to tune the
dynamics and the synchronization behavior of the system. They are determined from
the reflectivity of themirror and the length of the external cavity.We assume identical
feedback phases for all lasers, i.e.Cp = C j

p for all j = 1 . . . Z . The sum in Eq. (18.1)
reflects the coupling. It includes self-coupling as long as n = j is not excluded. In
polar representation the dynamics of the complex electrical field amplitude En(t) =
An(t)eiϕn(t) can be visualized in the complex plane with amplitude An and phase ϕn

(see Fig. 18.2a). The local dynamics of one laser thus has three degrees of freedom. In
semiconductor lasers the amplitude and phase dynamics are coupled by the linewidth
enhancement factor α, because the optical path-length of the laser cavity (defining
the phase of E) is dynamically linked to changes in the charge carrier densities
(defining the gain and therewith the amplitude of E). For quantum-well lasers, typical
values for α are between 2 and 5 [62], while for more complex nanostructured
lasers, e.g. quantum-dot lasers, the α-factor is much harder to define [63–65] and
generally smaller than 1. Also outside the laser community, coupled amplitude-phase
dynamics is a significant concept widely exploited in various fields of research. It
refers to anisochronicity in nonlinear dynamics [66] and is known as shear in fluid
dynamics [67].

The parameter T in Eq. (18.2) describes the ratio between electron and photon
lifetime in the laser cavity. In semiconductor lasers this is a large quantity as there

(a) (b)

Fig. 18.2 Two possible compound laser modes (CLMs) in a 4-laser network visualized in the
complex E-field plane (filled circles represent the lasers). a All lasers are in-phase synchronized. b
The lasers form anti-phase synchronized pairs
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the photons have short lifetimes on the order of ps compared to electron lifetimes
on the order of ns. Using the parameter T , the dynamical behavior of lasers can
be classified [6, 62, 68]: Class B lasers with large T show pronounced turn-on
oscillations (relaxation oscillations (RO)) while the dynamics of class A lasers with
very small T is sufficiently governed by the field dynamics and thus by only two
degrees of freedom (the fast electronic inversion N can be adiabatically eliminated
as it immediately follows the slow field dynamics [69, 70]).

18.2 Bifurcation Structure of All-to-All Laser Networks

We first want to consider the simplest case for a laser network which consists of two
mutually coupled lasers (without self-feedback). This setup was already intensively
studied (see review [3, 19]), however we shortly repeat some details needed for the
subsequent analysis. At first we are interested in the stable solutions that exist in
the Cp–κ-parameter space, i.e., solutions with constant wave(cw) emission. These
basic solutions to the coupled Lang-Kobayashi equations are the compound laser
modes (CLM). Their general form is characterized by constant inversion Nn and
complex electric field vectors En(t) = Aneiωn t eiΦn with constant amplitudes An that
are rotatingwith a frequencyωn and an arbitrary phase offsetΦn in the complex plane
(Fig. 18.2). Note that ωn is the frequency shift with respect to the rotating frame ω0,
i.e., with respect to the optical wavelength of the full electric field Ẽn(t) = En(t) ·
eiω0t . Depending on the choice for An , ωn , and Φn , different kinds of synchronized
and unsynchronized solutions can be realized. The simplest case of full (zero-lag)
synchronization occurs when ωn = ω j , Φn − Φ j = 0 and An = A j holds for all
lasers n, j = 1, ..., Z at all times t (see Fig. 18.2a). For 2 mutually coupled lasers
the in-phase CLM solution for the case τ = 0 is found to be:

⎛

⎜⎜⎝

An

Nn

ωn

Φn

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

√
2[p + κ cos(2Cp)]/[0.5 − κ cos(2Cp)]

−κ cos(2Cp)

−κ[α cos(2Cp) + sin(2Cp)]
0

⎞

⎟⎟⎠ . (18.3)

The transverse stability of this synchronous solution can be obtained by a straight-
forward linear stability analysis for the case of vanishing delay (τ → 0) [23]. It
yields that the synchronous solutions destabilize through a supercritical Hopf and
a pitchfork bifurcation. Note that the constant wave emission within the synchro-
nization manifold is globally stable. The Lang-Kobayashi equations Eqs. (18.1) and
(18.2) are invariant under a change of sign in E , thus a solution shifted by an angle
of π (Eeiπ = −E) is also a solution. This relates to a CLM where not all lasers
have the same phase offset Φ but where the phase difference of a pair of 2 lasers
is π . This anti-phase CLM is defined by ωn = ω j , Φn − Φ j = π and An = A j (see
Fig. 18.2b). For the case of 2 mutually coupled lasers it is again given by Eq. (18.3)
but shifted in Cp by π/2. We will refer to these two cases of CLMs as in-phase
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(Φn − Φ j = 0) and anti-phase (Φn − Φ j = π) synchronization in the following.
Figure18.3a illustrates the stability of theses CLMs in the Cp–κ parameter space by
showing Hopf (black) and pitchfork (red) bifurcation lines that border the regions
of stable in-phase and anti-phase synchronization, i.e., in-phase around Cp = 0 and
anti-phase around Cp = π/2.

Besides the CLMs, stable periodic solutions can also be found in the mutually
coupled 2-laser network. In this case, amplitude and inversion are no longer constant
but instead show periodic oscillations. The existence and stability for these can for
example be determined by numerical path continuation using a previously proposed
decomposition of the Lang-Kobayashi equations [2]. At the supercritical Hopf bifur-
cation (black line in Fig. 18.3), a stable periodic solution forms and splits into two
limit cycles upon decreasing the feedback phase and passing the nearby pitchfork
bifurcation of limit cycles (not shown). Thereafter the lasers are unsynchronized
with each laser being on a different limit cycle (indicated by the light grey region in
Fig. 18.3a). This state is also referred two as a two-color periodic state. By further
decreasing Cp the periodic solution looses its stability either by passing through a
Torus bifurcation at low feedback strengths (labeled T in Fig. 18.3) or by a Hopf
bifurcation at higher feedback strength. The dark grey region in Fig. 18.3a indicates
a multi-stable region in parameter space, where the periodic two-color state and the
CLM is stable. For details please see the extensive bifurcation analysis in [2].

The bifurcation structure of the CLMs for an all-to-all laser network of 4-lasers is
shown in Fig. 18.3b and was also obtained by path continuation for vanishing delay
τ → 0 to enable usage of the continuation software AUTO. Due to the increased
complexity of different possible cluster states, only the CLM solutions are followed
and not the periodic ones as done for the 2-laser case. The numeric results for the
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(a) (b)

Fig. 18.3 Stability of the constant laser modes (CLM) for a 2 mutually coupled lasers (without
self-feedback) and b 4 all-to-all coupled lasers (with optical self-feedback), obtained by path con-
tinuation. Red, black and green lines indicate pitchfork (P), Hopf (H) and Torus bifurcations (T )
that border the stable in-phase and anti-phase CLMs (white regions). Light grey region indicate
unstable CLMs. The small dark grey region in (a) mark multi stability between two-color periodic
solution and CLM. Parameters as given in Table18.1, with instantaneous coupling τ = 0
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Table 18.1 Parameters used for the simulations unless stated otherwise

Symbol Name Value

α Linewidth enhancement factor 2.5

T Ratio of electron versus
photon lifetime

392

p Pump parameter 0.23

τ External cavity roundtrip time 0 or 1

κ Feedback rate [0, 0.1]

Cp Feedback phase [0, π ]

cluster dynamics in the 4-laser case will be discussed later on in Sect. 18.3. We
find that the general form of the bifurcation structure in Fig. 18.3b is similar to the
mutually coupled 2-laser network in Fig. 18.3a. The regions of transversely stable
in- and anti-phase synchronization are again bordered by Hopf and pitchfork bifur-
cations. Compared to the mutually coupled 2-laser network, the unsynchronized
regions (light grey region in Fig. 18.3b) exist only for smaller feedback strengths
while the lasers are completely synchronized for higher feedback strength. This
behavior can be understood by considering the coupling term in Eq. (18.1). Inserting
the CLM-ansatz En(t) = Aneiωn t eiΦn for in-phase synchronization into Eq. (18.1)
yields solutions equivalent to the mutually coupled 2-laser network (Eq.18.3) with
an effective coupling strength of κZ [25]. The in-phase CLM of a mutually coupled
2-laser network with coupling strength κ (Eq. 18.3) is thus equivalent to the solu-
tion of an all-to-all coupled Z -laser network with feedback strength κZ . Since the
4-laser network investigated here is fully connected it also contains self-coupling
which changes the symmetry and thus the solution for the anti-phase CLM, i.e.,
instead of Eq. (18.3) it is given by An = √

p, ωn = 0 and Nn = 0 independent of
Cp and K . Due to the scaling, the whole bifurcation structure is compressed by a
factor Z , enabling to predict the general bifurcation structure of the CLMs of large
globally coupled laser networks by rescaling the results of the 2-laser case (as done
later on in Fig. 18.9). However, the shape of the Hopf-bifurcation line for small feed-
back strength strongly depends on the local dynamics (damping of the relaxation
oscillations of a single laser) and thus does not change with Z .

18.3 Multi-stability in Laser Networks

While the global coupling topology of the laser network allows us to predict the
stability of in- and anti-phase synchronization, a large number of nodes in a network
also allows for more complex dynamics and synchronization phenomena as well as
multistability between different solutions. Depending on the chosen parameters and
the initial conditions of the single lasers, cluster, partial and complete desynchro-
nization can occur. In the case of cluster synchronization, the different oscillators
form groups with identical frequencies, amplitude and inversion. In a partially syn-
chronized state the dynamical variables differ for one or more lasers while the rest
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stays synchronized. In a completely unsynchronized state there is no fixed phase
relation between any given oscillators. For a given parameter set, many of those
solutions might be stable, and care has to be taken performing numerical integration.
By applying small perturbations perpendicular to the synchronization manifold, e.g.
in the form of noise, small kicks or different initial conditions, it is possible to navi-
gate between the solutions. In this section we apply perturbing kicks to the inversion
Nn of the lasers in the fully connected 4-laser network. In experiments, these could
be realized by pulses in the pump current.

The results of the dynamics in theCp–κ parameter plane are shown in Fig. 18.4a, b
for the cases of two and one perturbed laser, respectively. The twokicks (Fig. 18.4a) of
ΔN1 = 0.1 andΔN2 = 0.15 were administered to the first and second laser after the
equilibrium state for each parameter set was reached. In Fig. 18.4b only the first laser
was perturbed by a kick of ΔN1 = 0.1 leaving the remaining 3 lasers synchronized
and thus forcing the system onto a 1–3–cluster solution. The number of maxima
detected in the time series of one laser were extracted and plotted as color code in
Fig. 18.4. The yellow regions indicate constant light output of the laser (cw) which
can be either one of the CLM solution of in-phase or anti-phase synchronization
discussed above, or a symmetry broken state, where all lasers emit cw light but
with different intensities (region in the middle of Fig. 18.4b). The red and orange
regions indicate periodic solutions, while blue and white indicates chaos found in
the dynamics of laser no.1. In Fig. 18.4b, the dynamics of one laser is shown while

(a) (b)

Fig. 18.4 Dynamics of a 4-laser network in Cp–κ parameter space with different perturbations
applied to the inversion. In a for each parameter set two kicks ofΔN1 = 0.15 andΔN2 = 0.1 were
administered after transients died out. In b the system was perturbed by one kick of ΔN1 = 0.1.
The color code indicates the number of maxima found in the time series of the first laser. Yellow
regions with constant light output (CW ) can be in-phase, anti-phase and inhomogeneous CW states
of the network. The dashed line indicates the scans presented in Fig. 18.5 while the star shows the
position for the attractor basins studied in Fig. 18.6. Parameters as given in Table 18.1 with τ = 0
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the 3 remaining unperturbed lasers form a synchronized cluster where all lasers
show the same dynamics, however emit modulated light at different intensity than
the perturbed laser. Only in the indicated in-phase regions complete synchronization
is reached. For further analysis this cluster solutions can be analysed by reducing
the system Eqs. (18.1) and (18.2) to a fully connected 2-laser network (with unequal
coupling strength κ1 = κ and κc = 3κ) by summing up the three equal field equations
and introducing a new variable Ec = 3E2:

dEc

dt
= (1 + iα)EcN2 + 3κe−2iCp (Ec(t − τ) + E1(t − τ)) (18.4)

dE1

dt
= (1 + iα)E1N1 + κe−2iCp (E1(t − τ) + Ec(t − τ)) (18.5)

To underline the different possible dynamic states of the 4-laser network, slices
through the two parameter bifurcation diagrams of Fig. 18.4 (indicated by the dashed
line) are discussed in Fig. 18.5. From the bifurcation scans different dynamic regimes
can be seen, ranging from inhomogeneous steady states (1), self-pulsation (2), chaotic
dynamics (3) and spiking (4), as indicated and marked in Fig. 18.5. The related time
series of the electric field amplitude A(t) of two lasers in the network (the perturbed

(a) (c)

(b)

Fig. 18.5 One-parameter bifurcation diagrams for κ = 0.01, τ = 0 with one kick (a) and two
kicks (b) applied to the lasers (slices of Fig. 18.4a, b). Black, red and green indicating the maxima
detected for laser no. 1, no. 2. and no. 3. Solid and dashed blue line stable and unstable CLM-solution
obtained by path continuation. Indicated with background color are regimes of spiking (4), chaotic
dynamics (3), period-2 oscillations (2) and symmetry broken 1-color solutions (1) with the related
time series of laser no. 1 and 2 shown in (c) for the Cp = 1.3 (2), Cp = 2.35 (3) and Cp = 1.78
(4). Densely packed areas in (b) represent partially synchronized chaotic dynamics. Parameters as
given in Table 18.1
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laser and one of the lasers within the cluster) is shown in Fig. 18.5c. Both show
similar dynamics but at different intensities as also visible by comparing the red and
the black lines in the bifurcation scan of Fig. 18.5a.

The laser network dynamics for two perturbed lasers that are presented in
Fig. 18.4a differ strongly from the 1–3–cluster case in Fig. 18.4b. Most prominent
are the extended white chaotic regions that appear at the position where the CLMs
are unstable (compare Fig. 18.3). Within these white regions a 1–1–2 cluster chaos
synchronization is found, i.e., partial synchronization or in other words a chimera
state is induced by the perturbation. One line scan for the case of two perturbing
kicks is shown in Fig. 18.5b. It exemplarily visualizes the different solutions found
numerically. Chaotic partially synchronized dynamics (green regions), anti-phase
solutions with An = √

p and symmetry broken pulsations (periodic window within
the densely packed areas) can be seen. In between the chaotic regions the anti-phase
solution is stable but, remembering the results of the 1–3 cluster dynamics, it is
multi-stable with other solutions, e.g. symmetry broken periodic pulsations (orange
region seen in Fig. 18.4 around Cp = π/2).

BycomparingFig. 18.4a andb, it canbe seen that the laser network is very sensitive
to the number of the kicks. Large regions of multistability can be observed. This
extend of rich dynamics and multi-stability cannot be found in a 2-laser network. To
further investigate the level of multistability especially in the region where CLM and
periodic solutions coexist, i.e., region suggested by the 2-laser bifurcation analysis
in Fig. 18.3a, the influence of perturbations into different directions in phase space
is considered at a fixed position in parameter space (Cp = 0.75, κ = 0.09 (κZ =
0.36)) indicated by a star in Fig. 18.4a. This point is close to the pitchfork bifurcation
and is still in the regime, where the CLM is transversely stable. The system was
perturbed simultaneously by a single kick to one of the lasers and three identical
ones to the rest of the array. The basin of attraction was mapped by varying the sizes
of the kicks andmapping the stable dynamic state reached afterwards. The results are
shown in Fig. 18.6a and threemulti-stable dynamical solutions can be found: in-phase
CLM (yellow), period-2 oscillation of the 1–3–cluster state (orange) and chaotic
oscillations (blue). Thus, switching between these different attractors should be
possible.A simulation of a complete back and forth switching event between theCLM
and the period-2 oscillation is shown in Fig. 18.6b. The kicks are emulated by two
different pulses in the pump current with an intensity of p1 = 0.7 and p2 = 0.1 and a
duration of t1 = 2.56ns and t2 = 5.63ns (blue line in the upper panel of Fig. 18.6b).
The transient of the resulting switching of the light output of the lasers is seen in
Fig. 18.6b. It is on the order of several ns which allows for fast optical switching
events, e.g., it can be utilized for fast optical memory.

So far we investigated the different solutions and the extend of multistability
found by varying the initial conditions of the inversion. A different approach for our
laser network is to investigate the dynamics with random initial conditions for the
phases of the electric field. Figure18.7a shows the resulting dynamics and Fig. 18.7b
the synchronization properties for a four laser network, where the initial phases
were chosen randomly while the initial inversions and field intensities are all set
constant to |En(0)|2 = 1 and Nn(0) = 0. The overall dynamics observed in this case
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(a) (b)

Fig. 18.6 aAttractor basin for kicksΔN1 (inversion of laser 1) andΔN2,3,4 (inversion of laser 2, 3
and 4) in a 4-laser network for κ = 0.09 andCp = 0.75 (position indicated by the star in Fig. 18.4a).
Indicated by colors are the different dynamic regimes: yellow (stable CLM-solution), orange (sym-
metry broken period-2 oscillations), blue (chaotic dynamics). b Switching event between CLM-
solution and symmetry broken period-2 oscillation by administering a pulse in the electric pump
(blue line). Red lines show the dynamics of inversion and amplitude of the perturbed laser, while
black lines show the remaining 3 unperturbed lasers. Parameters as given in Table 18.1 with τ = 0

(a) (b)

Fig. 18.7 a Dynamics of a 4-laser network in Cp–κ parameter space for random initial
phases ϕn(0) and constant initial field intensities |En(0)|2 = 1. Color coded are the number of
maxima found in the time series. b Corresponding synchronization map, where the number of
synchronized lasers is indicated by the color code. Parameters as given in Table 18.1 with τ = 1

resembles the case for two perturbed lasers in Fig. 18.4a, however strong differences
appear in the synchronization pattern given by the color code in Fig. 18.7. The color
indicates the number of unsynchronized lasers, with brown regions showing CLM
solutions and white regions indicating complete desynchronization. The stable in-
and anti-phase synchronization regions (yellow and brown regions in Fig. 18.7a
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and b, respectively) follow the bifurcation structure of the CLMs in Fig. 18.3. In
between the bifurcation lines where the 1–3–cluster partial synchronization was
found in Fig. 18.4, the lasers show completely chaotic unsynchronized dynamics
(white regions). Within the anti-phase CLM region around Cp = π/2, we do not
see the multi-stable periodic cluster solutions discussed before, which is due to the
constant initial inversion chosen here.

Close to the pitchfork bifurcation, i.e., at the left border of the left white region
in Fig. 18.7, we see regions where both partially and cluster synchronized regions
exist (see green/yellow and black regions in Fig. 18.7b). A blowup of the region is
shown in Fig. 18.9a. It reveals that the lasers gradually start to desynchronize as the
bifurcation line is reached with increasing Cp, before complete desynchronization
occurs.

Togetmore insights into the dynamicswithin those partially synchronized regions,
we analyze the temporal dynamics of the involved lasers within the partially syn-
chronized region at Cp = 0.54 and κ = 0.01 (κZ = 0.2). A space-time plot of all
3 local laser variables, i.e. amplitude, phase, and inversion is shown in Fig. 18.8b
(for the plot the dimensionless time is converted back to ps). A snapshot for one
time moment is shown in Fig. 18.8a for the three local variables. Note that the results
shown in the plot were obtained from a 20-laser network to better visualize the partial
synchronization, although a similar behavior is found for the 4-laser network. We
find that the unsynchronized and the synchronized lasers self-organize into domains
of coherent and incoherent dynamics, thus chimera states [33, 34] are formed. Due
to the global coupling no spatial ordering of the lasers is a priori defined and for

(a)

(b)

Fig. 18.8 a Snapshot and b space-time plots of the dynamics of amplitude, phase, and inversion
(from left to right) in a chimera state for a 20-laser network after transients have died out (time is
given in ps). Parameters Cp = 0.54, κ = 0.01 (κZ = 0.2), rest of parameters as in Table18.1 with
τ = 1
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better visualization, the lasers have been re-numbered such that coherent and inco-
herent domains are separated. Contrary to other examples of chimera states [47,
56, 58–61], e.g. amplitude chimeras, the coherence-incoherence pattern coexists
simultaneously in the dynamics of the amplitude, the phase and the inversion of the
laser with chaotic temporal dynamics. Furthermore, the chimera states have very
long lifetimes. We found the partial synchronization to persist even for very long
times in the range of microseconds, which is significantly longer than the timescales
of transients in relaxation oscillations. Thus, this specific dynamic pattern seems to
be unique to the laser network and further investigations are performed in the next
section.

18.4 Tiny Chimera States in Laser Networks

Chimera states are a common phenomenon, that can be observed in a variety of
different systems. They have also been previously investigated in optical systems,
e.g. in optical combs [49], optical light modulators [48] or electro-optical feedback
systems [53, 54]. However, no study of coupled lasers has been undertaken so far.
The main difference of the system compared to other more common systems, e.g.
Fitz-Hugh-Nagumo, phase oscillators or Ginzburg-Landau is that the local dynamics
has three degrees of freedom. Furthermore, the laser network has a global coupling
topology in contrast to the more common non-local coupling found in many studies.
This is also interesting in regards to existence criteria related with the formation of
chimera states, which generally demand non-local coupling, large network sizes and
specific initial conditions in order to achieve long-living chimera states.

The chimera states found in laser networks posses chaotic temporal dynamics
and coexistence of the coherence-incoherence pattern in amplitude, phase and
inversion. These characteristics show similarities to amplitude-mediated chimera
states that have been found for non-local [71] and also global coupling [47] in
coupled Ginzburg-Landau-oscillators. These states typically show chaotic dynamics
and coherence-incoherence patterns for both amplitude and phase, and emerge under
random initial conditions. It is remarkable that in contrast to the amplitude-mediated
chimeras in the Stuart-Landau system, the chimeras in laser networks also form in
very small networks. The partially synchronized region in laser networks was found
to exist for a minimum number of four lasers. Furthermore, it was found that the
number of units Z has no influence on the chimera region. When we compare the
partially synchronization for different system sizes, we can see that neither the shape
nor the size of the region changes significantly with Z (see Fig. 18.9a–c). Comparing
the chimera region to the bifurcation analysis of the 2-laser network in Fig. 18.9d, it
appears to be correlated to the underlying multistability in region (2).While chimera
states have also been found in small networks of coupled phase oscillators, non-local
coupling is a mandatory requirement for their formation. Chimera states in laser
networks on the other hand seem tobreak all of the existence criteria mentioned above
simultaneously. This requires a critical reassessment of the question of necessary
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(a) (b) (c) (d)

Fig. 18.9 Synchronization maps of chimera region for different system sizes a 4 laser, b 8 and c
12 laser with color code indicating the number of desynchronized lasers. d Bifurcation scenario
of a mutually coupled 2-laser network. Indicated are the pitchfork (P), Hopf (H) and the Torus
(T )-bifurcation lines as well as regions of stable CLM-solutions (white labeled (1)), stable2-color-
periodic solutions (light grey labeled (3)) and multistability between regions 1 and 3 (dark grey
labeled (2)). Parameters as given in Table 18.1 a–c: τ = 1 d: τ = 0

criteria for the formation of chimera states in laser networks. Furthermore, it opens
up the question of the behavior of chimera states in networkswith higher dimensional
local dynamics.

To gain a deeper understanding into the formation of the states, we address the
influence of the specific features that semiconductor lasers posses in the follow-
ing, namely the additional degree of freedom given by the carrier dynamics, the
amplitude-phase coupling and the multi-stability. To start with the latter we investi-
gate the basins of attraction of the different solutions by performing 2 dimensional
sweeps of the initial phases ϕn(0) at different positions in parameter space within
the chimera region for the 4-laser network (Fig. 18.10a–c). In these figures the syn-
chronization state is color coded after the initial phases of two lasers are varied in
the interval ϕ(0) = [0, 2π ] while the initial phases of the other two lasers remained
fixed. Three distinct basins of attraction can be found: If the initial phases are chosen
close to each other, the synchronous in-phase CLM is reached (brown regions in
the middle of Fig. 18.10a–c). For in-phase synchronization, it is sufficient if only 3
of the four lasers have similar phases in the beginning, while the remaining laser is
dragged into the synchronous solution. If the initial phases are chosen further away
from the in-phase state, first a state with one desynchronized laser is reached (yellow
region), bordered by the attractor basin of a tiny chimera state where two lasers are
desynchronized (green region). By choosing the appropriate initial phases, we can
thus control the number of unsynchronized lasers. In larger networks, this can be
used to control the size of the incoherent region in the chimera states. Similar to
the multistable region for the 2-laser network in Fig. 18.9d, we find that the region
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(a) (b) (c)

(d)

Fig. 18.10 Attractor basins for different initial phases in a 4-laser network for increasing feedback
phase Cp = 0.45 (a), Cp = 0.5 (b), and Cp = 0.52 (c). The initial phases of two lasers are fixed
at ϕ3(0) = 2.84 and ϕ4(0) = 5.78 (indicated by blue dashed lines) while the other initial phases
are varied over the interval ϕ(0) = [0, 2π ]. Colors indicate the number of unsynchronized lasers. d
Bifurcation diagram across the chimera region (indicated by dotted line in Fig. 18.9a) for in-phase
synchronized initial phases (black) and randomly distributed initial phases (red). Marked by the
vertical blue lines are the positions of the attractor basins plotted in (a), (b), and (c). Parameters
κ = 0.05, τ = 1, other as in Table18.1

of stable chimera states is again linked to multistability. This multistability is also
visualized in Fig. 18.10d, where the bifurcation diagram of the dynamics of one laser
across the chimera region is shown, both in the case where the initial phases are
close to in-phase synchronization (black line) and for initial phases far away from
in-phase synchronization (red line). The densely packed red regions are the chimera
states with chaotic dynamics that form for much smaller Cp if random initial con-
ditions are chosen while the simultaneously stable in-phase solution is reached for
nearly synchronized initial values.

