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  Introd uction   

 Systematic research on problem solving in mathematics can be seen to have begun 
over 70 years ago with the work of George Pólya, whose most famous publication 
was likely the book  How to Solve It  (Pólya,  1945 ). Today there is a huge literature 
on mathematical problem solving that includes research studies, descriptions, sur-
veys, and analyses. Among the most infl uential publications have been (and still 
are) the book by Mason, Burton, and Stacey ( 1985 ); the book by Schoenfeld ( 1985 ); 
and the paper by Kilpatrick ( 1987 ). The Mason et al. ( 1985 ) book emphasizes the 
importance of creativity and highlights the many cul-de-sacs in problem solving as 
well as the importance of a solver’s persistence. The book by Schoenfeld ( 1985 ) is 
a well-known sourcebook. Younger researchers call it the “black book” of problem 
solving. Kilpatrick’s ( 1987 ) paper underlines the connection between problem solv-
ing and problem posing, giving special emphasis to problem formulation. These 
publications form part of the foundation on which this book rests. 

 The chapters in the book are based on presentations at the fi nal workshop of a 
comparative research project from 2010 to 2013 between the University of Chile 
and the University of Helsinki. The project, whose title was  On the Development of 
Pupils’ and Teachers’ Mathematical Understanding and Performance when Dealing 
with Open-Ended Problems , was initiated by Prof. Erkki Pehkonen (Helsinki) and 
Prof. Leonor Varas (Santiago). In 2009, the Chilean CONICYT (Comisión Nacional 
de Investigación Científi ca y Tecnológica) and the Finnish Academy opened a 
cooperative program in educational research. Profs. Pehkonen and Varas worked 
together on an application for a research grant whose leading idea was pupils’ 
development with open-ended problem solving. The project was funded and oper-
ated for 3 years. The fi nal workshop, an integral part of the joint research project, 
was originally designed as a forum to discuss the main results of the project. 

 However, with support from the Center for Advanced Research in Education 
(CIAE) and the Center for Mathematical Modeling (CMM), both at the University 
of Chile, a grant was obtained that enabled the workshop to be expanded well 
beyond the project participants. The grant supported the invitation of more than 20 
international specialists in the fi eld of mathematical problem solving to join the 
workshop. In the selection of additional participants, we tried to get a broad group 
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of specialists from different parts of the world. After the workshop, all presenters 
were offered an opportunity to contribute a chapter to the book, and almost all 
accepted the invitation. Each paper was blind reviewed by two people—in most 
cases an author of a different chapter, but in some cases an outside reviewer. 

 The program of the 4-day problem-solving workshop at the University of Chile 
(Santiago) in December 2013 was as follows:

 Tuesday 10  Wednesday 11  Thursday 12  Friday 13 
 9:00–9:45  Yan Ping Xin 

  United States  
 Leonor Varas 
  Chile  

 9:45–10:30  Peter Liljedahl 
  Canada  

 Salomé Martinez 
  Chile  

 Teachers’ 
workshop (CF) 

 11:00–11:45  Masami Isoda 
  Japan  

 Hähkiöniemi 
  Finland  

 Andras Ambrus 
  Hungary  

 Teachers’ 
workshop (CF) 

 11:45–13:00  Jeremy Kilpatrick 
  United States  

 Jinfa Cai 
  United States  

 John Mason 
  England  

 Markku Hannula 
and Liisa Näveri 
(CF) 
  Finland  

 15:00–15:45  Erkki Pehkonen 
  Finland  

 Torsten Fritzlar 
  Germany  

 Yew Hoong 
Leong 
  Singapore  

 Valentina Giaconi 
and María 
Victoria Martínez 
(CF) 
  Chile  

 15:45–16:30  José Carrillo 
  Spain  

 Susan Leung 
  Taiwan  

 Wim van Dooren 
  Belgium  

 Alejandro López 
and Paulina 
Araya (CF) 
  Chile  

 17:00–17:45  Rosa Leikin 
  Israel  

 Patricio Felmer 
  Chile  

 Markku Hannula 
  Finland  

 17:45–18:30  Bernd 
Zimmermann 
  Germany  

 Closing 
ceremony with 
music from “ Los 
Bosquinos Band ” 

   In the case of several authors, usually the fi rst one gave the presentation. 
 The book is divided into three parts: (I) Problem Posing and Solving Today; (II) 

Students, Problem Posing, and Problem Solving; and (III) Teachers, Problem 
Posing, and Problem Solving. 

 Part I begins with the summary of the role of mathematical textbooks in problem 
posing by Jinfa Cai et al. In the next paper José Carrillo and Jorge Cruz discuss the 
role of problem posing and solving. Affect is also an important factor in problem 
solving; this is dealt with by Valentina Giaconi et al. in the frame of Chilean ele-
mentary students. Nicolas Libedinsky and Jorge Soto Andrade examine the coop-
eration between affect and problem solving. Jeremy Kilpatrick opens a new aspect 
in problem solving, discussing problem solving and inquiry. The section is closed 
by Bernd Zimmermann who looks at the history of mathematics and reveals inter-
esting problems. The section review is given by John Mason. 

Introduction
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 Part II begins with Jinfa Cai’s and Frank Lester’s overview on problem-solving 
research results. Then András Ambrus and Krisztina Barczi-Veres consider the situ-
ation of problem solving in Hungary, especially from the viewpoint of average stu-
dents. Torsten Fritzlar explains the results of an exploratory problem implemented 
by him. The next paper is from Erkki Pehkonen et al. who describe a new data 
gathering method used in the Chile–Finland research project. Manuel Santos-Trigo 
and Luis Moreno-Armella have used technology in order to foster students’ experi-
ences in problem solving. In the chapter of Tine Degrande et al., the modeling 
aspects of problem solving are under focus. Yan Ping Xin deals with model-based 
problem solving. Here Masami Isoda has written the section review. 

 Part III begins with John Mason’s considerations where he examines the concept 
of problem from a new viewpoint. The paper of Patricio Felmer and Josefa Perdomo- 
Díaz discusses Chilean novice teacher in problem solving. Leong Yew Hoong et al. 
deal with problem solving in the Singaporean curriculum. Problem posing in the 
elementary school program is examined by Shuk-kwan S. Leung. Edward A. Silver 
discusses problem solving in teachers’ professional learning. Peter Liljedahl 
explains on the conditions of teaching problem solving. The section review is given 
by Kaye Stacey. 

 Finally we would like to thank a lot of peoples for their helping hands. Especially 
we are grateful for those anonymous reviewers who helped us to improve the chap-
ters in the book. But above all we thank Gladys Cavallone for her huge job in practi-
cally organizing the workshop at the university and her effi cient handling of the 
papers of the book.

Santiago, Chile Patricio Felmer 
Helsinki, Finland Erkki Pehkonen 
Athens, USA Jeremy Kilpatrick 
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      How Do Textbooks Incorporate Mathematical 
Problem Posing? An International 
Comparative Study                     

       Jinfa     Cai     ,     Chunlian     Jiang    ,     Stephen     Hwang    ,     Bikai     Nie    , and     Dianshun     Hu   

    Abstract     This study examines how standards-based mathematics textbooks used in 
China and the United States implement problem-posing tasks. We analyzed the prob-
lem-posing tasks in two US standards-based mathematics textbook series,  Everyday 
Mathematics  and  Investigations in Number ,  Data ,  and Space , and two Chinese stan-
dards-based mathematics textbook series, both titled  Shuxue  (Mathematics), published 
by People’s Education Press and Beijing Normal University. All four textbook series 
included a very small proportion of problem- posing tasks. Among the four series of 
textbooks, the majority of the problem- posing tasks were in the content strand of num-
ber and operations, with a few in other content strands. Signifi cant differences were 
found between the Chinese and US textbook series as well as between the two text-
book series used in each country. Implications for the inclusion of mathematical 
problem-posing tasks in elementary mathematics textbooks are discussed.  

  Keywords     Problem-posing tasks   •   Curriculum   •   Textbooks   •   Mathematics education 
reform   •   Comparative studies   •   China   •   United States  

   In recent years, interest in incorporating problem posing in  school mathematics 
instruction   has grown steadily among mathematics education researchers and prac-
titioners (Australian Education Council,  1991 ; Cai, Hwang, Jiang, & Silber,  2015 ; 
Singer, Ellerton, & Cai,  2013 ). Although historically, problem solving has been 
more central than problem posing in school mathematics and mathematics education 
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research, over the past several decades, curriculum reforms in many countries 
around the world have begun to raise the profi le of problem posing at different 
educational levels (e.g., van den Brink,  1987 ; Chinese Ministry of Education,  1986 , 
 2001a ,  2011 ; English,  1997 ; Hashimoto,  1987 ; Healy,  1993 ; Keil, 1964/ 1967 ; 
Kruteskii,  1976 ; National Council of Teachers of Mathematics [NCTM],  2000 ; 
National Governors Association Center for Best Practices & Council of Chief State 
School Offi cers [NGACBP & CCSSO],  2010 ). In part, this has been refl ective of a 
growing recognition that problem-posing activities can promote students’ concep-
tual understanding, foster their ability to reason and communicate mathematically, 
and capture their interest and curiosity (Cai et al.,  2015 ; NCTM,  1991 ). Because 
problem posing and problem solving are often interwoven activities (Silver,  1994 ) 
and success with one has been shown to be associated with success with the other 
(Cai & Hwang,  2002 ; Silver & Cai,  1996 ), it makes sense to consider how problem 
posing can be integrated as an effective part of mathematics instruction. 

 However, for problem posing to play a more central role in  mathematics class-
rooms  , teachers must have access to resources for problem-posing activities. In par-
ticular, mathematics curriculum materials should feature a good representation of 
problem-posing activities. Although supplemental materials can partially address 
the situation (e.g., Lu & Wang,  2006 ; Wang & Lu,  2000 ), it is important to have 
problem-posing activities in the  curriculum materials   that teachers regularly use, as 
curriculum can be a powerful agent for instructional change (Cai & Howson,  2013 ; 
Howson, Keitel, & Kilpatrick,  1981 ). Thus, the signifi cance of including productive 
and robust problem-posing activities in curriculum materials should not be 
overlooked. 

 Yet there is at present a lack of research that focuses on problem posing in the 
textbooks that students and teachers actually use, as opposed to the curriculum 
frameworks on which those textbooks are based. How has the inclusion of problem 
posing in curriculum frameworks played out in real textbooks? Given the variety of 
ways to engage students in one form or another of problem posing, how exactly do 
textbooks include problem posing? What kinds of choices have textbook writers 
and curriculum developers made in creating existing materials? In order to begin 
addressing these questions, this study took an international perspective to examine 
four mathematics textbook series, two of which are used in China and two of which 
are used in the United  States  . All four series are based on reform curriculum stan-
dards from their respective countries (Chinese Ministry of Education,  2001a ; 
NCTM,  2000 ) which include problem posing as an important element. 

 Both China and the United States have engaged in similar reforms regarding 
mathematics education, and problem posing has been explicitly  included   in the 
reform documents that have guided the reforms in each country. Moreover, the 
overall role of curriculum is quite similar in these two countries. It serves to deter-
mine what students are taught and, with respect to the design of textbooks, it con-
veys the ideas underlying the educational reforms. Thus, it seemed fruitful to 
conduct a comparative study between the textbooks of the two countries in order to 
provide an international perspective on the integration of problem posing into com-
monly used curriculum materials. Indeed, the fi eld has long been interested in  such 

J. Cai et al.
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  comparative studies between China and the United States, whether they address 
curriculum, classroom instruction, teacher education, or a myriad of other aspects 
of the educational system (Cai,  1995 ). This research lies squarely in this compara-
tive tradition, taking a curricular perspective to analyze problem posing. 

    Background 

     Mathematical Problem Posing and Student Learning   

 A primary goal of research in mathematics education, including problem posing, is 
to improve student learning. Researchers have noted the potential for problem pos-
ing to benefi t student learning, both in mathematics (English,  1998 ; Lavy & Shriki, 
 2010 ; Silver,  1994 ; Toluk-Uçar,  2009 ) and in other areas such as reading 
(Rosenshine, Meister, & Chapman,  1996 ). Problem-posing activities are often cog-
nitively demanding tasks (Cai & Hwang,  2002 ) that can require students to stretch 
their thinking beyond problem-solving procedures to improve their understanding 
by refl ecting on the deeper structure and goal of the task. As tasks with different 
cognitive demands are likely to induce different kinds of learning (Doyle,  1983 ), 
the high cognitive demand of problem-posing activities can provide intellectual 
contexts for students’ rich mathematical development. 

 In particular, because problem posing involves the generation of new problems 
and questions aimed at exploring a given situation as well  as   the reformulation of a 
problem during the process of solving it (Silver,  1994 ), encouraging students to 
generate problems is likely to foster both student understanding of problem situa-
tions and the development of more advanced problem-solving strategies. Indeed, 
using eight open-ended problem-solving tasks, Silver and Cai ( 1996 ) found a high 
correlation between students’ mathematical problem-solving performance and their 
problem-posing performance. More successful problem solvers were those who 
generated more, and more complex, problems. Similarly, Cai and Hwang ( 2002 , 
 2003 ) found links between  students’ strategy   use in problem solving and the types 
of problems students posed. Clearly, the relationships between problem posing and 
problem solving provide a rationale for recommendations to incorporate problem 
posing into school mathematics at different educational levels (Chinese Ministry of 
Education,  1986 ,  2001a ,  2003 ,  2011 ; NCTM,  2000 ).  

How Do Textbooks Incorporate Mathematical Problem Posing? An International…
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    Problem Posing, Mathematics Curricula, and Curriculum 
Reform 

 Given the potential positive impact of including problem-posing activities in the 
mathematics classroom, it is useful to consider how curriculum might support such 
activities.  Curriculum   has historically been seen as a powerful agent for instruc-
tional change in the face of changing societal demands on the education system (Cai 
& Howson,  2013 ; Howson et al.,  1981 ). For example, a number of countries includ-
ing China and the United  States   have been undertaking similar mathematics educa-
tion reforms. The overarching goals of the reforms have been to improve students’ 
learning of mathematics and to nurture students’ innovation and creativity (Chinese 
Ministry of Education,  2001b ; NCTM,  2000 ). In  the   United States, NCTM ( 2000 ) 
has placed a strong emphasis on students’ thinking, reasoning, and problem solving. 
It calls for students to “formulate interesting problems based on a wide variety of 
situations, both within and outside of mathematics” (NCTM,  2000 , p. 258). In 
China, students’ thinking and reasoning have also been emphasized in the mathe-
matics education reform. One of the six objectives of the new curriculum reform is 
for students to be actively involved in inquiry-based activities in order to develop 
their abilities to collect and process information, to attain new knowledge, to ana-
lyze and solve problems, and to communicate and cooperate (Chinese Ministry of 
Education,  2001b ). At the 9-year compulsory education stage, students are expected 
to learn how to pose problems from mathematical perspectives, how to understand 
problems, and how to apply their knowledge and skills to solve problems so as to 
increase their awareness of mathematical applications (Chinese Ministry of 
Education,  2001a ). The high school mathematics curriculum is intended to enhance 
students’ abilities to pose, analyze, and solve problems from mathematical perspec-
tives, to express and communicate mathematically, and to attain mathematical 
knowledge independently (Chinese Ministry of Education,  2003 ). An additional 
goal is for students to change their learning styles from passive to active through 
being engaged in problem posing and problem solving (Chinese Ministry of 
Education,  2001a ,  2003 ). 

 Yet if, as these  curriculum reform   documents advocate, problem-posing activi-
ties are to become a more central part of mathematics classrooms, there must be 
resources ready for problem-posing activities. Although teachers can take it upon 
themselves to transform the problems and tasks in their existing curriculum materi-
als into problem-posing tasks, it is reasonable to posit that having ready-made 
problem- posing resources available would facilitate teachers’ implementation of 
problem-posing activities in their classrooms. One approach is to provide such 
activities as supplementary materials. Lu and Wang ( 2006 ; Wang & Lu,  2000 ) 
launched a project on mathematical situations and problem posing. They developed 
supplementary teaching materials based on mathematical contexts and used them to 
enhance students’ problem-posing abilities. These  teaching materials   were not 
intended to replace textbooks; instead, they were used to supplement regular text-
book problems. Although helpful and potentially effective, it remains the case that 

J. Cai et al.
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teachers have easiest and most ready access to materials that are in their existing 
curriculum materials. Moreover, particularly in countries like China in which teach-
ers carefully study their textbooks to guide and improve their teaching (Cai & Nie, 
 2007 ), the inclusion of problem-posing resources in those textbooks should be par-
ticularly powerful infl uences on  classroom practice  . 

 How, then, is problem posing represented in the mathematics textbooks that 
teachers regularly use? Many current textbooks have been designed to implement 
reform curriculum standards. For example, the NSF-supported projects that devel-
oped reform mathematics curricula in the United States based on the  1989   NCTM 
Standards   produced materials that were markedly different from the traditional text-
books that had preceded them. Among other features, the reform textbook series 
included many more problems set in realistic contexts and more problems that could 
be solved using multiple strategies (Senk & Thompson,  2003 ). Similarly, Chinese 
textbook materials also evolved in response to reform guidelines in China. For 
example, the 2004 edition of the Chinese elementary mathematics textbook series 
published by the  People’s Education Press (PEP)   included a larger percentage of 
problem-posing tasks than the 1994 edition (Hu, Cai, & Nie,  2014 ). However, more 
generally it is not so clear where and how textbooks that have been designed to 
implement reform curriculum standards include problem-posing tasks. Are problem- 
posing tasks found broadly and systematically across the textbooks with respect to 
both mathematical content and grade level, or are they distributed unevenly across 
grade and content? To what extent do the textbooks embody the stances of the 
reform standards toward problem posing? If reform standards portray problem pos-
ing as a theme that should run throughout mathematics education, it is useful to 
examine the degree to which the actual textbooks exhibit this perspective. 

 Moreover, it is useful to consider whether the inclusion of problem-posing tasks 
in  reform-guided curriculum materials   refl ects a systematic approach to the devel-
opment of problem-posing abilities in students. For example, the inclusion of sam-
ple problems within problem-posing tasks may provide a window into the intent of 
textbook designers. In earlier versions of  Chinese mathematics textbooks  , problem 
posing was not included as a topic in its own right. Rather, problem posing was 
treated as an intermediate step in problem solving. Newer, reform-oriented revi-
sions of the textbooks have included problem posing as a learning goal. To that end, 
textbook designers have had to incorporate materials that can guide students through 
the process of posing problems. One way to do this is to include sample problems 
within problem-posing tasks for students to emulate. Thus, the degree to which 
problem-posing tasks in textbooks include sample problems can be an indicator of 
how intentional textbook designers were in building problem posing from the cur-
riculum standards. 

 Similarly, there are several  types   of problem-posing tasks that have been identifi ed 
in research on problem posing. Based on work by Stoyanova ( 1998 ) and Silver ( 1995 ), 
Christou, Mousoulides, Pittalis, Pitta-Pantazi, and Sriraman ( 2005 ) describe fi ve such 
types defi ned by the nature of the problem students are asked to pose: a problem in 
general (free situations), a problem with a given answer, a problem that contains 
certain information, questions for a problem situation, and a problem that fi ts a 

How Do Textbooks Incorporate Mathematical Problem Posing? An International…
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given calculation. In addition, different problem-posing tasks may present given 
information to students in several ways, including the use of visual and symbolic 
modes of representation that may or may not be infl uenced by and consonant with 
other design and pedagogical choices for a given textbook. Different types of tasks 
thus refl ect different qualities and priorities in problem-posing task design, such as 
the degree to which the task is constrained for the student (e.g., Stoyanova,  1998 ) 
or the role the task may play in relationship with problem solving (e.g., Silver,  1995 ). 
Therefore, the manner in which different types of problem-posing tasks are incorpo-
rated into textbooks can provide further information about the degree to which these 
materials systematically integrate problem posing from the curriculum standards and 
to which they aim to develop particular aspects of problem posing for students. 

 On the whole, further work is needed to understand whether and how problem 
posing is integrated into textbooks and the degree to which different ways of doing 
so is effective in achieving the goals of  curriculum reform  . Of course, even when 
problem posing is intentionally built into curriculum materials, it is still necessary 
to study how problem-posing tasks are implemented by teachers in actual class-
rooms. The work that teachers do in transforming written curriculum materials into 
live instruction depends on many other factors, including teachers’ knowledge and 
beliefs. Nevertheless, as yet there has not been a substantial body of research exam-
ining whether and how the curricula themselves incorporate problem posing 
(Cai et al.,  2015 ). This study is intended to address the gap between the knowledge 
about the incorporation of problem posing in curricula and textbooks. Specifi cally, 
we address the following research question: 

 How are different problem-posing tasks included in recent US and Chinese 
reform-oriented mathematics textbooks? 

 This study will provide researchers, curriculum developers, and textbook writers 
with rich information about how to incorporate problem posing into school 
mathematics.   

    Method 

     Materials   

 We examined two series of elementary mathematics textbooks used in China and 
two series used in the United States. Of the two Chinese textbook series, one was 
published by PEP, and the other was published by Beijing Normal University 
(BNU). Both curricula were developed based on the new mathematics curriculum 
standards (Chinese Ministry of Education,  2001a ). We chose two popular series for 
the textbooks used in the United States:  Everyday Mathematics , developed by the 
University of Chicago School Mathematics Project (UCSMP,  2012a ,  2012b ) and 
 Investigations in Number ,  Data ,  and Space  (hereafter shortened as  Investigations ), 
published by TERC, Cambridge, MA (TERC,  2008a ,  2008b ,  2008c ,  2008d ,  2008e , 
 2008f ). These two series are generally taken to be examples of  standards -based 

J. Cai et al.
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curricula (Riordan & Noyce,  2001 ; Senk & Thompson,  2003 ).    In all four cases, the 
textbooks represent the most widely adopted elementary mathematics curriculum 
materials in their respective countries.  

    Task Analysis 

 We fi rst checked every  task   in the four textbook series to identify those that were prob-
lem-posing tasks, including those cases where problem posing was included as a com-
ponent of a larger problem-solving task or activity. We then analyzed each problem-posing 
task in terms of its (a) grade level, (b) content area, (c) presentation of given information 
(e.g., with/without graphs, fi gures, tables, etc.) and whether there were sample questions 
that students could imitate, and (d) types of problem- posing tasks. 

 With respect to the types of problem-posing tasks, we classifi ed each problem- 
posing task according to what it required students to do, relative to the information 
provided in the task. These types were specifi ed based on a holistic analysis of the 
requirements in a problem-posing task. Special attention was paid to whether a 
problem poser needed to provide information as givens and whether there was a 
sample question that a problem poser could emulate to reproduce similar ones. 
Five types of problem-posing tasks were identifi ed. We describe these types below, 
roughly ordered from the problem-posing task types that are the most mathemati-
cally constrained to those that are least mathematically constrained:

    1.     Posing a problem that matches the given arithmetic operation ( s ). Students are 
asked to make up a story or a word problem that can be solved with a given arith-
metic operation. Tasks of this  type   provide the student with an explicit arithmetic 
operation, and the student is expected to provide a context and pose a problem that 
matches the operation. For example,  write a story problem for   65 35´    .    Then     solve 
the problem and show how you solved it  (TERC,  2008d , Unit 8, p. 29).   

   2.     Posing variations on a question with the same mathematical relationship or 
structure . Given a sample problem or problem situation (it is not necessary for 
the sample to include a question), students are asked to pose a similar problem 
complete with given information and question. The student can change the con-
text, the specifi c numbers, or even which quantity is the unknown quantity, but 
the fundamental mathematical relationship or structure must mirror the sample. 
For example,  if six people share three apples ,  each person will get ½ of an apple. 
Make up a problem about equal shares so that each person gets one fourth of 
something  (TERC,  2008c , Unit 7, p. 35).   

   3.     Posing additional questions based on the given information and a sample ques-
tion . Students are asked to pose additional problems after solving a given  problem 
with sample question(s). The additional problems are expected to involve the 
given information but are not required to mirror a particular mathematical 
relationship. Although students may choose to provide additional information, 
they may not change the given information. For example,  on weekends ,  a father 
and his son went climbing. The distance from the ground to the top of the mountain 
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is 7.2 km. It took them 3 h to climb up and 2 h to walk down. What are the speeds 
going up and going down ?  Can you pose additional mathematical questions  
(People’s Education Press,  2001 , 5a, p. 20)?   

   4.     Posing questions based on given information . Students are provided with a problem 
context and information but no sample problem. They are expected to generate 
questions based on the given information. For example,  four children  ( A ,  B ,  C , 
 and D )  are practicing Chinese typing. The following table shows their practice 
time every day and their records on a    test     where each of them could select an 
article to type. Based on the data source ,  please pose two questions and try to 
answer them  (Beijing Normal University Press,  2001 , 4a, p. 72).

 A  B  C  D 

 Practice time every day (in minutes)  20  30  35  60 
 Test records  Time (minutes)  12  19  18  13 

 No. of words typed  384  931  846  728 

       5.     Unconstrained problem - posing tasks . These tasks ask students to pose problems 
to show the application of mathematics in real life but otherwise do not provide 
given information or constraints on the structure of the problem. For example, 
 what mathematical problems could you fi nd in your life ?  Please write them 
down. Can you solve them ? (Beijing Normal University Press,  2001 , 1b, p. 98).     

 To establish interrater reliability for the coding of the problem-posing tasks, 
30 problem-posing tasks from Chinese textbooks and 26 problem-posing tasks from 
US textbooks were randomly selected and coded by two coders who are profi cient in 
both Chinese and English. For the Chinese textbooks, the two coders reached the fol-
lowing levels of agreement in each of the categories: (a) content area (100 %), (b) use 
of various representations for the given information (e.g., with/without graphs, fi g-
ures, tables, etc.) (92 %) and whether there were sample questions that students could 
imitate (89 %), and (c) types of problem-posing tasks (82 %). Similarly, for the US 
textbooks, the two coders reached the following levels of agreement in each of the 
categories: (a) content area (89 %), (b) use of various representations for the given 
information (e.g.,    with/without graphs, fi gures, tables, etc.) (88 %) and whether there 
were sample questions that students could imitate (81 %), and (c) types of problem-
posing tasks (77 %). The discrepancies were resolved through discussion.   

    Results 

    Number of Problem-Posing Tasks at Different  Grade Levels   

 The two Chinese textbook series and the US  Everyday Mathematics  series were 
written for children in grades 1–6. However, the  Everyday Mathematics  textbooks 
for children at grades 1 and 2 are combined. The US  Investigations  series was written 
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for children in grades 1–5. For each textbook series, the total number of tasks ( n ) 
and the percentage of those that were classifi ed as problem-posing tasks are shown 
in Table  1 .

   Overall, the percentages of problem-posing tasks were quite small for all four text-
book series. However, there were some differences across the series. The percentages 
of problem-posing tasks in the two Chinese textbook series were more than double 
those in the two US textbook series. The problem-posing tasks in the two Chinese 
textbook series made up similar percentages of the total numbers of tasks in those 
series, whereas the two US textbook series were signifi cantly different from each 
other in terms of percentage of problem-posing tasks. Specifi cally, a higher percent-
age of the tasks in the  Investigations  textbooks was problem-posing tasks compared 
with that in the  Everyday Mathematics  textbook series ( z  = 2.25,  p  < 0.05). 

 The percentages of problem-posing tasks were also very different across differ-
ent grade levels. No grade had the largest percentage of problem-   posing tasks across 
the four series, and indeed the percentage rose and fell from grade to grade within 
most of the series (although the grade-to-grade fl uctuations within  Everyday 
Mathematics  were comparatively small). Between the two textbook series in each 
country, we compared the percentage of problem-posing tasks at each grade level. 
There were no signifi cant differences except between  Investigations  and  Everyday 
Mathematics  at grade 5 ( z  = 2.69,  p  < 0.01).  

    Number of Problem-Posing Tasks in Different Content Areas 

 We classifi ed the problem-posing tasks in the four textbook series by the  content 
area   in which they were situated: number and operations, algebra, geometry, mea-
surement, and data analysis and probability, following the content areas used by 

   Table 1    Total number of problems and percentage of problem-posing (pp) tasks in the four 
mathematics textbooks series from grades 1–6   

 Grade 

 China  United States 

 PEP  BNU  Investigations  Everyday 

  n   % PP   n   % PP   n   % PP   n   % PP 

 1  527  3.61  570  5.96  490  0  – b   – 
 2  565  6.73  549  5.65  741  1.62  1651  1.03 
 3  589  3.40  541  2.77  832  0.72  1322  1.06 
 4  621  4.83  561  2.85  760  1.97  1565  1.28 
 5  659  2.12  619  2.75  726  2.62  1896  1.16 
 6  627  1.75  545  2.94  – a   –  1673  0.42 
 Total  3588  3.68  3385  3.81  3549  1.47  8107  0.99 

   Note :  a Investigations does not have grade 6 textbooks 
  b For Everyday Mathematics of grades 1 and 2, we combined the data because there is only one 

combined Student Reference Book for the two grades  
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NCTM ( 2000 ) (Table  2 ). However, in several review sections in the BNU textbook 
series, there were questions like “What mathematical problems have you found in 
your life? Write them down and try to solve them,” for which the content area could 
not be determined. The 24 free-structured problem-posing tasks of this type in the 
BNU series were therefore omitted from the content area analysis. The percentage 
distribution of problem-posing tasks in the fi ve content areas was signifi cantly 
different across the four textbook series (chi-square = 31.22,  df  = 12,  p  < 0.01). 
However, no signifi cant difference was found between the two textbook series in 
each country.

   For all four textbook series, the majority of the problem-posing tasks were 
related to number and operations. The percentages of number and operations 
problem- posing tasks in the US textbook series were higher than those in the 
Chinese textbook series ( Investigation  vs.  PEP :  z  = 2.50,  p  < 0.05;  Everyday 
Mathematics  vs.  PEP :  z  = 3.15,  p  < 0.01;  Investigation  vs.  BNU :  z  = 2.13,  p  < 0.05; 
 Everyday Mathematics  vs.  BNU :  z  = 2.68,  p  < 0.01). However, the difference in the 
percentages of problem-posing tasks in number and operations in the two textbook 
series in each country was not signifi cant. 

 For the two  Chinese   textbook series, the second highest percentage of problem- 
posing tasks was related to data analysis and probability. The difference in the 
percentages of problem-posing tasks in data analysis and probability in the two 
textbook series in each country was not signifi cant. However, the percentages of 
data analysis problem-posing tasks in the two Chinese textbook series were sig-
nifi cantly higher than those in the two US textbook series ( PEP  vs.  Investigations , 
 z  = 2.96,  p  < 0.01;  PEP  vs.  Everyday Mathematics ,  z  = 3.02,  p  < 0.01;  BNU  vs. 
 Investigations ,  z  = 2.23,  p  < 0.05;  BNU  vs.  Everyday Mathematics ,  z  = 2.07, 
 p  < 0.05). 

 For all four textbook series, very few problem-posing tasks were related to algebra, 
geometry, or measurement, with the percentages all less than 6 %.  

   Table 2    Percentage distribution of problem-posing tasks in different content areas in the four 
mathematics textbook series   

 Content area 

 China  United States 

 PEP ( n  = 132)  BNU ( n  = 105 a )  Investigations ( n  = 52)  Everyday ( n  = 80) 

 Numbers and 
operations 

 73.48  76.19  90.38  91.25 

 Algebra  0  1.90  5.77  1.25 
 Geometry  3.79  2.86  0  1.25 
 Measurement  0.76  2.86  0  0 
 Data analysis 
and probability 

 21.97  16.19  3.85  6.25 

   Note :  a In several review sections in the BNU textbook series, there are problems like “What math-
ematical problems have you found in your life? Write them down and try to solve them.” Therefore, 
the content areas they are related to cannot be determined. Twenty-four such problem-posing tasks 
were excluded in this analysis  

J. Cai et al.



13

     Types   of Problem-Posing Tasks 

 The problem-posing tasks in the four textbook series were classifi ed into the following 
fi ve types based on what they required the student to do: (1) posing a problem that 
matches the given arithmetic operation(s), (2) posing variations on a question with 
the same mathematical relationship or structure, (3) posing additional questions 
based on the given information and a sample question, (4) posing questions based 
on given information, and (5) unconstrained problem-posing tasks. The percentages 
of the problem-posing tasks of each type are shown in Table  3 .

   The data in Table  3  showed large discrepancies between the Chinese and US 
textbook series and between the two textbook series in each country. Recall that the 
types of problem-posing tasks were roughly ordered from most constrained to least 
constrained. The percentages in Table  3  suggest that the Chinese textbooks had larger 
percentages of problem-posing tasks that were comparatively less constrained, 
whereas the US textbooks had larger percentages of tasks that were comparatively 
more constrained. 

 For the two Chinese textbook series, the majority of the problem-posing tasks 
required students to pose additional questions for given information after presenting 
students with sample questions (e.g.,  On weekends ,  a father and his son went climb-
ing. The distance from the ground to the top of the mountain is 7.2 km. It took    them    
 3 h to climb up and 2 h to walk down. What are the speeds going up and going down ? 
 Can you pose additional mathematical questions ?). Although the  percentages of 
problem-posing tasks of this type were not signifi cantly different between the two 
textbooks within either country, the percentages in the two Chinese textbook series 
were signifi cantly higher than those in the two US textbook series ( BNU  vs.  Everyday 
Mathematics :  z  = 7.52,  p  < 0.001). In contrast, for the two US textbook series, the 
majority of problem-posing tasks required students to pose problems that matched 
the given arithmetic operations (e.g.,  Write a story problem for   65 35´   .  Then solve 
the problem and show how you solved it ). The percentages of problem- posing tasks 

     Table 3    Percentages of types of problem-posing tasks in the four mathematics textbook series   

 Types of problem-posing tasks 

 China  United States 

 PEP 
( n  = 132) 

 BNU 
( n  = 129) 

 Investigations 
( n  = 52) 

 Everyday 
( n  = 80) 

 Posing a problem that matches the given 
arithmetic operation(s) 

 3.79  3.88  84.62  68.75 

 Posing variations on a question with the 
same mathematical relationship or structure 

 0  6.20  13.46  23.75 

 Posing additional questions based on the 
given information and a sample question 

 65.91  56.59  1.92  5.00 

 Posing questions based on given 
information 

 30.30  14.73  0  2.50 

 Unconstrained problem-posing tasks  0  18.60  0  0 
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of this type were not signifi cantly different between the two Chinese textbook series, 
but the percentage of problem-posing tasks of this type in  Investigations  was signifi -
cantly higher than that in  Everyday Mathematics . The percentages in the two US 
textbook series were signifi cantly higher than those in the two Chinese textbook 
series ( BNU  vs.  Everyday Mathematics :  z  = 10.08,  p  < 0.001). 

 For the  PEP  textbook series, the second most common type of problem-posing task 
was posing questions based on given information. The percentage of such tasks in PEP 
was signifi cantly higher than that in the  BNU  textbook series ( z  = 3.01,  p  < 0.01), 
although this type of problem-posing task was the third most common type in  BNU . 
In turn, the percentage of such tasks in  BNU  was signifi cantly higher than that in the 
 Everyday Mathematics  textbook series ( z  = 2.86,  p  < 0.01). For the  BNU  textbook 
series, the second most common type of problem-posing task was unconstrained prob-
lem-posing tasks. There were no such tasks in the other three textbook series. 

 For the  Everyday Mathematics  textbook series, the second most common 
problem- posing task was posing variations on a question with the same mathemati-
cal relationship or structure. Although this percentage was not signifi cantly higher 
than that in the  Investigations  textbook series, it was signifi cantly higher than those 
in  both   Chinese textbook series ( BNU :  z  = 3.68,  p  < 0.001). However, the percent-
ages of reformulation problem-posing tasks in  BNU  and  Investigations  were not 
signifi cantly different.  

    Presentation of Problem-Posing Tasks and Inclusion of Sample 
Questions 

 Table  4  shows the degree to which the four  textbooks   included sample questions in 
problem-posing tasks and to which they presented information in these tasks using 
pictures, fi gures, or tables. Signifi cant differences existed among the four textbook 
series in both aspects (chi-square = 167.78,  df  = 9,  p  < 0.001). There were also sig-
nifi cant differences between the two Chinese textbook series (chi-square = 49.15, 
 df  = 3,  p  < 0.001) but not between the two US textbook series.

   Specifi cally, the two  Chinese textbook series   ( PEP  66 %,  BNU  57.37 %) had higher 
percentages of problem-posing tasks with sample questions than the US textbook 

   Table 4     Percentages   of problem-posing tasks with/without sample questions and with/without 
information presented in pictures, fi gures, or tables (PFT)   

 Textbook series 

 With sample questions  Without sample questions 

 With PFT  Without PFT  With PFT  Without PFT 

  PEP  ( n  = 132)  33.33  32.58  12.88  21.21 
  BNU  ( n  = 131)  56.59  0.78  20.16  22.48 
  Investigations  ( n  = 60)  3.85  5.77  3.85  86.54 
  Everyday Mathematics  ( n  = 81)  17.50  10.00  6.25  66.25 
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series ( Investigations  9.62 %,  Everyday Mathematics  27.50 %). The differences 
between the two Chinese textbook series regarding inclusion of sample questions were 
not signifi cant. However, they are signifi cant between the two US textbook series. 

 Of the problem-posing tasks included in the US mathematics textbooks, less than 
half were presented with information in pictures, fi gures, or tables ( Investigations  
7.70 %,  Everyday Mathematics  23.75 %). This was a lower percentage than in the 
two Chinese textbook series ( PEP  46.21 %,  BNU  76.75 %). The two textbook series 
within each country were signifi cantly different in their percentages of problem- 
posing tasks that included information presented in pictures, fi gures, and tables 
( PEP  vs.  BNU ,  z  = 5.06,  p  < 0.001;  Investigations  vs.  Everyday ,  z  = 2.38,  p  < 0.05).   

    Discussion 

    Problem Posing  and Curriculum Reform   

 Curriculum reform has often been viewed as a powerful tool for educational 
improvement because changes in curriculum have the potential to change classroom 
practice and student learning (Cai & Howson,  2013 ). Reform-guided mathematics 
curricula in both China and the United States have put great emphasis on problem 
posing because of its potential to develop students’ creative thinking and ability to 
innovate in the new century. Consequently, both Chinese and US textbook develop-
ers have made some effort to integrate problem-posing tasks into curriculum mate-
rials. Although our data show that the Chinese textbooks we examined do contain a 
greater percentage of problem-posing tasks than the US textbooks, the percentage 
of such tasks in each of the four textbooks we examined is still quite low. 

 The comparatively small representation of problem-posing tasks among a large sea 
of problem-solving tasks may refl ect, to some degree, the relative emphases and 
placement of problem posing in the reform curriculum guidelines of the two coun-
tries. Problem posing was explicitly included as part of the problem-solving standard 
for each grade band in NCTM’s ( 1989 )  Curriculum and Evaluation Standards  that 
guided the development of US reform mathematics curricula in the 1990s. In the 
subsequent  Principles and Standards for School Mathematics  (NCTM,  2000 ), 
problem posing was again part of the problem-solving standard in each grade band. 
Given the strong focus on increasing the role of problem solving in reform mathemat-
ics curricula, it may be the case that problem posing was overshadowed. Indeed, the 
recent  Common Core State Standards for Mathematics  (NGACBP & CCSSO,  2010 ) 
only mentions problem posing once, whereas problem solving permeates the docu-
ment (Ellerton,  2013 ). The Chinese reform curriculum standards also include problem 
posing as part of the overall objectives regarding problem solving (Chinese Ministry 
of Education,  2011 ). In addition, they discuss the role of problem posing in assess-
ment and instruction. This broader inclusion of problem posing across the Chinese 
reform curriculum guidelines may be connected  to   the somewhat greater inclusion of 
problem posing in the two Chinese textbook series we examined.  
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     Content Areas  ,  Grade Levels  , and  Intentionality of Design   

 It is clear that the distributions of problem-posing tasks across different content 
areas and different grade levels in the four textbook series are extremely uneven. 
More specifi cally, the problem-posing tasks are heavily concentrated in the number 
and operations content area. Of course, number and operations has traditionally 
been a primary focus of elementary mathematics, and the designers of even reform- 
oriented mathematics textbooks may be deliberately focusing attention on this area 
to accord with the traditional expectations teachers have of elementary mathematics 
curricula. However, the degree of concentration of problem-posing tasks in number 
and operations exceeds what would be expected based on the overall distribution of 
content of the textbooks in this study. In particular, the dearth of problem-posing 
tasks related to geometry and measurement is out of proportion to the coverage of 
geometry and measurement topics in the textbooks. This is somewhat puzzling, 
given the degree to which geometry, in particular, is amenable to conjecturing and 
forming hypotheses (Yerushalmy, Chazan, & Gordon,  1990 ). Indeed, geometry is 
also an area in which technological tools such as dynamic geometry software have 
been shown to be supportive of problem posing (Christou, Mousoulides, Pittalis, & 
Pitta-Pantazi,  2005 ). It is notable that none of the textbook series examined here 
make use of such technological tools to promote students’ problem posing, though 
not entirely surprising given the relatively slow pace of textbook development and 
the comparatively fast pace of technological development. 

 In some of the textbook series we examined, a few content areas other than num-
ber and operations include a somewhat more substantial percentage of problem- 
posing tasks. For example, problem posing is somewhat better represented in the 
data analysis and probability portions of the Chinese textbooks. This may be due, in 
part, to an expanded emphasis on data analysis and probability in China (Chinese 
Ministry of Education,  2001b ). Looking to the reform curriculum guidelines in 
China (Chinese Ministry of Education,  2011 ), problem posing is explicitly  mentioned 
with respect to data analysis and probability: “To develop basic knowledge and skills 
in statistics and probability as well as to be capable of solving simple problems 
through experience in problem posing….” Indeed, higher percentages of problem-
posing tasks are integrated into this content area in both Chinese textbook series than 
in the US textbook series. In parallel fashion, in recent years more emphasis has been 
put on early algebraization in the United States (Cai & Knuth,  2011 ). In particular, 
the focus of  the    Investigations  series is on algebra (Cai et al.,  2005 ). Thus, it is not 
overly surprising that  Investigations  includes more algebra- related problem-posing 
tasks than the other three textbook series. 

 The  uneven   distribution of problem-posing tasks across content areas is mirrored 
in the way tasks are distributed across grade levels. The distribution of tasks across 
grades shows a great deal of variability in every curriculum other than  Everyday 
Mathematics , which has a comparatively low percentage of problem-posing tasks in 
every grade. As Fig.  1  shows, even though the percentages of problem-posing tasks 
in the curricula are generally small within  PEP ,  BNU , and  Investigations , they rise 
and fall markedly from grade to grade.    There does not appear to be any trend toward 
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increasing or decreasing problem posing as students progress through the elemen-
tary grades, nor do the textbooks maintain a regular level of problem posing from 
grade to grade.

   The general lack of consistency in the inclusion of problem-posing tasks, both 
across content areas and across grades, suggests a need for greater intentionality in 
the planning and design of how problem posing should be embedded in textbooks. 
Although there have clearly been some intentional efforts to incorporate problem 
posing in these textbook series, the inconsistency of implementation may not be 
helpful for making problem posing a classroom routine.  

     Types   of Problem-Posing Tasks 

 The distributions of problem-posing tasks into the fi ve types that we identifi ed are 
also uneven. However, in this case there is a pattern to the unevenness, specifi cally 
regarding the degree to which the tasks are more or less mathematically constrained 
that appears to be related to whether the textbooks are US or Chinese. The majority 
of the problem-posing tasks in the two Chinese textbook series are tasks in which 
the student is given some information and a sample question and is then asked to 
pose additional questions based on the given information. Although a sample question 
is provided in these tasks, the student is not necessarily expected to mirror the math-
ematical structure of the given problem. The PEP textbooks also include a substan-
tial proportion of problem-posing tasks in which the student is expected to pose 
additional questions based on given information but without a sample question. 
These tasks give the student a great deal of latitude in choosing the mathematical 
structure of their problem, although the context is fi xed. The BNU textbooks include 
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tasks of this type as well as even more unconstrained problem-posing tasks in which 
students are prompted to pose questions relating mathematics to real life. In con-
trast, the majority of problem-posing tasks in both US textbook series have much 
stronger constraints, requiring students to pose problems with solutions that match 
the given arithmetic operations. In these tasks, the student may choose a context 
relatively freely, but the mathematical structure of the problem is already fi xed. 
Indeed, the most common types of problem-posing tasks in the US textbooks are 
those in which the mathematical structure of the problem is largely fi xed and given 
to the student. 

 It is not immediately clear why there should be a difference in the level of task 
constraints between problem-posing tasks in Chinese textbooks and those in US 
textbooks. One potential explanation for these differences might lie in differences 
in how teachers and textbook designers view the use of problem-posing tasks for 
mathematics teaching, such as teaching a new concept versus practicing a new 
approach. However, this would need to be further investigated with respect to how 
these problem-posing tasks are actually used  in   mathematics classrooms.  

    Use of  Representations   and Sample Questions 

 Problem-solving research has shown that US textbooks generally have more problems 
that include information represented in pictures, fi gures, and tables than Chinese 
textbooks (Zhu,  2003 ) and that US students are more likely to solve mathematical 
problems using visual representations than Chinese students (Cai,  1995 ,  2000 ). In 
this study, we examined the use of pictures, fi gures, and tables to represent informa-
tion in the problem-posing tasks from the four textbook series. The data show clear 
differences between the Chinese and US series. However, these differences do not 
mirror the trend identifi ed in the problem-solving literature. Both  Investigations  and 
 Everyday Mathematics  feature a smaller percentage of problem- posing tasks that 
include pictures, fi gures, and tables than the two Chinese textbook series. In par-
ticular, the  BNU  series uses such representations in over three-quarters of its prob-
lem-posing tasks. The disjunction between these results and the fi ndings from 
problem-solving research may be related to the prevalence of tasks in the US text-
books that asked students to pose problems whose solutions matched a given oper-
ation. The problem-posing tasks in the Chinese textbooks tend to be less 
mathematically constrained and thus perhaps may afford greater latitude to employ 
diverse representations. 

 With respect to the inclusion of sample questions, the problem-posing tasks in 
the two Chinese textbooks series are again more likely than their US counterparts to 
exhibit this feature. As we noted above, sample questions may be included in 
problem- posing tasks as a way to guide students as they learn how to pose their own 
problems. The Chinese reform curriculum guidelines have made problem posing a 
learning goal in its own right (Chinese Ministry of Education,  2011 ). Thus, it makes 
sense that textbook designers would intentionally include examples for students to 
study and emulate as they learn how to formulate their own problems.   
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     Implications   and Directions for Future Research 

 Problem posing has been lifted up as an important component of mathematics learn-
ing in reform mathematics curriculum documents in both the United States and 
China. However, our examination of four textbook series from these two countries 
shows that there is still a very small proportion of problem-posing tasks built into 
the materials that students use every day. If curriculum is a major agent of change 
for the teaching and learning of mathematics, there simply may not be enough prob-
lem posing in current curriculum materials to realize the goals stated in the reform 
documents. More specifi cally, although textbook writers have clearly made some 
efforts to include problem posing in textbooks, these efforts have resulted in uneven 
inclusion, both with respect to content area and to grade level. The results of this 
study suggest that in order to better support teachers as they attempt to fulfi ll reform 
recommendations to engage their students in problem-posing activities and to 
develop their students’ mathematical dispositions around problem posing, curricu-
lum developers will need to carefully examine the quantity and types of problem- 
posing tasks that are included at every grade level. In particular, the dearth of 
problem-posing tasks related to geometry and measurement is somewhat perplex-
ing and requires attention. Even though we believe that the proportion of problem- 
posing tasks in the textbooks is very small, it is still an open question what proportion 
might be appropriate. 

 Curriculum operates on several levels. This study has focused on the intended 
curriculum as embodied in textbooks. It provides information from one perspective 
about what is happening with problem posing in mathematics education in China 
and the United States. Thus far, there have been no studies that have reported on the 
actual use of problem-posing tasks from regular textbooks in real classrooms. 
Looking forward, future studies must also attend to the implemented curriculum—
to how teachers and students actually make use of regular curriculum materials to 
engage in problem posing (or not) in their classrooms (Cai et al.,  2015 ).     
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      Problem-Posing and Questioning: Two Tools 
to Help Solve Problems                     

       José     Carrillo      and     Jorge     Cruz    

    Abstract     This paper analyses the solutions put forward by two secondary school 
pupils to two mathematical problems. The task of working out the solutions was 
framed by two questionnaires aimed at encouraging self-refl ection (completed 
before and after the activity). The pupils were also asked to pose a new problem 
with a similar structure to each of the original problems. The results from the differ-
ent data collection instruments are mutually congruent, from which we can con-
clude that the methodology is suitable for the design, implementation and evaluation 
of problem-posing and problem-solving. This methodology can be useful in terms 
of both research and teaching itself.  

  Keywords     Problem-solving   •   Problem-posing   •   Metacognitive questioning  

      Introduction 

  Problem-solving   has for some time occupied a prominent position in mathematics edu-
cation research and the mathematics curriculum (Törner, Schoenfeld & Reiss,  2007 ). 

 In Portugal, where the research presented here was undertaken, problem-solving 
continues to receive signifi cant attention throughout the education system as can be 
seen in syllabus content and teacher training, as well as in systems of evaluation, 
whether via standardised tests or continuous assessment. 

 By contrast, problem- posing   has received less attention in the syllabus than 
problem- solving, as it is a more recent approach (Brown & Walter,  1983 ; Kilpatrick, 
 1987 , cited in Cai & Hwang,  2002 ) and represents an emergent area of research as 
well as a signifi cant new tool for teaching (Singer, Ellerton & Cai,  2013 ). 
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 Cruz ( 2003 ) found that in a study of students aged 12 and 14, the latter were not 
always the best able to mobilise resources or to apply heuristic and checking tech-
niques. On the other hand, those with the best grades in mathematics (irrespective 
of age) showed better results in  problem-solving   in terms of the categories consid-
ered in the study (Cruz & Carrillo,  2004 ). The awarding of grades followed the 
 Principles and Standards for School Mathematics  (NCTM,  2000 ), which are con-
sistent with the Portuguese assessment guidelines, both focusing on problem- 
solving, reasoning and proof, making connections, oral and written communication 
and uses of mathematical representation. 

 In the light of this, further studies into how students tackle problem-solving 
activities would be valuable, in particular through observation of the behaviour of 
those who habitually achieve the best grades. The decision to select students with 
good school grades draws on studies to be found in Lesh and Zawojewski ( 2007 ). 
These studies show that such students have at their disposal better structuring of 
ideas, a wider range of strategies and more representations and are more adept in 
creating an image of the problem. Consideration of the problems formulated by 
such students could provide insights into the links between problem-solving and 
problem-posing and suggest directions that could be followed in teaching in terms 
of characterising what makes a good problem-solver. 

 Problem-posing, included in the  Standards  since 1989 as an activity  of   value to 
mathematics teaching (NCTM,  1998 , p. 163), can be regarded as a task which, by 
virtue of its design, allows student solutions to be evaluated in terms of their quality 
(Kilpatrick,  1987 , cited in Cai & Hwang,  2003 ; Goldenberg & Walter,  2006 ). Cai 
and Nie ( 2007 ) consider the teaching of problem-solving in China and describe 
three types of tasks, one of which requires students to pose new problems modelled 
on an original (cf. also Cai et al.’s contribution in this book). The researchers found 
that such tasks helped students to make connections and make sense of mathemat-
ics. Kontorovich and Koichu ( 2009 ) suggest a framework for characterising 
problem- posing [PP]. Amongst the four aspects that these researchers consider are 
resources, in which the stimulus for PP is regarded as  essential  . One means of fur-
nishing this stimulus is through an original problem which serves as the basis for 
formulating a new problem, and it is this option which is followed in this study. In 
this regard, we consider whether ( metacognitive  )  refl ection   and problem-posing 
help to bring students to a clearer understanding of the problem to be solved. This 
question can be broken down into two related questions:

    (a)    Does refl ection enhance pupils’ awareness of the structure of the problem to be 
solved? (The structure of the problem can be understood as the confi guration of 
relationships, concepts, procedures and degree of diffi culty. Several structures 
could be linked to the same problem, corresponding to different solutions or 
approaches to the problem.)   

   (b)    Do the problems devised by the pupils benefi t from the prior solution of simi-
larly structured problems and vice versa?    
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      Method 

    Participants 

 The study focussed on two subjects,  both   14 years old, chosen from a group of 27 
pupils according to two criteria: good academic grades in mathematics and a posi-
tive attitude towards mathematics and problem-solving.  

    Design 

 A questionnaire for  identifying   mathematical beliefs and attitudes to problem- 
solving (Villa,  2001 )  was   completed by the group of 27 students. The aim of the 
questionnaire was to identify students who were both academically successful in 
mathematics and had a positive attitude to problem-solving. Three students obtained 
scores (academic results and mathematical beliefs) signifi cantly above their class-
mates, suggesting a favourable disposition towards problem-solving. These students 
were doing exceptionally well in mathematics and so were ideally suited to partici-
pating in the study. This is consistent with Schoenfeld’s ( 1985 ,  1992 ) model, in 
which a good problem-solving profi le includes appropriate resources, strategies, 
control and a favourable system of beliefs and affects. Of these four dimensions, the 
latter was the least likely to be guaranteed by purely good academic results, for 
which reason the questionnaire for identifying mathematical beliefs was employed. 

 Before and after the solution of each problem, the students completed a question-
naire (pre-PS and post-PS) specifi cally designed to gather data on the students’ 
understanding of the problems. The questionnaires played a signifi cant role in 
encouraging students to question their own reasoning and procedures, a process 
which according to Flavell ( 1976 ) can be described as underpinning the capacity for 
metacognitive refl ection.    Nevertheless, it should be borne in mind that the study 
concerned students with good academic grades, in the expectation of fi nding indica-
tors within the data of their ability to achieve the structure of the problems (consid-
ered benefi cial to fi nding solutions). 

 After solving each problem, the students were then invited to pose a new prob-
lem which could be solved using the same method. The analysis of these posed 
problems drew on two instruments (Cai & Hwang,  2003  and Leung,  1997 ), whilst 
the analysis of the solutions themselves followed Carrillo ( 1998 ). 

 The present article is concerned with the information provided by the students 
via protocol sheets completed during the process of solving the  two   problems. The 
students also answered pre-PS and post-PS questionnaires and attempted to pose 
new problems with the same structure as the original.  
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    Instruments 

    A Set of 12 Problems, of  Which   This Paper Deals with Just Two 

 The fi rst problem consisted of two questions, the fi rst not too diffi cult and the sec-
ond somewhat more demanding. In order to answer the questions, it was not neces-
sary to use an algebraic model of the two contracts (see below), although the 
recognition that such a structure was implicit in the problem was important for 
posing a new problem along the same lines. 

 P2 

    
 Based on the advertisement, which type of contract would be preferable:

    (a)    For 2 years’ employment   
   (b)    For 9 years’ employment     

 Propose a problem which could be solved using a similar method. (It is not nec-
essary to provide a solution.)

   

International company seeks engineer
REQUIREMENTS:

- Degree in Chemical Engineering
- Age up to 35
- Good knowledge of English

CONDITIONS:
Contract A
- Annual salary in 1st year of € 25,000.
- Annual salary increment of € 3,000.
Contract B
- half-yearly salary in 1st 6 month period of € 10,000.
- half-yearly increment of € 1,000.

Send CV to situations vacant n° 1251 in this magazine.

  

     The reason for choosing this problem  was   its algebraic structure, which the stu-
dents had to demonstrate they understood if they were to propose a similar 
problem. 

 P8 (selected from GAVE,  2004 )
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    The fi gure on the right shows a man’s footprints. The length of the stride (pace-
length),  P , is the distance between the heel marks of two consecutive footprints. 

 For men, the formula  n

P
= 140

 
  establishes an approximate relation between  n  

and  P , in which 
  n  = the number of steps per minute and 
  P  = length of stride in metres.

 –    If this formula is applied to Pedro’s stride and he takes 70 steps per minute, what 
is Pedro’s stride length?  

 –   Bernardo knows that the  length   of his stride is 0.80 m. Apply the formula to 
Bernardo’s walking. Calculate the speed he walks in metres per minute and kilo-
metres per hour.  

 –   After you have solved this problem, formulate a problem which can be solved in 
the same way.    

 A problem from the  PISA test   was selected in order to enable comparison 
between PISA and the Portuguese syllabus in terms of  problem-solving.   The larger 
study, from which this paper is drawn, is currently scrutinising results for possible 
interpretations with regard to PISA performance. This problem was of particular 
interest for its algebraic structure, which the students had to demonstrate they 
understood if they were to propose a similar problem (Table  1-3 ).

QUESTIONNAIRE PRIOR TO PROBLEM SOLVING:

After carefully reading the first problem, answer the questions below:

1.How far do you think you have understood this problem: (Tick the appropriate box) 

Fully � The main points � A little � Not at all �

2.How do you think you can solve this problem?

3.Do you think you are lacking anything at the moment to solve the problem? What?

4.Where do you think the difficulty of this problem lies?

Now try to solve the problem.

   Table 1    Questionnaire prior to problem solving       
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         Pre-PS and Post-PS Questionnaires About the Processes 
of  Problem-Solving   and Problem-Posing 

    Instruments for Processing/Analysing the Information 

 The data provided by the pre- and post- questionnaires   was processed using an 
adapted version of Efklides’ ( 2006 ) analysis (adapted) for classifying metacognitive 
knowledge and experiences. Efklides’ concept of metacognition, based on Flavell 
( 1979 ), sees it as knowledge acting upon an objective world (the task) at a metalevel 
 through   monitoring and checking. She proposes, in a summary table, three charac-
terising features (metacognitive knowledge, metacognitive experience and meta-
cognitive competencies/skills), along with their manifestations, grouped under 
monitoring and checking, although she recognises certain diffi culties in distinguish-
ing these (Efklides,  2006 , p. 4). This instrument, however, was not applied across 
the full range of features, as the design of the pre- and post-PS questionnaires did 
not intend to supply such comprehensive data. Rather, the questionnaires aimed to 
capture the structure of the problem which each student managed to construct after 
carefully reading the rubric. It was to meet this requirement that the instrument 
needed to be adapted (Table  2 ).

   This adaptation consisted in omitting the category of  metacognitive competen-
cies , in which Efklides included procedural knowledge, that is, actions for control-
ling cognition. As  these   take place in action, specifi cally the context of solving the 
proposed task, it was possible to analyse them separately via the students’ solution 
protocols using other instruments. Finally, it should be noted that the post-PS ques-
tionnaire was not designed to evaluate how the task has been carried out but simply 
to measure the degree to which the original ideas about the problem had been car-
ried through. The classifi cation instrument—omitting metacognitive competencies—
is set out in the Appendix (Table  4 ). 