Looking at the basins of attraction, we can also explain the gradual desynchroniza-
tion that was observed in Fig. 18.9. Figure 18.10a–c maps the basins of attraction for
different values of Cp (indicated by arrows and horizontal blue lines in Fig. 18.10).
We can observe that the size of the attractor basin for the in-phase state shrinks with
increasing Cp and thus with approaching the desynchronized region. If the feedback
phase is chosen close to the pitchfork bifurcation, the size of the in-phase region is
small compared to the case when the position is chosen farther away from the pitch-
fork bifurcation. As the desynchronized region is approached, the basins for chimera
states with larger incoherent regions thus grow and thereby increase the probability,
that these states can be reached from the random initial phases.
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So far we realized that the appearance of chimera states in laser networks is
closely linked to an underlying multistability. Thus, next we aim to see how the
laser parameters T and α influence the multi-stable region. While it is known that
multistability can also be induced by time delay, we do not investigate this influence
in the following. Our delay is very short compared to the intrinsic time scales, and
we checked that no additional solutions are induced by the delay. In fact, we find
chimera states also in the case without delay (τ = 0) in the simulations.

When we consider the influence of the inversion N as an additional dynamic
variable towards the formation of the multi-stable region, we can first elaborate the
limit where we can eliminate the variable by adiabatic elimination. If the dynamics
of N happens on amuch faster timescale than the dynamics of the complex electrical
field, the inversion can be taken to be in a quasi-steady state:

N ∗
n = p − |En|

1 + 2|En| (18.6)

This quasi-steady state can be reached for very small lifetimes T of the electronic
subsystem. Numeric simulations in the case of very small T show that the lasers tend
to completely synchronize and that no multi-stable region can be found. The higher
dimensionality is thus a necessary requirement in laser networks for the formation
of complex unsynchronized dynamics and thus for the formation of chimera states.

This can also be corroborated by a bifurcation analysis with path continuation.
Since the continuation of states with chaotic attractors is not possible with path
continuation software, a simpler approach is needed andwe consider again aminimal
network of two coupled lasers, where the multi-stable region was identified in the
previous Sect. 18.2. This region (see Fig. 18.9d) is bordered by a Hopf and a Torus
bifurcation and coincides with the position of the chimera region in the parameter
space. Now, changing T , the unsynchronized and the multi-stable region shrink with
decreasing T as can be seen in Fig. 18.11a, where the change of the Torus (T), the
Hopf (H) and the pitchfork (P) bifurcation with T are shown. While the position
of the pitchfork bifurcation line remains unchanged with decreasing T , the Hopf
bifurcation starts to close in on the pitchfork bifurcation as T approaches zero. The
Torus bifurcation eventually crosses the pitchfork bifurcation at Tcrit ≈ 90 and thus
multistability can no longer be found. For even smaller T , the periodic solution starts
to destabilize through a set of different bifurcations, that is not shown here.

Another parameter that has a strong relation with multistability in semiconduc-
tor lasers is the linewidth enhancement factor α. It has been shown in theory and
experiments that amplitude-phase coupling has an important influence upon the syn-
chronization behavior. It is alsowell established that strong amplitude-phase coupling
is able to induce multi-stability in single lasers with optical feedback. We thus want
to understand the influence of α on the synchronization properties and on the for-
mation of chimera states. Comparing numerically obtained synchronization maps
for different values of α, we find that the unsynchronized regions (white regions in
Fig. 18.7) shrink with decreasing α, so that the lasers are only unsynchronized for
low feedback strengths (not shown). The unsynchronized region completely van-
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(a) (b)

Fig. 18.11 Bifurcation lines found for the mutually coupled 2-laser network for fixed κ = 0.1 and
τ = 0. In a T is varied towards the case of adiabatic elimination. In b the amplitude phase coupling
α is changed.Red, black and green lines indicate pitchfork (P), Hopf (H) and Torus (T ) bifurcations,
respectively. Tcrit and αci t indicate the values beneath which no multistability (dark grey region)
and thus no chimera states are found

ishes for α = 0. Amplitude-phase coupling is thus a requirement to find complex
dynamics in our laser networks. Our numerical simulations of the chimera regions
found for the fully connected 4-laser network close to the unsynchronized regions
suggest that they indeed do not form above a minimal value of αcri t ≈ 1.1. To get
a better understanding of the formation process, we again investigate the bifurca-
tion scenario of the 2-laser network as presented in Fig. 18.11b. For a fixed value of
κ = 0.1, we plot the Torus (T), Hopf (H) and pitchfork (P) bifurcation, that border the
unsynchronized region and follow them over the feedback phase and the linewidth
enhancement factor. We can observe, that the unsynchronized regions forms at a
minimal value for α ≈ 0.65. The limit cycle stabilizes through the bifurcation at a
critical value of α ≈ 0.9. It then starts to extend towards the pitchfork bifurcation,
until it crosses the bifurcation line at critical value of αcri t ≈ 1.2. With this picture, it
becomes clear how the multi-stability region forms in a 2-laser network. Comparing
it to the numerical results of the dynamics of the 4-laser network, the interrelation
between multi-stability and formation of chimera states is underlined.

18.5 Conclusions

To conclude, we investigated the emerging dynamics found in the light-output of
all-to-all coupled laser networks of different network-size, ranging from minimal
networks of two or four lasers to networks of up to 20 lasers. We characterized the
occurring bifurcation scenarios and mapped regions of multistability as a function
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of the experimentally accessible parameters, i.e., strength and phase of the coupling
via the external mirror. While the basic synchronized solutions of the laser dynamics
within the network can be obtained from a simplified two laser system, we observe
a high level of multistability to partially synchronized pulsating solutions that even-
tually evoke the formation of chimera states usually distinctive for larger networks.
Concerning the local dynamics of the nodes, i.e. the lasers in our case, we identified
the time scale separation between the lifetimes of electrons and photons as an impor-
tant condition for the formation of long living chimera states chimera states. Without
the additional degree of freedom of the carrier inversion within the laser the rich
dynamics of the coupled network disappears. Further the existence of a coupling
between the amplitude and the phase of the electric field (linewidth enhancement
factor α) is crucial to observe the symmetry broken chimera state solutions.

The study of the dynamics of laser networks is done in the light of possible
applications as all-optical devices. Having understood the bifurcation structure we
showed that the multistability regions can be exploited for switching processes. By
applying small perturbations to the pump current of one laser it is possible to switch
the state of synchronization as well as the dynamic state of the lasers (chaotic vs.
stable or regularly oscillating light emission).
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Chapter 19
Feedback Control of Colloidal Transport

Robert Gernert, Sarah A.M. Loos, Ken Lichtner and Sabine H.L. Klapp

Abstract We review recent work on feedback control of one-dimensional col-
loidal systems, both with instantaneous feedback and with time delay. The feedback
schemes are based on measurement of the average particle position, a natural control
target for an ensemble of colloidal particles, and the systems are investigated via
the Fokker-Planck equation for overdamped Brownian particles. Topics include the
reversal of current and the emergence of current oscillations, transport in ratchet sys-
tems, and the enhancement of mobility by a co-moving trap. Beyond the commonly
considered case of non-interacting systems, we also discuss the treatment of colloidal
interactions via (dynamical) density functional theory and provide new results for
systems with attractive interactions.

19.1 Background

Within the last years, feedback control [1] of colloidal systems, that is, nano- to
micron-sized particles in a thermally fluctuating bath of solvent particles, has become
a focus of growing interest. Research in that area is stimulated, on the one hand, by
the fact that colloidal systems have established their role as theoretically and experi-
mentally accessible model systems for equilibrium and nonequilibrium phenomena
[2–4] in statistical physics. Thus, colloidal systems are prime candidates to explore
concepts of feedback control and its consequences. On the other hand, feedback
control of colloidal particles has nowadays found its way into experimental appli-
cations. Recent examples include control of colloids, bacteria and artificial motors
in microfluidic set-ups [5–7], biomedical engineering [8], and the manipulation of
colloids by feedback traps [9–11]. Further, a series of recent experiments involv-
ing feedback control aims at exploring fundamental concepts of thermodynamics
and information exchange in small stochastic systems [11–13]. As a consequence
of these developments, feedback control of colloids is now an emerging field with
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relevance in diverse contexts, including optimization of self-asssembly processes
[14], and the manipulation of flow-induced behavior [15, 16] and rheology [17, 18].

Within this area of research, the present article focuses on feedback control of
one-dimensional (1D) colloidal transport. Transport in 1D systems without feedback
control has been extensively studied in the past decades, yielding a multitude of
analytical and numerical results (see, e.g., [19–21]). These have played a major role
in understanding fundamentals of diffusion through complex landscapes and the
role of noise. Paradigm examples of such 1D systems are Brownian particles driven
through a periodic 1D “washboard” potential, or ratchet systems (Brownian motors)
operating by a combination of asymmetric static potentials and time-periodic forces.
It is therefore not surprising that the first applications of feedback control of colloids
involve just these kinds of systems, pioneering studies being theoretical [22–24] and
experimental [25] investigations of a feedback-controlled 1D “flashing ratchet”. Here
it has been shown that the fluctuation-induced directed transport in the ratchet system
can be strongly enhanced by switching not under an externally defined, “open-loop”
protocol, but with a “closed-loop” feedback scheme.

From the theoretical side, most studies focus on manipulating single colloidal
particles (or an ensemble of non-interacting particles) in a 1D set-up, the basis being
an overdamped or underdamped Langevin equation. The natural control target is then
the position or velocity of the colloidal particle at hand.Within this class,many earlier
studies assume instantaneous feedback, i.e., no time lag between measurement and
control action [22]. However, there is now increasing interest in exploring systems
with time delay [23, 24, 26–28]. The latter typically arises from a time lag between
the detection of a signal and the control action, an essentially omnipresent situation in
experimental setups. Traditionally, time delaywas often considered as a perturbation;
for example, in some ratchet systems it reduces the efficiency of transport [23].
However, it is known from other areas that time delay can also have significant
positive effects. For example, it can stabilize desired stationary states in sheared liquid
crystals [16], it can be used to probe coherent effects in electron transport in quantum-
dot nanostructures [29], and it can generate new effects such as current reversal [30,
31] and spatiotemporal oscillations in extended systems [32, 33]. Moreover, time
delay can have a stabilizing effect on chaotic orbits, a prime example being Pyragas’
control scheme [34] of time-delayed feedback control [35]. Apart from the effects of
time delay on the dynamical behavior, a further issue attracting increasing attention
is the theoretical treatment of time-delayed, feedback-controlled (single-particle)
systems via stochastic thermodynamics [28, 36–38].

Finally, yet another major question concerns the role of particle interactions. We
note that, even in the idealized situation of a (dilute) suspension of non-interacting
particles, feedback can induce effective interactions if the protocol involves system-
averaged quantities [22]. For many real colloidal systems, however, direct interac-
tions between the colloids stemming e.g., from excluded volume effects, charges on
the particles’ surfaces, or (solvent-induced) depletion effects cannot be neglected.
Within the area of transport under feedback, investigations of the role of interactions
have started only very recently. Understanding the impact of interactions clearly
becomes particularly important when one aims at feedback-controlling systems with
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ρ̇(z, t) = −∂zj[ρ, Fc]

control target
z̄(t), z̄(t−τD)measuring

positions

control force
Fc(z, t)

computation
adjusting
force field

Fig. 19.1 Concept of feedback control for a system of (interacting) colloids. The control target is
the average particle position z̄ measured either at time t or at a delayed time t − τD. This average
position determines the control force Fc(z, t). The system is investigated based on the Fokker-Planck
equation where ρ is the probability density and j is the current

phase transitions, pattern (or cluster-)forming systems, and systems with collective
dynamic phenomena such as synchronization.

For an interacting, 1D colloidal system, one natural control variable is the aver-
age particle position, which is experimentally accessible e.g. by video microscopy.
Theoretically, the average position can be calculated from the time-dependent proba-
bility distribution ρ(z, t), whose dynamics is determined by the Fokker-Planck (FP)
equation [39] (for overdamped particles often called Smoluchowski equation). About
two decades ago, Marconi and Tarazona [40, 41] have proposed a special type of
FP equation, the so-called dynamical density functional theory, which is suitable
for an interacting, overdamped system of colloidal particles. Within this framework,
dynamical correlations are approximated adiabatically, and correlation effects enter
via a free energy functional.

In this spirit, we have recently started to investigate a number of feedback-
controlled 1D systems based on the FP formalism [31, 32, 42, 43]. The general
scheme of feedback control used in these studies is sketched in Fig. 19.1. The pur-
pose of the present article is to summarize main results of these investigations. We
cover both, non-interacting systems and interacting systems, including new results
for systems with attractive interactions. Also, we discuss examples with instanta-
neous feedback and with time delay. We note that, in presence of time delay, the
connection between the FP equation and the underlying Langevin equation is not
straightforward (see, e.g., Refs. [28, 36, 44–46]), and this holds particularly for con-
trol schemes involving individual particle positions. However, here we consider the
mean particle position as control target. For this situation, the results become con-
sistent with those from a corresponding Langevin equation (with delayed force), if
the number of realizations goes to infinity [42].

19.2 Theory

We consider the motion of a system of N overdamped colloidal particles at tem-
perature T in an external, one-dimensional, periodic potential Vext(z) supplemented
by a constant driving force Fext, where z is the space coordinate. The particles are



378 R. Gernert et al.

assumed to be spherical, with the size being characterized by the diameter σ . In
addition to thermal fluctuations, each particle experiences a time-dependent force
Fc(z, t) which we will later relate to feedback control. We also allow for direct par-
ticle interactions which are represented by an interaction field Vint(z) to be specified
later. The dynamics is investigated via the FP equation [39] for the space- and time-
dependent one-particle density ρ(z, t) = 〈∑N

i=1 δ(z − zi (t))〉 (where 〈. . . 〉 denotes
a noise average), yielding

∂tρ(z, t) = ∂z

[
γ −1(V ′

ext(z) − Fext − Fc(z, t) + ∂zVint(z, ρ)
)
ρ(z, t) + D0∂zρ(z, t)

]

= −∂z j (z, t), (19.1)

where D0 is the short-time diffusion coefficient, satisfying the fluctuation-dissipation
theorem [39] D0 = kBT/γ (with kB and γ being the Boltzmann and the friction
constant, respectively), and j (z, t) is the probability current. Throughout the paper,
wemeasure the time t in units of the “Brownian” time scale, τB = σ 2/D0. For typical,
μm-sized particles τB is about 1 s [25, 47] or larger [48].

Feedback control is implemented through the time-dependent force Fc(z, t).
Specifically,we assume this force to depend on the (time-dependent) average position

z̄(t) = 1

N

∫
dz ρ(z, t) z , (19.2)

where we have used that N = ∫
dz ρ(z, t). The density is calculated with periodic

boundary conditions, that is, ρ(z + Lsys, t) = ρ(z, t)with Lsys being the system size.
Thus, the time dependency of Fc(z, t) arises through the internal state of the system.

Our reasoning behind choosing the mean particle position rather than the indi-
vidual position as control target is twofold: First, within the FP equation treatment
we have no access to the particle’s position for a given realization of noise, because
the latter has already been averaged out. This is in contrast to previous studies using
Langevin equations [25, 26, 49] where the dynamical variable is the particle position
itself. Second, the mean position is an experimentally accessible quantity, which can
be monitored, e.g., by video microscopy [26].

19.3 Non-interacting Systems Under Feedback Control

19.3.1 Particle in a Co-moving trap

As a starting point [43], we consider a single particle (or non-interacting colloids in a
dilute suspension) under the combined influence of a static, “washboard” potential,

Vext(z) = u(z) = u0 sin
2(π z/a) (19.3)
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supplemented by a constant tilting force Fext and the feedback force

Fc(z, t) = −∂zVDF(z, t) (19.4)

derived from the potential

VDF(z, t) = η(z − z̄(t))2 . (19.5)

Physically speaking, Eq. (19.5) describes a parabolic confinement, which moves
instantaneously with the mean position, thus resembling the potential seen by parti-
cles in moving optical traps [50, 51]. The strength of the harmonic confinement, η,
is set to constant.

In the absence of the potential barriers (u0 = 0) the problem can be solved
analytically. Starting from the initial condition ρ(z, t=0) = δ(z − z0) one finds
z̄(t) = (Fext/γ ) t + z0, yielding the mobility

μ := lim
t→∞

∂t z̄

Fext
= 1

γ
. (19.6)

Moreover, themean-squareddisplacement describing thewidth of the distribution,

w(t) = 〈(z − z̄(t))2〉 (19.7)

becomes

w(t) = kBT

2η

(
1 − e−4ηt/γ )

, (19.8)

showing that density fluctuations freeze in the long-time limit. Interestingly, the same
type of behavior of w(t) occurs in a model of quantum feedback control [52].

For non-vanishing potential barriers and in presence of feedback, Eq. (19.1) has
to be solved numerically. Figure19.2a, b shows representative results for the average
position and the width.

Upon increase of η the slope of z̄(t) first increases but then decreases again.
A further characteristic feature is the emergence of oscillations in z̄(t), the velocity
v(t) = ∂ z̄/∂t and thewidthw(t). These oscillations can be traced back to the periodic
reconstruction of the effective energy landscape, VDF(z, t) + u(z), which consists
of a periodic increase and decrease of the energy barriers [43]. The period T of
oscillations roughly coincides with the inverse Kramers rate [21, 39], which is the
relevant time scale for the slow barrier-crossing. Also, the regime of pronounced
oscillations partly coincideswith the regimewhere a “speed up” of themotion occurs.
We quantify this “speed up” via an average mobility μ = v̄/Fext based on the time-
averaged velocity v̄ = T −1

∫ t1+T
t1

dt v(t). Figure19.2c shows μ/μ0 depending on η,
where μ0 ≈ 1.2 · 10−4/γ is the mobility of the uncontrolled system (η=0) with the
same external potential [39, 53]. For small η, we findμ ≈ μ0. At intermediate values
of η the mobility shows a global maximum. This maximum occurs in the range of η
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Fig. 19.2 Single particle in a trap [43]. a Average position and b width of the density distribution
as functions of time. cMobility (normalized by the mobility of the uncontrolled system) as function
of control strength

where the oscillation periods of v(t) are about (in fact, somewhat smaller than) the
inverse Kramers rate. For even larger values of η one observes a sharp decrease of
the mobility to zero. Here, the confinement induced by the trap becomes so strong
that barrier diffusion is prohibited (note that this effect would be absent if the trap
was moved by an externally imposed velocity). Overall, the increase of mobility by
the co-moving trap is about twenty percent. As we will see in Sect. 19.4, a much
more significant enhancement of mobility occurs when the particles interact.

19.3.2 Feedback Controlled ratchet

In the second example [42], Vext(z) is a periodic, piecewise linear, “sawtooth” poten-
tial [25, 54, 55] defined by Vext(z + a) = Vext(z) with

Vext(z) =
{
u0z/(αa), 0 < z ≤ αa,

u0z/((α − 1)a), (α − 1)a < z ≤ 0 ,
(19.9)

where u0 and a are again the potential height and the period, respectively, and
α ∈ [0, 1] is the asymmetry parameter. The potential minimum within the central
interval S = [(α − 1)a, αa] is at z = zmin = 0. We further assume periodic bound-
ary conditions such that ρ(z + a, t) = ρ(z, t) (i.e., a = Lsys), and we calculate the
mean position from Eq. (19.2) with the integral restricted to the interval S.
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In the absence of any further force (Fext = 0 and Fc = 0) beyond that arising
from Vext(z), the system approaches for t → ∞ an equilibrium state and thus there
is no transport (i.e., no net particle current). It is well established, however, that by
supplementing Vext(z) by a time-dependent oscillatory force (yielding a “rocking
ratchet”), the system is permanently out of equilibrium and macroscopic transport
can be achieved [20, 56, 57].

Here we propose an alternative driving mechanism which is based on a time-
delayed feedback force Fc(z, t) depending on the average particle position at an
earlier time. Specifically,

Fc(t) = −F · sign(z̄(t − τD) − z0) , (19.10)

where τD is the delay time, F is the amplitude (chosen to be positive), z0 is a fixed
position within the range [0, αa] (where Vext increases with z), and the sign function
is defined by sign(x) = +1 (−1) for x > 0 (x < 0). From Eq. (19.10) one sees that
the feedback force changes its sign whenever the delayed mean particle position
z̄(t − τD) becomes smaller or larger than z0; we therefore call z0 the “switching”
position.

In the limit τD → 0 any transport vanishes since the feedback force leads to a
trapping of the particle at z0. This changes at τD > 0. Consider a situation where the
mean particle position at time t is at the right side of z0, while it has been on the left
side at time t − τD. In this situation the force Fc(t) points away from z0 (i.e., Fc > 0),
contrary to the case τD = 0. Thus, the particle experiences a driving force towards
the next potential valley, which changes only when the delayed position becomes
larger than z0. The force then points to the left until the delayed position crosses z0
again. This oscillation of the force, together with the asymmetry of Vext(z), creates
a ratchet effect.

To illustrate the effect, we present in Fig. 19.3a exemplary data for the time evolu-
tion of the mean particle position, z̄(t), which determines the control force. It is seen
that z̄(t) displays regular oscillations between values above and below z0 for both
force amplitudes considered. The period of these oscillations, T , is roughly twice
the delay time. We note that the precise value of the period as well as the shape of the
oscillations depend on the values of F and z0 [42]. Due to the oscillatory behavior of
z̄(t) the delayed position z̄(t − τD) oscillates around z0 as well, yielding a periodic
switching of the feedback force between +F and −F with the same period as that
observed in z̄(t) (see Fig. 19.3b). The oscillatory behavior of the feedback force then
induces a net current defined as

J = 1

T

∫ t1+T

t1

dt ′ v(t ′) (19.11)

where t1 is an arbitrary time after the “equilibration” period, v(t) = ∫
S dz j (z, t)

is the velocity, and j (z, t) is calculated from the FP equation (19.1) with periodic
boundary conditions. Numerical results for J in dependence of the delay time τD
and the force amplitude are plotted in Fig. 19.3c.
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The results clearly show that the time delay involved in the feedback protocol is
essential for the creation of a ratchet effect and, thus, for a nonzero net current. For
finite delay times (τD � 3τB), the current generally increaseswith τD.Also, for a fixed
τD, J increases with increasing force amplitude (or with larger z0). At small delay
times (τD � 3τB) the behavior of the function J (τD) is sensitive (in fact, behaves
non-monotonous) with respect to both, F and z0 [42].

Given the feedback-induced transport, it is interesting to compare the resulting
current with that generated by a conventional rocking ratchet. The latter is defined
by replacing the force Fc(t) in Eq. (19.1) with a time-periodic (rectangular) force
Fosc(t) = −F · sign [

cos
((
2π/T ′) t

)]
, where the period T ′ is set to the resulting

period T in the feedback-controlled case. While the general behavior of the current
(that is, small values of J for small periods, saturation at large values for large periods)
is similar for both, open-loop and closed-loop systems [42], the actual values of J for
a given period strongly depend on the type of control. It turns out that, for a certain
range of switching positions (and not too large delay times), the net current in the
feedback-controlled system is actually enhanced relative to the open-loop system.

A somewhat subtle aspect of the present model is that we introduce feedback on
the level of the Fokker-Planck equation describing the evolution of the probability
density. This is different from earlier studies based on the Langevin equation (see,
e.g., [25, 26, 49]), where the feedback is applied directly to the position of one par-
ticle, χi (t), or to the average of N particle positions N−1 ∑N

i=1 χi (t). Introducing
feedback control in such systems implies to introduce effective interactions between
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the particles. As a consequence, the transport properties in these particle-based mod-
els depend explicitly on the number of particles, N . From the perspective of these
Langevin-based models, the present model corresponds to the “mean field” limit
N → ∞ (for a more detailed discussion, see [42]).

19.4 Impact of Particle Interactions

We now turn to (one-dimensional) transport in systems of interacting colloids. To
construct the corresponding contribution Vint(z) in the FP equation (19.1), we employ
concepts from dynamical density functional theory (DDFT) [40, 41, 58]. Within the
DDFT, the exact FP equation for an overdamped system with (two-particle) interac-
tions is approximated such that non-equilibrium two-particle correlations at time t
are set to those of an equilibrium system with density ρ(z, t). This adiabatic approx-
imation allows to formally relate the interaction contribution to the FP equation to the
excess free energy of an equilibrium system [whose density profile ρeq(z) coincides
with the instantaneous density profile ρ(z, t)]. It follows that

Vint(z) = δF int[ρ]
δρ(z, t)

(19.12)

where F int[ρ] is the excess (interaction) part of the equilibrium free energy func-
tional. Thus, one can use well-established equilibrium approaches as an input into
the (approximate) dynamical equations of motion.

19.4.1 Current reversal

Our first example involves “ultra-soft” particles interacting via the Gaussian core
potential (GCM)

vGCM(z, z′) = ε exp

(
− (z − z′)2

σ 2

)
, (19.13)

(with ε > 0), a typical coarse-grainedpotentialmodeling awide class of soft, partially
penetrable macroparticles (e.g., polymer coils) with effective (gyration) radius σ

[59, 60]. Due to the penetrable nature of the Gaussian potential which allows an, in
principle, infinite number of neighbors, the equilibrium structure of the GCMmodel
can be reasonably calculated within the mean field (MF) approximation

F int[ρ] = 1

2

∫
dz

∫
dz′ρ(z, t)vGCM(z, z′)ρ(z′, t). (19.14)
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TheMF approximation is known to become quasi-exact in the high-density limit and
yields reliable results even at low and moderate densities [60].

The particles are subject to an external washboard potential of the form defined
in Eq. (19.3) plus a constant external force Fext = 3kBT/σ . To implement feedback
control we use the time-delayed force

Fc(z, t) = Fc(t) = −K0

(
1 − tanh

[
N

σ
(z̄(t) − z̄(t − τD))

])
, (19.15)

which involves the difference between the average position at times t and t − τD.
By construction, Fc(t) vanishes in the absence of time delay (τD = 0). The idea to
use a feedback force depending on the difference of the control target at two times
is inspired by the time-delayed feedback control method suggested by Pyragas [34]
in the context of chaos control. Indeed, the original idea put foward by Pyragas was
to stabilize certain unstable periodic states in a non-invasive way (notice that Fc(t)
vanishes if z̄(t) performs periodic motion with period τD). Later, Pyragas control
has also been used to stabilize steady states (for a recent application in driven soft
systems, see [16]). We also note that a similar strategy has been used on the level of
an (underdamped) Langevin equation by Hennig et al. [61].