 The solutions themselves were analysed using a slightly adapted version of 
Carrillo’s ( 1998 ) scheme, omitting the category concerning the personal character-
istics of the solver and giving prominence instead to the tactical features of the 

QUESTIONNAIRE SUBSEQUENT TO PROBLEM SOLVING:

1.How far do you think you managed to solve the problem: (Tick the appropriate box)

Completely � Not very well �

The main elements � Didn’t solve or the answer was unsatisfactory �

2.Did you solve the problem as you initially expected to? If not, what changed your 
expectations?

3.What main difficulties did you find while solving the problem?

Thank you for participating.

   Table 2    Questionnaire subsequent to problem solving       
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process. This scheme, set out below, consists of fi ve analytical dimensions, each 
with  fi ve   levels of acquisition (for an example of these levels, see Table  5  in the 
Appendix). 

 For dealing with the reformulation of problems, we drew on the instruments for 
classifying  problem-posing  offered by Cai and Hwang ( 2003 ) and Leung ( 1997 ). 
Cai and Hwang classify the formulation of the new problem according to its similar-
ity with the original problem and its structure. Leung, on the other hand, focuses on 
the plausibility of the new problem in terms of the quality of information included 
in the reformulation. 

 According to Cai and Hwang ( 2003 ), a newly formulated problem can be classi-
fi ed as ‘extensive’, ‘not extensive’ or ‘other’. If extensive (E), it follows the struc-
ture of the original problem but is more demanding in terms of the  mathematical 
  work required to solve it. If it is not extensive (NE), it fully patterns the structure of 
the original problem and maintains the same level of diffi culty, and if other (O), it 
fails to follow the structure of the original problem. Leung, on the other hand, clas-
sifi es the problems as follows: not a problem, that is, the suggested situation is 
descriptive only and fails to ask a question that can be answered; non-mathematical 
problem, in which the question posed falls outside the scope of mathematics; 
implausible mathematical problem, according to which the problem falls within the 
scope of mathematics but the data involved or the solution do not make sense in the 
context; insuffi cient plausible mathematical problem, whereby the problem can 
receive a mathematical treatment but the data involved are insuffi cient to arrive at a 
solution; and suffi cient plausible mathematical problem, in other words, a well- 
formulated problem that can be solved. 

 Employing these codes, we propose the following categorisation:

   

Not a problem Problem

Not a mathematical 
problem

Mathematical 
problem

Plausible 
mathematical 

problem

Implausible 
mathematical 

problem

Insufficent 
plausible 

mathematical 
problem

Sufficent 
plausible 

mathematical 
problem
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    To summarise, the students’ answers to the pre- and post-questionnaires were 
considered and coded according to Efklides’ ( 2006 ) system of analysis (Table  4 , 
Appendix). Various relevant information units (student responses) have been 
included in order to substantiate the commentaries and coding (U for unit and P for 
problem). The students’ progress in solving the problems were analysed using 
Carrillo’s ( 1998 ) instrument (Table  3 ), again supported with illustrative samples of 
the students’ solutions, accompanied by appropriate excerpts from the descriptors 
of the fi ve analytical dimensions. Finally, the analysis of the new problems posed by 
the students was effected using the instruments developed by Cai and Hwang ( 2003 ) 
and Leung ( 1997 ). Some of the rubric from the problems has  been   included.

        Analysis and Results 

 This section presents the analysis of the data provided by the students Clara and 
Rafael. 

    Clara 

 Her level of achievement is  refl ected   in the pre-PS questionnaire, where she shows 
knowledge of the type of problem (task) and the demands of the task (explanation 
of the abbreviations see above):

  I think I can solve the problem calculating the amount I would receive in the four situations. 
(U1P2) 

   She also knows which strategy to use (strategy) and seems to have the appropri-
ate mathematical knowledge (knowledge) to fi nd a solution:

  calculating the values of the right unknown, substituting certain values in the formula 
(U1P8) 

   and estimates where the greatest diffi culty might lie (diffi culty):

   Table 3    Tactical characteristics of the process (effi cacy of the action)   

 2. Tactical characteristics of the process (effi cacy of the action) 
 2.1. Obtaining a meaningful representation (including obtaining the structure of the problem) 
 2.2. Effi cacy and adequacy of the planning (with data possibly provided by the use of 

intuition) 
 2.3. Effi cacy and adequacy of the execution (with data possibly provided by the use of 

generalisation of objects, relations and calculations and by reasoning with mathematical 
symbols and spatial relations) 

 2.4. Effi cacy in the use of revision 
 2.5. Quality of the fi nal version of the solution (including clarity, simplicity and economy, as 

well as reasonableness of the solution and rationale for the process) 
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  but the fact that the calculations don’t involve any unknowns, just specifi c numbers, means 
it shouldn’t  cause   any diffi culties. (U2P2) 

   Likewise, in the post-PS questionnaire, she expresses recognition of some diffi -
culty in the task (diffi culty):

  the main diffi culty in the solution… was the number of values and their size. (U3P2) 

   Her solutions to the two problems are almost uniformly situated at the highest 
level descriptors of the instrument used. 

 In problem 2, she shows a good ability to achieve a meaningful representation, 
so that the descriptor corresponding top level 5 (‘the solver understands the struc-
ture of the problem perfectly and usually retrieves the mathematics underlying the 
data in the problem statement’) best describes the work she produces: 

 ‘Contract A:  25000 25000 3000 53000+ +( ) =   ’. 
 In problem 8, the implementation of her solution is effective and appropriate, 

corresponding to level 5 of the descriptor (‘execution is consistent with planning 
and is effective in contributing key results towards the overall solution’) best 
describes the work she produces, in particular, when she converts 89.6 m/min to 
5.376 km/h:
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The new problems she poses represent suffi cient plausible mathematical problems, 
with an identical structure to the original problems, as required. 

 Her awareness of the diffi culties shown in the questionnaires can be seen in the 
problem she poses based on problem 2, as is her confi dence in the solution. On the 
one hand, she reduces the amounts involved, but, on the other hand, because she 
perfectly understands the structure of problem 2, she is suffi ciently confi dent to 
change the amount to be added in the original to an  amount   to be subtracted in the 
new problem. This is the problem she poses: 

 ‘Manuel decided to buy a car on special offer, making payments of €350/month 
in the fi rst year, after which, every year the payments are reduced by €25. How many 
years would it take to pay for a €20,000 car, assuming that the price includes 
interest?’ 

 In the case of problem 8, she added a question, which represents an extension of 
what was originally required. 

 In summary, the data from the pre-PS and post-PS questionnaires coincided in 
revealing a high level of metacognitive knowledge in terms of the indicators for 
(mathematical) knowledge and (estimate of) diffi culty. The task is tackled coher-
ently throughout, without any diffi culties arising, and correct solutions arrived at. 
The posed problem is completely consistent with the original, having an identical 
structure and even adding an extension.  
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    Rafael 

 In the pre-PS questionnaire, he shows he  understands   the task (task):

  I put in what I earn by the end of the year with contract A (already done) and then I put in 
what I earn by the end of the year with contract B. (U1P2) 

 Substituting the letters with numbers. (U1P8) 

   He shows uncertainty as to how to proceed during the task (strategy):

  I think what can make this problem diffi cult is fi nding a way to solve it. (U2P2) 

   and insecurity as to his chances of success (confi dence). 
 In the post-PS questionnaire, he shows himself uncertain of his solution (validity):

  Check that the  money   was always added to what he had earned. (U3P2) 

   The solution to problem 2 reveals a good mental representation, and consistent 
planning and execution, but also reveals diffi culties when it comes to reviewing his 
work, in that he fails to notice an error in calculation which accumulates over the 
course of working out the fi nal total. As he adds up the half-yearly salary increments 
in contract B, he misses out the 16th payment and so miscalculates the total, which 
should be 333,000€ instead of 306,000€:

   
“…

= 3060002600025000240002300022000

18º17º15º14º13º
”

  

    His work would benefi t with greater attention given to the fi nal two items of the 
instrument (2.4. Effi cacy in the use of review strategies and 2.5. Quality of the fi nal 
version of the solution), given that, as the questionnaires show, he felt little confi -
dence in the validity of his work. 

 His solution to problem 8 also shows diffi culties in the last two levels of action 
described by the instrument (2.4 and 2.5). He again fails to spot an error and does 
not attempt to fi nd a solution through other means, despite having also given signs 
of a lack of confi dence and uncertainty in his answers to the questionnaires. 

 With respect to problem 2, he is unable to reformulate it and presents an insuf-
fi cient plausible mathematical problem, the structure of which fails  to   mirror that of 
the original. He proposes the following problem: 

 ‘Make a formula for each contract’. 
 This formulation, which goes little way to meet the requirements of the task, 

clearly shows that the diffi culties revealed in the questionnaires and in solving this 
problem were real. The student is unable to extract the mathematical structure of the 
problem, which would enable him to pose another with a comparable structure, 
although he is aware that there is one. 

 In reformulating problem 8, he presents a suffi cient plausible mathematical 
problem, but fails to preserve the mathematical structure of the original. The  original 
problem concerns a direct proportional relation, whilst the reformulation is based 
on inverse proportionality. 
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 In summary, the pre-PS and post-PS questionnaires reveal metacognitive knowledge in 
terms of the indicators for task, strategy, confi dence and validity. The student’s working 
through of the task is consistent with the data supplied by the questionnaires, as revealed 
by his inability to overcome perceived diffi culties, and the solutions to the problems them-
selves. The posed problems provide further confi rmation, as they lack any content or math-
ematical structure (in the fi rst instance) and any mathematical structure (in the second).   

    Conclusions 

 The use of a questionnaire prior to attempting the problem strengthens the students’ 
questioning of aspects of the problem and the resources and strategies to be employed. 
It also provides data on their self-awareness and decision-making capacity. Unfortunately, 
although in the global study questionnaires were used with some problems and not with 
others, it was not possible to draw a comparison of the same problem with and without 
a questionnaire, which could have provided further information of interest. 

 The data revealed by the pre-PS questionnaire, with regard to awareness of task 
typology, strategies, type of knowledge involved and identifi cation of diffi culties (or 
not), are consistent with the students’ actual solutions to the problems and with the 
new problems they posed based on the original tasks. We acknowledge that this cor-
relation represents what was to be expected, but it is worth noting as it indicates the 
methodological consistency of the following scheme for fi eldwork we would like to 
propose: (a) pre- and post-PS questionnaires, (b) task of solving a problem and (c) 
posing a problem with the same structure as the original. It also indicates that the 
instruments used in the analysis produced consistent data. 

 In the case where the problem-solving task was not fully completed, the post-PS 
 questionnaire   indicated less knowledge regarding the student’s own capabilities, 
little confi dence in the validity of the revealed knowledge and a sense of diffi culty 
(which might vary during the task). In the case where the problem-posing task was 
not successfully accomplished, the proposed problems fell short of what was 
desired, either because the data were insuffi cient (Rafael’s reformulation of prob-
lem 2) or because its structure did not pattern the structure of the original problem 
(Rafael’s reformulation of problems 2 and 8). 

 The case of Clara shows an evident relation between the results of the question-
naires (knowledge of task, strategy, mathematical content) and her grasp of the tacti-
cal aspects of the process of problem-solving. The problems she posed respected the 
mathematical structure of the original problems and even introduced small changes 
and extensions which indicated a total understanding of the structure of the problems 
which were given to her to solve and reformulate. In this case  problem- posing rep-
resents a good indicator of the PS process. At the same time, it promotes an amplifi -
cation in the understanding of this process. 

 If we consider the problems posed by the students, it becomes evident that, when 
they respected the structure of the original problems (implying the creation of a 
suffi cient plausible mathematical problem), this meant an understanding of the 
structure of the original problem, which had a fairly complete solution in the tactical 
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aspects of the process (see the case of Clara). The opposite of this affi rmation is also 
true (see the case of Rafael). 

 The results of this study lead us to conjecture that:

 –    The use of pre- and post-PS questionnaires  improves   problem-solving (presum-
ably because it urges questioning), and problem-solving, in its turn, benefi ts 
problem-posing.  

 –   The formulation of problems by the students (with appropriate data and struc-
ture) indicates the use of more meaningful representations, gaining access to the 
structure of the problem.    

 Further studies into how this method could improve the problem-solving abilities 
of lower achievers would also be valuable.      

    Appendix 

      Table 4       

 Efklides ( 2006 )  Meaning as understood in this study 

 1. Metacognitive knowledge  Declared knowledge of cognition, deriving from long-term 
memory 

 Ideas, beliefs, ‘theories’  May be explicit or implicit 
 1.1. Person/self  Concerns oneself and one’s possibilities (related to 1.2, 1.3 

and 1.4) 
 1.2. Task  Concerns categories (classes) of tasks and the means of solving 

them 
 1.3. Strategies  Concerns general ways (modes) for acting (may be heuristic) 
 1.4. Goals  Concerns objectives or the type of solution 
 1.5. Cognitive functions  Concerning memory or thinking (what they are and how they 

act), attention 
 1.6. Validity of knowledge  Concerns epistemological knowledge, quality of knowledge 
 2. Metacognitive experience  Involves aspects of the mobilisation of knowledge 
 2.1. Feelings  Considered as products of monitoring (good functioning) 
 2.1.1. Familiarity  Denotes previous occurrence of a stimulus (frequency) and 

fl uency in the mode of action 
 2.1.2. Diffi culty  Results from complexity of task, context, personal 

characteristics (cognitive), self-image, affective factors, extrinsic 
feedback such as positive or negative sensations. May vary 
during task, may be illusory 

 2.1.3. Knowing  Concerns appropriate mathematical knowledge for task 
 2.1.4. Confi dence  Derives from previous experience, hesitation vs. 

overconfi dence 
 2.1.5. Satisfaction  Monitors the personal criteria and standards by which the 

quality of response is judged 
 2.2. Judgements/estimates 
 2.2.1. Estimate of effort  Monitors work to be carried out, related to diffi culty 
 2.2.2. Estimate of time  Monitors time taken, related to diffi culty 
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     Table 5       

 2.1. Obtaining a meaningful representation 

 1. The solver never obtains a representation for the problem and does not understand the 
given situation, which is totally unfamiliar to him or her. Because the solver does not 
understand the structure of the problem, he or she is unable to articulate the reasoning by 
which the problem is introduced (sometimes the solver does not even state it) 

 2. The structure of the problem is occasionally understood, usually imperfectly; that is to say, 
he or she is able to express in his or her own words some, but not all, elements of the 
problem; abstract reasoning is not used 

 3. Understanding of the problem extends to all or most elements, though not in depth. The 
basic structure of the problem is usually understood, though sometimes imperfectly; both 
concrete and abstract reasoning are used 

 4. Largely understands the problem, although there may be an element which is not understood. 
The structure of the problem may be understood, but the posing of a new, similar problem 
causes diffi culty 

 5. The solver obtains a highly meaningful representation of the situation, allowing a 
successful planning process to begin, after formulating the problem in his or her own 
terms. Therefore, the solver may understand the structure of the problem perfectly and 
usually retrieves the mathematics underlying the data in the problem statement. The solver 
abstracts, starting with concrete relations and moving towards formal structures 
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Mathematics of Young Chilean Children: 
Understanding Cultural Characteristics                     
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    Abstract     Understanding the affective factors and beliefs of young students about 
mathematics is a complex task. This is especially important in the framework of 
problem solving where these kinds of beliefs are related to various learning pro-
cesses and infl uence achievement. In this work, we present the analysis of a ques-
tionnaire regarding beliefs about self-competence, self-confi dence, mastery goal 
orientation, effort, diffi culty of mathematics, and enjoyment of mathematics applied 
to Chilean third graders. Exploratory factor analysis leads us to the conclusion that 
it is possible to measure these kinds of beliefs with a Likert-type questionnaire and 
that there is an inverse item effect. We tested two confi rmatory factor analysis models 
that allowed us to understand the behavior of inverse items in relation to the math-
ematics-related affect traits. These models suggest that the inverse item effect is a 
response style of Chilean children and the affect structure is consistent with the 
theoretical one considering this effect.  

  Keywords     Students’ mathematics-related beliefs   •   Inverse items   •   Method effect   • 
  Response style  

      Introduction 

 Affective components have a signifi cant role in the learning of mathematics and 
problem solving (Hannula,  2011 ; Leder,  2006 ; Op’ t Eynde, de Corte, & Verschaffel, 
 2002 ). For instance, in the problem solving area, there are studies that show the 
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relation between beliefs and problem solving. Some examples are the positive relation 
between self-effi cacy beliefs about problem solving and accuracy, response time, 
and effi ciency in solving addition and multiplication problems (Hoffman,  2010 ; 
Hoffman & Schraw,  2009 ; Hoffman & Spatariu,  2008 ) or the positive relation 
between  self-effi cacy and problem solving  , controlled by mental ability (Pajares & 
Kranzler,  1995 ). Nevertheless, the measurement of the affective components in dif-
ferent cultures and age groups poses challenging issues (Tuohilampi et al.,  2014 ). 

 In this article we present an analysis of the structure of mathematics-related 
beliefs of very young Chilean children. These children were starting third grade and 
belonged to 14 class groups in nine schools from Santiago. The data came from a 
questionnaire which originated in Finland and was adapted for use in a bilateral 
Chilean-Finnish project. This instrument presented risks for two reasons, the cul-
tural differences and the age of the students, both of which could be a pitfall for 
understanding the items. However we preferred to use this instrument with its 
known properties that would allow us to make comparisons, in particular with the 
Finnish children participating in the  Chilean-Finnish project.   This information 
about the instrument and its application in other populations is an important referent 
that gives us tools to understand what is different from the expected results. In a 
prior work (Tuohilampi et al.,  2014 ), we presented the results of this application to 
a sample of Chilean and Finnish students who were starting third grade. Through an 
exploratory factor analysis, the congruence of the obtained results with the theoreti-
cal model corresponding to the questionnaire was examined. 

 In both countries most of the obtained factors were distinguishable and their con-
tents made sense, allowing for their characterization. But there was an exception in the 
Chilean results, a characteristic not present in Finnish solutions: in the Chilean results, 
the  inversely   and directly formulated items tended to load in different factors. This was 
the most remarkable difference between the structures in the two countries. There 
could be various interpretations for this behavior. One possible explanation  is   that the 
Chilean pupils had greater diffi culty understanding inverse statements. This is in 
line with the argument of Metsämuuronen ( 2012 ) and other authors who propose that 
the functioning of inverse items is related to higher diffi culty in comprehension. 
Another possible interpretation is a cultural characteristic  regarding   language 
(Tuohilampi et al.,  2014 ) that could be present in the results as a  response style  . 

 The purpose of the research presented in this paper is to fi nd a model that fi ts to 
the Chilean data and that therefore represents the mathematics-related affects and 
belief structure of the participating third graders and which explains the behavior 
that differs from the expected results, particularly in the case of inverse items.  

    Theoretical Framework 

 Mathematics-related affect has been studied using a variety of frameworks. In our 
study we are interested in the relatively stable affective traits of the individual. 
The conceptualization by Hannula ( 2012 ) identifi es three dimensions of 
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mathematics- related affect,    which we will refer to in regard to our study. In the fi rst 
dimension, our study focuses on affective traits rather than dynamically changing 
states. In the second dimension, we draw from psychological theories rather than 
embodied or social theories. In the third dimension, our study aims to cover all three 
aspects of affect: emotional, cognitive, and motivational traits. In the emotional 
dimension, we look at student enjoyment of mathematics (EOM). In the cognitive 
dimension, we are interested in students’ self-effi cacy, self-confi dence, and per-
ceived diffi culty of mathematics (DOM). Lastly, in the motivational dimension, we 
are interested in students’ effort and mastery goal orientation (MGO). We are aware 
that these dimensions tend to be correlated with each other (e.g., Roesken, Hannula, 
& Pehkonen,  2011 ). However, it is still an open question as to how universal these 
dimensions are and how strongly they correlate  in   different populations. 

 We are concerned with the methodological issue of how to determine the rela-
tions between beliefs. The exploration of these relations can be done with explor-
atory and confi rmatory factor analysis (EFA and CFA, respectively). These methods 
explain the correlation matrix of the items and propose a linear relation between the 
items and factors or latent variables. The relation is determined by the matrix of 
loadings. In EFA, this matrix is estimated, and its analysis allows us to know the 
relation between the items and the factors and later to identify a factor with a theo-
retical variable or construct. In CFA,  the   form of the matrix of loadings and the 
correlations between the factors are proposed by the researcher and make it possible 
to test theoretical hypotheses. Both methods are complementary tools, because the 
information given by exploratory factor analysis of how the items are clustered is 
done without any input or preconceived ideas from the researcher. This information 
is powerful evidence that allows us to design and propose hypotheses we later test 
with CFA. 

 For the purposes of this article, it is necessary to defi ne direct and  inverse   items 
in a mathematics-related affect questionnaire. We defi ne a direct item as one that is 
 generally   considered to imply a positive affect (e.g.,  I am sure that I can learn 
math ). In comparison, inverse items are those that imply a negative affect (e.g., 
 Mathematics is diffi cult , or  I am not good at mathematics ). An inverse item is not 
the same as one with a negation, for example,  I am not unhappy  would be a direct 
item with a negation. There are different opinions about how adequate it is to use 
inverse items in questionnaires. It is recommended for avoiding acquiescence bias 
which is the tendency to agree with all the items regardless of content (Podsakoff, 
MacKenzie, Lee, & Podsakoff,  2003 ). Sometimes inverse items are used to better 
capture a concept. For example, research on anxiety focuses on the negative dimen-
sion of mathematics-related affect. On the other hand, there is research that shows 
that inverse items form scales with lower reliabilities (Chamberlain & Cummings, 
 1984 ), have lower discrimination parameters (Sliter & Zickar,  2013 ), have different 
distributions, and form artifactual factors (Spector, Van Katwyk, Brannick, & Chen, 
 1997 ). There are many hypotheses about the mechanism that makes inverse items 
form their own factors. Examples of this are respondents’ lack of ability to understand 
negatively worded items and their carelessness in reading the items (Spector et al., 
 1997 , Woods,  2006 ). Metsämuuronen ( 2012 ) found that when students with the 
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lowest level of achievement scores were analyzed separately,  inverse   items formed 
their own factor. However, other studies have found that inverse items form their 
own factors with regular populations, for example, Horan, DiStefano, and Motl 
( 2003 ), Schriesheim and Eisenbach ( 1995 ), and Pilotte and Gable ( 1990 ). So, it is 
not clear that the different functioning of negatively worded items can be explained 
only by respondents’ low ability or understanding of the items. Probably, inverse 
 items   are responded differently because of their formulation. Spector et al. ( 1997 ) 
argue that when we measure a construct, people agree with items that are close to 
their level of the construct and disagree with items that are far away from this point 
in either direction. This would suggest that even if a person agrees with an item, he 
or she might not necessarily disagree with the same item inversely worded. That 
means that an inverse item recoded is not exactly equivalent to a positively worded 
item. This idea is not contradictory to the fact that direct and inverse items are mea-
suring the same construct; it only says that the pattern of response to inverse items 
after recoding does not have to be the same as the pattern of response to direct items. 

 We are not able to test if the inverse items are measuring negative dimensions of 
affect, because we do not have enough inverse and direct items in any of the traits 
measured. But we can use CFA models to test if the  inverse items present   a  method 
effect  , which refers to “the infl uence of a particular method that infl ates a correla-
tion among different traits measured with the same method” (Marsh & Grayson, 
 1995 ). To do this, we are going to use CFA models proposed in Marsh and Grayson 
( 1995 ), who suggested a way to separate the effect of the method from the effect of 
the traits measured. We have two methods: measurement with a direct item and 
with an inverse item. The effect of each trait is modeled by a factor, and the method 
effect is modeled as correlations between the unique factors of the items measured 
with the same method and by method factors, where each method factor loads in all 
the items measured with the respective method. 

 If a  method effect   is found in different traits and it can be modeled by one factor, 
this can  be   interpreted as a  response   style (Horan et al.,  2003 ). According to Bentler, 
Jackson, and Messick ( 1971 ), a response style is “a potentially measurable person-
ality variable or trait” and “a style refers to a behavioral consistency operating 
across measures of several conceptually distinct content traits.” A  response style      is 
different from a method artifact,    because it is a characteristic of the people who 
respond to the instrument.  

    Methodology 

 The questionnaire for this study is an adaptation of a questionnaire developed origi-
nally for Finnish fourth grade students (Hannula & Laakso,  2011 ). The scales were 
based on previous instruments (Fennema & Sherman,  1976 ; Midgley et al.,  2000 ) 
and a qualitative study (Pietilä,  2002 ). In order to make responding to the question-
naire simpler, a 3-point Likert scale was chosen. Moreover, the  language   of some 
items was simplifi ed to better suit the young age of the respondents. Details of the 
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instrument development are reported in Tuohilampi et al. ( 2014 ). The previous 
studies suggested that the questionnaire would identify the following scales: self- 
effi cacy in mathematics ( Confi dence ), self-concept in mathematics ( Competence ), 
 MGO , effort ( Effort ),  EOM , and  DOM . The items were originally formulated in 
either English or Finnish, and they were translated into English, Finnish, or Spanish. 

 The scales of  inverse items   were recoded to have the same direction as the direct 
items. The classifi cation and the number of inverse and direct items in each dimen-
sion are shown in Table  1 . In the items of the Spanish version of the questionnaire, 
none of the direct items have a negation, and two of the nine inverse items have a 
negation (both in the competence dimension).

   The data used in this paper are part of the baseline of a longitudinal research 
project on open-ended problem solving, implemented in Finland and Chile. The 
number of participants was 901 third graders from 14 classes that belonged to nine 
schools. The data were collected from March to April 2011 (Santiago) which is the 
beginning of the academic year in Chile. In Chile, there are private, semiprivate, 
and public schools. The data from Chile were collected from all three types of 
schools. On the whole, we assume that the data can be considered to be representa-
tive at least of urban pupils. Moreover, as the purpose of the present article is to test 
two alternative hypotheses for the already observed effect of inverse items, even 
nonrepresentative data would be acceptable. 

    Statistical Analysis 

 We used descriptive statistics to analyze the distribution of the items. The statistics 
used were average, standard deviation, and skewness. The skewness gives informa-
tion about the asymmetry of the distribution of each item. 

   Table 1    Example and number of  items   in each trait measured   

 Trait measured  Example of an item 
 Direct 
items 

 Inverse 
items 

 Total 
items 

  Cognitive   Self-competence 
( Competence ) 

  I have made it well in 
mathematics  

 1  3  4 

 Self-confi dence 
( Confi dence ) 

  I am sure that I can learn 
math  

 4  0  4 

 Diffi culty of 
mathematics ( DOM ) 

  Mathematics is diffi cult   1  2  3 

   Motivational     Mastery goal 
orientation ( MGO ) 

  On every lesson ,  I try to 
learn as much as possible  

 5  0  5 

  Behavioral   Effort ( Effort )   I always prepare myself 
carefully for exams  

 3  1  4 

  Emotional   Enjoyment of 
mathematics ( EOM ) 

  I have enjoyed pondering 
mathematical exercises  

 2  3  5 

  Total number of items in the questionnaire   16  9  25 
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 Tuohilampi et al. ( 2014 ) have done an exploratory factor  analysis   of the data and 
reported the structure and interpretation of the factors. We show the same analysis 
here to focus only on the behavior of inverse and direct items. To get a more easily 
interpretable solution, we used the varimax rotation and the principal component 
analysis estimation method. The analysis was done over the matrix of correlations 
because the scale of the items was not important. The criterion for determining the 
number of factors was the number of eigenvalues greater than 1. 

 To model the effect of  inverse   items, we use CFA models. The models estimated 
are a subset of the models used in Marsh, Scalas, and Nagengast ( 2010 ) and Lindwall 
et al. ( 2012 ). To state a baseline model for  future   comparisons, we employed Model 
1 which represents the theoretical model and does not take into account the inverse 
item issue. In this model each item loads in the factor representing the trait mea-
sured (trait factor) and the correlations between  trait factors   are free parameters 
estimated by the model (Fig.  1 ).

   To model the method effects, we  estimated   Model 2 and Model 3. Model 2 explains 
the method effect as correlations between the unique factors of the inverse items. 
Model 3 models the method effect as a method factor that loads in all the inverse 
items. In this research, there are two methods of measurement: direct or inverse. 
The models used here only test an inverse item effect. It is also possible to model a 
direct item effect (the models are analogous to those used for inverse items). 

  Fig. 1    CFA models estimated. Each rectangle represents an item of the questionnaire, the label I 
means inverse item, and the label D means direct item. F1, F2, F3, F4, F5, and F6 represent  the   trait 
factors for  Competence ,  Confi dence ,  Effort ,  EOM ,  DOM , and  MGO , respectively. MF represents a 
method factor. The  empty circles  pointing to items represent unique factors       
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There are also models that account simultaneously for inverse and direct item 
effects. Examples of models that account for an inverse item  effect  , a direct item 
effect, and both effects can be found in Lindwall et al. ( 2012 ) and Marsh et al. 
( 2010 ). Models that consider direct item effects were also estimated but showed 
worse fi t or were not identifi ed. 

 Another possibility to account for the inverse item effect would have been to 
test the hypothesis of a negative and a positive vision of affect in each trait. 
However, this method would require more direct and inverse items in each dimension 
than we had. 

 Descriptive statistics, t-test, and exploratory factor analysis were estimated with 
the software SPSS 21. The CFA models were estimated with the software AMOS 
21. Since  the   items are ordinal variables which take three possible values, we could 
not assume that they are normally distributed. That is why we used bootstrapping 
with the maximum likelihood (ML) option to estimate the model. ML with non- 
normal variables gives consistent and unbiased estimates, and the bootstrap allows 
us to do statistical testing without distribution assumptions in the data (West, Finch, 
& Curran,  1995 ). AMOS 21 is not able to do bootstrapping with missing data, so the 
CFA models were estimated with the data of  N  = 578 students that have complete 
responses. The method used to make inferences about the parameters of the model 
was bias-corrected percentile method, and the bootstrap took 500 samples. 

 In confi rmatory factor analysis, there are several fi t indexes. We choose the  χ  2  
statistics and also the GFI, AGFI, and RMSEA which give information about the 
absolute fi t of the model to the data. CFI gives information about how good the 
model is in comparison to a baseline model; AIC and BIC are fi t indexes that include 
not only the fi t of the model but also the number of parameters and permit compari-
son between non-nested models (Byrne,  2010 , Hu & Bentler,  1995 ). 

 A value of  RMSEA   lower than 0.05 is considered a good fi t, between 0.05 and 
0.08 is considered an acceptable fi t. In the case of CFI, a value higher than 0.97 is 
interpreted as good fi t and between 0.95 and 0.97 an acceptable fi t. For GFI and 
AGFI, a value higher than 0.95 means a good fi t and between 0.90 and 0.95 an 
acceptable fi t. Finally for the  χ  2 /d.f. index, a value lower than 2 shows a good fi t and 
between 2 and 3 shows an acceptable fi t (Schermelleh-Engel, Moosbrugger, & 
Müller,  2003 ). AIC and BIC are useful for making comparisons between models. In 
both indexes a lower value implies a better fi t. 

 We used different kinds of fi t indexes because each one emphasizes a different 
aspect of good fi tting. Also, to use all of them gives us a good perspective about the 
fi t of the model with the data.   

    Results 

 For each item descriptive statistics were estimated (average, standard deviation and 
skewness). We separated the items in two groups: direct items (N=16) and inverse 
items (N=9) and then compared the items statistics in each group. Table  2  shows 
that the inverse items and the direct items were statistically signifi cantly different in 
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all the descriptive item statistics (average, standard deviation, skewness). This does 
not mean that the items measure different constructs or traits, but shows that 
something worked differently with these items.

   The EFA analyzed here is the same as in Tuohilampi et al. ( 2014 ). Tuohilampi 
and colleagues analyzed two solutions of the Chilean data, a 3-factor and a 6-factor 
solution. In the 3-factor solution, the inverse items formed their own factor. We 
present  in   Table  3  the matrix of loadings of the 6-factor solution. The labels of the 
factors correspond to the analysis of the factor structure made in Tuohilampi et al. 
( 2014 ). In the present paper, we are going to focus only on the different behavior of 
inverse and direct items.

   The dimensions  Confi dence  and  MGO  do not have inverse items, so we are not 
going to analyze them here. We are going to focus on  Competence ,  EOM ,  Effort , 
and  DOM . 

 The dimension  Effort  only has one inverse item, and this item loads in the   Effort  
factor     , but also has a high loading in the  EOM  factor. The dimension   DOM  has   two 
inverse items and one direct item, and the behavior of their items does not look 
related with an inverse item effect. Finally the dimensions  Competence  and  EOM  
have three  inverse   items each. The inverse items of both these dimensions loaded 
together and separately from direct items. 

 The behavior of   Competence  and  EOM  items s  upports the hypothesis that the 
inverse items were understood by the students because without students’ understand-
ing them, we probably would not have the inverse items of a dimension loading in 
the same factor. 

 Also the tendency to have inverse items loading in different factors from direct 
items shows that there is an inverse item effect, and that this effect is over different 
dimensions. 

 Having the evidence from the exploratory factor analysis of an inverse item 
effect, we proceeded to model this with confi rmatory factor analysis (CFA)  to 
  understand this effect. We cannot expect a good fi t from Model 1, because we know 
that there is an inverse item effect. We can see the fi t in Table  4 , where the fi t 
indexes of Model 1 show a fi t acceptable or bad. The two models that account for 
the method effect are signifi cantly better than Model 1 because the decrease of the  χ  2  
statistics is signifi cant. It is important to remark that they are better taking into 

   Table 2    Average, standard deviation, and t-test of  different   item statistics for direct and inverse 
items   

 Average of item 
statistics 

 Standard 
deviation of 
items statistics 

 t-test for comparing item 
statistics between direct 
items and inverse items 

  Statistic   Direct 
items 

 Inverse 
items 

 Direct 
items 

 Inverse 
items 

 t  d.f.   p -value 

  Item average   2.60  2.24  0.17  0.25  4.27  23  .00 
  Item standard deviation   0.56  0.74  0.07  0.03  −7.39  23  .00 
  Item    skewness     −1.33  −.49  0.81  0.53  −2.76  23  .01 
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   Table 3     Factor loadings   for a varimax rotation of an exploratory factor analysis   

 Item  EOM  MGO  Confi dence 
 Easiness 
and fun 

 Competence 
(inverse)  Effort 

  1.d Effort: hardworking   −.004  −.040  .285  .076  −.059  . 698  
  5.d Effort: preparing carefully 
for exams  

 .008  .287  .024  .218  .031  . 607  

  14.d Effort: much working   .059  .410  .022  .142  .004  . 500  
  19.i Effort: working too little   . 446   .011  −.030  −.172  .312  . 458  
  6.i Competence: not that good   .204  .092  .076  −.009  . 706   −.010 
  8.d Competence: have made it 
well  

 −.041  .171  .136  . 586   .249  .152 

  9.i Competence: not the type 
who can  

 .057  .031  .062  .116  . 748   −.022 

  16.i Competence: weakest 
subject  

 .374  .002  .005  .199  . 495   .094 

  3.d EOM: enjoy pondering   .180  .313  .094  . 431   −.093  .209 
  15.d EOM: pleasant to 
calculate  

 .193  .195  .038  . 591   −.023  −.073 

  18.i EOM: has been something 
of a    core    

 . 705   .075  .020  .104  .200  −.115 

  22.i EOM: boring to study   . 772   .192  .048  .106  .059  .138 
  23.i EOM: mechanical and 
boring subject  

 . 743   .117  .102  .161  .083  .034 

  17.d DOM: easy   .106  −.051  .196  . 652   .087  .183 
  20.i DOM: laborious   .281  −.201  .087  . 371   .086  −.011 
  24.i DOM: diffi cult   . 434   −.066  .170  .314  .275  .108 
  4.d Confi dence: can get good 
grade  

 −.097  .160  . 585   .209  .204  .158 

  11.d Confi dence: can succeed   .081  .062  . 701   .134  .091  .164 
  13.d Confi dence: would handle 
more diffi cult  

 .051  .318  . 631   .039  .010  .089 

  21.d Confi dence: confi dent 
that can learn  

 .256  .222  . 538   .136  −.076  −.088 

  2.d MGO: want to learn lots of 
new things this    year    

 −.115  . 681   −.016  .223  .109  .069 

  7.d MGO: want to understand 
perfectly all the tasks  

 .053  . 549   .196  .050  .104  .153 

  10.d MGO: try to understand 
as much as possible  

 .086  . 518   .164  −.017  .094  .258 

  12.d MGO: intend to develop 
mathematics skills  

 .166  . 615   .252  −.039  −.010  −.061 

  25.d MGO: intend to learn lots 
of new mathematics skills  

 .311  . 533   .261  .053  −.190  −.020 

  Inverse items are labeled with the form XX.i and direct items are labeled XX.d 
 The total variance explained by the factors is 10.5, 9.6, 7.7, 7.5, 7.0, and 6.7 % for the  EOM ,  MGO , 

 Confi dence ,  easiness and fun ,  Competence  (inverse), and  Effort  factors, respectively  
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account their greater number of parameters because Model 1 has higher values of 
AIC and BIC indexes than Models 2 and 3, which means that Model 1 has a worse 
fi t. This supports the hypothesis of an inverse item effect.

   The models that account for the  method effect   present a good fi t for the data 
(Table  4 ). So we were able to describe the effect of inverse items with two models. 
Regarding the comparative fi t indexes, AIC favors Model 2 and BIC favors Model 3, 
   so they do not help to make a choice between these models, only to inform us that 
they are better than Model 1. Therefore, considering that both models have a good 
fi t, we chose the simpler one, Model 3. This model is much more parsimonious, and 
even though mathematically it is not nested in Model 2, theoretically, if Model 3 
explains the data well, this implies that Model 2 is also going to do it. In Model 3, 
we are explaining with one factor the effect of inverse items in four different traits. 
This model proposes that the effect of the method  is   one-dimensional. In Model 2 
the effect of the inverse items could be specifi c and different in each trait. 

 Regarding the loadings of the items in the factors, we can see in Table  5     that the 
loadings that relate items to trait factors are signifi cant in all models. In Model 3, 
all the loadings from the method factor were signifi cant. Regarding correlations, 
all the correlations between trait factors were positive and signifi cant in the three 
models (Table  6 ). In Model 3 the highest correlation between trait factors was 
found  between    Competence  and  DOM . This is coherent with the exploratory factor 
analysis made with Finnish data where  DOM  was merged with the items of 
 Competence . The explanation is that the impression of mathematics diffi culty in 
general merges into the impression of own skills in mathematics (Tuohilampi 
et al.,  2014 ). In Table  6 , we can see that the estimated correlation between  Effort , 
 Competence , and  EOM  with the  MGO  and  Confi dence  factors was lower in Model 
1 than in Models 2 and 3. So, if we ignore the effect of inverse items, the correla-
tions between factors having inverse items with factors having only direct items are 
underestimated. For space reasons we do not show the correlations between the 
unique factors of inverse items in Model 2, but as a summary from the  36   estimated 
correlations, 35 were statistically signifi cant considering  p -values lower than 0.05. 
It is important to remark that mostly all the parameters in the models were signifi -
cant, this means that parameters are not redundant and that there is an infl uence of 
the traits and the methods.

    Table 4    Model  fi t   indexes   

 Number of 
parameters   χ  2   d.f.   χ  2 /d.f.  GFI  AGFI  CFI  RMSEA  AIC  BIC 

  Model 1   65  661.7 **   260  2.55 a   .90 a   .88 a   .85  .052 a   791.66  1075.02 
  Model 2   101  330.6 **   224  1.48 g   .96 g   .94 g   .96 g   .029 g   532.63  972.95 
  Model 3   74  399.2 **   251  1.59 g   .95 g   .93 g   .94 g   .032 g   547.23  869.84 

  The indexes with  g  indicate a good fi t and indexes with  a  indicate an acceptable fi t 
  ** Indicates  p -value < 0.01  
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        Conclusion and Discussion 

 In mathematics-related affects, inverse statements are very informative and 
cannot always be replaced by direct items. It is important to use inverse items because 
of their content, not only as a methodological tool to avoid acquiescence bias. 

   Table 5    Standardized  structural coeffi cients and  p -values   for the three models estimated   

 Parameter 

 Model 1  Model 2  Model 3 

 Estimate  Estimate  Estimate 

  8.d ← Competence   .450 **   .685 **   .655 **  
  9.i ← Competence   .494 **   .315 **   .390 **  
  16.i ← Competence   .589 **   .314 **   .380 **  
  6.i ← Competence   .548 **   .286 **   .372 **  
  21.d ← Confi dence   .489 **   .488 **   .489 **  
  13.d ← Confi dence   .574 **   .575 **   .574 **  
  11.d ← Confi dence   .586 **   .581 **   .582 **  
  4.d ← Confi dence   .568 **   .573 **   .572 **  
  19.i ← Effort   .359 **   .297 **   .333 **  
  14.d ← Effort   .517 **   .546 **   .545 **  
  5.d ← Effort   .533 **   .547 **   .548 **  
  1.d ← Effort   .472 **   .489 **   .487 **  
  18.i ←    EOM     .647 **   .281 **   .357 **  
  22.i ← EOM   .755 **   .430 **   .511 **  
  23.i ← EOM   .727 **   .399 **   .468 **  
  3.d ← EOM   .360 **   .572 **   .574 **  
  15.d ← EOM   .347 **   .436 **   .439 **  
  17.d ← DOM   .528 **   .682 **   .668 **  
  24.i ← DOM   .670 **   .513 **   .548 **  
  20.i ← DOM   .369 **   .263 **   .294 **  
  25.d ← MGO   .554 **   .561 **   .562 **  
  12.d ←    MGO     .517 **   .511 **   .511 **  
  10.d ← MGO   .491 **   .485 **   .485 **  
  7.d ← MGO   .528 **   .528 **   .527 **  
  2.d ← MGO   .483 **   .487 **   .488 **  
  24.i ← MF   .339 **  
  20.i ← MF   .232 **  
  19.i ← MF   .437 **  
  6.i ← MF   .389 **  
  9.i ← MF   .277 **  
  16.i ← MF   .470 **  
  18.i ← MF   .578 **  
  22.i ← MF   .563 **  
  23.i ← MF   .558 **  

  The  p -values were calculated with bootstrapping 
  ** Indicates  p -value < 0.01  
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However, it is clear that using inverse  items   can produce problems as was the case 
in our study. In this work we found a different functioning of inverse items in com-
parison to direct items, but this difference was a systematic behavior in most of the 
traits measured with inverse items. Horan et al. ( 2003 ) found similar results in a 
model of self-esteem, school attitudes, and locus of control (a systematic effect of 
inverse items in all the traits) and interpreted it as a  response style      effect and not as 
a methodological artifact. Response style is something more substantial than arti-
facts because it is a characteristic of the people and can be associated with a poten-
tially measurable personality variable or trait (Horan et al.,  2003 ). Because of the 
systematic behavior of  inverse items   and our ability to model the traits measured 
when we took into account this effect, we conclude that Chilean third graders under-
stood the questionnaire and that the different results for inverse items were not due 
to lack of understanding. If this had been the case, the behavior would have been 
more chaotic. Also in the Chilean data, lower reliabilities were found compared 
with the Finnish data (Tuohilampi et al.,  2014 ). The method effect may be one cause 
for the lowered reliabilities in the scales that contain inverse and direct items. 

 The important fact is that we found a good model (Model 3) for the structure of 
mathematics-related affects and beliefs of Chilean  third graders   considering fi t, 
 parsimony, and the theoretical assumptions. In this model the data are well explained 
considering trait factors that represent the measured theoretical dimensions and a 
method factor that accounts for the inverse item effect. 

 We were not able to test the hypothesis of a negative and a positive vision of affect. 
To do this, it would have been necessary to have several direct and inverse items  in   

    Table 6    Estimated correlations between  latent variables and  p -values   for the three models   

 Parameter 

 Model 1  Model 2  Model 3 

 Estimate  Estimate  Estimate 

  EOM ↔ DOM   .670 **   .721 **   .681 **  
  Competence ↔ MGO   .313 **   .434 **   .428 **  
  Competence ↔ Confi dence   .445 **   .627 **   .614 **  
  Confi dence ↔ EOM   .395 **   .669 **   .635 **  
  Confi dence ↔ Effort   .591 **   .583 **   .586 **  
  Effort ↔ MGO   .694 **   .683 **   .682 **  
  Confi dence ↔ MGO   .696 **   .696 **   .696 **  
  EOM ↔ MGO   .420 **   .687 **   .649 **  
  DOM ↔ MGO   .351 **   .338 **   .353 **  
  Competence ↔ Effort   .438 **   .559 **   .541 **  
  EOM ↔ Effort   .440 **   .631 **   .599 **  
  Effort ↔    DOM     .516 **   .544 **   .545 **  
  Competence ↔ DOM   .777 **   .754 **   .764 **  
  Competence ↔ EOM   .660 **   .750 **   .605 **  
  Confi dence ↔ DOM   .524 **   .577 **   .582 **  

  The  p -values were calculated with bootstrapping 
  ** Indicates  p -value < 0.01  
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each dimension, and this was not the case in our questionnaire. It is therefore important 
to validate these results with other types of research techniques that allow us to 
understand the process involved in answering inverse items that change the pattern 
of responses. Also it would be very interesting to explore why this pattern was not 
present in the Finnish data. With the models tested here, we know that the inverse 
 item   effect could be model as a one-dimensional factor uncorrelated with trait fac-
tors, but we cannot reject the hypothesis of a positive and negative view of affect. 
The key result is that the effect of inverse items in different traits could be modeled 
with one factor. This shows us that inverse items systematically elicit a different 
behavior from Chilean students that we interpreted as a  response style     . Why Chilean 
third graders have this response style is something to be researched. One hypothesis 
is that in Chile, the subject mathematics is special; it is not the same to fail in math-
ematics than in other subjects; usually, being good in mathematics is seen as being 
“intelligent.” This focus on mathematics is reinforced by national assessments that 
evaluate mathematics and Spanish each year at many grade levels (history and 
sciences are also evaluated, but less frequently). The PISA 2012 study shows that 
Chile is a country where students have high levels of mathematics anxiety (OECD 
 2013 , p. 102). This could make students react differently with the inverse items of 
mathematics-related affect regardless of the specifi c trait measured.     
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      On the Role of Corporeality, Affect, 
and Metaphoring in Problem-Solving                     

       Nicolás     Libedinsky     and     Jorge     Soto-Andrade    

    Abstract     We explore the role of corporeality, affect, and metaphoring in problem- 
solving. Our experimental research background includes average and gifted Chilean 
high school students, juvenile offenders, prospective teachers, and mathematicians, 
tackling problems in a workshop setting. We report on observed dramatic changes 
in attitude toward mathematics triggered by group working for long enough periods 
on problem-solving, and we describe ways in which (possibly unconscious) met-
aphoring determines how effi ciently and creatively you tackle a problem. We argue 
that systematic and conscious use of metaphoring may signifi cantly improve perfor-
mance in problem-solving. The effect of the facilitator ignoring the solution of the 
problem being tackled is also discussed.  

      Introduction 

 The relevance of problem-solving for the teaching and learning of mathematics has 
become commonplace nowadays. In the Western world, this has been triggered to a 
great extent by the pioneering taxonomy of Pólya ( 1945 ), as reported in fi rst person 
by Schoenfeld in Arcavi, Kessel, Meira, and Smith ( 1998 ), Appendix A. Different 
approaches to problem-solving in mathematics and  mathematics education   have 
emerged in the course of time (Schoenfeld,  1985 ,  1992 ,  2010 ,  2012 ; Silver,  1985 ), 
some of them having their roots before the twentieth century, like the Japanese 
problem-solving approach, described in Isoda and Nakamura ( 2010 ) and Isoda and 
Katagiri ( 2012 ). 

 Our main working hypotheses regarding problem-solving concern the role of 
metaphoring, cognitive mode switching, and embodiment. More precisely, we 
claim that  metaphoring   may arise naturally as a response to a problematic situation 
the learners are involved in, implying quite often a change in the cognitive mode or 
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style of the learner. Moreover, we claim that corporeality plays also a fundamental 
role in problem-solving since we do not just tackle or solve problems “in our heads” 
but through the body, mind, and affect (Hannula,  2013 ). 

 Our purpose in this paper is to bring grist to the mill of our hypotheses by pre-
senting various down-to-earth cases where the implementation of the sort of 
approach we intend to foster makes a dramatic difference to the learner’s under-
standing, feeling, and performance. 

 To this end, we report on some case studies of problem-solving with a wide 
spectrum of learners, ranging from average or gifted regular students majoring in 
science as well as in social science and humanities to primary school teachers from 
rural areas in Chile and juvenile offenders engaged in a social reinsertion program. 

 Let us recall fi rst some basic facts and references regarding metaphoring, cogni-
tive modes, and corporeality. 

 The “ metaphorical approach  ” we adhere to in mathematics education has been 
progressively laid down during the last decades (English,  1997 ; Lakoff & Nuñez, 
 2000 ; Presmeg,  1997 ; Sfard,  1997 ,  2009 ; Soto-Andrade,  2006 ,  2007 ,  2013 , vom 
Hofe,  1995 , and many others), as (conceptual) metaphors are not being regarded as 
simply rhetorical devices as they classically were but as powerful cognitive tools 
helping us to build or grasp new concepts, as well as to solve problems in an effi -
cient way. 

 Well-known examples of  conceptual metaphors   in mathematics education are 
“subtraction is going backwards;” “an equation with one unknown is a balanced 
pair of scales with one incognito weight;” “probabilities are weights, or masses;” “a 
random walk is a fi ssion process, or an iterated splitting or sharing;” and “a polygon 
is a closed space between crossing sticks.” 

 The concept of cognitive modes, or “cognitive styles”    in French, emerged from 
work by Luria ( 1973 ) and was further developed by Flessas ( 1997 ) and Flessas and 
Lussier ( 2005 ), who pointed out to their impact on the teaching–learning process. A 
cognitive mode is defi ned nowadays as one’s preferred way to think, perceive, and 
recall, in short, to cognize. It reveals itself particularly in problem-solving. To gener-
ate what they call the four basic cognitive modes, Flessas and Lussier ( 2005 ) combine 
two dichotomies: verbal–nonverbal and sequential–nonsequential (or simultaneous), 
closely related to the left–right hemisphere and frontal–parietal dichotomies in the 
brain (Luria,  1973 ). This affords four basic cognitive modes:  verbal – sequential ,  ver-
bal – simultaneous ,  nonverbal – sequential , and  nonverbal – simultaneous . This may be 
supplemented with Schwank’s dichotomy  predicative – functional , also described as 
 structural – dynamic  (Schwank,  1999 ) to provide  eight   cognitive modes in all. 

 As said before, one of our hypotheses is that the most meaningful and signifi cant 
metaphors arising in a problematic situation will involve a cognitive mode switch 
for the learner. Moreover, we hypothesize that the ability to switch from one way of 
cognizing to another is trainable. 

 Regarding  corporeality,   one of our basic tenets, i.e., the importance of bodily atti-
tude (e.g., standing and working on nonpermanent vertical surfaces) in cooperative 
problem-solving, has already been highlighted by Liljedahl ( 2014 ). For an authorita-
tive survey on the role of affect in problem-solving, we refer to Hannula ( 2013 ). 

 We now proceed to present our case studies.  
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    Problem-Solving by Juvenile  Offenders  : 
A Multiple Case Study 

 A big challenge in Chilean society is the reeducation and reinsertion of juvenile 
offenders, guilty of various felonies as well as misdemeanors. This challenge is 
being addressed, among other actions, by a joint program run by the National Offi ce 
for Minors (Servicio Nacional de Menores (SENAME)) and the Faculty of Sciences 
of the University of Chile that involves mathematical training workshops held at the 
University for small groups of minors from SENAME. Usually, these minors are 
dropouts from high school whose education is scanty and fragmentary, to say the 
least. 

 To work with these young persons (aged 18–22), we have implemented a highly 
metaphorical, enactive, and visual approach (Presmeg,  1997 ,  2006 ; Soto-Andrade, 
 2006 ,  2007 ,  2013 , Soto-Andrade & Reyes-Santander,  2012 ), eliciting a much higher 
motivation than traditional teaching. 

 We report here on the outcomes and performance of the juvenile offenders in a 
workshop carried out in 2011–2012 and 2014, where an open-ended  Finnish   prob-
lem (Pehkonen,  1995 ) was proposed. The workshops lasted one semester and they 
had 7–10 students. 

 Our main specifi c working hypothesis was that student-centered, open-ended, 
and creative problem-solving activities  that   can relate to the personal and social 
needs of the pupils and their past experiences, in the sense of Pehkonen ( 1995 ) and 
Järvinen and Twyford ( 2000 ), were especially suited to the case of young subjects, 
like our juvenile offenders. Since they have developed remarkable skills to survive 
in hostile or repressive environments, we hypothesized that creativity and meta-
phorical activity may be more spontaneous in them than in “regular” students and 
that emerging idiosyncratic metaphors might be of signifi cant help for them to solve 
the challenges proposed. 

 The methodology consisted in observing and interviewing the students as they 
carried out the activity described below. Records of this observation comprised 
videos, written and drawn production of the students, and some transcriptions. 

 In 2011, 2012, and 2014, we carried out a 60-min work session on the following 
Finnish open-ended problem (Pehkonen,  1995 ): 

  Partition a square in four equal  ( i.e .,  congruent )  pieces in four different ways . 
 A sample of solutions fi gured out by the juvenile offenders in 2011–2012 is given 

in Figs.  1  and  2 . A whiteboard of solutions obtained in 2014 is shown in Fig.  3 .
     First, they found quickly the most obvious three ways to partition the square and 

realized that horizontal and vertical stripes were “the same,” but they had a hard 
time fi nding a fourth (essentially) different way. During a lapse of approximately 20 
min, they generated however an interesting array of wrong answers (see fi gures 1,2 
and 3 above), each on his own. Since no correct solution emerged for a while, the 
facilitator of the workshop (JSA) had the idea to share their wrong solutions on the 
whiteboard, in particular the “absurd” concentric squares solution shown below. 
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 Shortly afterward, one student got the idea of drawing a line upward from the 
center of the square to the border, “deviating from the straight line upwards, turning 
a bit to the left” in his  own   words. Notice here the heavy metaphorical content of this 
description that applies to his own condition: in Spanish, indeed, “desviarse del 
camino recto” (“to deviate from the straight or righteous path”) is a very common 

Drawing Comments

Juvenile offenders:

Claudio 1 

Notice the incomplete 
partition. 

Claudio 2

Notice the absurd concentric
solution, with  central
symmetry

Two classical solutions.

A remarkable solution with 
central symmetry

  Fig. 1    Partitioning the  square  , juvenile offenders 2011–2012       

  Fig. 2     Jaime’s   partitions       
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expression. Then all sorts of “deviations” popped up (see Fig.  1  and Fig.  2 ), provid-
ing a handful of different solutions. One offender, who had worked this out indepen-
dently, when asked how did he get the idea of going out from the center of the square, 
answered: “I got it from the wrong concentric squares solution, but for me the centre 
is not an origin, but a ‘punto de fuga’” (a usual expression in perspective drawing, in 
Spanish, meaning literally “escape point”). He explained then that the wrong solu-
tion of his mate appeared as a framed aisle in perspective to him and that he very 
much liked to draw in perspective. Notice again the metaphor for his life condition. 

 Others like Jaime (Fig.  2 ) also realized that infi nitely many solutions may be 
obtained by “adding and taking away” (fi rst red circle in Fig.  2 ), instead of deform-
ing the straight paths from the center to the border. Notice however his very original 
partition in the second red circle, obtained by “perturbing the straight line with a 
shiver, or a frisson.” In this case, we also see some evidence of his affective mood 
and tensions in his writings next to the squares. This suggests a close  relationship 
  between creativity and affect and emotion (Hannula,  2013 ). 

 One interesting phenomenon is that among these juvenile offenders, dropouts 
from school, who perform very poorly in standard (TIMSS-like)  assessment   tests, 
the same clever idea emerged (take any path from the center of the square to its 
border, and rotate it thrice in a quarter of a turn!) as the one Ragnar (a case study in 
Soto-Andrade,  2006 , who majored later in anthropology) had during a work session 
on this problem with Prof. Pehkonen himself, 2 years ago, in Santiago. The point is 
that Ragnar’s cognitive and educational background (starting at a Waldorf school) 
is wide apart from our juvenile offenders’. 

 Notice the incorrect curved partition in the lower right corner. It has the merit 
however of being the fi rst partition suggested in this session that used curved lines! 
Its author was reluctant to share it, because another offender pointed out immedi-
ately that it was wrong, but he realized afterward that this partition opened up the 
way to many correct curved partitions, in particular the one provided by the hooded 
fi gure—“encapuchado” in Spanish—in the second row. It was christened that way 

  Fig. 3     Square   partitions, juvenile offenders 2014       
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by his author, as a humorous allusion to hooded youngsters that after a pacifi c civil 
demonstration often initiate riots by throwing stones and burning devices to police 
forces (something familiar for these young offenders). 

 Moreover they also remarked, working in an interactive way, that new partitions 
may be obtained from very simple ones, like the one of four squares, by “stealing 
away” a bit from one square on one side and “giving it back” on the other side. So 
they rediscovered by  themselves   Escher’s method of tessellation by compensation 
and were able to fi gure out very quickly how to construct the tessellation shown in 
Fig.  4 , where the superimposed yellow square tile was fi gured out by them and not 
given in advance!

       Problem-Solving  by   University Students: Multiple Case 
Studies 

 When working with these second and third year university students, we tried hard 
to choose exciting and hard problems and to reinforce sense of humor in the class-
room. This motivated the students signifi cantly. 

 We report here on some important aspects of three workshops carried out in 
2013 and 2014. Our main specifi c working hypothesis was that group work is 
extremely important when trying to solve diffi cult problems (much more than in 
other contexts) mostly because what is crucial in solving hard problems is a meta- 
mathematical attitude related partly to self-esteem and partly to “know what to do 
when you don’t know what to do.” 

  Fig. 4     Escher’s   pegasi        
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 The background for our experimental research was the following. Each one of 
the three experiences was a one-semester workshop (3 h a week) for second or third 
year university students majoring in mathematics or mathematics education. The 
fi rst workshop had 30 students, the second one 7, and the third one 10. 

 The methodology consisted in observing and interviewing the students as they 
carried out the activity described below. Records of this observation  comprise   writ-
ten and drawn production of the students and some written observations of them. 

 The work methodology that we are going to explain was developed over the 
years in different workshops of problem-solving and problem invention. In particu-
lar, one important workshop that will not be described here took place in 2001 in a 
high school. Just 1 year after the workshop, the three participating students obtained 
the three gold medals in the Chilean mathematics Olympiad. That was an important 
moment, where the facilitator realized that this methodology had some interest. 

 Our working methodology was work sessions were 180 min long. Students 
worked in self-defi ned groups, standing up, in front of a blackboard, the facilitator 
behind them. They worked on hard problems that needed a whole 180-min work 
session to be solved. More or less half of the time, problems remained unsolved at 
the end of the work session. Answers or solutions were never  given  by the session 
facilitator (NL). Hints toward a solution were only given when the students looked 
demotivated. Problems were selected because of their amusing and interesting 
 character (to foster motivation among the students) according to the facilitator’s 
appreciation, and then, in the following workshops, the opinions of the students of 
the fi rst workshops were taken into account. Half of the time the facilitator did not 
know the solutions of the proposed problems. When a group quickly solved the 
problem, they were asked to generalize the problem or to fi nd a variation. 

 Examples of problems given in the fi rst sessions are:

    1.    Resolve and generalize the “towers of Hanoi” problem.   
   2.    The SEND + MORE = MONEY problem.   
   3.    The prisoners and hat puzzle in the ten-hat variant and generalizations.     

 Motivation is one of the main driving forces for development in mathematics and 
can be developed in different ways, one of which is to fi nd beauty in  mathematics  . 
But some students have to enact situations in order to “see” the beauty. We give 
here one example. 

 The facilitator gave the following problem: prove that the sum over “faces” of all 
dimensions of a hypercube is 3 to the power of the dimension of the hypercube. For 
example, in a usual cube, the sum of the vertices (8) plus the number of edges (12) 
plus the number of faces (6) plus the number of cubes (1) is 27, that is, 3 to the third 
power. 

 The idea is that this is a good lighthouse to discover what a hypercube of more 
than three dimensions is. Students had many different approaches to this problem, 
but one group (we call it group A) was confused about the idea of what a “face” in 
a 4-hypercube looked like. They imagined that it should look like a usual cube, but 
they were not able to “see” this. At some point, one of the students in group A said 
“in a cube, a face is  all the ways to walk  from one vertex to another vertex that is 
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two steps apart.” So they used the  metaphor   that the cube is a “place” where you can 
walk, and “objects” (e.g., faces) inside this place are defi ned by your possible move-
ments. This follows exactly the two patterns that Thurston teaches us (Thurston, 
 1998 ) when he explains how to imagine 3-manifolds: you have to imagine yourself 
inside of the manifold and imagine that you are more or less the same size of the 
geometric object you try to imagine. 

 Then they drew a 4-hypercube in the blackboard by using a natural defi nition of 
the 4-hypercube, sequences of four 0s and 1s, where an edge joins two vertices if 
the corresponding sequences differ in exactly one position. Finally, they drew in 
orange all the “ways to walk from one vertex to another that is three steps apart,” as 
one student said, and suddenly they “saw” a 3-cube (a face) inside the 4-hypercube 
as shown in Fig.  5 .

   Something remarkable about that moment  was   that one student remained com-
pletely silent with eyes wide open. She then told the facilitator that it was the fi rst 
time she had ever experienced something beautiful in mathematics. After that 
moment, her attitude toward mathematics changed dramatically, and she became, 
until the present day, much more interested in mathematics in general. 

 A second remark about these workshops was internal to the facilitator (NL) and 
has to do with the implicit set of metaphors underlying positioning in the classroom. 
The facilitator had set up a “classical classroom” where students were sitting on 
their chairs and the professor wrote on the blackboard. The implicit metaphor in that 
situation is that the professor has “something to give to the students,” while in the 
setting explained before, a reasonable metaphor of what is happening is “the profes-
sor is behind the students to support them if they fall.” 

  Fig. 5    Student’s view of a 3-cube inside a 4-cube       
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 The important point about this is that the facilitator felt, in the fi rst case (classical 
classroom), that students were not smart in general, because they had a hard time 
understanding the theorems. While in the second case, the facilitator was mostly 
impressed by how smart the students were, because their creativity came into play 
and they invented lots of solutions of a different nature to those that the facilitator 
would have thought of. This makes a huge difference in the motivation the students 
will develop, because the opinion the teacher has about their students is something 
intangible but somehow understood by them. 

 Another interesting thing to be remarked was the change in attitude toward the 
problems. More or less in the fourth session of every workshop, the students stopped 
being demotivated if they didn’t solve the problem after a few minutes; they began to 
realize that the objective of the work sessions was to think all together and not to 
immediately solve the problem. Many times they stayed more than the 3 h just because 
they were curious. One girl once told the facilitator that even though she liked the 
workshop, she was thinking to stop coming because Monday night (the workshop was 
held on Mondays) she could not sleep if she had not solved the current problem. 

 Refl ecting on the role of  corporeality   in  these   workshops: the fact that students 
were standing up for 3 h (with the possibility of sitting down from time to time) was 
quite important for them. Many of them bear witness that this was in part the reason 
why they were so active in the sessions. Some groups that sat down reported to have 
much less and slower communication between them. Also we remarked that they 
tend to have a contemplative attitude toward the problem if the problem is hard and 
to lose concentration (having other students thinking with you seems to increase 
concentration levels). 

 Another instance of corporeality involved problems related to surfaces. In one 
problem, the students were asked to visualize the geometry of the “Whitney 
umbrella” (the zeros of the equation  x  2  =  y  2  z ). For a large number of students, the 
task of imagining the surface is impossible without gesturing. For example, one 
group explained the surface to one another by moving their hands outward, with 
joined hands corresponding to the locus  z  = constant. It is also interesting whether 
the students “see” this surface as an umbrella (again a metaphor). 

 One activity in one of the workshops was to play a game where metaphors, cor-
poreality, and affect were deeply intertwined. It is the following game (invented by 
Sebastian Libedinsky) that we call SL game. There are two players. They both have 
30 “objects.” Each round they have to say a natural number (including zero) 
bounded by 30, both at the same time. The biggest number wins the round. Now for 
the next round, each player “loses” the number of objects he said in the fi rst round. 
For example, if player one says 7 and player two says 4 in the fi rst round, then 
player one wins the round, but he has only 23 objects left for the next rounds, while 
player two lost the round but he/she has 26 objects for the next rounds. In each 
round, you cannot say more than the number of objects you still have. The player 
that fi rst wins three rounds wins the game. 

 This game was very fun to play for the students and they laughed a lot playing it, 
so that their sense of humor was highly activated. The atmosphere allowed interest-
ing phenomena to arise. For example, each player’s strategy depended on what 
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metaphor he used for the objects (matches, water, fi ngers, etc.). They had to choose 
one in order to play, but they usually chose one because they thought it was funny. 
Most of them did not realize that their choice would be so determinant. For exam-
ple, players who imagined objects as being water were more likely to invent proba-
bilistic strategies. Players imagining the object as matches were much more likely 
to try to win the fi rst round. One student said laughing: “I want to start a fi re.” The 
players using their fi ngers to represent objects were more likely to say  little   numbers 
(for evident reasons). The game was usually won by players applying some  proba-
bility rule, so   “water” usually won over “fi re.” Another important feature of this 
game is that less gifted students usually beat the more gifted students. 

 Let us make a fi nal remark regarding these workshops. Many times the facilitator 
did not know the answer of a proposed question. Not knowing the answers entailed 
a lot of fun for the facilitator, which translates in a good state of mind of the whole 
class. He didn’t try to solve the problems with the students, but he helped them in 
developing their ideas without knowing himself if a particular way they engaged in 
would lead to a solution. We believe that the fact of ignoring the solution of the 
problems was extremely important for the dramatic change in attitude the students 
had, because they saw a  lot   of meta-mathematical reasoning from the facilitator. He 
really pondered with them whether their approaches had chances to succeed. If he 
had known the answer beforehand, they could have never seen an honest reasoning 
of this type from him. 

 Finally, in these workshops we asked for  problem posing.   We can remark that 
when students try to invent problems they quickly appreciate how diffi cult it is to 
fi nd a problem which is both feasible and pleasant for them and their fellow stu-
dents. This leads them to appreciate much more the problems posed to them by the 
teacher. They start developing sensitivity toward the art of creating or modifying 
problems. And this is a key to deep mathematical thinking, as can be seen by the 
fact that in mathematical research half of the problem is to fi nd a fascinating prob-
lem that usually comes in the form of conjecturing a fascinating phenomenon. But 
to obtain this, you have to solve other problems beforehand. 

 As an example of this point, there was a group of students that realized that in the 
power set of a fi nite set, the operations “intersection” and “symmetric difference” 
are like adding and subtracting in “certain ring.” This was a starting point for many 
natural questions about ring theory that they tried to solve in the course of the 
workshop.  

    Problem-Solving  by   Primary School Teachers: What 
About the Sum of All Exterior Angles of a Polygon? 

 We worked on this problem in 2010 in a session of a professional development 
program in Puerto Montt, Chile, with three groups of 30 in-service primary school 
teachers coming from rural areas in the south of Chile. 
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 The usual approach to this problem, observed among secondary school teachers 
in our country and elsewhere, is to calculate fi rst the sum of interior angles of the 
polygon that depends on its number of sides, then express exterior angles in terms 
of interior angles, calculate diligently, and fi nally arrive to the conclusion that the 
requested sum measures 360° and say, together with their students: We are done! 
We however share Schoenfeld’s claim that we are not done! (Schoenfeld,  2012 ). To 
explore other ways to approach the problem, we suggested to the teachers to meta-
phorize the ingredients of the problem. That is, to try to fi gure out different meta-
phors for a polygon, to begin with. Then, do the same for the exterior angles, which 
they found almost unanimously less friendly than the interior angles. After 10–15 
min, some interesting metaphors emerged, like the following:

 –    A polygon  is   an enclosure bounded by crossing sticks! (Fig.  6 )
 –      A polygon is a “German closed path,” i.e., a chain of rectilinear segments, no 

curves.    

 These metaphors were often expressed in gestural language. 
 The teachers enacted then  these   metaphors. When enacting the fi rst one with 

20 cm long sticks, they got the idea of moving the sticks; sliding them fi rst,  to   better 
see the exterior angles (Fig.  7 ); and then moving them parallel to themselves, so as 
to reduce the size of the selected enclosure, preserving its shape, an idea more likely 
to emerge when you enact your metaphor with concrete material than when you 
work with pencil and paper or just recite the scholastic defi nition of a polygon. In 
this way, they “saw” immediately that the sum of exterior angles is a whole angle.

   They also enacted the second metaphor: one of them gave instructions to another 
one to follow a given polygonal closed path: begin here, go straight ahead 5 steps, 
stop, then turn to your left in 45° (an exterior angle, much more relevant in this 
context than the interior angle!), then go on for 8 steps, etc. until the walker came 

  Fig. 6    Crossing sticks 
 metaphor   for a polygon       
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back to its initial position with her nose pointing in the same direction as when she 
started. This teacher “felt” then that she had made in all a whole turn! We see then 
a friendly, metaphoric, and enactive way to fi gure out the sum of all exterior angles 
of (any) polygon.  

    Discussion 

 We have seen that these approaches elicit positive cognitive and affective reac-
tion from our students (juvenile offenders, university students, and primary school 
teachers). After the workshop sessions, they bear witness to a completely new 
experience of mathematics, when comparing with their previous mathematical 
instruction. 

 In the case of juvenile  offenders  , they appear as a group far more creative and 
autonomous than regular students and also teachers, with the exception of students 
like Ragnar, who have had a fi rst-rate educational and cognitive experience since 
his childhood. This convergence of bright ideas, emerging independently in sub-
jects so wide apart in personal life histories, socioeconomic status, and educational 
studies, when confronted with open-ended problems, with a strong visual, motoric, 
and metaphorical component, is a phenomenon that deserves further study, in our 
opinion. It is also remarkable how metaphors emerging from their life condition 
(breaking the law, punishment, full-time and part-time imprisonment, etc.), like 
“deviating from the straight path” or taking advantage of an “escape point,” play the 
role of tools helping them to solve the proposed cognitive challenge. Our fi ndings 
also suggest that further research should be carried out on the cognitive and thera-
peutic effects of the  metaphorical approach to   mathematical challenges in juvenile 
offenders engaged in a reinsertion process as well as on exploring various means to 
free the expression of creativity in regular students. 

  Fig. 7     Sliding   the sticks        
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 We argue that the examples shown in this paper (hypercube, exterior angles of a 
polygon, Whitney umbrella, objects in SL game) show how crucial to problem- 
solving the role of enactive bodily metaphoring might be. 

 Notice that also in the problem of partitioning the square, when you try to enact 
the procedure of partition, you may realize that you are unconsciously metaphoring 
it as slicing a pizza with a knife, i.e., doing straight cuts, not curved ones. An alter-
native metaphor is however dividing a paperboard square with scissors that opens 
up the possibility of curved portions and so on. 

 Other relevant aspect of  corporeality   is how important it seems to be in long 
problems. We have remarked that standing up makes the whole body work and this 
bodily attitude helps concentrating on the problem and also helps the students to be 
more courageous regarding the ideas they have. It is also easier to share their excite-
ment about a new idea they had, since they can move more easily and excitement is 
usually shared through body language. 

 We think that to work in groups while solving a problem has usually  various   
advantages. A fundamental part of problem-solving is self-esteem, and it is a long 
and hard individual process to develop it. If you work on hard problems in groups, 
your fellow students help in this sense, because they are excited every time you 
have a good idea, probably more than the teacher would be, even if he is very sensi-
tive, because as sensitive as he can be, he will never be able to understand in detail 
what things are diffi cult for her students. 

 The fact that the teacher tries to go with the fl ow of student’s thoughts (not 
imposing his own way of solving a problem) usually makes him discover, as we 
said before, how creative students can be. The resulting teacher’s excitement, hon-
estly communicated to the students, turns out to be very inspiring for them, because 
excitement in this kind of matters is diffi cult to fake. It is very important that the 
teacher feels and expresses admiration of his students (a point strongly emphasized 
in Japanese problem-solving approach). It is very important (and usually underesti-
mated) in a lesson that both the teacher and the students are motivated. The fact of 
not knowing the answer to the problems proposed makes the job of the teacher 
especially stimulating and fun, but we believe that for the teacher to feel comfort-
able doing this, he has to have a good level in solving problem, ideally much higher 
than the students. 

 One thing we have observed is that the  diffi culty level of a   problem is a funda-
mental issue in problem-solving. Someone can be very good in solving “easy 
 problems” (problems that take him 20 min or less to solve) but very bad in solving 
harder problems or even extremely easy problems (3 min problems). We have seen 
examples of people being extremely good at solving hard Olympiad problems (that 
can take them a couple of hours) and quite poor to solve research-level problems or 
very easy problems. We believe that in a class, it is paramount to have all levels of 
problems, because they use different skills for different levels and they can be moti-
vated in different ways. We hypothesize that the fundamental differences in 
responses to these different classes of problems are due to self-esteem and the frus-
tration threshold. 
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 We claim then that by working on problem-solving with enactive metaphors 
like these, learners of all walks of life may generate their own creative approaches 
and think mathematically, something that otherwise would be accessible just to a 
happy few. 

 We would like to fi nish by saying that the expression “problem-solving” seems 
to be a bad metaphor for what students might do. It implies that the problems are 
“outside” in the world and that their relationship to them has to be to solve them, 
something like a gatherer, eating the food he fi nds in the wilderness. We prefer the 
expression “problem development” or “problem looping”    that suggests the idea that 
problems are constantly solved and invented in a circular never-ending process 
involving subjects and a world that co-determine each other (Varela,  1987 ,  1999 ).      
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      Reformulating: Approaching Mathematical 
Problem Solving as Inquiry                     

       Jeremy     Kilpatrick    

    Abstract     The Gestalt psychologist Karl Duncker (1903–1940) characterized problem 
solving as getting from where you are to where you want to be through successive 
reformulations of the problem until it becomes something you can manage. That view 
can be seen in a recent European project to promote inquiry as a means of learning 
mathematics and attracting students to its study. It can also be seen in increased 
research efforts to study problem formulation in mathematics. Considerations of how 
to educate teachers of mathematics to approach problem solving as inquiry should 
include attention to questions of metacognition and to the cognitive demand of a prob-
lem—in much the same manner as George Pólya (1887–1985) promoted such atten-
tion. For Duncker and Pólya, we solve problems by replacing our unsuccessful efforts 
by successful ones through a heuristic inquiry process.  

   One of the fi rst times I rented a car with a GPS (global positioning  system     ), I was 
following my younger son as we drove from the Portland, Oregon, airport to his 
house. The  GPS   gave me what it thought was the shortest route, but my son took 
several shortcuts that the GPS apparently did not know about. Each time he would 
take a shortcut, the GPS would inform me—in what I thought was an increasingly 
exasperated voice—that it was “recalculating” the route. The refrain “recalculating, 
recalculating” echoed in my ears as we made our way to my son’s house. 

 I realized that the GPS was trying to solve the problem of getting me to my son’s 
house while minimizing the distance traveled, and it struck me that what the GPS 
voice was calling  recalculating  was much the same as what Karl Duncker ( 1945 ) 
had labeled  reformulating  in the problem-solving process. In fact, Duncker charac-
terized  problem solving  as a sequence of reformulations:

  The fi nding of a general property of a solution means each time a  reformulation of the original 
problem . (p. 8) 

 The fi nal solution is mediated by successive reformulations of the problem, 
and … these reformulations or solution-phases are in their turn mediated by general heuristic 
methods. (p. 47) 
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   Every time the GPS was “recalculating” the route to my son’s house, it was recasting 
the problem from one of getting from point A to point B via the shortest route to one of 
getting from point A′ to point B via the shortest route. The goal was staying the same 
in this case, but the initial condition, and therefore the solution path, was changing 
every time I departed from the proposed route. Looking back on the episode, I could 
see that the original problem was being broken into a sequence of new problems, each 
arising from the previous one that collectively provided a solution to the original. 

 I have long thought that Duncker’s depiction of problem solving captures the 
essence of what happens when we work at solving a mathematical problem. We need 
to take an active stance toward the problem, recognizing that it may be easier to solve 
if we can break it into parts or recast it in another form. In this paper, I consider some 
of the virtues of looking at problem solving in mathematics as an inquiry process. 

    PRIMAS 

 In  2007 , Michel Rocard and his colleagues on the  European Commission’s High 
Level Group on Science Education   published a report calling for the incorporation 
of inquiry methods into science and mathematics teaching in Europe as a means of 
dealing with what they saw as seriously declining interest by young people in the 
study of science and mathematics. In response, an  international project  — PR omot-
ing  I nquiry in  M athematics  A nd  S cience education across Europe or PRIMAS—was 
established in the Seventh Framework Program (FP7) of the European Commission. 
PRIMAS involved the participation of researchers from 14 universities in 12 
European countries: Cyprus, Malta, Slovakia, Denmark, the Netherlands, Spain, 
Germany, Norway, Switzerland, Hungary, Romania, and the United Kingdom. 
From 2007 to 2013, these researchers worked together to promote the implementa-
tion and use of inquiry-based learning (IBL) in mathematics and science. 

 A special issue of  ZDM   (Maaß, Artigue, Doorman, Krainer, & Ruthven,  2013 ) 
contains discussions of issues raised by the implementation of IBL as well as reports of 
large-scale implementation efforts in various European countries. The term  IBL  “refers 
to a teaching culture and to classroom practices in which students inquire and pose 
questions, explore and evaluate” (Maaß & Doorman,  2013 , p. 887). The  IBL concept   
emerges from a long tradition of education research and practice, much of it from the 
teaching of science, but varying across country contexts. The PRIMAS project did 
much to implement and explore the IBL concept in mathematics teaching.  

    The Context of PRIMAS 

 One of the important  features   of the PRIMAS project was its recognition of the need 
to tailor professional development for teachers to the circumstances in each country. 
Maaß and Doorman ( 2013 ) note that “widespread implementation of IBL [requires] 

J. Kilpatrick



71

a process of scaled-up professional development initiatives” (p. 888). They argue 
for “a model for dissemination and implementation that both addresses core prin-
ciples of IBL and has the fl exibility for implementing and scaling up professional 
development in various national contexts” (p. 888). Consequently, they designed a 
model for PRIMAS that was based on the principles of design research. 

 As Schoenfeld and Kilpatrick ( 2013 ) note, design research needs to draw upon 
“local” rather than “global”  theory  , so that any new materials are accompanied by a 
theoretical rationale as to why those materials should work in a specifi c situation: 
“Attempts at intervention should … provide two things: revised materials and a 
revised theoretical understanding of how students come to grips with that particular 
topic” (p. 908). Global theory, which deals with general cases of professional prepa-
ration and development, needs to be replaced in this case by a local theory suited to 
the features and needs of the country in which the professional preparation and 
development is being given. 

 As an example of the challenge faced by the implementation of IBL, Schoenfeld 
and Kilpatrick ( 2013 ) cite two recent documents from the United Kingdom contain-
ing mathematics  frameworks  : (a) the National Curriculum in England (Department 
for Education & United Kingdom,  2013b ) and (b) the General Certifi cate of 
Secondary Education (GCSE) in mathematics (Department for Education & United 
Kingdom,  2013a ). In both documents, the focus is much more on skills than inquiry, 
and they pose considerable obstacles for anyone attempting to implement IBL on a 
large scale in the United Kingdom. 

 A major argument for implementing IBL stems from declining enrollments in 
STEM (science, technology, engineering, and mathematics)        classes   in European 
secondary schools and the resulting need to change students’ career objectives. 
As Rocard et al. ( 2007 ) observe:

  In recent years, many studies have highlighted an alarming decline in young people’s 
interest for key science studies and mathematics. Despite the numerous projects and 
actions that are being implemented to reverse this trend, the signs of improvement are 
still modest. Unless more effective action is taken, Europe’s longer term capacity to 
innovate, and the quality of its research will also decline. Furthermore, among the popu-
lation in general, the acquisition of skills that are becoming essential in all walks of life, 
in a society increasingly dependent on the use of knowledge, is  also      under increasing 
threat. (p. 2) 

   Wake and Burkhardt ( 2013 ) argue that efforts to achieve the goal of increasing 
interest and enrollments by implementing IBL have been ineffective. They identify 
a number of features that have been acting as barriers to that goal. None of the stud-
ies reported in the  ZDM special issue   (Maaß et al.,  2013 ) provides any evidence that 
changes in instruction by implementing IBL can change students’ career objectives. 
Increased enrollments in school subjects and thereby the pursuit of certain careers 
have ordinarily resulted more from changes in market forces and degree require-
ments than from changes in teaching, and that phenomenon is likely to persist. 
Nonetheless, the goal of implementing IBL in mathematics ought to remain central 
to reform efforts.  

Reformulating: Approaching Mathematical Problem Solving as Inquiry



72

    Inquiry and Problem Solving in  Mathematics   

 Artigue and Blomhøj ( 2013 ) point out that John Dewey was responsible for intro-
ducing  refl ective inquiry  as a basis for pedagogical practice and also that there is 
signifi cant overlap between the concepts of  inquiry  and  problem solving . These 
concepts may overlap, but they have somewhat different connotations. For exam-
ple, problem solving in mathematics assumes the presence of a focus for one’s 
efforts, whereas inquiry in science encompasses all aspects of an investigation. 

 As Schoenfeld and Kilpatrick ( 2013 ) observe, in the United States, inquiry is 
very much in the province of science education, whereas problem solving resides in 
mathematics education. In the  1989  standards of the National Council of Teachers 
of Mathematics, for example, the fi rst standard listed was “mathematics as problem 
solving,” whereas the term  inquiry  does not appear in the document. In contrast, in 
the document containing the US National Science Education Standards (National 
Research Council,  1996 ), the term  problem solving  does not appear in the index, 
whereas the term  scientifi c inquiry  has a half page of index entries (Schoenfeld & 
Kilpatrick,  2013 , p. 905). 

 Outside the United States, the two concepts differ as well. For example, consider 
the assessment frameworks for mathematics and science used in the 2015 Trends in 
International Mathematics and Science Study (TIMSS; Mullis & Martin,  2013 ), in 
the 2012 Program for International Student Assessment (PISA; Organisation for 
Economic Co-operation and Development [OECD],  2013a ), and in the 2015 PISA 
(OECD,  2013b ,  2013c ). Table  1  shows the  frequency   of appearance of the terms 
 problem solving  and  inquiry  or  enquiry  in the documents containing those frame-
works. The term  problem solving  appears in all three mathematics framework docu-
ments and much less—or never—in the science framework documents. In contrast, 
neither  inquiry  nor  enquiry  appears in any of the mathematics framework documents, 
whereas both terms appear in the science framework documents, with  enquiry  

  Table 1    Frequency of 
“problem solving” or 
“inquiry/enquiry” in each of 
three framework document 
pairs  

 Framework  “Problem solving”  “Inquiry” or “enquiry” 

 TIMSS 2015 
   Mathematics  6  0 
   Science  0  6 
 PISA 2012 
   Mathematics  4  0 
   Science  2  23 
 PISA 2015 
   Mathematics  6  0 
   Science  1  62 

   Note . The TIMSS 2015 data are from Mullis and Martin ( 2013 ), 
the PISA 2012 data are from the Organisation for Economic 
Co-operation and Development (OECD,  2013a ), and the PISA 
2015 data are from the OECD ( 2013b ,  2013c ) 
 The TIMSS frameworks use  inquiry ; the PISA frameworks 
use  enquiry.   
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becoming increasingly common in the PISA science frameworks. The PISA science 
frameworks repeatedly refer to “scientifi c enquiry” as a major process involved in 
becoming scientifi cally literate. In the draft 2015 science framework (OECD,  2013c ), 
one of the three competencies required for scientifi c literacy is “Evaluate and Design 
Scientifi c Enquiry” (p. 8).

   Although the fi eld of mathematics education has traditionally focused much more 
on problem solving than on inquiry, projects such as PRIMAS suggest that a focus on 
inquiry might provide some important opportunities for getting students involved in 
the study of mathematics whether or not it can change their career objectives. Scientifi c 
inquiry is not the same thing as mathematical problem  solving, but their common 
features might stimulate new approaches to the teaching of mathematics.  

     Problem   Formulating 

 The topic of problem formulating in mathematics has drawn increased attention in 
recent years, especially because of the work of Ed Silver and Jinfa Cai (see Singer, 
Ellerton, & Cai,  2015 , for examples of that work and its consequences). Almost 
three decades ago, I posed the question, “Where do good problems come from?” 
(Kilpatrick,  1987 ). My answer was that they come from teachers and textbooks but 
too rarely from students. (Today, one might add that they come from the Web—
which is where many poor problems come from as well.) One of the points I tried 
to make in the article in which I posed the question was that problem formulating 
ought to be both a goal and a means of mathematics teaching. 

 Consequently, as one moves to implement IBL in mathematics, one needs to 
consider the role played by problem formulating in inquiry. A teacher can introduce 
a situation to learners as providing the source of a problem. Once the learners have 
constructed a mathematical model of the situation, they can use that model to for-
mulate a problem. The reformulating process then can begin immediately as the 
learners check both the model and its adequacy for the situation. A simple example 
of a situation might be one in which the ages of three people—Ann, Brian, and 
Carl—are given (7, 10, and 13 years, respectively), and the following relations are 
given: Brian is 3 years older than Ann, and Carl is 3 years older than Brian. For a 
mathematical model of the ages, one might choose  a ,  b , and  c  as the three ages, 
respectively, and write  b  =  a  +  3  and  c  =  b  +  3  as the model for the given relations. 
Then one example of a problem posed given this model (and hiding the ages) might 
be that if Carl is 13 years old, how old is Ann? A more  diffi cult   problem would be 
that if the sum of the three ages is 30 years, how old is Carl? As a follow-up, one 
might explore questions of what relations between the ages are determined and 
what relations are undetermined. How might the situation be modifi ed to yield 
another model and other problems? Such questions can help learners see how problems 
are constructed as well as how they are solved. 

 Some of the work on problem formulation has addressed the use of so-called 
open-ended problems in mathematics instruction (Cifarelli & Cai,  2005 ; Cooney, 
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Sanchez, Leatham, & Mewborn,  2002 ; Pehkonen,  1997b ; Silver,  1995 ). Pehkonen 
( 1997a ) considered mathematics problems as either open or closed (i.e., exactly 
explained) with respect to either the starting situation or the goal situation. Problems 
can be open in any of three ways, with either or both situations open, but as Pehkonen 
observed, school mathematics problems are ordinarily closed with respect to both 
situations. He defi ned an “open-ended problem” as having a closed starting situa-
tion and open goal situation (p. 9). He noted that the so-called open-approach 
method—using open-ended problems in the classroom to promote mathematical 
discussion—was developed in Japan in the 1970s (p. 7). At roughly the same time, 
the use of open-ended investigations was being promoted in the United Kingdom. 
Since that time, efforts to promote the use of open-ended problems—as well as 
open problems of other types—have spread around the world (p. 7). It would appear 
that any kind of open or closed mathematics problem can be used to stimulate 
inquiry, but the experience in various countries, including the countries in the 
PRIMAS project, suggests that problems that are open in at least one respect seem 
likely to provide the most fertile sources of IBL.  

    Teacher Preparation 

 Because IBL is not a common practice in most  school mathematics classrooms  , 
teachers need to acquire experience using it in their instruction. Although the 
 PRIMAS project   focused on professional development, an especially opportune 
time for teachers to gain experience with IBL is while they are still being prepared 
to teach. That way, they can see, analyze, and explore various facets of IBL in an 
environment that allows, and should promote, innovative instruction. They need to 
understand what IBL is meant to be as well as how they might put it into their prac-
tice. They need a teacher preparation program that focuses their attention on the 
learning of the students they are teaching. 

 John Dewey (1904/ 1964 ) pointed out that  teaching demands preparation   in 
both theoretical and practical work: A teacher needs to be prepared to address 
questions of the relationship between subject-matter knowledge and educational 
theory and simultaneously to manage the daily routines of classroom practice. 
Consequently, teacher preparation needs two foci. The fi rst focus concerns the 
more theoretical aspects of the  job  : what might be termed  the laboratory approach , 
a forward- looking approach that is “local, particular, situated” (Shulman,  1998 , 
p. 512). Such a focus is essential if the prospective teacher is to understand what 
IBL entails. The second concerns preparation for the practical aspects of the job: 
 the apprenticeship approach , a traditional approach in which past performance 
serves as a model for future performance. One weakness of teacher preparation 
programs in Dewey’s time as well as today is that those programs are dominated 
by the apprenticeship approach, whereas a balance is needed between the two 
approaches. 
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 In a study by Philipp et al. ( 2007 ), the beliefs of prospective teachers who studied 
 children’s mathematical thinking   (some by watching videos only, some by also 
working with individual children) underwent more change than the beliefs of 
prospective teachers who only visited classrooms. The  laboratory approach   was 
only modestly better than an apprenticeship approach in improving the prospective 
teachers’ mathematical knowledge, but it strikingly improved their beliefs about 
children’s learning and thinking. By controlling the mathematical tasks used with 
children, Philipp et al. increased the likelihood that the prospective teachers encoun-
tered situations that had the potential to affect their beliefs. 

 In response to this and other work on teacher preparation, we have revised our 
courses at the University of Georgia for prospective teachers of secondary mathemat-
ics to include more laboratory-approach activities that are designed to provide IBL. 
Two important features of those courses are assisting the prospective teachers to pay 
attention to metacognition and cognitive demand in their teaching. Both metacogni-
tion and cognitive demand are constructs associated with IBL. 

    Metacognition 

 Schoenfeld ( 1987 ) posed the question, “What’s all the fuss about metacognition?” 
He then attempted to explain, to people puzzled about the use of the term by 
researchers in mathematics education, what it meant. Schoenfeld  defi ned    metacog-
nition  in terms of a set of questions:

    1.    Your knowledge about your own thought processes. How accurate are you in 
describing your own thinking?   

   2.    Control or self-regulation. How well do you keep track of what you’re doing 
when (for example) you’re solving problems, and how well (if at all) do you use 
the input from those observations to guide your problem-solving actions?   

   3.    Beliefs and intuitions. What ideas about mathematics do you bring to your work 
in mathematics, and how does that shape the way that you do mathematics 
(p. 190)?    

  Nonetheless,  metacognition  has remained for some time a term used almost 
exclusively by  educational researchers  . The authors of the  National Research 
Council      report  Adding It Up  (Kilpatrick, Swafford, & Findell,  2001 ) avoided using 
it, arguing that most teachers and lay readers would not understand it. It has, 
 however, begun to creep into documents in education. For example,  Singapore’s 
Mathematics Framework      used metacognition as one of fi ve so-called process priori-
ties (see Ginsburg, Leinwand, Anstrom, & Pollock,  2005 , pp. 15–16). It has come 
to be used extensively in discussions of mathematical problem solving. 

 Garofalo and Lester ( 1985 ), like some other researchers, see metacognition as a 
binary phenomenon: “Metacognition has two separate but related aspects: (a) knowl-
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edge and beliefs about cognitive phenomena, and (b) the regulation and control of 
cognitive actions” (p. 163). Surveying the literature on metacognition in  mathematics 
problem solving  , they conclude:

  Lester ( 1983 ) and Schoenfeld ( 1983 ) believe that the failure of most efforts to improve 
students’ problem-solving performance is due in large part to the fact that instruction has 
overemphasized the development of heuristic skills and has virtually  ignored   the managerial 
skills necessary to regulate one’s activity. (p. 173) 

   Garofalo and Lester ( 1985 ) view the work of George Pólya on problem solving as 
failing to address metacognition: “Unfortunately, Pólya’s conceptualization considers 
metacognitive processes only implicitly” (p. 169). That judgment strikes me as sim-
plistic. Even though Pólya ( 1945 ,  1966 ,  1981 ) did not use the term  metacognition  in 
his writings on problem solving, he certainly considered questions of regulation and 
control of one’s cognitive efforts. The heuristic questions and suggestions he gives in 
 How to Solve It  (Pólya,  1945 ) are intended to help the problem solver guide his or her 
work. Here is a problem from one of the  Stanford University Competitive Examinations 
in Mathematics   together with hints drawn from Pólya’s writings that illustrate how he 
wanted the problem solver to think about the problem:

  PROBLEM: Prove the proposition: If a side of a triangle is less than the average (arithmetic 
mean) of the two other sides, the opposite angle is less than the average of the two other angles. 

 HINTS: What is the hypothesis? What is the conclusion? Let  a ,  b , and  c  denote the 
sides, and  A ,  B , and  C  the opposite angles, respectively. Then the hypothesis is that 
 a  < ( b  +  c )/2 and the conclusion is that  A  < ( B  +  C )/2. Look at the conclusion. Could you 
restate it? (Pólya & Kilpatrick, 1974/ 2009 , pp. 11, 27) 

     The questions in the hints—What is the hypothesis? What is the conclusion? 
Could you restate it?—are designed to help guide the solver’s work. They are meta-
cognitive questions that get the solver outside the confi nes of the problem so as to 
analyze its components. 

 Pólya developed his interest in pedagogy at an early age. While a postgraduate 
student at the University of Vienna (1910–1911), he was tutoring a boy in solid 
geometry and had an unforgettable experience that radically affected his approach 
to problem solving. At the beginning of the second volume of   Mathematical 
Discovery      , he recounts that experience:

  It happened about fi fty years ago when I was a student; I had to explain an elementary 
problem of solid geometry to a boy whom I was preparing for an examination, but I lost the 
thread and got stuck. I could have kicked myself that I failed in such a simple task, and sat 
down the next evening to work through the solution so thoroughly that I shall never again 
forget it. Trying to see intuitively the natural progress of the solution and the concatenation 
of the essential skills involved, I arrived eventually at a geometric representation of the 
problem-solving process. This was my fi rst discovery, and the beginning of my lifelong 
interest, in problem solving. (Pólya,  1981 , vol. 2, p. 1) 

   Pólya then shows graphically, using a problem on the volume of the  frustum   of a 
right pyramid, how the solution can be visualized as a sequence of connections, 
building a bridge between what is given and what is unknown (Pólya,  1981 , Vol. 2, 
p. 9). Pólya’s ( 1919 ) fi rst publication on problem solving and heuristics made use of 
this means of expressing how a solution might progress. Two years earlier, when he 
was only 30, he had delivered a speech on teaching at the city hall in Zürich 
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(Alexanderson,  1987 , p. 18), and his publications elaborated the argument he had 
given in that speech (Pólya,  1938 , p. 119). 

 The heuristic suggestions that Pólya ( 1945 ) lists in  How to Solve It —inside the 
front and back covers of the original edition and in the front matter of later editions—
can also be seen as  metacognitive advice   to the problem solver, including the advice 
he gives for understanding the problem and devising a solution plan:

•    What is the unknown? What are the data? What is the condition?  
•   Draw a fi gure. Introduce suitable notation.  
•   Do you know a related problem?  
•   Do you know a theorem that could be useful?  
•   Look at the unknown! And try to think of a familiar problem having the same or 

a similar unknown.  
•   Here is a problem related to yours and solved before. Could you use it?  
•   If you cannot solve the proposed problem, try to solve fi rst some related problem. 

Could you imagine a more accessible related problem? A more general problem? 
A more special problem? An analogous problem?    

 Pólya’s advice for carrying out the plan and looking back at the solution is also 
of a metacognitive nature:

•    Carrying out your plan of the solution, check each step. Can you see clearly that 
the step is correct? Can you prove that it is correct?  

•   Can you check the result? Can you check the argument?  
•   Can you derive the result differently? Can you see it at a glance?  
•   Can you use the result, or the method, for some other problem?    

 Even though Pólya does not differentiate between advice that is heuristic and 
advice that is managerial, it is clear from these two lists that his advice has both 
qualities. For example, to fi nd a more accessible related problem, the solver needs 
to understand how problems might be related and how the proposed problem might 
be modifi ed to make it more accessible. To see the result of a problem-solving plan 
at a glance, the solver needs to be aware of the thinking that led to the result. At the 
University of Georgia, we have found that acquainting prospective secondary math-
ematics teachers with Pólya’s metacognitive suggestions for problem solving helps 
them introduce their students to problem solving as an inquiry process.  

     Cognitive Demand   

 Stein, Smith, Henningsen, and Silver ( 2000 ) identifi ed four levels of cognitive 
demand that a mathematical task can make on the person confronted with the task. 
It can require any of the following:

•    Memorization (of previously seen material)  
•   Procedures without connections (to understanding, meaning, or concepts)  
•   Procedures with connections (to understanding, meaning, or concepts)  
•   Doing mathematics (with complex, nonalgorithmic thinking)    
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 In our courses for prospective teachers, we give them opportunities to observe 
tasks being implemented at different levels in the mathematics classes they are 
observing at local schools. By familiarizing them with the four levels—even 
though it is not always easy for them to distinguish the levels—we are providing 
them with a framework they can use in observing and planning lessons. They 
quickly see how easy it is for a teacher to lower the demand of a task being set for 
the students, and they also see how diffi cult it can be to raise that demand when 
they are planning a lesson or are in the middle of teaching one. By focusing on 
cognitive demand, we are encouraging an inquiry approach to solving mathemati-
cal problems. 

 For example, we asked our prospective teachers to show us how they might 
raise the cognitive demand of one or more tasks. One prospective teacher chose 
the following three tasks from the Balanced Assessment in Mathematics Program 
( 2001 ):

  A circle of radius 8 units is drawn on graph paper with A and B the endpoints of its horizon-
tal diameter. A fi gure is given that shows the circle and the two points.

    1.    The fi rst task is to draw a triangle ABC with C located anywhere on the circle so that the 
area of the triangle is a maximum. The task involves drawing and shading the triangle 
as well as calculating its area and explaining why it is a maximum.   

   2.    The second task is to draw a triangle with half the maximum area and explain why it was 
drawn that way.   

   3.    The third task is  to   fi nd a triangle ABC with minimum area.     

   As given on the Web site, the fi rst task includes drawings of two triangles ABC that 
do not have maximum area so as to show students locations for C that do not solve 
the problem. In her paper, the prospective teacher modifi ed the fi rst task by remov-
ing the drawings, arguing that the task would be more challenging if students were 
asked to create their own examples. The creators of the Balanced Assessment tasks 
were simply trying to help students along toward a solution, but the modifi cation 
does raise the cognitive demand in a useful way. 

 As in so many respects when it comes to problem solving, Pólya ( 1945 ) antici-
pated the question of cognitive demand. He distinguished between routine and 
nonroutine problems, with the latter making a greater cognitive demand even 
though he did not use that terminology: “Routine problems, even many routine 
problems, may be necessary in teaching mathematics but to make the students do 
no other kind is inexcusable” (p. 158):

  There are problems and problems, and all sorts of differences between problems. Yet the 
difference which is the most important for the teacher is that between ‘routine’ and ‘nonrou-
tine’ problems. The nonroutine problem demands some degree of creativity and originality 
from the student, the routine problem does not. … I shall not explain what is a nonroutine 
mathematical problem: If you have never solved one, if you have never experienced the ten-
sion and triumph of discovery, and if, after some years of teaching, you have not yet observed 
such tension and triumph in one of your students, look for another  job   and stop teaching 
mathematics. (Pólya,  1966 , pp. 126–127) 
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         Problem Solving   as Reformulation 

 For some fi nal remarks on reformulation, both Karl Duncker and George Pólya made 
useful observations. Duncker ( 1945 ) saw problem solving as productive reformulation:

  We can … describe a process of solution either as development of the solution or as devel-
opment of the process. Every solution-principle found in the process … functions from then 
on as reformulation, as sharpening of the original setting of the problem.  It is therefore 
meaningful to say that what is really done in any solution of problems consists in formulat-
ing the problem more productively . (pp. 8–9) 

   Similarly, Pólya ( 1945 ) noted that we should modify our reformulations to yield a 
more accessible problem:

  We often have to try various modifi cations of the problem. We have to vary, to restate, to 
transform it again and again till we succeed eventually in fi nding something useful. We 
may learn by failure; there may be some good idea in an unsuccessful trial, and we may 
arrive at a more successful trial by  modifying  an unsuccessful one. What we attain after 
various trials is very often … a more accessible auxiliary problem. (pp. 185–186) 

   Both Duncker and Pólya recognized that  problem   solvers need to take an active 
stance toward a problem, using the tool of reformulation to yield a solution.  

     Coda   

 On a Saturday morning in July several years ago, my family was heading to a reunion 
in upstate New York. We were in two cars, with my younger son and his family lead-
ing the way in a rental car equipped with a GPS, and the rest of us following in our 
car. As we started out of my older son’s neighborhood in Brooklyn, he said, “I hope 
the GPS isn’t going to take us across the Brooklyn Bridge into Manhattan,” which 
was of course exactly what it did. When we reached Manhattan, he said, “Oh, no. 
We shouldn’t go down Canal Street”—a street clogged with Saturday shoppers and 
traffi c. Again, that was where the GPS sent us. Once we had crept all the way across 
Lower Manhattan, we managed to signal my younger son to pull over and convinced 
him to let us lead the way out of Manhattan. 

 The lesson: When reformulating a problem of minimizing a variable, in this case, 
time, one needs to consider factors that might prevent one’s minimizing another 
variable, in this case, distance, from providing an optimal solution. The GPS we had 
may have known how to minimize distance as a way of minimizing time, but it did 
not know how to take another variable such as traffi c congestion into account 
(although there are now GPSs with a live traffi c update capability). Reformulating 
requires an awareness of all dimensions of a problem.     
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      Improving of Mathematical Problem-Solving: 
Some New Ideas from Old Resources                     

     Bernd     Zimmermann    

    Abstract     The main focus of this chapter is on improvement of teaching of 
problem-solving. 

 In the introduction important and to some extent neglected issues of teaching 
problem-solving will be presented and discussed. 

 On this background the following questions and possible answers will be 
addressed: 

 How to combine the traditional mathematical curriculum with problem-solving, 
understanding, and creativity? 

 Pupils can construct rules for calculating with fractions themselves, conjectures 
as well as proofs of the Pythagorean and related theorems. 

 How history might help to better understand and foster mathematical problem- 
solving processes? 

 Observed problem-solving processes of pupils involved in well-known problems 
from calculating the area of a circle, fractions and calculus can be interpreted as 
reinvention of old and important heuristic strategies. 

 Finally, some recommendations are made for teacher education and teachers.  

      Introduction 

 In spite of the tremendous affords concerning improving mathematical problems- 
solving, there are still a lot of obstacles and “problems” with problem-solving. 

  Cycles  “ problem-solving - back to basics ”: During the last years some members 
of the problem-solving community (Schoenfeld,  1992 , p. 336, Lesh,  2006 , p. 18, 
Lesh/Zawojewski,  2007 , p. 763) deplored that there was no sustainable progress in 
research of mathematical problem-solving. Some people claim that at least in the 
USA there are repetitions of 10-years cycles during the last 50 years, going from 
focusing on teaching problem-solving to  teaching the basics and back again 
(Schoenfeld,  1992 , Lesh,  2006 , Lesh/Zawojewski  2007 ). 
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 Lesh/Zawojewski ( 2007 ) conclude that there might be more than these two 
options. Furthermore, Lester ( 2013 ) deplores that very often there are only invented 
new names for old concepts. 

 The situation seems to be different in Europe (and, surely, much more different 
in several other countries), due to more complex  political developments   especially 
during the last 25 years and different systems of values, especially concerning edu-
cation and the image of teachers (cf. Pehkonen, Ahtee & Lavonen,  2007 ). 

 There are some further issues, which seem to prevail in most countries: 
   Constraints of teaching   : A pertaining discrepancy between reality of teaching, 

subjected to test-driven curriculum prescriptions, time limitation, social challenging 
multicultural classes, and high expectations of school-board and parents—e.g., to 
teach according to new “Standards”—puts a lot of pressure and stress on many 
teachers, which might lead again and again to the well-known tradition of teaching 
the basics, not only in the USA. Additionally, there are some problems with poor 
teacher education (cf., e.g., Schoenfeld,  2004 , p. 91, cf. also Hattie,  2003 , p. 7). 

  The role of the teacher :    Problems as the aforementioned ones might help to clar-
ify the importance of the role of the teacher and the quality of teaching—not only 
with respect to problem-solving. Rather often, this issue is not handled in an appro-
priate way (cf. Lester,  2013 , p. 252):

  “As has been noted in the USA in recent years, it is by (such a) focus on the attributes of 
excellent teachers that more faith is being restored in the public school system—which has 
taken a major bashing. The typical redress has been to devise so-called “idiot-proof” solu-
tions where the proofi ng has been to restrain the idiots to tight scripts—tighter curricula 
specifi cation, prescribed textbooks, bounded structures of classrooms, scripts of the teach-
ing act, and all this underpinned by a structure of accountability. The national testing move-
ments have been introduced to ensure teachers teach the right stuff, concentrate on the right 
set of processes (those to pass pencil and paper tests), and then use the best set of teaching 
activities to maximise this narrow form of achievement (i.e., lots of worksheets of mock 
multiple choice exams).” (Hattie,  2003 , p. 1) 

   But

  “Interventions at the structural, home, policy, or school level is like searching for your wal-
let which you lost in the bushes, under the lamppost because that is where there is light. The 
answer lies elsewhere—it lies in the person who gently closes the  classroom door   and per-
forms the teaching act—the person who puts into place the end effects of so many policies, 
who interprets these policies, and who is alone with students during their 15,000 hours of 
schooling.” (Hattie,  2003 , p. 3). 

   Therefore, Hattie ( 2003 , p. 4) concludes:

  “I therefore suggest that we should focus on the greatest source of variance that can make 
the difference—the teacher. We need to ensure that this greatest infl uence is optimised to 
have powerful and sensationally positive effects on the learner. Teacher can and usually do 
have positive effects, but they must have exceptional effects.” 

   According to Hattie,  2003 , 6 pp, expert teachers have (and should have) the fol-
lowing properties:  
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 Lester presents some similar duties, which a skillful mathematics teacher should 
fulfi ll (Lester,  2013 , p. 262):  

      Table 2    Characteristics of good teaching of mathematical problem-solving   

 1. Designing and selecting appropriate tasks for instruction
2. Making sense of and taking appropriate actions after listening to and observing students as 

they work on a task
3. Keeping tasks appropriately problematic for students 

  

 4. Paying attention to and being familiar with the methods students use to solve problems
5. Being able to take the appropriate action (or say the right thing) at the right time
6. Creating a classroom atmosphere that is conducive to exploring and sharing 

  

   Table 1     Characteristics of good teaching   

 • They have deeper and more  integrated content knowledge   and are more able to connect it 
with other domains according to the needs of their students and to their goals 

 • They adopt a problem-solving stance to their work 
 • They are very fl exible 
 • They like to improvise 
 • They make a difference between important and not important decisions 
 • They care for optimal classroom climate 
 • They have a multidimensional complex perception of classroom situations 
 • They are more context dependent and have high situation cognition 
 • They are more adept at monitoring student problems and assessing their level 
 • They give useful feedback to their students 
 • They are profi cient in developing and testing hypotheses about learning diffi culties or 

instructional strategies 
 • They are more automatic 
 • They have high respect for students 
 • They are passionate about teaching and learning 
 • They engage students in learning and develop in their students self-regulation, involvement 

in mastery learning, enhanced self-effi cacy and self-esteem as learners 
 • They provide appropriate challenging tasks and goals for students 
 • They have positive infl uences on students’ achievement 
 • They enhance not only surface, but also deep learning (with understanding) 

 Of course, no teacher is able to fulfi ll all of these criteria in his teaching in every 
lesson, every situation, and every moment. But it seems useful to try to concentrate 
at least on some of these properties and refl ect about them from time to time. 

  Understanding    teaching     of problem-solving as complex problem-solving  (cf. also 
Mason,  2016 ). It is obvious that problem-solving is a real complex and challenging 
mathematical activity (Lester,  2013 , p. 255). This statement holds even more for the 
teaching of problem-solving: It is a very complex and challenging problem to be 
solved by teachers, especially if you think about the long lists of challenges of the 
teacher mentioned in Table  2 !

  “The relative ineffectiveness of instruction to improve students’ ability to solve problems 
can be attributed to the fact that problem solving has often been conceptualized in a simplis-
tic way.” (Lester,  2013 , p. 254, cf. also Lesh/Zawojewski 2007, p. 764). 
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   Therefore it seems reasonable to augment ones understanding of problem-solving 
into the direction of “complex problem-solving,” a paradigm, which has been con-
stituted by the cognitive psychologist Dietrich Dörner. He deals with problems 
included by the following questions: Why does it happen so often, that so many 
mistakes are done when trying to improve conditions for environment, running a 
company, governing a city, or running a nuclear power plant (cf. Dörner,  1997 )? All 
these problems have in common to contain many variables, which permanently 
change, interact, and very often are in-transparent or hidden. That means such prob-
lems are very complex. It is quite obvious to assume that the same holds for teach-
ing, even more for teaching mathematical problem-solving. 

 Furthermore, Dörner and his team developed several computer programs simu-
lating possibilities of interaction with objects just mentioned. They analyzed the 
problem-solving behavior of subjects using these programs (cf. Frensch & Funke, 
 1995 ). 

 Fritzlar tried to transfer these ideas in his dissertation to the teaching of mathe-
matical problem-solving (Fritzlar,  2003 ). He developed a very complex computer 
program which student teachers could use to simulate some important parts of 
teaching. He placed main emphasis on cognitive activities of the pupils and instruc-
tion activities of the teacher. The subjects, using this program, could select a class 
and some learning goals. When starting the virtual lesson, they had many options to 
choose an intervention for their not quite virtual class, because the reactions were 
chosen from a database, constituted by recorded real reactions of pupils of some 50 
classes (grade 4 und 5), which tried to solve a given problem (fold-and-cut problem, 
cf. Fritzlar in Zimmermann, Fritzlar, Haapasalo & Rehlich,  2011 ). The main  goal   
of this program was to support student teachers to become more sensitive for the 
complexity of problem-solving and its teaching. This instrument might also help to 
gain a deeper understanding especially of beginning teachers’ diffi culties in teach-
ing mathematical problem-solving. Furthermore, it might be used as a training 
instrument to improve student teachers’ ability to cope with complex teaching situ-
ation. Of course, such program can be only an additional tool. It cannot substitute 
comprehensive classroom praxis, which remains, of course, to be the most impor-
tant factor in teacher training. 

 One of the advantages of this program is given by the fact that the user could 
revise a decision, if its effect proved to be not productive. He or she can run this 
program several times with different goals, different teaching methods, or different 
classes, too. Most of such possibilities cannot be carried out in reality. 

 A summary of this project can be found in Zimmermann, Fritzlar, Haapasalo & 
Rehlich,  2011 . 

   Implementation     of problem - solving into the classroom . There is a lack of appro-
priate literature which helps teachers effectively to  implement  results of the 
problem- solving research into their everyday classroom-praxis (Lesh/Zawojewski, 
2007, pp. 763, 766; Lester,  2013 , p. 250, Kilpatrick,  1987 , p. 300). This might be 
also one reason that normal classroom-teachers stick or come back to teaching the 
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basics. Furthermore, it may not be suffi cient if textbooks are strongly problem 
oriented to help to make problem-solving alive in the classroom. On the other 
hand, several textbook authors are still reluctant to follow this line too strictly 
because of the constraints of reality (see above and cf. also the paper of Cai, Jiang 
& Hu,  2016 ). 

 A lot of checklists (with teaching resp. problem-solving strategies) and corre-
sponding training for teachers (for teaching) as well as for pupils (for problem- 
solving) seem to be without sustainable effect (cf., e.g., Bauersfeld,  1993 , p. 79, 
Lesh,  2006 , p. 16, Begle,  1979 , cf. also Freudenthal  1991 , p. 46). 

 Therefore—because of the aforementioned lack of appropriate literature and 
methods which could help to implement mathematical problem-solving into the 
classroom—we try to focus in this chapter especially on the teacher. 

 We want to revitalize a very old and well-known method: Presenting authentic 
(original) examples of problem-solving lessons, guided by classroom discus-
sions, reconstructed by the author from his notes and by his memory, augmented 
by some remarks or refl ections concerning courage, patience, self-esteem, fl ex-
ibility, understanding, selecting appropriate problems, heuristics, discovery, 
invention, creativity, constructivist activities, questioning or listening and timing 
(cf. Tables  1  and  2 ). 

 There is a long tradition in such  writing style   in the scientifi c literature: think, 
e.g., of the “Menon-Dialogue” from Platon (Anderson & Osborne,  2009 ), Galilei’s 
“Discorsi” (Galilei,  1985 ), Rényi’s “Dialogues about Mathematics” (Rényi,  1967 ), 
and Lakatos’s “Proofs and Refutation” (Lakatos,  1976 ). But our “dialogues” were 
not invented, but occurred in real classrooms. The aforementioned examples were 
all invented to trigger in the reader a “holistic” picture of the respective 
“philosophy”—e.g., Platon: learning is remembering, Lakatos: Mathematics is cre-
ated by conjectures, proofs, and refutations. We share this holistic view, too, with 
respect to mathematics teaching and learning. 

 Therefore, we try to avoid the well-known method of operationalizing all kind of 
teaching and problem-solving activities by separating them into “tiny, watertight 
compartments” (Hilton,  1981 ). 

 This holistic view should be supported by referring to ideas from history of 
mathematics. “History teaches us how mathematics was invented” (Freudenthal 
 1991 , p. 48). This view does not only help to better understand mathematics of 
today, but it might help the teacher to understand better the re-inventing processes 
and problem-solving processes of pupils, too. 

 Our examples should invite the readers to think about their teaching or to probe 
similar lessons rather than to learn a new vocabulary to talk in a “ scientifi c manner  ” 
about teaching problem-solving. 

 Therefore we prefer more a textbook style, writing about real experience of other 
teachers or my own. 

 So, when trying to do research, I think we must never forget the simple question: 
“What is the use of it”? (Freudenthal  1991 , p. 149). 
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 Thus, one might refer to the following well-known statement in relation to math-
ematics education, too: 

 “The philosophers have only interpreted the world in various ways. The point, 
however, is to change it” (Karl Marx).  

    Part 1: Teaching Mathematical Problem-Solving 
and the  Traditional School Curriculum   

 As to the experience of the author, many teachers—e.g., even more in Eastern than 
in Western Germany—take challenging problems—like those from the well-known 
books of Martin Gardner, Averbach/Chein,  1980  or Mottershead,  1985  or even of 
Pólya ( 1954 ,  1973 ,  1980 ) and Mason, Burton & Stacey,  2010 —as not belonging to 
the curriculum they are used to. Thus, for many of them such problems constitute 
more an “unnormal” curriculum, distracting them from their duty to cover all the 
content-stuff of mathematical concepts and rules in a given time (cf. Zimmermann, 
 1991a ,  1997 ). 

 As a consequence of poor test-results of PISA and TIMSS new curriculum- 
standards had been developed in Germany since a couple of years, partly in accor-
dance to the standards of the NCTM,  2000 . But it takes a lot of time to change 
teaching traditions. 

 Thus, one can assume that much more teachers would appreciate the problem- 
solving approach, if they could experience that teaching  the   traditional school cur-
riculum—which still tends to be oriented towards classical content mainly—could 
be combined in a natural way with teaching problem-solving. 

 We want to demonstrate that this is possible by presenting some real-classroom 
examples from the classical contents “fractions” and “Pythagorean Theorem.” 

  Example 1: Comparing  Fractions       We are in a class of sixth-graders in a Hamburg 
comprehensive school of a workers-district with some 80 % of migrants. Many of 
them are not capable to speak German fl uently—so, obviously there was no elitist 
situation! In the previous lessons fractions were treated, the pupils had learned 
already how to expand and reduce fractions. 

 The following lesson was the fi rst one about ordering of fractions. 
 At the beginning of the lesson the teacher wrote at the blackboard and asked the 

pupils:  

  Problem 1 
 How would you arrange the following fractions according to their size:  

5

6

3

7

2

3
, ,

 
 ?  

 We invite the reader to stop  reading   here for a short moment and solve this little 
problem her- or himself. 

 Now please think for a while about your strategies you applied! 
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 Of course you know the following often practiced schoolbook-strategy: 
 “Compare two fractions in the following way:

    1.    Determine their common denominator.   
   2.    Multiply the respective numerator of each fraction by the same factor by which 

you have to multiply its denominator to get the common denominator.   
   3.    Order now the new numerators according to their size.   
   4.    The order of these fractions yields the order of the corresponding equivalent 

original fractions.”     