The impact of the control force Fc(t) on the average particle position z̄(t) is
illustrated in Fig. 19.4, where we have chosen a moderate value of the driving force
(yielding rightward motion in the uncontrolled system) and a delay time equal to
the “Brownian” time, τD = τB. In the absence of control (K = K0σ/kBT = 0) the
average position just increases with t reflecting rightward motion, as expected. The
slope of the function z̄(t) at large t may be interpreted as the long-time velocity
v∞ = limt→∞ dz̄(t)/dt . Increasing K from zero, the velocity first decreases until
the motion stops (i.e., the time-average of z̄(t) becomes constant) at K = 3. This
value corresponds to a balance between control force and biasing driving force. Here,
the average position z̄(t) displays an oscillating behavior changing between small
backward motion and forward motion, with a period of about 5τB (that is, much
larger than the delay time). These oscillations are accompanied by oscillations of
the effective force Feff = Fc(t) + Fext around zero (notice the restriction −2K0 ≤
Fc(t) ≤ 0). Consistent with this observation, there is no directed net motion. A more
detailed discussion of the onset of oscillations is given in Ref. [32], where we have
focussed on a non-interacting system (ε = 0). Indeed, for the present situation we
have found that a non-interacting ensemble subject to the Pyragas control (19.15)
behaves qualitatively similar to its interacting counterpart. Moreover, for the non-
interacting case, we have identified the onset of oscillations as supercritical Hopf
bifurcation.

Turning back to Fig. 19.4a we see that even larger control amplitudes (K > 3)
result in a significant backward motion, i.e., z̄(t) and v∞ become negative. Thus, the
feedback control induces current reversal.

To complete the picture, we plot in Fig. 19.4b the long-time velocity v∞ (averaged
over the oscillations of z̄(t), if present) as function of the control amplitude. We have
included data for different delay times τD and different interaction (i.e., repulsion)
strengths ε. All systems considered display a clear current reversal at K = 3 (balance
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between feedback and bias), where the velocity v∞ changes from positive to negative
values irrespective of ε and τD. Regarding the role of the delay we find that, at fixed
coupling strength ε, v∞ decreases in magnitude when the delay time decreases from
τD = τB towards τD = 0.2τB. In other words, the time delay supports the current
reversal in the parameter range considered. Regarding the interactions, Fig. 19.4b
shows that reduction of ε (at fixed τD) yields a decrease of the magnitude of v∞ as
compared to the case ε/kBT = 4. Thus, repulsive interactions between the particles
yield a “speed up” of motion.

19.4.2 Interacting Particles in a Trap

As a second example illustrating the impact of particle interactions we turn back
to the feedback setup discussed in Sect. 19.3.1, that is, feedback via a co-moving
harmonic trap. In Sect. 19.3.1 we have discussed this situation for a single colloidal
particle driven through a washboard potential. In that case, feedback leads to a slight,
yet no dramatic increase of the transport efficiency as measured by the mobility.

This changes dramaticallywhen the particles interact. In [43]we have explored the
effect of two types of repulsive particle interactions, one of them being the Gaussian
core potential introduced in Eq. (19.13). Here we focus on results for hard particles
described by the interaction potential
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vhard(z, z
′) =

{
0 , for |z − z′| ≥ σ

∞ , for |z − z′| < σ
. (19.16)

For one-dimensional systems of hard spheres there exists an exact free energy func-
tional [62] derived by Percus, which corresponds to the one-dimensional limit of
fundamental measure theory [63]. This functional is given by

F int[ρ] = −1

2

∫
dz ln (1 − �[ρ, z, t]) [ρ(z + σ

2
, t) + ρ(z − σ

2
, t)] , (19.17)

where

�[ρ, z, t] =
∫ z+σ/2

z−σ/2
dz′ ρ(z′, t) (19.18)

is the local packing fraction. Corresponding results for the mobility are shown in
Fig. 19.5a. For appropriately chosen lattice constants (a > σ ), we observe a dramatic
increase of μ with η and N over several orders of magnitude. This is in striking
contrast to the corresponding single-particle result (see dotted line in Fig. 19.5a),
and similar behavior occurs for ultra-soft particles [43]. In fact, for specific values
η and N , the mobility increases up to the maximal possible value μ = 1/γ , the
mobility of free (overdamped) motion.

The dramatic enhancement of transport can be understood by considering the
(time-dependent) energy landscape formed by the combination of external potential
u(z), feedback potential VDF(z, t) (see Eq. (19.5)) and interaction contribution Vint(z)
[43]. It turns out that the Vint(z, t) develops peaks at the minima of the potential
VDF + u. The interaction contribution thus tends to “fill” the valleys, implying that
the energy barriers between the minima decrease. This results in an enhancement of
diffusion over the barriers and thus, to faster transport. In other words, interacting
particles “help each other” to overcome the external barriers.

Delayed trap

Given that any experimental setup of our feedback control involves a finite time to
measure the control target (i.e., the mean position), we briefly consider the impact
of time delay. To this end we change the control potential defined in Eq. (19.5) into
the expression

V delay
DF (z, ρ) = η (z − z̄(t − τD))2 . (19.19)

We now consider two special cases involving hard particles, where the non-delayed
feedback control leads to a particularly high mobility. Numerical results are plotted
in Fig. 19.5b, showing that the delay causes a pronounced decrease of mobility. To
estimate the consequences for a realistic colloidal system, we note that feedback
mechanisms can be implemented at the time scale of 10ms [6, 25, 64] where τB (the
timescale of Brownian motion) is forμm sized particles of the order of 1 s [25, 47] or



19 Feedback Control of Colloidal Transport 387

10−5

10−4

10−3

10−2

10−1

100

10−2 10−1 100 101

μ
γ

η σ2 /kBT

mobility of
free motion

N =10
hard

particles

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8

μ
(τ

D
)

μ
(τ

D
=

0)
τD /τB

η=0.3 kBT

σ2

a=8σ

η=2 kBT

σ2
a=2.5σ

a/σ
1

2.5
8

no control
non-interacting particles

(a) (b)

Fig. 19.5 a Mobility of a system of hard particles in dependence of the control strength, η, for
various values of the lattice constant. The mobility can rise up to 1/γ , the mobility of free motion.
The thick line indicates themobility in the uncontrolled case.b Impact of time delay at the parameters
indicated by a triangle and cross in part a

larger [48]. Hence, we expect that the ratio τD/τB is rather small, that is, of the order
10−1. For such situations, our results in Fig. 19.5b predict only a small decrease of
μ relative to the non-delayed case.

Attractive interactions

Given the strong enhancement of mobility it clearly is an interesting question to
which extent these observations dependon the type of the interactions. In [43]wehave
observed very similar behavior for two, quite different types of repulsive interactions.
What would happen in presence of additional attractive interactions?

Indeed, in colloidal systems attractive forces quite naturally arise through the so-
called depletion effect,whichoriginates from the large size ratio between the colloidal
and the solvent particles: when two colloids get so close that solvent particles do
not fit into the remaining space, the accessible volume of the colloids effectively
increases, yielding a short-range “entropic” attraction with a range determined by
the solvent particles’ diameter. Other sources of attraction are van-der-Waals forces
[65], or the screened Coloumbic forces between oppositely charged colloids [66]. A
generic model to investigate the impact of attractive forces between colloids is the
hard-core attractive Yukawa (HCAY) model [67] defined by
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vhcay(z, z
′) = vhard(z, z

′) − Y
exp(κ(σ − |z − z′|))

|z − z′|/σ , (19.20)

where vhard(z, z′) has been defined in Eq. (19.16), and the parameters Y and κ

determine the strength and range of the attractive part, respectively. Here we set
Y/kBT = 10 and consider the range parameters κσ = 7 and κσ = 1. The for-
mer case refers to a typical depletion interactions (whose range is typically much
smaller than the particle diameter) [68–70], whereas the second case rather relates to
screenedColoumb interactions. In both cases, the three-dimensionalHCAYsystemat
Y/kBT = 10 would be phase-separated (gas-solid coexistence) [69]. In other words,
our choice of Y corresponds to a strongly correlated situation. To treat the HCAY
interactionwithin our theory,we construct a corresponding potential (seeEq. (19.12))
from the derivative of the (exact) hard-sphere functional given in Eq. (19.17) com-
bined with the mean field functional (19.14) for the Yukawa attraction.

Numerical results for the mobility of the (one-dimensional) HCAY system under
feedback control are plotted in Fig. 19.6a together with corresponding results for
the (purely repulsive) hard sphere system. The general dependence of the mobility
on the feedback strength seems to be quite insensitive to the detail of interactions:
In all three cases we find an enhancement of μ towards the value characterizing a
freely (without barriers) diffusing particle. Quantitatively, the results in the range
ησ 2 � 0.7kBT depend on the range parameter κ . In particular, the system with the
longer range of attraction (κσ = 1) has a higher mobility than the one at κσ = 7,
with the mobility of the second one being even smaller than that in the hard-sphere
system. However, at ησ 2 ≥ 0.7kBT both HCAY mobilities exceed the hard-sphere
mobility. The physical picture is that of a moving “train” of particles, where each
particle not only pushes its neighbors (such as in the repulsive case) but also drags
them during motion.

Finally, we consider in Fig. 19.6b the dependence of the mobility on the total
number of particles, N (at fixed feedback strength η). This dependence arises from
the fact that the length of the particle “train”, Nσ , competes with the two other
relevant length scales, that is, the effective size of the trap (controlled by η), and the
wavelength a. Thus, increasing N in the presence of particle interactions means to
“compress” the train. For all systems considered in Fig. 19.6b this compression leads
to an increase of mobility since, as shown explicitely in [43] for hard-sphere systems,
the barriers in the effective potential landscape become successively smaller. From
Fig. 19.6b we see that the increase of μ with N is even more pronounced in presence
of colloidal attraction, suggesting that attractive forces enhance the rigidity of the
train.
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Fig. 19.6 aMobility of a systemof hardparticleswith additional short-ranged attractive interactions
as function of the control strength, η, and two range constants. b Impact of particle number

19.5 Conclusions and Outlook

In this articlewehave summarized recent research on feedback control in 1Dcolloidal
transport. We close with pointing out some open questions and possible directions
for future research.

A first notion concerns the role of the control target and the theoretical formal-
ism employed. The (Fokker-Planck based) approach described in Sects. 19.2–19.4
assumes control schemes targeting the average particle position, which seems to be
the natural, i.e., experimentally accessible, choice for a realistic system of (inter-
acting) colloids. Moreover, the FP approach allows for a convenient treatment of
colloidal interactions via the DDFT approach, which have been typically neglected
in earlier, (Langevin-based) investigations. However, it remains to be clarified how
the FP results relate to findings from Langevin-based investigations targeting the
individual positions (or other degrees of freedom), which is the straightfoward way
to control a single colloidal particle. In other words, in which respect does an ensem-
ble of colloids behave differently from a single one under feedback control? These
issues become particularly dramatic in the case of time-delayed feedback control,
where the Langevin equation is non-Markovian and the FP description consists, in
principle, of an infinite hierarchy of integro-differential equations (see, e.g., [36]).
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We note that even if one takes the average position as control target on the Langevin
level, the results become consistent with those from our FP approach only in the
limit N → ∞ [42].

Conceptual questions of this type are also of importance in the context of sto-
chastic thermodynamics. As pointed out already in Sect. 19.2 there is currently a
strong interest (both in the classical and in the quantum systems community) to
explore the role of feedback for the exchange of heat, work and entropy of a system
with its environment [28, 36–38]. This is usually done by considering the entropy
production, second-law like inequalities and fluctuation relations. In [42], we have
presented some numerical results for the entropy production in the time-delayed
feedback controlled rocking ratchet described in Sect. 19.3, the goal being to evalu-
ate the efficiency of feedback control versus open-loop control. However, systematic
investigations of feedback systems with time delay are just in their beginnings. This
is even more true for systems with direct (pair) interactions.

A further interesting question from a physical point of view concerns the role of
spatial dimension. In the present article we have focused (as it is mostly done) on
1D systems. Clearly, it would be very interesting to develop feedback control con-
cepts for two-dimensional, interacting colloidal systemswhere, in addition to particle
chain and cluster formation, anisotropic collective transport mechanisms [71], phase
transitions [72], spinodal decomposition, and more complex pattern formation such
as stripe formation [73] can occur. From the perspective of the present theoretical
approach, which is based on the FP equation, a main challenge for the 2D case arises
through the fact that we handle interaction effects on the basis of dynamical density
functional theory (DDFT). For example, contrary to the 1D case there is no exact
functional for hard spheres in two dimensions, making the entire approach less accu-
rate. Thus, it will become even more important to test any FP-DDFT results against
particle-resolved (Brownian Dynamics) simulations. One distinct advantage of the
FP-DDFT approach, however, is that one can perform further approximations such
as gradient expansions. This would allow to establish a relation to the large amount of
work on feedback-controlled pattern forming systems based on (continuum) partial
differential equations (see, e.g., [33, 35]).

Finally, we want to comment on the experimental feasibility of our feedback
protocols. To this end we first note that state-of-the-art video microscopy techniques
allow to monitor particles as small as 20nm [74]. This justifies the use of (average)
particle positions as control targets for colloids with a broad range of sizes from the
nanometer to the micron scale. Typical experimental delay times (arising from the
finite time required for particle localisation) are about 5–10ms for single particles
(see, e.g., [6, 13]). These values are substantially smaller than typical diffusion
(“Brownian”) time scales (≈500ms–1µs), which underlines the idea that the relative
time delay in colloidal transport is typically small. Naturally, somewhat larger delay
times are expected to arise in feedback control of several (interacting) particles. Still,
we think that our feedback protocols for many-particle systems are feasible, last
but not least because many-particle monitoring techniques are being continuously
improved [75]. We thus hope that the recent theoretical advancements reported in
this article and in related theoretical studies will stimulate further experimental work.
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Chapter 20
Swarming of Self-propelled Particles
on the Surface of a Thin Liquid Film

Andrey Pototsky, Uwe Thiele and Holger Stark

Abstract We consider a colony of self-propelled particles (swimmers) in a thin
liquid film resting on a solid plate with deformable liquid-gas interface. Individual
particles swim along the surface of the film predominantly in circles and interact via
a short range alignment and longer-range anti-alignment. The local surface tension
of the liquid-gas interface is altered by the local density of swimmers due to the
soluto-Marangoni effect. Without the addition of swimmers, the flat film surface is
linearly stable. We show that a finite wave length instability of the homogeneous and
isotropic state can be induced by the carrier film for certain values of the rotational
diffusivity and a nonzero rotation frequency of the circular motion of swimmers. In
the nonlinear regime we find square arrays of vortices, stripe-like density states and
holes developing in the film.

20.1 Introduction

Emerging spatio-temporal density and velocity patterns in suspensions of motile
living cells became the focus of many experimental and theoretical studies over
the last decade. With the typical body size of several µm, the colonies of swimmers
exhibit a wide range of meso-scale and large-scale coherent structures such as circular
vortices, swirls and meso-scale turbulence with the correlation length of the collective
motion ranging between ∼10 and ∼100µm [6, 10, 12, 19–23, 27].
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It was recognized that the onset of the observed large-scale patterns is associated
with a finite wave length instability of the homogeneous and isotropic distribution of
swimmers [2]. Recently, a minimal phenomenological model of the spatio-temporal
pattern formation of living matter was developed on the basis of a Swift-Hohenberg
type scalar field theory [7]. The physical mechanism, underlying the instability was
traced down to the short-range aligning and longer-range anti-aligning interaction
between the orientation of swimmers [9]. On the microscopic level, the short-range
alignment can be explained by the collisions between swimmers with elongated
bodies, or by flagellar bundling [27]. The longer-range anti-alignment is linked to
hydrodynamic interactions [9] that are known to destabilize the polar order at high
densities.

In experiments with bacterial suspensions confined between solid boundaries, the
role of the solvent fluid is seen as a passive carrier that gives rise to hydrodynamic
interactions between individual swimmers. However, in the case of freely suspended
soaplike liquid films loaded with bacteria, the deformations of the liquid-gas interface
and the resulting motion of the carrier fluid can no longer be neglected. Thus, in the
early experiments with E. coli bacteria [29], a droplet of bacterial suspension was
stretched between 10µm thin fibers to form a soaplike film. In order to delay the
film rupture, a stabilizing chemical surfactant had to be added. In later studies with
1µm soaplike films, metabolic products, secreted by the B. subtilis bacteria, played
the role of the stabilizing surfactant [20–22]. Without the addition of a stabilizing
surfactant, the life time of the film is determined by the film thickness and the surface
tension. In most recent experiments with E. coli bacteria, the rupture of a 20µm film
was detected after several minutes [12].

Motivated by these recent experiments, we address here the question of how a
suspension of swimmers, confined to move in a thin liquid film on a solid substrate, is
affected by the presence of a deformable liquid-gas interface. To this end, we consider
a non-evaporating 10–100µm thin liquid film with a deformable liquid-gas interface,
resting on a solid plate. Lubrication theory [14] predicts that without the addition of
swimmers, the flat film is linearly stable, with respect to small amplitude variations of
its thickness. The film is loaded with surface swimmers that interact with each other
via a short-range alignment and longer-range anti-alignment, as described in [9]. In
case of the resting fluid, a homogeneous and isotropic distribution of swimmers is
linearly unstable with respect to a finite wave length instability.

We extend the model of self-propelled particles, used in Ref. [9], by additionally
taking into account a deterministic rotation of the bodies of individual swimmers
that gives rise to their circular motion. Thus, it is known that bacteria with helical
flagellas swim in circles, predominantly clockwise near a solid-liquid interface and
anticlockwise near a liquid-gas interface [5, 8]. We neglect steric repulsion between
the swimmers and introduce their translational surface diffusion.

As suggested by earlier studies, the coupling between the swimmers and the liq-
uid film occurs through the soluto-Marangoni effect [1, 18]. Indeed, some living
cells, such as B. subtilis bacteria, excrete metabolic products [21] that act as a sur-
factant and change the local surface tension of the liquid film. Consequently, the
local concentration of the surfactant particles is proportional to the local concentra-
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tion of swimmers. It should be emphasized that the surface tension decreases with
the surfactant concentration, implying that soluto-Marangoni effect stabilizes a flat
film [14].

Our resulting model consists of the thin film equation for the local film thickness,
coupled to the Smoluchowski equation for the swimmer density distribution func-
tion. In the coupled system, the emergence of a density patterns always occurs in
conjunction with film surface deformations. We find that a seemingly passive liquid
film has a profound effect on the linear stability of a homogeneous isotropic distrib-
ution of swimmers on the surface of a flat film. In particular, there exists a window
of parameters, for which the isotropic state is linearly stable in the absence of the
liquid film and is linearly unstable when the liquid film is included.

By numerically solving the evolution equations for film height and swimmer
density, we find square arrays of vortices for parameter combinations close to the
instability threshold. Deep in the unstable region, we find stripes in the density
distribution for small values of the self-propulsion velocity. These long-lasting states
are accompanied by stripe-like small amplitude deformations of the film surface.
Typically the stripes on the film surface are in antiphase with the density stripes. For
large self-propulsion velocities, we demonstrate the development of a depression
region on the film surface that has a lateral size comparable to the system size. The
depth of the depression gradually increases with time, thus, increasing the probability
of film rupture. In our numerical simulations we have observed film rupture at finite
times.

20.2 Model Equations

Consider a colony of active Brownian particles that swim along the liquid-gas inter-
face of a thin liquid film. The swimming direction of the i th particle is given by
the unit vector pi , which is tangential to the liquid-gas interface at all times. We
only take into account long wavelength deformations of the liquid-gas interface at
height h(x, y), whereby the gradient ∇h is small at all times. In this case, the orien-
tation vector pi is approximately two-dimensional pi = (cos (φ), sin (φ)), where φ

denotes the polar angle.
The interaction between the swimmers is characterized by pair-wise alignment at

short distances and anti-alignment at large distances. The interaction strength is given
by a certain coupling function μ(| r i − r j |) of the separation distance | r i − r j |
between the i th and the j th swimmer. Positive (negative) values of μ(r) correspond
to pair-wise alignment (anti-alignment) [9].

The stochastic equations of motion for the i th swimmer can be written as

ṙ i = v0 pi + U i + ξ i ,

φ̇i = χi + ω0 + 1

2
Ωz −

∑

k �=i

μ(| r i − rk |) sin(φi − φk), (20.1)
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where ω0 > 0 is an intrinsic rotation frequency that gives rise to the circular clock-
wise motion of the swimmer at the liquid-gas interface. �U = (Ux , Uy) is the surface
velocity field of the fluid, Ωz = (∇ × U)z = ∂xUy − ∂yUx is the z–component of
the curl of the surface velocity field. Random rotation of the vector pi is char-
acterized by a Wiener process χi (t) with 〈χi (t)χk(t ′)〉 = 2Drδ(t − t ′)δik , where
Dr is the rotational diffusivity. The two-dimensional vector ξ i = (ξx , ξy)i with
〈ξ i (t)ξ k(t

′)〉 = 12×22MkB T δ(t − t ′)δik represents the translational noise, where
12×2 is a unit 2 × 2 matrix, M is the mobility of a single swimmer and T is the
absolute temperature.

It is worthwhile to mention the relation of Eq. (20.1) to the previously studied
models of self-propelled particles. Thus in case of μ = 0, χ = 0, ξ = 0 and ω0 = 0,
the Eq. (20.1) describe a deterministic self-propelled particle that moves in a fluid
with a given flow velocityU , as considered in Ref. [30]. In the absence of the fluid and
without the deterministic rotation, i.e. U = 0, Ωz = 0, ω0 = 0 and ξ = 0 the system
Eq. (20.1) reduces to a swarming model, studied in Ref. [9]. For non-interacting and
non-rotating swimmers, i.e. for μ = 0 and ω0 = 0, Eq. (20.1) in conjunction with
the thin film equation, have been studied in Ref. [18].

The Smoluchowski equation, derived from Eq. (20.1), for the surface density of
swimmers ρ(r, φ, t) is then given by

∂tρ + ∇ · J t + ∂φ Jφ = 0, (20.2)

with translational and rotational currents J t and Jφ , given respectively by

J t = v0 pρ + Uρ − MkB T ∇ρ, (20.3)

Jφ =
(

ω0 + 1

2
Ωz

)
ρ − Dr ∂φρ −

∫ ∫
dφ′d r ′ρ2(r, φ, r + r ′, φ′)μ(r ′) sin (φ − φ′),

where ρ2 is the two-particle density function.
Following [9], we employ a mean-field approximation and replace the two-body

density ρ2(r, φ, r + r ′, φ′) in Eq. (20.3) by ρ(r, φ)ρ(r + r ′, φ′). Next, we recall that
the coupling strengthμ(r ′) rapidly decays with the distance r ′ between the swimmers.
This allows us to expand ρ(r + r ′, φ′) about r and truncate the expansion after a
certain number of leading terms. As shown in Ref. [9], in order to recover a finite wave
length instability, one should retain quartic terms ∼(r ′)4 in the density expansion.

The resulting rotational current can be written as

Jφ =
(

ω0 + 1

2
Ωz

)
ρ − Dr∂φρ − ρ(r, φ)

[
sin φ μ̂C(r) − cos φ μ̂S(r)

]
, (20.4)

where

C(r) =
∫ 2π

0
ρ(r, φ′) cos φ′dφ′, S(r) =

∫ 2π

0
ρ(r, φ′) sin φ′dφ′ (20.5)
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and the operator μ̂ is given by

μ̂ = μ0 + μ2Δ + μ4Δ
2, (20.6)

with Δ = ∇2. The coefficients μ0, μ2 and μ4 in Eq. (20.6) can be explicitly written
as functionals of the coupling strength μ(r) [9].

Swimmers at the liquid-gas interface may excrete metabolic products that act
as a surfactant and change the local surface tension σ(r) of the liquid film. This
phenomenon, called the soluto-Marangoni effect, typically implies a linear decrease
of σ(r) due to the local surface concentration of swimmers 〈ρ〉(r) = ∫ 2π

0 ρ(r, φ) dφ

(cf. Ref. [24]):
σ(r) = σ0 − Γ 〈ρ〉(r), (20.7)

where Γ > 0 and Σ0 is the reference surface tension in the absence of swimmers.
The thin film equation for the local film thickness h(r, t), derived in the lubrication

approximation [14], is then coupled to the average concentration 〈ρ〉 [1, 18]

∂t h + ∇ ·
(

h3

3η
∇ [σ0Δh]

)
− Γ ∇ ·

(
h2

2η
∇〈ρ〉

)
= 0, (20.8)

where η is the dynamic viscosity. The surface fluid velocity U(r) is found as a
function of the local film thickness h [14]

U = −Γ
h

η
∇〈ρ〉 + h2

2η
∇ (σ0Δh) . (20.9)

Equations (20.2), (20.8) and (20.9) form a closed system of integro-differential
equations for the density ρ(r, φ, t) and the film height h(r, t).

20.3 Linear Stability of the Homogeneous
and Isotropic State

In this section we discuss the linear stability of a spatially homogeneous and isotropic
stationary solution of Eqs. (20.2), (20.8) and (20.9), given by ρ(r, φ) = ρ0/(2π)

and h(r) = h0, where ρ0 is the stationary total swimmer density. Using the ansatz
h = h0 + δh and ρ = ρ0/(2π) + δρ, we expand the perturbation functions δh and
δρ according to

δh(r, t) = h0

∫
ĥ(k)eγ (k)t eikr dk, (20.10)

δρ(r, φ, t) = lim
N→∞

ρ0

2π

N∑

n=−N

einφ

∫
Wn(k)eγ (k)t eikr dk, (20.11)
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with the Fourier amplitudes ĥ(k) and Wn(k), the wave vector of the perturbation
k = (kx , ky), and the growth rate γ (k).

Substituting the expansions Eq. (20.10) into Eqs. (20.2) and (20.8) and linearizing
about the steady state, we obtain the eigenvalue problem

γ (k)H = J (k)H, (20.12)

with the eigenvector H

H(k) = (ĥ, W0, W1, W−1, W2, W−2, . . . ), (20.13)

and the Jacobi matrix J , which corresponds to a banded matrix of the structure

− J (k) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11 T12 0 0 0 0 0 . . .

T21 T22 V − V + 0 0 0 . . .

0 V + d1 − μ̂(k)
2 0 V − 0 0 . . .

0 V − 0 d−1 − μ̂(k)
2 0 V + 0 . . .

0 0 V + 0 d2 0 V − . . .

0 0 0 V − 0 d−2 0 . . .

0 0 0 0 V + 0 d3 . . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20.14)

Here μ̂(k) = μ0 − μ2k2 + μ4k4, k2 = k2
x + k2

y , V + = v0

(
ky

2 + ikx
2

)
, V − =

v0

(
− ky

2 + ikx
2

)
and dm = imω0 + m2 Dr + MkB T k2 with m = ±1,±2,±3, . . .