 Your own  experience   and that one of several teachers may be often  quite different  
from the following procedure, which was suggested by pupils of our class: 

 The fraction  
3

7  
  is less than  

1

2  
 , the fraction  

2

3  
  is larger than  

1

2  
 , therefore  

3

7

2

3
<

 
 .

  
Furthermore iscloser to than isclose to therefore, , .

5

6
1

2

3
1

2

3

5

6
<

   

Therefore, the fi nal order is  
3

7

2

3

5

6
< <

 
  . 

 Looking back: 
 Lester,  2013 , p. 260, refers to a similar situation as “teaching via 

problem-solving.” 
 The pupils created their own strategies “referring to the cornerstones  

1

2  
  and 1”—

without “heuristic-checklists” or any other advice by the teacher—and came to the 
result which they presented at the blackboard. They did not know the rule quoted 
above in advance. 

 It is very important to select simple examples for fractions to increase the prob-
ability that pupils can invent such strategies. 

 Of course, after some additional similar examples, the teacher can stimulate his 
pupils to reach out for a general, always working rule  by   letting them search for 
further examples with increasing numerators and denominators. 

  Example 2:  Dividing Fractions       We are still in the same class some time later. The 
pupils just learned in the previous lesson the rule how to multiply fractions:  

 Two fractions are to be multiplied by multiplying the corresponding numerators and 
denominators. 

 At the beginning of the next lesson the teacher asked the pupils to repeat the rule 
they just learned about the multiplication of two fractions. Then he asked:  

  Problem 2 
 Could you conjecture a rule how to divide one fraction by another fraction?  

 After some time of discussion between the pupils one pupil gave the following 
answer: 

 “To divide two fractions, I have to divide the numerator of the fi rst fraction by the numera-
tor of the second fraction; then, divide the result of ‘the denominator of the fi rst fraction 
divided by the denominator of the second fraction’.” 
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  Once again I would like to invite the reader too think about this answer and pos-
sible reaction if she or he would be the teacher.  

 After you thought about some possible reaction (e.g., one could be to say nothing 
and wait for the reaction of the other pupils! At the same time you can think about 
the mathematical content) perhaps you might think about the question, why the 
teacher presented problem 2 immediately after he let the pupils repeat the rule they 
learned during the previous lesson. 

 The teacher never heard about a rule like this one! Therefore it was a real 
 problem- solving situatio  n for our teacher in two senses: 1. Mathematics: What 
about the mathematical value of this answer? 2. Education: How to react to this 
statement? 

 Of course he intended to come to the well-known rule: 
 “You have to divide one fraction by another one by multiplying the fi rst one by 

the reciprocal of the second one.” 
 I (the author of this contribution) presented this scene to my student teachers and 

asked them: How would you react if you would have been the teacher of this class? 
 Answers came as “I would try to help the pupils to understand, why this conjec-

ture is wrong.” 
 The teacher of this class wasn’t sure about this conjecture either, but he was a 

very  experienced and sensitive teacher   with suffi cient courage and self-confi dence. 
So he said: “Let’s check this conjecture by simple examples.” 

 Let us start with  
4

9

2

3
:

 
 . 

 The pupils calculated  
4 2

9 3

2

3

:

:
=

 
 . Of course one has to check the result by revers-

ing the process: as  
2

3

2

3

4

9
× =

 
 , therefore the equation  

4

9

2

3

2

3
: =

 
  is true. So the conjec-

ture is true, if the numerator and denominator of the second fraction divide the 
numerator and the denominator of the fi rst fraction, respectively. 

 What can we do, if the situation is not that easy? Let us continue carefully! E.g., 

what happens in case of  
5

9

2

3
:

 
  ? When the door squeaks, you have to lubricate the 

hinges, to make them work smoothly again! 
 As 5:2 “squeaks,” perhaps we can make the division by 2/3 work by “ lubricat-

ing  ” the fraction  
5

9  
  by appropriate expansion (by 2):  

5 2

9 2

2

3

5 2 2

9 2 3

5

6

×
× =

×( )
×( )

=:
? :

:  
 . This 

equation holds, as the test yields  
5

6

2

3

5

9
× =

 
 . Therefore the conjecture is true also in 

this case. 
 What to do now with  

5

11

2

3
:

 
 ?? We apply again the expanding strategy, as it 

proved already to be successful in the previous case:

  

5

11

2

3

5 2 3

11 2 3

2

3

5 2 3 2

11 2 3 3

5 3
: :

:

:

?
=

×( ) ×( )
×( ) ×( )

=
×( ) ×( )
×( ) ×( ) =

×
111 2

5

11

3

2×
= × .

  

 ( * ) 
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As the fi rst term equals the last term in (*), the class gained also the well-known 
rule: To divide one fraction by another one, the fi rst fraction is to be multiplied with 
the reciprocal of the second. The rule is correct as it is demonstrated by the last 

check: If we multiply the last term in (*) by  
2

3  
 , we get  

5

11

3

2

2

3

5

3
× × =

 
 . And indeed: 

The conjecture is always true, as the whole calculation in (*) is completely indepen-
dent from the type of natural numbers we use for numerators and for  denominators  . 
Therefore, it would not make a structural difference if we would use letters (names 
for variables) instead of concrete numbers. This would not change the mathematical 
outcome, but probably the learning outcome (esp. the understanding!) of the pupils! 

 Looking back 
 At the beginning of the lesson the teacher let the pupils repeat the rule they have 

learned in the previous lesson. By asking now for a conjecture for division of two 
fractions, he provoked his pupils to make an interesting conjecture. 

 It is important that the teacher creates an appropriate climate in the class, which 
helps to support self-confi dence and courage to make conjectures. Especially it 
should be clear to the pupils that it is no problem to make mistakes. 

 These  attitudes and properties   are important for the teacher to foster problem- 
solving processes of his pupils (cf. Tables  1  and  2 ). 

 After the conjecture has been formulated, it is very important that the teacher 
helps his pupils (if necessary) to check the conjecture. E.g., the teacher could ask for 
appropriate examples. If the pupils cannot fi nd such examples themselves, it is 
important to suggest such examples, stepwise increasing their complexity. 

 In this way we have the scenario of guided re-invention of a well-known rule. 

  Example 3: The  Pythagorean Theorem       This is another standard issue of the tradi-
tional curriculum in nearly every country. The didactical problem is not how to 
prove the theorem—there are several hundred proofs (cf. Loomis,  1972 ), but how to 
create such classroom setting, that pupils have a chance to re-invent the theorem 
(the corresponding conjecture) by themselves, including its proof. 

 Sometimes I learned about introductory scenarios for the Pythagorean Theorem 
as follows: 

 Pupils had to explore several rectangular triangles of different size and shape by 
measuring the lengths of the corresponding sides a, b, and c. Then they have to 
make a table with six columns and record their results for a into the fi rst column, the 
results for b into the third, and for c into the fi fth column. Subsequently the teacher 
asks his pupils to calculate a 2 , b 2 , and c 2  and record it into the neighboring empty 
columns to the previous noted values of a, b, and c. Then the teacher asks the pupils: 
What can you observe? 

 “Discovery learning: i.e., uncovering what was covered by somebody else—hid-
den Easter eggs.” (Freudenthal  1991 , p. 46)! 

 Thus, the main reason for the following approach is guided by the constructivist 
philosophy, namely to look for opportunities which might help teachers to let pupils 
reinvent some mathematics, especially from the traditional curriculum. 

 We try to present here one possible approach via similarity of triangles. 
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 Let us assume that we are  in   grade 8 or 9 and the class has suffi cient knowledge 
about similarity of triangles. They know especially: 

 If in two triangles corresponding angles are congruent, then the triangles are similar. The 
ratios of corresponding lengths are equal. 

 Thus, let the pupils draw a rectangular triangle ABC and let them separate it into 
two triangles by drawing the altitude h. These triangles and the large one are similar 
because corresponding angles are congruent (Fig.  1 ):

  Fig. 1    Nearly all pupils can fi gure out this result, if they are accustomed with similarity       

     Problem 3 
 Now let the pupils investigate  ratios   of lengths of sides, which have to be equal 
because of similarity of corresponding triangles.  

 E.g., pupils may fi gure out that  q : h  =  h : p . As to the teaching experience of the 
author, it is now important that the pupils have learned during their algebra courses 
to look for visual representations (interpretations) of algebraic terms, e.g., a · b 
could be interpreted as area of a rectangle with sides a and b. The equation between 
ratios can be interpreted as an equation between fractions, too. The pupils know at 
that age how to multiply in such equations “crosswise,” which let them fi nd the 
equation  h  2  =  p  ·  q . This is the well-known “ altitude - theorem .” Both sides of the 
equation can be interpreted as areas of rectangles: The square formed by the altitude 
h is equal to the rectangle, formed by the projections of the two legs p and q of the 
rectangular triangle on its hypotenuse. 

 In higher grades this equation could be also interpreted as an equation of a 
square-root-function (for clarifi cation let  p  =  x  variable,  q  = 1 constant,  h  =  y ). 

 Furthermore this situation could be found in history of mathematics, when more 
than 2000 years ago Menaechmus tried to solve the famous problem of doubling the 
cube graphically. In this context the “altitude-theorem” might be interpreted as the 
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beginning of the rectangular coordinate system (cf., e.g., Bretschneider,  1870 , 
Zimmermann,  1991a ). 

 More examples for equations between ratios and (well known for the reader) 
graphic interpretations might be found as follows: 

  b p c b b c p: : †= Þ = ×    ( cathetus theorem 1 ), 

  a q c a a c q: : †= Þ = ×    ( cathetus theorem 2 ). 
 If we add both equations at right we get  a b c p q c² ² ²,+ = × +( )=    the  Pythagorean 

Theorem . 
 After some experience with several classes I came to the conclusion: It is true 

that pupils can explore and result in those theorems,  getting   conjectures and proofs 
nearly at the same time. 

 Now let us look ahead of these traditional results. Can the pupils fi nd more equal 
ratios, which might be interpreted in a similar way, giving more insights or rules? 

 E.g., one can fi nd  b : c  =  h : a  which lead at once to  a ⋅ b  =  h ⋅ c , dividing by 2 yields 
two possibilities to calculate the area of the large triangle, which might be a good 
experience of success for mediocre pupils. 

 If we consider the equation  a : b  =  h : p , one can derive  a  ⋅  p  =  h  ⋅  b  which does not 
make much sense. Of course one can try also  a  ⋅ ( c  −  q ) =  h  ⋅  b  which might be trans-
formed into  a  ⋅  c  =  h  ⋅  b  +  a  ⋅  q , which seems to be not very helpful either. Can you fi nd 
some sense? 

 Looking back 
 Given that pupils are well acquainted with similarity of triangles—they have a 

very good chance, to reinvent and prove at the same time well-known theorems of 
the standard curriculum by this approach. The author practiced this approach for 
several times in his classes during his time as a schoolteacher. 

 This approach is not very time-consuming—so it should be attractive for teachers. 
 It is very important that the pupils have got suffi cient previous experience in 

representing simple formulae in a geometric way and vice versa. 
 Given such experience, there is a good opportunity to learn more about the power 

of the heuristic “change of representation” (from geometry to algebra and back) by 
fi nding and proving theorems. The teacher should carefully  think   about the possibil-
ity to let his pupils refl ect about this heuristic explicitly! Could such discussion help 
to improve pupil’s problem-solving competence? Could there be an appropriate 
moment to do so? 

 Once again we have an example, where the teaching of standard content can be 
combined with problem-solving and investigative situations for pupils. 

  Example 4: The Pythagorean Theorem:  Al Sijzī and Problem Fields       We refer to a 
generalization of the Pythagorean Theorem by the Persian mathematician Abu 
Sa’id Ahmad ibn Muhammad ibn ’Abd al-Jalil al-Sijzī, who lived in the tenth cen-
tury. The corresponding paper (al-Sijzī/Brentjes  1996 ) had not been published until 
now. This is an excerpt of a paper of Zimmermann, B., Fritzlar, T., Haapasalo, L. & 
Rehlich, H.,  2011 . 

 This problem has also been tested in real classrooms for several times, too, but it 
may be somewhat harder than the foregoing ones. You can let your pupils try to 
cope with it at the end of a corresponding teaching unit.  
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  Problem 4 
 Given a rectangular triangle with its  Thales-circle  . “Move” A and B in such a way 
out of the Thales-circle that the new points A′ and B′ are also located symmetrical 
to its center M. So you get the new triangle A′B′C with sides a′, b′, c′. 

 What can you fi gure out about the sum of the squares ( a′ ) 2  + ( b′ ) 2 ?—Hint: 
 Imagine moving C on the old Thales-circle to C′. What does happen to ( a′ ) 2  + ( b′ ) 2 ?  

  Fig. 2    Comparing the size of the squares when moving C along the circle and therefore the whole 
triangle to other positions; cf.   http://www.mathematik.uni-jena.de/~bezi/Vortraege/alSijziPythag-
orasGeneralized0.ggb                  

 If you delete the squares in Fig.  2 , you will come to the geometric situation in 
Fig.  3 , which represents a draft from the original version of this problem:   
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  Solutions     Pupils come rather often to the conjecture  a′  2  +  b′  2  = const spontaneously. 
In case of no ideas -but do have enough patience to wait for them!-  dynamic geom-
etry software (DGS)   can help. But I recommend to use it only in this situation!  

 A proof for the conjecture  a′  2  +  b′  2  = const can be carried out in several ways and 
so has been done by al-Sijzī, too (cf. al-Sijzī/Brentjes  1996 ). One possibility is 
given here. By examining the special degenerated case by dragging the point C to 
the point B (cf. Fig.  2 , applying the strategy “examine special cases”!), the conjec-
ture can be posed more precisely in the following way: 

  Theorem      ¢ ¢( ) + ( ) = +( ) + =( )a b c d d const² ² ² ²   .  

  Proof     Focusing on the altitude h (cf. Fig.  2 ) and applying four times the  Pythagorean 
Theorem  , we get the following two equations:

  
¢( ) = + +( ) = + + + = + +a h p d h p pd d a pd d² ² ² ² ² ² ² ²2 2

   

  
¢( ) = + +( ) = + + + = + +b h q d h q qd d b qd d² ² ² ² ² ² ² ²,2 2

   

we add these equations and receive

  
¢ ¢( ) + ( ) = + + +( ) +a b a b d p q d² ² ² ² ²2 2

   

and fi nally, again applying the Pythagorean Theorem and using  p  +  q  =  c , we receive

  
¢ ¢( ) + ( ) = + + =a b c dc d const² ² ² ² .2 2

   ( q.e.d. )    

   Let us take another “view” on this problem: 

 This theorem can be represented graphically by the following Fig.  4  
(( c  +  d ) 2  +  d  2  =  c  2  + 2 cd  + 2 d  2 ). The application of the strategy “change of representa-
tion” (from algebra to geometry) may not only be a nice exercise for your students, 

  Fig. 3    Part of the manuscript of al Sijzī (copy from a microfi lm)       
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but can also help them to better understand the theorem. Now they can “see,” why 
c 2  is less than c′ 2  and what makes the difference.

  Fig. 4    Representing the area of square1 and square2 by parts of square3; cf.   http://www.mathema-
tik.uni-jena.de/~bezi/Vortraege/alSijziPythagorasGeneralized1.ggb                  

   This solved problem can be the starting point to ask your pupils for more 
 generalizations and variations, so expanding the initial situation to a whole 
 “problem- fi eld”: 

 Al-Sijzī presents a fi rst simple generalization himself: He “moves” the points A, 
B  into the inner  of the Thales-circle. He proves that ( a′ ) 2  + ( b′ ) 2  = const. holds also 
in this case. 

 This could be another nice exercise for your pupils. 
 Furthermore, one can converse problem 4: 
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  Problem 5 
 Given two fi xed points A and B in the plane. What is the locus of all points C in the 
plane with the property AC 2  + BC 2  = const.? 

 After fi nding (and proving) the answer (a circle), one can continue to generalize 
this problem: 

 Given two fi xed points A and B in the plane. What is the locus of all points C in 
the plane with the property

  AC BC constn n+ = Î., ?n N    

   In this way one arrives at Fermat-curves and higher mathematics, which might 
be especially interesting in a course for gifted pupils (more details are outlined in 
Zimmermann, B., Fritzlar, T., Haapasalo, L. & Rehlich, H.,  2011 ). 

 Looking back 
 Pupils—and not only the gifted ones!—are able to  create and apply  very often 

very reasonable strategies to solve elementary problems like ordering fractions 
( without  previous training in a specifi c method!). 

 They are also able to create standard rules—guided carefully by a talented teacher. 
 The learning of routine techniques and their reasonable application might also be 

improved by this approach. 
 Creating situations where pupils have a good chance to create their methods 

might help the pupils to  learn that learning  ( mathematics )  means , too,  to construct 
something actively within their heads  and not only absorption and transmission of 
 outside  knowledge  into  their heads (the main idea of  constructivism ). 

 This can be achieved by referring to suitable problems from history of mathe-
matics and modern technological tools, too. 

 In these ways, the  motivation  of the pupils might be reinforced, because they 
learn that  their  thinking is the main focus and generator of mathematics instruction. 

 Creativity, problem-solving, and teaching the traditional curriculum are no 
excluding alternatives! 

 In any case lessons like those presented here require teachers, who are educated 
appropriately which means sensitive and open towards the possibilities of pupils as 
well as to the subject and who are themselves suffi cient curious, courageous, fl exi-
ble, and creative. 

 Pupils need such teachers to become (or stay!) courageous and creative 
themselves. 

 This should be one of the main concerns of teacher education!  

    Part 2:  Identifi cation and Fostering   of Problem-Solving 
Processes via “Lenses” from History of Mathematics 

 There are many good possibilities and reasons to learn from history of mathematics 
to teach mathematics (cf., e.g., Zimmermann,  2009 ). 

 One neglected aspect could be to analyze history of mathematics as a cognitive 
long-term study to fi gure out which methods of thinking, esp. problem-solving 
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strategies, proved to be especially successful during the last 5000 years with respect 
to solving and creating new and important problems. One could expect that such 
strategies could be useful also in future and as an additional background knowledge 
of teaching (cf. Zimmermann,  1990 , Zimmermann,  1991a ). 

 Therefore we focus now on the history of mathematical problem-solving pro-
cesses in order to get an additional tool to better identify and foster problem-solving 
processes of pupils of today. 

 The following examples come all from real teaching lessons and they were fi rst 
published in Zimmermann,  2009 . 

  Example 1: Area of a Circle à la  Antiphon and Bryson       Some years ago I taught my 
sixth-graders to calculate the areas of some simple geometrical fi gures as squares, 
rectangles, and rectangular triangles. The following dialogue with a quite clever and 
creative student (let us call him Jens) took place in the classroom at the end of this 
teaching unit, which I paraphrase according to my memory: 

  Jens  ( asking the teacher ): Why not calculate also the area of circle? 
  Teacher : That’s too diffi cult now, we’ll get it later! 
  Jens : Why not do it in the following way? (He went to the blackboard and started 
drawing with the comments as follows.) 

 Here we have a circle and we inscribe a square as follows:

   

   The area of the square is a rough approximation of the area of the circle. 
 We can improve this approximation by putting the following “hats” on the sides 

of the square:
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   We can continue this process of refi nement on the sides of the new “hats.” 
 But we can carry out a similar process also from outside. Therefore, let us addi-

tionally circumscribe a square around the circle:

     

    The mean between the area of the inscribed square and that of the circumscribed 
square should yield a better approximation of the area of the circle than each of both 
squares alone. If we cut off the corners from the outside square in a symmetric way 
such that the cuts are tangent to the circle, one gets a better approximation of the 
square by a circumscribed regular octagon. The mean of the areas of the circum-
scribed octagon and the inscribed octagon should be an even better approximation 
of the area of the  circle   than the mean of the areas of the inscribed and circum-
scribed squares. This process can be continued as far as we want. 

 Looking back 
 Of course, I was baffl ed by this splendid idea of Jens. I became even more 

impressed when I learned later on from history of mathematics that this idea was a 
reinvention of some of the ideas of Antiphon and Bryson which they presented 
more than 2000 years ago, when they tried to solve the famous problem of squar-
ing the circle (cf. Bretschneider,  1870 , pp. 100; 126). One can interpret the method 
Jens is approaching here the calculation of the area of a circle as a method of suc-
cessive approximation (cf. Kilpatrick,  1967 ). Antiphon and Bryson used it for 
another goal. 

  Archimedes used these ideas in his famous “Measurement of a circle” to fi nd a 
proof for the assumption about the area of the circle, which constituted a method for 
proving, which was called later “method of exhaustion” (cf. Heath,  2002 ).  

  Example 2: Area of a Circle à la Archimedes Resp. Kepler     Some years ago, when 
introducing integral calculus, I presented the following theorem of  Archimedes   to 
my pupils (grade 12): 

 “ The area of any circle is equal to a right - angled triangle in which one of the 
sides about the right angle is equal to the radius  ( R ) , and the other to the circumfer-
ence  ( C )  of the circle .” (cf. Heath,  2002 , p. 91)
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    Then I asked them (I quote from my memory again): 
 “What do you think, how Archimedes might have come to the idea to transform 

the given circle into this rectangular triangle?” 
 A girl (Birte) gave me the following answer: 
 “Let us assume the circle is divided in as many small triangles as we want. All 

triangles have the center of the circle as one point in common; one side—nearly 
straight, if the number of triangles is very high—is part of the circumference, hav-
ing the same length for all triangles: 

     

    Now I assume that the endpoints of all basic sides of the triangles are connected 
by elastic bands with the center of the circle. I make a cut along one side of two 
adjacent triangles to this center. Then I “take” the left end of the circumference of 
the circle—assuming it to be a wire—and bow and stretch it until it is a straight line: 
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    So we get a rectangular triangle, which has the circumference C of the circle as 
one side and its radius R as another side. All triangles are transformed into triangles 
of the same basis and altitude (the radius) as the triangles of the circle. So the area 
of the rectangular triangle is the same as the area of the circle.” 

 Looking back: 
 Very often professional teachers react to ideas like these in such a way that they 

say that this a nice (heuristic) idea, but they stress that this is by no means a proof, 
because the basis of the little triangles are never straight and  the   altitude of these 
triangles is always somewhat smaller than the radius of the circle. So this idea has 
to be improved by or augmented to a rigor argument. 

 Of course, this statement is correct. But—as to my opinion—it does not take into 
account the importance of the quality of ideas suffi ciently. That this idea is a real 
great one can be underlined by the fact that it had been expressed by Kepler nearly 
in the same way some hundred years ago (cf. Struik,  1986 , p. 194; Kepler,  2000 , 
p. 15). The mathematical thinking of Kepler was completely bound to the geometric 
tradition constituted by Euclid and Archimedes. By thoughts as the quoted ones he 
could determine the volume of many geometric solids. 

 It should be also mentioned that the method of Birte (and Kepler) can be inter-
preted as the use of atomistic methods, which constituted not only a heuristic, but 
also a quite different approach to analysis, which run parallel to the classical 
Cauchy-Riemann approach (which began with Archimedes) from Democrit, 
Cavalieri, and Leibniz and culminated in modern nonstandard analysis (cf. 
Zimmermann,  1991a ). 

 Furthermore, one can assume that the reason why Archimedes came to the idea 
to transform the given circle into a rectangular triangle was initiated by the attempts 
of Hippocrates to square at least parts of the circle (the lunes) by fi nding rectangular 
triangles of the same area (cf. Heath,  1981 , pp. 195, 196). 

 As in case of our pupils, so it is in history of mathematics: you can really under-
stand neither modern pupils nor modern mathematics on the basis of actual time- 
events, but only on the basis of previous time-events! 

 Therefore, knowledge about possible historic background as in this example 
might help to even better understand and appreciate  the   thoughts of pupils.  

  Example 3: Introducing  Addition   of Fractions     Our student teachers in Jena had to 
make a course on teaching practice in which they went each week to school during 
their term to held prepared lessons to get fi rst teaching experience. Within this 
course one of our student teachers presented in the fi rst teaching-lesson of her life 
the following standard schoolbook-problem (which she selected herself) to the class 
(grade 6), which should help to introduce addition of fractions. The pupils were 
already familiar with the addition of fractions with equal denominator.  

  Peter gets a specifi c amount of pocket money for 1 week. Now he takes away the 
following portions from this starting budget: He spends 3 / 10 for a ticket for a movie. 
He buys a cake for ¼. He likes ice - cream very much, therefore he buys one for 1 / 5. 
Finally he buys chewing - gum for 1 / 10. At the end of the week there is 1.50€ left . 

  How much pocket money Peter got in this week?  
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 Remark: This problem has a long history. First testimonies can be found in a col-
lection of problems from the twelfth century very often in form of poems called 
“Leelavati.” Here it deals about a pearl-necklace (cf. Srinivasiengar,  1988 ). 

 One has to take into account that the pupils had the following  prerequisite knowl-
edge  about fractions:

•    They  learned   some basics about fractions and different representations.  
•   They knew how to expand and how to reduce fractions.  
•   They made fi rst experience with the addition of fractions with the same 

denominator.    

 After some 10 min of cooperative work two girls presented the following solu-
tion at the blackboard (P = pupil): 

  P:  Let’s assume that he receives 20€ in this week. Now we use and check the 
given data . 

 The student teacher (T)—who knew and prepared for THE right solution, hesi-
tated strongly and said to the pupils: 

 T:  But you don’t know the answer until now and you cannot be sure that 20€ is 
the right solution. 

 One of the pupils answered: 

  P: We don’t mind. We assume this and let’s see what will happen if we continue now ! 

 One pupil drew a long (part of the number-) line at the blackboard and marked 0 
at the beginning and 20 at the end of this line. Subsequently, she divided it into 20 
parts of equal length: 

  0      1 2    3     4 5    6     7      8      9     10     11 12   13 14    15  16 17  18 19 20      

 Then they started—beginning at 0—by marking the appropriate amount of 
money after changing all given fractions into fractions with denominator 20: 

  0    1 2   3      4 5      6 7      8    9    10     11 12 13 14    15 16 17 18  19 20

18.5

     

 P:  First Peter spent 6€ for the movie (fi rst fat line and so on), then he bought a 
cake for 5€. Furthermore the ice-cream was 4€. Finally he had to pay for the 
chewing- gum 2€.  So   we come to 17€. Then there should be a rest of 1.50€. 
Therefore, there is now a total of 18.50€ (dotted line). But there would be still 
1.50€ left!? 
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  Stop reading now and think about this situation!  
  How would you react as a teacher in this moment?  

 T:  You see now, that the solution of 20€ you assumed must be wrong. Thus we 
have to look for another solution. 

 In this way the student teacher brought the process of the pupils to an end. She 
presented now a complete different attempt to the pupils without using hardly any 
ideas of them. 

 Another possible continuation of this discussion, including the ideas of the 
pupils, could have been as follows (T = teacher): 

 T:  So you have still some money left. Or: So you don’t have left 1.50€ but 3€—
twice as much you should have. What to do now? 

 P:  Possible reaction: If the amount left is twice as much we should have, perhaps 
we assumed also  twice   as much pocket money than Peter should have at the 
beginning of the week. So we have to divide 20€ by 2 and get 10€. 

 It might follow now a check (verifi cation) of this new assumption. 
 The process which had been offered by the pupils can be interpreted to a consid-

erable extent as the beginning of the procedure of the method of “false position,” 
which is well known from history of mathematics. 

 The method of  false position  had been applied already by ancient Egyptian math-
ematicians (cf., e.g., Chace,  1986 ) and can be seen, e.g., in relation to the “regula 
falsi,” the method of successive approximation (up to modern forms of iterations) 
and working backwards (cf., e.g., Zimmermann,  1995 ). 

 To get an idea of this method, we quote here an English translation of a typical 
example from Rhind Mathematical Papyrus, written about 1560 B.C. with content 
from about 1800 B.C. (cf. Clagett,  1999 , p. 141, remarks in brackets […] added by 
the editor. Cf. also Chace,  1986 , p. 69). 

 “[Problem 26] 
  A quantity with ¼ of it added to it becomes 15 . 
 [Assume 4] 
 [That is] multiply 4, making ¼, namely 1, [so that the] total is 5 [proceeding in 

the usual manner]:

 \1  4 
 \¼  1 
 Total  5 

   [As many times as 5 must be multiplied to make 15, so many times 4 must be 
multiplied to give the required number.] 

 Operate on 5 to fi nd 15

 \1   5 
 \2  10 
 Total: 3 
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   Multiply 3 times 4.

 1   3 
 2   6 
 \4  12 

   This becomes 12. [And fi nd its ¼:]

 1  12 
 \¼   3 
 Total  15 

   [Hence]  the quantity is 12  and its ¼ is 3 and  the total is 15 . 
 [This checks out since the sum agrees with what was originally specifi ed.]” 
 Looking back: 
 It is possible to interpret the pupils’ approach as a re-invention of the method of 

false position (cf. also Chabert et al.,  1999 ). Furthermore, by drawing a number 
line, one can also say that the pupils made three  changes of representation : fi rst, 
they changed the problem from a problem with fractions into a problem with inte-
gers; second, they made a visual representation of the numbers; and, third, they 
represented the addition of numbers by the composition of lines of appropriate 
lengths. 

 Altogether: The suggestions of the pupils have been full of productive heuristics. 
 One might conclude that using history of mathematics with focus on problem- 

solving processes can yield to more insight in the importance of heuristic strategies. 
But it is not necessary to make them explicit, because the examples demonstrate that 
pupils can (re-)invent such methods themselves (without any checklists!).  The 
 teacher has carefully to think about an additional use for the pupils which may or 
may not have an explicit discussion about such strategies. 

 This example demonstrates in a particular way that it is possible on the back-
ground of history of mathematics (besides well-known learning theories) to interpret, 
to understand, and to esteem problem-solving processes of pupils appropriately.  

    Summary 

 One might get the following possible insights and conclusions by the previous 
sections: 

 The teaching of contents like fractions and Pythagorean Theorem from the tradi-
tional curriculum can be very often combined with teaching of problem-solving and 
nearly every pupil can be reached. Appropriate questions and careful guidance can 
help to stimulate pupils to (re)invent classical rules and strategies in their own way. 
To do so, teachers should be strongly encouraged and motivated to orient them-
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selves even more towards listening and being sensitive and open towards the possi-
bilities of their pupils as well as to the subject. 

 Analysis of 5000 years of history of mathematical problem-solving unravelled 
several heuristics having been extraordinarily successful. When observing problem- 
solving processes of pupils of today it is sometimes possible to interpret them, e.g., 
as (reinvention of) the method of successive approximation, atomistic method, and 
false position. All these methods proved to be very successful heuristics across time 
(Zimmermann,  1990 , Zimmermann,  1991a ). Thus, such knowledge about history 
could help teachers as an additional tool to identify, appreciate, motivate, and foster 
pupils’ problem-solving abilities. 

 Teachers are invited to think even more about questions like: If I expect my 
pupils to be more curious, courageous, fl exible, and creative when solving mathe-
matical problems, what about me when teaching problem-solving?  

    Some Conclusions 

 Trying to improve problem-solving has to focus on some recommendations mainly 
for teachers and their education. 

 There seems to some extent a demand for synchronization between teacher edu-
cation and pupil education. 

 Teachers should have the opportunity in their studies to solve (and pose) appro-
priate problems of similar—sometimes also more demanding—type they use as a 
teacher later on at school. 

 They should solve problems also in working-forms, which they have to arrange 
in their later work as a teacher (single, partner, group, outdoor-work). 

 Additional to systematic course in single subjects of education and mathematics, 
they should become acquainted with examples of lessons, e.g., like from the 
TIMSS-video-study. 

 The beginning teachers should have in their seminars the opportunity to simulate 
little parts of lessons, teaching their fellow students solving a problem, who should 
try to act for a short while like pupils at school. 

 A special emphasis should be placed on the traditional curriculum which should 
be analyzed with respect to its potential to be combined with problem-solving. 

 There should be additional courses of history of (elementary) mathematics. Of 
course—in case that there is no time—parts of history should be integrated into the 
normal content courses. 

 Teachers should mutual visit one another in their classes, especially when teach-
ing problem-solving. They should prepare lessons together and discuss approaches 
to problem-solving (e.g., also video-taped lessons). 

 Of course, teacher should have enough time for such activities, so we need a 
reduction of bureaucracy, but this is surely an everlasting wish from all sides!     
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      Part 1 Reaction: Problem Posing and Solving 
Today                     

       John     Mason    

    Abstract     The chapters in this section, drawn together as a whole, illustrate the 
complexity of mathematical problem solving, both as an activity itself and as a way 
of teaching mathematics. Attention is paid to affect, to problem posing, to the 
largely absent support from textbooks for a problem solving, much less problem- 
posing stance, and to the effectiveness of adopting an inquiring stance to mathematics 
teaching, allowing students to bring to the fore their own metaphors for construing 
and creatively resolving mathematical problems.  

      Centrality of Problem Solving in Mathematics 

 That mathematics is about solving problems (with origins both within mathematics 
itself and in the  material world  ) has been attested to by many mathematicians. Paul 
Halmos is perhaps one of the most direct:

  The mathematician’s main reason for existence is to solve problems, and that, therefore, 
what mathematics really consists of is problems and solutions. (Halmos,  1980  p. 519) 

 One of the hardest parts of problem solving is to ask the right question, and the only way 
to learn to do so is practice. (Halmos,  1980  p. 524) 

   Note that this means practising asking questions, not simply practising on routine 
exercises.

  The major part of every meaningful life is the solution of problems … it is the duty of all 
teachers, and all teachers of mathematics in particular, to expose their students to problems 
much more than to facts. (Halmos,  1980  p. 523) 

 A teacher who is not always thinking about solving problems—ones he does not know 
the answer to—is psychologically simply not prepared to teach problem solving to his students. 
(Halmos,  1985  p. 322) 

   Poincaré, Whitehead, Freudenthal and a host of others have testifi ed similarly. 
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 However, problem solving is not a single ‘thing’ which explains why, in common 
with other slogans, policy makers, educationalists, researchers,  textbook authors 
and teachers   are all able to claim that they are promoting problem solving despite a 
widely diverse range of practices under that heading.  

    Problem Solving as a  Complex Activity   

 As a slogan,  problem solving  is much more honoured in the breach than in the 
observance as has been noted about the four-phase description given by George 
Pólya (1962). ‘Problem solving’ comes and goes as a focus of attention, as Bernd 
Zimmerman (this section) indicates. Policy makers periodically alight on it, but 
examination systems followed by textbooks and school senior management place 
teachers under impossible pressures of time and learner performance. These pres-
sures appear to make it diffi cult to engage students mathematically in a problem 
solving vein. The force of tests and examinations is to impel teachers to get students 
to practise routine procedures in an attempt to score highly, even though such 
‘learning’ may not be robust or stable over time. Of course there are and have been 
notable exceptions, for example, in the 100 % coursework project in the 1980s 
(Ollerton & Watson,  2007 ) in the UK, the ‘real problem solving movement’ epito-
mised by Mellin-Olsen ( 1987 ), and recently in a project in both Chile and Finland, 
reported on in this section by Valentina Giaconi and colleagues.  

    Teaching  Problem Solving   

 As Zimmerman (this section) suggests, teaching problem solving is in itself a com-
plex problem which needs a complex approach and will not succeed through 
attempts to distil it to a single simple essence. 

 The complexity of problem solving as a description of an activity arises from the 
complexity of the human psyche. Teaching is about people, not about machines; 
teaching problem solving is about evoking mathematical thinking together with 
positive affect to enable learners to make use of their own natural powers. In order 
for problem solving to become an integral part of learners’ experience in school and 
university, all aspects of the human psyche, cognition, affect, behaviour, attention, 
will and metacognition or witnessing must be involved. Focusing on only one or 
two aspects is simply inadequate and very unlikely to lead to full-scale integration 
into learners’ ways of being in the world. 

 In their chapter in this section, Nicolás Libedinsky and Jorge Soto-Andrade 
provide evidence that both juvenile offenders and university undergraduates can, if 
given suffi cient time in a supportive environment, make use of metaphors to reach 
unexpected insights, insights which in turn promote concentration and engage-
ment not hitherto displayed. In this sense they instantiate Jeremy Kilpatrick’s 
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claim in his chapter that problem solving is a way of being which promotes inquiry 
into what lies behind mathematisable phenomena using learners’ natural powers 
and enabling these to be developed over time. The use and development of  learners’ 
  own powers is in itself rewarding. Promoting metaphoric thinking may, as they sug-
gest, contribute to enriching learners’ experience of mathematics and particularly 
problem solving.  

    Problem  Posing   

 Problem solving involves reformulating problems and, indeed, posing them for 
yourself, as Jeremy Kilpatrick points out in his chapter. Ask a mathematician a 
technical question arising from some problem you are working on and almost 
always you will be asked the origin and context of your question, so that the math-
ematician can have an overview and an opportunity to reformulate the problem for 
themselves. 

 José Carrillo and Jorge Cruz demonstrate in their chapter in this section that asking 
learners to pose questions ‘like the ones in an exercise set’ is a powerful method of 
revealing the range and scope of what the learners’ sense of the domain being sam-
pled by that set of exercises. They confi rm a proposal of Watson and Mason ( 2002 ) 
and experience of Rahman ( 2006 ) that student construction of examples is both 
enriching for the learners and revealing for the researcher or teacher.  

     Teaching   Problem Solving 

 One might hope that textbooks, often seen as principal agents in teaching mathe-
matics, might support and promote problem solving and problem posing. However 
Jinfa Cai and colleagues reveal in their chapter that the textbooks they considered 
are particularly weak in stimulating problem posing and often pretend that practis-
ing routine exercises amounts to problem solving when it is at best peripheral. 
To turn a set of exercises into a problem solving opportunity requires a skilled 
teacher who can direct attention to the generality instantiated by the exercises 
(Watson & Mason,  2006 ). 

 There have been many suggestions as to how to teach problem solving effec-
tively. For example, Zimmerman here promotes access to historical accounts, and 
several authors recommend  an    inquiry stance. There is no doubt that learners’ 
affect is a major infl uence, as noted by Carol Dweck ( 2000 ). But there are diffi cul-
ties in probing deeply into affect and sense of self, as illustrated by Valentina and 
colleagues in their chapter where they encounter possible cultural factors which 
may indicate interinfl uences between the culture at large (as presented in the media), 
the historical legacy in both the global and the local culture in the classroom and the 
ethos established locally.  
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    Future Prospects 

 Researching problem solving has a very long history, but simplistic attempts to 
isolate core features have not brought universal success. There are diffi culties 
enough in drawing on the whole of the human psyche when promoting mathematical 
problem solving, trying to demonstrate  effectiveness   or to shed light on the 
complexity encounters methodological diffi culties. 

 For example, Valentina Giaconi and colleagues bring to the surface assumptions 
that have to be made when analysing self-report responses. Is the respondent inter-
preting the items according to their current state or a remembered state, and is that 
state typical? Is the respondent considering the item deeply or reacting habitually or 
automatically according to cultural values espoused by the peer group, by others 
such as parents and teachers, or according to the respondents’ assumptions about 
what is expected of them? 

 José Carrillo and Jorge Cruz demonstrate that it is not only possible but fruitful 
to combine enquiry into learners’ affect both before and after working on problems 
and to relate these with their sense of possible actions beforehand and refl ections on 
actions that proved to be effective. As with problem posing, not only does this shed 
light on learners’ thinking, on the focus of their attention, but it serves to alert learn-
ers to responding to problems by considering possible actions, rather than reacting 
spontaneously out of habit with unconsidered actions. 

 It has long been known that withdrawing from action and considering the nature 
of that action can make a major contribution to learning. It may turn out that the best 
way to maintain complexity, both in teaching and in researching problem solving, 
is through  engagement and refl ection  , both of which may need to be supported by 
teachers calling upon the full scope of the human psyche in its social setting. 
Promoting personal narratives as adjuncts to concept images could be of real benefi t 
to learners, for as David Hilbert ( 1900 ) noted:

  A  mathematical theory   is not to be considered complete until you have made it so clear that 
you can explain it to the fi rst man whom you meet on the street. 
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    Abstract     In this chapter, the authors note that during the past 30 years there have 
been signifi cant advances in our understanding of the affective, cognitive, and meta-
cognitive aspects of problem solving in mathematics and there also has been consid-
erable research on teaching mathematical problem solving in classrooms. However, 
the authors point out that there remain far more questions than answers about this 
complex form of activity. The chapter is organized around six questions: (1) Should 
problem solving be taught as a separate topic in the mathematics curriculum or 
should it be integrated throughout the curriculum? (2) Doesn’t teaching mathemat-
ics through problem require more time than more traditional approaches? (3) What 
kinds of instructional activities should be used in teaching through problems? (4) 
How can teachers orchestrate pedagogically sound, problem solving in the class-
room? (5) How can productive beliefs toward mathematical problem solving be 
nurtured? (6) Will students sacrifi ce basic skills if they are taught mathematics 
through problem solving?  

  Keywords     Problem solving   •   Problem posing   •   Successful problem solver   • 
  Teaching through problem solving   •   Assessment   •   Instructional tasks   •   Classroom 
discourse   •   Beliefs   •   LieCal project   •   Problem-based curriculum       

 A considerable amount of research on  teaching and learning mathematical problem   
solving has been conducted during the past several decades, and taken collectively, 
this body of work provides useful suggestions for both teachers and curriculum 
writers. The past 30 years were an especially productive period in the history of 

        F.  K.   Lester   Jr.      (*) 
  Indiana University ,   Bloomington ,  IN   47405 ,  USA   
 e-mail: lester@indiana.edu   

    J.   Cai    
  University of Delaware ,   Newark ,  DE ,  USA    

 During the preparation of this article, Jinfa Cai was supported by a National Science  Foundation   
grant (DRL-1008536). He is grateful for the support, but any opinions expressed herein are those 
of the author and do not necessarily represent the views of the NSF. 

mailto:lester@indiana.edu


118

problem solving in school mathematics. Indeed, they mark a period when the fi rst 
author was most actively engaged in research, and the second author got his start. 
In this chapter, we take a refl ective look at what we learned in the past 30 years. In 
particular, we will note that, as is the nature of research, much has been learned but 
much remains to be learned (for a more recent update on research in this area, see 
Lester ( 2013 ) and Schoenfeld ( 2013 )). 

    Key Questions About Teaching Students to Be Successful 
Problem Solver 

 During the past 30 years,    there have been signifi cant advances in our understanding 
of the affective, cognitive, and metacognitive aspects of problem solving in mathe-
matics and other disciplines (e.g., Frensch & Funke,  1995 ; Lesh & Zawojewski, 
 2007 ; Lester,  1994 ,  2013 ; Lester & Kehle,  2003 ; McLeod & Adams,  1989 ; 
Schoenfeld,  1985 ,  1992 ,  2013 ; Silver,  1985 ). There also has been considerable 
research on teaching mathematical problem solving in classrooms (Kroll & Miller, 
 1993 ; Lesh & Zawojewski,  2007 ; Wilson, Fernandez, & Hadaway,  1993 ), as well as 
teaching mathematics through problem solving (Lester & Charles,  2003 ; Schoen & 
Charles,  2003 ). On the other hand, reviews of problem-solving research clearly 
point out that there remain far more questions than answers about this complex form 
of activity (Cai,  2003 ; Lesh & Zawojewski,  2007 ; Lester,  1994 ,  2013 ; Lester & 
Kehle,  2003 ; Schoenfeld,  1992 ,  2013 ; Silver,  1985 ; Stein, Boaler, & Silver,  2003 ). 
In fact, although there is a great deal of consensus within the mathematics education 
community that the development of students’ problem-solving abilities should be a 
primary goal of classroom instruction (National Council of Teachers of Mathematics, 
 1989 ,  2000 ), there is no consensus about what we teachers should do in classrooms 
to reach this goal. However, even though “[w]e clearly have a long way to go before 
we will know all we need to know about  helping   students become successful prob-
lem solvers” (Lester,  1994 , p. 666), many of the issues associated with problem- 
solving instruction have been studied extensively, and research-based insights for 
improving students’ problem solving through classroom instruction are now avail-
able (Cai,  2010 ). In this analysis, we discuss these results in light of our own and 
others’ research and suggest what they might mean for practice. 1  The discussion is 
organized around six practice-based questions.  

1   We wish to emphasize that due to the complex nature of problem solving, there are no hard and 
fast rules concerning what students can learn about problem solving or how it should be taught. 
Indeed, the main theme of this analysis is that the suggestions we provide are meant as guidelines 
for teachers’ to consider seriously not directives that should be rigidly followed. 
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    Question 1: Should Problem Solving Be Taught as a Separate 
Topic in the Mathematics Curriculum or Should It 
Be Integrated Throughout the Curriculum? 

 Lesh and Zawojewski ( 2007 ) point out that there is little or no evidence that students’ 
problem-solving abilities are improved by isolating problem solving from learning 
 mathematics concepts   and procedures. They challenge the oft-held assumption that 
a teacher should proceed by:

  First teaching the  concepts and procedures  , then assigning one-step “story” problems that 
are designed to provide practice on the content learned, then teaching problem solving as a 
collection of strategies such as “draw a picture” or “guess and check,” and fi nally, if time, 
providing students with applied problems that will require the mathematics learned in the 
fi rst step. (p. 765) 

   In fact, the evidence has mounted over the past several decades that such an 
approach does not improve students’ problem solving to the point that today no 
research is being conducted with this approach as an instructional intervention 
(e.g., Begle,  1973 ; Charles & Silver,  1988 ; Lester,  1994 ; Schoenfeld,  1979 ,  1985 ). 
But there is mounting evidence to support thinking of mathematics teaching as a 
system of  interrelated dimensions  : (1) the nature of classroom tasks, (2) the teach-
er’s role, (3) the classroom culture, (4) the mathematical tools to aid learning, 2  and 
(5) the concern for equity and accessibility (Hiebert et al.,  1997 ; Lester & Charles, 
 2003 ; Schoen & Charles,  2003 ). When classroom instruction is thought of as a 
system, it no longer makes senses to compartmentalize problem solving—or any 
other aspect of mathematical activity—as a separate part of the curriculum. The 
implication of this change in perspective is that if we are to help students become 
successful problem solvers, we fi rst need to change our views of problem solving 
as a topic that is added onto instruction after concepts and skills have been taught. 
One alternative is to make problem solving an integral part of mathematics learn-
ing. This alternative, often called  teaching through problem solving , adopts the 
view that there is a  symbiotic connection   between problem solving and concept 
learning (Lambdin,  2003 ). 

 A bit of elaboration on the notion of  teaching through problem solving  is in 
order. In teaching through problem solving, learning takes place during the process 
of attempting to solve problems in which relevant  mathematics concepts and skills   
are embedded (Lester & Charles,  2003 ; Schoen & Charles,  2003 ). As students solve 
problems, they can use any approach they can think of, draw on any piece of knowl-
edge they have learned or that they can construct on the spot, and justify their ideas 
in ways they feel are convincing. The learning environment of teaching through 
problem solving provides a natural setting for students to present various solutions 

2   Hiebert et al. ( 1997 ) describe “mathematical tools” as the collection of language, materials, and 
symbols that students have available when they engage in mathematical activity. 
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to their group or class and learn mathematics through social interactions, meaning 
negotiation, and reaching shared understanding. Such activities help students clarify 
their ideas and acquire different perspectives on the concept or idea they are learn-
ing. Empirically, teaching mathematics through problem solving helps students go 
beyond acquiring isolated ideas toward developing increasingly connected and 
 complex system of knowledge   (e.g., Cai,  2003 ; Carpenter, Franke, Jacobs, Fennema, 
& Empson,  1998 ; Cobb et al.,  1991 ; Hiebert et al.,  1996 ; Hiebert & Wearne,  1993 ; 
Lambdin,  2003 ). The power of problem solving is that obtaining a successful solu-
tion requires students to refi ne, combine, and modify knowledge they have already 
learned. 

 To reiterate, the  teaching-through-problem-solving approach   has been shown to 
result in students improving their problem-solving performance not because they 
learned general problem-solving strategies and heuristics but because they had 
deep, conceptual understanding of mathematics. And, at the same time, research has 
indicated that teaching students to use general problem-solving strategies and 
heuristics has little effect on students’ being better problem solvers (Lesh & 
Zawojewski,  2007 ; Lester,  1994 ; Schoenfeld,  1979 ,  1985 ,  1992 ). Research also has 
clearly shown that teaching with a clear focus on understanding can foster students’ 
development of problem-solving abilities (Hiebert,  2003 ; Lambdin,  2003 ). 

 In summary, developing students’ ability to solve problems is not an isolated 
instructional act or a topic that is covered separately from the rest of the  math cur-
riculum  . Instead, it is an integral part of mathematics learning across content areas. 
Learning of substantive mathematical content and developing problem-solving 
skills cannot be separated from one and another; problem solving should be infused 
into all aspects of mathematics learning.  

    Question 2: Doesn’t Teaching Mathematics Through Problem 
Require More Time Than More Traditional Approaches? 
Specifi cally, What Sort of Time Commitment Is Required 
to Teach Through Problem Solving? 

 To help students become successful problem solvers, teachers must accept that 
students’  problem-solving abilities   often develop slowly, thereby requiring long-
term, sustained attention to making problem solving an integral part of the mathe-
matics program. Moreover, students must also buy into the importance of regularly 
engaging in challenging activities (Lester,  1994 ; Lester & Charles,  2003 ; Schoen & 
Charles,  2003 ). 

 Developing  students’ abilities   to solve problems is not only a fundamental part 
of mathematics learning across content areas, but it also is an integral part of math-
ematics learning across grade levels. Beginning in preschool or kindergarten, stu-
dents should be taught mathematics in a way that fosters understanding of 
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mathematics concepts and procedures and solving problems. In fact, there is strong 
evidence that even very young students are quite capable of exploring problem situ-
ations and inventing strategies to solve the problems (e.g., Cai,  2000 ; Carpenter 
et al.,  1998 ; Kamii,  1989 ; Maher & Martino,  1996 ; Resnick,  1989 ). Helping stu-
dents become successful problem solvers should be a long-term instructional goal, 
so that effort is made to reach this goal in every grade level, every mathematical 
topic, and every lesson. 

 The most effective way for students to learn to solve problems is for them to solve 
a variety of problems: a lot of them but not simple repetitions, both in and out of 
school (Cai & Nie,  2007 ; Gu, Huang, & Marton,  2004 ; Lester,  1994 ). The  long- term 
commitment students   need to make is a willingness to engage in problem- solving 
activities and to form habits of mind such as thinking about word meanings, justifying 
claims and conjectures, analyzing answers and solution strategies, using alternative 
representations, and acquiring a toolkit of problem-solving strategies (Goldenberg, 
Shteingold, & Feurzeig,  2003 ; Levasseur & Cuoco,  2003 ). Indeed, according to the 
winner of Fields Medal (often described as the Nobel Prize in mathematics) in 2006, 
Terence Tao, his remarkable accomplishment in mathematics is related to his hard 
work with many diffi cult problems at an early age. Tao is purported to have said:

  When I was a kid, I had a romanticized notion of mathematics, that hard problems were 
solved in “Eureka” moments of inspiration … With me, it’s always, “Let’s try this. That 
gets me part of the way, or that doesn’t work. Now let’s try this. Oh, there’s a little shortcut 
here.” You work on it long enough and you happen to make progress towards a hard prob-
lem by a back door at some point. At the end, it’s usually, “Oh, I’ve solved the problem.” 
(Press release of the UCLA newsroom, August 22, 2006;   http://newsroom.ucla.edu/
releases/Terence-Tao-Mozart-of-Math-7252    ) 

   In addition to making problem solving a regular part of everyday instruction, home-
work can extend learning opportunities and engage students in independent problem 
solving. Research shows that doing homework has a positive impact on students’ 
achievement, although the impact varies across grade levels. According to the  meta-
analysis   by Cooper ( 1989a ,  1989b ), the positive effect of homework on students’ 
achievement increases steadily from the elementary grades through high school. 
Also, after reviewing all of the available research literature, Marzano, Pickering, and 
Pollock ( 2001 ) concluded “homework does produce benefi cial results for students as 
low as 2nd grade” (p. 62). Although there is no clear answer to the question of how 
much homework is the right amount, international studies have shown that students 
in the United States spend signifi cantly less time on homework than students from 
other countries, especially from Asia (Stevenson & Lee,  1990 ). 

 In summary, students cannot become successful problem solvers overnight. 
Helping students become successful problems solvers should be a  long-term instruc-
tional goal   for teachers to reach in every grade level, every mathematical topic, and 
every lesson. Teaching today’s students to become the thinking and caring leaders 
who will be able to solve the world’s increasingly complex and quantitative prob-
lems requires a total commitment (Committee on Prospering in the Global Economy 
of the 21st Century,  2007 ).  
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    Question 3: What Kinds of Instructional Activities Should 
Students Be Used in Teaching Through Problems? 

 Before providing our answer to this question, let us state what we mean by 
“mathematics problem.” In simplest terms for us, a mathematics problem is a task 
presented to students in an instructional setting that poses a question to be answered 
but for which the students do not have a readily available procedure or strategy for 
answering it. 

 Researchers refer to the  mathematical activities   in which students engage as 
tasks that can be defi ned broadly as projects, questions, problems, constructions, 
applications, and exercises. Mathematical tasks provide intellectual environments 
for students’ learning and the development of their mathematical thinking. Doyle ( 1988 ) 
argued that tasks with different cognitive demands are likely to induce different 
kinds of learning because they govern not only students’ attention to particular 
aspects of content but also their ways of processing information. Mathematical 
tasks that are truly problematic have the potential to provide intellectual contexts 
for students’ mathematical development. Such tasks can promote students’ concep-
tual understanding, foster their ability to reason and communicate mathematically, 
and capture their interests and curiosity (Cai,  2014 ; Hiebert,  2003 ; Hiebert & 
Wearne,  2003 ; Marcus & Fey,  2003 ; NCTM,  1991 ; Van de Walle,  2003 ). Researchers 
recommend that students should be exposed to truly problematic tasks so that math-
ematical sense making is practiced. Unfortunately, there is considerable evidence 
that many  US mathematics teachers   think that they have the responsibility to remove 
the challenge (and the struggle) for their students when they are engaged in problem 
solving. In their study of eighth-grade students who were part of the  Third 
International Mathematics and Science Study (TIMSS)  , Hiebert and colleagues 
( 2005 ) found that US teachers almost always intervened to show students how to 
solve the problems they had been asked to solve, leaving the mathematics they were 
left to do rather straightforward. This stands in direct contrast to teachers in Germany 
and Japan, who allowed students much greater opportunities to struggle with the 
more challenging parts of problems. 

 A number of studies have provided clear evidence to support the connection 
between the nature of tasks and  student learning   (Cai,  2014 ; Hiebert & Wearne, 
 1993 ; Stein & Lane,  1996 ; Stein, Remillard, & Smith,  2007 ). In these studies, 
students who showed the biggest gains were those in classrooms using cognitively 
demanding tasks. Also, Cai and Merlino ( 2011 ) found that engaging students in 
solving challenging problems led them to enjoy doing mathematics. 

 Mathematical problems that are truly problematic and involve signifi cant mathe-
matics have the potential to provide the intellectual contexts for students’ mathemati-
cal development. However, only “worthwhile problems” give students the chance to 
solidify and extend what they know and stimulate mathematics learning (Marcus & 
Fey,  2003 ; Van de Walle,  2003 ). But what is a worthwhile problem? Regardless of the 
context, worthwhile tasks should be intriguing, with a level of challenge that invites 
speculation and hard work. Most importantly, worthwhile mathematical tasks should 
direct students to investigate important mathematical ideas and ways of thinking 
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toward the learning goals. Lappan and Phillips ( 1998 ) developed a set of criteria for a 
good (worthwhile) problem that they used to develop their middle  school mathemati-
cal curriculum   ( Connected Mathematics ), and there has been some research support-
ing the effectiveness of this curriculum for fostering students’ conceptual understanding 
and problem solving (Cai, Wang, Moyer, Wang, & Nie,  2011 ). The fact that the 
curriculum as a whole has been shown to be effective suggests that teachers might 
want to attend to this set in designing and choosing problems. 

   Criteria   for a Good Mathematics Problem (Lappan & Phillips,  1998 ) 

•     The problem has important, useful mathematics embedded in it.  
•   Students can approach the problem in multiple ways using different solution 

strategies.  
•   The problem has various solutions or allows different decisions or positions to be 

taken and defended.  
•   The problem encourages  student engagement   and discourse.  
•   The problem requires higher-level thinking and problem solving.  
•   The problem contributes to the conceptual development of students.  
•   The problem connects to other important mathematical ideas.  
•   The problem promotes the skillful use of mathematics.  
•   The problem provides opportunity to practice important skills.  
•   The problem creates an opportunity for the teacher to assess what his or her students 

are  learning   and where they are experiencing diffi culty.     

 The role of teachers is to select and develop tasks that are likely to foster the 
development of understandings and mastery of procedures in a way that also pro-
motes the development of abilities to solve problems and reason and to communicate 
mathematically (NCTM, 1991). 

 It is very common for students to be asked to interpret a story or solve a story 
problem, but students are less often asked to make up stories in classrooms or pose 
mathematical problems based on given situations. Writing stories to go with number 
sentences may help students focus on the meaning of the procedures involved. 
We can examine students’ thinking from a different perspective if we ask them to 
generate their own mathematical problems. Research shows that students are capa-
ble of generating interesting mathematical problems, and there is a direct link 
between students’  problem-solving and problem-posing skills   (Cai & Hwang,  2002 ; 
Silver & Cai,  1996 ). Therefore, writing story problems to match number sentences 
or posing mathematical problems based on situations can engage students in learn-
ing important mathematics and develop their problem-solving abilities. 

 It goes without saying that the most important criterion of a worthwhile mathe-
matical problem is that the problem should serve as a means for students to learn 
important mathematics. Such a problem does not have to be complicated or have a 
fancy format. As long as a problem fosters students’ learning of important mathe-
matics, it is a worthwhile problem. As Hiebert et al. ( 1997 ) have noted, a problem 
as simple as fi nding the difference in heights between two children, one 62 and the 
other 37 inches tall, can be a worthwhile problem if teachers use it appropriately for 
students’ learning of multi-digit addition. Teachers must decide what mathematical 
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tasks to select or develop according to the specifi c learning goals of a lesson. 
 Textbooks   can be a useful resource for selecting worthwhile mathematical tasks. 
In fact, teachers can develop worthwhile mathematical tasks by simply modifying 
problems from the textbooks.  

    Question 4: How Can Teachers Orchestrate Pedagogically 
Sound, Active Problem Solving in the Classroom? 

 Accepting the premise that mathematics instruction should be thought of as a system 
of interrelated dimensions, it is clear that selecting worthwhile mathematical tasks 
alone does not guarantee  students’ learning  . Indeed, there is considerable evidence 
that even when teachers have good problems they may not be implemented as intended. 
Stein, Grover, and Henningsen ( 1996 ) found that only about 50 % of the tasks that 
were set up to require students to apply procedures with meaningful connections 
were implemented effectively by the teacher. A task applying procedures with 
meaningful connections has various features, such as it focuses students’ attention 
on the use of procedures for the purpose of developing deeper levels of understand-
ing of  mathematical concepts and ideas  . Therefore, in the classroom, students’ 
actual opportunities to learn depend not only on the type of mathematical tasks that 
teachers pose but also on the kinds of classroom discourse that takes place during 
problem solving, both between the teacher and students and among students; too 
often it seems that teachers do not allow students to struggle with challenging tasks 
(Cazden,  1986 ). Discourse refers to the ways of representing, thinking, talking, and 
agreeing and disagreeing that teachers and students use to engage in  instructional 
tasks  . Considerable theoretical and empirical evidence exists supporting the connec-
tion between classroom discourse and student learning. The theoretical support comes 
from both constructivist and sociocultural perspectives of learning (e.g., Cobb,  1994 ; 
Hatano,  1993 ; Hiebert et al.,  1997 ). As students explain and justify their thinking and 
challenge the explanations of their peers and teachers, they are also engaging in clari-
fi cation of their own thinking and becoming owners of “knowing” (Lampert,  1990 ). 
The empirical evidence supporting the positive relationships between teachers’ asking 
high-order questions and students’ learning can be found in the work of Hiebert and 
Wearne ( 1993 ) and of Redfi eld and Rousseau ( 1981 ). 

 What then is desirable discourse in mathematics teaching? To answer this ques-
tion, we refer to a study developed by Thompson and his associates involving two 
classes of grade seven students (Thompson, Philipp, Thompson, & Boyd,  1994 ). 
A primary focus of their study was to contrast two teaching episodes in which the 
students in the two classes discussed their work on the same task. There were a 
number of similarities between the two teaching episodes Thompson et al. ana-
lyzed. For example, both teachers opened their lessons with the same problem and 
with similar instructions to the students. Both teachers pressed their students to give 
rationales for what they did. However, the two teaching episodes differed signifi -
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cantly in terms of how the teachers led the classroom discussion. For example, 
students in one class began to give explanations that were grounded in their concep-
tions of the situation (i.e., in making sense of the situation presented in the prob-
lem). By contrast, the explanations given by students in the other class remained 
strictly procedural. In addition, one teacher was less persistent than the other in 
probing the students’ thinking. He accepted solutions consisting of  calculation 
sequences  . However, the other teacher persistently probed students’ thinking when-
ever their responses were cast only in terms of calculations. The actions of the two 
teachers were driven by different images of the tasks and of the pedagogical goals 
it served. For one teacher, the goal was to solve a problem, whereas for the other 
teacher, the goal was to encourage students to reason and refl ect on their reason-
ing and to demonstrate their understanding of the mathematics concepts embedded 
in the task. 

 Thompson et al.’s analysis clearly showed that  mathematical tasks   can be 
implemented differently, depending on the nature of the classroom discourse. 
Indeed, there are a number of factors that can infl uence the implementation of 
worthwhile problems in classroom (e.g., Henningsen & Stein,  1997 ). One of the 
predominant factors is the amount of time allocated to solving and discussing the 
problem. For example, more than 40 years ago, Rowe ( 1974 ) found that the mean 
time that teachers waited between asking a question and, if no answer was forth-
coming, intervening again was only 0.9 s. A wait time of less than 1 s prevented 
most students from taking part in the classroom discussion. No wonder many 
students believe that every problem should be solvable with little or no thinking 
(Lesh & Zawojewski,  2007 ). 

 Another  infl uential factor   is that sometimes teachers remove the challenges of a 
mathematical task by taking over the thinking and reasoning by telling or showing 
students how to solve the problem. In addition to selecting and developing worthwhile 
mathematical tasks, teachers are also responsible for listening carefully to students’ 
ideas and asking them to clarify and justify their ideas orally and in writing, as well 
as monitoring their participation in discussions and deciding when and how to 
encourage each student to participate. The questions that teachers ask are also criti-
cal for orchestrating sound classroom discourse (Rasmussen, Yackel, & King,  2003 ; 
Stephan & Whitenack,  2003 ).  

    Question 5: How Can Productive Beliefs 
Toward Mathematical Problem Solving Be Nurtured? 

 One of the most striking results presented in the various national reports of students’ 
mathematics achievement is represented by a large number of high school students 
who avoid taking advanced mathematics courses. These students often drop 
advanced math classes, not necessarily due to a lack of ability but largely based on 
their negative  attitudes   toward mathematics and on their perception of their future 
career opportunities. According to  National Assessment of Education Progress 
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(NAEP)   results, in grade levels 4, 8, and 12, students who agreed that they like 
mathematics and who think mathematics is useful for solving problems scored 
higher than did the students who disagreed (Kloosterman & Lester,  2004 ; Silver & 
Kenney,  2000 ). Yet even among those students who expect to become scientists, 
less than 75 % of those students believe that advanced mathematics or science 
courses are necessary for their future careers (e.g., Ma,  2006 ). 

 In order to help students become successful problem solvers, we need to nurture 
productive beliefs toward mathematics in general and problem solving in particular. 
All too often students hold the belief that there is only one “right” way to approach 
and solve a problem (Lester, Garofalo, & Kroll,  1989 ; McLeod & Adams,  1989 ). 
The results from both national (Lindquist,  1989 ; Lubienski, McGraw, & Struchens, 
 2004 ) and international (Lapointe, Mead, & Askew,  1992 ) assessments show that 
many students do not view mathematics as a  creative and intellectually engaging 
activity  , but rather as a set of rules and procedures that they must memorize in 
order to quickly follow the single correct way to obtain the single correct answer. 
For example, on the 2003 NAEP assessment, nearly one-third of US eighth-grade 
students reported that learning mathematics is mostly memorizing, and about 
one-fi fth of eighth-grade students agreed with the statement that there is only one 
correct way to solve a mathematics problem (McGraw & Lubienski,  2007 ). 

 Students’ beliefs about the nature of problem solving are not restricted to how 
problems are supposed to be solved. Many students also have fi rmly held beliefs 
about what is expected of them when their teachers give them problems to solve. 
For example, in solving an absurd problem like “There are 26 sheep and 10 goats on 
a ship. How old is the captain?” 10 % of Belgian kindergartners and fi rst graders 
“solved” this problem by adding the numbers to get the captain’s age (Verschaffel 
& De Corte,  1997 ). The percentages of students who “solved” the problem in this 
way increased to 60 % for Belgian third and fourth graders and 45 % for fi fth graders. 
The more  formal education   the third-, fourth-, and fi fth- grade students had, the less 
attention they paid to making sense of the problem and their solutions, in contrast to 
the fi rst graders. A similar problem was administered to a group of Chinese fourth 
graders, seventh graders, eighth graders, and twelfth graders. About 90 % of the 
Chinese fourth graders, 82 % of the seventh and eighth graders, and 34 % of the 
twelfth graders “solved” this problem by combining numbers in it without realizing 
the absurd nature of the problem (Lee, Zhang, & Zheng,  1997 ). When these 
Chinese students were asked why they did not recognize that the problem was 
meaningless, many students responded that any problem assigned by a teacher 
always has a solution (Cai,  2003 ). This sort of result has been documented consis-
tently by researchers (e.g., Lester et al.,  1989 ; McLeod & Adams,  1989 ). 

 Students’ beliefs about problem solving can also be revealed when they are 
asked to solve a problem using  alternative strategies  . Research suggests that some 
students seem unconcerned about getting different answers for a problem with a 
unique answer when they are asked to solve the problem using different strategies. 
For example, in a study by Silver, Leung, and Cai ( 1995 ), Japanese and US fourth- 
grade students were asked to fi nd multiple ways to determine the total number of 
marbles that had been arranged in a certain way. Some students obtained different 
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numerical answers when they used alternative solution strategies; surprisingly, they 
seemed unconcerned about getting different answers. 

 On the other hand, studies by a number of researchers (e.g., Carpenter et al.,  1998 ; 
Cobb et al.,  1991 ; Verschaffel & De Corte,  1997 ) suggest that it is possible to change 
students’ beliefs about mathematics and problem solving using alternative  instruc-
tional practices  , such as teaching through problem solving. For example, in contrast to 
students in a control group, Cobb et al. ( 1991 ) found that students in their problem-
centered project held more positive beliefs about the importance of understanding, in 
addition to being the better problem solvers, than a comparison group of students. 
Therefore, it is quite possible for teaching with a focus on understanding and problem 
solving to provide a healthy learning environment for students to form positive beliefs 
about mathematics and problem solving and develop problem- solving skills. 

 That teachers’ beliefs about mathematics impact their teaching is well docu-
mented (Philipp,  2007 ; Thompson,  1992 ). Teachers who hold different beliefs 
about mathematics teach differently. Research shows that engaging students in 
problem-posing and problem-solving activities in the classroom has a positive 
infl uence on students’  problem-solving performance   and their attitudes toward 
mathematics (Cai,  2003 ; Cai & Hwang,  2002 ; Cai & Merlino,  2011 ; Rosenshine, 
Meister, & Chapman,  1996 ; Silver & Cai,  1996 ). In such classrooms, students 
become active participants in the creation of knowledge rather than passive receivers 
of rules and procedures.  

    Question 6: Will Students Sacrifi ce Basic Skills if They Are 
Taught Mathematics Through Problem Solving? 

 In teaching through problem solving, the focus is on conceptual understanding, rather 
than on procedural knowledge; it is expected that students will learn algorithms and 
master basic skills as they engage in explorations of worthwhile problems (Cai,  2003 ). 
However, many people, parents and teachers alike, worry that the development of 
 students’ higher-order thinking   skills in teaching through problem solving comes at 
the expense of the development of basic mathematical skills. Obviously, both basic 
skills and high-order thinking skills in mathematics are important, but having basic 
mathematical skills does not imply having higher-order thinking skills or vice versa 
(Cai,  2000 ; Hatano,  1988 ; Steen,  1999 ; Sternberg,  1999 ). Therefore, it is reasonable 
to wonder if students will sacrifi ce basic skills in a learning environment involving 
teaching through problem solving (Battista,  1999 ; Schoenfeld,  2002 ). It is also 
reasonable to wonder if students who use  Standards - based curricula can truly develop 
conceptual understanding and higher-order thinking skills. 

 There are two lines of relevant research to address this question. The fi rst line 
includes those studies conducted on reform curricular programs funded by the US 
 National Science Foundation (NSF)   that teach mathematics through problem 
solving and that have been implemented by teachers. The  NSF - funded  programs 
are problem-based curricula, and the intent is to teach mathematics and to build 
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students’ understanding of important mathematical ideas through explorations of 
 real- world situations and problems (National Research Council,  2004 ; Senk & 
Thompson,  2003 ). The second line of research includes studies based on innova-
tive materials developed by researchers in specifi c content areas (e.g., Carpenter 
et al.,  1998 ; Cobb et al.,  1991 ; Hiebert et al.,  1997 ; Hiebert & Wearne,  1993 ; Stein 
& Lane,  1996 ; Wood & Sellers,  1997 ). Unlike the fi rst line of research, in this 
second line, researchers usually focus on teaching grade-specifi c mathematical 
topics using a problem-solving approach. 

 The results from these two lines of research generally point in the same direc-
tion: on standardized tests measuring  computational skills   and procedural knowl-
edge, students using problem-solving approaches performed at least well as students 
using traditional curricula. In addition, students using problem-solving approaches 
performed better than students using traditional curricula on tests specifi cally 
designed to measure conceptual understanding and problem solving (Cai et al., 
 2011 ; Carpenter et al.,  1998 ; Cobb et al.,  1991 ; Fuson, Carroll, & Drueck,  2000 ; 
Hiebert & Wearne,  1993 ). For example, Cobb et al. ( 1991 ) examined the perfor-
mance on a standardized mathematics achievement test of ten classes, whose stu-
dents had participated in a year-long, problem-centered mathematics project and 
compared them with eight non-project classes. They also studied the performance 
of these same classes of students on instruments designed to assess students’ com-
putational profi ciency and conceptual development in arithmetic. They found that 
levels of computational performance between project and non-project students were 
comparable, but the project students had higher levels of conceptual understanding 
in mathematics than did non-project students. Other studies—involving elementary 
school students (e.g., Carpenter et al.,  1998 ; Hiebert & Wearne,  1993 )—have 
obtained similar results: students learning mathematics through problem solving do 
at least as well as those students receiving traditional instruction on both basic com-
putation and conceptual understanding. Similarly, the few existing studies involving 
 middle and high school students   (Cai et al.,  2011 ; Reys, Reys, Lapan, Holliday, & 
Wasman,  2003 ; Riordan & Noyce,  2001 ; Schoen & Charles,  2003 ; Tarr et al.,  2008 ) 
have shown that students who receive problem-based instruction have higher levels 
of mathematical understanding than students with more traditional instruction, 
and there are comparable basic number  skills   between the two groups. In the LieCal 
Project, 3  the results showed that the students using the  Connected Mathematics 
Program (CMP)   had growth over the three middle school years that was similar to 
those students using other commercial, more traditional, curricula on items assess-
ing simple word problem solving, computations, and equation solving. However, 
on items assessing conceptual understanding and complex problem solving, CMP 

3   LieCal Project (Longitudinal Investigation of the Effect of Curricula on Algebra Learning) was 
funded by the National Science Foundation. It investigated whether the Connected Mathematics 
Program (CMP) can effectively enhance student learning of algebra. The LieCal Project investi-
gated not only the ways and circumstances under which the CMP curriculum can or cannot 
enhance student learning, but it also looked at the characteristics of the curriculum and implemen-
tation that lead to student achievement gains. 
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students showed signifi cantly greater growth over the three middle school years 
than did non-CMP students (Cai et al.,  2011 ). The LieCal Project has also  used 
  various student learning outcome measures to examine the impact of middle school 
curriculum on students’ learning in high school.     On all of the measures, CMP stu-
dents performed equally well or better than the non-CMP students when they were 
in high school (Cai,  2014 ; Cai et al.,  2013 ). 

 There is an exception, however. Ni and his associates conducted a longitudinal 
study to investigate whether or not the curriculum reform in Mainland China 
brought about desirable student learning outcomes in elementary mathematics 
(Ni, Li, Cai, & Hau,  2015 ). As in the United States, the most important feature of 
the  reformed mathematics curriculum   in China is that it is problem based. Improved 
performance was observed in the students of both groups over time on the measures 
of computation and problem solving for which the tasks involved both process- 
constrained and process-open questions. 4  However, the reform group performed 
better than did the non-reform group on complex problem-solving tasks. On the 
other hand, the non-reform group did better than the reform group on computation 
and simple problem solving. The few studies that have examined the reformed 
curricula in the United States have obtained similar fi ndings (National Research 
Council,  2004 ). 

 The fi ndings appear to suggest that in some instances students’ conceptual under-
standing does come at the expense of the development of basic mathematical skills 
when using reformed curriculum, but is the trade-off worth it? For the reformed 
group, the success rate for solving multiple-choice tasks increased from 80 to 87 % 
over 2 years and 75–92 % for the non-reformed group in the study by Ni et al. ( 2015 ). 
The reformed group showed reasonably good growth on the measures of basic math-
ematical skills. The world has been changing dramatically, and these changes are 
happening much faster than we anticipated. Today, possessing a large amount of 
 knowledge and information   is not suffi cient. Instead, in this continually changing 
world, the most important qualities we can help our students develop are the abilities 
to think independently and critically, to learn, and to be creative. In this sense, it 
seems worthwhile to sacrifi ce a few percentage points on basic mathematical skills 
to gain considerable measures of higher-order thinking skills. 

 On balance then, the research evidence suggests that teaching mathematics with 
a problem-solving perspective considerably enhances students’ problem solving 
and  conceptual understanding   while at the same time producing moderate to excellent 
improvement in their basic computational and other procedural skills.  

4   A process-constrained problem requires a student to carry out a procedure or a set of routine 
procedures to solve the problem. In other words, the problem is set in such a way that it constrains 
a student’s solution to a rather limited process. Usually, a process-constrained problem can be 
solved by applying a “standard algorithm.” On the other hand, a task that is process open may not 
require an execution of a procedure or a set of procedures; instead it requires an exploration of the 
problem situation and then fi nding the solution to the problem. Therefore, the task is set in such a 
way that it allows students to use alternative, acceptable solution strategies. Usually, a process-
open task cannot be solved by following a “standard algorithm.” See Cai ( 2000 ) for details. 
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    Summary 

 How can we teachers help students become successful problem solvers? This analysis 
of research conducted primarily since 1985 provides some partial answers to six 
practice-based questions. Research clearly suggests that problem solving should not 
be taught as a separate topic in the mathematics curriculum. In fact, research tells us 
that teaching students to use general problem-solving strategies has little effect on 
their success as problem solvers. Thus, problem solving should be taught as an 
integral part of mathematics learning, and a signifi cant commitment should be made 
to include problem solving at every grade level and with every mathematical topic. 
In addition to making a commitment to problem solving in the mathematics curricu-
lum, teachers need to be strategic in selecting appropriate tasks and orchestrating 
classroom discourse to maximize learning opportunities. In particular, teachers 
should engage students in a variety of problem-solving activities: (1) fi nding multiple 
solution strategies for a given problem, (2) engaging in problem posing  and math-
ematical exploration  , (3) giving reasons for their solutions, and (4) making general-
izations (Cai,  2010 ). Focusing on problem solving in the classroom not only impacts 
the development of students’ higher-order thinking skills but also reinforces posi-
tive attitudes. Finally, there is little evidence that we should worry that students 
sacrifi ce their basic skills if we teachers focus on developing their mathematical 
problem-solving skills. 

 At the beginning of this analysis, we noted that we need to conduct much more 
research before we will have answers to all the questions teachers have about teach-
ing mathematics with a problem-solving perspective. For now, it suffi ces to say 
that, although we do not know the one BEST way to teach students to be better 
problem solvers, research has begun to provide compelling evidence to support 
some methods over others.     
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Teaching Mathematical Problem Solving 
in Hungary for Students Who Have  
Average Ability in Mathematics

András Ambrus and Krisztina Barczi-Veres

Abstract Fostering talented students from Grade 1 to Grade 12 has always 
 dominated Hungarian mathematics education. Another main characteristic of our 
education is whole class teaching, but the results of Hungarian students on interna-
tional mathematics tests show that teaching mathematics to everybody should 
hugely differ from teaching mathematics to the talented. How can we change this 
one-sided dominance in a traditional mathematics teaching culture? In our study, we 
analyse the role of memory systems, which are decisive factors of problem solving. 
Here, we find a lot of differences between the talented and the average. Following 
this, we present a case study concerning teaching mathematical problem solving for 
average students: using guiding questions and hints in problem solving and apply-
ing cooperative techniques in teaching problem solving. The research was imple-
mented by a secondary school mathematics teacher.

 Introduction

If somebody looks at Hungarian mathematics education from the outside, it seems 
very promising. Thanks to G. Pólya, mathematical problem solving and fostering 
talented students always stand in the centre of school mathematics. Some world 
famous names, like P. Halmos, J. Neumann, P. Erdős, L. Lovász, etc. with Hungarian 
origin, serve as an evidence for the effectiveness of our mathematics education. 
Moreover, we still train very bright young mathematicians. But these facts show 
only one side of the coin. How about the other side? John Mason mentioned in a 
personal discussion that “The much-vaunted Hungarian Mathematics Teaching has 
not spread significantly into the mainstream”. Furthermore, Laurinda Brown from 
the University of Bristol, who has visited Hungarian mathematics lessons many 
times, formulated her opinion as “You in Hungary are teaching mathematics, we in 
England children”. So, what are the main problems in current Hungarian 
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mathematics teaching? To get some ideas in the following, we analyse the results of 
Hungarian students on PISA 2012 mathematics tests, on the mathematics maturity 
exams and on some university tests.

On PISA 2012 Mathematics test, out of the 65 participants, Hungary reached the 
39th place with an average of 477 points (OECD average is 494 points). The top 
rating level 6 was reached only by 9.3 % of the Hungarian students; the lower levels 
2 or 1 were achieved by 28.1 %. On the creative problem solving PISA 2012 test, 
out of the 44 participants, Hungary placed 33rd. Here, 35 % of the Hungarian stu-
dents reached level 2 or level 1 (PISA, 2012). Hungary has always participated in 
PISA tests right from the beginning, usually achieving OECD average results, but 
these results show a decreasing tendency. As a reaction to these results, the 
Hungarian government has introduced the so-called competence tests for grades 4, 
6, 8 and 10. These tests contain so-called PISA-like problems, and the schools are 
evaluated based on their students’ results on these tests. A direct consequence of 
this is that some schools prepare their students directly for the test, practising prob-
lems taken from earlier competence tests, to make the style of the problems known 
to their students. So, the results of these tests do not reflect the whole reality.

Another important test in Hungarian mathematics education is the central matu-
rity exam at the end of year 12. The exam has two levels, middle vs. higher level. 
The higher level one has a written and an oral part; differential and integral calculus 
are only part of the higher level schemes of work. Most of the higher level problems 
are complex; many of them are modelling problems, while the middle level prob-
lems usually include basic mathematical tasks, algorithms or procedures. In a year, 
about 95,000 students take the mathematics maturity exam, out of whom about 
3500 students take the higher level exam (3.6%!). The problem is that most of these 
students are not prepared to solve complex problems. From the above-mentioned 
data, we may ask why so few students choose the higher level exam. Universities 
training engineers, information technologists, mathematicians, economists, mathe-
matics teachers and architects have places to offer for about 20–25 % of a year 
group, and only about 3.6 % of a year group takes the higher level maturity exam in 
mathematics, although a high level of mathematical knowledge is a requirement for 
these majors.

First-year students have to take a test at the beginning of their university or col-
lege studies in which the problems are based on the middle level maturity exam 
requirements. Based on their results, most of the students must participate in an 
“adjustment” course where they go through the basic secondary mathematical con-
cepts, algorithms, procedures, etc. Without going into details, we mention some 
findings of an elite Faculty of Technical University Budapest (Csakany, 2011): 
most of the students do not understand relationships; do not know key ideas; have 
very weak analysing abilities; their work is hard to follow; their knowledge is 
unstable; they have very weak modelling abilities; and their imaginative abilities 
are weak too. We do not need to emphasise how important these factors are in 
effective  problem solving. To summarise, it seems that the whole system—the 
Hungarian elementary and secondary mathematics education—does not work very 
effectively.
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What can we do to achieve some changes? We concentrate only on one but an 
important issue: how can we reach not only the top 10 % of students in mathematics 
lessons but also “the rest”, the less able ones too? Our hypothesis is that the teaching 
style of mathematics that works for the top 10 % is not effective for the next 10–20 % 
and for the remaining part. In this article, we concentrate on the mentioned 10–20 %, 
because we need to prepare them much better for higher studies.

Most mathematics problems in Hungarian mathematics teaching are closed 
problems, and a lot of students cannot start solving them without help because they 
mostly need to apply top-down deductive methods. For these students, opening a 
problem gives a chance to take individual steps towards the solution, for example, 
investigating some concrete cases, which is more of a bottom-up, inductive method. 
After some theoretical considerations about the cognitive architecture of human 
mind, cognitive load theory and cooperative teaching methods, we will report 
about a teaching experiment in which cooperative teaching techniques, opening 
problems and using guiding questions were applied. We would like to emphasise 
that we made our experiment in a very rigid Hungarian teaching environment—
class teaching, closed problems—to demonstrate that there is a more effective way 
than the traditional one.

 Theoretical Background

One of the problems in Hungarian mathematics education is that the science of 
learning is often neglected (We are teaching mathematics, not children!). If we anal-
yse the human mind architecture, we may come closer to understanding the reasons 
of the underlying problems.

 The Cognitive Architecture of the Human Mind:  
Memory Structures

Most neuroscientists accept Baddeley’s model of memory structures (Baddeley, 
Eysenk, & Anderson, 2009): perceptual (sensory) memory, working memory and 
long-term memory. From our point of view, the working and long-term memory are 
important as basic places for human cognition.

In working memory, the conscious human processing occurs (comprehension, 
understanding, critical thinking, problem solving, etc.). It is called the workbench 
of our brain; it is the active problem space. It has four components: phonological 
loop to hold and rehearse verbal information, visual-spatial sketchpad to hold visual 
and spatial information, episodic buffer which connects the verbal and visual- spatial 
information directed by the central executive with the help of the information taken 
from the long-term memory. The central executive is the so-called supervisory 
attention system, because it monitors, controls and directs the information  processing 
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in our brain. Our working memory constructs plans, uses transformation strategies, 
analogies, metaphors, brings together things in thought, abstracts and externalises 
mental representations. In problem solving, students need a clear mental representa-
tion of the task (understanding the problem). While seeking a strategy (solution 
method), the students need to hold the conditions and the goal in their memory, and 
taking this into consideration, they should monitor their progress in the solution, 
inhibit wrong, unsuccessful ideas and control their results. It is very hard to make 
these components appear in class teaching.

The WM has very limited capacity holding 7 ± 2 info units, maybe four plus/
minus one in case of people who are below the average. When processing informa-
tion, the number of items which can be processed is maybe two or three depending 
on the information being processed. The time limit for holding information without 
rehearsal is about 18–20 s. In problem solving, the goal maintenance and inhibiting 
irrelevant information are very important factors (Baddeley et al., 2009; Clark, 
Kirschner, & Sweller, 2006).

The long-term memory is the storehouse of our knowledge. It holds information 
in schemas. Schemas are mental structures that we use to organise and structure 
knowledge. We bring schemas from long-term memory to working memory to 
understand the situations and problems. We build schemas in working memory and 
integrate them into existing schemas in long-term memory. Long-term memory 
does not a have capacity or time limit. The connection between long-term and work-
ing memory is very important in learning as schemas build one information unit for 
working memory, so they can free working memory sources. Another important 
aspect is the schema automation, because when using automated schemas, there are 
no working memory capacity demands.

 Cognitive Load Theory

Cognitive load can be defined as the load imposed on the WM by presenting infor-
mation. It is based on following assumptions: First, the capacity of the WM is lim-
ited. Moreover, long-term memory stores information as schemas which represent 
units of information, and automaticity of these schemas in LTM can be achieved. 
Finally, learning requires active conscious processing in WM.

According to Chipperfield (2006), CLT is based on the following principles of 
cognitive learning:

• Capacity of STM (working memory) is limited—7 informational units.
• LTM is unlimited in capacity—where all information and knowledge is stored.
• Knowledge stored in LTM—schemas or schemata.
• Schemas, no matter how large or how complex, are treated as a single entity in 

working memory.
• Schemas can become automated.
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 Types of Cognitive Loads

Intrinsic cognitive load depends on the elements that must be processed simultane-
ously. For example, when solving word problems, these elements are reading the 
problem, concluding what the problem asks and solving the problem. These are 
elements that interact. Intrinsic cognitive load is embedded in the problem; teachers 
cannot influence them.

 Extraneous Cognitive Load

It depends on the manner of presenting information. This may include superfluous 
information that is not necessary for learning the presented material, such as back-
ground music or holding mental representations of facts or figures. For example, the 
fact that a geometric figure and the corresponding written statements are separated 
may be hard to comprehend for some students.

 Germane Cognitive Load

It means the cognitive load placed on WM during schema formation, integration and 
automation. This explains the differences between students in experiences, ability 
level and content knowledge.

To sum it up, the cognitive load is the sum of the intrinsic load, the extraneous 
load and the germane load (cognitive load = intrinsic load + extraneous load + ger-
mane load). When planning teaching, teachers must take the possible cognitive 
loads into consideration.

 Some Consequences for Teaching Problem Solving

We mentioned above that class teaching is dominant in Hungarian mathematics 
education. Furthermore, there is a tradition, maybe thanks to G. Pólya, that the  
so- called problem-oriented style is used frequently. However, as mentioned in the 
introduction, the efficacy of this style is not obvious (Chandler & Sweller, 1991).

In real classrooms, several problems occur when different kinds of minimally guided 
instruction are used. First, often only the brightest and most well-prepared students make 
the discovery. Second, many students, as noted above, simply become frustrated. Some 
may disengage, others may copy whatever the brightest students are doing—either way, 
they are not actually discovering anything. Third, some students believe they have discov-
ered the correct information or solution, but they are mistaken and so they learn a miscon-
ception that can interfere with later learning and problem solving. Even after being shown 
the right answer, a student is likely to recall his or her discovery—not the correction. 
Fourth, even in the unlikely event that a problem or project is devised that all students 
succeed in completing minimally guided instruction is much less efficient than explicit 
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guidance. What can be taught directly in a 25-minute demonstration and discussion, 
 followed by 15 minutes of independent practice with corrective feedback by a teacher, 
may take several class periods to learn via minimally guided projects and/or problem 
 solving (Clark, Kirschner, & Sweller, 2012).

Based on 50 years of practice in Hungarian mathematics education, we may 
agree. For novices, when learning new information, guided instruction is more 
effective. Of course, the experts (10 % at the top) can solve a lot of new problems 
individually (expertise reversal effect).

 Reduction of Cognitive Load

Based on the Cognitive Load Theory, there are some instructional techniques devel-
oped with the aim to reduce cognitive load. Sweller, van Merrienboer and Pass anal-
yse in their study (Sweller, 1994) seven instructional effects: the goal-free effect, 
worked example effect, completion problem effect, split-attention effect, modality 
effects, redundancy effect and variability effect. In our study, we concentrated on the 
goal-free effect, worked example effect and the cooperative method. The coopera-
tive method is mentioned in many places as a tool to reduce CL:

 1. Use of worked examples: “Research has provided overwhelming evidence that, 
for everyone but experts, partial guidance during instruction is significantly less 
effective than full guidance” (Clark et al., 2012). Furthermore, to help develop-
ing problem-solving skills, both Pólya (1973) and Schoenfeld (1985) suggest 
using so-called helping or guiding questions. In our experiment, using guiding 
questions and prompts is not fully guided but strongly guided instruction.

 2. Goal-free (open) problems: In some problems, the distance between the starting 
phase and the goal is very big. It is desirable to ask students to find all the data 
they can find. For example: In a triangle, two sides are given 7 and 11 cm. The 
angle between them is 57°. Find all the data in this triangle what you can. In our 
experiments, opening problems go in this direction.

 3. Applying cooperative teaching methods: Research experiments show that in 
group work, the WM capacities of the members are added together, so the cogni-
tive load is not very high for the individuals. Our classroom experiment is based 
on group work.

In our experiment, we focused on students who are not in the top 10–15 % of a 
class, and our aim was to reduce their cognitive load to help them to become more 
successful problem solvers. To try to achieve this desired aim, we decided to combine 
the above-mentioned three factors. The reasons for opting for cooperative  techniques 
were that it helps facilitate active student participation, encourages communication 
between students and gives them opportunity to be creative. As mentioned before, in 
Hungarian mathematics education, the most widespread teaching method is frontal 
teaching which gives the opportunity for the less talented or less active students just 
to sit around in class and copy stuff from the board without grasping the material fully 
or joining in the process of problem solving. Moreover, students are becoming less 
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and less independent when it comes to solving problems individually. They find it 
difficult to come up with a method that leads to the solution and are not very creative 
when they have to solve non-typical mathematical problems. Another reason for 
combining the three factors is that when teaching problem solving, teachers try to use 
guiding questions instead of just telling the students what to do, but in frontal class 
work, this method does not seem to be effective enough. Combining cooperative 
teaching techniques with helping questions and open problems helps making asking 
these questions a more conscious process for the students.

 Cooperative Teaching

 What is Cooperative Teaching?

Cooperative teaching and learning is an arrangement where students work together 
to solve a problem or to achieve another common goal. The success of their work 
depends on whether the group members are able to cooperate, to respect each 
other and to trust each other. They depend on each other that is why mutual sup-
port is inevitable for progress (Kagan, 2004). In Hungary, József Benda thought 
that applying cooperative learning might be the answer for issues in education 
such as raising achievement, integration and developing school work (Józsa & 
Székely, 2004).

Many teachers think that if they simply arrange students in small groups and 
provide them with a task, they are using cooperative teaching, but cooperative 
teaching is not simply group work. The main difference between the two teaching 
formats is that if students are put together in groups, it is their task to find out who 
is responsible for which part of the task. This might result in some students doing 
the bulk of the work while others just observing or completely staying out. But in 
cooperative learning, certain structures were created so that the following four prin-
ciples are always present: positive interdependence, individual accountability, equal 
participation and simultaneous interactions (PIES). These four principles make sure 
that every member of the group participates in the work to the best of his or her abil-
ity (Johnson & Johnson, 1994).

 Cooperative Structures

The structures designed to ensure the presence of the four principles were given 
catchy names that makes them easy to remember (Kagan, 2003). Here, we present 
some of these structures that were used during the experiment.

Pair Check: “(1) Partner A works the first problem as Partner B coaches and praises. 
(2) Partner B works the next problem as Partner A coaches and praises. (3) Pairs 
compare and discuss answers. (4) Teams celebrate correct answers or resolve differ-
ences … (5) Pairs repeat steps as they complete the worksheet”.
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Expert Jigsaw: The main steps of this structure are: (1) Each team has a task to work 
on, so the members become the experts of the given task or topic; (2) New teams are 
formed, so that each new team has an expert of every task; (3) In the new teams, the 
members share their knowledge with each other; (4) Everybody goes back to their 
original team and share the new pieces of information (Slavin, 2010).

Think-Pair-Share: This structure was designed to ensure equal involvement of the 
team members. In mathematics, it is very useful in problem solving. The problem is 
presented to a group. The members have some time to think about the solution and 
they note down their ideas. They pair up within the group and share their ideas—
instead of this, Round Robin can be used to share ideas (Kagan, 2004).

Round Robin: This structure was designed to give every group member the chance 
to contribute to the work and to share their ideas. To ensure this starting with one 
member, each person gets some time (1–3 min) going clockwise (or anticlockwise) 
to present their views (Kagan, 2004).

 What Does the Teacher do in a Cooperative Lesson?

In cooperative teaching, the role of the teacher changes significantly. Instead of 
being the person who dominates and leads the lesson, the teacher becomes more of 
a coach or a tutor who mainly observes the students’ activity and provides help if 
needed (Burns, 1990). As a result of this, planning a cooperative lesson requires 
more time and creativity. Furthermore, it is the teacher’s responsibility to maintain 
an atmosphere where effective work is possible and the students do not misuse the 
opportunity to chat with each other (Dees, 1990).

 Groups in a Cooperative Lesson

According to Crabill (1990), the ideal group size is a group of four. The grouping 
can be done in many different ways. Each group can contain a weaker student, a 
more able student, a quiet student and a more talkative student, or we can aim for 
more homogeneous groups.

 The Experiment

 Background Information: The School, the Students, the Class

The experiment carried out was an action research, which indicates that the 
researcher was the teacher of the class as well. This type of experiment is popular 
amongst classroom teachers who are interested in professional development-related 
research. As Koshy (2005) defines action research, it is a kind of an enquiry which 
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constantly aims at refining practice thus contributing to the teacher’s professional 
development. According to this author, action research is researching one’s own 
practice; therefore, it is participatory and situation-based, it is emergent and it is 
mainly about improvement. Furthermore, through action research, the goal of math-
ematics teachers and researchers of maths education can be brought closer 
(Zimmermann, 2009).

In the experiment being presented, the question of using control groups might 
arise. However, according to Slavin (1996), the problem with comparing the out-
come of cooperative learning to the outcome of other methods is that the studies 
being compared might differ in many factors—such as the subjects (different stu-
dents in different groups), the duration (cooperative work is not used in each class 
and students had been learning with other methods for a longer time), the measures, 
etc.—that can account for the different outcomes. So, that is the reason why control 
groups were not used.

The school where the experiment took place is a mixed comprehensive second-
ary school whose students’ achievement is outstanding in the region. There were 16 
students participating in the experiment who were 16–17 years old. The class they 
attended specialised in science subjects and foreign languages. These students have 
5 years to complete their secondary school studies—which is normally 4 years in 
Hungary, one preparatory year followed by four “normal” years. The leader of the 
experiment was the teacher of this group as well. The action research took place in 
the academic year 2012/2013, which was the students’ third year in the school. In 
the preparatory year, their timetable contained three Maths lessons per week, and 
this number increased to four—four lessons per week in the following 2 years. 
These numbers are higher than the number of weekly maths lessons in an average 
class, that is why we often had the opportunity to discuss certain topics in greater 
detail or to solve competition-like problems in class. The students were not neces-
sarily gifted in mathematics, but most of them definitely had a great interest in the 
subject and were usually keen to solve challenging problems, so they were moti-
vated and easy to activate in class. Their grades ranged from satisfactory (3) to 
excellent (5) in the five-scale Hungarian grading system. Some of them were regular 
members of the weekly group study sessions and they took part in mathematics 
competitions as well (Barczi, 2013).

 Methods of Data Collection

Before commencing the action research, the students were asked to fill in different 
questionnaires related to communication skills, attitude towards learning, attitude 
towards working in groups, attitude to maths and a mathematical pretest (Ambrus, 
2004; Tóth, 2007). The first part of the experiment (see: The problems) was fol-
lowed by a mathematical post-test, and at the end of the school year, the students 
had to repeat the above-mentioned tests and had to complete a delayed mathemati-
cal test too.
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Additionally, a video record was made of about half of the lessons, and the 
group discussions were voice recorded as well. During the lessons, the teacher 
made notes about the behaviour and work of the students. Each student had an 
exercise book, a so-called reflection booklet in which they could record not only 
the solutions of the problems but their feelings, best ideas, strategies they used, 
etc. These books were used to reflect on the problem solving as well (Pólya, 1973). 
First, the students tried to describe the problem-solving process with their own 
words. For example, they said that they started solving the problem from the 
“last” information then working backwards. In the case of another problem, they 
said that they systematically tried some concrete values trying to generalise their 
ideas later.

 The Problems

During the first part of the experiment, five curriculum-based mathematical prob-
lems were discussed, and to avoid making students feel that they are merely hav-
ing fun in these lessons, the problems were carefully chosen so that they were in 
line with what had been covered in maths and they developed certain mathemati-
cal competencies. The problems were chosen from different fields of  mathematics—
combinatorics, algebra, geometry, number theory—moreover, they were either 
investigations or open problems. In Hungarian mathematics education, these types 
of problems are hardly used; therefore, the way they were presented was surpris-
ing for the students. Some problems could be extended by varying the problems 
(Kilpatrick, 1987); the options for this were suggested either by the students or by 
the teacher. In this way, for the detailed discussion of a problem, two or three les-
sons were needed. Each lesson was planned using cooperative teaching 
techniques.

In the second part of the experiment, the students continued their work based on 
the Year 10 scheme of work. In the rest of the school year, once every 2 or 3 weeks, 
there was one lesson planned with cooperative techniques, and the content of the 
lesson was based on the curriculum.

 Two Problems and Helping Questions

One of the aims of the experiment was to figure out whether cooperative techniques 
help to activate “the rest” of the students and not only the top 10 or 15 % and 
whether the helping questions contributed to the more successful problem solving 
of the less able students. In this section we will present some problems that were 
covered using cooperative techniques while the focus was on using helping ques-
tions. The lesson plans and the names of the cooperative structures used in the 

A. Ambrus and K. Barczi-Veres



147

lessons are included. In the class that was examined, there were 16 students, so four 
groups of four were formed. The teacher chose to form heterogeneous groups and 
the “difficult” students were group mates of the patient ones.1

 Primes and Factors

This problem was one of the five problems discussed during the first part of the 
experiment. It is a curriculum-based topic since its solution involves factorising 
algebraic expressions and working with divisibility.

Starter problem: Think of a two-digit number. Swop the digits then subtract the 
smaller number from the bigger one, e.g. 42−24 = 18. Try with more numbers. Do 
you have any prime numbers amongst your answers? Is it possible to have a prime 
as the result? Can you explain your answer?

Problem: Find the biggest number that divides each term of the following sequence:

 1 1 2 2 3 35 5 5 5- - - ¼ -, , , , .n n  

Helping questions:

• Examine the second term. Can you factorise it?
• Using the factorised form, can you tell which numbers divide the product?
• Is it divisible by 2, 3 or 5?
• Try to do the previous steps on the 3rd and the 4th terms.
• Can you do the same for the general term? n n5 - .

 Lesson Plan

The starter problem was discussed using the Pair Check method which was fol-
lowed by a short class discussion—in these discussions, not only the solution but 
solution strategies were mentioned as well. When solving the main problem, the 
structure used was Pair Check (see above). Students were originally organised in 
groups of four which were divided further into two pairs. One student had to try to 
solve the problem while telling his ideas to his pair and explaining what he did and 
why. The helping questions were printed on separate pieces of paper and were 
placed face down in front of the pair so that the students could not see the questions. 
The questions were ordered. The instructions given to the student who had to check 
his pair’s solution were as follows: If your pair gets stuck and you can’t help him, 

1 To give students the opportunity to work with as many other students as possible, the groups were 
changed once in the twelve-lesson period. On the other hand, for effective cooperative work, the 
students need time to ‘learn’ how to work together, that is why the group settings were changed 
only once.
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then turn the topmost question over. Read it and see whether it helps to carry on the 
solution. The pairs were given a set time to try solving the problem. After their time 
was up, the pairs came together and discussed their solutions—not only the answer 
but the method as well—using group discussion. Finally, a short class discussion 
was held to make sure that everybody had understood the problem and to summarise 
the most important steps in the solution process.2

 Word Problems

These problems were covered during the second part of the experiment. Solving 
word problems with the help of quadratic equations is part of the curriculum, and 
understanding word problems has always been difficult for students.

The four groups were given two word problems, each one of which was easier, 
while the other was a bit more challenging. For the first problem, the students were 
given helping questions which were based on Pólya’s (1962) and Schoenfeld’s 
(1992) guidelines but were more concrete and topic specific. The different groups 
received different problems:

 1. We have two copper alloys. The first one contains 6 kg copper; the second one 
contains 12 kg copper. The copper content of the first alloy is 40 % less than in 
the second alloy.

 2. When mixing the two alloys, we obtain an alloy with 36 % copper content. What 
percentage of the first alloy is copper? What percentage of the second alloy is 
copper?

Helping questions:

• What are we looking for? What is the unknown?
• Use a figure! Can you represent the given information on a drawing?
• Could you express the weight of the alloys? (in terms of the unknown)
• What percentage of the mixture is copper?
• How much does this weigh?
• Could you write an equation?

 3. Three pipes fill up a pool in 3 h if they all “work” together. How long does it take 
to fill up the pool for each pipe on its own if the second pipe needs twice the time 
of the first pipe and the third pipe needs 5 h more than the first pipe?

Helping questions:

• What do you choose for unknown?
• How can you summarise the given data in a table?

2 When discussing the problems, we focused not only on the final solution but using Pólya’s sug-
gestion, we also reflected on the solution method highlighting the most difficult parts and discuss-
ing how different students managed to overcome the obstacles.
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• Can you express other unknown quantities in terms of x?
• Do you remember the “good idea”? (units)
• What is the connection between these quantities?
• Can you write an equation?

 4. Two boats leave the harbour at the same time. One of them travels towards the 
North while the other towards the East. Two hours later, their distance is 60 km. 
Find the speed of the boats if one of them covers 6 km more than the other in an 
hour.

Helping questions:

• Draw a figure!
• What do you choose for unknown?
• Can you express the distance covered by the boats with the help of your 

unknown?
• What is the connection between the distance covered by the boats and their 

distance?
• Can you write an equation?

 5. A tourist walked 80 km altogether. If he had walked 4 km less every day, his trip 
would have taken 1 day longer. How many km did he walk originally in a day?

Helping questions:

 – Can you summarise the given information in a table?
 – What do you choose for unknown?
 – How can you express the speed in each case?
 – Can you express the time in terms of what you have found?
 – Can you write an equation?

 Lesson Plan

The groups were given the above-listed problems with the helping questions. They 
had to solve them using the Pair Check method.3 This time, the helping questions 
were handed out as a list but only the “checking” students were allowed to look at 
them. The solution was followed by a group discussion and a whole class discus-
sion. Following this, new problems of similar type were distributed but this time 
without the questions. The students first had to solve them, but also their task 
included writing helping questions for the new problems. The method was Pair 
Check again. Finally, the new problems with the helping questions were collected 
and redistributed amongst the groups who had to solve them using the helping ques-
tions. Due to lack of time, this last task was given out as homework.

3 This lesson was a practice lesson. In the previous lesson, we revised solving these types of 
problems.
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 Students’ Questions

• What kind of table could you use? What would you include in it?
• What could you use instead of a table? (mixing problems)
• How can you use a table? What should go in the rows and columns?
• What is x? What can you express in terms of x?
• Which piece of information haven’t you used yet?
• How can you make an equation from this?
• From the two results, which one is really a solution?
• Check your work!

 Results

 Students’ Comments from their Reflection Booklets

“It is easier to work in groups because the different ways of thinking met; however, 
after 12 lessons it became a bit boring”. K-M.M.

“Working in groups is useful and easier than working alone”. O.R.
“I really liked working in groups; however, towards the end, my group mates 

became annoying. … This method could be used again just for shorter time”. M.T.
“Working in groups is good. Many of us found the solution faster”. H.P.
“The group work would have been better if I had been together with the right 

people”. K.D.
“I am very glad that I could try working in groups because I was able to get to 

know my classmates better”. B.T.
“Group work confirmed my feeling that I prefer working alone. I’d rather work 

following my teachers explanations”. Ny.Sz.
The comments were chosen so that they reflect the ratio of opinions from the 

groups, namely, here the majority of the comments show that students liked work-
ing in groups and this opinion could be found in the majority of the reflection book-
lets. There were only a few students who agreed with the last comment, but those 
who did agree were from the better achievers. Many students mentioned that one of 
the main benefits of working together was that students with different ways of think-
ing were able to find the solution easier—which refers to the reduction of the cogni-
tive load of individual students. On the other hand, a lot of students wrote that the 
exclusive use of cooperative techniques might cause boredom on the students’ side. 
All in all, the students’ comments suggest that teachers should use cooperative 
teaching but should be careful not to “overuse” it.

 Pre- and Post-test Results

The students had to complete a mathematical pretest (Appendix 1) before the exper-
iment that measured the mathematical knowledge and the knowledge of heuristic 
strategies needed for solving the problems that were to be presented in the first part 
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of the experiment. After finishing the first part of the experiment, the students 
 completed a mathematical post-test (Appendix 2). Some tasks of the two tests were 
identical; however, the post-test included questions in which the problem-solving 
skills learnt during the first part had to be applied. The diagram below shows the 
mathematical pre- and post-test results of the students (Table 1).

It can be clearly seen that 12 students out of the 16 improved their results and 
only four of them achieved a lower sum on the post-test than on the pretest. Students 
B. Zs., B. P., H. M. and K. R. already had a sum above 30 points on the pretest. Two 
of these students (B. P. and K. R.), based on their previous achievement in mathe-
matics, their previous contribution to class work and their achievements on previous 
mathematics competitions, can be considered as talented students in mathematics. 
On the other hand, K. A., O. R. and M. Sz. are weaker students, and their pretest 
results are lower compared to the whole group. However, after solving mathemati-
cal problems with cooperative techniques, two of these students (K. A. and M. Sz.) 
managed to improve their test results, especially M. Sz., who doubled his total 
points on the post-test. Out of the four students who received lower points on the 
post-test, one (O. R.) can be considered as a weak student, while the others (B. Zs., 
N. B. and P. R.) are average ability students.

For each task, the students were awarded a maximum of five points. Table 2 
shows the mean average point of each student on the two tests and the standard 
deviation (SD in the table) of the received points on each test.

On the pretest, the mean average score is the highest for H. M. and B. P., and 
their standard deviation is amongst the low ones. This means that these students 
received high marks for each task on the whole test and they attempted to answer 
each question. As mentioned before, B. P. is a talented student, so it is not surprising 
that he made an improvement on his mean average as well. K. M. M. and M. Sz. also 
have a low standard deviation, but their mean averages are rather low. These data 

Table 1 Total points on the pre- and post-tests
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suggest that these two students attempted most tasks but received low marks for 
them. M. Sz., who is one of the least talented students in the group, managed to raise 
his mean average mark to 2.56 on the post-test. The stronger students (B. P., H. M., 
K. R.) achieved better average marks on the post-test; one of the weaker students 
(O. R.) achieved a lower mean average mark, while the others (K. A. and M. Sz) 
achieved a higher mean average mark on the post-test.

 The Teacher’s Comments

The use of cooperative techniques definitely had an impact on the students’ behav-
iour in class and it brought some change into the routine of Maths lessons. First of 
all, in the “cooperative lessons” everybody participated. There was no rush for the 
slower students but at the same time, the quick ones could work on extra problems 
while waiting for everybody to finish. The different problems could be discussed in 
more detail with the possibility of problem variation or opening the problem; fur-
thermore, as a result of cooperative work, more solutions were presented for a prob-
lem. The first problem presented in the article was an open problem in the solution 
of which students had the opportunity to experiment with given values and building 
a general statement based on their findings. In small groups, the weaker students 
were more confident in sharing their ideas or asking questions. Moreover, it was 
easier for the teacher to help those who were stuck in the problem solving because 
the rest of the students were busy working on their own problems. However, there 
were some drawbacks of using cooperative teaching. It is more time consuming 

Table 2 Pre- and post-test statistics

Pretest mean Pretest SD Post-test mean Post-test SD

Bzs 3.56 1.94 3.00 2.09
BT 2.22 1.99 2.67 2.24
BP 4.22 1.72 4.56 0.73
HM 4.44 1.13 4.89 0.71
HP 2.56 2.40 3.56 2.40
KR 3.78 1.99 4.00 2.35
KA 1.78 2.44 2.00 2.03
KMM 2.11 1.45 3.67 2.12
KD 3.22 2.05 4.67 1.69
ML 2.00 2.40 3.00 2.24
Msz 1.11 1.69 2.56 1.87
MT 2.67 2.24 4.22 2.13
NB 3.33 2.18 2.11 2.40
NySz 2.33 1.87 3.89 1.32
OR 2.11 2.03 1.89 1.58
PR 3.00 2.18 2.33 1.72
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than “normal” teaching; because of this, less problems could be discussed. Group 
work is inevitably noisy and if more students need help at the same time, it might be 
difficult to handle.

Taking everything into consideration, the advantages of using cooperative teach-
ing techniques outweigh the disadvantages. Students need to be put into situations 
in which they have to communicate with each other and in which they are “forced” 
to be active participants of the teaching and learning situation. Cooperative tech-
niques seem to be a rather effective tool for achieving this.

 Conclusion

Using open problems: as the teacher’s comments say, open problems contribute to 
the development of problem-solving skills as they give the opportunity for students 
to come up with different solutions; they give a chance to weaker students to try 
concrete values and develop a generalised idea later, thus helping them to break the 
problem into smaller parts and reduce their cognitive load.

Helping questions: helping questions gave the chance to average ability or weaker 
students to get started and helped them to work through the solution of the given 
problem, again breaking the original problem into smaller bits, therefore reducing 
the cognitive load of the students.

Cooperative techniques: both the students’ and the teacher’s comments show that 
using cooperative techniques along with other teaching methods is beneficial for 
teaching problem solving not only for the talented but also for the average 
students.

In sum, it can be seen from the pre- and post-test results that combining the 
above-mentioned features in teaching mathematical problem solving has a positive 
impact on the students’ achievement. Furthermore, they contribute well to reducing 
the cognitive load of individual students.

Following the above-described experiment, further action researches can be 
designed with special attention on using helping questions and open problems.

 Appendix 1: Mathematical Pretest

 1. The bigger cogwheel of a bike has 35 teeth and the smaller one has 15. How 
many times do we need to turn the pedal so that both cogwheels get back to their 
original position? (The pedal is on the bigger wheel.)

 2. The sides of a cuboid are whole numbers in centimetres. The areas of two of the 
faces are 24 and 36 cm2. Find the volume of the cuboid.

 3. In a jewellery shop on Monday, half of the stock and four pieces of jewellery 
were sold. On Tuesday, half of what was left and further two pieces were sold. 
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On Wednesday, the shop assistant sold five pieces of jewellery. On Thursday, 
two less than half of what was left was sold. At the end, there were eight pieces 
of jewellery in the shop. How many pieces of jewellery did the shop have on 
Monday?

 4. How many different four-digit numbers can we form so that all digits are ele-
ments of the set {1; 2; 3; 4; 5; 6; 7}?

 5. Snow White and the seven dwarfs have dinner around a round table. In how 
many different ways can they sit down next to each other?

 6. The sum of two numbers is 2250. Twelve percent of the first number equals to 
18 % of the second. Find the two numbers.

 7. Laci got a pay rise of 15 % so his current salary is 241,500 HUF. How much was 
his original salary?

 8. Work out the area of the triangles on the figure if you know that the area of the 
trapezium is 21 cm2 (The shape is not drawn to scale).

 

 9. Look at the following shapes. Without drawing, find the number of yellow 
squares in the 4., 5., 6. shape. How many yellow squares are there in the 100. 
shape? How many in the nth shape?

 

 Appendix 2: Mathematical Post-test

 1. The bigger cogwheel of a bike has 35 teeth and the smaller one has 15. How 
many times do we need to turn the pedal so that both cogwheels get back to their 
original position? (The pedal is on the bigger wheel)

 2. Which numbers are always factors of the product of three consecutive numbers? 
Why?

 3. In a jewellery shop on Monday, half of the stock and four pieces of jewellery 
were sold. On Tuesday, half of what was left and further two pieces were sold. 
On Wednesday, the shop assistant sold five pieces of jewellery. On Thursday, 
two less than half of what was left was sold. At the end, there were eight pieces 
of jewellery in the shop. How many pieces of jewellery did the shop have on 
Monday?
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 4. In how many ways can we arrange three red and three blue beads in a circle?
 5. How many different four-digit numbers can we form so that all digits are ele-

ments of the set {1; 2; 3; 4; 5; 6; 7}?
 6. Think of a three-digit number, write it down, then reverse the digits (e.g. 756 and 

657). Subtract the smaller number from the bigger one. What do you notice? 
Prove your assumption.

 7. Work out the area of the triangles on the figure if you know that the area of the 
trapezium is 21 cm2. (The shape is not drawn to scale A

a c
m=

+
×

2
.)

 

 8. Work out the area of the inscribed circle of an equilateral triangle if its sides are 
1 m long.

 9. In a restaurant, the guests sit around tables as you can see on the figure. 
Continuing the pattern, how many guests can sit around four tables? Around five 
tables? Around 100 tables? Around n tables?
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      “Memorable Diagonals”: Exploratory 
Problems as Propositions for Doing 
Mathematics                     

       Torsten     Fritzlar    

         Inductive Working in Mathematics 

    Learning by experience is of essential importance in everyday life and also in the 
academic fi eld. Academically engaging with experience can be called induction or 
inductive  reasoning  , which Klauer explains as “recognising regularity or order in 
the only apparently non-ordered while giving awareness to disruptions or non-order 
in the only apparently ordered” (Klauer,  1991 , p. 137; translated by T.F.). Even if it 
might seem surprising, induction according to Pólya plays an important role espe-
cially in mathematics:

   Yes, mathematics has two faces; it is the rigorous science of Euclid but it is also something 
else. Mathematics presented in the Euclidean way appears as a systematic, deductive 
science; but mathematics in the making appears as an experimental, inductive science.  
(Pólya,  1971 , p. vii) 

      He was able to demonstrate with numerous examples that inductive procedures 
are of particular signifi cance especially for the genesis of (subjectively) new 
mathematics (e. g., Pólya,  1954a ,  1954b ). Pioneering in this context is certainly also 
Lakatos’ mathematics historical case study ( 1976 ) on developments in polyhedron 
geometry from the eighteenth to the twentieth century. But also in current sociologi-
cal studies concerning mathematics, the high status of the quasi-empirical approach 
is emphasized (e. g., Heintz,  2000a ,  2000b ). Finally, from the point of view of 
mathematics as a scientifi c discipline, it can be claimed that in the light of Gödel’s 
incomplete theorems, experimental and inductive reasoning is a necessary comple-
ment to the deductive approach (Putnam,  1979 ). Therefore, Swiss mathematician 
Armand Borel speaks of mathematics as a “humanities-based science” (geistige 
Naturwissenschaft; Borel,  1984 , p. 29). 
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    Pólya also claims credit for detailed analyses of inductive mathematical working 
for which he distinguishes two phases. 1  At the center of a fi rst  phase of exploration  
is the engagement with examples, observing, organizing, and searching for patterns 
and interrelations. It (ideally) culminates in a conjecture with regard to a general 
regularity. In a second  test phase , this conjecture is tested on further examples; if 
necessary, special cases or in some way extreme examples can be included herein. 
With every test that results positively, the subjective trust in the validity of the 
hypothesis can increase until it is (preliminarily)  verifi ed  (but of course not consid-
ered  proven  deductively). What also matters for Pólya in this context is an “induc-
tive attitude,” that is, a readiness to adapt one’s own assumptions to one’s own 
experiences as effi ciently as possible and to continuously step from observations 
up to generalizations and down again to (critical) observations (Pólya,  1954a , 
 1954b , p. 7). 

    What implications do these refl ections and analyses have for teaching mathematics? 
Working deductively is a particular strength of mathematics as a scientifi c disci-
pline. Its dominance, mainly in the depiction of “fi nished” mathematics, at the same 
time induces a one-sided perception that seeks to be completed (Leuders, Naccarella, 
& Philipp,  2011 ). For a stronger process orientation in class, an appropriate wealth 
of experience with regard to doing mathematics, and a balanced view of the subject, 
pupils should be enabled to work experimentally and inductively. They should be 
allowed to learn that everyday experiences and common sense can also be used in 
mathematics classes. They also should learn that even mathematics knowledge is 
not absolute and that mathematics is in no sense as “otherworldly” as it often seems 
from the outside (Chazan,  1990 ). But how can this be encouraged?     

    Mathematical Exploratory Problems 

 In mathematics educational literature, various kinds of problems are described. 
For example, Pólya distinguishes between two rather general types in  Euclid’s 
tradition  —“problems to fi nd” and “problems to prove” (Pólya,  1962 ). For inductive 
working,  exploratory problems  seem particularly suitable to me. These are mathe-
matically rich situations whose processing can be  characterized   by the following: 
exploring examples ideally with regard to self-derived questions, gathering and ana-
lyzing data, constructing relations or patterns, and conjecturing and verifying 
hypotheses (Fritzlar,  2010 ). Thereby, exploratory problems combine and extend 
aspects of both classical problem types described by Pólya. 