The (2 × 2) matrix T in the upper left corner of J is given by

T (k) =
⎛

⎝
h3

0
3η

σ0k4 Γ h2
0

2η
k2

h2
0

2η
σ0k4

(
Γ h0

η
+ MkB T

)
k2

⎞

⎠ . (20.15)

In practice, we truncate the expansion in the angle φ and only take a certain number of
the first N Fourier modes into account. Then, the Jacobi matrix J is an (2N + 2) ×
(2N + 2) matrix and the truncated eigenvector H = (ĥ, W0, W1, W−1, . . . , WN ,

W−N ) is (2N + 2) dimensional.
Because the perturbations δh and δρ are both real, the eigenvectors of H satisfy

the following symmetry conditions

ĥ(k)∗γ = ĥ(−k)γ ∗

Wn(k)∗γ = W−n(−k)γ ∗ , (20.16)

where the asterisk denotes complex conjugation and the subscript γ indicates that
the eigenvector (ĥ(k)γ , W0(k)γ , W1(k)γ , W−1(k)γ , . . . ) corresponds to the eigen-
value γ .



20 Swarming of Self-propelled Particles on the Surface of a Thin Liquid Film 399

In what follows, we non-dimensionalise the evolution equations employing the
scaling as in Ref. [18]. Thus, we use h0 as the vertical length scale, h0

√
σ0/Γρ0 as the

horizontal length scale, ηh0σ0/(Γ
2ρ2

0 ) as the time scale and the direction-averaged
density of swimmers in the homogeneous state ρ0 as the density scale.

The complete set of the dimensionless system parameters consists of: the self-
propulsion velocity V = v0ησ

1/2
0 /(Γρ0)

3/2, the dimensionless rotational diffusivity
D = Dr h0ησ0/(Γρ0)

2, the translational surface diffusivity d = kB T Mη/(h0ρ0Γ ),
the rotation frequency Ω0 = ω0h0ησ0/(Γρ0)

2 and the alignment/anti-alignment
interaction parameters μ̃i = μiηh0σ0/(Γ

2ρ0). For simplicity we drop the tildes in
the dimensionless interaction parameters. The dimensionless evolution equations are
summarized in Appendix 1.

In what follows, we focus on the effect of the parameter triplet (V, D,Ω0) on
the linear stability of the homogeneous isotropic state. From here on we fix the
interaction parameters at μ0 = 1, μ2 = −1, μ4 = −10−2 that can be achieved by
the appropriate choice of the coupling function μ(r). This choice of μi corresponds
to the finite wave length instability of the homogeneous distribution of non-rotating
swimmers, i.e. Ω0 = 0, in the absence of the liquid film, as studied in Ref. [9].

20.3.1 Singularity of the Instability at V = 0

Linear stability analysis reveals remarkable behaviour of the system at vanishingly
small swimming velocity V ≈ 0. By setting V = 0 in Eq. (20.14), the eigenvalue
with the largest real part can be found analytically

γmax(k) = μ̂(k)

2
− d±1 = ±iΩ0 − D − dk2 + 1

2

(
μ0 − μ2k2 + μ4k4

)
. (20.17)

The fastest growing wave number kmax and the corresponding growth rate Re[γ (kmax)]
are

(kmax)
2 = 2d + μ2

2μ4
, Re[γ (kmax)] = −D + μ0

2
− (2d + μ2)

2

8μ4
. (20.18)

At V = 0, the matrix in the lower right corner of Eq. (20.14) is diagonal. The
eigenvectors that corresponds to each of the two complex-conjugate eigenval-
ues Eq. (20.17), have only one non-zero component: either W1 �= 0, or W−1 �= 0.
Indeed, the eigenvector H+ that corresponds to γ (k) = μ̂(k)/2 − d1 is given
by H+ = (0, 0, W1, 0, 0, . . . ). Similarly, the eigenvector H− that corresponds to
γ (k) = μ̂(k)/2 − d−1 is given by H− = (0, 0, 0, W−1, 0, . . . ). From the physical
point of view this means that the colony of swimmers is unstable for a certain inter-
val of k, however this is a purely orientational instability that is reflected in the first
Fourier mode, i.e. W±1 �= 0. This orientational instability does not translate into the
instability of h and W0, as the orientation averaged density

∫ 2π

0 ρ(rφ) dφ is insensi-
tive w.r.t. the orientational order of swimmers.
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Fig. 20.1 a Solid lines show the real part of the two largest eigenvalues versus wave number

k =
√

k2
x + k2

y for V = 0.7, D = 1, Ω0 = 0 and d = 0.1. The dashed line corresponds to the

dispersion curve at V = 0 from Eq. (20.17). The inset shows a zoom of the highlighted area near
the origin. b, c Amplitudes A0 =| ĥ(k) |2 (dashed line) and A1 =| W0(k) |2 (solid line) of the
eigenvectors of the b largest and the c second largest eigenvalue for 2 < k < 10 where at least
one mode is unstable. d Two most unstable eigenvalues Re(γ )(kmax) at the fastest growing wave
number kmax versus V

Thus, any non-zero velocity V �= 0, no matter how small, introduces the coupling
between the first Fourier mode W±1 and all other modes Wn , n = 0,±2,±3, . . . ,
including the amplitude of the film surface deformation ĥ. As the consequence, the
emerging orientational order translates into an instability of the uniform swimmer
density and the plane film surface. In order to examine the coupling between the
orientational instability of swimmers and the film surface deformations, we set V =
0.7, D = 1, Ω0 = 0 and d = 0.1 and numerically determine the eigenvalues and the
corresponding eigenvectors of the truncated Jacobi matrix Eq. (20.14) with the total
number of Fourier modes N = 50.

The real parts of the first and the second most unstable eigenvalues are given
in Fig. 20.1a as solid lines. The analytic eigenvalue, corresponding to V = 0 from
Eq. (20.17) is shown by the dashed line. Approximately, for k > 2, the first two most
unstable eigenvalues for V = 0.7 have positive real parts, implying an instability.
The fastest growing wave number for V = 0.7 is approximately the same as for
V = 0, i.e. kmax = √

40 from Eq. (20.18).
By examining the eigenvector that corresponds to the most unstable eigenvalue,

we find that the first two components of this eigenvector are given by a numerical
zero, i.e. | ĥ(k) |2∼ 10−32 and | W0(k) |2∼ 10−32, as shown in Fig. 20.1b. This means
that the corresponding perturbation is purely orientational and does not couple to the
thin film instability. However, the eigenvector of the second most unstable eigenvalue
has | ĥ(k) |2 �= 0 and | W0(k) |2 �= 0, as shown in Fig. 20.1c. This mode corresponds
to a simultaneous instability of the film thickness and the average swimmer density.

The singularity of the instability at vanishingly small V is visualized in Fig. 20.1d,
where the real parts of the first two most unstable eigenvalues, computed at the fastest
growing wave number kmax, are plotted against V . We are interested in the second
most unstable eigenvalue that corresponds to the coupling between the orientational
instability and the film surface deformation. Thus, at any nonzero V �= 0, no matter
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how small, the colony of swimmers is linearly unstable with the finite growth rate
Re[γ (kmax)] = −D + μ0/2 − [(2d + μ2)

2]/[8μ4], as given by Eq. (20.18).
It is important to remark that the role of the thin film in the onset of the instability

at vanishingly small V is purely passive. The above described coupling between the
orientational instability and the instability of the average density of swimmers 〈ρ〉
occurs with or without the liquid film, which is linearly stable without the colony
of swimmers. However, the situation changes dramatically, if V is finite and if one
takes into account the rotation frequency Ω0, as discussed in the next section.

20.3.2 Effect of the Liquid Film on the System Stability

In order to study the effect of the liquid film on the system stability, we distin-
guish between the film loaded with swimmers and the bare colony of swimmers
without the liquid film. Technically, the latter case corresponds to the matrix T in
Eq. (20.14), replaced by T11 = T12 = T21 = 0 and T22 = MkB T k2. We numerically
solve the eigenvalue problem Eq. (20.14) for the swimmers with and without the
liquid film. In the presence of the liquid film, we determine the largest eigenvalue
that corresponds to the coupling mode between the orientational instability and the
film surface deformation.

We fix V = 1, d = 0.1 and determine the stability threshold in the plane of para-
meters (D,Ω0). In Fig. 20.2a the shaded region marks the values of (D,Ω0), where
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Fig. 20.2 a Stability diagram for V = 1 and d = 0.1. Shaded area corresponds to linearly unstable
colony of swimmers in the absence of the liquid film. Dashed line is the stability threshold for the
flat liquid film with swimmers: the system is stable above and unstable below the dashed line. In
b, c, d we set D = 7 and Ω0 = 3 for a flat liquid film with swimmers (point A in (a)): b real part,
c imaginary part and d the amplitude A0 =| ĥ(k) |2 of the most unstable eigenvalue versus k
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the colony of swimmers is unstable in the absence of the liquid film. For the val-
ues of the interaction parameters μi chosen here, the homogeneous distribution of
swimmers becomes linearly unstable along the border of the shaded region via an
oscillatory instability at a finite wave number.

Remarkably, the addition of a stable liquid film, changes the stability threshold
dramatically, as shown by the dashed line in Fig. 20.2a. Thus, we find a window of
the rotation frequency 2 � Ω0 � 4 and of the rotational diffusivity 6.5 � D � 7.5,
where the inclusion of a seemingly passive liquid film destabilizes the system. The
dispersion curve Re(γ )(k) computed for D = 7 and Ω0 = 3 (point A in Fig. 20.2a) is
shown in Fig. 20.2b. In Fig. 20.2c, d we plot the imaginary part of the most unstable
eigenvalue and the amplitude A0 =| ĥ(k) |2 versus k, respectively. The finite val-
ues of | ĥ(k) |2 confirm the coupling between the orientational instability and the
deformation of the film surface.

Our results show that a colony of swimmers that move on top of a deformable
liquid film is less stable than the bare system of swimmers in the case when the
film is absent. Such effects are also known for passive systems where e.g. for a film
of a binary mixture, the decomposition process couples to the dewetting process
in such a way that the flat film becomes linearly unstable. However, the flat film
remains linearly stable w.r.t. the each process separately: i.e. it is stable w.r.t. the
dewetting and stable w.r.t. the decomposition process [25]. Another example of a
coupled system that is less stable than each of its components when decoupled, is
a two-layer liquid film on a solid substrate [16, 17]. Thus, for certain immiscible
polymer films of different film thickness, placed on top of each other, a two-layer
film can be linearly unstable due to weak van der Waals forces that exists between
apolar molecules. However, when separated, each of the two layers supported by the
same substrate may be linearly stable.

20.4 Nonlinear Evolution from a Homogeneous
Isotropic State

The nondimensional evolution equations for the swimmer density ρ(r, φ, t) and the
local film thickness h(r, t) are summarized in Appendix 1. In order to numerically
solve the system of Eq. (20.22), we discretize the film thickness h(x, y, t) in a square
box −L × L and the density ρ(x, y, φ, t) in a rectangle (x ∈ [−L/2, L/2]) × (y ∈
[−L/2, L/2]) × (φ ∈ [0, 2π ]) with periodic boundaries. We use 100 × 100 mesh
points for the discretisation in space and 20 Fourier modes for the decomposition
of the φ-dependency. We adopt a semi-implicit pseudo-spectral method for the time
integration, as outlined in Appendix 2. In order to quantify the patterns, we introduce
three global measures: the space-averaged mode type M

M = L−2
∫ ∫

(h(x, y, t) − 1)(〈ρ〉(x, y, t) − 1) dxdy, (20.19)
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the space-averaged flux of the fluid J̄h , determined by

J̄h = L−2
∫ ∫ [

(h3/3)∇ (Δh) − (1/2)
(
h2∇〈ρ〉)] dxdy (20.20)

and the space-averaged orientation field from Eq. (20.5)

(〈C〉(t), 〈S〉(t)) = L−2
∫ ∫

dxdy (C(x, y, t), S(x, y, t)) (20.21)

The mode type M can be used to analyse the phase shift between the patterns
of h and 〈ρ〉. Non-zero values of the space-averaged fluid flux J̄h indicates global
propagation of patterns. The active part of the space-averaged translational flux of
swimmers in Eq. (20.3) is given by v0(〈C〉(t), 〈S〉(t)).

20.4.1 Square Array of Vortices

We demonstrate the destabilizing action of the liquid film by choosing the parameters
as in point A in Fig. 20.2a.

The time evolution of the mode type M and of the film height h at arbitrarily
chosen point on the film surface (x∗, y∗) are shown in Fig. 20.3a, b, respectively.
The amplitudes of the average density 〈ρ〉min and 〈ρ〉max are shown in Fig. 20.3c.
After passing a certain relaxation time of approximately ≈100 time units, the system
reaches a stable time-periodic solution that can be characterized as a standing square
wave with a well defined spatial period. A typical snapshot of the average density
〈ρ〉(x, y) and of the film thickness h(x, y) taken at t = 150 is shown in the lower
panels in Fig. 20.3. The spatial period l of the square pattern is l ≈ 2π/kmax, where
kmax = 6.2 is the fastest growing wave number, as extracted from the dispersion curve
in Fig. 20.2b. During the entire time evolution, the space-averaged flux of the fluid J̄h

(not shown here) from Eq. (20.20) is of order of 10−6, dropping to a numerical zero
for t > 100. As the standing square wave regime is established, the space-averaged
orientation Eq. (20.21) is numerically zero (not shown). The temporal oscillation
period of the standing wave, T = 2.1, is extracted from the evolution of h(x∗, y∗) is
shown in the inset of Fig. 20.3b. Interestingly, the mode type M oscillates with only
a half of the period, T/2 = 1.05, indicating that the pattern oscillates between two
identical states that are shifted in space.

In order to gain a better understanding of the different phases of the temporal
oscillations of the vortex state, we show in Fig. 20.4 three snapshots of the average
density 〈ρ〉(x, y) and the film thickness h(x, y) from the zoomed area around the
bottom left corner of the domain. In addition, we overlay the density snapshot with
the vector field of the average orientation of swimmers α(C(x, y), S(x, y)), with a
conveniently chosen scaling factor α. The three snapshots are taken over one half of
the temporal period, between t = 150.4 and t = 151.2.
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Fig. 20.3 Nonlinear evolution from a homogeneous isotropic state for parameters as in point A
in Fig. 20.2a. a The mode type M from Eq. (20.19), b time evolution of the film height h at an
arbitrarily chosen point on the film surface (x∗, y∗) and c 〈ρ〉min and 〈ρ〉max as a function of time.
Lower panel snapshot of the average density 〈ρ〉(x, y) and of the film thickness h(x, y) at t = 150

At t = 150.4 the orientation field is represented by vortices arranged in a square
lattice. Vortices located over the depression (elevation) regions of the film thickness
profile have an anticlockwise (clockwise) polarity. The average density is in anti-
phase with the film profile, implying that the mode type is negative. The dynamics of
the vortex polarity can be appreciated from the snapshot taken at t = 151.0, where the
orientation field is almost radially symmetric. Note that at t = 151.0 the depression
regions in the average density and in the film thickness profile have turned into
the elevation regions and vise-versa. At t = 151.2, the polarity of the vortices has
reversed as compared with the snapshot taken at t = 150.4.

20.4.2 Stripe-Like Density Patterns

Next, we explore the temporal evolution of the system deep in the unstable region.
By setting Ω0 = 0 and D = 1 we vary the self-propulsion velocity V and compare
the evolution of the swimmers in the absence of the liquid film with the dynamics
of the coupled system. Numerically, the Smoluchowski equation is decoupled from
the thin film equation by setting U = 0 and Ωz = 0. In the absence of the liquid film
we find stripe-like density patterns at small velocities. In Fig. 20.5a the evolution
of 〈ρ〉min and 〈ρ〉max is shown by the solid (the dashed) line in the presence (in the
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Fig. 20.4 Three snapshots of the average density 〈ρ〉(x, y) in grey scale and of the film thickness
h(x, y), taken over one half of the oscillation period of the vortex state. The density is overlayed
by the vector field of the average orientation of swimmers ∼(C(x, y), S(x, y))

absence) of the liquid film. Figure 20.5e shows a snapshot of the density patterns at
t = 100 in the absence of the film.

The inclusion of the liquid film leads to a significantly smaller amplitude of the
average density fluctuations 〈ρ〉max − 〈ρ〉min, as can be seen from Fig. 20.5a. In the
long time limit, almost parallel stripe-like density patterns are found in the presence
of the film as given in Fig. 20.5f. The surface of the film is covered with similar
stripe-like patterns that are oriented parallel to the density stripes (Fig. 20.5g). The
amplitude of the film surface deformation is of the order of 0.5 % of the average film
thickness h = 1 (Fig. 20.5b). Stripes on the film surface are in anti-phase with the
density stripes, so that the mode type M is negative (Fig. 20.5c). The fluid flux J̄h is
zero in the long time limit (Fig. 20.5d). The space-averaged orientation Eq. (20.21)
in the long time limit is a certain non-zero constant (not shown).
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Fig. 20.5 Evolution with and without liquid film at V = 0.1, D = 1, Ω0 = 0 and d = 0.1. a, b, c,
d Time evolution of local and global measures. Solid (dashed) lines in (a) show 〈ρ〉min and 〈ρ〉max
in the presence (in the absence) of the liquid film. Dashed and solid lines in (d) correspond to (Jh)x
and (Jh)y , respectively. e Snapshot of the density patterns at t = 100 in the absence of the film. f,
g Snapshots of the density patterns and the film surface patterns at t = 100 in the presence of the
film

20.4.3 Large-Scale Holes in the Film and Film Rupture

When the self-propulsion velocity is increased to V = 1, the stripe-like density pat-
terns in the absence of the film are no longer found in the long time limit, as shown
in Fig. 20.6f, where we plot the average density field 〈ρ〉(x, y) taken at t = 60.
Instead, the density field corresponds to an irregular time-varying array of high- and
low-density spots that have the size of the fastest growing wave length.

In the case, when the film is present, the density field shows maze-like patterns with
a typical size comparable to the fastest growing wave length, as given in Fig. 20.6g.
These maze-like patterns are overlayed with large-scale modulations with the typical
length approximately equal to the domain size. Thus, an elevation region, resembling
a droplet, can be seen in the density field in Fig. 20.6g concentrated around x =
−3, y = −1. The film height h is nearly zero in this point, as seen in Fig. 20.6h. The
amplitude of density modulations 〈ρ〉max − 〈ρ〉min remains largely unaffected by the
liquid film (Fig. 20.6a), fluctuating around the value of 〈ρ〉max − 〈ρ〉min ≈ 1.5.
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Fig. 20.6 Evolution with and without liquid film at V = 1, D = 1, Ω0 = 0 and d = 0.1. Line
styles in (a) as in Fig. 20.5a. Solution measures: b the mode type, c hmin, hmax, d | J̄h | and e
|(〈C〉, 〈S〉)|. f Snapshot of the density patterns at t = 60 in the absence of the film. g, h Snapshots
of the density patterns and the film surface patterns at t = 60 in the presence of the film

Remarkably, we find a large-scale hole in the film that develops at a late stage of
the time evolution, as shown in Fig. 20.6h. The lateral hole size is of the order of the
domain length. The amplitude of the film surface deformations increases with time
and, eventually, reaches the point, where hmin ≈ 0 and the film rupture occurs (t = 60
in Fig. 20.6c). The hole in the film is in anti-phase with the elevation region in the
average density field, implying negative mode type M in Fig. 20.6b. The magnitudes
of the fluid flux | J̄h | and the space-averaged orientation | (〈C〉, 〈S〉) | fluctuate
randomly with time, as shown in Fig. 20.6d, e, respectively.

From our numerical results we can not definitely decide whether the observed film
rupture corresponds to a true finite time singularity or whether it is due to the limited
numerical resolution. There exist extensive studies on the rupture of films of simple
liquids [4]. In the case of the long-wave thermocapillary instability [3, 13], the film
rupture does not seem to occur after finite time. In the case of the destabilising van der
Waals interactions [15, 26, 28], the rupture clearly occurs after finite time and close to
rupture self-similar solutions can be given. In the model studied here, there are no van
der Waals or indeed any other destabilizing (or stabilizing) film surface—substrate
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interactions, what makes it unlikely that finite time rupture occurs. However, the issue
should be studied in detail in the future, in particular, the role of the interaction of the
swimmer density and the film height close to rupture. Average density contains two
distinct dominant wave lengths: one is of the order of 2π/kmax ≈ 1, and the other
one is of the order of the domain size.

20.5 Conclusion

In summary we have considered the dynamics of a colony of swimmers that interact
with each other via a short-range alignment and longer-range anti-alignment mech-
anism and move along the surface of a thin liquid film with deformable liquid-gas
interface. We have derived a dynamical model that consists of a thin film equation
in the long-wave approximation for the evolution of the local film thickness coupled
to the Somluchowski equation for the evolution of the swimmer density function.
In contrast to previously used models [1, 9, 18], we have included a deterministic
rotation of the swimmers bodies that gives rise to their circular motion along the film
surface.

We have focused on the effect of the liquid film on the linear stability of the
homogeneous isotropic distribution of swimmers and on its role in the nonlinear
time evolution of the system. To this end, we have compared the coupled system of
swimmers on the deformable film surface with the bare system of swimmers without
a liquid film.

Our results show that the inclusion of the flat film, which is linearly stable without
the colony of swimmers on its surface, can induce a finite wave length instability of
the isotropic density distribution. This effect is only found for a certain combination
of the rotational diffusivity, the self-propulsion velocity and the rotation frequency
that gives rise to the circular motion of swimmers. It is not surprising that the coupled
system of swimmers on top of a deformable liquid film appears to be less stable than
the bare system of swimmers. Generally, a higher degree of complexity of a system
implies less stability. Thus, a similar effect was observed earlier for some passive
systems that do not contain any active matter [16, 17, 25].

By numerically solving the equations of motion we investigated the nonlinear
dynamics of the system from the isotropic state for parameters close to the stability
threshold and deep in the unstable region. Close to the stability threshold we found
square array of vortices in the density distribution, accompanied by small amplitude
deformations of the film surface. Deep in the unstable region, for small values of
the self-propulsion velocity, small amplitude stripes in the density field emerge. The
film surface remains almost flat with the maximal deformation amplitude reaching
as less as 0.5 % of the average film thickness.

For larger values of the self-propulsion velocity, large-scale deep depression forms
in the film. The size of the depression is of the order of the domain size and its depth
gradually increases with time. The depth of the emerging depression may eventually
reach the value of the average film thickness, thus inducing the film rupture.
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On a qualitative level, our results can be used to explain the rupture of soaplike
liquid films loaded with bacteria, as observed in a series of experiments [20–22].
Without bacteria, any soaplike liquid film, regardless of the film thickness, is linearly
unstable due to long-range van der Waals forces that act between apolar molecules
that make up the ambient gas layer separated by the liquid film [11]. This implies
that even in the ideal case when the evaporation of the liquid can be neglected and
the liquid is not drained due to gravity, the flat film is linearly unstable w.r.t. the
long-wave deformations of the two liquid-gas interfaces. This instability eventually
leads to film rupture after a certain interval of time. The life time of the film is
determined by the Hamaker constant that characterizes the strength of the van der
Waals interaction, the film thickness h, the surface tension σ and the viscosity of the
liquid η. In fact, by using the lubrication approximation [14], it can be shown that
the typical life time of the film scales as ∼h5ση.

However, the situation changes dramatically, when the film is loaded with swim-
mers, whose motion couples to the film deformations via the soluto-Marangoni effect.
The orientational instability of the colony of swimmers couples to the instability of
the flat film. For films thicker than several µm, the destabilizing action of the van
der Waals forces can be neglected as compared with the strength of the orientational
instability. In this case, the life time of the film is determined by the typical time scale
of the orientational instability, which does not depend on the film thickness. This may
explain that surfactant-covered films loaded with bacteria break down earlier than
expected.

Appendix 1: Non-dimensional Thin Film Equation
and the Smoluchowski Equation

In the here employed dimensionless quantities, the resulting coupled system consists
of the reduced Smoluchowski equation for the swimmers density ρ(r, φ, t) and the
thin film equation for the local film thickness h(r, t)

∂t h + ∇ · Jh = 0, ∂tρ + ∇ · J t + ∂φ Jφ = 0, (20.22)

with the vorticity of the fluid flow Ωz = ∂xUy − ∂yUx , the fluid flux Jh , the trans-
lational and rotational probability currents J t and Jφ , the surface fluid velocity U‖
given by

Jh = (h3/3)∇ (Δh) − (h2/2)∇〈ρ〉, J t = (V q + U − d∇) ρ,

Jφ = (Ω0 + Ωz/2) ρ − D∂φρ − ρ
[
sin φ μ̂C(r, t) − cos φ μ̂S(r, t)

]
,

C(r, t) =
∫ 2π

0
ρ(r, φ, t) cos φ dφ, S(r, t) =

∫ 2π

0
ρ(r, φ, t) sin φ dφ,

μ̂ = μ0 + μ2Δ + μ4Δ
2, U = −h∇〈ρ〉 + h2/2∇ (Δh) . (20.23)
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Appendix 2: Semi-implicit Numerical Scheme
for Eqs. (20.22)

The coupled evolution equations Eq. (20.22) are solved numerically using the fol-
lowing version of the semi-implicit spectral method. First, we average the density
equation over the orientation angle φ. This yields

∂t 〈ρ〉 + ∇ · 〈J trans〉 = 0, (20.24)

with the average translational current 〈J trans〉 = V 〈qρ〉 + (U − d∇)〈ρ〉 and q =
(cos φ, sin φ). It is worthwhile noticing that the only term in Eq. (20.24) that depends
on the three-dimensional density ρ(x, y, φ, t) is the average orientation vector 〈qρ〉.
All other terms in Eq. (20.24), including the surface fluid velocityU explicitly depend
on the average density 〈ρ〉.

Next, we group the thin film equation together with Eq. (20.24)

∂t h + ∇ · Jh = 0, ∂t 〈ρ〉 + ∇ · 〈J trans〉 = 0, (20.25)

with the fluid flux Jh = h3

3 ∇ (Δh) − 1
2∇ (

h2∇〈ρ〉).
At the next step, we single out the linear parts in all the terms in Eq. (20.25) that

explicitly depend on the average density 〈ρ〉. This is done by linearising the current
J t and the fluid flux Jh about the trivial steady state given by h = 1 and 〈ρ〉 = 1.

Next, following the standard implicit time-integration scheme, we replace ∂t h and
∂t 〈ρ〉 by (ht+dt − ht )/dt and by (〈ρ〉t+dt − 〈ρ〉t )/dt , respectively and take all linear
terms at time t + dt and all nonlinear terms, including the term V 〈qρ〉, at time t .
Upon these transformations Eq. (20.25) become

ht+dt − ht + (dt/3)Δ2ht+dt − (dt/2)Δ〈ρ〉t+dt + dt∇ · (NLh)t = 0, (20.26)
〈ρ〉t+dt − 〈ρ〉t + (dt/2)Δ2ht+dt − dt (1 + d) Δ〈ρ〉t+dt + dt∇ · (〈NL trans〉)t = 0.

where N L denotes the nonlinear parts. After taking the discrete Fourier transforms
of Eq. (20.26), we find the updated fields ht+dt and 〈ρ〉t+dt at the time step t + dt .