 From the exemplary work, two students have undertaken on the “memorable 
diagonals” (Fritzlar, Rodeck, & Käpnick,  2006 ). In Fig.  1 , it  can      be seen that these 
diagonals are a problem of this kind. In the following paragraph, the pupils’ work is 
described in parts.

1   American philosopher and mathematician Charles Sanders Peirce distinguishes in this context 
between induction and abduction. 
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             Memorable Diagonals 

 In the context of a research project, we examine how pupils in the last year of pri-
mary school (grade 4) and the fi rst 2 years of secondary school deal with explor-
atory problems of this type. Their problem solving was carried out in tandem and 
was accompanied by a tutor (T) and videotaped. By now, we were able to investi-
gate in detail how fi ve tandems worked on this and other problems of this type. To 
give a fi rst impression, the work on “memorable diagonals” done by Liam (L) and 
John (J) is described in excerpts and condensed. Both pupils were in the fourth 
grade of primary school and visited a fostering project for mathematically interested 
and talented primary school children at the University of Halle-Wittenberg. For bet-
ter readability, oral utterances have been softened slightly, and an outline in para-
graphs has been arranged.

    (A)     T     he fi rst question is worked on with reserved guidance by the tutor. From ini-
tially different answer suggestions, a lively discussion develops between the 
two pupils. Finally, after about 2 min, they come to an agreement about what a 
point of intersection between the diagonal and the grid line is. After this, they 
conclude that there are fi ve points of intersection for the given 3 × 4 rectangle.   

   (B)       J: * I am doing 3 × 5 right now .*  
  L:  *Then I’ll do 4  ×  6 and 4  ×  5.*   

  The pupils embark on the next stage separately at fi rst. Starting from a small 
number of examples, initial conjectures are made and put to the test 
immediately:  

  J:  *So, this one works, my theory.    Bec       ause here with 4  ×  5 there were six and 
with 4  ×  6 there are seven.*   2   

2   The pattern supposed by John cannot be reconstructed. For a 4 × 5 rectangle , there are seven 
points of intersection. 

Memorable diagonals

In the picture you can see a rectangle consisting of small 3×4-
squares. They form a quadratic grid. If a diagonal is inserted, 
the grid lines are intersected by this diagonal. 

How many points of intersection arise in this 3×4-rectangle?
How many points of intersection are there in other rectangles, for example in a 3×5-, a 
4×5- or a 4×6-rectangle?
Come up with more rectangles yourselves and determine the number of points of intersec-
tion!
Can you also give the number of points of intersection for very large rectangles?

  Fig. 1          Memorable diagonals       

 

“Memorable Diagonals”: Exploratory Problems as Propositions for Doing Mathematics



160

  L:  *And with 3  ×  5?*   
  J:  *There are […] six.*   
  L:  *Well, then your theory mightn’t be right. Because twice six and once seven.*       

   (C)    The pupils  work      on some further examples. Without observable intention, 
Liam among others also chooses the 2 × 2 square.

   L:  *I think 2  ×  2 only has two [points of intersection]. This only has two.*   
  J:  *No, it meets directly in the middle. You didn’t draw precisely. If you draw 

precisely, it should meet in the middle.*   
  L:  *Then it meets exactly once. One point of intersection. Is 4  ×  4 three? See 

here, I have a theory: Because 2  ×  2 is one, right? If 2  ×  2—and always sub-
tract minus one equals one. If 4  ×  4 is three now, this could be right.*   

  Based on only one example, Liam apparently develops a hypothesis about the 
number of points of intersection for squares. This is initially specifi ed and 
put to the test for an easily accessible example, the 4 × 4 square:  *Three! My 
theory is right. Three.* In order to raise the certainty of this hypothesis, 
another example is investigated:  

  L:  *8  ×  8—if you subtract one from eight, it should be seven. I’ll test this now. 
If it’s right, my theory is exactly right.*   

  Through the correctly predicted  numb     er of points of intersection, the hypothesis 
becomes more convincing, 3  but at the same time, the confi ned scope comes 
into mind:  

  J:  *And what are you going to do with a 3  ×  9 or something like that?*   
  L:  *This is tough. But the theory we just had is right for now, […]*   
  J:  *I’ll do a 20  ×  20 now. Let’s see if it’s correct.*   
  L:  *Well, your 20-thingy should be exactly 19. 19 points of intersection.* […]   
  J:  *It is.* […]   
  J:  *It’s just that there is no theory    w       ith 2  ×  3 or something like that.*       

   (D)    The pupils investigate further examples and develop ideas about potential rela-
tions, which however cannot be confi rmed.

   J:  *My theory isn’t working!*   
  L:  *Seems like everything was just a waste of time.*   
  J: (To the tutor)  *Do you have a solution?*       

   (E)    Seeing that the boys are stuck at this point and that their motivation is in danger 
of dropping after  seve     ral minor failures, the tutor addresses John’s question and 
recommends organizing the results obtained.

   T:  *Why don’t you write down which rectangles you have already investigated 
and what the results of those were.* […]   

3   Indeed, Liam is not yet sure regarding the universality of the pattern assumed (cf. the following 
remarks). 
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  L:  *We’ve already had 2  ×  2, 4  ×  4, 3  ×  3 … that’s simple really.*   
  T:  * Exactly . You have all the squares.*   
  L:  *Well, we don’t have all of them, but according to my theory they’re known 

already. That’s why they don’t have to be investigated now.*   

  Naturally, Liam knows that not  all      squares have been tested. Yet, he is also 
convinced that no additional tests are necessary due to his hypothesis having 
been confi rmed by numerous examples.      

   (F)    At the same time John starts to write a schema of the results obtained and 
begins to complete the  emerging   columns (cf. Fig.  2 ).

    J:  *What was the result for a 2  ×  1? I think for a 2  ×  1, we’ll get one.* […]   
  J:  *And what is the result for a 3  ×  1? Hmm, well this is a good start! For the 

4  ×  1 […]* […]   
  J:  *Slowly we could get to a theory.         For the ones   [ □ ×  1 rectangles] […] the 

minus ones are the numbers of points of intersection.*   
  L:  *For 10  ×  1, we should get a good few.*   
  J:  *We should get exactly nine for that.*   
  L:  *According to your theory. We’ll put it to the test!*   
  L:  *[…] 7, 8, 9. It is exactly nine, like you predicted. Fine, so we have another 

theory!* […]   

  Fig. 2    Results  of   problem solving by Liam and John       
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  J:  * Now we’ll have to do the same with the 2, 3, 4, 5, 6, 7, 8, 9 and 10. Have 
fun doing that!*       

   (G)    John and  Li     am now turn their attention to the two column-wide rectangles.

   L:  *You take notes, and I’ll test the theories.*   
  J:  *Try 1  ×  2! […] No, we have 1  ×  2 already, it equals one. You try 2  ×  2! No, 

2  ×  2 is also one. Can you do 3  ×  2 now, please! And please use the ruler […]*   
  L:  *Fine. But you can already guess what that equals. Three.*   
  J:  *Hopefully not, that way the latest    theo       ry would be gone. Unless, no, it 

wouldn’t be gone.*   
  L:  *Yes, that’s three. So, 4  ×  2. If this also equals three, I’d have a new theory. 

Three! So, 5  ×  2.*   
  J:  *5  ×  2 would be fi ve. And 6  ×  2 also fi ve.*   
  J:  *And 7  ×  2 seven.*   
  L:  *And 8  ×  2 also seven. And 9  ×  2 also nine. And 10  ×  2. Right, we’ll have to 

test that now.*   

  Based on the fi rst examples, the two students develop the same conjecture 
simultaneously but  indepe     ndently from one another. They both agree that it 
has to be verifi ed for further examples.  

  J:  *6  ×  2. […] According to the theory, it is correct! 7  ×  2?*   
  L:  *And yet again a new theory, I bet!*   
  J:  *Hopefully! Otherwise we’d have to try everything out. For 7  ×  2, it’s also 

seven. So, every second time it changes by two. Here in the two times line. 
[…] In the three times line it should be every third time//* […]   

  L:  *Your    theo       ry is right, defi nitely!*   
  J:  * We should just check the nine again.*   

  Once more their conjecture is confi rmed, and Liam and John go on to check 
rectangles of larger width in a similar way. Step by step, the following over-
view emerges:      

   (H)    After about 60 min working time, both pupils struggle to concentrate on the 
problem at hand. The tutor tries  to      motivate them once again for the search of 
an all-embracing pattern.

   T:  *I’d have one more question if you can bear with us that long. Is there also 
a theory about the theories? What I mean is this: Do the theories somehow 
belong together? Could you make one big theory from them?*   

  L:  *One huge theory for all theories? Well, we’d have to check them next time.*         

 It can be concluded that Liam and John  striv     e persistently to fi nd a solution in 
spite of some setbacks. They commit themselves intensely to the examples and are 
mostly organized; the examples are then arranged and emerging gaps are fi lled. The 
pupils quickly come up with several hypotheses, respectively, which are tested 
numerous times. A wide variance of testing examples is strived for. Along with the 
duration and intensity of the pupils’ work, the variety of the constructed patterns 
also seems remarkable to me.  
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    Working on Exploratory Problems 

 For a detailed analysis, problem solving of this kind is videotaped, transcribed, and 
analyzed through theoretical coding (Strauss & Corbin,  1990 ). In a fi rstly  open cod-
ing process  , codes had been assigned to individual parts of the transcript or the 
problem-solving process. Thereby, we considered questions such as what, who, 
how, with what, what for, and why. Based on this coding, comprehensive process 
elements were constructed with which pupils’ problem-solving processes can be 
described. A description (not only) of Liam’s and John’s work on the “memorable 
diagonals” seems possible by  the   following cycle (Fig.  3 ). However, not all phases 
have to be passed through necessarily.

   This cycle could be reconstructed also for other tandems and other exploratory 
problems although it was normally run through in a lower frequency. Altogether, 
our study demonstrated that experimental and inductive work can be already encour-
aged in primary school students by using appropriate  exploratory problems.   Figure  3  
also illustrates essential similarities with the approaches of research mathematicians, 
as described by Pólya. Parallels can also be seen with studies by Philipp ( 2013 ). 
Additionally we were able to identify occasional 4   planning processes   (in episodes 

4   And therefore visualized lighter in Fig.  3 

exploring
examples

(ordering and)
analysing data

developing a 
conjecture

working on
further examples

evaluating

planning

reflection
(scope or plausibility 

of results, …)

   Fig. 3       Cycle of exploratory work       
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B, F, G) and refl ections, for example, about the plausibility and scope of results or 
possible consequences for further working (in episode C). It seems important that 
already primary school students are able to carry out such higher-level processes 
which facilitate the realization of potentials of the inductive approach. 

  T  hese experiences are a further confi rmation of the French mathematician 
Jacques Hadamard’s view:  Between the work of the student who tries to solve a 
problem in geometry or algebra and a work of invention, one can say that there is 
only a difference of degree, a difference of level, both works being of a similar 
nature  (Hadamard,  1949 , p. 104). Yet, he thereby assumes that pupils are granted 
access to appropriate exploration opportunities and that they are given the freedom 
of experience.  

 During their entire problem-solving processes, Liam and John did not ask once 
for explanations or fi nal proofs of the patterns they constructed. This might be 
another example of younger children having a rather empirical view on mathemat-
ics. For them, results won deductively do not have a greater or different value than 
results won empirically per se. On one hand, this can be seen as an argument to 
strengthen experimental and inductive working in school; on the other hand, it 
emphasizes the importance of making accessible the complementarity of induction 
and  de  duction.     
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      Pupils’ Drawings as a Research Tool 
in Mathematical Problem- Solving Lessons                     
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    Abstract     Firstly, we describe a research project on problem-solving implemented 
in 2010–2013 in the Department of Teacher Education at the University of Helsinki. 
But we are especially concentrating on the results of one background study in the 
project—pupils’ drawings in a mathematics lesson. Pupils’ drawings seem to be a 
powerful method to gather information from small children. With the aid of draw-
ings, one may investigate different topics in children’s thinking. Here, we focus on 
pupils’ and teachers’ communication, the emotional atmosphere of the class and the 
types of work used in class. The drawing studies offer three different channels to 
pupils’ conceptions in problem-solving.  

  Keywords     Problem-solving   •   Mathematics lesson   •   Pupils’ drawings   •   Research 
tool  

   In Finland, there is a 9-year comprehensive school where all children study in het-
erogeneous groups, including in mathematics. Teaching in schools is regulated by 
the national curriculum (National Board of Education,  2004 ). The  national curricu-
lum   emphasises the importance of creating a learning environment having an open, 
encouraging, easy-going and positive atmosphere and that the responsibility to 
maintain this environment belongs to both the teacher and the pupils. Teaching 
mathematics in  elementary grades   is usually concentrated on the use of textbooks. 
Details on mathematics teaching in Finland can be found, for example, in the book 
by Pehkonen, Ahtee, and Lavonen ( 2007 ). Here, we aim to clarify third graders’ 
(about 9 years old) conceptions of mathematics and mathematics teaching for 
problem- solving through their drawings. 

 Pupils’ conceptions are considered from the viewpoint of  classroom communi-
cation  ,  emotional atmosphere   and  types of work  . It is important to grasp what is 
happening in Finnish schools, because pupils’ attitudes in mathematics get 
increasingly worse after Grade 3 (Tuohilampi, Hannula, Laine, & Metsämuuronen, 
 2014 , p. 285). 
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 The background study on pupils’ drawings came up surprisingly as an interesting 
new method to gather and interpret data on pupils’ mathematics-related conceptions 
in a research project on problem-solving. When we have presented our results at 
international conferences, many researchers from different countries have been 
interested in implementing the same task in their own country. 

 Therefore, we focus here on pupils’ drawings. The purpose of this study was to 
explore what can be said, based on the pupils’ drawings, about how  third graders 
experience   their mathematics lessons. In particular, we were curious about what 
communication on mathematics is like between the teacher and her pupils as well as 
the pupils’ emotional position. 

 In order that the teacher can be successful in guiding pupils’ problem-solving 
lesson, he/she should be aware of pupils’ mathematical conceptions. These form 
basis for teaching problem-solving. As background information for the drawing 
study, we fi rst present the research project on problem-solving from which our 
results come. 

    The Research Project 

 The 3-year research project was run in the  Department of Teacher Education   at the 
University of Helsinki in the years 2010–2013. 1  The objectives of the project were 
to clarify the development of pupils’ and teachers’ mathematical understanding and 
problem-solving skills during 3 years—from Grade 3 to Grade 5—when open prob-
lems were used regularly once a month. It was a joint comparative research project 
with Chile, and we aimed to parallel the Finnish and Chilean teaching practices in 
mathematics. 

     Data Gathering   

 For the research project, we selected two groups of Grade 3 classes: one experimen-
tal group and one control group, for a total of ten teachers. The experimental classes 
were from cities surrounding Helsinki (Vantaa, Espoo and Kirkkonummi), and the 
control classes were from Helsinki. In both groups, the same background studies 
were implemented, but in the experimental group, once a month, there was an addi-
tional lesson on open problem-solving that two researchers videotaped. In the con-
trol group, only initial and fi nal measurements (background studies) were 
implemented.     

1   The research project was fi nanced by the Academy of Finland (Project 135556). 
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    Background Studies 

 For the  background studies   of the research project (the initial measurements in 
2010), we used different methods to uncover pupils’ mathematics-related beliefs 
and mathematical knowledge: a questionnaire of pupils’ conceptions of mathemat-
ics, pupils’ drawings in a mathematics lesson, a test on pupils’ mathematics knowl-
edge and problem-solving skills and a postal survey of teachers’ conceptions of 
problem-solving.     

       Implementation of the Project 

 In the experimental group, the teachers taught in average one mathematics lesson 
per month dealing with open-ended problems, and for all other lessons, they used 
their own teaching method. The teachers in the control group applied only their 
conventional methods for mathematics teaching. Data were gathered from pupil and 
teacher questionnaires, pupils’ drawings, teacher interviews, classroom observa-
tions and fi eld notes during the implementation of the open-problem-solving les-
sons, videotaped work, thinking-aloud protocols and videotaped discussions. 

    We never expected that such a short interference in teaching (only once a month 
an open-problem lesson and everything else conventional teaching) would result in 
a big change in mathematical knowledge or teaching habits. But we anticipated that 
when the teachers and pupils experienced open mathematics teaching (open 
problem- solving), that would offer them an idea on an alternative way of teaching 
that might, with time, help them to change their understanding of mathematics and 
its teaching. 

 The experimental tasks used in the project were open problems where either the 
starting situation or the ending situation or both contained some additional options. 
Therefore, the problems did not have one defi nite answer, but they might have many 
different answers depending on the auxiliary conditions the solver put forward. 
Thus, solving these problems required that the solver must combine in a new way 
the information already familiar to him or her. 

    These tasks were introduced beforehand in the experimental group teachers’ and 
the researchers’ monthly joint meetings. In the meetings, the teachers helped us 
provide a proper wording and presentation mode for the tasks. But fi nally, every 
teacher pondered for herself the implementation of the task in her own teaching 
group and gave us her lesson plan before the experimental lesson. Altogether, 20 
different open problems were dealt with in 3 years; they were on various topics of 
elementary mathematics: arithmetic, combinatorics and geometry. 

 There are some published papers that describe the research project in more detail 
(e.g. Pehkonen, Näveri, & Laine,  2013 ). 

 Here, we will restrict our discussion to the Finnish part of the project, and more 
specifi cally, to one of the background studies: the Pupils’ Drawing Task.      
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    Pupils’ Drawings 

 The research study we are describing in this chapter is on pupils’ drawings and what 
we can gain from the drawings. We have selected the dealing with three different 
aspects in the drawings: (1)  communication  , (2)  emotional atmosphere   and (3)  types 
of work  . The order of these aspects is chronological. We began about 5 years ago 
our research on drawings with the case of classroom communication and teaching 
methods (cf. Pehkonen, Ahtee, Tikkanen, & Laine,  2011 ). Secondly, our interest 
focused on affective factors seen in the drawings (cf. Laine, Näveri, Ahtee, Hannula, 
& Pehkonen,  2013 ). And recently, we have tried to improve research methods in the 
case of teacher-centred vs. pupil-centred teaching (cf.  Ahtee, Pehkonen, Näveri, 
Hannula, Laine, Portaankorva-Koivisto, & Tikkanen, submitted ). 

 As an aspect of the analysis, we developed an a priori coding scheme to be 
applied to all the drawings that focused on aspects of  communication   in the draw-
ings. There is another classifi cation for pupils’ emotional position. Thus, our 
research question was as follows:

    What can we reveal via pupils’ drawings on mathematics teaching in their class?     

 And we developed from this question three more specifi c subquestions:

    1.     How do the    teac    her and the pupils communicate with each other as seen in third 
graders’ drawings?    

   2.     What kind of emotional atmosphere in a mathematics lesson can be seen in third 
graders’ drawings?    

   3.     How can we identify the type of work done during a mathematics lesson as seen 
in third    graders    ’ drawings?       

    Theoretical Framework 

 Here, we consider the main concepts of our drawings study at a theoretical level 
with the help of the existing literature. The most important concept is the use of 
drawings as a source for information. Another important concept is the emotional 
atmosphere in class. 

     Pupils’ Drawings as   Research Tools 

 Drawing is an alternative form of expression for children. Barlow, Jolley, and 
Hallam ( 2011 ) have noted that  freehand drawings   help children recall and express 
more details about events they illustrate. Drawings tend to facilitate the recalling of 
events that are unique, interesting or emotional but not routine events or isolated bits 
of information that are not part of a narrative. Pupils’ drawings open a holistic way 
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to evaluate and monitor pupils’ understandings of classroom climate, where there 
are several facets of communication and types of work. 

 Ruffell, Mason, and Allen ( 1998 ), in addition to Bragg ( 2007 ), challenge the 
written questionnaire as a method for studying children, as children do not necessar-
ily understand the words and statements used in a questionnaire in the way that the 
researcher has intended. In an ideal situation, the child under study has an opportu-
nity to verbalise his or her own concepts. According to Hannula ( 2007 ), it is not 
easy to get linguistically rich responses from young children. Thus, it is a challenge 
to develop for teaching mathematics research methods that would be suitable for 
young children and that take the children’s views into account. 

 Many researchers (e.g. Dahlgren & Sumpter,  2010 ; Ludlow,  1999 ; Remesal, 
 2009 ; Tikkanen,  2008 ) emphasise that one way to evaluate the teaching of mathe-
matics  i  s to ask pupils to draw a picture about the lesson: Pupils who have received 
 teacher-centred teaching   often draw a blackboard and a teacher in front of the class. 
The pictures less often include references to communication between pupils. The 
drawings also tell us about beliefs, attitudes and feelings that have to do with math-
ematics. When pupils have taken part in the kind of teaching that activates them, 
they produce pictures that emphasise activities and communication between pupils. 

 Drawings help pupils to overcome the diffi culties in disclosing their thoughts, 
feelings and opinions to an adult researcher (Zambo & Zambo,  2006 ). According to 
Weber and Mitchell ( 1996 ), pupils’ classroom drawings form rich data to study 
children’s conceptions on teaching. Pupils’ drawings have made an alternative and 
complementary contribution to conventional research methods by conveying their 
images about mathematics, mathematics teaching, their teacher and their peers and 
classrooms in mathematics lessons. 

 Both  meaning making and interpretation   have a central role in analysing draw-
ings. According to Blumer ( 1986 ), the meanings given by the pupils to various situ-
ations and things guide their actions, how they interpret different situations and 
what they include in their drawings. Giving meaning is a continuous process, which 
in this study takes place particularly in the social context of the mathematics lesson. 
Different pupils will fi nd different meanings in the same situations and things. The 
meanings may have to do with physical objects, such as the classroom blackboard 
or a desk; social interaction, such as working alone or in a group; or with abstract 
matters, such as the concepts of mathematics or the feelings that are elicited by 
teaching. The methods used in teaching organise both the actions between the 
teacher and the pupils as well as the actions between pupils. Based on the infl uences 
of the teaching, the pupil may evaluate himself or herself as poor and his or her 
classmates as good  in    mathematics  . 

 Tikkanen ( 2008 ) compared Finnish and Hungarian fourth graders’ experiences 
with mathematics teaching. The data consisted of pupils’ drawings and narratives. 
Three  types of classrooms   were identifi ed according to their mathematical contents 
and the style of narration. Regardless of teaching methods, most of the pupils had a 
positive attitude towards mathematics and a positive self-concept. 

 In the framework of motivation  theory  , Dahlgren and Sumpter ( 2010 ) compared 
second and fi fth graders’ conceptions of mathematics and mathematics teaching  via  
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drawings with a written questionnaire in Sweden. All pupils presented mathematics 
teaching as an individual activity with a focus on the textbook. Most of the second 
graders had a positive attitude towards mathematics, whereas a larger proportion of 
the fi fth graders had a  neg  ative one. 

 Rolka and Halverscheid ( 2011 ) analysed fi fth and sixth graders’ drawings, texts 
and interviews for studying their mathematical worldviews. They tried to classify 
the drawings into the three categories proposed by Ernest ( 1991 ):  instrumentalist 
view  ,  Platonist view   or  problem-solving view  . Their conclusion was the following: 
‘Considering the picture alone as the data source for extracting the underlying math-
ematical world view is related to a large amount of subjectivity in interpretation and 
will certainly not allow for an unambiguous classifi cation’ (Rolka & Halverscheid, 
 2011 , p. 522). Therefore, they considered also text and interviews in order to study 
pupils’ mathematical world views. 

 In our research project, we used as background tests besides pupils’ drawings a 
questionnaire of pupils’ conceptions of mathematics and a test  o  n pupils’ mathe-
matics knowledge and problem-solving skills.  

    On  the   Emotional Atmosphere in a Classroom 

 Teachers have a central role in advancing the affective atmosphere and social inter-
action in their class. Harrison, Clarke, and Ungerer ( 2007 ) summarise that a positive 
teacher-pupil relation advances both pupils’ social accommodation and their orien-
tation to school, and it is thus an important foundation for the pupils’ academic 
career in the future. 

 Evans, Harvey, Buckley, and Yan ( 2009 ) defi ne three  complementary   compo-
nents of classroom atmosphere: (1) academic, referring to pedagogical and curricu-
lar elements of the learning environment; (2) management, referring to discipline 
styles for maintaining order; and (3) emotional, the affective interactions within the 
classroom. In this study, we concentrate on the last component; that is, the emo-
tional atmosphere, which can be noticed, for example, as an emotional relation 
between the pupils and the teacher. The state of the pupils’ emotional atmosphere is 
an important background factor in problem-solving. 

    The emotional atmosphere within the classroom can be regarded either from 
the viewpoint of individuals in the class ( psychological dimension  ) or from the 
 viewpoint of a community ( social dimension  ). Whilst the individual perspective 
looks at the individual experiences in the class, the social perspective looks at the 
class more holistically with a focus on social interaction, communication and 
norms. Furthermore, a distinction can be made between two temporal aspects of 
affect:  state and trait  .  State  refers to the emotional atmosphere in a specifi c 
moment in the class, whilst  trait  refers to a more stable condition or property 
(cf. Hannula,  2011 ). In this study, our perspective is holistic, connecting pupils’ 
individual dimensions. 
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 Different affective dimensions can be studied also using  social level concepts   
at the level of community; that is, of a classroom. Rapidly changing affective 
states include, for instance, a social interaction connected to a certain situation, 
communication related to this and the emotional atmosphere present in the class-
room. When similar situations happen repeatedly in a classroom, pupils may form 
more stable affective traits typical to a certain classroom. Social norms (Cobb & 
Yackel,  1996 ), social structures and the atmosphere in a classroom are such traits. 
Pupils will ‘learn’ that during mathematics lessons, homework is always checked 
in the same way, and a certain norm is developed. When also other parts of the 
mathematics lesson happen repeatedly in the same kind of atmosphere, the atmo-
sphere may become general and include all mathematics lessons, possibly also 
lessons of other subjects.      

    Methods 

  T  he results of the study are based on pupils’ drawings that were gathered in autumn 
2010 in Greater Helsinki. The teacher of the class gave the following task instruc-
tion to her pupils who worked independently, and then she collected the drawings 
for the researchers. 

 The third graders in question (about 9 years old) came only from the nine teach-
ers in the Greater Helsinki area. The drawings from the class of one teacher had to 
be put aside, since the pupils had produced them in pairs. 

 The drawing task:

        The drawings by 133 pupils were analysed, of which there were 72 from boys 
and 61 from girls. About two-thirds of the pupils had added into their drawings 
some balloons for speech and thought. Thus, they enabled us to investigate com-
munication between the teacher and the pupils as well as among the pupils. 

 Pupils have marked in many drawings the pupils’ and the teacher’s faces. With 
the help of those facial expressions, we were able to conclude how the pupil who 
did the drawing has experienced the emotional atmosphere in class. Thus, deciding 
in each drawing the pupil’s attitude, the person who did the drawing and with the 
help of facial expressions, we can add up the emotional atmosphere in the whole 
class. 

 Since this chapter is a compound of three substudies, they are dealt with sepa-
rately. And therefore, the methods used in each substudy are presented apart later on 
in detail in a proper  place  .  

 Draw your teaching group, the teacher and the pupils in a mathematics lesson. Use bal-
loons for speech and thought to describe conversation and thinking. Mark the pupil that 
represents you by writing on it ME. 
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   Result of Pupils’ Drawings 

       Communication 

 We wanted to fi nd out how the pupils experienced the kind of communication used 
in  problem-solving   during mathematics lessons. Thus, we sought answers to the 
following question:

   How do the teacher and the pupils communicate with each other as seen in third graders’ 
drawings?  

   The starting point of the classifi cation of pupil drawings was the analysis method 
developed by Tikkanen ( 2008 ) in her doctoral dissertation. According to this 
method, a drawing as data source for observation can be divided into content cate-
gories. A content category means the phenomenon on which data is gathered. We 
have chosen here the following as content categories: (1) teacher’s communication 
and (2) pupils’ communication. 

 For analysis, the content categories were operationalised into the following 
subcategories:

    1.     Teacher’s communication  : gives instructions, keeps order, teaches, gives feed-
back, and observes quietly,  w  hilst the pupils work   

   2.     Pupils’ communication  : a pupil makes/asks/or thinks a remark in connection to 
teaching; a pupil asks for help; pupils discuss with each other; or a pupil makes/
or thinks an improper remark     

 Two researchers classifi ed the pupils’ drawings, and in the case of a difference of 
opinion, both researchers re-examined and discussed the drawing in question 
together. All the drawings ( N  = 133) were carefully classifi ed. The evaluation of 
agreement was elicited by calculating the classifi ers’ differences. 

 The method of analysing the drawing was a mixed method, and it can be classi-
fi ed as  inductive content analysis   (Patton,  2002 ), as we were trying to describe the 
situation in the drawing without letting our own interpretations infl uence it. Each 
drawing was carefully examined in order to fi nd all subcategories of the main con-
tent category. In every content category, the last subcategory was ‘not recognisable’. 
The agreement between two classifi ers in all subcategories was very good; that is, 
over 90 % (range 91–95 %). 

 In many drawings, one can see only stick  fi   gures; in some cases, hands are begin-
ning from the head, and in some drawings, there are only pupil desks representing 
pupils. However, some of the third graders were very talented in drawing, and then 
in the pupils’ drawing, one can see several details. The  example   in Fig.  1  of the 
pupils’ drawings is very informative. In speaking bubbles, the pupils present their 
memory pictures about mathematics lessons and their atmosphere. But the pupils’ 
method of presenting a saying (loud or whispering) and thinking is not always 
consequent.
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   An interpretation of the drawing in Fig.  1  is presented using the content  categories 
previously described. In many content classes, there is not only one feature but 
many (cf. the second content category): (1)  teacher’s communication   (the teacher 
observes quietly) and (2)  pupils’ communication   (pupils make remarks in connec-
tion to teaching; pupils  a  sk for help). 

    Results 

 In this study, we tried to answer the research question with the help of the drawing 
analysis. It is helpful to notice that in the categories of the classifi cation, the fre-
quency is larger than the number of the pupils, since in many drawings, one can fi nd 
several features. 

 Firstly, we will deal with the content category ‘ t     eacher’s communication’ (cf. 
Table  1 ). Since in the drawings of many pupils there were several indicators, the 
total frequency was 145. This totality is divided rather uniformly between several 
factors. In the parentheses, we give fi rst the absolute frequency and then the relative 
frequency in a percentage.

   In ‘ teacher’s communication’,      the mode value (36; 25 %) is ‘teaches’ that con-
tains both a teacher’s own questions and expository teaching. But the frequencies 
are almost as large in the subcategories ‘follows quietly pupils’ working’ (33; 23 %) 

  Fig. 1    An example of  a   pupil’s drawing; its analysis is below       
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and ‘not recognisable’ (28; 19 %). Thus, most of the pupils convey an impression 
that a teacher asks questions and delivers knowledge in mathematics lessons. There 
are many drawings where the teacher is not drawn at all. 

 Secondly, we take the content category ‘      pupils’ communication’ (cf. Table  1 ). 
Since in the drawings there were several indicators, the totality here is 191. The 
largest frequency is in the subcategory ‘a pupil makes/asks/or thinks a remark in 
connection to teaching’ (65; 34 %). The next largest frequency (48; 25 %) is in the 
subcategory ‘a pupil makes or thinks a improper remark’. The frequencies of the 
rest of the three subcategories are under half of the maximum frequency. Therefore, 
we could say that in the drawings, pupils’ communication is a compound of pupils’ 
remarks where the largest share form the remarks connected to teaching or learning 
of mathematics, but there are also a great  many      improper remarks. 

 In Table  1 , there are relative  frequencies   of communication in class. If we select 
from the content categories the most popular one (the mode category), we receive 
from the third graders’ communication in mathematics lessons the following proto-
typic picture: According to the pupils’ drawings, a teacher’s communication con-
sists mainly of teaching (25 %). It is interesting to notice that also another quarter 
of the pupils’ experiences (23 %) carry another idea of teaching: The teacher quietly 
follows her pupils’ working. Pupils’ communication is clearly connected with 
teaching (34 %).  

    Conclusion 

 No negative attitude to the teacher could be found in these drawings. This fi nding is 
different from the results of the study by Picker and Berry ( 2000 ). They found that 
pupils often ask teachers for help. Of course, a teacher commands somewhat when 
maintaining order. The interaction between a teacher and pupils seems to be positive 
in the drawings, and that is important, since pupils are in cooperation with their 
teacher for about 4–5 lessons during a school day. 

 Altogether, two-thirds (67 %) of the third graders produced drawings where the 
pupils’ thinking, speaking and action can be seen. According to Tikkanen ( 2008 ), 

     Table 1    The relative frequencies in the content categories: A  teacher’s communication      ( N  = 145), 
Pupils’ communication ( N  = 191)   

 A teacher’s communication (%)  Pupils’ communication (%) 

 Teaches  25  Connected to teaching  34 
 Follows quietly  23  Is improper  25 
 Maintains order  13  Asks for help  15 
 Gives orders  10  Pupils discuss  12 
 Gives feedback  10 
 Not recognisable  19  Not  recognisable       10 
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mathematics lessons seem to contain many actions that pupils include in their 
 drawings from working environment to mathematics drawn in the blackboard and in 
the speech bubbles. 

 In the published paper (Pehkonen et al.,  2011 ), the communication results are 
presented more in detail.   

       Emotional Atmosphere 

 In the second substudy, we wanted to fi nd out what kind of  emotional atmosphere 
the   pupils convey in their drawings of a mathematics lesson. Thus, we sought 
answers to the following question:

   What kind of emotional atmosphere in a mathematics lesson can be seen in third    graders’  
   drawings?  

   In this study, we were concentrating only on  the holistic evaluation of the emo-
tional atmosphere in a classroom,  which is based on all the pupils’ and the teacher’s 
moods seen in a drawing as well as on the pupils’ speech and thought bubbles in the 
picture. The pupils’ mood and the teacher’s mood are determined from the form of 
the mouth (smiling, neutral, sad/angry, not visible) and on their utterances or 
thoughts. The  emotional atmosphere was   classifi ed as one of the following:

    1.    Positive (all persons smile or think positively, some part can be neutral)   
   2.    Ambivalent (positive and negative), if at least one contradicting (positive or neg-

ative) facial or other expression is found in the drawing   
   3.    Negative (all persons are sad or angry or think negatively; some can be neutral)   
   4.    Neutral (all facial or other expressions are neutral)   
   5.     Unide  ntifi able (when it is impossible to see any facial or other expressions)    

  In order to get an overview of the emotional atmosphere of the whole class, we 
made a summary of the holistic evaluation of the individual pupils’ drawings. It is 
important to notice that we were interested in the general atmosphere  during    math-
ema  tics lessons and not in any specifi c feelings towards mathematics activities. 

    Results 

 The emotional atmosphere in a mathematics lesson is taken as an entirety that con-
sists of the pupils’ and the teacher’s facial expressions and  their   utterances or 
thoughts in the drawings. The observations are classifi ed using the scale: positive, 
ambivalent, negative,    neutral and unidentifi able.    The result of the analysis is pre-
sented in Table  2 .

   The mode value of the emotional atmosphere in mathematics lessons was classi-
fi ed as positive, since it can be seen in 50 (38 %) of the drawings. For example, the 
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drawing in Fig.  2  (Appendix 1) was classifi ed  as   positive because all the pupils as 
well as the teacher are smiling. Furthermore, both the teacher’s and the pupils’ 
speech or thought bubbles are either positive or neutral. 

 The number of the pupils (44; 33 %) who portrayed the emotional atmosphere in 
their mathematics lesson as ambivalent  is   almost the same as the number of pupils 
who described it as positive. An example of an ambivalent case is presented in 
Fig.  3  (Appendix 1). The pupils are sitting in rows, and there are both positive and 
negative facial expressions in the drawing. 

 A tenth of the pupils pictured the emotional atmosphere as negative; that is, they 
drew sad or angry faces or the speech bubbles  contained   negative (or neutral) 
thoughts. In Fig.  4  (Appendix 1) there is an example of a drawing showing a nega-
tive emotional atmosphere. 

 In 15 % of the drawings, the emotional atmosphere was classifi ed  as   neutral 
because the persons’ facial or other expressions were neither positive nor negative.    
Pupils and teachers were normally talking only about mathematical tasks as in 
Fig.  5  (Appendix 1). 

 As a summary, we can conclude that the mode value of the emotional atmo-
sphere in the pupils’ drawings of mathematics lessons is positive in 50 cases (38 %), 
where both the teacher and all the pupils are smiling (or some of them are neutral) 
or  thinking      positively or neutrally (cf. Table   2  ). A third of the pupils have drawn the 
emotional atmosphere in the classroom as ambivalent, which means that in their 
drawings, there is at least one person whose facial expression is sad or angry or who 
says (or thinks) something that is interpreted as negative. The difference between 
the positive and ambivalent subcategories is not large, as the latter category contains 
also the drawings in which among many smiling pupils, there is at least and perhaps 
only one pupil showing a sad face. It can thus be said that in these third graders’ 
drawings, the principal mood in mathematics lessons is positive. 

 Next, we looked at a classroom-specifi c emotional atmosphere in the mathemat-
ics lessons found in the third graders’ drawings from the classes of nine different 
teachers. We made a summary of the holistic evaluation of the individual pupils’ 
drawings in order to get an overview of the emotional atmosphere of the whole 
class. The summary of  emotional atmosphere in the   different classrooms is pre-
sented in Table   3  .

   Even though the emotional atmosphere in pupils’ drawings on mathematics les-
sons is mostly positive in the total data (cf. Table   2  ), there are large differences 
among the different classrooms. It is possible to look at the mode of the  emotional 
atmosphere in   every  cl  assroom (cf. Table   3  ), but it is important to notice that this 
mode does not reveal the whole truth. The profi les of the emotional atmospheres 
also vary widely within the classrooms. 

     Table 2     Emotional atmosphere   in a mathematics lesson in third grade (frequency; percent)   

 Positive  Ambivalent  Negative  Neutral  Unidentifi able 

 Total (133)  50 (38 %)  44 (33 %)  13 (10 %)  20 (15 %)  6 (5 %) 
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 In this study, our summary is that the emotional atmosphere in these mathematics 
classes at Grade 3 seems to be mainly positive, although there are big differences 
between classes. More details on the study of emotional atmosphere can be read in 
the  publis  hed paper (Laine et al.,  2013 ).   

    Types of Working 

 As said earlier, a drawing gives a ‘snapshot’ of how the pupil who did the drawing 
has experienced his or her teacher’s and his or her classmates’ activities during 
mathematics lessons. Here, our aim was to fi nd out how the pupils saw what type of 
work is done in mathematics lessons. Therefore, we needed to create a method to 
analyse young pupils’ drawings in order to fi nd answers to the following question:

   How can we identify the type of work done during a mathematics lesson as seen in third 
graders’ drawings?  

   The concepts of teacher-centredness vs. pupil-centredness are actually rather 
complicated ideas, and they contain a wide range of meanings (cf. Neumann,  2013 ). 

    Data Analysis 

 Since our  aim   was to develop a research method, we made several experiments to 
elaborate the range of teacher-centredness vs. pupil-centredness used in the class-
room as seen in the pupils’ drawings. After several trials, we listed together from the 
drawings in one classroom all possible teachers’ and pupils’ activities during math-
ematics lessons as well as the types of work used in the classrooms as seen in the 
pupils’ drawings. 

    Table 3    The  distribution   of emotional atmosphere in mathematics lesson in the nine classes 
(frequency; percent)   

 Positive  Ambivalent  Negative  Neutral  Unidentifi able 

 A (15 pupils)  8; 53 %  4; 27 %  3; 20 %  0; 0 %  0; 0 % 
 B (14 pupils)  7; 50 %  1; 7 %  1; 7 %  3; 22 %  2; 14 % 
 C (19 pupils)  9; 47 %  7; 37 %  2; 11 %  0; 0 %  1; 5 % 
 D (18 pupils)  8; 44 %  6; 33 %  0; 0 %  2; 11 %  2; 11 % 
 E (16 pupils)  4; 25 %  2; 13 %  1; 6 %  9; 56 %  0; 0 % 
 F (17 pupils)  5; 29 %  4; 24 %  0; 0 %  8; 47 %  0; 0 % 
 G (17 pupils)  2; 12 %  5; 29 %  5; 29 %  4; 24 %  1; 6 % 
 H (11 pupils)  4; 36 %  5; 46 %  1; 9 %  1; 9 %  0; 0 % 
 I (6 pupils)  2; 33 %  4; 67 %  0; 0 %  0; 0 %  0; 0 % 
 Average (133 pupils)  49; 37 %  38; 29 %     13; 10 %  27; 1 %  6; 4 % 
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 Two researchers then completed these lists by going through all the third grad-
ers’ drawings at hand ( N  = 133). In this way, three different lists were formed, but 
we deal here only with the third one: Types of work during a mathematics lesson as 
seen in the pupils’ drawings. The fi nal list is given in Appendix 2. 

 This list contains three different types of work: namely, independent work, group 
work and work with the teacher in charge. When pupils are working independently, 
they seem to be solving by themselves problems from the textbook or those that the 
teacher has written on the blackboard or given as a spreadsheet. 

 When pupils are working with the teacher in charge, the teacher is teaching—for 
example, asking questions to the whole class—or all pupils seem to be concentrat-
ing on the same task. In the case of group work, the pupils are discussing their tasks 
with their classmates, and the teacher is more a supporter than a foreman. In the case 
of ‘impossible to say’, there is no indication of pupils’ work. Furthermore, we have 
also listed whether the pupils are sitting alone beside their tables or in pairs or big-
ger  groups  .  

    Examples 

 Here we point out Figs.  2 – 5  (Appendix 1) as examples that will illustrate the coding 
in the category types of work. Additionally, we use Fig.  1  as a model example.    In 
Appendix 2 are the categories in Types of work. For example, the abbreviation 
TW12 refers to the second subcategory in the content category TW1 (pupils are 
working independently). 

 In Fig.  2  (Appendix 1), there are 18 pupils sitting in groups. The smiling teacher 
is sitting behind her desk and praises them, saying, ‘ I am very satisfi ed with my 
pupils ’ .  The tasks on which the pupils are working are from the textbook. Almost 
all the pupils are working on these tasks at their desks. Thus, we can say that the 
pupils are working independently (TW12). 

 In Fig.  3  (Appendix 1), the teacher is standing beside the blackboard and asking 
questions. The pupils are sitting by themselves and working with the teacher in 
charge (TW31). 

 In Fig.  4  (Appendix 1), seven pupils are sitting in  p  airs and working indepen-
dently (TW12), but the teacher is maintaining order. 

 In Fig.  5  (Appendix 1), the teacher stands beside the blackboard and questions 
the pupils. Therefore, the situation in the drawing is classifi ed as working with the 
teacher in charge (TW31). 

 Furthermore, the type of work in Fig.  1  seems to be group work (TW2). The 
teacher is sitting quietly, and the nine pupils are working in two groups. 

 Figures  2 – 5  show that the  organisation   of pupils’ desks does not indicate the type 
of work.  
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    Results 

 In Table  4 , one can see the  distribution   of the three different types of work—inde-
pendent work, group work and work with the teacher in charge—found in the third 
graders’ drawings.

   According to the pupils’ drawings, the most usual type of work during the mathe-
matics lesson is independent work (57 %) even though the pupils are more frequently 
sitting in groups (68 %) than in rows (32 %). This coincides with the traditional image 
according to which pupils are solving the given tasks mostly from the textbook by 
themselves. Next comes the type of work in which the teacher is standing in front of 
the classroom and pointing at the task on the blackboard (26 %). In this case, there is 
no difference in how the pupils are sitting, whether in rows or groups. 

 Only in four drawings (3 %) could we fi nd the pupils doing group work; that is, 
the different groups had different tasks, the pupils were discussing together and the 
teacher was going around giving advice and guiding the work. However, there were 
altogether 19 drawings (13 %) in which it was impossible to say what the type of 
work in the classroom was like. For example, in one drawing, there were only three 
girls talking together.  

    Discussion and Conclusions 

 The main aim of this study is to introduce a method to analyse teachers’ and pupils’ 
activities from young pupils’ drawings. With the help of the list we collected from 
third graders’ drawings, it is possible to identify types of work during a mathematics 
lesson. We started this research in order to fi nd out which method—teacher or pupil- 
centred (see, e.g. Thomas, Pedersen, & Finson,  2001 )—the teachers use more in 
their mathematics lessons. 

 However, we came to the conclusion that it is impossible to decide from the 
drawings whether they show teacher or pupil-centredness because these drawings 
are snapshots from a certain event, though perhaps quite usual situations during 
mathematics lessons. For example, work with the teacher in charge certainly belongs 
to every teacher’s repertoire when she or he is introducing new topics. 

 A paper that describes the study more in detail has been submitted to an interna-
tional journal (cf.  Ahtee et al., submitted ).     

  Table 4    The types of work 
during a mathematics lesson 
as seen by the third graders in 
their drawings ( N  = 133)  

  TW1    Independent work   57 % 
 TW11  Sitting alone  32 % 
 TW12  Sitting in a group  68 % 
  TW2    Group work   3 % 
  TW3    Work with the teacher in charge   26 % 
 TW32  Sitting alone  51 % 
 TW32  Sitting in a group  49 % 
 TW4  Impossible to say  13 % 
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   Conclusions 

 The drawings collected contain rich information from which we have selected only 
a small part for our purpose. The instruction given to the pupils was quite open, thus 
there is large variability in the drawings. 

 Here, we fi rst provide a summary of the results in order to answer the research 
questions. Secondly, we discuss the reliability of the drawing study. 

 Pupils’ drawings reveal important information on pupils’ behaviour that is diffi -
cult to obtain from young children using more conventional methods (cf. Pehkonen 
et al.,  2011 ; Weber & Mitchell,  1996 ). Especially by connecting words and images, 
the pupils who did the drawings refl ect their feelings and attitudes towards their 
teacher, other pupils and situations. They also express the group values that are 
prevalent within their specifi c environment. Thus, the method developed in this 
study gives us a tool to fi nd out how young pupils see teachers’ activities as well as 
pupils’ activities in mathematics lessons. Therefore, it gives researchers and school 
authorities the possibility to see what is happening in classrooms. It also gives the 
opportunity to compare, for example, different grades, different systems and even 
different countries. 

    Summary of Results 

 The fi rst research question was ‘ How do the teacher and the pupils    communicate    
 with each other as seen in third graders’ drawings? ’ In about a half of the drawings, 
the pupils convey that a teacher teaches (25 %) and quietly follows the class (23 %). 
This fi nding is understandable, since that is the reason for teachers to be with pupils 
in the classroom. Usually for some part of a lesson, the teacher teaches a new topic 
or questions the old knowledge. And a part of the lesson is dedicated to the pupils’ 
independent work (practising new tasks), and therefore, the teacher follows the 
class quietly. 

 The second research question was ‘ What kind    of     emotional atmosphere in a 
mathematics lesson can be seen in third graders’ drawings? ’ In these third graders’ 
drawings, the mode value of the emotional atmosphere in the mathematics lesson 
was positive. This fi nding matches the result for learning outcomes in mathematics 
in the beginning of the third grade (cf. Huisman,  2006 ); namely, that third graders’ 
collective attitude towards studying mathematics is fairly positive. However, it 
seems possible to obtain more information on this many-sided question with the aid 
of pupils’ drawings (e.g. Kearney & Hyle,  2004 ). 

 The third research question was ‘ How can we identify the    type of work     used dur-
ing a mathematics lesson as seen in third graders’ drawings? ’ According to the 
drawings by the third graders, pupils are working independently twice as often as 
working with the teacher in charge. So, it seems fair to conclude that third grade 
teaching seems to be fairly teacher-centred.  
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    On an Enlargement of the  Drawing Study   

 As we realised the possibilities of drawings to reveal pupils’ conceptions on 
 mathematics teaching and learning, we began actively to enlarge our database. Our 
aim is to develop an international comparison project on pupils’ drawings of math-
ematics lessons. Thus, we will be able to compare mathematics teaching in different 
countries in order to single out similarities and differences. 

 Today we have, beside Finnish and Chilean drawings, pupils’ drawings from the 
United States (Georgia), Germany (Sachsen-Anhalt) and England. There is even a 
journal paper based on the US material; that is, a bilateral comparison between 
Finland and Georgia, USA (cf. Hart, Pehkonen, & Ahtee,  2014 ). Furthermore, we 
are expecting to receive comparative drawing material from Albania and Italy. The 
size of each sample is about 100–200 drawings, and all are from third graders.     

       On Reliability 

 In thinking about the reliability and validity of drawings in mathematics, Stiles, 
Adkisson, Sebben, and Tamashiro ( 2008 ) concluded that drawings enable stronger 
and more personal expressions than an opinion about statements in a questionnaire, 
such as ‘I like mathematics’. In this way, pupils may draw hearts if they love math-
ematics or an assault rifl e to destroy mathematics to convey not liking it. In addition, 
Dahlgren and Sumpter ( 2010 ) consider pupils’ drawings to be a reliable method for 
assessing pupils’ concepts about mathematics teaching. 

 It  is   evident that in pupils’ drawings, there are many kinds of infl uences. These 
drawings were made in the beginning of the third grade (September 2010). When 
evaluating a teacher’s effect in this study, one has to take into account that the 
third graders made their drawings at the beginning of a new school year when they 
had gone to school for only 1 month after the summer holiday. On the one hand, 
the pupils’ conceptions of mathematics lessons had been affected mainly by the 
two previous school years. Thus, they might have been thinking about their 
teacher in Grades 1 or 2. On the other hand, pupils’ affective conditions and prop-
erties affect how they interpret different situations during mathematics lessons 
(Hannula,  2011 ). 

 Additionally, many third graders seem to have diffi culties in drawing, and there-
fore, they might concentrate on drawing only situations that are easy to draw for 
them. To overcome these diffi culties, the teacher might ask a pupil to explain his or 
her drawing. Another solution could be a whole class discussion on drawings. 
Ruffell et al. ( 1998 ) support these solutions, since they emphasise that the child 
under study should have an opportunity to verbalise his or her own  concepts  .  
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    Endnotes 

 As a summary, drawings seem to be a versatile way to collect information about 
emotional atmosphere in mathematics lessons (see also Harrison et al.,  2007 ). The 
method offers a single teacher the possibility to obtain and evaluate information 
about how his or her pupils experience mathematics and mathematics lessons. And 
the method can also hint to which features the teacher should pay more attention 
and how the teaching should be developed. Furthermore, it is fairly easy to open 
such a ‘window’ on pupils’ thinking in a lesson without much additional work by 
the teacher. 

 Pupils’ drawings reveal important information as to what kind of view the pupils 
have extracted from their lessons. Especially by connecting words and images, the 
pupils who did the drawings refl ect their feelings and attitudes towards their teacher, 
other pupils and situations. When all the pupils’ drawings in a classroom or a ran-
dom sample in a country are collected, it is possible to obtain a view that is prevalent 
in this specifi c environment. Thus, by analysing the pupils’ drawings, we can fi nd 
out how young pupils see their mathematics lessons.   

        Appendix 1: Four Examples of Drawings 

      

 Fig. 2       A positive emotional atmosphere; the type of work is independent  
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 Fig. 3    An example of  an   ambivalent emotional atmosphere; the type of work is the teacher in 
charge  

      

 Fig. 4    An example of  a   negative emotional atmosphere; the type of work is independent  

 

 

Pupils’ Drawings as a Research Tool in Mathematical Problem-Solving Lessons



186

           Appendix 2: The Type of Work During  a   Mathematics Lesson 
as seen in the Pupils’ Drawings 

 Code  Title  Comment 

  TW1    Working independently   Pupils are solving the same problem or working 
with different tasks in their own pace. ‘May I 
go and check?’ 

 TW11  Pupils are sitting by themselves 
 TW12  Pupils are sitting in pairs or in 

bigger groups 
  TW2    Working in groups   Pupils are working in pairs or bigger groups. 

The groups may have different tasks. The 
teacher does not have a central role 

  TW3    Work with the teacher in charge   All the pupils are thinking about the same part 
of the task 

 TW31  Pupils are sitting by themselves 
 TW32  Pupils are sitting in pairs or in 

bigger groups 
  TW4    Impossible to    say     It is impossible to conclude the type of work 
 TW41  Pupils are sitting by themselves 
 TW42  Pupils are sitting in pairs or in 

bigger groups 

  Extra remark: In some cases, there were clearly two different  types   of work in the same classroom, 
and then they were both accepted 

      

 Fig. 5    An example of a  neutral emotional atmosphere  ; the type of work is the teacher in charge  
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      The Use of Digital Technology to Frame 
and Foster Learners’ Problem-Solving 
Experiences                     

       Manuel     Santos-Trigo      and     Luis     Moreno-Armella    

    Abstract     The purpose of this chapter is to analyze and discuss the extent to which 
the use of digital technology offers learners opportunities to understand and appro-
priate mathematical knowledge. We focus on discussing several examples in which 
the use of digital technology provides distinct affordances for learners to represent, 
explore, and solve mathematical tasks. In this context, looking for multiple ways to 
solve a task becomes a powerful strategy for learners to think of different concepts 
in problem-solving approaches. Thus, the use of a dynamic geometry system such 
as GeoGebra becomes important to represent and analyze tasks from visual, 
dynamic, and graphic approaches.  

  Keywords     Digital tools   •   Mathematical problem solving   •   Tool affordances and 
appropriation process  

      Introduction 

 The  developments and availability   of digital technologies have been transforming 
the way people communicate, obtain information, socialize, develop, and compre-
hend disciplinary knowledge. A digital technology such as a  GeoGebra   can improve 
and eventually transform cognitive abilities we already possess and help us develop 
new ones. People usually develop these cognitive abilities when they represent and 
explore tasks through these technologies. A  cognitive technology   makes its mark in 
our mind through steady work and after a while it becomes part of our cognitive 
resources. A key historical example is writing. As Donald ( 2001 , p. 302) has 
explained it, literacy skills transform the functional architecture of the brain and have 
a profound impact on  how people perform their cognitive work . The complex neural 
components of a literate vocabulary, Donald explains, have to be hammered by years 
of schooling to rewire the functional organization of our thinking. Similarly, the 
decimal system (Kaput & Schorr,  2008 , p. 212) fi rst enlarged access to computation 
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and eventually paved the way to Modern Age. Today, an architect begins using spe-
cifi c software to design his buildings. Taking profi t from the plasticity of the visual 
images that the software provides, the architect can imagine a new plan, a new 
design. Gradually he will begin thinking of his design  with  and  through  the software. 
He will incorporate the tool affordances as part of his thinking and one day, the soft-
ware will have  disappeared . Now it is  coextensive  with his thinking while solving his 
design tasks. The tool has become an instrument and the design activities are   instru-
mented  activities  . Throughout this chapter, we argue that the systematic use of digital 
technologies plays an important role in teachers and students’ ways to comprehend 
mathematical ideas and to engage in problem-solving activities.  

    Conceptual Foundations: Learning from, Through, 
and with the Others 

 Action does not belong (exclusively) to the user and neither does it to the environ-
ment; both the user and environment are actors and reactors. We understand  drag-
ging  as our hands within the environment, where it is possible to  touch  and transform 
mathematical entities living in the digital environment. The user and environment 
are, from the point of view of agency,  coextensive . Thus, we can speak of   coaction    
between the user and the environment, not just between the user and the artifact 
(Moreno-Armella & Hegedus,  2009 ).  Coaction   is the broader process within which 
an artifact is being internalized as a cognitive instrument. Yet, in the social space of 
the classroom, there can be a collective actor. One participant can observe how 
another drives the technology at hands and, the former, incorporates into her strate-
gies what she observed. At the end participants can act and react to the environment 
in ways that are essentially different from their initial ones. We can learn  from , 
 through , and  with  others. So the traditional triangle user-technology-task has to be 
enlarged: coaction becomes embedded in a social structure. The ways in which 
people appropriate technological artifacts cannot be separated from the cultural 
matrix they live in, and vice versa, technology cannot be separated from culture. 

 Engaging in practical use of tools begins to build in the user a cognitive resource 
for thinking about the world as a scene for the potential application of this tool. 
 Artifacts operate   in a two-sided manner, both providing resources for acting on the 
world and for regulating thinking about the world. 

 Human beings do not interact directly with their environment but through medi-
ating artifacts. This is true in particular when considering cognitive activities as 
mathematical problem solving. Historically, writing and the decimal system are the 
most basic mediating cognitive technologies. They were instrumental to pave the 
Renaissance and Modern Age. 

 We want to explore this general setting in the important case of contemporary 
mathematics learning. Consequently, we will be referring to  digital   artifacts that are 
transforming the educational landscape and the mathematics curricula. 
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 Béguin ( 2003 ) pointed out the design of artifacts does not fi nish until the tool or 
object fulfi lls material and technical requirements; it should include how users 
transform the artifact into an instrument to solve problems. Moreno-Armella and 
Santos-Trigo ( 2016 ) argue that  artifacts   are not neutral as they deeply modify our 
ways of thinking once we have internalized them into our cognitive structures. On 
their side, Koehler and Mishra ( 2009 ) have pointed out that the (cognitive) tech-
nologies “have their own propensities, potentials, affordances, and constraints that 
make them more suitable for certain tasks than others” (p. 61) .  Some of those affor-
dances and constraints are inherent to the technology design, but also users impose 
others during their implementation as well as they can eliminate those constraints 
due to the innovative use of technology. The coordinated use of digital technologies 
allows for diverse ways to identify, formulate, represent, explore, and solve prob-
lems situated in different fi elds or contexts. Consequently, new routes can emerge 
for learners to construct and comprehend disciplinary knowledge.  How will learn-
ing environments be transformed in order to cope and take    advantages of digital 
developments    ?  

 The discussion of this question becomes important in order to properly explore 
learning scenarios in which learners rely systematically on the coordinated use of 
digital technologies to develop new versions of disciplinary knowledge and 
problem- solving skills.    To illustrate what the use of technology could bring to learn-
ing environments, we will discuss, in the next sections of this chapter, some math-
ematical tasks that will enable inductive and deductive reasoning through the digital 
media. In every one of the activities discussed, a goal is clear: to provide opportuni-
ties for learners to engage in mathematical thinking and problem-solving 
experiences. 

  Teachers   play an important role in providing opportunities for students to use 
technology in problem solving. As suggested by Mishra and Koehler ( 2006 ), teach-
ers need to know ways to use technology in learning environments in addition to 
deep knowledge about the subject (mathematics) and teaching practices. This is a 
complex demand for the teachers as it requires “an understanding of the representa-
tion of concepts using technologies… and how technology can help redress some of 
the problems that students face…and knowledge of how technologies can be used 
to build on existing knowledge and to develop new epistemologies or strengthen old 
ones” (p. 1029). 

 Tasks are the vehicle for learners to focus on fundamental concepts that are 
developed through one’s own actions and social interactions (Santos-Trigo,  2010 ). 
With the use of digital technologies, learners become active participants in the 
learning process since they offer a rich diversity of opportunities to represent and 
explore the tasks from distinct perspectives. 

 Recently, the incorporation of mathematical action technologies (GeoGebra, for 
instance) has provided solid ground to transform static learning materials into enliv-
ened dynamic media. We select, for the next sections, a set of problems we have 
amply discussed with teachers in our academic programs of teachers’ education at 
Cinvestav-IPN, Mexico.  
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    The Use of Digital Technology in Looking for Solutions 
of Mathematical Tasks 

 A key  principle   to structure and foster problem-solving activities in learning environ-
ments is to help learners pay attention to what is essential in  identifying and grasping 
mathematical concepts   and how to use those concepts during the process of solving 
problems. Searching for alternative ways to represent and solve problems is a powerful 
strategy for students to identify and contrast the role played by concepts and their repre-
sentations across the whole  problem-solving process  . In Chinese classrooms this teach-
ing strategy is called “ one problem, multiple solutions  ” (Cai & Nie,  2007 ), and it is 
widely used in mathematical instruction. Students will not only recognize and value 
multiple paths used to represent and explore problems, they will also have an opportu-
nity to refl ect on the extent to which concepts are connected or used to achieve the solu-
tion. In addition, Gardner ( 2006 ) recognizes that for people to develop problem-solving 
creativity, they need to pose new questions and to look for novel problem solutions. 

 How can one distinguish that a solution to the “same” problem is different from 
others? Leikin ( 2011 ) suggests that solutions can be judged as different if they involve 
(a) the use of different representations of concepts to explore and solve the problem; 
(b) the use of different theorems, mathematical relations, or auxiliary constructions 
to support conjectures; and (c) the presentation of different arguments and ways of 
reasoning about concepts to achieve the problem’s solution. Thinking of different 
ways to solve problems could also become important to transform routine problems 
into a set of nonroutine activities (Santos-Trigo & Camacho-Machín,  2009 ). 

 How can students use digital technology to look for different ways to solve 
mathematical tasks? We discuss a simple mathematical task that involves the con-
struction of an equilateral triangle, in which the use of a  dynamic geometry system   
(GeoGebra) becomes important to think of different concepts and ways of reasoning 
to represent, explore, and solve the task. 

  The task : Given a vertex of an equilateral triangle and a line to which the other 
two vertices belong, fi nd the location of the other two vertices. Can you show dif-
ferent ways to construct such a triangle? 

 We have used this task in our problem-solving seminar with high school teachers. 
The goal of the  seminar   is to work on mathematical tasks through the use of different 
digital technologies and to analyze ways of reasoning that emerge during the solution 
process. Here, we illustrate some approaches to the task where the use of GeoGebra 
was essential to construct a dynamic model of the task. Also, we show some examples 
of solutions where the tool is used as straightedge and compass to solve the problem.  

    Dynamic Models 

 Subjects need to comprehend key information and concepts involved in the task 
statement. What data are provided? What does it mean that one side of the triangle 
lies on a given line? What do I know about equilateral triangles? Can I construct a 
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family of triangle holding partial conditions (isosceles) by moving a particular ver-
tex on the given line? Is there any way to relate the family of isosceles triangles with 
the construction of an equilateral one? The discussion of these types of questions 
becomes important for learners to construct a dynamic representation of the task. 

    Focusing on the Construction of  a   Family of Isosceles Triangles 

 Polya ( 1945 ) pointed out that relaxing initial conditions of a problem is an important 
heuristic to construct/explore the behavior of a partial condition of the problem. Figure  1  
shows a movable point P on line  l  and a circle  c  with center at point  C  (the given vertex) 
and radius  CP . Triangle  PCQ  is isosceles, since  CP  and  CQ  are radii of the same circle. 
It is observed that when point P is moved along line  l , a family of isosceles triangles is 
generated. At what position of  P  does triangle  PQC  become equilateral? One way to 
respond to this question is to rely on the property that  in any equilateral triangle, height, 
perpendicular bisector, angle bisector, and median coincide . To this end, the perpen-
dicular bisector of segment  PC  is drawn; then, this must pass through point  Q  when tri-
angle PQC becomes equilateral. Points  R  and  S  are the intersections of the perpendicular 
bisector and circle c. With the use of the tool, it is found that the locus of each point (R 
and S) when point P is moved along line l is a line (Fig.  1 ). Then, the intersection of each 
 locus   and line  l  determines vertices  P  and  Q , to form triangle PQC equilateral (Fig.  2 ).

        An Approach That Relies  on   Symmetry Properties and a Locus 
of Objects 

 Dynamic models involve constructing auxiliary objects and analyzing behaviors of 
some elements when moving particular points. Figure  3a  shows a perpendicular line 
to the given line  l  that passes through point C, a movable point A on line  l  and point 
B is the symmetric point of A with respect to the perpendicular to  l . Point D is the 
intersection of line CB and the perpendicular bisector of segment or side AC. Figure  3a  
also shows the locus of point D when point A is moved along line l. This locus inter-
sects line  l  at two points. When points A and B coincide with those intersection points, 
respectively, then triangle ABC is equilateral (Fig.  3b ). This is because there, d(A, 
B = D) = d (B, C) (defi nition of perpendicular bisector)  and   also d(A,C) = d(C, B).

        Models That Involve Relations and Geometric Properties 

 The models explore connections between properties and results and the construc-
tion of the triangle. The  tools’   affordances are important to represent and visualize 
the results. For instance, the accuracy of involved construction allows learners to 
visualize a  hot point  to pay attention to or possible relationships. 
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  Fig. 2    The construction of an  equilateral   triangle       
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  Fig. 1    Finding the loci  of   points R and S when point P is moved along line  l        
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     A      Viviani’s Theorem Approach (  http://tinyurl.com/
VivianiTheorem    ) 

 The idea is to use the theorem:  for any interior point P in an equilateral triangle, the 
sum of the distances from P to the sides of the triangle is the length of the height of 
the triangle . A crucial issue here is where to locate the interior point P to connect 
the theorem and the construction of the triangle. An option can be to locate the inte-
rior point on the segment drawn from point C and that is perpendicular to the given 
line. Thus, segment CM is the height of the required equilateral triangle, point P is 
any point on segment MC, and point Q is the middle point of segment PC (Fig.  4 ). 
Two circles are drawn: circle c with center at point P and radius PQ and circle d with 
center point Q and radius QP. Points G and H are the intersection points of both 
circles. Lines CH and CG intersect line  l  at points A and B, respectively. It is 
observed that triangles PHC and PGC are right triangles because side PC is the 
diameter of circle d. Thus, triangle ABC is equilateral; it holds that the sum of seg-
ments PM + PG + PH corresponds to the  height      MC (Fig.  4 ).

       An Approach Based on Similarity of Triangles 

 Figure  5  shows an  e  quilateral triangle PQR whose side PQ is any parallel line to the 
given line  l . Then two parallel lines to QR and PR that pass through point C are 
drawn. These parallel lines intersect line  l  at points A and B, respectively. Triangle 
ABC is equilateral because corresponding angles of triangles ABC and PQR are 
congruent (Fig.  5 ).

    Comment : Looking for several ways to represent and solve a task is a key 
problem- solving strategy where learners are encouraged to think of the task from 
diverse angles or perspectives. For instance, dynamic models become important to 
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  Fig. 3    ( a ) Drawing the  locus   of point D when point A is moved along line  l.  ( b ) When points A 
and B coincide with the intersection points of the locus, then triangle ABC is equilateral       
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  Fig. 4    Using Viviani’s  theorem      to construct the equilateral triangle ABC       

  Fig. 5     Drawing   equilateral triangle ABC through parallel properties       
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explore mathematical behaviors of a family of objects through dragging, fi nding 
loci, and quantifying attributes or graphic affordances. This object exploration not 
only provides information regarding invariants or patterns involved but also ways to 
justify emerging relations or  conjectures  .   

    Widening the Scope: How Digital Affordances Offer 
Opportunities for Learners to Engage in Mathematical 
Thinking 

 The use of digital technologies plays a central role in widening students’ ways to 
represent and explore mathematical concepts. In this section, we show examples 
where the use of GeoGebra not only is central to assemble a dynamic confi guration 
but also becomes important to visualize and support mathematical results. 

    An Exploration of  Basic   Geometric Properties 

 Figure  6a  shows that the measure of angle BOC is twice the measure of angle 
BAC. By focusing on triangle AOB, one observes that the measure of exterior angle 
BOC is the sum of the measures of angles BAC and ABO; consequently, angle BAC 
is equal to angle ABO, that is, triangle AOB is isosceles which implies OA = OB. What 
is the locus of point B when ray AB is moved on the plane? Figure  6b  shows that is 
a circle with center at O and radius OA. The converse is a classical theorem about 
the angle subtended by an arc in a circle.

   Now consider the problem: In a circle centered at O and a chord AB with mid-
point C (Figure  7 ), what is the locus of C as B travels free along the circle? 

 Chords AE and AD show the position of the midpoint; when the chord is a diam-
eter, the midpoint coincides with the center of the circle (Fig.  7 ).

   Figure  8  makes it visible that the locus is a circle with center O′. In fact, drawing 
O′C parallel to OB makes the angle CAO′ half the angle CO′O for every position 
of B. Then the point C describes a circle as shown below.

      But problem-solving activities always include extending the results obtained at 
certain moments: What if C is not the midpoint of AB? 

 In this case, if we draw the parallel line to OB through C, we obtain Fig.  9 :
   Again, for each C on AB, angle CAO is half the angle CO′O which means that C 

will describe a circle with center O′. 
 It is important to make explicit that students can explore and visualize these 

results while working in a dynamic environment such as GeoGebra. Then, the 
problem- solving activities will blend the dynamic exploration with the  geometric 
reasoning on the fi gure .     
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  Fig. 6    ( a )  m BOC BAC= 2   . ( b ) What is the locus of point B when ray OB is moved on  t  he 
plane?       

  Fig. 7    When the chord is  a   diameter, its midpoint is the center of the circle       

     A   Triangle and a Variation Task 

 Sketching a variation phenomenon, without making explicit its algebraic model, is 
an important problem-solving strategy that learners can apply in a technology envi-
ronment. We illustrate a dynamic model where the length variation of a triangle side 
can be explored graphically and through geometric properties. 
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  Fig. 8    Locus of point C when  p  oint B moves along the circle is a circle centered at O′       
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  Fig. 9    What is the locus of  poi  nt C when B is moved along the circle?       
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 Given a triangle ABC and a point P on side BC. From P we draw perpendicular 
lines to AB and AC and points E, F are the intersection points of those perpendicu-
lars and sides AB and AC. 

 Find the position of P such that the segment EF is the shortest (Fig.  10 ).
   In a dynamic system  su  ch as GeoGebra, we can proceed thus: Draw a perpen-

dicular line from P on side BC as shown in Fig.  11 :
   The segment PQ has the same length as EF. Then the locus of Q as we move P 

on BC renders a visual evidence of how the length of EF varies—as P travels on 
BC. We could name this activity as the heuristic phase that allows the student to 
become acquainted with the problem. The visual information suggests that the posi-
tion that renders the minimum length for EF occurs when PQ coincides with the 
height drawn from A. That is, when segment PQ is a height of the triangle. 

 Problem solving is surely the kernel of mathematical thinking at school. In our 
work we encourage our students to develop a drive for blending different approaches 
to a problem. In the present case, if P is the foot of the height from A, we discover 
(the students discover after a long discussion in the classroom) that the quadrilateral 
AEPF is cyclic. Previously, we discussed the conditions under which this fact is 
realized: the sum of the opposite angles in the quadrilateral equals 180° (Fig.  12 ).

   The quadrilateral is a dynamic object, that is, it changes (as well as the corre-
sponding circle) as P moves on BC. Playing with the circle, one discovers that when 
AP is the height, then the circle is tangent at P as the following fi gure illustrates 
(Fig.  13 ).

   This one is the smallest  circ  le as P moves on BC; consequently, the chord EF has 
the minimum length. Loci of points I and D represent the area variation of the fam-
ily of triangles (PEF) and quadrilaterals (PFAE) when point P is moved along BC, 
and students could explore at what position of P the areas of those triangles and 
quadrilaterals reach a maximum value. 

  Fig. 10    At what  position   of P (P moves along segment BC) does segment EF reach the shortest 
length?       
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  Fig. 11    Graphic representation  o  f length EF       

  Fig. 12    Multiple  representati  on of length EF       
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  Fig. 13    Finding the  solu  tion       

 The heuristic and deductive phases are complete. It is important to emphasize 
that the role of the dynamic medium is not ancillary. In fact, the heuristic phase 
guided by the digital affordances gradually contributes to develop new strategies for 
problem solving. The blending of paper and pixel is crucial in today’s classroom. 
There is a stable tradition at school, namely, paper and pencil, that will be gradually 
transformed by the presence of the digital armamentarium. 

 As we use a new artifact, we feel the  resistance  that it displays. Someone who 
intends to learn how to use a word processor knows this. Gradually, one overcomes 
the basic diffi culties and begins to  internalize  the artifact—in the present example, 
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the word processor. But the artifact is not passive. With time, its presence will 
impact the strategies we use to solve problems without that artifact, and the end 
result is our own transformation as problem solvers. Using an artifact begins to 
build in the user a cognitive resource for thinking about the problems she/he intends 
to solve. Artifacts provide resources for  ac  ting on problems and, simultaneously, for 
regulating our thinking as problem solvers.  

       Locus and the Concept of Central Symmetry 

 Figure  14  shows another example that illustrates how the availability of digital 
affordances can redirect or open a new path for exploration. Point D is inside of 
angle BAC. How to draw a segment from side AC to side AB such that the chosen 
point D is the midpoint of the segment?

   We choose any point P on side AC and refl ect it with respect to D to obtain P′. 
The locus of P′ when point P moves along AC is a parallel line to AC. H is the inter-
section point of the locus and side AB and H′ is the refl ected point of H with respect 
to D. Segment HH′ is the solution. Let us insist that the availability of a fl exible 
transformation as the central symmetry molds the solution we fi nd for this problem. 
Our way of thinking is transformed by the presence of the mediating  artifact  .  

    The Best View Task:  Combining   Graphic and Geometric 
Representation 

 We will close this section with a problem we fi rst learned from Polya’s classic 
 Mathematics and Plausible Reasoning  (vol. 1, pp. 122–123, 1954). This task was 
also analyzed in Santos Trigo and Reyes-Rodriguez ( 2011 ). 

  Fig. 14    H  solves   the problem       
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 Let us suppose we are walking along a line and we want to determine the posi-
tion on this line from which we have the best view of a segment AB as in Fig.  15 :

   The best view of  the   segment is obtained when the angle at P is largest. If we are 
to the far right, the angle will be very small, and as we approach walking to the left 
(as suggested in the fi gure), the angle will increase. The digital medium allows a 
fi rst exploration that consists in dragging the point P (walker’s position) and see 
how the angle varies. This experience will suggest the explorer that there is a posi-
tion where the angle is largest. However, this still does not allow to clearly identify 
that special position. We can go a step further by representing the measure of the 
angle by a perpendicular segment to the walking line. Then, we get Fig.  16 :

  Fig. 15     Explaining   the problem       

  Fig. 16    Cartesian  represen  tation of the problem       
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  Fig. 17    Euclidian dynamic  repr  esentation of the problem       

   Walking to the left eventually one will arrive at a position from where one only 
sees the point A, as suggested by the graph representing the set of angle measure-
ments. The digital affordances prove their cognitive power: the student is thinking 
 through  the artifact and  with  the artifact. The optimal position clearly exists. How 
could we provide a geometric characterization of this position? As we are trying 
to optimize an angle, previous experience suggests interpreting these angles  as 
  subtended by the segment AB as in Fig.  17 .

   The angle at P is interpreted as an angle subtended by the segment AB. The circle 
will vary as we move point P on the line. The segment PQ and the circle are two 
different ways of representing how the angle varies. The segment PQ suggests 
where the optimal position occurs, and this position coincides with the circle being 
tangent to the walking line: 

 This circle has the smallest possible radius and as it contains segment AB as a 
chord, the corresponding angle at P will be largest. The task exploration, once again, 
exhibits the virtues of blending  paper and pixel  as a starting point to enrich stu-
dents’ ways of developing their  mat  hematical thinking (Fig.  18 ).

        Concluding Remarks 

 Throughout this chapter, it is argued that the learners’ appropriation process of digi-
tal tools could offer them diverse opportunities to develop mathematical thinking 
and problem-solving competencies. In particular, the tasks we presented illustrate 
that the use of several problem-solving strategies such as “relaxing task conditions,” 
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“looking for special cases,” “assuming the problem is solved,” etc., can be extended, 
compared with the paper and pencil scope, when a dynamic geometric system is 
used (GeoGebra). To this end, we showed that the construction of dynamic models 
exhibits novel forms to explore object behaviors that involve “dragging objects,” 
“fi nding loci,” “quantifying objects attributes,” “graphic representations,” and 
“visualizing patterns behaviors.” Likewise, it is argued that during the process of 
representing and exploring the tasks, students can use digital technologies to exam-
ine embedded concepts and to apply them in problem-solving activities. Indeed, 
digital technologies open the ways to fertile reinterpretations of existing concepts, 
and these new forms of the concepts lead to transformations of the meanings of 
those concepts. The objects we traditionally have drawn on the paper are now for 
 fi lming  due to the executable nature of the digital representations. Consequently, 
digital technologies are leading to new epistemologies, not only affecting students’ 
approaches to problem solving but reshaping the cultural nature of mathematics. 

 The coordinated use of digital technologies offers diverse opportunities for 
learners not only to communicate and discuss mathematical tasks and ways to for-
mulate problems but also to represent and explore the tasks from diverse angles and 
perspectives. Although these digital technologies are not yet fully incorporated in 
the school culture, their presence is eroding the traditional paper and pencil ways of 
thinking while confronting a mathematical problem. Nevertheless, this is a rather 
slow process due to the force of tradition that makes practices resistant to change. 
This refl ects the welcome stability of “good old practices.” 

 The design of digital technologies involves the collaboration of experts’ com-
munities working on different fi elds, and an important element in the design is the 
users’ appropriation process of the tool. Thus, designers should include or rely on 
information about how users internalize an artifact into their cognitive structures to 
solve problems and incorporate it into their practices.     

  Fig. 18    The  solu  tion       
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      Proportional Word Problem Solving 
Through a Modeling Lens: A Half-Empty 
or Half-Full Glass?                     

       Tine     Degrande    ,     Lieven     Verschaffel    , and     Wim     Van     Dooren    

    Abstract     We discuss two studies related to upper elementary school pupils’ use of 
additive and proportional strategies to solve word problems, in order to shed a light 
on pupils’ modelling disposition (i.e. both their abilities and their inclination) in the 
context of proportional reasoning. In Study 1, we used word problems that were 
clearly additive or proportional, while in Study 2 the problems were formulated 
with Greek symbols so that pupils had no access to the actual contents of the problems. 
Both studies yielded very similar results. 3rd graders initially are strongly inclined 
to reason additively to missing-value word problems (whether they are additive, 
proportional, or incomprehensible) and 6th graders are strongly inclined to reason 
proportionally. In the intermediate stage pupils heavily rely on the numbers appear-
ing in the word problems in order to decide to apply a proportional or additive 
method. Even though the results were very similar, different nature of the tasks in 
both studies reveals a different aspect of pupils’ modelling disposition. The fi rst 
study showed how pupils largely neglect the actual model underlying a word problem, 
and consistently apply the same model across situations. The second study indicates 
that already at a young age, a substantial number of leaners is inclined to give 
answers based on quantitative analogical relations.   

     Introduction 

 Contemporary math education curricula consider it as an important goal that pupils 
can use mathematics to solve real-world problem  situations  . This process of applying 
the appropriate mathematical structures and operations, in order to make sense of 
realistic real-life problems and to solve them, is otherwise termed  mathematical 
modeling   (Van Dooren, Verschaffel, Greer, & De Bock,  2006 ). Traditionally, math-
ematical modeling and applied problem solving are taught through word problems 
(Verschaffel, Greer, & De Corte,  2000 ). Word problems can be described as “verbal 

        T.   Degrande    •    L.   Verschaffel    •    W.   Van   Dooren      (*) 
  Centre for Instructional Psychology and Technology, University of Leuven ,   Leuven ,  Belgium   
 e-mail: wim.vandooren@kuleuven.be  

mailto:wim.vandooren@kuleuven.be


210

descriptions of problem situations (…) wherein a question is raised, the answer to 
which can be found by performing mathematical operation(s) with the numbers in 
the problem” (Verschaffel et al.,  2000 , p. ix). Importantly, the concept of “word 
problem” does not necessarily imply that every word problem represents a true 
problem for a pupil, in the sense that there is no routine solution method available 
and that the activation of  (meta)cognitive strategies   is therefore required 
(Verschaffel, Depaepe, & Van Dooren,  2014 ). Neither does it necessarily imply that 
the pupil considers the question being posed as a (personally) interesting or relevant 
one and has a desire to fi nd the solution. Whether or not a word problem represents 
a true and/or attractive problem for a pupil depends on several factors, such as the 
familiarity of a pupil with the problem, his prior knowledge and skills, etc. 

 However, during the last two decades, it has been shown that pupils perceive 
word  problem solving   as a puzzle-like activity with little grounding in the real 
world. One of the problems is that in classroom practice, pupils can often success-
fully decide which operation to perform to solve a word problem in a textbook or a 
test without fi rst having to gain a deep understanding of the problem situation: 
superfi cial characteristics of the word problems already lead them to the correct 
answer (Van Dooren et al.,  2006 ; Verschaffel & De Corte,  1997 ). Arguably, word 
problems in textbooks and tests may thus largely overestimate the actual modeling 
abilities of pupils. Good performance on these word problems does not necessarily 
indicate that pupils acquired a good modeling disposition, but may merely refl ect a 
tendency in pupils to cope with these problems in a stereotyped and superfi cial way. 

 In this chapter, we will focus on pupils’ modeling disposition in the context of 
proportional and nonproportional word problems. We will use the notion of  disposi-
tion  , because we want to refer not only to pupils’ abilities but also to their inclina-
tion for a specifi c way of reasoning (De Corte, Greer, & Verschaffel,  1996 ). We will 
answer the following questions: Are pupils indeed often undeservedly successful in 
answering such word problems, while they do not show a true disposition toward 
modeling? Or are  pupils   who correctly solve these word problems despite their 
aforementioned superfi cial coping strategy (and even pupils who incorrectly solve 
those word problems due to superfi cial modeling behavior) still showing some ini-
tial but important modeling dispositions? To put it in other words, when looking at 
proportional word problem solving through a modeling lens, we ask ourselves the 
typical question whether the glass is half full or half empty. Before we answer these 
questions by means of results of two empirical studies, we will give an overview of 
previous studies and theorizing about proportional reasoning in proportional and 
nonproportional word problems.  

    Theoretical and Empirical Background 

 Because of its wide applicability in mathematics and science,  proportional reason-
ing   is a major topic in primary and secondary math education. Typically, from 3rd 
or 4th grade on, pupils are increasingly confronted with missing-value 
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proportionality problems, in which three numbers are given and a fourth has to be 
determined (Kaput & West,  1994 ). 

 Studies indicate that pupils associate such missing-value word problems with the 
proportionality scheme, even when it does not appropriately model the problem 
situation in the nonproportional word problem (De Bock, Verschaffel, & Janssens, 
 2002 ). One of the most extensively documented cases relates to lower secondary 
pupils’ tendency to (improperly) give proportional answers to  geometry problems   
like “Farmer Gus needs 8 h to fertilise a square pasture with sides of 200 m. How 
much time will he approximately need to fertilise a square pasture with sides of 600 
m?” (answering “24 h” in this case) (De Bock et al.,  2002 ; De Bock, Van Dooren, 
Janssens, & Verschaffel,  2007 ; Modestou, Gagatsis, & Pitta-Pantazi,  2004 ). But 
also upper secondary and even university students overuse proportionality in vari-
ous other domains like probability (Van Dooren, De Bock, Depaepe, Janssens, & 
Verschaffel,  2003 ). Consider, for example, the coin problem that Fischbein ( 1999 ) 
gave to 5th to 11th graders: “The likelihood of getting heads at least twice when 
tossing three coins is smaller than/equal to/greater than the likelihood of getting 
heads at least 200 times out of 300 times” (p. 45). Fischbein found that the number 
of erroneous proportional answers of the type “equal to” increased with age: 30 % 
in grade 5, 45 % in grade 7, 60 % in grade 9, and 80 % in grade 11. Other cases of 
improper proportional reasoning were found in calculus (Esteley, Villarreal, & 
Alagia,  2004 ), physics (De Bock, Van Dooren, & Verschaffel,  2011 ), and econom-
ics (De Bock, Van Reeth, Minne, & Van Dooren,  2014 ). 

 In all the above cases, knowledge about the specifi c—and sometimes rather 
advanced—concepts and principles in  mathematics and science   (e.g., concept of 
area, concept of chance, etc.) is required in order to unmask the inappropriateness 
of the proportional answer. Still, several studies point out that even in solving arith-
metic word problems where such advanced mathematical and scientifi c knowledge 
is not required, pupils give proportional answers (e.g., Fernández, Llinares, Van 
Dooren, De Bock, & Verschaffel,  2012 ; Van Dooren, De Bock, Hessels, Janssens, 
& Verschaffel,  2005 ; Van Dooren, De Bock, Vleugels, & Verschaffel;,  2010 ). 
Moreover, the tendency to improperly use proportional methods increases with age 
(at least until fi fth grade), as shown by Van Dooren et al. ( 2005 ). In the latter study, 
a large group of pupils from grades 2–8 were offered proportional problems 
(e.g., “In the shop, four packs of pencils cost 8 euro. The teacher wants to buy a 
pack of pencils for every pupil. He needs 24 packs. How much must he pay?”) and 
three kinds of nonproportional word problems:

•     Additive problems  , e.g., “Ellen and Kim are running around a track. They run 
equally fast, but Ellen started later. When Ellen has run 5 laps, Kim has run 15 
laps. When Ellen has run 30 laps, how many has Kim run?” (proportional answer: 
30 × 3 = 90 laps, correct answer: 30 + 10 = 40 laps) (this problem is basically the 
same as that used by Cramer, Post, and Currier,  1993 ).  

•    Constant problems  , e.g., “A group of fi ve musicians plays a piece of music in 
10 min. Another group of 35 musicians will play the same piece of music. How 
long will it take this group to play it?” (proportional answer: 10 × 7 = 70 min, cor-
rect answer: 10 min).  
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•    Affi ne problems  , e.g. “The locomotive of a train is 12 m long. If there are four 
carriages connected to the locomotive, the train is 52 m long. If there were eight 
carriages connected to the locomotive, how long would the train be?” (propor-
tional answer: 2 × 52 m = 104 m, correct answer: 12 m + (8 × 10 m) = 92 m).    

 The study showed that the tendency to improperly give proportional answers to the 
nonproportional word problems was already present before formal instruction in pro-
portional reasoning. Already in second grade, 26 % of all nonproportional problems 
were answered proportionally. Moreover, the tendency to give incorrect proportional 
answers to nonproportional word problems increased considerably to 51 % in 5th 
grade, with a decrease thereafter, but still 22 % in 8th grade. Remarkably, for the addi-
tive problem, there was even a  decrease  in the number of correct answers throughout 
elementary  school  . In other words, the overuse of proportional methods is already 
present in lower primary school pupils, becomes more prominent when missing-value 
proportionality problems are central in pupils’ classroom  practice, and decreases 
again around the end of primary school however without disappearing completely.

   Moreover, not only the tendency to improperly give proportional answers was 
already present at a young age, also the mathematical knowledge and skills to 
correctly answer the proportional problems were already clearly present in the fi rst 
years of  primary school  . Many 3rd graders (53 %) gave correct answers to the pro-
portional problems, and even 2nd graders (who only got variants involving small 
numbers and allowing simple scalar solutions) mostly gave correct answers. 
Performance on proportional word problems considerably improved until 8th grade 
(with 93 % correct answers), with most learning gains being made between 3rd and 
5th grade, the period wherein proportionality is being systematically taught and 
practiced.  

    Rationale 

 In the remainder of this chapter, we will present two empirical studies that followed 
up on the results of Van Dooren et al. ( 2005 ). The rationale for selecting these two 
studies is their contrasting (but at the same time complementary) perspective. We 
are especially interested in what these studies tell us about pupils’ modeling dispo-
sition in the context of proportional reasoning. 

 The fi rst study (see Van Dooren, De Bock, Evers, & Verschaffel,  2009 ) built on 
previous studies in the domain of proportional reasoning, as it especially focused on 
 task characteristics   that are associated with pupils’ choice for a proportional or another 
type of reasoning. This way, it illustrated pupils’ superfi cial approach to mathematical 
modeling, in the domain of proportional reasoning. Specifi cally, we showed how pupils 
often rely on a superfi cial, irrelevant problem characteristic in order to decide which 
model needs to be applied to a specifi c word problem, namely, the numbers given in a 
problem, while they ignore the mathematical model that is actually underlying it. 
The fi ndings of this study provided an indication that we often overestimate pupils’ 
true mathematical modeling capacities—as pupils can be undeservedly successful in a 
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variety of word problems—and that proportional reasoning capacities cannot be 
measured merely by means of a set of missing-value word problems. 

 In the second study (see Degrande, Verschaffel, & Van Dooren,  2014 ), we took a 
different perspective that sheds another light on pupils’ modeling disposition. In 
that study, we administered a specifi c kind of word problem that we consider “math-
ematically neutral,”    so neutral with respect to the underlying mathematical model. 
More specifi cally, in the tasks used in the second study, the problem context was 
unreadable and the mathematical model underlying the word problem was made 
inaccessible to pupils. Therefore, solutions to these problems did not so much give 
us insight into pupils’ proportional reasoning abilities, but rather allowed us to get 
a view on pupils’ spontaneous inclination toward what we will call “ quantitative 
analogical reasoning,”   i.e., looking for a mathematical relation between two magni-
tudes that are given in a word problem and applying this relation to a third given 
magnitude. This mathematical relation could be a proportional relation or any other 
relation (e.g., exponential, quadratic, additive, etc.). In the discussed paper, additive 
relations were of specifi c interest, next to proportional relations. By focusing on the 
common denominator “quantitative analogical reasoning,” we explicitly acknowl-
edged that additive reasoning and proportional reasoning have several conceptual 
similarities and that additive reasoning—even improper additive reasoning—that 
may occur in younger pupils may be a valuable precursor for the development of 
true proportional reasoning skills, while it is not always considered as such.  

    Study 1: How Numbers Affect Pupils’ Solutions 
to Proportional and Nonproportional Word Problems 

    Introduction 

 This fi rst study focuses on one issue that has been largely overlooked in research 
on the overuse of proportionality for a long time: the  nature of the numbers  in the 
proportional and nonproportional problems. The nature of the numbers in the word 
problem may have an impact on pupils’ tendency to use proportional or other meth-
ods. The fi nding that pupils’ choice for a solution method is based on this irrelevant 
problem characteristic (i.e., nature of the number ratios), instead of on the underly-
ing mathematical model of the word problem, may thus be an indication for pupils’ 
superfi cial approach to mathematical modeling in this domain. 

 The importance of this issue can be clarifi ed by considering the literature on 
proportional reasoning. A frequently reported error on missing-value proportional-
ity tasks (e.g., Hart,  1984 ; Karplus, Pulos, & Stage,  1983 ; Noelting,  1980a ,  1980b ) 
is the so-called “constant difference” or “additive”  strategy  . In this strategy, the 
relationship within the ratios is computed by subtracting one term from a second, 
and then the difference is applied to the other ratio (instead of considering the mul-
tiplicative relationship). For example, “One mixture has 2 oranges to 7 parts of 
water. Another mixture tastes the same and has 5 oranges. How many parts of water 
does it have?” The most prominent explanation for this error is that it is a kind of 
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“fall-back”  strategy   (especially for younger and less skilled proportional reasoners) 
to deal with proportionality problems with non-integer ratios (see, e.g., Karplus 
et al.,  1983 , who call this the “fraction avoidance syndrome”). 

 In sum, correct reasoning on proportional (missing-value) tasks sometimes is 
affected by the nature of the numbers. Particularly younger, less skilled propor-
tional reasoners perform worse if ratios in proportional problems are non-integer. 
The claim underlying the present study is that this fi nding also applies to the use of 
proportional methods to solve  non proportional problems. The nonproportional 
problems in many of the abovementioned studies (e.g., De Bock et al.,  2002 ; Van 
Dooren et al.,  2003 ,  2005 ; Verschaffel et al.,  2000 ) contained “easy” numbers: both 
the ratio of quantities of the same nature (i.e., the internal ratio a/c) and the ratio of 
quantities of different nature (i.e., the external ratio a/b) were integer. Although the 
problems had no proportional structure, the given numbers thus somehow invited 
pupils to conduct proportional calculations. Linchevski, Olivier, Sasman, and 
Liebenberg ( 1998 ) found some indications that such  integer ratios   could “trigger” 
unwarranted proportional reasoning (an error they call the “ proportional multiplica-
tion error”),   but they did not systematically test this hypothesis. The goal of the 
present study is to test this hypothesis and, this way, to gain further insight in the 
determinants of pupils’ tendency to overuse proportional methods.  

    Method 

 508 4th, 5th, and 6th graders from fi ve randomly chosen Flemish primary schools 
participated in this study. They received a test containing eight  missing-value word 
problems   presented in random order. The problems were identical to those used by 
Van Dooren et al. ( 2005 ). The design of the test is  shown   in Table  1  and examples of 
word problems are given in the left column of Table  2 . The test contained one type of 
 proportional  problems (for which proportional strategies provide the correct answer) 
and three types of  nonproportional  problems (for which another strategy must be 
applied to fi nd the correct answer). The three  types   of nonproportional problems 
had different mathematical models underlying them: additive, constant, and affi ne 
(i.e., a model of the form  f ( x ) =  ax  +  b ). For each category, two items were included.

    Central to this study was that the numbers in (all four types of) word problems 
were experimentally manipulated, as clarifi ed in Table  2 . The manipulation was in 
such a way that the internal and external ratios between the numbers were either 
integer (I) or non-integer (N). 

    Table 1    Design of the eight 
 test items    

 Item I  Item II 

 Proportional  (PR)  1  2 
 Nonproportional 
   Additive (AD)  3  4 
   Constant (CO)  5  6 
   Affi ne (AF)  7  8 
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 This manipulation led to four different  versions   of each item:

•    II-version: external ratio ( a / b ) integer and internal ratio ( a/c ) integer  
•   NI-version: external ratio ( a / b ) non-integer but internal ratio ( a/c ) integer  
•   IN-version: external ratio ( a / b ) integer but internal ratio ( a/c ) non-integer  
•   NN-version: external ratio ( a / b ) non-integer and internal ratio ( a/c ) non-integer    

 For example, the II-version of the additive (AD) word  problem   in Table  2  was 
“Ellen and Kim are running around a track. They run equally fast but Ellen started 
later. When Ellen has run 16 rounds, Kim has run 32 rounds. When Ellen has run 48 
rounds, how many rounds has Kim run?” A correct reasoning for this II-version is 
to focus on the (constant) difference between the numbers:  Kim is initially running 
16 rounds ahead of Ellen. This remains the same, so when Ellen has 48 rounds, 
Kim has 48 + 16 = 64 rounds . When reasoning proportionally here (which is 
improper, of course), one needs to focus on the ratios between the numbers: either 
on the external ratio  a/b  ( initially, Kim has twice as many rounds as Ellen (32/16), 
so when Ellen has 48 rounds, Kim has 48 × 2 = 96 rounds ) or on the internal ratio  a/c  

        Table 2    Examples of word problems and manipulation of numbers in the II-, NI-, IN-, and 
NN- versions     

 Example of word problem 

 Numbers and solutions for each version a  

 II  NI  IN  NN 

 PR  In the shop,  a  packs of pencils 
cost  b  euro 

  9 27     9 24      9 27     9 24    

 The teacher wants to buy  c  packs. 
 How much  does she have to pay? 

  18 54C :      18 48C :      12 36C :      12 32C :    

 AD  Ellen and Kim are running 
around a track. They run equally 
fast but Ellen started later. When 
Ellen has run  a  rounds, Kim has 
run  b  rounds 

  16 32      16 24      16 32      16 24    

  48 64C :      48 56C :      36 52C :      36 44C :    

 When Ellen has run  c  rounds, 
 how many  has Kim run? 

  P : 96      P : 72      P : 72      P : 54    

 CO  A group of  a  musicians plays a 
piece of music in  b  minutes 

  25 75     25 40      25 75     25 40    

 Another group of  c  musicians 
will play the same piece of 
music.  How long  will it take this 
group to play it? 

  50 75C :      50 40C :      35 75C :      35 40C :    

  P : 150      P : 80      P : 105      P : 56    

 AF  The locomotive of a train is 12 b  
m long 

  4 44      4 42      4 44      4 42    

 If there are  a  carriages connected 
to the locomotive, the train is  b  m 
long in total 

  8 76C :      8 74C :      10 92C :      10 90C :    

 If there would be  c  carriages 
connected to the locomotive,  how 
long  would the train be? 

  P : 88      P : 84      P : 110      P : 105    

   a Numbers are schematically represented as  
a b

c x  
  ( C : correct solution,  P : proportional solution) 

  b For the NI and NN-version, this value was 10  
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( at the end, Ellen has three times as many rounds as initially (48/16), so by that 
time, Kim has 32 × 3 = 96 rounds ). 

 When comparing this II-version to the NN-version of the same word problem 
(see Table  2 ), the correct approach is comparably easy (only the exact constant dif-
ference to work with differs). Proportional reasoning, however, is considerably more 
complex here, because both the internal and external ratio are non-integer. 
The multiplicative “jump” from 16 to 24 is far less evident than that from 16 to 32, 
but for a skilled proportional reasoner, it is still feasible. Reasoning proportionally 
for the  NN-version   might be, for example,  initially, Kim has 3/2 times as many 
rounds as Ellen, so when Ellen has run 36 rounds, Kim has run 36 × 3/2 = 54 rounds . 

 The tests were manipulated so that—on a random basis—two of the  eight word 
problems   (in Table  1 ) were in the II-version, two in the NI-version, two in the 
IN-version, and two in the NN-version. In other words, a test was created in which 
8 out of the 16 types of problems (see Table  2 ) were offered to pupils. Pupils’ answers 
to the problems were classifi ed as either  correct  (C, correct answer was given), 
 proportional error  (P, proportional strategy applied to a nonproportional item), or 
 other error  (O, another solution procedure was followed).  

     Hypotheses   

 Due to space restrictions, we limit ourselves here to comparing the “extreme” ver-
sions of the proportional and nonproportional items, i.e., the II- and NN-versions 
with, respectively,  both  (internal and external) ratios integer and  no  ratios integer 
(for the full paper including the IN- and NI-versions, see Van Dooren et al.,  2009 ). 

 A fi rst set of hypotheses relates to pupils’ performances on the  proportional 
problems . Based on the literature on proportional reasoning mentioned above, we 
expect that proportional problems with non-integer ratios (NN-version) will cause 
more errors (i.e., less correct (C) answers) than proportional problems with integer 
ratios (II-version) (HYP 1A). Additionally, we anticipate that this effect will be 
stronger in younger, less experienced proportional reasoners, so we predict that the 
different performance on the II- and NN-versions will be most pronounced in 4th 
grade, and that it will gradually diminish through 5th and 6th grade (HYP 1B). 

 The second set of  hypotheses deals   with the  nonproportional word problems . As 
argued above, we expect that problems with non-integer ratios (NN-version) will 
elicit less unwarranted proportional (P) answers than problems with integer ratios 
(II-version) (HYP 2A). We expect that particularly for the additive items (AD), the 
decrease in P-answers will result in more correct (C) answers—because the “addi-
tive” strategy that pupils often  erroneously  apply to non-integer proportional 
 problems is exactly the  correct  strategy for AD-items, whereas for the constant (CO) 
and affi ne (AF) items, the decrease in P-answers might as well result in more other 
errors (O-answers) (HYP 2B). Finally, as for the proportional items, we expect that 
differences in the number of P-answers on the NN- and II-versions of the nonpropor-
tional items will be the strongest in the 4th graders and will gradually diminish 
through 5th and 6th grade (HYP 2C).  
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    Results 

 Table  3  shows the percentage of correct answers to the  proportional problems . 
As expected (HYP 1A), the NN-versions of the proportional problems elicited less 
correct answers (56.8 %) than the II-versions (82.1 %). A repeated measure  logistic 
regression analysis   showed that this difference was signifi cant, as there was a main 
effect of “number type,”  χ ²(1,  N  = 508) = 52.51,  p  < .0001.

   The analysis also revealed a “number type” × “grade” interaction  effect  ,  χ ²(2, 
 N  = 508) = 166.59,  p  < .0001. In line with HYP 1B, the difference between the II- and 
NN-version was very strong in 4th grade (65.2 % correct answers to the II-version 
and only 23.6 % on the NN-version), less strong but still signifi cant in 5th grade 
(with 86.3 % and 63.8 % correct answers, respectively), and not signifi cantly differ-
ent in 6th grade (96.4 % and 85.5 % correct answers, respectively). 

 In Table  4  we have split up the results for the three different  types   of  nonproportional 
problems . It shows that the NN-versions elicited considerably less P-answers than the 
II-versions, and this was true for each type of nonproportional problem. For the additive 
(AD) problems, the II-versions elicited 29.3 % P-answers, and the NN-versions only 
12.3 %,  χ ²(1,  N  = 508) = 23.41,  p  < .0001. For the constant (CO) items, the II-version 
elicited 61.7 % P-answers vs. 36.0 % in the NN-version,  χ ²(1,  N  = 508) = 34.03,  p  < .0001. 
Finally, for the affi ne (AF) items, percentages were 56.6 % and 34.4 %, respectively, 
 χ ²(1,  N  = 508) = 31.54,  p  < .0001. So HYP 2A was confi rmed.

   Table  4  suggests that also HYP 2B was confi rmed. For the AD-items, as expected, 
the decrease of P-answers resulted in an increased number of C-answers: the 
II-versions got only 51.6 % C-answers, whereas the NN-versions got 73.0 %,  χ ²(1, 
 N  = 508) = 24.71,  p  < .0001, while there was no signifi cant difference in the number 
of O-answers (19.0 % and 14.7 %, respectively). 

    Table 4    % correct, proportional, and other answers on the nonproportional problems in the II- and 
NN-version   

 4th grade  5th grade  6th grade  Total 

 C  P  O  C  P  O  C  P  O  C  P  O 

 AD  II  57.3  23.6  19.1  48.8  35.0  16.2  48.1  30.1  21.7  51.6  29.3  19.0 
 NN  80.9  0.0  19.1  68.8  12.5  18.8  68.7  25.3  6.0  73.0  12.3  14.7 

 CO  II  6.9  57.4  35.6  13.6  63.0  23.4  5.7  64.8  30.0  8.6  61.7  29.7 
 NN  17.2  8.1  74.7  12.4  38.3  49.4  6.8  61.3  31.8  12.1  36.0  52.0 

 AF  II  13.8  54.0  32.2  23.5  54.3  22.2  28.4  61.4  10.2  21.9  56.6  21.5 
 NN  12.6  12.6  74.7  18.5  38.3  43.2  31.8  52.3  15.9  21.1  34.4  44.5 

 4th grade  5th grade  6th grade  Total 

 II  65.2  86.3  96.4  82.1 
 NN  23.6  63.8  85.5  56.8 

   Table 3    % correct answers 
on the proportional problems 
in the II- and NN-version   
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 For the  CO- and AF-items  , the decrease in the number of P-answers led to a 
signifi cantly higher number of O-answers: For the CO-items, there was an increase 
from 29.7 to 52.0 %,  χ ²(1,  N  = 508) = 25.99,  p  < .0001, and for the AF-items, the 
increase was from 21.5 to 44.5 %,  χ ²(1,  N  = 508) = 33.82,  p  < .0001. No signifi cant 
differences were found in the number of C-answers, neither for the CO-items (8.6 
and 12.1 %) nor for the AF-items (21.9 and 21.1 %). 

 Finally, HYP 2C was confi rmed too, because the differences in the number of 
P-answers to the NN- and II-versions were the largest in the 4th graders. In 5th and 
especially 6th grade, differences were considerably smaller or even completely gone:

•     AD-items  : The “number type” × “grade” interaction effect for P-answers,  χ ²(2, 
 N  = 508) = 25.19,  p  = .0003, indicates that 4th graders gave signifi cantly more 
P-answers to the II-variant (23.6 %) than to the NN-variant (0.0 %). The difference 
was still present in 5th grade (35.0 % vs. 12.5 %), but 6th graders gave almost 
equal numbers of P-answers to the II- and NN-variant (30.1 % vs. 25.3 %).  

•   CO- items  : A similar “number type” × “grade” interaction effect was found,  χ ²(2, 
 N  = 508) = 40.60,  p  < .0001. In 4th grade, the II-variant elicited much more 
P-answers (57.4 %) than the NN-variant (8.1 %). In 5th grade the difference was 
smaller but still signifi cant (63.0 % vs. 38.3 %), but in 6th grade, the difference 
had disappeared (with 64.8 % and 61.3 % P-answers, respectively).  

•   AF-items: Again, a “number type” × “grade” interaction effect,  χ ²(2,  N  = 508) = 
32.83,  p  < .0001, showing a large difference in P-answers in 4th grade (54.0 % on 
the II-variant vs. 12.6 % on the NN-variant), a smaller difference in 5th grade (54.3 
% vs. 38.3 %), and a nonsignifi cant difference in 6th grade (61.4 % vs. 52.3 %).      

    Conclusion 

 Study 1 explicitly addressed the claim that the nature of the numbers in the word 
problem might trigger superfi cial modeling processes by experimentally manipulat-
ing the  integer or non-integer character   of the ratios in the word problems. The results 
on the proportional problems replicated those reported in the proportional reasoning 
literature: problems with non-integer ratios elicited less correct proportional answers 
than variants with integer ratios. Moreover, as expected, this effect was particularly 
strong in 4th grade, while it became less infl uential in 5th and especially 6th grade. 

 With respect to the nonproportional problems, our fi ndings confi rmed the hypoth-
esis that pupils are less inclined to overuse proportional methods when the given 
numbers do not form integer ratios. Also in line with our expectations, the decrease 
of unwarranted proportional answers resulted in better performances on problems 
with an additive structure, as the “ additive strategy”  —which is often erroneously 
applied on non-integer proportional problems—is correct for solving this kind of 
word problems. For constant and affi ne word problems, the decrease in proportional 
answers did not result in better performances. Instead, pupils started to commit 
more other errors. Finally, we also found the expected  interaction effect  : 4th graders 
were particularly sensitive to the presence of non-integer ratios in nonproportional 
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problems, whereas 5th and especially 6th graders were hardly or not affected by this 
task characteristic. In other words, with age pupils became less prone to superfi cial 
mathematical modeling approaches based on the nature of the numbers in the non-
proportional problem.  

    Study 2: Toward an Appreciation of Pupils’ Quantitative 
Analogical Reasoning in Mathematically Neutral Word Problems 

    Introduction 

 Several previous studies, including the fi rst study presented in this chapter, provide 
a rather negative view on  pupils’ modeling capacities  , by showing that the (over)use 
of both additive and proportional methods is strongly determined by task (number 
characteristics) and subject (grade) characteristics (Van Dooren et al.,  2005 ; Van 
Dooren, De Bock, & Verschaffel,  2010 ). First, and as also shown by Study 1, the 
application of proportional methods occurs more frequently when the numbers in 
the word problem form integer ratios. Pupils thus ignore the mathematical model 
underlying a word problem and instead rely on a superfi cial, irrelevant problem 
characteristic in order to decide which model needs to be applied to a specifi c word 
problem, namely, the numbers given in a problem. This fi nding indicates that we 
often overestimate pupils’ true mathematical modeling capacities. Second, the 
overuse of proportional methods to  additive problems   tends to increase with age 
during elementary school and the fi rst years of secondary school, and the overuse of 
additive methods to proportional problems occurs more frequently by younger 
pupils (see introduction of Study 1). Moreover, between the stage where younger 
pupils overuse additive methods on proportional problems and the stage where they 
overuse proportional methods on additive problems, there is a stage of simultaneous 
overuse of additive and proportional methods. Pupils in this intermediate stage give 
additive answers to word problems with non-integer ratios and proportional answers 
to problems with integer ratios, independent of the actual mathematical model of 
the problem they solve. 

 However, the glass is not only half empty, as young pupils may have more model-
ing dispositions than is usually suggested by older research. Most research on the 
development of proportional reasoning considered pupils’ (improper) additive reason-
ing as an indicator of not having reached the stage of proportional reasoning yet (or at 
least not yet completely). While we agree with this fi nding, we also want to argue that 
pupils who reason additively in proportional word problems—even if they herewith 
relied on the nature of the numbers in the word problem—have already taken a valu-
able step in their development toward proportional reasoning, as compared, for 
instance, to pupils who just add all the given numbers. Kaput and West ( 1994 ) already 
emphasized that pupils who improperly use the additive approach for proportional 
reasoning problems of the missing-value type still “distinguish the quantities, con-
struct units, and correctly identify the unknown quantity” (p. 251). In other words, 

Proportional Word Problem Solving Through a Modeling Lens…



220

improper additive reasoners still demonstrate—consciously or  unconsciously  —
insight into the different known and unknown magnitudes and the fact that they are 
analogously related. They focus on the quantitative relation between two  magnitudes   
that are given in the word problem and apply this relation to a third given magnitude 
in order to calculate the missing one. So, regardless of the correctness for a given 
problem, or whether or not they relied on the number characteristics of the word prob-
lem for their choice, additive and proportional missing- value reasoning have in com-
mon that pupils focus on the analogical relations between the four  magnitudes   in the 
word problem. Thus, both additive reasoning and proportional reasoning are types of 
quantitative analogical reasoning (hereafter abbreviated as QA reasoning). In sum, 
whereas previous studies focused on the differences between both types of reasoning 
and pupils’ inability to correctly distinguish where to apply each of them, we depart 
from the similarities between additive QA reasoning and proportional QA reason-
ing. After all, the only difference between proportional and additive reasoning is 
that the latter focuses on a different kind of mathematical relation between  a  and  b  
(i.e., a difference instead of a ratio, as argued by Nunes & Bryant,  2010 ). 

 In this study, we wanted to investigate the development of pupils’ spontaneous 
inclination toward QA reasoning. We applied a novel approach to investigate the 
development of spontaneous QA reasoning, namely, by giving pupils word problems 
that are unreadable to them. Although this might seem at fi rst sight a strange meth-
odological choice, we will explain the rationale for it. In all aforementioned previous 
studies into pupils’ choice for an additive or proportional solution  method  , word 
problems with an underlying mathematical model that could be determined clearly 
and unquestionably by carefully reading and processing the word problem were 
used. However, one of the basic ideas of the present study is that, in order to get a 
complete picture of the development of pupils’ (additive or proportional) spontane-
ous QA reasoning, one needs tasks that are totally open to both additive and propor-
tional reasoning. Only in those tasks, pupils’ inclination is fully spontaneous and not 
directed by the mathematical model underlying the problem. In the tasks used in the 
present study, the problem context is unreadable and the mathematical model under-
lying the word problem is thus inaccessible. Therefore, we call these tasks mathe-
matically neutral, i.e., neutral with respect to the underlying mathematical model. 
These mathematically neutral tasks allow us to get a view on pupils’ general and 
spontaneous inclination toward QA reasoning and, in case such reasoning occurred, 
which type of QA reasoning then would be used (additive or proportional). 
We designed such neutral problems by posing them in Greek literal symbols which 
were completely inaccessible to the (Flemish) pupils involved in our study. The num-
bers were of course accessible as they were presented in their usual Arabic form. 
Still, pupils were asked to try to solve these  “incomprehensible” word problems  . In 
doing so, we were not interested whether pupils were  able to  make sense of the prob-
lem and to translate it in the appropriate mathematical structures and operations. We 
were rather interested in their  spontaneous inclination  toward additive or propor-
tional reasoning. More specifi cally, our intention was to fi nd out to what extent they 
would look for a quantitative analogical relation between the given numbers and, if 
so, if they would opt for an additive or a proportional one.  
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    Research Questions and  Hypotheses   

 Our fi rst research question was: To what extent do pupils apply quantitative ana-
logical reasoning in neutral word problems, and how is this affected by age? Because 
of elementary school pupils’ increasing classroom experiences with solving 
missing- value word problems, we expected that even those neutral word problems 
would elicit a substantial amount of QA reasoning ( HYP 1 ), and that this amount 
would increase with age ( HYP 2 ). 

 Our second research question was: What is the nature of pupils’ QA reasoning, 
and how is it affected by age and by number characteristics? Given that both addi-
tive and proportional types of answers to missing-value problems were observed in 
previous research, we hypothesized that we would observe both types of QA 
answers to our neutral word problems ( HYP 3 ). Furthermore, based on the afore-
mentioned previous research results about clearly additive and proportional word 
problems, we anticipated that among the QA answers, there would be a develop-
ment with age, from a dominance of additive answers toward a dominance of pro-
portional answers for neutral word problems too ( HYP 4 ). We also expected a 
reliance on the characteristics of the numbers in the word problem. More specifi -
cally, we predicted that problems containing non-integer ratios would lead to a 
higher number of additive answers than problems with integer ratios, and that the 
latter problems would lead to a higher number of proportional answers than prob-
lems with non-integer ratios ( HYP 5 ). Finally, we anticipated that the sensitivity to 
the numbers in the problem would be the strongest in the intermediate stage of 
pupils’ development, between the initial stage, with mainly additive answers, and 
the fi nal  stage  , wherein mainly proportional answers were expected ( HYP 6 ).  

     Method   

 Participants were 325 pupils from 3rd to 6th grade from two primary schools in 
Flanders (88 3rd graders, 78 4th graders, 81 5th graders, and 78 6th graders). The 
number of boys and girls was approximately equal in the sample. The pupils solved 
two neutral word problems. These neutral word problems were part of two larger 
paper-and-pencil tests. Each of these tests contained one neutral word problem, 
along with some buffer items (related to various parts of the pupils’ curriculum). 
Both neutral word problems were stated in Greek literal symbols, but the numbers 
were given in the usual Arabic form as shown in Fig.  1 . Flemish pupils could abso-
lutely not read nor understand the text of these problems, so neither the proportional 
nor the additive solution method—nor any other solution method—could be consid-
ered as correct or incorrect. The two word problems only differed with respect to the 
numbers used in the problem: the given numbers formed integer (internal and exter-
nal) ratios (e.g., 4, 16, and 8 as given magnitudes) for one problem and non-integer 
(e.g., 4, 14, and 6 as given magnitudes) for the other one. To minimize the infl uence 
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of the specifi c numbers in both problems, several sets of numbers forming integer 
and non-integer ratios were used. 

 The two tests were administered on two separate moments, with 1 week in between. 
The researcher told pupils that the test was aimed at assessing their general mathematics 
achievement. For the neutral word problems, the test merely mentioned that the problems 
were in Greek but that pupils were nevertheless invited to try to fi ll them in.  

    Results 

    Quantitative Analogical Reasoning 

 In a fi rst step of the analysis, the responses to the two  neutral word problems   were 
classifi ed as “QA answers” when either proportional or additive operations were 
executed on given numbers (i.e., calculating  x  in  b / a  =  x / c  or in  b − a  =  x − c ). All 
answers other than the ones we were interested in were classifi ed as “other answers” 
(i.e., when the given numbers were combined in another way than specifi ed above 
or when the problem was left unanswered). While coding the responses, a third 
category, namely, “sum-of-three” answers, was added for coding cases wherein the 
three given numbers were added (i.e., calculating  x  as  x  =  a  +  b  +  c ). This solution 
method is not of specifi c interest for the present study (as it is not a QA answer in 
the sense explained above), so we will not further discuss it in the results section. 
However, it was still included as a separate coding category, because a large num-
ber of pupils had used it. This is not that surprising, as it is a systematic solution 
method based on a part-whole structure, which is well documented in the word 
problem solving literature (e.g., Vergnaud,  1982 ; Wolters,  1983 ). Traditionally, 
three categories of elementary addition and subtraction word problems that can be 
analyzed in terms of this part-whole structure have been further distinguished, 
based on the semantic relations underlying these word problems: change problems 

  Fig. 1     “Greek” word problem         
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(i.e., problems in which an event changes the value of a quantity), combine problems 
(i.e., problems in which two amounts are combined), and compare problems 
(i.e., problems in which two amounts are compared) (Riley, Greeno, & Heller, 
 1983 ; Verschaffel & De Corte,  1993 ,  1997 ). 

 Table  5  gives an overview of the  percentage   of all QA, other, and sum-of-three 
answers in different grades. This table reveals that 20.5 % of all answers were QA 
answers. Another 42.6 % was of the sum-of-three type, and the remaining 36.9 % 
were other answers. So, in line with HYP 1, we found a substantial number of QA 
answers, especially given that the two neutral word problems were completely 
incomprehensible to these pupils. However, even more interesting is the effect of 
age on the percentage of QA answers.

   A generalized estimating  equations analysis   revealed that pupils’ age affected their 
answers. The percentage of QA answers signifi cantly increased from 9.1 % in 3rd 
grade to 41.1 % in 6th grade ( χ ²(3) = 43.858,  p  < .001), which was in line with HYP 2. 
As shown in Table  1 , the initially low percentage of QA answers was due to the 
remarkably large percentage of sum-of-three answers. Almost half of the answers 
(48.9 %) were characterized as such in 3rd grade and still almost a quarter in 6th grade 
( χ ²(3) = 24.579,  p  < .001). The percentage of other answers also decreased with age, 
from 42.0 % in 3rd grade to 35.9 % in 6th grade, but this decrease was much smaller 
and nonsignifi cant.  

    Proportional or Additive Quantitative Analogical  Reasoning   

 In a second step, we focused on the subset of answers being coded as QA answers 
(20.5 % of all answers, i.e., 133 out of 650), to answer our second research question 
about the precise nature of QA reasoning. All QA answers were further categorized 
as “proportional answers” (when multiplicative operations were executed on given 
numbers, i.e., calculating × in the expression  b / a  =  x / c ) or “additive answers” (when 
additive operations were executed on given numbers, i.e., fi nding  x  in  b − a  =  x − c ). 