With the update average density 〈ρ〉t+dt and the film thickness ht+dt at hand, we
find the updated surface fluid velocity U t+dt and the updated vorticity Ω t+dt

z .
At the next step, we decompose the currents in the second equation in Eq. (20.22)

into a linear and a non-linear parts and make use of the semi-implicit integration
scheme

ρ t+dt − ρ t + dt L̂ρ t+dt + dtNL(ρ t ) = 0. (20.27)

After taking the Fourier transform of Eq. (20.27) both, in space as well as in the angle
φ, the operator L̂ F can be written as

L̂ F = dk2 + Dn2 + inΩ0 − 0.5(δn,1 + δn,−1)
(
μ0 − μ0k2 + μ4k4

)
. (20.28)
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The nonlinear part NL is given by

NL(ρ t ) = 0.5Ω t+dt
z ∂φρ t + ∇ · (V qρ t + U t+dtρ t )

− ∂φ

(
ρ t − (2π)−1

) [
sin φ( ˜̂μCt ) − cos φ( ˜̂μSt )

]
. (20.29)

By solving Eq. (20.27) w.r.t. ρ t+dt in the Fourier space, we apply the backward
Fourier transform and find the updated three-dimensional density ρ t+dt (x, y) in the
real space.
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Chapter 21
Time-Delayed Feedback Control
of Spatio-Temporal Self-Organized Patterns
in Dissipative Systems

Alexander Kraft and Svetlana V. Gurevich

Abstract We are interested in the dynamical properties of spatio-temporal self-
organized patterns in a Swift-Hohenberg equation subjected to time delayed feed-
back. We show that variation in the delay time and the feedback strength can lead
to complex dynamical behavior of the system in question including formation of
traveling hexagons, traveling zigzag patterns, or intricate oscillatory structures. Fur-
thermore, we provide a bifurcation analysis of the system and derive a set of order
parameter equationswhich allow us to analytically demonstrate how the time delayed
feedback can change the stability of the homogeneous steady state as well as of peri-
odic patterns. Direct numerical simulations are carried out, showing good agreement
with analytical predictions based on linear stability analysis and bifurcation theory.
The presented results are derived in general form and can be applied to a wide class
of spatially extended systems.

21.1 Introduction

Inspired by the work of Ott et al. [1], a variety of different techniques for controlling
unstable or chaotic states in complex systems have been developed within the past
decade (see e.g., [2, 3] and references therein). Among other control techniques,
global feedback methods have attracted much attention due to a rather simple and
easy experimental implementation andmathematical treatment. However, local feed-
back methods also have gained interest in recent years. A particularly quite simple
and efficient scheme is time-delayed feedback (TDF), also referred to as Pyragas
control or time-delay autosynchronization, which was first proposed by Pyragas [4].
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According to this scheme, a control force is constructed as a difference of the output
signal s(t) of some dynamical system at a time t and a delayed time t − τ , so that
the controlled system in question reads

∂tψ = F[ψ] + K (s(t) − s(t − τ )) , (21.1)

where F[ψ] describes the intrinsic dynamics of the dynamical system and τ denotes
the delay time. Thereby, the couplingmatrix K allows to couple different components
of the state vector ψ within the feedback loop.

This method allows a noninvasive stabilization of unstable periodic orbits of
dynamical systems (see [3] and references therein) and has been also successfully
applied to a number of both theoretical and experimental high-dimensional spa-
tially extended systems including e.g., semiconductor systems [5, 6], plasma physics
[7, 8], nonlinear optics [9–15] as well as electrochemical [16] and neural systems
[17, 18].

In particular, dynamics of spatio-temporal patterns in dissipative systems under
influence of TDF control has been intensively studied in recent years. We mention
only the control of a kink solution in a reaction-diffusion system subjected to time-
delayed feedback [19], biological range expansions problems [20, 21], control of
turbulent structures in a diffusive Hutchinson equation [22], spatial and temporal
feedback control of standing and traveling waves of the complex Ginzburg-Landau
equation [23–26], as well as TDF control of spatio-temporal periodic and localized
patterns in a predator-prey plankton system [27], a Gray-Scott [28], a Brussela-
tor [29], a Lengyel-Epstein [30] or FitzHugh-Nagumo like reaction-diffusion systems
[31–33].

In this manuscript, we are interested in the influence of the delayed feedback on
the stability properties of the homogeneous steady state aswell as of periodic patterns
in a Swift-Hohenberg equation subjected to TDF:

∂tψ(r, t) =
[
ε − (

k2c + ∇2
)2]

ψ(r, t) + δ · ψ(r, t)2 − ψ3(r, t) (21.2)

+α [ψ(r, t) − ψ(r, t − τ )] ,

where α denotes the feedback strength and τ is the delay time. In the absence of
the TDF term, Eq. (21.2) reduces to the classical version of the Swift-Hohenberg
equation for the real distributed order parameter ψ(r, t), r ∈ R

2. Here, ε is the bifur-
cation parameter, measuring the distance to the supercritical bifurcation with the
most unstable wave number kc. Parameter δ breaks the inversion symmetry and has
in general an arbitrary sign. The Swift-Hohenberg equation often serves as a para-
digm for general pattern forming systems and has been applied in various fields of
nonlinear science such as hydrodynamics [34], chemical [35], ecological [36], and
optical [37, 38] systems, or elastic materials [39].

Among other patterns, the control of localized solutions of the Swift-Hohenberg
equation has been of increasing interest in recent years. In particular, properties of
two-dimensional cavity solitons in the Swift-Hohenberg equation subjected to time-
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delayed feedback were studied in [11, 40]. It was shown that when the value of
the product of the delay time τ and the feedback strength α exceeds some critical
value, a single cavity soliton starts to move in an arbitrary direction. Moreover, an
analytical formula for its velocity was derived. Recently, the influence of TDF on the
stability properties of a single localized structure in the Swift-Hohenberg equation
was investigated in detail [41]. It was demonstrated that the variation of the product
of α and τ can lead to the formation of oscillons, soliton rings, or labyrinth patterns.
Moreover, a bifurcation analysis of the delayed system was provided and a system
of order parameter equations for the position of the localized structure as well as for
its shape was derived. Note that in the context of nonlinear optics [37], Eq. (21.2)
includes a free constant in the nonlinear function rather than the quadratic term in
ψ. However, Eq. (21.2) can be rewritten by an offset transformation ψ → ψ − ψ0

with ψ0 = −δ/3 in such a way that the quadratic nonlinearity is removed and a free

constant Y = δ

3

(
ε − k4c + 2 δ2

9

)
appears in (21.2).

In this chapter, we show that the variation of the delay time and the feedback
strength can lead to a traveling wave bifurcation of the homogeneous solution of
Eq. (21.2), whereas a drift bifurcation sets in for periodic structures, giving rise to
complex dynamical behavior of the system including formation of traveling waves
and hexagons as well as traveling zigzag patterns. We provide a bifurcation analysis
of the system (21.2) and derive a set of order parameter equations which allow us to
analytically demonstrate how the time delayed feedback can change the stability of
the homogeneous steady state as well as of periodic patterns. In particular, we show
that the aforementioned delay-induced drift bifurcation of the stationary solution
always takes place if the system in question features translational invariance with
respect to its spatial coordinates. The presented results are derived in general form
and can be applied to a wide class of spatially extended systems, assuming the
corresponding linear stability problem can be diagonalized.

21.2 Linear Stability Analysis

Notice that the function ψ(r, t) given by the delayed Swift-Hohenberg equa-
tion (DSHE) (21.2) is a scalar quantity. Nevertheless, for the sake of generality
of the following analysis we rewrite Eq. (21.2) in terms of an n-dimensional vector
function ψ = ψ(r, t), r ∈ R

n and use the general form of the evolution Eq. (21.1)

∂tψ(r, t) = F[ψ(r, t)] + K (ψ(r, t) − ψ(r, t − τ )) , (21.3)

where the output function s is chosen as the state variable ψ and F is a nonlinear
operator. The coupling matrix K is in general a constant matrix of low rank, e.g., a
multiple of the identity αE with feedback strength α for the scalar DSHE (21.2).
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Let ψ0 be a stationary solution of (21.3) in the absence of the TDF term. Note
that although this solution is not affected by the TDF, its stability can change. The
linear stability of ψ0 is characterized by the linear eigenvalue problem

λ ϕ = [
F′[ψ0] + K

(
1 − e−λ τ

)]
ϕ (21.4)

for eigenvalues λ and eigenfunctions ϕ. Here, F′[ψ0] is the linearization of the
operator F evaluated at ψ0. Equation (21.4) is a transcendental equation and its
analytical solution is in general involved. However Eq. (21.4) can be simplified if,
e.g., the linearization operator F′[ψ0] and the coupling matrix K commutate. In this
case, there exists a common basis of eigenfunctions with corresponding eigenvalues
μ and μK of F′[ψ0] and K , respectively. This leads to the following characteristic
equation for the yet unknown set of eigenvalues λ:

λ = μ + μK
(
1 − e−λ τ

)
.

For the scalar DSHE (21.2), where K = αE, the linearization operator and coupling
matrix commutate for trivial reasons. In this case, the above characteristic equation
reads [11, 32, 33, 41, 42]

λ = μ + α
(
1 − e−λ τ

)
. (21.5)

Notice that, from a practical perspective, the requirement/usage of simultaneously
diagonalizable matrices F′[ψ0], K may be quite restrictive. However, a close ana-
lytical treatment of the simplest case of the control force enables one to gain deeper
insights into the impact of the time-delayed feedback on the dynamical properties of
the complex system in question.

The transcendental characteristic equation (21.5) links the eigenvalues λ of the
stability problem with TDF, to the eigenvalues μ of the linear stability problem in the
absence of TDF. The eigenvalues λ of the eigenvalue problem 21.4 can be phrased in
terms of the Lambert-W function [43], which is defined as the multi-valued inverse
of the function z ez with complex z:

λ = μ + α + 1

τ
Wn

(−α τ e−(μ+α) τ
)
, n ∈ Z, (21.6)

where n is the branch index of the Lambert-W function. Note that the branches
of the Lambert-W function have near-conjugate symmetry. In addition, except for
n = 0 and n = −1, all branches are complex, whereas W0 and W−1 can be real-
valued only for certain ranges of z. This implies that the eigenvalues λ are in general
complex, even if μ is real-valued. Furthermore, every eigenvalue μ of the linear
stability problem without TDF induces an infinite number of eigenvalues λ = λ(n),
n ∈ Z of the stability problem with TDF. One of these branches, namely n = 0,
starts at μ, while the other infinite number of branches n ∈ Z \ {0} start at −∞, all
belonging to the same eigenvalue μ.
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21.2.1 Neutral Stability Curves

Our goal now is to solve the characteristic equation (21.5) for the neutral stabil-
ity curves, at which the stability of the stationary solution ψ0 changes, i.e., Re(λ)

changes the sign. To this end, we consider the feedback strengthα as a parameter and
solve Eq. (21.5) for the critical delay time τc at which the corresponding eigenvalue λ
crosses the imaginary axis. Notice that since there is an infinite number of branches
of eigenvalues λ(n), n ∈ Z, one obtains neutral stability curves depending on the
branch index.

Separating the real and imaginary parts of the Eq. (21.5) and solving the obtained
system for Re(λ) = 0, the following relation for the neutral stability curve τ = τc(α)

can be derived:

τc(m, α) =
arccos

(
1 + Re(μ)

α

)
± 2πm

α

√
1 −

(
1 + Re(μ)

α

)2 ± Im(μ)

, m ∈ Z. (21.7)

In addition, at τ = τc, the critical value of ωc = Im(λ) is given by

ωc = ±α

√

1 −
(
1 + Re(μ)

α

)2

+ Im(μ). (21.8)

Due to causality, the delay time τ and τc(α) have to be positive, and therefore the
nominator and the denominator of Eq. (21.7) must have the same sign. For the
indices m for which this physical requirement can be satisfied, a neutral stability
curve exists and the stability of the corresponding branch changes when crossing
this curve in control parameter space. It is evident that the solution only exists if∣∣∣∣1 + Re(μ)

α

∣∣∣∣ ≤ 1. This is equivalent to the requirement that Re(μ) and the feedback

strength α must have opposite signs, i.e. the feedback strength α should be chosen
positive in order to destabilize a stable solution ψ0 (Re(μ) < 0) and chosen negative
to stabilize an unstable solution (Re(μ) > 0). Furthermore, it states that theminimum
feedback strength α to change the stability of the stationary solution ψ0 is given by

|α| ≥ |Re(μ)|
2

.

21.2.1.1 Implications for μ ∈ R

Note that the index m of the neutral stability curve and the branch index n of our
eigenvalues λ(n) are connected. In order to establish this relation for the case of real
eigenvalues μ, a new index m̃ can be defined by m = ±sign(α)m̃. It turns out that
the index m̃ is the index of conjugate branch pairs of the Lambert-W function, which
can be understood as follows: Consider the argument z = −ατe−(μ+α)τ which is
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supplied to the Lambert-W function Wn(z) in the Eq. (21.6) for eigenvalues λ. One
can see that for μ ∈ R, z has the opposite sign of α, i.e., for α < 0 and z > 0 the
pairing of conjugate branches is m̃ = ±n, whereas for the opposite case (α > 0 and
z < 0) the pairing is m̃ = 0 ↔ n = {0, −1}, m̃ = 1 ↔ n = {1, −2}, etc. The above
asymmetry arises since the pairing of corresponding near-conjugate branch pairs of
the Lambert-W function shifts by one element when crossing Wn(0) [43].

For μ ∈ R, we can rewrite Eq. (21.7) by factoring out the sign(α):

τc(m,μ,α) =
sign(α)

[
arccos

(
1 + Re(μ)

α

)
± 2πm

]

|α|
√
1 −

(
1 + Re(μ)

α

)2
.

Note that τc > 0 must hold due to causality and that the range of arccos(z) ∈ [0, π].
Since the denominator is positive, the nominator must be positive as well, which
yields: (i) For the destabilization scenario (μ < 0, α > 0), the nontrivial solution
of this equation exists for all m by choosing the correct sign out of ±; Here, all
branches start on the left half-plane of the complex plane and change half-plane
when τ > τc whereas (ii) for the opposite case (μ > 0, α < 0), the solution only
exists for m 
= 0. That is, the branches starting from −∞ on the left half-plane
can change to the positive half-plane, which would lead to a destabilization of the
solution in question, but the branch withm = 0, which starts at μ > 0, never changes
the half-plane, i.e., the eigenvalue λ approaches the imaginary axis, but it never
crosses it. Therefore, a stabilization of solutions with eigenvalueμ ∈ R+ is in general
impossible with the chosen type of simple scalar TDF control in Eq. (21.3) with K =
α E, whereas complex eigenvalues μ ∈ C with positive real part can be stabilized,
as seen in Ref. [33].

Figure21.1 shows a representative example of ten leading branches of neutral
stability curves τc calculated from Eq. (21.7), illustrating the destabilization of ψ0
with negative eigenvalue μ = −1. One can see that τc curves approach the asymptote
at αmin = |Re(μ)|

2 for all indices −5 ≤ m ≤ 5. The critical delay time τu at which the
first eigenmode becomes unstable is given by the first curve which is crossed in
control parameter space when varying α and τ , which is reflected by the condition

τu(α) = min
m,μ

τc(m,μ,α). (21.9)

21.2.1.2 Neutral Stability Curves for μ = 0

Notice that if the system (21.3) in the absence ofTDF features translational invariance
with respect to its spatial coordinates, μ = 0 is an eigenvalue of the operator F′(ψ0).
For μ = 0, the characteristic equation (21.5) can be simplified to



21 Time-Delayed Feedback Control of Spatio-Temporal . . . 419

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

m 0

m 1

m 2

m 3

m 4

Fig. 21.1 Neutral stability curves τc(m,μ,α) calculated fromEq. (21.7) as function of the feedback
strength α for fixed value of the eigenvalue μ = −1 and branches −5 ≤ m ≤ 5. One can see that
τc curves approach the asymptote at αmin = |Re(μ)|

2 for all indices m

λ = α
(
1 − e−λ τ

)
,

yielding two real-valued solutions λ1,2 [11, 41]:

λ1 = 0, λ2 ≈ 2 (ατ − 1)

α τ 2
.

The eigenvalue λ1 remains zero, whereas the eigenvalue λ2 is negative only for
τ < 1/α and coincides with λ1 at τc = 1/α, which corresponds to the onset of spon-
taneous motion, first observed for localized states in the Swift-Hohenberg equa-
tion subjected to time-delayed feedback [11]. Notice that since the real-valued
λ1,2 correspond to the n = 0 and n = −1 branches of the Lambert-W function,
the change of stability for ψ0 at τc = 1/α happens exactly at the branch point
(z, Wn(z)) = (−1,−e−1), where both n = 0 and n = −1 branches intersect.

Note that the aforementioned neutral stability curve τc = 1/α can also be derived
within our formal approach,when taking the limitμ → 0ofEq. (21.7). From thepoint
of view of bifurcation theory, the TDF leads to a spontaneous symmetry breaking of
translational invariance, which causes a drift bifurcation of the solution ψ0.

21.3 The Swift-Hohenberg Equation with Time-Delayed
Feedback Control

In this section, we illustrate how the results obtained for general systems in Sect. 21.2
can be applied for the Swift-Hohenberg equation with time delayed feedback (21.2)
introduced in Sect. 21.1. In the absence of TDF control, i.e., for α = 0 or τ = 0,
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the Swift-Hohenberg equation (21.2) possesses a Lyapunov functional. This implies
that any given system state evolves monotonously towards a stable stationary state,
represented by local minima of the functional. However, in the presence of TDF,
the system loses this gradient structure and can show non-monotonous behavior. As
discussed in Sect. 21.2, in the presence of TDF, the set of steady state solutions
persist, but their stability may change.

Here, we focus on the stability of the trivial homogeneous solution, stripes and
hexagons. Notice that more complex nontrivial solutions like localized states, rings,
localized hexagon patches, or stripes can also be found [11, 37, 41, 44, 45], but they
are out of the scope of this manuscript.

21.3.1 Stability of the Homogeneous Solution

Suppose that the homogeneous solution ψ0 = 0 of Eq. (21.2) is stable for τ = 0, i.e.,
the dispersion relation satisfies

μ(ε, k) = ε − (k2c − k2)2 < 0

for all values of k, where one can set kc = 1 without loss of generality. For τ > 0
the linear stability analysis with respect to perturbations ∼exp(i k x + λ t) yields
eigenvalues of the form (cf. Eq. (21.6))

λ (n,μ(ε, k),α, τ ) = μ(ε, k) + α + 1

τ
Wn

(−ατe−(μ(ε,k)+α)τ
)
, n ∈ Z. (21.10)

By assumption ψ0 is stable for τ = 0 and we fix ε = −1 and choose α > 0 in order
to be able to achieve a destabilization (see Sect. 21.2.1.2). To get a first insight, it is
instructive to map a reasonable choice of sets {n, k,α, τ } to λ(n,μ,α, τ ), in order to
get an overviewof thewhole spectrum (see Fig. 21.2). Thereby, it can be observed that
the branches n build near-conjugate branch pairs, as expected from the properties of
the Lambert-W function. In addition, we can identify the branches n with the largest
growth rate Re(λ) as n = 0 and n = −1. Furthermore, from Eq. (21.8) one can
see that all branches n have a non-vanishing oscillation frequency ωc = Im(λ) 
= 0,
when crossing the imaginary axis.

First, we investigate which branch becomes unstable first, when varying TDF con-
trol parameters (α, τ ). To this end, we consider the growth rate max

k
Re λ(n,μ(ε, k),

α, τ ) as function ofα and τ for fixed ε and at the wave number kmax whichmaximizes
it (see Fig. 21.3).

Figure21.3 shows the first unstable branches n = 0 and n = −1, which we denote
as the leading branches as they govern the primary destabilization of ψ0. Since
Fig. 21.3 shows only values with Re(λ) ≥ 0, the boundary of these regions satisfy
Re(λ) = 0 and is given by the obtained neutral stability curves for μ ∈ R from
Eq. (21.7) (green solid line on Fig. 21.3), provided that their construction was appro-
priate and their indices m match the branch indices n of the Lambert-W function.
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Fig. 21.2 Spectrum λ(n,μ,α, τ ) for a set of {n, k, α, τ } calculated for ε = −1. Parameter ranges
are k ∈ [0, 3], α ∈ [0, 10], τ ∈ [0, 10] for branches −3 ≤ n ≤ 2. Branches appear in the legend in
order of grouping of near-conjugate branch pairs. Branches with largest growth rate Re λ are n = 0
and n = −1

Fig. 21.3 Re λ(n,μ(ε, kmax ),α, τ ) versus (α, τ ) for leading branches n = 0 (left), n = −1 (right)
andfixed ε = −1 at fastest growingwavenumber kmax ,whichwas foundbynumericalmaximization
with respect to k. Contour colors encode the size of the growth rate Re(λ). Only valueswith Re(λ) ≥
0 are shown. The green solid line represents the neutral stability curve τc(m,μ,α) calculated for
m = 0

One can easily see [40, 41] that the fastest growing wave number could depend
on α and τ and on the particular branch n, whereas the dominant wave number
for the leading branch n = 0 is kmax = kc = 1 with overall fastest growth rate of all
branches n. As wasmentioned above, all branches n have a non-vanishing oscillation
frequency, when crossing the imaginary axis. This implies that the destabilization
of the homogeneous steady state ψ0 occurs via a traveling wave bifurcation, since
predominantly the fastest growing wave number is kmax = 1 and its corresponding
oscillation frequency Im(λ) is non-zero.
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Fig. 21.4 Four snapshots of the time evolution of Eq. (21.2) showing a traveling wave solution as a
result of destabilizing the homogeneous steady state by TDF. The white circle is a reference point,
and the black arrow shows that the traveling wave moves towards the top right corner. Parameters
are: ε = −1, δ = 0, α = 1.9, τ = 0.8, TDF turned on at t = 0, time interval between successive
snapshots is Δt = 0.8

Figure21.4 shows four snapshots of a traveling wave solution, calculated from
direct numerical simulation of Eq. (21.2). The white circle serves a reference point
and the black arrow illustrates the movement towards the top right corner. However,
for some TDF control parameter values (α, τ ) further away from the bifurcation
curve, numerical solutions were found in which an oscillation between two opposite
states was observed for larger times (see Fig. 21.5).

21.3.2 Stability of Stripes and Hexagons

We now analyze the influence of TDF control on the stability of nontrivial periodic
solutions of Eq. (21.2) like stripes and hexagons. Since the TDF term vanishes at
the steady states, the stripe and the hexagon steady state solution persist, but their
stability may change due to TDF. The derivation of the corresponding linear stability
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Fig. 21.5 Four snapshots of the time evolution of Eq. (21.2) showing an oscillation between two
opposite states, as a result of destabilizing the homogeneous steady state by TDF. Parameters are:
ε = −1, δ = 0, α = 4, τ = 4, TDF turned on at t = 0. Again, the white circle provides a reference
point

problem for both solutions is straightforward and can be made by means of the
general ansatz which incorporates both patterns as a special case [46, 47]:

ψ(r, t) =
3∑

j=1

ξ j e
ik j r + c.c. (21.11)

=
3∑

j=1

|ξ j | cos(k j r + ϕ j ),

with complex amplitudes ξ j (t) ∈ C and wave vectors k j , j = 1, 2, 3:

k1 = kc

(
1
0

)
, k2 = kc

2

(−1√
3

)
, k3 = kc

2

( −1
−√

3

)
. (21.12)
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As stated earlier, this ansatz contains both stripes and hexagons: One obtains
hexagons by considering |ξ1| = |ξ2| = |ξ3| and stripes by setting |ξ1| 
= 0, |ξ2| =
|ξ3| = 0.

When substituting the ansatz (21.11) in the delayed Swift-Hohenberg equa-
tion (21.2) and projecting on the modes eik j r of the ansatz, one obtains the amplitude
equations for the complex amplitudes ξ j in the presence of TDF:

ξ̇1 = εξ1 + 2δξ∗
2ξ

∗
3 − 3ξ1

[|ξ1|2 + 2|ξ2|2 + 2|ξ3|2
] + α (ξ1(t) − ξ1(t − τ )) ,

(21.13a)

ξ̇2 = εξ2 + 2δξ∗
3ξ

∗
1 − 3ξ2

[
2|ξ1|2 + |ξ2|2 + 2|ξ3|2

] + α (ξ2(t) − ξ2(t − τ )) ,

(21.13b)

ξ̇3 = εξ3 + 2δξ∗
1ξ

∗
2 − 3ξ3

[
2|ξ1|2 + 2|ξ2|2 + |ξ3|2

] + α (ξ3(t) − ξ3(t − τ )) .

(21.13c)

For vanishing TDF control (α = 0 or τ = 0), the amplitude equations (21.13) reduce
to the amplitude equations derived for the classical Swift-Hohenberg equation [46,
47]. It is remarkable to note that the new terms induced by TDF enter linearly to
the amplitude equations, since the control mechanism is linear and additive, and the
ansatz consist of a linear superposition of planewaves. Notice that the system (21.13)
was discussed in [30] for the special case of a stripe solution in the Lengyel-Epstein
model subjected to TDF.

21.3.2.1 Linear Stability of Stripes

We start to analyze the amplitude equations (21.13) for the case of a stripe solution.
To this aim, we split the complex amplitudes ξ j (t) = R j (t)eiϕ j (t) in Eq. (21.13) into
their real amplitudes R j (t) and phases ϕ j (t). For the small perturbations δR j (t) of

the real stationary stripe amplitudes R(0)
j =

(√
ε
3 , 0, 0

)T
, one obtains

d

dt

⎛

⎝
δR1(t)
δR2(t)
δR3(t)

⎞

⎠ =
⎛

⎝
−2ε 0 0
0 −ε 2δ · R(0)

1

0 2δ · R(0)
1 −ε

⎞

⎠

︸ ︷︷ ︸
=:SR

·
⎛

⎝
δR1(t)
δR2(t)
δR3(t)

⎞

⎠

+α · E
⎛

⎝
δR1(t) − δR1(t − τ )

δR2(t) − δR2(t − τ )

δR3(t) − δR3(t − τ )

⎞

⎠ .

One can show that the matrix SR is the same as in the linear stability problem of
amplitude perturbations δR j without TDF with eigenvalues μR

1 = −2ε, μ2 = −ε −
2δ · R(0)

1 and μR
3 = −ε + 2δ · R(0)

1 . The stability for the small perturbation δϕ1(t) of
the phase ϕ(0)

1 yields:
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d

dt
δϕ1(t) = 0 · δϕ1(t) + α(δϕ1(t) − δϕ1(t − τ )).

Since μR
j < 0 ∀ j holds for stable stripes, we know that the occurring instability due

to the presence of TDF is of oscillatory type and that the fastest growingwave number
is k = kc = 1. Therefore, a destabilization of an eigenvalue μR

j < 0 via TDF results
in a traveling wave bifurcation. Furthermore, one can see that the eigenvalue of the
linear stability problem for the phase perturbation is μϕ = 0. This involves a drift
bifurcation at ατ = 1 of the stripe solution of the DSHE.

In order to confirm this prediction, direct numerical simulations for different
values of α and τ were performed (see Fig. 21.6). Here, green (red) points indicate
that the stripes steady state is stable (unstable), when subjected to TDF. The change
of stability is well described by the obtained neutral stability curve τc = 1/α (solid
blue line).

However, even more complex solutions are found in numerical simulations of
Eq. (21.2): For instance, starting with stable stripes with wave number k = kc, a
traveling zigzag pattern can be obtained (see Fig. 21.7). Indeed, it is known that
the Swift-Hohenberg equation without TDF can become unstable with respect to
transversal or longitudinal modulations, the so-called ZigZag and Eckhaus instabil-
ity, respectively. These modulation instabilities of stripes set in when the mismatch
of wave numbers k 
= kc exceeds certain boundaries [47]. That is, since the para-
meter setting is chosen so that the stripe solution of the Swift-Hohenberg equation

Fig. 21.6 Comparison of analytical predictions with a direct numerical simulation of a destabiliza-
tion scenario of stripes. Green (red) points indicate that the stripes steady state is stable (unstable),
when subjected to TDF with feedback strength α and delay time τ . The change of stability is well
described by the obtained neutral stability curve τc(α) from our analytical considerations. The first
eigenvalue that becomes unstable is μ = 0, which creates a drift bifurcation. Simulation parameters
are: ε = 1, δ = 0, TDF turned on at time T = 500 after the stripes have fully developed
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Fig. 21.7 Four snapshots of the time evolution of Eq. (21.2) showing a drift bifurcation of a
zigzag pattern. The white circle is a reference point, whereas the black arrow allows to identify the
movement to the left. Parameters are: ε = 1, δ = 0, α = 0.5, τ = 2.2, start with sin(kc y), where
kc = 1 is the critical wave number. TDF was turned on after the relaxation into stripes

without TDF is stable with respect to transversal modulations, it can be concluded
that the threshold of the modulation instability can also be influenced by TDF and
its instability region becomes larger in parameter space.

21.3.2.2 Linear Stability of Hexagons

We consider the corresponding linear stability problem for hexagons. For the small
perturbations δR j (t) to the real stationary amplitudes R(0)

j = Rh (1, 1, 1)T , Rh =
1
15

(
(−1)nδ ± √

δ2 + 15ε
)
, one obtains
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d

dt

⎛

⎝
δR1(t)
δR2(t)
δR3(t)

⎞

⎠ =
⎛

⎝
A B B
B A B
B B A

⎞

⎠

︸ ︷︷ ︸
=:SR

·
⎛

⎝
δR1(t)
δR2(t)
δR3(t)

⎞

⎠ + α · E
⎛

⎝
δR1(t) − δR1(t − τ )

δR2(t) − δR2(t − τ )

δR3(t) − δR3(t − τ )

⎞

⎠ ,

with the abbreviations A = ε − 21R2
h and B = 2δ · Rh − 12R2

h . For the small per-
turbations δϕ j (t) to the phases ϕ(0)

j , one obtains:

d

dt

⎛

⎝
δϕ1(t)
δϕ2(t)
δϕ3(t)

⎞

⎠ = −2δ · Rh

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠

︸ ︷︷ ︸
=:Sϕ

·
⎛

⎝
δϕ1(t)
δϕ2(t)
δϕ3(t)

⎞

⎠ + α · E
⎛

⎝
δϕ1(t) − δϕ1(t − τ )

δϕ2(t) − δϕ2(t − τ )

δϕ3(t) − δϕ3(t − τ )

⎞

⎠ .

Our analysis applies for the same reasons as stated for stripes. It is straightforward
to show that the matrices SR and Sϕ can be diagonalized and one can calculate the
eigenvalues μR

j and μ
ϕ
j , respectively. Again, one obtains a traveling wave bifurcation

if any of the μR
j < 0 is destabilized via TDF, whereas a drift bifurcation sets in when

μϕ = 0 is destabilized.
A comparison between analytical predictions and direct numerical simulations is

shown in Fig. 21.8. Here, green (red) points indicate that the hexagonal solution is
stable (unstable), when subjected to TDF. The change of stability is well described
by the obtained neutral stability curve τc(α) (21.7). One can see that the first eigen-
value that becomes unstable is μ = 0, which corresponds to a drift bifurcation of

Fig. 21.8 Comparison of analytical predictions with a direct numerical simulation of a destabi-
lization scenario of hexagons. Green (red) points indicate that the hexagon steady state is stable
(unstable), whereas the neutral stability curve τc(α) (blue solid line) mimics the change of stability.
Simulation parameters are: ε = 1, δ = 1, TDF turned on at time t = 500 after the hexagons have
fully developed
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Fig. 21.9 Four snapshots of the time simulation of Eq. (21.2) showing the drifting hexagons. The
white circle is a reference point, which allows to identify the movement to the left top. Parameters
are: ε = 0.1, δ = 1.0, α = 0.5, τ = 2.2, TDF turned on after hexagons relaxed in their steady state

the hexagonal solution (cf. Fig. 21.9, where four snapshots of the time simulation
showing the drifting hexagons are presented). Here, the white circle is a reference
point, whereas the black arrow illustrates the motion to the left top corner.

21.4 Summary and Outlook

In this chapter, the stability properties of homogeneous and spatially periodic pat-
terns in a Swift-Hohenberg equation subjected to time-delayed feedback were inves-
tigated in detail. Starting with the general form of an arbitrary system subjected to
TDF, we derived the neutral stability curves at which the stability of a particular sta-
tionary solution changes and showed that for real-valued spectra, system states can
be destabilized, but not stabilized with the used type of TDF control. Furthermore,
we showed that solutions which feature translational invariance lose stability in a
drift bifurcation. In the analysis, we assumed that the linear stability problem can be
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diagonalized. For the Swift-Hohenberg equation with TDF, we applied the results
of our linear stability analysis to investigate stability properties of the homogeneous
stationary state and of spatially periodic solutions, such as stripes and hexagons. A set
of order parameter equations for stripe and hexagonal solutions was derived and ana-
lyzed in detail. It was demonstrated that the homogeneous steady state loses stability
in a traveling wave bifurcation, whereas stripes and hexagons become unstable via a
drift bifurcation, followed by a traveling wave bifurcation for larger values of control
parameters α and τ . Direct numerical simulations are also carried out, showing good
agreement with analytical predictions based on linear stability analysis and bifurca-
tion theory. However, the explanation of some of the resulting dynamical behavior
like drifting zigzag patterns was out of the scope of our current analysis. Indeed, a
drift of a zigzag pattern was observed, although the same system parameters would
not create a transversal instability of the stripe solution in the system without TDF.
Therefore, we conclude that TDF influences the boundaries of the modulation insta-
bility of stripes, which provides a good starting point for further analysis. However,
this topic is beyond the scope of this paper and is left for future work.
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Chapter 22
Control of Epidemics on Hospital Networks

Vitaly Belik, Philipp Hövel and Rafael Mikolajczyk

Abstract The spread of hospital-related infections such as antibiotic-resistant
pathogens forms a major challenge in public healthcare systems world-wide. One of
the driving mechanisms of the pathogen spread are referrals or transfers of patients
(hosts) between hospitals or readmissions after their stay in the community, consti-
tuting a dynamical network of hospitals. We analyze referral patterns of 1 million
patients from one Federal State in Germany over the period of three years.We extract
the underlying statistics of relocation patterns and build an agent-based computa-
tional model of pathogen spread. We simulate an outbreak of an SIS-type infection
(susceptible-infected-susceptible) and evaluate characteristic time scales and preva-
lence levels. For such recurrent diseases, we finally investigate the effect of control
measures based on screening and isolation of incoming patients.

22.1 Introduction

The emergence and transmission of antibiotic-resistant pathogens is an issue of a
major challenge for public health on a world-wide scale [1]. Due to the availability
of data and computational resources, a number of investigations have been devoted
to study the pathogen spread in hospital networks in different countries [2, 3]. It
turned out that countries differ in their hospital network structure [2]. Therefore,
it is important to analyze healthcare systems in different countries to understand
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universal features and heterogeneities. Studies that analyze the German healthcare
system from the network perspective are very rare [4]. We aim to fill this gap and
present an analysis of German data and for the first time model the spread of a
pathogen on this network of hospitals in Germany. Specifically, we elaborate on
the impact of screening procedures of patients admitted to hospital to reduce the
prevalence level of a disease. Additionally we incorporate the possibility of patients
carrying the pathogen after their release to the community, which was not considered
in the previous studies [2, 3]. Our study should be considered as a proof of concept
for approaches combining complex network theory and computational methods in
epidemiology.

The rest of this chapter is organized as follows: In Sect. 22.2, we introduce the
dataset and provide details of the model. We also present an analysis of the dataset in
terms of its network and temporal properties. Section22.3 contains the main numer-
ical results and discuss the influence of screening procedures of patients upon admit-
tance to a hospital. We finally summarize our findings in Sect. 22.4.

22.2 Dataset and Model

In the presented study, we consider anonymized data on patient referrals, that is,
relocations between hospitals or release to/readmission from the community. The
dataset contains 1654 hospitals, which are considered as nodes in the network,
9.18 · 105 patients with around 2 million hospital stays over the course of 3years
of data.

The data was obtained from a healthcare provider in a large federal state in Ger-
many. It contains the following information about the referral: day of first admission
t0, number of stays s, duration of each stay τ , and inter-stay time θ . See Fig. 22.1. The
color corresponds to different hospitals. Patients can be directly transferred between
hospitals or spend some time in the community.

On an average week day there are around 3400 relocation events as shown in
Fig. 22.2 (top). These relocations form the set of links in our network. Note that
the sequence of links is crucial to ensure the causality of a spreading process. In

Fig. 22.1 Schematic of the available referral data for an exemplary patient with the day of first
admission t0, number of stays s, duration of stay τ , and inter-stay time θ . The color indicates
different hospitals
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Fig. 22.2 Properties of the
time-aggregated, undirected,
and non-weighted hospital
network with major 176
nodes depicted in Fig. 22.3.
Top Histogram of the
number of all relocations per
day. Middle Direct relocation
between pairs of hospitals.
Bottom In- and out-degree
histograms

other word, the network under investigation constitutes a temporal network [5, 6].
If we consider only direct relocations between pairs of hospitals without relocations
between hospitals and homes (community), we observe around 40 relocations on an
average week day. See Fig. 22.2 (middle). The in- and out-degree distributions of the
aggregated network of hospitals are presented in Fig. 22.2 (bottom). The in-degree
is broader distributed than the out-degree. Note that there is one outlier referring to
a node with in-degree 120 (not shown).
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Fig. 22.3 Modular structure of the patient transfer network. 176 nodes (hospitals) can be subdivided
into 5 modules indicated by the color of the node. The position is chosen according to a spring-
embedded layout and thus, corresponds to the topological position in the network and not to the
geographical location. Node sizes corresponds to hospital sizes (number of beds) as estimated from
the data

The data might also contain information about referrals to hospital outside the
federal state under consideration, but does not include full referral records beyond
the state borders.We identified the hospitals located in the state under consideration as
those hospitals with amaximumnumber of patients larger than a thresholdwhichwas
set to 30. This resulted in 176 frequently visited hospitals as depicted in Fig. 22.3. In
this reduced network we computed 4modules using the Louvain algorithm described
in Ref. [7]. This method sorts all nodes into different modules by maximizing the
so-called modularity Q, which is defined as
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Q = 1

2m

N∑

i, j=1

(
ai j − ki k j

2m

)
δ
(
ci , c j

)
, (22.1)

where m denotes the total number of links, {ai j } is the adjacency matrix, and ki

and ci refer to the degree and module of node i , respectively. To obtain Fig. 22.3, we
applied this algorithm to the time-aggregated, undirected, and non-weighted network.
Information on themodular structure of networks can be used to identify critical links
for an effective prevention of epidemics. This is important, for instance, to contain
an outbreak locally and prevent spreading across different modules [8].

Due to reasons of privacywe do not have information on geographical coordinates
of hospital or access to other types of metadata. However, we are able to estimate
hospital sizes from the data. For this purpose we take the maximum number of
patients sojourning in the individual hospital as an estimate of its size, i.e. number of
beds. To verify our estimates, we compare these with the data from statistical bureau
by ranking both numbers.1 The accuracy of this procedure is shown in Fig. 22.4. We
find that the ratio of the ranked hospital size, which are estimated from the data, and
the real hospital sizes remains constant around 0.5 for the first 150 nodes. Assuming
a uniform distribution of the customers of the health insurance company, which
provided us with data, this ratio nicely reflects its market share as it is close to the
real value of around 40%. The agreement can be further improved, if we take into
account an occupancy rate of hospitals below 100%.

Quantifying categories of links in our network, we also computed the numbers of
relocations between community and hospitals (2.974 · 106 or 99% of all relocations)
and direct transfers between different hospitals (3.3 · 104 or 1% of all relocations).
Therefore, it is to be expected that the role of the community is very important, as the
majority of patients are not directly transferred between hospitals, but first stay for
some time in the community, potentially carrying the pathogen. In the simulations
presented below, we assume no disease spreading in the community for simplicity,

Fig. 22.4 Evaluation of the
robustness of hospital size
estimations from the data.
NSB are the number of beds
in hospitals as given from the
statistical bureau. Ndata are
the sizes of hospitals as
estimated from the data,
i.e. the maximal number of
patients on any day

1See Landesamt für Statistik Niedersachsen: http://www.statistik.niedersachsen.de.

http://www.statistik.niedersachsen.de
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because we lack information about the moving patterns except for the times of hospi-
tal (re)admission and release. Sincewe do not have any information about the internal
ward structure of the hospitals either, we assume that within a hospital patients are
well mixed, and the law of mass action holds.

Fig. 22.5 Statistics of the
dataset: histograms of (top)
number of stays, distribution
of (middle) duration of stays,
(bottom) distribution of
inter-stay times
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Fig. 22.6 Total number of
agents in the system in
dependence on time

Figure22.5 depicts basic statistics of the individual referrals in the considered
dataset. See also schematics shown in Fig. 22.1. The number of stays and stay times
(top and middle panels in Fig. 22.5) are broadly distributed with long tails. The
majority of the patients (around 50%) were admitted just one time to a hospital. The
inter-stay time distribution peaks around 110days (bottom panel in Fig. 22.5).

In order to simulate thewhole population of size N , we generate the corresponding
number of agents from the data on only 40% of the patients using the following
procedure: (i) we chose N times a patient ID from the dataset with its referral record
and assign a random day of its first appearance in the interval [0, T ]with T = 3 a, (ii)
we periodically repeat these records for the intervals [(n − 1)T, nT ]with n = 1, 2, 3
leading to a total observation time of 12 a; (iii) taking into account mortality rates
for the agent, an agent is removed assuming a death rate of 0.007/a and at the same
time, a new agent with the same referral profile is added. Following this procedure,
we reach a constant population level after an initial transient as shown in Fig. 22.6.

In order to model an endemic prevalence level of resistant pathogens, we consider
an SIS (susceptible-infected-susceptible) epidemic model. Given the number I of
infected and S of susceptible individuals in one hospital, the dynamics follow a
chemical kinetic equations for infectious dynamics:

S + I
α→ 2I (22.2a)

I
β→ S (22.2b)

whereα andβ denote the infection and recovery rate per individual. Thuswe consider
the frequency-dependent model, where the chance of infection is proportional to the
product of the number of susceptible and infected individuals in a single population
and inversely proportional to its size. Equation (22.2) describes an undetected, free-
running spread of pathogens in the absence of control measures.

We use a stochastic agent-based computational epidemic model on a network of
hospitals and implement the events according to the empirical data using a priority
queue data structure [9] to keep track of single individuals, their infection status and
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Fig. 22.7 Histogram of the
time-averaged endemic
prevalence values in
hospitals with a non-zero
number of infected agents.
Infectious rate α = 0.1/day
and recovery rate β =
2.7 · 10−3/day = 1/year

time events (arrival at and release fromahospital, recovery). For the time between two
subsequent events, the local node dynamics follow the SIS-model described by the
kinetics (22.2). The infectious rateα is chosen to ensure the average prevalencewithin
hospitals around 5%. We consider a recovery rate β = 1/a = 2.7 · 10−3/d, which
corresponds to typical carriage times of a bacterial pathogen.We configure the system
in the following way: we populate the hospitals according to the procedure described
above using the empirical transfer profiles of the dataset. As initial condition, we
implement 0.99%of the patients in all hospitals as infected.Wefind that the dynamics
of our network model reach an endemic state after 1000days (Fig. 22.4).

Figure22.7 depicts the histogram of the time-averaged endemic node prevalence.
The median is 0.02 and the mean value is 0.07. One can see that the prevalence
distribution is inhomogeneous and skewed towards low values, indicating a small
prevalence for many nodes.

22.3 Results of Simulations and Control by Screening

Extending the model described in the previous section, we additionally implement
the following control measure.We randomly screen a fraction ν of patients incoming
in every hospital. Assuming a test sensitivity of 100%, patients that are detected as
infected are immediately isolated and cured from the disease.

Figure22.8 presents the time series of the prevalence after the control is applied
at t = 3000 d for different screening fractions ν. Note that ν = 0 corresponds to
the uncontrolled case. As intuitively expected, screening leads to a reduction of the
prevalence level. We observe that the screening rate has to be considerably high
in order to achieve significant results. For a 10-fold reduction within 300 days, for
instance, a screening of 90% of incoming patients is required.

Figure22.9 shows the time required to reduce the prevalence to 50%, which
is known as half reduction time, in dependence on the screening fraction ν. This
half reduction time is marked in Fig. 22.8 by vertical lines. We find that the half
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Fig. 22.8 Averaged prevalence for different fraction of incoming patients screened: ν = 0, i.e. no
screening, (blue), ν = 0.1 (green), ν = 0.2 (red), ν = 0.5 (cyan), ν = 0.9 (magenta). The average
is computed over all hospitals for each time step. The dashed horizontal line indicates the 50%
reduction level and the vertical lines mark the half reduction times. System parameters of the SIS
model (22.2) as in Fig. 22.7

Fig. 22.9 Time until 50%
prevalence reduction from
the start of the screening.
System parameters of the
SIS model (22.2): infectious
rate α = 0.1/day and
recovery rate β = 1 year−1

reduction time decreases strongly with screening rates up to ν = 30–40%. For higher
values of ν the half reduction time equilibrates around 100days and does not change
significantly. Thus, if the goal is to reduce prevalence to 50%, moderate screening
fractions ν = 30–40% are sufficient.

22.4 Conclusion

We have shown how complex network theory and computational methods of agent-
based stochastic reaction-diffusion processes can help to control nosocomial infec-
tious diseases, such as antibiotic-resistant pathogens, e.g. Methicillin-resistant
Staphylococcus Aureus (MRSA) or Clostridium Difficile. We have analyzed patients
referral patterns in one federal state in Germany over the period of 3years. We have
extracted the corresponding hospital network of patient relocations and built a com-
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putational agent-based stochastic model of disease dynamics including the full his-
tory of hospital stays on the single patient level. We have assessed the efficiency of
screening a fraction of incoming patients as a potential control measure. This means
that in the case of a positive screening test, the patient is isolated and cured before
admission to the hospital. For typical values of parameters, we have found that the
endemic prevalence can be halved within 100days for screening fraction around
30–40%.

Our study represents a proof of concept and opens roads for the future analysis of
the potential impact of different epidemic control measures in a network of hospitals.
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Chapter 23
Intrinsic Control Mechanisms
of Neuronal Network Dynamics

Josef Ladenbauer, Moritz Augustin and Klaus Obermayer

Abstract The brain is a complex dynamical system which employs specific mech-
anisms in a self-organized way to stabilize functionally relevant patterns of activity
and switch between them, depending on computational demands. We first provide
an overview of control mechanisms that involve delayed feedback of activity, plas-
ticity of synaptic coupling strengths and changes of neuronal adaptation properties,
and then focus on the latter, summarizing recent results for different spatial levels,
obtained through mathematical bottom-up modeling.

Cognitive processing is linked to the activation of neurons that interact within and
across brain areas. Specific cognitive tasks are associated with certain collective
dynamics of local (spatially confined) neuronal populations and interareal (spatially
distributed) brain networks [1]. Of particular relevance is the concerted spiking activ-
ity, which often exhibits oscillatory overall dynamics due to synchronization. For
example, invasive studies on rodents and monkeys have shown that in an awake
state local cortical networks exhibit largely asynchronous collective spiking activity,
in contrast to sleep and drowsiness during which slow oscillations (0.1–5Hz) are
more pronounced [2, 3]. Attentional modulation, however, leads to changes in fast
oscillatory activity (30–90Hz) [3, 4]. In these studies electrodes were inserted into
the brain, measuring the (spiking) dynamics of local neuronal populations within
up to 1 mm from the electrode contacts. On a larger spatial scale functional net-
works have been identified—such as the visual, sensory-motor and executive control
networks—based on correlations (i.e., weak synchronization) between the fluctuat-
ing activities of different brain areas measured by functional magnetic resonance
imaging, magnetoencephalography or electroencephalography [5, 6]. Each of these
brain areas contains at least several mm3 of brain tissue with millions of neurons.
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Furthermore, oscillatory network dynamics have also been related to brain diseases.
During epileptic seizures or in Parkinson’s disease, for example, strong oscillatory
activity in particular frequency bands occurs due to excessive synchrony across large
populations of neurons [7, 8]. Patients with schizophrenia, on the other hand, show
abnormally weak oscillations in two major frequency classes and reduced synchro-
nization between them [9].

To be able to control the various dynamical states of neuronal networks at the
local and interareal levels the brain is equipped with several mechanisms. These
include feedback of neuronal spiking activity (short timescale), plasticity of synaptic
coupling strengths (long timescale), and changes of the dynamical properties of
neurons (intermediate timescale). In the following three Sects. 23.1–23.3 we provide
an overview of these mechanisms and their control potential. In Sect. 23.4, we then
focus on amechanism of the latter type that involves neuromodulatory systemswhich
affect the adaptation properties of neurons. We summarize the results from recent
computational studies on the capability of that mechanism to control the collective
dynamics at different spatial levels, ranging from single neurons to large networks.
The bottom-up modeling approach and analyses used in these studies are outlined.
Concluding remarks are provided in Sect. 23.5.

23.1 Control Through Feedback of Neuronal Activity

Cortical networks, especially sensory systems, are organized in a hierarchical fash-
ion, where information is processed in subsequent stages and where increasingly
abstract representations are formed (cf. [10, 11]). A key feature of this architec-
ture are feedback connections from higher to lower areas in the hierarchy. In the
visual system, for example, these feedback projections are characterized by a large
degree of convergence and divergence indicating pooling of signals. At the same
time, the feedback projection patterns are specific, targeting populations of neurons
with similar response properties [12]. Feedback input is always excitatory, but leads
to effective inhibition when the local inhibitory population is affected. The feedback
time delay due to synaptic transmission can range from only a few up to several tens
of milliseconds depending on axonal length and myelination as well as dendritic
morphology and postsynaptic receptor kinetics.

The experimental data of these feedback loops and the corresponding flow of
signals are reminiscent of time-delayed feedback control schemes that have been
extensively investigated in the theoretical physics literature [13–16]. Because time
delays arise naturally in neuronal networks, the potential of those control schemes
has also been examined using generic models of coupled neurons. For pairs [17] and
large ensembles of globally coupled neuronal oscillators [18] synchronization can
be enhanced or suppressed by that mechanism, depending on the delay and feedback
amplification. Feedback control schemes of this kind, however, have been predomi-
nantly studied for the development of stimulation devices that suppress pathological
rhythms (see, e.g., [19–23]), rather than understanding brain-intrinsic control.
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More specific examples of intrinsic feedback control include interaction loops
between cortical and thalamic circuits [24] and well-characterized inhibitory feed-
back pathways in sensory systems [25]. Using in vitro experiments complemented by
computational models it was found that delayed corticothalamic (excitatory) feed-
back is capable to induce highly synchronous slow (2–4Hz) oscillations in visual
thalamic circuits of ferrets [24]. In vivo recordings from sensory pyramidal neurons1

and results from an effective circuit model revealed that delayed inhibitory feed-
back allows the sensory neurons to differentiate between communication-like and
prey-like naturalistic stimuli in their spike rate response dynamics (oscillatory and
nonoscillatory, respectively) [25].

Delayed local feedback through populations of inhibitory neurons, on the other
hand, has been shown to produce rhythmic collective dynamics in local networks,
with oscillation frequencies that are largely determined by the delay times—even
when the spiking activity of single neurons is irregular and sparse (i.e., cycles are
skipped), see [26, 27] for theoretical work, and [28, 29] for experimental results.

On the level of large-scale brain networks the impact of local feedback inhibition
on the global dynamics has recently been studied in models constrained by diffusion
imaging data of human subjects [30]. It was shown that local inhibitory feedback
stabilizing an asynchronous state can—at the global network level—lead to improved
prediction of the measured interareal correlations as well as enhanced information
capacity and discrimination accuracy [30].

Finally, feedback control schemes have been widely studied in movement neuro-
science. An established paradigm considers the integration of sensory feedback state
estimation processes which affect motor commands that cause movement [31–33].
Here, a variety of (local) neuronal network states that reflect motor commands need
to be controlled [34, 35].

23.2 Control Through Plasticity of Coupling Strengths

The strengths of many types of synapses through which neurons are coupled undergo
long-lasting changes in an activity-dependent manner. The effects of such plasticity
processes depend on the (correlated) spiking activity of pre- and postsynaptic neu-
rons, potentiating (strengthen) or depressing (weaken) synaptic efficacies, which can
last up to several hours [36, 37]. A form of synaptic modification that has received
lots of attention is spike-timing-dependent plasticity (STDP) [37–40]. With STDP,
repeated presynaptic spike arrival a fewmilliseconds before postsynaptic spikes leads
to long-term potentiation of the synapse, while repeated spike arrival after postsynap-
tic spikes leads to long-term depression. The study of STDP has beenmainly focused
at excitatory synapses on excitatory cells but there is also accumulating evidence for
STDP at inhibitory synapses and on inhibitory neurons [41].

1Pyramidal cells are the largest class of excitatory neurons in the brain.
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Functionally, STDP is believed to underlie learning and information storage in
the brain, as well as the development and refinement of neuronal circuits [39, 42].
Considering its effects on neuronal dynamics, STDP can regulate both, the rate
and variability of (postsynaptic) spiking [43, 44]. At the network level, the collective
spiking dynamics lead to a slowmodification of the coupling strength pattern through
STDP, which in turn shapes the spiking activity within the network. Results from
computational modeling studies show a variety of network states stabilized by STDP,
as reviewed below.

In networks of regular (i.e., constant input driven) neuronal oscillators STDP can
lead to stationary locking states, characterized by multiple synchronized clusters
where neurons within clusters are largely decoupled [45–47], and slow oscillations
between weakly and strongly globally synchronized states [48].

The picture changes when (input) fluctuations are considered which lead to irreg-
ular neuronal spiking [1, 49]. In this case, STDP can, for example, stabilize “mixture
states” of short-lasting synchronous bursts that interrupt asynchronous spiking activ-
ity in networks of excitatory model neurons with delayed coupling [50]. Coupling
strengths increased during asynchronous activity, but neurons engaged in synchro-
nous bursts were decoupled due to axonal propagation delays, which is in agreement
with decoupling within clusters in oscillator networks. In balanced networks of exci-
tatory and inhibitory neurons, on the other hand, STDPgenerally leads to stabilization
of asynchronous irregular states [51]. There, a slightly modified, weight-dependent
STDP rule that includes a dependence on the coupling strength was used to pre-
vent abnormal synaptic strengths, which further led to improved fits of experimental
data [51, 52]. Asynchronous irregular network states have also been shown to be
stabilized by STDP on inhibitory synapses, by balancing excitatory and inhibitory
synaptic currents [53].

When broadly distributed synaptic delays are considered in networks of model
neurons driven by fluctuating inputs STDP can lead to locking phenomena where
spiking within subnetworks is time locked according to the synaptic delays of the
connections between the neurons [54]. This concept has been coined as polychro-
nization [55] and has been further examined in the context of working memory [56].
These spike-timing patterns emerge and reoccur with millisecond precision although
spiking within the network appears random and uncorrelated. The number of such
polychronous groups that can coexist far exceeds the number of neurons in the net-
work; hence, STDP can cause a large memory capacity of the system in this way.

In summary, STDP seems to facilitate asynchronous irregular states in networks
where noise is considered and can—at the same time—promote spike-to-spike
locking between neurons, while synchronized activity may only occur transiently
due to decoupling of synchronized neurons.
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23.3 Control Through Changes of Neuronal Dynamics

The brain is equipped with neuromodulatory systemswhich regulate the dynamics of
neuronal populations by altering the properties of ion channels in their membranes.
Several circuits have been identified, comprising executive and sensory cortical areas
as well as subcortical neuromodulatory centers, that are involved in regulating brain
states through neuromodulators such as acetylcholine (ACh), norepinephrine, or
serotonin [57, 58]. Neuromodulation by ACh, for example, which can occur at the
timescale of seconds [59], has been experimentally shown to change the neuronal
response and synchronization properties [60, 61] often facilitating desynchronized
population activity [3, 58], and functionally linked to arousal, vigilance and selective
attention [58, 60, 62]. ACh can mediate synaptic plasticity [63–65] and is involved
in circuits where feedback control may play an important role [64]; here, however,
we focus on its direct impact on the intrinsic dynamical properties of neurons.

ACh affects the neuronal membrane by reducing the conductance of specific
types of ion channels, in particular for potassium (K+), in a type-dependent way [57,
66], see Fig. 23.1a. These K+ channels produce slowly decaying currents, which
rapidly accumulate when the membrane voltage increases. A number of such K+
channel types with different activation characteristics have been identified [67–69].
Some channels are already activated at membrane voltage values below those lead-
ing to a spike (i.e., subthreshold voltage values), while others are activated at higher,
suprathreshold values (i.e., driven by spikes). A common feature of these different
types of slowly deactivating K+ channels is that they generate transmembrane cur-
rents which lead to spike rate adaptation (see Fig. 23.1b)—a phenomenon shown by
many types of neurons. Those K+ currents are thus also termed adaptation currents.
The distinct types of K+ channels exhibit different sensitivities to ACh. Specifically,
ACh has been shown to inhibit the channels which cause a spike-driven adaptation
current at a lower concentration than that necessary to inhibit those channels which
effectively generate a subthreshold voltage-driven adaptation current [57, 66], cf.
Fig. 23.1a. To gain insight into a control mechanism based on the neuromodulator
ACh and to assess its potential it is, therefore, important to understand how adaptation
currents affect neuronal spiking activity and synchronization phenomena.

23.4 On the Role of Neuronal Adaptation for Controlling
the Collective Dynamics: Insights from in Silico studies

Here, we focus on how distinct types of adaptation currents shape neuronal dynamics
at different spatial levels and the potential consequences for ACh-based neuromod-
ulatory control (cf. Sect. 23.3). Specifically, we summarize recent results on spike
rates and interspike interval (ISI) variability of single neurons (Sect. 23.4.2), spike
synchronization and spike-to-spike locking in small networks (Sect. 23.4.3), and the
population spike rate dynamics in large networks (Sect. 23.4.4).
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These questions can be effectively addressed in silico, using computational mod-
els, and through mathematical analyses. Below, we outline a bottom-up approach
based on an experimentally validated neuron model of the integrate-and-fire type,
which covers spikes, the fast subthreshold membrane voltage and slow adaptation
current dynamics. To efficiently describe and analyze the dynamics of these model
neurons at the three spatial levels different suitable methods from statistical physics
and nonlinear dynamics—including mean-field, phase reduction and master stabil-
ity function techniques—have recently been extended for that model class. This
approach allows to examine the relationships betweenmicroscopic interactions (neu-
ron biophysics) and macroscopic features (network dynamics) in a direct way and
simplifies bridging scales.

23.4.1 Central Model of Neuronal Activity

Over the last two decades substantial efforts have been exerted to develop single neu-
ron models of reduced complexity that can reproduce a large repertoire of observed
neuronal behavior, while being computationally less demanding and, more impor-
tantly, easier to understand and analyze than detailed biophysical models. A promi-
nent example that is used in the following is the adaptive exponential integrate-and-
fire (aEIF) model [70, 71], which is a single-compartment spiking neuron model
given by a two-variable differential equation system with a (discontinuous) reset
condition.

Specifically, for each neuron (i = 1, . . . , N ) of a population of N neurons, the
dynamics of the membrane voltage Vi is described by

C
dVi

dt
= IL(Vi ) + Iexp(Vi ) − wi + Isyn,i (Vi , t), (23.1)

where the capacitive current through the membrane with capacitance C equals the
sum of three ionic currents and the synaptic current Isyn. The ionic currents consist
of a linear leak current IL(Vi ), an exponential term Iexp(Vi ) that approximates the
rapidly increasingNa+ current at spike initiation, and the adaptation currentwi which
reflects a slowly deactivatingK+ current. The adaptation current evolves according to

τw
dwi

dt
= a(Vi − Ew) − wi , (23.2)

with adaptation time constant τw. Its strength depends on the subthresholdmembrane
voltage via conductance a. Ew denotes its reversal potential. When Vi increases
beyond a threshold value, it diverges to infinity in finite time due to the exponentially
increasing current Iexp(Vi ), which defines a spike. In practice, however, the spike is
said to occur when Vi reaches a given value Vs—the spike voltage. The downswing
of the spike is not explicitly modeled; instead, when Vi ≥ Vs, the membrane voltage
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Vi is instantaneously reset to a lower value Vr . At the same time, the adaptation
current wi is incremented by a value of b, which implements suprathreshold (spike-
dependent) activation of the adaptation current. Immediately after the reset, Vi andwi

are clamped (i.e., remain constant) for a short refractory period Tref , and subsequently
governed again by (23.1–23.2).

In contrast to higher dimensional smooth neuron models of the Hodgkin-Huxley
type [72], integrate-and-fire models describe the actual spike shape in a strongly
simplified way for the sake of reduced model complexity. This is justified by the
observation that neuronal spike shapes are stereotyped and their duration is very
short (about 1 ms). The timing of spikes contains most information, as compared
to their shapes, and the aEIF model can accurately reproduce the spike times (up to
96%) of Hodgkin-Huxley neurons [70].

The aEIF model exhibits rich subthreshold dynamics [73], a variety of biologi-
cally relevant spike patterns [74], and it can be easily calibrated usingwell established
electrophysiological measurements [70]. The model parameters are physiologically
relevant and—importantly—they can be tuned such that the model reproduces sub-
threshold properties [75, 76] and predicts spiking activity of real (cortical) neurons
[77–79] to a high degree of accuracy (see Fig. 23.1c). Furthermore, it allows to study
the effects of adaptation currents with subthreshold and spike-dependent activation
in separation (via parameters a and b). Depending on the values of these parame-
ters the model effectively reflects different types of K+ channels [80]. The model
dynamics in response to an input current step, exhibiting spike rate adaptation for
the subthreshold and spike-dependent activation types, are shown in Fig. 23.1e.

To complete the model (23.1) we need to specify the total synaptic current Isyn for
each cell. It consists of recurrent synaptic inputs Irec, received from neurons (with
indices { j} and spike times {t kj }) of the network (if a network is considered) and an
input current Iext generated from network-external neurons,

Isyn,i (Vi , t) := Irec,i (Vi , {t kj }, t) + Iext,i (Vi , t). (23.3)

These currents describe the excitatory or inhibitory postsynaptic effects of chem-
ical synapses—the by far most abundant type of connections between neurons
in the vertebrate brain. In particular, the recurrent synaptic current is given by
Irec,i := ∑

j Gi j
∑

k si (Vi , t − t kj − di j ), where every presynaptic spike triggers a
postsynaptic current (weighted by the coupling strengthGi j ), which causes an excur-
sion of the postsynaptic membrane voltage Vi after a time delay di j has passed,
accounting for the (axonal and dendritic) spike propagation times. The shape of
Irec elicited by a presynaptic spike differs slightly across the different spatial levels
considered below. In Sect. 23.4.3 a biexponential conductance-based description (cf.
[81]), si (Vi , t) ∝ [exp(−t/τd) − exp(−t/τr )](Esyn − Vi ), and exponentially decay-
ing currents (cf. [82]), si (Vi , t) ∝ exp(−t/τd), are used,with rise and decay time con-
stants τr ≤ τd and synaptic reversal potential Esyn. For both variants, si (Vi , t) := 0
if t < 0. In Sect. 23.4.4 conductance-based membrane voltage jumps are applied (cf.
[83]), si (Vi , t) := δ(t)(Esyn − Vi ). Excitatory and inhibitory effects are implemented
by different values for Esyn or—for the current-based description—by positive and
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negative weights Gi j .2 The results summarized below do not depend on a particular
choice of synaptic model, the presence (absence) of certain model features, however,
simplifies the respective methodology. The external input current, Iext, is described
using stochastic processes (Sects. 23.4.2 and 23.4.4) or deterministic (constant and
step) functions (Sect. 23.4.3).

23.4.2 Single Neurons: Effects on Threshold, Gain,
and Variability of Spiking

How adaptation currents shape the relationship between driving input, spike rate out-
put and ISI variability of single neurons has recently been examined in a probabilistic
setting [80]. Considered were aEIF neurons exposed to fluctuating inputs mimicking
synaptic bombardment as observed in vivo:

Isyn,i (Vi , t) = C [μ(t) + σ(t)ξi (t)] , (23.4)

where μ(t) and σ(t) determine the time-dependent mean and standard deviation of
the input, respectively, and ξi (t) is a Gaussian white noise process with correlation
function

〈
ξi (t)ξ j (t + τ)

〉 = δ(τ ) for i = j and 0 otherwise. Here, the index i reflects
the trial number for a single neuron. Spike rates and ISI distributions were character-
ized for a wide range of input statistics using an approach based on the Fokker-Planck
equation and an adiabatic approximation, where the adaptation currentwi is replaced
by its trial average under the reasonable assumption that its timescale is large com-
pared to the membrane time constant (τw � τm := C/gL, where gL denotes the leak
conductance of IL). This leads to the following equations for the probability density
p(V, t) and the time-varying mean adaptation current 〈w〉 (see [80] for details),

∂p

∂t
=− ∂

∂V
qp(IL, Iexp, 〈w〉, μ, σ ),

d〈w〉
dt

= a
(〈V 〉p−Ew

) − 〈w〉
τw

+ b r(t).

(23.5)
The left (partial differential) equation is supplemented with appropriate boundary
conditions (see Fig. 23.1d) accounting for the (discontinuous) reset condition in the
aEIF model. The spike rate r is given by the probability flux qp evaluated at the
spike voltage, r(t) = qp

∣∣
V=Vs

. The ISI distribution pISI can be calculated within this
(Fokker-Planck) framework by self-consistently solving the associated first passage
time problem [80]. The two output quantities of interest, r and pISI, were numerically
calculated as a function of the input moments μ(t) and σ(t). The results of this
method for two aEIF parametrizations, together with simulations of the underlying
stochastic system, are shown in Fig. 23.1f.

2Note, that an excitatory (inhibitory) neuron canonly produce excitatory (inhibitory) synaptic effects
at its target neurons.
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Using this approach it was found [80] that an adaptation current which is primar-
ily driven by the subthreshold membrane voltage (a > 0) increases the threshold for
spiking and leads to an increase of ISI variability for a broad range of input statistics,
by subtracting from the mean input to the neuron (Fig. 23.1g, h; left). A spike-
dependent adaptation current (b > 0), on the other hand, always reduces the spike
rate gain while leaving the threshold for spiking unaffected by predominantly divid-
ing the mean input, and decreases ISI variability for fluctuation-dominated inputs
(i.e., when the input mean is substantially smaller in magnitude than its variance).
These computational results were supported by analytical expressions derived for
the steady-state spike rate and ISI variability as a function of adaptation parameters
and synaptic input moments (upon a small model simplification) [80]. Additionally,
it was shown that the distinct effects of the two adaptation mechanisms are consis-
tently reproduced by specific types of K+ currents using a biophysically detailed
Hodgkin-Huxley neuron model.

Subthreshold and spike-dependent adaptation currents have also been shown to
affect the correlations between subsequent ISIs in different ways. The former type
causes positive and the latter type induces negative serial ISI correlations (i.e., short
ISIs are typically followed by longer ones and vice versa) [86, 87]. Furthermore,
spike-dependent adaptation canproduce strong resonanceof the spike rate in response
to an oscillating mean input, which has been shown using a Fokker-Planck based
approach similar to the one outlined above [88].

23.4.3 Small Networks: Effects on Spike
Synchronization and Locking

We next turn our focus to small networks of up to hundreds of neurons, for which the
precise temporal relationships between spikes are relevant. We cover recent results
on how adaptation currents affect spike-to-spike synchronization and locking of
synaptically coupled neurons driven to periodic (so-called regular) spiking. This
type of spiking activity is exhibited by several types of excitatory and inhibitory
neurons [89–91]. For other classes of neurons, whose ISIs show a high degree of
variability—even during rhythmic overall network activity [1]—spike synchroniza-
tion phenomena are preferentially treated in a probabilistic manner (cf. Sect. 23.4.4).
We first consider the effects on pairs of coupled aEIF neurons and networks with
all-to-all connectivity [81], before we move to networks with different connection
patterns [82]. The model dynamics was analyzed using a phase reduction method
and the master stability function (MSF) formalism, both of which are outlined in
the following. The former is based on a characteristic of single neurons—the phase
response curve (PRC)—and allows to effectively predict the synchronization and
locking behavior of coupled pairs. The latter can be used to assess the stability of
synchrony (and locking states) for many different network topologies at once.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 23.1 Effects of adaptation currents on the dynamics of single neurons a Inhibition of two
adaptation current types by carbachol. Data from [66]. b Spike rate adaptation observed by in vitro
measurements of pyramidal neurons. Adapted from [84]. c Overlayed membrane voltage traces of
a fast-spiking interneuron measured in vitro and as produced by the aEIF model in response to the
same fluctuating input current. Adapted from [85]. d Visualization of the boundary conditions for
the membrane voltage distribution (reflecting for V → −∞, absorbing at Vs ) and the reinjection
of probability flux, qp

∣∣
V↘Vr

− qp
∣∣
V↗Vr

= r(t − Tref ), for the Fokker-Planck (FP) model (23.5).
e Membrane voltage V and adaptation current w time series of an aEIF neuron, with a purely sub-
threshold voltage-driven (a > 0, b = 0, left) and spike-dependent (a = 0, b > 0, right) adaptation
mechanism, in response to an input current step. From [81]. f Spike times, spike rate histogram
(in Hz), sample trace of the membrane voltage (in mV) and the corresponding histogram (attached
right), adaptation current (in μA/cm2) and ISI histogram of an aEIF neuron subject to a fluctuating
input. The corresponding quantities r(t), p(V, t), 〈w〉 and pISI were obtained from the FP model
(orange lines). g Adapting spike rate r of an aEIF neuron for varying input intensity (the moments,
μ and σ , both increase with increasing drive, see [80] for details). h ISI distributions (i.e., pISI) of
aEIF neurons and the corresponding coefficient of variations (CV). g and h show results from the
FP model. f–h are adapted from [80] where all parameter values are specified
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It is convenient to express the network system (23.1)–(23.3), with deterministic
external driving input (constant Iext,i ), in compact form,

dxi
dt

= f (xi ) +
N∑

j=1

Gi jh(xi , x j,d), (23.6)

for i = 1, . . . , N , where xi ∈ R
m contains the state variables Vi and wi , together

with a small number (m−2) additional variables to represent the synaptic effects on
neuron i (i.e., the time course of si , cf. Sect. 23.4.1) by a differential equation. f
and h are piecewise smooth functions with discontinuities due to membrane voltage
reset and pulses involved in the model of synaptic interaction. xi,d := xi (t − d)

with axonal plus dendritic propagation delay d (identical delays assumed here for
notational simplicity).

Phase reduction method

Under the assumption of weak synaptic interaction (i.e., |Gi j | is small) the network
model (23.6) can be reduced to a lower dimensional system, where neuron i is
represented by its phase ϑi ∈ [0, T ) as follows (see [81] for details):

dϑi

dt
= 1 +

N∑

j=1

Gi j

T

∫ T

0
q(s)Th

(
x̄(s), x̄d(s + ϑ j − ϑi )

)
ds

=: 1 +
N∑

j=1

Gi j Hd(ϑ j − ϑi ).

(23.7)

x̄ is a stable limit cycle solution with period T of the equation dx/dt = f (x), rep-
resenting the (piecewise smooth) oscillatory dynamics of an isolated neuron. q is
the normalized solution of the adjoint variational equation around x̄ that determines
the PRC [81] and Hd denotes the (so-called) interaction function for the phase net-
work (23.7). The PRC specifies the phase shift of an oscillating neuron caused by a
transient input (perturbation) as a function of phase at which the input is received. It
can be efficiently calculated from that adjoint equation (see, e.g., [92])—a method,
which has recently been extended for aEIF neurons and piecewise smooth systems
in general [81].

Applying the phase network model (23.7) synchrony and phase locking of neu-
ronal pairs can be conveniently analyzed. The phase difference ϕ := ϑ2 − ϑ1 then
evolves according to the scalar differential equation

dϕ

dt
= G21Hd(−ϕ) − G12Hd(ϕ), (23.8)
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(assuming no autapses, i.e., Gii = 0), whose fixed point solutions correspond to
locking states. For symmetric synaptic strengths (G12 = G21) the stability of syn-
chrony and anti-phase locking can even be “read off” the PRC without additional
calculations (see supplementary material of [81]).

Using that approach it was found [81] that a subthreshold voltage-driven adapta-
tion current can change the PRC of an aEIF neuron from type I (only phase advances
for excitatory perturbations) to type II (phase advances and delays) (Fig. 23.2a) by
altering the rest-spiking transition from a saddle-node to a Hopf bifurcation. A purely
spike-dependent adaptation current, on the other hand, does not change the bifurca-
tion type and thus leaves the type of PRC unaffected, but changes its skew. These
effects translate, for coupled excitatory neurons, into stabilization of synchrony by
subthreshold adaptation, and locking with a small phase difference due to spike-
driven adaptation, respectively, as long as the external inputs are weak and the synap-
tic strengths and delays are small. For inhibitory pairs it was found that synchrony
is stable and robust to changes in delay and input strength [81], and (both types
of) adaptation currents can mediate bistability of in-phase and anti-phase locking
(Fig. 23.2a). The locking behavior which was observed for pairs is reflected by the
dynamics of corresponding larger networks with all-to-all connectivity. Stable syn-
chrony in pairs of coupled neurons is a good indicator for stable synchrony in larger
networks, and bistability often predicts the emergence of cluster states (Fig. 23.2b).
Application of a detailed Hodgkin-Huxley neuron model as an alternative to the
(computationally much simpler) aEIF model led to the same conclusions [81].

In the context of neuromodulation by ACh, it has been shown in vitro that the
PRC of a cortical pyramidal neuron can be changed from type II to type I and its
skew can be decreased by ACh agonist carbachol [61]. This experimental result is
consistent with the computational results above and indicates that ACh may have a
desynchronizing effect on excitatory neurons by reducing their adaptation currents
(cf. Fig. 23.1a).

Master stability function method

To summarize the MSF technique for analyzing network synchrony we consider
again the model (23.6). Assuming constant row sum ḡ = ∑

j Gi j of the cou-
pling matrix G, in the synchronized state every neuron evolves according to the
equation dx/dt = f (x) + ḡh(x, xd). We denote this solution by xs . To assess
the stability of the synchronous solution we linearize (23.6) around xi = xs to
obtain the (mN -dimensional) variational equation for the evolution of the devia-
tions ξ := (ξ 1, . . . , ξ N )T from the synchronous solution along its smooth intervals,

dξ

dt
= [

I N ⊗ (
Dx f (xs) + ḡDxh(xs, xs,d)

)]
ξ + [

G ⊗ Dxd h(xs, xs,d)
]
ξ
d
,

(23.9)
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(a) (b)

(c) (d)

Fig. 23.2 Effects of adaptation currents on spike synchronization and locking in small neuronal
networks. a Phase response curve of an aEIF neuron (top) and phase-locked states for pairs of
weakly coupled excitatory (E , middle) and inhibitory (I, bottom) neurons (i.e., stationary solutions
of (23.8)), with different strengths of subthreshold (left) and spike-dependent (right) adaptation cur-
rents.ϕ = 0, T andϕ = T/2 correspond to synchrony and anti-phase locking, respectively.Adapted
from [81]. b Dynamics of simulated networks of N = 100 all-to-all coupled aEIF neurons [81].
Colored icons indicate the type and strength of adaptation current and the type of coupling (exci-
tatory or inhibitory). c Radius ρ of the coupling matrix eigenvalue bulk spectrum for random (top)
and distance-dependent Mexican hat (bottom) connectivity. Lines of equal radius ρ = 1 are shown.
Adapted from [82]. d Master stability functions for weak (top) and strong (bottom) subthreshold
adaptation, and for excitation-dominated (left), balanced (center), and inhibition-dominated (right)
synaptic interaction. Circles indicate the unit disk where stability is predicted for a wide range of
different coupling matrices (cf. c). Adapted from [82]
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where ⊗ denotes the Kronecker product, I N the N -dimensional identity matrix and
D y := ∂/∂ y. At the nonsmooth locations (i.e., discontinuities and kinks) of xs (23.9)
is complemented by appropriate linear transition conditions, which are derived via
Taylor expansion of (23.6) around xs in the neighborhood of those locations (see [82]
for details). Block-diagonalization of the combined variational system then leads to

dζ

dt
= (

Dx f (xs) + ḡDxh(xs, xs,d)
)
ζ + γ Dxd h(xs, xs,d)ζ d , (23.10)

together with linearly transformed transition conditions [82]. ζ := (
zT ⊗ Im

)
ξ ,

where z is the normalized eigenvector of G that corresponds to the eigenvalue γ .
The transformed variational equation thus separately describes the evolution of devi-
ations from synchrony in the longitudinal direction3 (for γ = ḡ) and the transverse
directions (for the other N − 1 eigenvalues of G). The MSF is defined by the largest
Lyapunov exponent for the solution ζ = 0 of that system as a function of arbitrary
γ ∈ C. It provides general information about the stability of the synchronous state
for many different coupling matrices at once. To assess the stability for a particular
matrix G one needs to determine whether or not all of its eigenvalues are contained in
the region of stability as indicated by the MSF. One eigenvalue of G is always equal
to ḡ. The other eigenvalues (bulk spectrum) are confined by a circle whose radius
ρ may be determined analytically, for example, in case of random connectivity [93,
94], and otherwise numerically (see Fig. 23.2c).

Using this method it has been shown [82] that a subthreshold voltage-driven adap-
tation current stabilizes or destabilizes synchrony in a homogeneous population of
coupled aEIF neurons, depending on whether the recurrent excitatory (ḡ > 0) or
inhibitory (ḡ < 0) synaptic couplings dominate (Fig. 23.2d). This is consistent with
the behavior of neuronal pairs and generalizes that result for larger networks. Syn-
chrony was found to be unstable for homogeneous networks with balanced recurrent
synaptic inputs, that is, where excitatory and inhibitory synaptic inputs cancel each
other (ḡ = 0). These synchronization properties are similar for networks with quali-
tatively different patterns of connections, including random and spatially structured
connectivity, as long as the synaptic couplings are not too strong (cf. Fig. 23.2c).
By generalizing the MSF method to more heterogeneous networks of excitatory and
inhibitory subpopulations with distinct dynamical properties it was further found that
adaptation currents provide a mechanism to control the stability of different cluster
states, independent of a particular connection pattern [82].

3The direction of the flow along the synchronous solution.
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23.4.4 Large Networks: Effects on Asynchronous States
and Sparse Synchronization

Finally,we are interested in the collective dynamics of large networks that consist of at
least several thousands of neurons, whose spike times and the temporal relationships
between them are subject to variability because of fluctuations in the synaptic inputs.4

For example, pyramidal neurons have been shown to exhibit highly irregular spiking,
even during overall oscillatory network activity (see [1] for a comprehensive review).
In this case, the network dynamics is often described by an instantaneous spike
rate which quantifies the time-varying mean spiking activity across the population.5

Oscillations of the spike rate then correspond to a rhythmicmodulation of the spiking
probability within the population, that is, individual neurons do not participate in
every cycle and their spike times are stochastic, as frequently observed [1]. This type
of network behavior reflects so-called sparse synchronization in contrast to precise
spike-to-spike synchrony as covered in Sect. 23.4.3.

To effectively study how adaptation currents shape asynchronous states and sparse
synchronization mean-field methods based on the Fokker-Planck equation have
recently been extended to networks of aEIF neurons [83, 96] (based on [26, 97,
98]). This approach allows for convenient analyses of network states while hav-
ing the properties of single neurons retained by the variables and parameters of
the aEIF model. In [83] a large network consisting of two aEIF populations, one
excitatory and one inhibitory, was considered. The neurons were sparsely and ran-
domly connected, and exposed to fluctuating inputs. Synaptic delays and connec-
tion probabilities were chosen to describe a (generic) local cortical network.6 From
this high-dimensional stochastic network description (multiple thousands of coupled
aEIF neurons) a mean-field model can be derived using the Fokker-Planck equation,
given by a compact system of coupled partial and ordinary differential equations of
the form (23.5) (for each population). Here, the synaptic coupling model involving
conductance-based membrane voltage jumps (cf. Sect. 23.4.1) self-consistently car-
ries over into the moments μ = μ(V, rEd , rId ) and σ = σ(V, rEd , rId ) of the input,
both of which depend on the membrane voltage V and the delayed population spike
rates rEd , r

I
d obtained as rd(t) := pd ∗ r(t) for a given delay distribution pd . Approx-

imating presynaptic spike times by Poisson processes (see, e.g., [26]) these moments
can be expressed in a straightforward way (see [83] for details). The derived system

4Synaptic noise is the by far largest-amplitude noise source in neurons of the central nervous system
[49].
5The dynamics of population-averaged activity measures of this kind relate to those of experimen-
tally widely applied neuronal mass signals (such as local field potentials or electroencephalograms
[95]) and are thus of major interest.
6Electrophysiological recordings from neuronal pairs have shown that the connection probability in
cortical networks is often very low (see, e.g., [99]). Randomconnectivity is a simplifying assumption
that implies negligible noise correlations as measured in vivo [100]. This is exploited in the mean-
field reduction below.
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allows for an efficient numerical calculation of the network activity in time and thus
enables exhaustive explorations of the parameter space.

Using this approach it has been shown [83] that spike-driven adaptation currents
together with sufficiently strong recurrent excitatory inputs provide a mechanism to
generate slow oscillations (α frequency range and below), see Fig. 23.3a–c. Faster
rhythmic activity (β frequency range and above) can be mediated by a feedback loop
that involves recurrent excitatory and inhibitory inputs with distinct delay times.
Oscillation frequencies increase with the strengths of inhibition and external drive,
and adaptation currents (of either type) play a facilitating role in stabilizing these
spike rate rhythms (see Fig. 23.3d). In parameter regimes for which the population
spike rates are constant (asynchronous state), networks with dominant inhibition
show strong resonances when oscillating external inputs are considered. Increased
adaptation currents mediate resonance behavior also for networks with stronger
excitation by producing amplified population activity within a narrow frequency
band [83], in consistency with the resonance effects shown for single neurons (cf.
Sect. 23.4.2).

Neuronal adaptation currents have also been found to enable bistability of low and
high activity asynchronous states aswell as asynchronous andoscillatory states, using
Fokker-Planck based mean-field approaches for coupled integrate-and-fire neurons
equipped with (only) spike-driven adaptation [101] and for aEIF neurons (Sect. 4.2
of [96]). In these studies, low-dimensional systems of ordinary differential equa-
tions describing the collective dynamics were derived from the network models and
analyzed.

Differential effects of the two types of adaptation currents on network dynamics
have further been observed in the context of self-sustained activity, that is, in the
absence of external driving inputs (Iext → 0). Using numerical simulations it was
found that increasing the proportion of neuronswith subthreshold adaptation currents
promotes self-sustained asynchronous states whereas spike-dependent adaptation
can effectively silence the network [102].

To examine the intrinsic controllability of oscillatory and asynchronous net-
work states through ACh-based neuromodulation two experimental findings can
be exploited: (i) the distinct effect of the neuromodulator ACh on subthreshold
and spike-dependent adaptation (cf. Sect. 23.3 and Fig. 23.1a) and (ii) the existence
of synaptic (long range) connections from sensory cortices via prefrontal cortex
to populations of cholinergic neurons in the basal forebrain which project (back)
to the sensory area, implementing a modality-specific closed circuitry [58, 103,
104]. These physiological evidences can be translated into a closed-loop control sys-
tem, where the network activity affects the local ACh concentration, which in turn
changes the neuronal adaptation current strength, thereby regulating the network
dynamics (Fig. 23.3e). Preliminary results from this dynamical system, using a low-
dimensional mean-field model derived from a large aEIF network (cf. Sect. 4.2 of
[96]), show, that the hypothesized control mechanism can indeed be used to stabilize
and switch between a variety of asynchronous and oscillatory states (see Fig. 23.3f).



23 Intrinsic Control Mechanisms of Neuronal Network Dynamics 457

(a)

(d)

(e) (f)

(b) (c)

Fig. 23.3 Effects of adaptation currents on asynchronous states and spike rate oscillations in large
networks of excitatory (E) and inhibitory (I) aEIF neurons subject to fluctuating inputs. a Stable
constant spike rate (solid) indicating asynchronous states (ASYN) and min./max. of oscillating
spike rate (dashed, OSC) together with the corresponding frequency. Results from the Fokker-
Planck mean-field model [83]. b Time series of relevant model variables for the parametrization
indicated in a. Overlayed are the spike times of individual neurons from a complementary numerical
simulation of the original aEIF network (N = 5 × 104) [83]. c Schematic diagrams visualizing
two oscillation mechanisms, based on synaptic excitation and spike-driven adaptation (top), and
E-I synaptic interaction (bottom). d Frequency of stable spike rate oscillations for networks with
and without adaptation currents, different strengths of synaptic inhibition and inhibitory delay dis-
tributions (green) [83]. e Closed-loop control circuit that involves local acetylcholine concentration
[ACh] =: z described by τz dz/dt = −z + czrE (t − dz) with timescale τz , coupling parameter cz
and time delay dz . “on” condition: Adaptation parameters (a and b) are adjusted according to the
indicated sensitivity curves (cf. Fig. 23.1a). “off” condition: values of a and b remain constant. f
Examples of switching between stable oscillatory (sparsely synchronized) and asynchronous net-
work states via the control loop in e. Oscillation mechanisms are based on recurrent excitation and
spike-driven adaptation (top), recurrent inhibition (middle), and recurrent E-I interplay (bottom)

23.5 Conclusion

Control mechanisms employed by the brain to (de)stabilize neuronal network states
include feedback of neuronal spiking activity, changes of synaptic coupling strengths,
and changes of the dynamical properties of neurons. Here, we reviewed experimen-
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tal and theoretical results on the control potential of each of these mechanisms,
covering the latter in more detail. We focused on the role of neuronal adaptation
currents in shaping the collective dynamics and the implications for neuromodula-
tory (acetylcholine-based) control at different spatial levels. Using an experimentally
validated compact model of single neuron activity across these levels and different
suitable methods (mean-field, phase reduction, master stability functions) outlined
above, it could be shown that neuromodulatory regulation of neuronal adaptation
(microscopic property) allows to switch between biologically relevant synchronized
and asynchronous network states (macroscopic dynamics) by changing the neuronal
spiking characteristics in particular ways. This contribution further demonstrated the
benefits of bottom-up modeling and analyses in contributing to our understanding of
neuronal dynamics across different scales.
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Chapter 24
Evolutionary Dynamics: How Payoffs
and Global Feedback Control the Stability

Jens Christian Claussen

Abstract Biological as well as socio-economic populations can exhibit oscillatory
dynamics. In the simplest case this can be described by oscillations around a neu-
tral fixed point as in the classical Lotka-Volterra system. In reality, populations are
always finite, which can be discussed in a general framework of a finite-size expan-
sion which allows to derive stochastic differential equations of Fokker-Planck type
as macroscopic evolutionary dynamics. Important applications of this concept are
economic cycles for “cooperate—defect—tit for tat” strategies, mating behavior of
lizards, and bacterial population dynamicswhich can all be described by cyclic games
of rock-scissors-paper dynamics. Here one can study explicitly how the stability of
coexistence is controlled by payoffs, the specific behavioralmodel and the population
size. Finally, in socio-economic systems one is often interested in the stabilization
of coexistence solutions to sustain diversity in an ecosystem or society. Utilizing
a diversity measure as dynamical observable, a feedback into the payoff matrix is
discussed which stabilizes the steady state of coexistence.

24.1 Game Theory and Evolutionary Dynamics

The roots of game theory [1] date back to the 2nd worldwar’s need to predict strategic
operations between nations. Albeit game theory opened an own ‘economic’ approach
to behavioral decision theory, its essential remains limited to the static analysis of
fixed points, especially of the type of Nash equilibria [2]. Dynamics was invoked
by John Maynard Smith’s genious transfer of these ideas to biology: he discretized
biological behavioral strategies by a finite set of formal strategies [3]. The strategies,
e.g. hawk and dove refer to biological metaphors which are based on qualitative
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observations of outcomes when hawks meet doves, or when hawks and doves meet
among each other, respectively. In biology, fitness is defined via the reproductive
success and, in principle, fitness is a quantity accessible to experiments. In prac-
tice, fitness values are usually estimated or assigned by hand, including plausible
parameters like costs and benefits. Subsequently one analyzes the parameter space
depending on those parameters to identify stability regimes and bifurcations.

In [3], John Maynard Smith also introduced a dynamical perspective into game
theory, borrowed from the motivating analogy of biological evolution. The standard
ansatz of evolutionary game theory henceforth assigns to each payoff matrix A =
(akl) of payoffs (of strategy k, when played against opponent l), a time-evolution
dynamics (for the densities of strategies xk)

d

dt
xk = xk(πk − 〈π〉) (24.1)

=
∑

l

xk xl(πk − πl) (24.2)

usually known as the replicator dynamics [4]. Here πk := ∑
l akl xl denotes the

payoff received by strategy k, and 〈π〉 = ∑
l πl xl is the average payoff obtained in

the population which, together with the normalization
∑

k xk = 1, allows to rewrite
(24.1) in the form of (24.2).

The replicator equation in its payoff difference form (24.2) can be interpreted
as a ‘chemical’ reaction kinetics where (molecular) species k and l meet at rates
proportional to each of their densities (mass action kinetics) and react (i.e. change
strategy) at a rate modulated by the payoffs of the game. The rationale is that high
payoffs (compared to the opponent’s) lead to increased reproduction rate, or, in
social systems, incentive to change strategy. We should note that, as the payoffs
depend on the actual densities xk , the replicator equations of an evolutionary game
are inherently nonlinear in the systems variables. For illustration, let us consider the
snowdrift game: Two persons in a car get stuck in a snowdrift. Either one (at full cost
c) or both (at shared cost c/2) can decide to cooperate and shovel, or defect and stay
in the car. If at least one of them shovels, they receive the benefit b of escaping the
snowdrift. This is equivalent to the payoff matrix [4]

ASD =
(
b − c/2 b − c

b 0

)

which has the replicator equation for (x1, x2)

ẋ1 = x1 [x1((b − c/2)x1 − (b − c)x2) − x2(bx1 + 0 · x2)]

where the second equation for x2 is obtained analogously, but provides only redundant
information as we assume both strategies to be normalized, i.e. x2 = 1 − x1, hence
the system is one-dimensional but nonlinear in x1,
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ẋ1 = x1 [x1((b − c/2)x1 − (b − c)(1 − x1)) − bx1(1 − x1)]

and exhibits an internal attracting fixed point for suitable parameters [4].
While being the standard approach in evolutionary game theory through three

decades, the replicator equation relies on a continuum approximation for the popula-
tion densities, i.e., the assumption of an infinite number of individuals in the popula-
tion. Alternative replicator equations have been proposed as the adjusted replicator
equation [4] albeit its justification remained unclear.

As the ‘reproductive’ and ‘social’ strategy updates suggest, changes of strate-
gies should be considered to follow different microscopic mechanisms and con-
sequently different models should be adopted. Intuitively, the analogy of thermo-
dynamics derived from statistical physics suggested that macroscopic equations of
evolutionary dynamics should not depend on fine details of the microscopic inter-
actions of single actions. This viewpoint however neglected that not all microscopic
update rules belong to the same universality class in macroscopic dynamics, which
will be detailed in the next section.

24.2 Evolutionary Dynamics in Finite Populations

In a finite population of N individuals, population densities xk have to be replaced
by discrete abundances and the dynamics then is defined by a Markov process on
N + 1 possible states i ∈ {0, 1, . . . N } and all densities take the form x = i/N . In
the remainder i thus acts as an index of the Markov states, and at the same time is
the dynamical variable of the discrete population.

Among the interaction processes that have been recently introduced are the
frequency-dependent Moran process [5–7] that generalizes the Moran process [8]
for overlapping generations. In this process, the population size N is kept constant
(fixed) restricting to a process where birth and death occur in the same time point, and
precisely, reproduction is proportional to fitness (calculated from the payoff) normal-
ized to the average fitness in the population; finally a randomly selected individual
is removed by death (Fig. 24.1).

R R R P S

SR R P PR

Fig. 24.1 In the frequency-dependent Moran process, the reproduction probability is proportional
to each individual payoff, normalized by the average payoff in the population. In the same time step,
one randomly selected individual is removed. Here three strategies, rock (R), paper (P), and scissors
(S) are shown, and as paper wraps rock, paper receives a high payoff from winning against three
players playing R, and losing against one player S (scissors cut paper). As rock crushes scissors, the
S player accumulates the lowest payoff (here, the different fitness values are indicated by different
lengths of the boxes)
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P P

R P

R P

Fig. 24.2 In the pairwise comparison process (Local update) two individuals compete. One focal
individual is chosen and its fitness is compared to a second individual. The individual switches strat-
egy with probability larger than 1/2 if the other individual receives a higher payoff. The illustrated
population is the same as in Fig. 24.1, with the same payoffs determined by the game

In the frequency-dependentMoran process, the normalization by the average pay-
off requires global information about received payoff values in the whole population.
Inmost biological systems, such informationwill not be available and it ismore realis-
tic to assume that individuals compete pairwise. Such processes are called pairwise
comparison processes, and their most basic implementation is the linear pairwise
comparison process (or Local Update [9], see Fig. 24.2). The transition probabilities
are displayed in Table24.1.

24.3 From Microscopic Interactions to Macroscopic
Processes

In a finite population, strategies as well as abundances are discrete, thus the time
evolution is defined by a Markov process. The transition rates between the states
depend on the game payoffs and the actual abundances. For instance, if the game
consists of two strategies, A and B, the transition probabilites are given by the left
column in Table24.1. The transition rates for, e.g., the Local Update process for a
change from state i to state i ± 1 are

T±(i) =
(
1

2
± w

2

π A(x) − π B(x)

Δπmax

)
i

N

N − i

N
(24.3)

where i now is the number of agents in strategy A, and due to normalization to
constant population size N the number of agents in strategy B is N − i . Here w is
a parameter that accounts for the strength of selection; in social systems w can be
large (up to 1), whereas the weak selection limit w → 0 is usually considered in
biological evolution; fitness differences are usually small and effects observable after
many generations. If one identifieswwith an inverse temperature, and (−1)× fitness
is interpreted as an energy, the transition rates of the Fermi process corresponds
to Boltzmann factors. In this picture, the (biological) weak selection limit is a high-
temperature limit, and low temperature ranges are used tomodel behavioral decisions.
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Table 24.1 Microscopic processes with their transition probabilities for an agent to change from
strategy B to strategy A, and the corresponding deterministic equations that are obtained in the limit
of large populations N → ∞
Microscopic process Deterministic equation

Moran process pB→A = 1−w+wπ A(i)
1−w+w〈π(i)〉 Adjusted replicator equation

ẋ = x(1 − x) 1−w+wπ A(x)
1−w
w +w〈π(x)〉

Local update pB→A = 1
2 + w

2
π A(i)−π B (i)

Δπmax
(Ordinary) replicator equation
ẋ = w

Δπmax
x(1 − x)(π A(x) − π B(x))

Fermi process pB→A = 1
1+e−w(π A (i)−πB (i))

(A nonlinear) replicator equation
ẋ = x(1 − x) tanh(w(π A(x) − π B(x)))

HereΔπmax is themaximal payoff difference andw denotes the strength of selection. In Sects. 24.4.1
and 24.7we investigate specifically the ordinary replicator equation and in Sect. 24.8 the correspond-
ing Local Update process. For the other processes, the respective replicator equations have to be
considered [9, 10]

For three or more strategies, there are accordingly more transitions between the
strategies, for the RPS game one has T RS , the backward rate and all cyclic per-
mutations, i.e., 6 transitions [11]. These transition rates then can be inserted into a
Master equation for the probabibility density. While the Master equation often is not
solvable analytically, for large populations one can proceed via the Kramers-Moyal
expansion to the Fokker-Planck equation for the probability densities for the relative
abundances x := i/N . In general, one obtains a noise term (the second order term)
that scales with 1/

√
N thus vanishes for N → ∞, and a deterministic term contain-

ing a(x) = T+(x) − T−(x) that is also found in the corresponding (Itô) Langevin
equation ẋ = a(x)+b(x)ξ (see [9, 11] for a more elaborate derivation). This general
scheme can be applied to various microscopic processes, e.g. the Fermi process also
listed in Table24.1 which leads to a nonlinear replicator equation [10] in the limit
N → ∞.

24.4 Rock-paper-scissors Game and Non Zero-Sum Payoffs

This classical game, also known as yanken in Japan, and under numerous other names
worldwide, is comprised of three cyclically outbeating strategies R → P → S → R,
where the payoffs in direction of the arrows are higher (+1) than in counterdirection
(−s),

A =
⎛

⎝
0 −s 1
1 0 −s

−s 1 0

⎞

⎠ (24.4)

where the row and column entries refer to the strategies R (rock), P (paper) and S
(scissors), respectively. Such cyclic games appear in various contexts, including an
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economic cyclic dilemma between strategies cooperate, defect, and Tit-for-Tat [12].
Here the strategies ‘cooperate’ (C) and ‘defect’ (D) follow the Prisoner’s Dilemma

with the payoff matrix

(
3 0
5 1

)
, and a memory-one strategy Tit-for-Tat (TFT) is intro-

duced playing C in the first round, and subsequently imitating the other’s strategy. If
played iteratively, these strategies can be shown to outcompete each other cyclically
[12].

In the rock-paper-sciccors game, the standard setting of the game s = 1 is a
zero-sum game (i.e., alk = −akl) referring to the rule that the losing player passes
one coin (of value 1) to the winner. However, in most realistic situations benefits
and costs for both players need not sum up to zero (similar as in the Prisoner’s
Dilemma). E.g., for mating lizards [13, 14] the experimentally observed fitnesses
indicate payoffs corresponding to that the bank loses with the game. In well-mixed
populations of different strains of colicin-producing bacteria [15, 16] the metabolic
costs of establishing resistance mechanism and poison production lead, in sum, to a
payoff loss by the bacteria, corresponding to the game situation that ‘the bank wins’.
The parameter s accounts for this important distinction. In [11], it has been shown
that in the ‘bank loses’ case there is always a reversal of stochastic stability, i.e.,
for every s > 1 there is a critical population size Nc above which the coexistence
fixed point is metastable, i.e. extinction of one (or more) strategies is observed only
through extensively long transients.

It should be pointed out that here we fully neglect the influence of spatial domain,
which in ecology, especially for territorial species, is well known to account for
niches. The joint effect of finiteness of the population and spatial structure of the
population has beautifully been elucidated by Csaran, Hoekstra and Paigie [17]. In
general, species or agent interactions can follow complex networks of connectivities,
see [18, 19] for recent reviews into this eleborate field.

24.4.1 The Replicator Equations for Non Zero-Sum RPS

Let x, y, z again denote the relative densities of the three strategies R, P, S. Then we
observe the payoffs

πR = z − sy

πP = x − sz

πS = y − sx

and the average payoff is given by 〈π〉 = (1 − s)(xy + xz + yz). Utilizing the
normalization z = 1 − x − y we arrive at the replicator equations
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d

dt
x = x [1 − x − y − sy − (1 − s)(xy + (x + y)(1 − x − y))]

d

dt
y = y [x − s(1 − x − y) − (1 − s)(xy + (x + y)(1 − x − y))] (24.5)

Besides three fixed points at the borders, which correspond to states where two
species are extinct, there is an interior fixed point x = y = 1/3 at the intersection of
the nullclines.

24.5 Observables for (bio)diversity

It is widely assumed in global ecological contexts that holding up a high state of
diversity is a primary or essential goal for sustainability of the biosphere. In ecological
context, spatial abundances are often cast into spatial diversity measures. However,
detailed spatial information is often lacking. In genetic contexts, genetic diversity is
assumed to be highly beneficial for the adaptability of an evolving system [20] but it
remains nontrivial how much diversity in fact is needed, as for pure adaptability the
(exponentially increasing) number of combinatorial possibilities even of quite short
genomes would offer sufficient optimization spaces. On the population ecology level
with a large number of species the role of biodiversity is likewise unclear, but even
more, it is ambiguous how one should define, quantify or observe diversity. A naive
(and even most unbiased) definition is to let only the number of species account for
the diversity, i.e. populations with largest number of abundant species are classified
as of highest diversity.

In contrary to statistical physics, where the scaling of variables is either intensive
(independent of system size, as temperature), or extensive (scaling linearly with
systems size, as energy or mass or volume), here it is apparent that it is not a priori
clear how the complexity (or biodiversity index) of a population should scale with (or
depend on) the chosen phylogenetic level (i.e. the taxonomic scale of coarse-graining
biological species).

Leaving this general question unsolved, in light of this discussion we now define
the population diversity observable for a three-species ecosystem as

H = 27 · x · y · (1 − x − y) (24.6)

which is a normalized variant of what has been used in other context as a conserved
quantity for evolutionary game dynamics characterized by a cyclically symmetric
zero-sum game [11].

This definition may be difficult to generalize in a large ecosystem, but is sufficient
in our context to provide a conceptual minimal model of feedback of the diversity
state into the dynamics.



468 J.C. Claussen

24.6 Introduction of a Feedback Term

In our definition (24.6), H = 1 refers to the equi-abundant case whereas decreasing
H refers to getting closer to extinction, inwhich case H = 0 is reached.Consequently
H can be utilized as a feedback variable to influence the payoffs in the game. In the
eco-econo context such may be interpreted as a tax that is raised if there is a loss of
biodiversity observed. In our case, we define the feedback

s(t) = s0 + ε · (1 − H(t)). (24.7)

= s0 + ε · (1 − 27 · x(t) · y(t) · (1 − x(t) − y(t))). (24.8)

In an iterated dynamics, the observed state would be of delayed knowledge, i.e.
H(t −1) but a delay can be taken into account even in the time-continuous case. The
term (1 − H(t)) vanishes in the “biodiversity fixed point”, thus the control scheme
Eq. (24.8) implements a noninvasive control, and ε depicts the strength of control (or
feedback). Similar feedback schemes have been introduced and investigated widely
to study the stabilization of fixed points and unstable periodic orbits embedded in
chaotic attractors [21, 22].

24.7 Replicator Equations Including Control

The feedback term defined by (24.8) modifies the actual payoff parameter s in the
replicator equations (24.5). Again, we utilize that the normalization of the popula-
tion renders the dynamics within a two-dimensional simplex. Hence the replicator
equations for the RPS game with applied control read explicitely

d

dt
x = x(1 − x − y − (xy + (x + y)(1 − x − y)))

+ [s0 + ε(1 − 27xy(1 − x − y))]

× x((xy + (x + y)(1 − x − y)) − y)

d

dt
y = y(x − (xy + (x + y)(1 − x − y)))

+ [s0 + ε(1 − 27xy(1 − x − y))]

× y((xy + (x + y)(1 − x − y)) − (1 − x − y)) (24.9)

As the fixed points of (24.5) are independent on s, they are also fixed points of (24.9),
and the biodiversity fixed point x = y = 1/3 (which is neutrally stable for s0 = 1
and ε = 0) is stabilized when control is switched on (ε > 0).

We note that this replicator equation dynamics is valid only in the limit of an
infinite population size. In a finite population of N individuals however, even the
s0 = 1 case of conservative oscillations, becomes stochastic which includes the risk
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of extinction of one or more species when trajectories approach the boundaries. The
next section verifies that the control scheme is applicable in a finite population.

24.8 Numerical Investigation of the RPS Process Under
Feedback Control

Finally we illustrate that the feedback control scheme is able to stabilize the biodi-
versity fixed point not only in the limit of infinite populations, but also in a finite
population.

Herewe have to specify amicroscopic process, and aswe analyzed beforehand the
classical replicator equation, it is natural to consider an interaction process belonging
to its universality class. In the Local Update, or pairwise comparison process, pairs
of agents are selected at random and an agent playing B adopts the strategy of an
agent playing A with the probability [9]

pB→A = 1

2
+ w

πA − πB

2Δπmax
. (24.10)

Here, Δπmax is the maximal payoff difference that can occur between two agents.
This is necessary here to keep probabilities within the interval [0, 1]. In our case,
the control may lead to temporal change of the possible maximal payoff difference,
depending on s0 and ε.

Figure 24.3 displays a typical simulation of the stochastic process defined by the
Local Update (24.10) where the payoff s follows the feedback rule (24.8). The initial
condition has been chosen far away from the biodiversity fixed point (=low biodi-
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Fig. 24.3 RPS dynamics in a population of N = 2000 agents, w = 0.9, s0 = 1.0. At time
t = 200, 000, control ε = 10 is switched on to stabilize coexistence. Left panel Time series of
densities of R (black/red) and P (blue/green). The orange bar indicates the time when control is
switched on. Right panel Phase plot (R, P) where the trajectory (same data) firstly is plotted in
black, and thereafter in red after control was switched on
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versity). Before control is switched on, trajectories stay close to a neutral oscillation
at large amplitudes. After control is switched on, trajectories are attracted towards
the biodiversity fixed point and perform low amplitude stochastic oscillations around
the fixed point.

24.9 Conclusions and Outlook

Evolutionary dynamics based on game-theoretical models can be formulated in a
wide range of contexts from microbe biology to social and economic strategic deci-
sion behavior. The resulting models provide qualitative insight into the phase dia-
gram, and a rich variety of dynamical phenomena as fixed points, cycles and chaos
can be observed. Herewe have investigated, how the observation of an abstract global
population state (specifically, a diversity measure) can be used for a feedback term
to stabilize the coexistence of strategies, which would be stochastically fragile due
to demographic fluctuations naturally occuring in finite populations. While here we
have considered one of the most simple cases of stabilization of a biodiversity (or
coexistence) fixed point, there is significant potential to transfer the ideas of control
of chaos and oscillations to relevant biological and socio-economic models.
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