 Table  6  gives an overview of the percentage of additive and proportional answers. 
As expected (HYP 3), the neutral word problems elicited both proportional and 
additive answers. Of all QA answers, half were additive (49.6 %), whereas the other 
half were proportional (50.4 %). Moreover, the percentage of additive and propor-
tional answers differed depending on pupils’ grade and on the nature of the num-
bers. The results of a generalized estimating equations analysis indicated that the 
percentage of proportional answers signifi cantly increased with age, from 25.0 % in 

 QA  Other  Sum of three 

 3rd grade  9.1  42.0  48.9 
 4th grade  7.7  35.9  56.4 
 5th grade  25.3  33.4  41.4 
 6th grade  41.1  35.9  23.1 
 Total  20.5  36.9  42.6 

   Table 5    Percentages of 
quantitative analogical (QA)   , 
other, and sum-of-three 
answers given by pupils in 
different grades   

Proportional Word Problem Solving Through a Modeling Lens…



224

3rd grade to 64.1 % in 6th grade ( χ ²(3) = 884.927,  p  < .001, see Table  2 ). Accordingly, 
the percentage of additive answers signifi cantly decreased from 75.0 % in 3rd grade 
to 35.9 % in 6th grade. These fi ndings were consistent with HYP 4. Second, the 
nature of the numbers affected the kind of QA answers, as expected in HYP 5. 
The integer problem evoked signifi cantly more proportional answers than the non- 
integer problem (69.4 % vs. 27.9 %,  χ ²(1) = 1349.979,  p  < .001). Third, the number 
effect interacted signifi cantly with the effect of grade ( χ ²(2) = 452.825,  p  < .001), 
which was in line with HYP 6. The number effect was the largest in 5th grade (leading 
to a difference of 51.7 % between the percentages of proportional answers to the 
integer and non-integer variant) and decreased toward 6th grade (39.1 %). However, 
the difference in 3rd grade (40.0 %) and 4th grade (20.0 %) was not  reliable  , due to 
the very low absolute number of QA answers.

        Conclusion 

 This study focused on pupils’ spontaneous inclination toward quantitative analogical 
(QA) reasoning in word problems that could be considered neutral in terms of their 
underlying  mathematical model  , given the completely unknown alphabet and lan-
guage in which they were posed. In a fi rst step, we analyzed pupils’ tendency to give 
answers based on QA reasoning. This kind of analysis is rather unique, because 
previous research into this topic has mainly focused on either additive reasoning or 
proportional  reasoning  , without explicitly recognizing the common nature of these 

  N   Additive  Proportional 

 Integer 
 3rd grade  12  60.0  40.0 
 4th grade  11  80.0  20.0 
 5th grade  20  26.1  73.9 
 6th grade  23  17.6  82.4 
 Total  66  30.6  69.4 
 Non-integer 
 3rd grade  4  100.0  0.0 
 4th grade  1  100.0  0.0 
 5th grade  21  77.8  22.2 
 6th grade  41  56.7  43.3 
 Total  67  72.1  27.9 
 All problems 
 3rd grade  16  75.0  25.0 
 4th grade  12  91.7  8.3 
 5th grade  41  48.8  51.2 
 6th grade  64  35.9  64.1 
 Total  133  49.6  50.4 

   Table 6    Percentages of 
additive and proportional 
answers given by pupils in 
different grades   
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two types of reasoning. Our study indicated that the neutral word problems did elicit 
answers based on QA reasoning, in approximately one out of fi ve cases. This per-
centage considerably increased with age, which provides a more positive picture of 
pupils’ modeling disposition. Consciously or not, older pupils more frequently 
looked for a relation between two given numbers in the word problem and applied 
this to the third number, in order to calculate a fourth one. 

 In a second step, we investigated on which kind of quantitative relation the quantita-
tive analogical reasoners relied. The same overall percentage of answers was additive 
or proportional, but the percentage of additive answers decreased with age, while that 
of proportional answers increased. Furthermore, problems with integer ratios evoked 
more proportional than additive answers, whereas there reverse was true for problems 
with non-integer ratios. This  number effect   was most prominent in 5th grade.   

    Discussion 

 We presented two studies related to upper  elementary school pupils’   use of nonpro-
portional (i.e., additive) and proportional strategies to solve word problems, in order 
to shed a light on pupils’ modeling disposition (i.e., both abilities and inclination) in 
the context of proportional reasoning. In Study 1, we used word problems that were 
clearly additive or proportional, while in Study 2 the problems were formulated 
with Greek symbols so that pupils had no access to the actual contents of the prob-
lems. Notwithstanding the important difference in the nature of the problems, both 
studies yielded very similar results. While 3rd graders initially are strongly inclined 
to reason additively to missing-value word problems (whether they are additive, 
proportional, or incomprehensible) and 6th graders are strongly inclined to reason 
proportionally, in the intermediate stage, pupils heavily rely on the numbers 
appearing in the word problems in order to decide to apply a proportional or addi-
tive method. 

 Even though the results were very similar, the perspective of both studies—and 
what each perspective shows about  pupils’ modeling disposition   in the context of 
proportional reasoning—is quite different. This is exactly what the title of the chapter 
refers to: the discussion between those who state that the glass of wine is half empty 
and those who state it is half full. This classical contrast between the optimistic and 
pessimistic way of perceiving a given situation also seems to apply to the phenom-
enon we investigated in this chapter. The fi rst study showed how pupils largely 
neglect the actual model underlying a word problem. Their solution method either 
is consistently the same across all problems, whatever the actual underlying model 
is, or it is based on superfi cial and irrelevant problem characteristics. Thus, one may 
argue that these pupils are unable to deal with the modeling aspect of solving these 
missing-value word problems. 

 Some important broader theoretical, methodological, and practical implications 
of this pessimistic perspective are listed below.  Theoretically , it further documents 
the variety of  superfi cial cues pupils   rely on while solving word problems (Sowder, 
 1988 ). Not only problem formulations or keywords but also particular number 
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 combinations can be associated with certain solution methods (here, proportional 
methods). This association moreover interacts with pupils’ mathematical knowl-
edge: for older, more experienced proportional reasoners, a missing-value format 
seems a “suffi cient condition” to apply proportionality, whereas for less experi-
enced pupils, the “necessary condition” is that the numbers must have an integer 
multiplicative structure.  Methodologically , our study warns against the assessment 
of the overuse of proportionality merely using problems whose numbers have inte-
ger ratios (e.g., in Van Dooren et al.,  2005 ). Nevertheless, this warning especially 
seems to hold for the assessment of younger, less experienced proportional reason-
ers (or proportional reasoners in the so-called  intermediate stage  ).  Practically , our 
results suggest that the classroom teaching of proportionality might benefi t from 
explicitly discussing the criteria that pupils use (or do not use) when deciding on the 
appropriateness of proportional solution methods. 

 In contrast to Study 1, the second study, which focused on pupils’ inclination 
toward additive or proportional QA reasoning (rather than their abilities to do so), 
favors a more optimistic view on pupils’ modeling disposition. Though these results 
are very similar to those in Study 1, they are interpreted in a different way. Given 
that additive and proportional reasoning in typical missing-value problems also 
have strong similarities, we considered it worth focusing on the evolution of com-
mon denominator which we called  QA reasoning  . The results from our study indi-
cated that the neutral word problems—where both additive and proportional 
answers could be considered meaningful reactions—did elicit answers based on QA 
reasoning in approximately one out of fi ve cases. This was a substantial number of 
QA answers, especially given that the word problems were posed in an inaccessible 
language and thus completely nonsensical to the pupils. The percentage of QA 
answers moreover considerably increased with age. Consciously or not, older pupils 
more frequently looked for a relation between two given numbers in the word 
problem and applied this to the third number, in order to calculate a fourth one. 
This fi nding indicates an early inclination toward quantitative relational reasoning, 
closely related to the notion of  SFOR   introduced by McMullen, Hannula-Sormunen, 
and Lehtinen ( 2013 ). They studied what they call pupils’  “Spontaneous Focus On 
quantitative Relations” (SFOR)   by using specifi c non-explicitly mathematical tasks, 
whereas we have conceptualized QA reasoning in the context of missing-value 
word problems, which are explicitly mathematical tasks. Future research should 
study the relation between their  SFOR   construct and our notion of QA reasoning. 
Moreover, and as also remarked by McMullen et al. ( 2013 ), future research on 
pupils’ spontaneous focusing on quantitative (analogical) relations should include a 
measure of pupils’ actual quantitative skills, to confi rm that the increase in their 
(analogical) relational answers is mainly due to an increase in whether and how they 
perceive a situation in quantitative (analogical) relational terms, rather than an 
increase in their skill to operate with quantities and quantitative relations. In this 
second study, we assumed that younger pupils’ insuffi cient quantitative skills may 
not have been a prominent explanation for the observed lack of QA answers, 
because several previous studies (reviewed by Nunes & Bryant,  2010 ) have already 
shown that pupils at the ages involved in our study typically succeed in solving both 
additive and proportional reasoning problems. 
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 So, the fi ndings of the two studies presented in this chapter are not irreconcilable, 
just like optimists’ and pessimists’ reactions to the glass of wine being half full or 
half empty. Both would agree that there is room for more wine in the glass, and even 
that more wine is desirable. Regardless of the fact that additive analogical reasoning 
often inappropriately occurs in proportional  missing-value problems   and might be 
based on the number characteristics of number in the word problem, it is still a valu-
able step in pupils’ development toward proportional reasoning. Additive reasoning 
is after all already a way of QA reasoning. Therefore, we suggest that both additive 
and proportional missing-value problems should be offered in the elementary school 
curriculum, and that pupils repeatedly should be stimulated and helped to distin-
guish between additive and proportional problems. We are convinced that offering 
both types of missing-value problems would help pupils to gain an understanding of 
what quantitative analogical reasoning means, as well as what it thus implies to 
determine the precise nature of that relation in a word problem.     
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    Abstract     While mathematics problem-solving skills are well recognized as critical 
for virtually all areas of daily life and successful functioning on the job, many students 
with learning disabilities or diffi culties in mathematics (LDM) fail to acquire these 
skills during their early school studies, thereby subjecting themselves to lifelong 
challenges with mathematical problem solving. This chapter will introduce a con-
ceptual model-based problem-solving (COMPS) approach that aims to promote 
elementary students’ generalized word problem-solving skills. With the emphasis 
on algebraic representation of mathematical relations in cohesive mathematical 
models, the COMPS program makes connections among mathematical ideas; it 
offers elementary school teachers a way to bridge the gap between algebraic and 
arithmetic teaching and learning. The COMPS program may be especially helpful 
for students with LDM who are likely to experience disadvantages in working 
memory and information organization. Findings from a series of empirical research 
studies will be presented, and implications for elementary mathematics education 
will be discussed pertinent to all students meeting the new Common Core State 
Standards for Mathematics (CCSSM, 2012).  

   About 5–10 % of school-age children have been identifi ed as having mathematics 
disabilities (Fuchs, Fuchs, & Hollenbeck,  2007 ), and students whose math perfor-
mance was ranked at or below the 20–35 percentile are often considered at risk for 
learning disabilities or for having learning diffi culties in mathematics (LDM) 
(Bryant et al.,  2011 ; Fuchs et al., 2007). Students with LDM lag behind their peers 
very early on in their educational trajectory and continue to fall further behind as 
they transition from elementary to secondary school. According to the 2011 National 
Assessment of Educational Progress ( NAEP)   mathematics  assessment  , 64 % of 
eighth graders with disabilities who participated in the assessment scored below the 
basic level compared to 22 % of students without disabilities. The most recent 
NAEP results show that, from 2011 to 2013, score gains were seen in mathematics 
at grades four and eight for higher-performing students at the 75th and 90th 
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percentiles, but there were no signifi cant changes over the same period for lower- 
performing students at the 10th and 25th percentiles (NAEP,  2013 ). 

 In conjunction with this lack of growth in mathematics learning among students 
with disabilities, expectations for all students, including those with LDM, have 
been elevated in today’s educational climate. In particular, the Common Core  State 
  Standards for Mathematics ( CCSSM  , Common Core State Standards Initiative 
[CCSSI]   ,  2012 ) emphasize conceptual understanding of ideas and the connections 
between mathematical ideas. The CCSSM also emphasizes that students “model 
with mathematics.” For instance, recommended instruction could start from 
conceptual modeling that is situated in a real-world problem context (e.g., draw 
pictures or diagrams to semantically represent the problem with the story context), 
and fi nally decontextualize the mathematical relationship to “represent it symboli-
cally and manipulate the representing symbols” (CCSSI,  2012 ) to fi nd the solution. 
In particular,  the   Common Core emphasizes higher-order thinking and reasoning as 
well as algebra readiness throughout elementary mathematics. 

 It should be noted that the Common Core  Standards   do not intend to provide a 
comprehensive guideline for a full range of supports appropriate for learners with 
diverse needs nor specifi c intervention approaches/materials for students with learn-
ing disabilities or diffi culties in order for them to meet the standards (CCSSI,  2012 ). 
There is a need to explore potential intervention support that addresses this new 
emphasis to facilitate  all  students’ access to higher-order thinking and meeting the 
Common Core Standards. 

 In this chapter, I will introduce a conceptual model-based problem-solving 
(COMPS) approach that has a focus on algebraic conceptualization of mathematical 
relations in model equations. With the COMPS (see section “The COMPS 
Intervention Program” in this chapter for more detail), the emphasis is on represent-
ing story problem in mathematical model-based diagram equations (e.g., 
Part + Part = Whole; Unit Rate x # of Units = Product, Xin,  2012 ) on the basis of 
students’ understanding of the mathematical relationship in the problem. Findings 
from preliminary empirical studies including both single-subject design and group 
comparison design (Xin, Wiles, & Lin,  2008 ; Xin et al.,  2012 ; Xin & Zhang,  2009 ; 
Xin et al.,  2011 ) indicate that COMPS has shown promise in improving students’ 
problem-solving skills as well as pre-algebra concept and skills. 

     Traditional Instructional Practice   

 One of the distinctive features of the traditional instruction (TDI) was its focus on 
the  choice of operation  when  dealing   with problem solving. Historically, “inability 
to select and apply the appropriate arithmetic operation” was considered the pri-
mary diffi culty in children’s word problem solving (Jonassen,  2003 , p. 268). Excerpt 
1 below, taken from a study conducted by Xin et al. ( 2013 ), refl ected this common 
focus in teaching practice: 
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  Excerpt 1 (May 29, 2012) 
 Each problem that I went through with the children I began by having a student read 
aloud the problem. From that point on, we always had a conversation about whether 
or not we should be using multiplication or division.  

 To determine the choice of operation, it is not uncommon to see that students 
rely on a “keyword” strategy (e.g., the word  times  in the problem would cue an 
operation of multiplication) for making a decision on the choice of operation. Table  1  
illustrates some of the keywords recommended/taught by the school curriculum.

   The keyword strategy, which has been the practice in the United States for gen-
erations (Cathcart, Pothier, Vance, & Bezuk,  2006 ; Sowder,  1988 ), directs students’ 
attention toward isolated “cue” words in the problem. The keyword strategy might 
be a “quick and dirty” way to “fi x” word problem solving; however, it is at odds 
with contemporary approaches to word problem solving that stress conceptual 
understanding of mathematical relations in a problem  before  attempting to solve it 
with an operation (Jonassen,  2003 ). In particular, the  keyword   strategy does not ori-
ent students’ attention to a problem’s underlying mathematical structure and rela-
tions or encourage mathematical modeling that is emphasized by the new Common 
Core Standards (CCSSI,  2012 ). Further, applying the keyword strategy might con-
tribute to students being prone to “reversal operation” errors when encountering the 
so-called  “inconsistent language”   problems (e.g., “Tara solved 21 problems. She 
solved three times as many problems as Pat. How many problems did Pat solve?”), 
where students might mistakenly multiply, when they need to  divide , for solution 
due to the keyword “times” (Xin,  2007 ). 

 Other strategies commonly used include  drawing a picture,   using repeated addition 
to solve multiplication (as well as division) problems, or repeated subtraction to solve 
division problems. See examples in Excerpt 2 and Excerpt 3 (Xin et al.,  2013 ). 

  Excerpt 2 (May 29, 2012) 
 For this type of problem [see the problem presented as part of Fig.  1 ], I would some-
times draw a picture similar to this one [see the picture] so that students could visually 
see and understand whether or not we were doing multiplication or division. Since 
many students know that multiplication is somewhat like repeated addition, a picture 
likes this one helped them to see this. Once I began to show students a problem using 
a picture like the one below, they saw they did in fact need to multiply.

   Table 1    Sample  keyword strategies   (adapted from an online resource for enVisionMath)   

 Addition  Subtraction  Multiplication  Division 

 Plus  Dropped  Product of  Per 
 Increased by  Decreased by  Times  Out of 
 More than  Lost/fell  Twice  Sharing 
 Combined  Change  Multiplied by  Each/every 
 Altogether/in all  Difference  Divided by 
 Total  Less/less than/fewer than 
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     Excerpt 3 (June 4, 2012) 

 Edwin received a total of $374 to buy  basketballs   for the basketball team. Each 
basketball costs $34. How many basketballs can he buy? 

 We talked about what they were asking and how we could fi nd out how many 
basketballs there would be. Then we fi gured out we could do repeated addition until 
we got to 374. We knew we couldn’t go over it. We also decided we could do 
repeated subtraction until we didn’t have any left. We then would count up the 
number of sets of 34 that were either added or subtracted  depending   on the strategy 
they used.  

 In addition, “guess and check” is another strategy encouraged in teaching and 
used by students in solving mathematics word problems. Excerpt 4 (Xin et al., 
 2013 ) supported the use of this strategy: 

  Excerpt 4 (May 29, 2012) 
 Since this problem [i.e., the same problem as in  Excerpt  3] needed to use division 
that involved two-digits, it posed quite a challenge for my fourth graders. We did a 
lot of  guessing and checking  as we worked through a  division   problem of this sort. 

 Another thing  I   try to stress to them is whether or not our numbers for our answer 
are going to be increasing (multiplication) or decreasing (division).  

 When solving partitive division problems (such as “There are 126 spring rolls to 
be placed on 42 platters. How many spring rolls will be on each platter?”), students 
might also be taught, in conjunction with the keyword strategies (e.g., “each,” “per,” 
“every”), that “division is all about sharing” or “dividing out evenly” to groups. 
While repeated addition or subtraction may help students in understanding the con-
cept of multiplication and division in a concrete way (often accompanied by semi- 
concrete pictures), Schwartz ( 1988 ) expressed concern with an overly simple 
perception of multiplication as “repeated addition” and division as “solving prob-
lem of equitably sharing” some set of objects (p. 46) and highlighted the importance 
 of   modeling in teaching and learning mathematics. 

 In summary, the keyword strategy may not be a robust strategy, and the strategies 
of repeated addition/subtraction, drawing pictures, or “guess and check” might be 
useful strategies during the beginning stage of the learning. However, without 

  Fig. 1    An example of  drawing the    picture    for solving problems       
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advancing students to mathematical model-based problem solving, these strategies 
may easily become cumbersome and error-prone, particularly when the numbers in 
the problem become large. Figures  2  and  3  present sample works of two elementary 
students,    who were enrolled in an after-school program where the above strategies 
were taught (Xin et al.,  2013 ). Specifi cally, the after-school program was designed 
to boost students’ math problem-solving performance. Figure  2  shows a fourth- 
grade student, who used a  “guess and check” strategy   in solving a partitive division 
problem. She started with number facts from 1 × 3 to 2 × 3, 3 × 3 …, all the way to 
3 × 9 and fi nally got  the   total (i.e., 27) given in the problem. She then checked her 
answer (9) using division. It should be noted that when the numbers in the problem 
are small, as in the case of this problem, it might be manageable to correctly solve 
the problem using such “guess and check” strategy. However, when the numbers 
become large, such problem-solving process may become cumbersome or not 
effi cient.

    Figure  3  shows a third-grade student’s reasoning about why “28 + 4 = 32” should 
not be the correct answer to a quotitive division problem (see the problem as part of 
Fig.  3 ) and how she used  repeated subtraction  for  fi nding   the answer to this 
problem. It seems that she either started with an incorrect number or left out the fi rst 
“4” she subtracted mentally perhaps and, therefore, reached an incorrect answer. 

 The TDI strategies illustrated above were considered best practices by experienced 
school teachers who taught the after-school  intervention   program (Xin et al.,  2013 ). 
Historically, special education teachers were expected to collect “a bag of tricks” to 
hopefully “fi x” the “problems” of students with special needs. The strategies illustrated 

  Fig. 2    A fourth-grade  student’s   problem-solving process       
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above were used by the teachers as a collection of strategies to  hopefully boost the 
performance of students with LDM; they were not used as a coherent form of instruc-
tion and they were not connected to each other through mathematical modeling.  

    Mathematical Modeling 

 Recently, Blum and Leiss ( 2005 ) provided  a   framework for modeling (see Fig.  4 ). 
In this modeling cycle, one must (a) read and understand the task, (b) structure the 
task and develop a real situational model, (c) connect it to and/or represent it with a 
relevant mathematical model, (d) solve and obtain the mathematical results, 
(e) interpret the math results in real problem context, and (f) validate the results 
(either end the task or re-modify the math model if it does not fi t the situation). 
In light of research in mathematics education, many students have diffi culties in 
making the transition from a real situational model to mathematical model; and it is 
a weak area in students’ mathematical understanding (Blomhøj,  2004 ).

   In short, modeling involves translation or representation of a real problem situation 
into a mathematical expression or model. Mathematical models are an essential part 
of all areas of mathematics including arithmetic and should be introduced to all age 

  Fig. 3    A third-grade student’s reasoning and  problem   solving       
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groups including elementary students (Mevarech & Kramarski,  2008 ). It should be 
noted that engaging students in the modeling process does not necessarily mean to 
engage students in the discovery or invention of mathematical models or complex 
notational systems. According to Lesh, Doerr, Carmona, and Hjalmarson ( 2003 ), 
engaging students in the modeling process can be interpreted as when such models 
or systems are given to the students, “the central activities that students need to 
engage in is the unpacking of the meaning of the system” (p. 216), representation of 
the real problem situation in a mathematical expression or model, and the  fl exible 
  use of the model to solve real problems.  

    Conceptual Model-Based Problem Solving 

 Contemporary approaches to  story   problem solving have emphasized the concep-
tual understanding of a story problem before attempting any solution that involves 
selecting and applying an arithmetic operation for solution (Jonassen,  2003 ). 
Because problems with the same problem schema share a common underlying 
structure and hence require similar solutions (Chen,  1999 ; Gick & Holyoak,  1983 ), 
students need to learn to understand the structure of the mathematical relationships 
in word problems, and students should develop this understanding through creating 
and working with a meaningful representation of the problem (Brenner et al.,  1997 ) 
and mathematical modeling (Hamson,  2003 ). 

 The representation that models the underlying mathematical relations in the 
problem, that is, the conceptual model, facilitates solution planning and accurate 
problem solving. The conceptual model  drives  the development of a solution plan 
that involves selecting and applying appropriate arithmetic operations. Building on 
the theoretical framework of conceptual models (e.g., Lesh et al.,  1983 ) as well as 
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  Fig. 4     Modeling   cycle (Blum & Leiss,  2005 )       
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cross-cultural curriculum analyses (e.g., Xin, Liu, & Zheng,  2011 ), I have developed 
the  conceptual model-based problem - solving  (COMPS) program (Xin,  2012 ). 
One distinguishable feature of the COMPS program is that it focuses on representing 
the word problem in a defi ned mathematical model (the stage of “mathematical 
model” as it is presented in Blum and Leiss’s modeling cycle, see Fig.  4 ), which is 
expressed in an algebraic equation that drives the solution plan. To facilitate a better 
understanding of the COMPS intervention program, the next section presents additive 
and multiplicative problem structure in elementary mathematics.  

    Additive and Multiplicative Word Problem Structure 
and It’s Model Expression 

 Within the context of elementary mathematics, additive word problems entail a 
range of  part-part-whole  and  additive compare  problem structures. A   part-part- 
whole  (PPW) problem      describes an additive relation between multiple parts and the 
whole (i.e., parts make up the whole). It includes problems such as combine (e.g., 
 Christine has fi ve apples. John has four apples. How many apples do they have 
together ?), change-join (e.g.,  Christine had fi ve apples. John gave her four more 
apples. How many apples does Christine have now ?), and change-separate (e.g., 
 Christine had nine apples. Then she gave away four apples. How many apples does 
she have now? ) (Van de Walle,  2004 ). Placement of the unknown can be on the  part  
or on the  whole  (see nine variations of PPW problems in Table  2 ). An   additive com-
pare  (AC) problem      compares two quantities, and it involves a comparison sentence 
that describes one quantity as “more” (AC-more) or “less” (AC-less) than the other 
quantity (e.g., “Christine has nine apples. She has fi ve more apples than John. How 
many apples does John have?” or “Christine has nine apples. John has four less 
apples than Christine. How many apples does John have?”). Placement of the 
unknown can be on the  big ,  small , or  difference  quantity (see six variations of AC 
problems in Table  2 ).

   The most basic multiplicative word problems entail various  equal groups  (EG) 
as well as   multiplicative compare  (MC) problem    structure   (other problem structures 
include  Cartesian product and rectangular area , Greer,  1992 ; Schmidt & Weiser, 
 1995 ). An   equal groups  ( EG ) problem   describes a number of equal sets or units. 
The placement of the unknown can be on the  unit rate  (# of items in each unit or 
group or  unit price  as in money-related story contexts),  number of units  or sets, or 
the  product  (see three variations of  EG  problems in Table  3 ). A  multiplicative com-
pare  ( MC ) problem compares two quantities, and it involves a comparison sentence 
that describes one quantity as a multiple or part of the other quantity. Placement 
of the unknown can be on the  compared  set, the  referent  set, or the  multiplier  
(i.e., multiple or part) (see three variations of  MC  problems in Table  3 ). It should be 
noted that the MC problems in Table  3  only include those with  multiple  NOT  part  
relations such as “2/3.”
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       Table 2    Variations in  additive  word problems (adapted from Xin et al. ( 2012 ))   

 Problem type  Sample problem situations 

  Part-part-whole  
(PPW)    

  Combine  
 Part (or smaller 
group) unknown 

 1. Jamie and Daniella have found out that together they have 92 books. 
Jamie says that he has 57 books. How many books does Daniella have? 

 Whole (or larger 
group) unknown 

 2. Victor has 51 rocks in his rock collection. His friend, Maria, has 63 rocks 
in her collection. How many rocks do the two have altogether? 

  Change-join  
 Part (or smaller 
group) unknown 

 1. Luis had 73 candy bars. Then, another student, Lucas, gave him some 
more candy bars. Now he has 122 candy bars. How many candy bars did 
Lucas give Luis? 

 2. A girl named Selina had several comic books. Then, her brother Andy 
gave her 40 more comic books. Now Selina has 67 comic books. How 
many comic books did Selina have in the beginning? 

 Whole (or larger 
group) unknown 

 3. A basketball player ran 17 laps around the court before practice. The 
coach told her to run 24 more at the end of practice. How many laps did 
the basketball player run in total that day? 

  Change-separate  
 Part (or smaller 
group) unknown 

 1. Davis had 62 toy army men. Then, one day he lost 29 of them. How 
many toy army men does Davis have now? 

 2. Ariel had 141 worms in a bucket for her big fi shing trip. She used many 
of them on the fi rst day of her trip. The second day she had only 68 
worms left. How many worms did Ariel use on the fi rst day? 

 Whole (or larger 
group) unknown 

 3. Alexandra had many dolls. Then, she gave away 66 of her dolls to her 
little sister. Now, Alexandra has 63 dolls. How many dolls did Alexandra 
have in the beginning? 

  Additive 
compare  (AC)    

  Compare-more  
 Larger quantity 
unknown 

 1. Denzel went out one day and bought 54 toy cars. Later, he found out that 
his friend Gabrielle has 56 more cars than he bought. How many cars 
does Gabrielle have? 

 Smaller quantity 
unknown 

 2. Tiffany collects bouncy balls. As of today she has 93 of them. Tiffany has 
53 more balls than her friend, Elise. How many balls does Elise have? 

 Difference 
unknown 

 3. Logan has 117 rocks in his rock collection. Another student, Emanuel, 
has 74 rocks in his collection. How many more rocks does Logan have 
than Emanuel? 

  Compare-less  
 Larger quantity 
unknown 

 1. Ellen ran 62 miles in one month. Ellen ran 29 fewer miles than her friend 
Cooper. How many miles did Cooper run? 

 Smaller quantity 
unknown 

 2. Kelsie said she had 82 apples. If Lee had 32 fewer apples than Kelsie, 
how many apples did Lee have? 

 Difference 
unknown 

 3. Deanna has 66 tiny fi sh in her aquarium. Her dad Gerald has 104 tiny fi sh 
in his aquarium. How many fewer fi sh does Deanna have than Gerald? 
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   Generally speaking, part-part-whole (or “part + part = whole”) is a generalizable 
conceptual model in addition and subtraction word problems where  part ,  part , 
and  whole  are the three basic elements. In contrast, factor-factor-product (or “fac-
tor × factor = product”) is a generalizable conceptual model in multiplication and 
division arithmetic word problems where  factor ,  factor , and  product  are the three 
basic elements. 

 It should be noted that the COMPS emphasizes mathematical model-based anal-
ysis and problem solving. As such, it is  different   from  Cognitively Guided Instruction 
(CGI)   (Carpenter, Fennema, Franke, Levi, & Empson,  1999 ) where word (or story) 
problems are divided into subtypes on the basis of semantic analysis of the story 
situations. That is, in CGI, a part-part-whole problem type is distinct from compare, 
join, and separate problems (see Table  2  for sample story situations) due to semantic 
differences in these word problem story situations. In contrast, the COMPS model 
considers join, separate, and compare problems a subset of part- part- whole because 
the mathematical model underneath the various cover stories is the same. 

 On the other hand, because of the semantic differences across a range of additive 
or multiplicative word problems, the three basic elements (in either the part-part- 
whole or factor-factor-product model) will have unique denotations when a specifi c 
problem subtype applies. For example, in a  combine  problem type (e.g.,  Emily has 
four pencils and Pat has eight pencils. How many pencils do they have all together? ), 
the number of pencils Emily has and the number of pencils Pat has are the two 
 parts ; these two parts make up the combined amount (i.e., “all together”) or the 
 whole . In contrast, in an  additive compare  problem type (e.g.,  Emily has nine stick-
ers, Pat has four fewer stickers than Emily. How many stickers does Pat have? ), the 
number of stickers Emily has is the bigger quantity (or the  whole  amount), whereas 

          Table 3    Variations in  multiplicative  word problems (adapted from Xin ( 2012 ))   

 Problem type  Sample problem situations 

  Equal groups  (EG)    
 Unit rate unknown  A school arranged a visit to the museum in Lafayette Town. It spent a 

total of $667 buying 23 tickets. How much does each ticket cost? 
 Number of units 
(sets) unknown 

 There are a total of 575 students in Centennial Elementary School. If one 
classroom can hold 25 students, how many classrooms does the school 
need? 

 Product unknown  Emily has a stamp collection book with a total of 27 pages, and each page 
can hold 13 stamps. If Emily fi lled up this collection book, how many 
stamps would she have? 

  Multiplicative compare  (MC)    
 Compared set 
unknown 

 Isaac has 11 marbles. Cameron has 22 times as many marbles as Isaac. 
How many marbles does Cameron have? 

 Referent set 
unknown 

 Gina has sent out 462 packages in the last week for the post offi ce. Gina 
has sent out 21 times as many packages as her friend Dane. How many 
packages has Dane sent out? 

 Multiplier 
unknown 

 It rained 147 in. in New York one year. In Washington, DC, it only rained 
21 in. during the same year. The amount of rain in New York is how 
many times the amount of rain in Washington, DC? 
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the number of stickers Pat has is the smaller quantity (or one of the parts) and the 
difference between Emily and Pat is the other smaller quantity (the other part); 
combining these two parts is the bigger quantity (or the whole).  

    The COMPS Intervention Program 

 Instructions for carrying out the COMPS  will   be delivered in two phases:  problem 
representation  and  problem solving . During the phase of   problem representation   , 
word stories with no unknowns will be used to help students understand the problem 
structure and the mathematical relations involved (e.g., two parts make up the whole 
or “part + part = whole”). Specifi cally, students will learn to decontextualize the math-
ematical relations involved in the problem and represent it in the corresponding model 
equation. Figure  5  presents conceptual models for the  part-part- whole  (Fig.  5a ) or 
 additive compare  (Fig.  5b ) problem structure and Fig.  6  for the  equal groups  (Fig.  6a ) 
or  multiplicative compare  (Fig.  6b ) problem structure. During this phase of instruc-
tion, as all quantities are given in the story (no unknowns), students will be able to 
map all the given information in the model equation and then check for the “balance” 
of the equation (i.e., whether the left side of the equation is equal to the right side of 
the equation) to validate the truthfulness of the model. In the meantime, the concept 
of “equality” and the meaning of an equal sign are reinforced.

    Problem representation instruction will be followed by  problem - solving  instruc-
tion. During  problem - solving  instruction,    word problems with an unknown quantity 
will be presented. When representing a problem with an unknown quantity in the 
COMPS diagrams, students can choose to use a letter (can be any letter they prefer) 
to represent the unknown quantity. Students are encouraged to use the  DOTS  check-
list (see Fig.  7 ) to guide the problem-solving process.

   Overall, the instruction requires explicit strategy explanation and modeling, 
dynamic teacher-student interaction, guided practice, performance monitoring with 
corrective feedback, and independent practice. As supported by Pressley ( 1986 ), “the 
less mature the learner, the more explicit teaching must be” (p. 145). Making explicit 
the problem-solving process, when teaching mathematics to students with LDM, 
reduces ambiguity and promotes success (Baxter, Woodward, & Olson  2001 ). For 
more detailed description of the COMPS program, please refer to a recently  pub-
lished   book (Xin,  2012 ); this book also includes modeling PowerPoint presentation 
slides for instructors’ use and guided practice and independent worksheets for stu-
dents’ use. It is suggested that the COMPS model equations be  provided on all mod-
eling and guided practice worksheets or even on the independent practice worksheets 
in the beginning stage of the instructional program. However, they should be gradu-
ally faded out on the independent worksheets once students have internalized the 
models; and it should not be provided during pre- or post- intervention  assessment  . 
Below, I briefl y summarize three empirical studies that examined the effect of the 
COMPS program.  
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    Empirical Studies that Support the COMPS Intervention 
Program 

    Study 1 

 Xin, Wiles, and Lin ( 2008 ) is the  study   where I conceptualized and implemented 
the COMPS program with elementary students with LDM to enhance their additive 
and multiplicative word problem-solving skills. In this study, I developed a set of 

Part-Part-Whole (PPW)
a

b

A PPW problem describes multiple parts that make up the whole  
------------------------------------------------------------------------------------------

PPW WP Story Grammar Questions

Which sentence (or question) tells about the “whole” or “combined” amount? Write that  
quantity in the big box on one side of the equation by itself.  

Which sentence (or question) tells about one of the parts that makes up the whole? Write that 
quantity in the first small box on the other side of the equation.

Which sentence (or question) tells about the other part that makes up the whole? Write that 
quantity in the 2nd small box (next to the first small box).

Additive Compare (AC)

Part Part Whole

An AC problem describes one quantity as “more” or “less” than  the other quantity
------------------------------------------------------------------------------------------

AC WP Story Grammar Questions

Which sentence (or question) describes one quantity as “more” or “less” than the other?  
Write the difference amount in the diagram. 
Who has more, or which quantity is the bigger one? 
Who has less, or which quantity is the smaller one? Name the bigger box and smaller box.

Which sentence (or question) tells about the bigger quantity? Write that quantity in the bigger 
box on one side of the equation by itself.

Which sentence (or question) tells about the smaller quantity? Write that quantity in the 
smaller box next to the difference amount.

Part

Smaller

+ =

+ =

Difference Bigger

Part Whole

  Fig. 5    ( a )  Conceptual   model  of   part-part-whole  word   problems (Xin,  2012 , p. 47). ( b ) Conceptual 
model of  additive    compare   word problems (Xin,  2012 , p. 67)       
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Equal Group (EG)a

b

An EG problem describes number of equal sets or units

EG WP Story Grammar Questions

Which sentence or question tells about a Unit Rate (# of items in each unit)? Find the unit rate 
and write it in the Unit Rate box.

Which sentence or question tells about the # of Units or sets (i.e., quantity)? Write that 
quantity in the circle next to the unit rate.

Which sentence or question tells about the Total (# of items) or ending product? Write that 
number in the triangle on the other side of the equation.

Multiplicative Compare (MC)

A MC problem describes one quantity as a multiple or part of the other quantity

MC WP Story Grammar Questions

Which sentence (or question) describes one quantity as a multiple or part of the other?  
Detect the two things (people) being compared and who (the compared) is compared to whom 
(the referent UNIT). Name “whom” and “who” in the diagram. Fill in the relation (e.g., “2 times” 
or “½”) in the circle.

What is the referent UNIT? Write that quantity in the referent unit box.

What is the compared quantity or product?  Write that quantity in the triangle on one side of 
the equation by itself.

Unit Rate # of Units Product

Unit Multiplier Product

  Fig. 6    ( a ) Conceptual model of equal groups word problems (Xin,  2012 , p. 105). ( b ) Conceptual 
model of  multiplicative      compare word problems (Xin,  2012 , p. 123)       

DOTS 
(Word Problem Solving Checklist)

Detect the problem structure.
Organize the information using conceptual model diagrams.
Transform the diagram into a meaningful math equation.
Solve for the unknown quantity in the equation and check your answer.

·
·
·
·

  Fig. 7     DOTS checklist   (Xin,  2012 , p. 107)       
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  word problem (WP) story grammar    heuristic questions (please refer to Figs.  5  and  6 ) 
to guide students’ mapping of either additive or multiplicative word problem to its 
corresponding mathematical model equation. Although  story grammar  has been 
substantially researched in reading comprehension (Boulineau, Fore, Hagan-Burke, 
& Burke,  2004 ),  WP story grammar  has never been explored in math word problem 
understanding and solving. By defi nition,  story grammar  in reading comprehension 
literature refers to a typical structure shared by most narrative stories. Similarly, a 
word problem story structure that is common across a group of word problem situ-
ations can be defi ned as  WP story grammar . Borrowing the concept of story gram-
mar from reading comprehension literature, I designed a set of  WP story grammar  
self-questioning prompts to facilitate conceptual understanding of mathematical 
relations in word problems and represent such relations in mathematical model 
equations. 

 The specifi c purpose of this study was to assess the effect of conceptual model- 
based problem solving (COMPS, the intervention), facilitated by  WP story grammar  
heuristic questions, on improving additive and multiplicative word problem-solving 
performance as well as pre-algebra concept and skills of elementary students 
with LDM.   

    Design and Participants 

 An adapted multiple probe design (Horner & Baer,  1978 ) across  participants   was 
employed to evaluate the functional relationship between the intervention and students’ 
word problem-solving performance. Single-subject research design was chosen 
because the design provides a methodological approach well suited to the investigation 
of single cases or groups (Kazdin,  1982 ). In particular, with the multiple probe design, 
intervention effects can be demonstrated by introducing the intervention to different 
participants at different points in time. “If each baseline changed when the intervention 
is introduced, the effects can be attributed to the intervention rather than to extraneous 
events” such as history, maturation, testing, etc. (Kazdin,  1982 , p. 126). 

 Participants were fi ve fourth- and fi fth-grade students with LDM. On the basis of 
students pretests’ performance, three students were identifi ed as needing intervention 
in additive word problem solving, and they were engaged in solving  part-part- whole  
(PPW)    and   additive compare  (AC) problems  ; two students were identifi ed as needing 
intervention in multiplicative word problem solving, and they were instructed to 
solve  equal groups  (EG) and  multiplicative compare  (MC) problems.  

    Intervention Procedure 

 Participating students received intervention in COMPS three  times   a week, with 
each session lasting for approximately 20–35 min. Each student received three to six 
sessions of instruction on PPW or EG, two to three sessions on AC or MC problem 
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instruction, and one to two sessions on solving mixed word problems including both 
PPW and AC or EG and MC types. 

 Students were assessed on either an additive problem-solving criterion test, 
which involved 14 variously constructed addition and subtraction word problems 
(similar to those presented in Table  2 ), or a multiplicative problem-solving criterion 
test, which involved 12 variously constructed multiplication and division problems 
(similar to those presented in Table  3 ). Calculators were allowed throughout the 
study to accommodate participants’ skill defi cit in calculation.  

    Results and Discussion 

  Effect    on     additive word problem solving . During  baseline   condition (prior to the 
intervention), average performance across three participants on the criterion test was 
21 %, 28 %, and 28 % correct, respectively. Following the intervention, the two stu-
dents who completed COMPS instruction on additive word problem solving (note: one 
student did not complete the program) performed 79 % correct during post-intervention 
assessment (a 58 % increase from the baseline performance of 21 % correct) and 
86 % correct (a 58 % increase from the baseline of 28 % correct), respectively. 

  Effect on multiplicative    problem     solving . During the baseline, average performance 
across the two participants on the criterion test was 3 % correct and 0 % correct, 
respectively. After the intervention, both participants’ performance were 100 % correct 
indicating a 97 % and 100 % increase, respectively, from the baseline. 

  Effect on    pre-algebra concept     and skills . Two pre-algebra probes were used to 
assess potential improvement of students’ pre-algebra concept and skills. The  solve 
equations  probe required students to fi nd the value of an unknown quantity (i.e., 
letter  a ) that makes the equation true (e.g., 93 = 79 +  a ; 196 =  a  × 28). Positions of 
the unknown were systematically varied across three terms in the equation (i.e., the 
augend, addend, and sum; or the multiplicand, multiplier, and product). Six items 
were included in either the addition/subtraction probe or multiplication/division 
probe. In addition, the  algebraic model expression  probe was designed to test students’ 
algebraic expression of mathematical relations or ideas. Twelve items (e.g., “Write 
an expression or equation. Choose a variable for the unknown. Shanti had some 
stamps. She gave 23 to Penny. Shanti has 71 stamps left”) were included in the 
addition/subtraction probe; fi ve items (e.g., “Antoni has collected 84 autographs. 
He fi lled 14 pages in his news autograph album. Each page holds an equal number 
of autographs. Write an equation with a variable to model this problem”) were 
included in the multiplication/division probe. These items were directly taken from 
a commercially published mathematics textbooks being adopted by the participating 
schools (Maletsky et al.,  2004 ). 

 Findings from this study indicated that (a) on the  solve equations  probe, from pre- 
to post-intervention, the two participants who completed the  additive  problem- 
solving intervention improved from 33 % to 67 % correct and 0 to 100 % correct, 
respectively. The two participants who completed the multiplicative problem- solving 
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intervention improved their performance from 0 to 67 % correct and from 0 to 100 % 
correct, respectively; (b) on the   algebraic model expression    probe, the participants of 
this study had no knowledge of what they were asked to do and made no attempts 
during the pretest.    After the intervention, the two participants who completed the 
additive problem-solving intervention scored 71 % and 83 % correct, respectively, 
on the corresponding  algebraic model expression  probe. The two participants who 
completed the multiplicative problem-solving intervention both scored 100 % correct 
on the corresponding  algebraic model expression  probe. 

    Study 2 

 Xin, Zhang et al. ( 2011 ) conducted a group comparison study to further evaluate the 
effectiveness of the COMPS program when compared to a  general heuristic instruc-
tional approach (GHI)   for teaching multiplication/division word problem solving to 
elementary students with LDM.   

    Design and Participants 

 A pretest-posttest comparison group design with random assignment of participants 
to groups was used to examine the effects of the two word problem- solving   instruc-
tional approaches: COMPS and GHI. Participants included a group of 29 fourth 
graders with LDM from two elementary schools in the Midwestern United States.  

    Intervention Procedure: The Two Comparison Conditions 

 The intervention for the COMPS condition is  consistent   with the description pro-
vided in the section titled “the COMPS Intervention Program.” However, the deliv-
ery of the COMPS program was assisted by the PowerPoint (PPT) presentation of 
the COMPS featuring animations. The comparison condition, GHI, was guided by 
a general heuristic fi ve-step problem-solving checklist, SOLVE. SOLVE was taken 
from the participating schools’ enacted curriculum and teaching practice. SOLVE 
required students to: (a)  s earch for the question, (b)  o rganize the information, (c) 
 l ook for a strategy, (d)  v isualize and then work the problem (draw a picture, make a 
table, write an equation, etc.), and (e)  e valuate your answer. For the second step, 
 o rganize the information, the instructor guided students to highlight the keywords 
(e.g., “times” as in the  multiplicative compare  [MC] problems; “each” or “per” as in 
the  equal groups  [EG] problems). For the third step,  l ook for a strategy, the instruc-
tor asked students to think about “What is the best way to solve the problem?” and 
specifi cally “Which operation to use?” For the fourth step,  v isualize and then work 
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the problem, students were engaged in visualizing the problem situation. Students were 
also instructed that they could draw a picture (to describe the given information in 
the problem), make a table (to organize the given information), write an equation or 
math sentence, etc. 

 Students in both conditions engaged in the assigned strategy learning three times 
a week, with each session lasting for approximately 30–45 min (one school with 
30 min and the other school with 45 min). The COMPS group received three ses-
sions on introduction, six sessions each on EG and then MC problem representation 
and solving, and three sessions on mixed review. While students in the GHI group 
also received 18 sessions of instruction, they engaged in solving both types of 
problems in each session. Students in both conditions solved the same number and 
type of problems. Calculators were allowed in both groups throughout the study to 
accommodate participants’ skills defi cits in calculation.  

    Results and Discussion 

 Findings from this study showed that the COMPS group improved signifi cantly more 
than the GHI group from pretest to posttest on the criterion word problem-  solving   
tests (similar in structure to the problems presented in Table  3 ). There was a signifi -
cant interaction effect between  group  and  time of testing , F (2, 50) = 4.499,  p  = 0.016. 
These fi ndings support and extend previous research regarding the effectiveness of 
the COMPS instruction in solving arithmetic word problems (e.g., Xin et al.,  2008 ; 
Xin,  2008 ). More importantly, the results indicate that only the COMPS group signifi -
cantly improved, from pretests to posttests, their performance on the criterion test (the 
effect size, when COMPS was compared to the TDI group, was 0.66). Similarly, only 
the COMPS group signifi cantly improved their performance on the algebraic model 
expression test (similar to the one used in Xin, Wiles, and Lin,  2008 , as described in 
 Study 1 ). The effect size, when COMPS was compared to the TDI group, was 0.86. 
The results of this  study   suggest that the COMPS approach produced better outcomes 
than the traditional general heuristic instructional strategy “SOLVE” when it was used 
as an intervention program to help students with LDM. 

    Study 3 

 There is a need to explore computer-assisted mathematics intervention programs 
that employ research-based best practice to facilitate individualized Response-to- 
Intervention (RtI)     programs   for students with LDM, as well as to address a shortage 
of qualifi ed teachers to teach mathematics (Hutchison,  2012 ). Xin et al. ( 2012 ) con-
ducted a single-subject design study to examine the effect of a computer-assisted 
COMPS program on promoting multiplicative problem-solving skills and algebra 
readiness of eight elementary students with LDM.   
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    Design and Dependent Measures 

 The design and the  measures   employed in this study were similar to  Study 1  as 
described above.  

    Intervention Procedure 

  Intervention components . The COMPS computer tutorial program was developed 
on the basis of the program described in  Study 1  (Xin et al.,  2008 ). The  COMPS 
  computer program involved three modules (A, B, and C). Module A introduced the 
basic concept of equal groups in multiplicative reasoning. Then, students engaged 
in representing and solving EG problems (see Table  3  for sample problems). Module 
B extended the problem context to MC problems (see Table  3  for sample problems). 
Finally, module C provided students with opportunities to solve mixed EG and MC 
problems. 

 Before students entered module A, they learned about basic function keys in the 
program. Participants were all familiar with the basic operations of the computer; 
they soon learned the operation of the program. In module A, students engaged in 
activities for them to understand the concept of  equal groups  (see Fig.  8a ), which is 
fundamental for multiplicative reasoning. Both examples (i.e., equal groups) and 
non-examples (i.e., non-equal groups) were presented to facilitate students’ concept 
formation. In the case of non-example (non-equal groups), students were asked to 
fi x the non-equal groups and make them equal groups (see Fig.  8b ). Then, students 
engaged in representing EG word problem stories (without unknowns) in the con-
ceptual model equation. With the assistance of computer-simulated concrete model-
ing, the program aimed to establish the connection between concrete visual 
representations of “real” (simulated) objects and the abstract models and lead stu-
dents to understand that (a) the unit rate is the number of “things” or items in  each  
group, (b) the # of units refers to the number of groups, and (c) the product is the 
total number of items in all groups.

   Next, the program engaged students in representing and solving problems with an 
unknown. Students used a letter “ a ” to represent the unknown quantity. When the 
product was the unknown, students would solve the problem by multiplying the two 
factors as defi ned in the model equation. When one of the factors was the unknown, 
dividing the product by the known factor would give the answer to the unknown fac-
tor. Students learned necessary conceptual and procedural knowledge regarding 
solving an unknown in an equation. The program allowed students to use a calculator 
(built into the program, see Fig.  8c ) to fi nd out the unknown in the equation. However, 
students could also use mental math if able, to solve for the unknown. 

 In module B, students learned to represent and solve MC problems (e.g., Gary 
and Victoria are having a party. Gary invited 28 people to his party. Victoria invited 
six times as many people as Gary. How many people did Victoria invite?) using the 
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similar mathematical model (as presented in Fig.  6b ). Nevertheless, students now 
needed to unpack the meaning of the model within the context of MC problem situ-
ation. Particularly, in a MC problem situation, the quantity that is being compared 
against is the  referent unit . Given the specifi c comparison statement in an MC prob-
lem—the one presented in  the   beginning of this paragraph, for instance, as the num-
ber of people invited by Victoria is compared to the number of people invited by 
Gary—Gary is the referent unit (see Fig.  8d ). In module C, participating students 
engaged in representing and solving mixed EG and MC problems. During this 
phase of instruction, the program faded out the diagrams and only presented the 
equation boxes (i.e., ___ × ___ = ___) for students to model the mathematical rela-
tions and solve the problem. 

 The COMPS tutoring program adopted a mastery-learning paradigm (Bloom, 
 1976 ). That is, if a student performed on a worksheet at a level below 70 % correct, 
she/he was sent back to corresponding content of instruction and required to repeat 
the worksheet that she/he failed. As such, each individual worked on various num-
bers of sessions for the completion of  the   program. On average, participants worked 
on module A (EG conception, EG representation and problem solving) for about 11 
sessions (range: 6–21) with about 3–4 sessions on EG concept and 7–8 sessions on 

  Fig. 8     Computer-assisted COMPS program   sample screenshots (from Xin et al. ( 2012 ))       
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EG representation and problem solving. Students worked on module B (MC 
representation and problem solving) for an average of seven sessions (with a range 
from 3 to 13). Students also worked on module C (solving mixed EG and MC prob-
lem types) for an average of two sessions (range: 1–3).  

    Results and Discussion 

 During the baseline, participating students’ performance on the criterion test ranged 
from 8 to 58 % correct with a median of 25 % across eight participants. Following 
the intervention, students’ performance on the criterion test ranged from 88 to 100 
%, with a median of 94 % correct. The results indicate that all participants gained 
percentage points in their percent correct. On the  other   hand, students’ performances 
on the algebraic model expression test improved from a median score of 0 % correct 
during the baseline across the eight participants to a median of 67 % correct (range: 
67 to 100 %) following the intervention.  

    General Discussion and Implications 

 Traditionally, teaching for understanding has seemed to involve concrete object 
manipulations or representations that are “away from symbolic formalisms” (Sherin, 
p. 524) due to the concern that symbolic expression would be out of the reach of 
elementary students. Symbolic expression of mathematical relations in model equa-
tions, as presented in this chapter, is not just a mechanical process of translating text 
to equations. Students’ mapping of information in the model equation is based on 
conceptual understanding of the three key elements or quantities involved and rela-
tions among them. That is, formations of symbolic expression or equation are expe-
rienced as arising from an understanding of underlying structure of the problem 
(Thompson,  1989 ). As Sherin ( 2001 ) argued in  physics equation learning  , “we can 
strive for conceptual understanding while basing instruction on the use of equa-
tions” (p. 529). In fact, “we do students a disservice by treating conceptual under-
standing as separate from the use of mathematical notations” (Sherin,  2001 , p. 482). 
In short, the use of symbolic expressions can involve signifi cant understanding. 

 One of the benefi ts of emphasizing model-based problem solving is to prevent 
students from over-relying on the  “keyword” strategy   or other misleading strategies 
(e.g., “look at the numbers; they will tell you which operations to use. Try all the 
operations and choose the most reasonable answer…,” Greer,  1992 , p. 28) for 
decision- making on the choice of operation for solution. One of the “well-known” 
keyword strategies includes: If you see the word  times  in the problem, you should 
apply a multiplication to get the answer. Keyword strategy such as this has been a 
“robust” yet ineffective and  detrimental  practice for generations (Cathcart, Pothier, 
Vance, & Bezuk,  2006 , Sowder,  1988 ). The detrimental effect of blindly applying 
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the “keyword” strategy has been refl ected in common “reversal errors” US students 
have been making for over decades (Cawley, Parmar, Foley, Salmon, and Roy,  2001 ; 
Lewis,  1989 ; Xin,  2007 ). 

 The COMPS approach presented in this chapter directs students’ attention to 
underlying mathematical relation in the problem and representing such relation in 
the algebraic model equation. The algebraic equation then directly drives the solu-
tion process, that is, applying an appropriate operation (add or subtract or multiply 
or divide) to solve for the unknown quantity in the equation. During this process, 
the choice of operation for solving various arithmetic word problems is determined 
by the model equation (part + part = whole or factor × factor = product). In the case of 
multiplicative problem solving, EG problems for instance, when the  product  is the 
unknown, the model equation “factor × factor = product” or specifi cally “unit rate × # 
of units = product” (see Fig.  6a )  tells  that multiplying the two factors will give the 
solution for the unknown product. When the  unit rate  or  # of units  is the unknown, 
the model equation  tells  that dividing the product by the known factor will solve for 
the unknown factor. For MC problem solving, when  the compared set  or the prod-
uct is the unknown, the model equation “unit × multiplier = product” (see Fig.  6b ) 
 tells  that multiplying two factors ( referent  unit and the multiplier) will solve for the 
 compared set  or the  product . When the  referent  unit is the unknown, the model 
equation  tells  that dividing the  product  by the  multiplier  or  scalar  will solve for the 
unknown quantity. 

 Findings from empirical studies in COMPS (e.g., Xin,  2008 ; Xin et al.,  2008 ; 
Xin, Zhang et al.,  2011 ; Xin and Zhang,  2009 ; Xin et al.,  2012 ), as illustrated above, 
indicate that elementary students with LDM can be expected to move beyond con-
crete operations and toward thinking symbolically or algebraically. Algebraic con-
ceptualization of mathematical relations and model-based problem solving can be 
taught through explicit and systematic strategy instruction. This was evidenced by 
participating students’ creation and articulation of their own story problems with a 
particular problem structure (Xin,  2008 ). To a larger extent, introducing  symbolic 
representation   and  algebraic thinking   in earlier grades may facilitate an overall 
smoother transition from elementary- to higher-level mathematics learning and 
improve middle and high school mathematics performance.  

    Practical Implications and Future Directions 

 The problems included in the above empirical studies (refer to Tables  2  and  3 ) rep-
resent “the most common form of problem solving” (Jonassen,  2003 , p. 267) in 
elementary school mathematics curricula. Learning to solve variations of these 
word problems is the basis for solving more complex real-world problems (Van de 
Walle,  2004 ). Given the generalized mathematical models for the additive and mul-
tiplicative problem structure (see Figs.  5  and  6 ), a range of arithmetic word prob-
lems involving four basic operations can be represented and modeled. In addition, 
the COMPS (with the assistance of   WP story grammar    in representation) 
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emphasizes symbolic or algebra expressions of mathematical relations in model 
equations that directly link problem representation to solution; it has the potential to 
innovatively bridge the gap between learning arithmetic and algebra. In fact, this 
“bridging” has been emphasized in Chinese elementary mathematics textbooks for 
decades (Ding & Li,  2014 ). 

 To promote model-based problem solving that is built upon students’ existing 
knowledge base, further endeavors to enhance the COMPS program intend to 
address students’ transition from an intuitive understanding of concrete models to a 
more abstract level of understanding. In fact, the COMPS program has become an 
important part of two cross-disciplinary research projects (Xin, Tzur, & Si,  2008 ; 
Xin, Kastberg, & Chen,  2015 ) supported by National Science Foundation, which 
aims to create intelligent tutors to nurture students’ mathematical reasoning and to 
facilitate model-based problem solving.     
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      Reaction: Students, Problem Posing, 
and Problem Solving                     

       Jeremy     Kilpatrick    

      This chapter summarizes and responds to the content of the chapters in this section, 
all of which deal with students and their perspectives on problem posing and problem 
solving. Issues related to learning mathematical problem solving that are dealt with 
in the chapters concern addressing the cognitive demands that problems make, 
helping groups of students work on problems, promoting inductive and analogical 
reasoning, dealing with learning diffi culties, and using information technology in 
solving problems. Issues related to learning how to pose mathematical problems 
concern helping students represent problems and formulate related problems. Each 
chapter in the section provides rich ideas for future research. 

 Although they almost inevitably touch on questions of teaching, the fi rst seven 
chapters of Part 2 focus primarily on students’ learning of problem posing and prob-
lem solving. The students whose thinking and learning the chapters discuss range 
across the school grades, working on problems that vary from one-step arithmetic 
word problems to challenging investigations of mathematical patterns. The opening 
chapter, by Cai and Lester, offers six suggestions from research that are intended to 
help those students become successful in problem solving. As Cai and Lester note, 
the research literature on mathematical problem solving is vast but also incomplete 
and poorly linked to practice, with little agreement in the fi eld as to how problem 
posing and problem solving ought to be handled in the mathematics class. Their 
survey attempts to delineate some generalizations from the research literature that 
have practical value for instruction. The chapter makes a good introduction to the sec-
tion by raising themes with echoes in the remaining chapters. 

        J.   Kilpatrick      (*) 
  University of Georgia ,   Athens ,  GA ,  USA   
 e-mail: jkilpat@uga.edu  
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    Learning to Solve Problems 

 Every chapter in the section addresses some issues that arise when students are learning 
to solve problems in their mathematics class. Some chapters focus on strategies 
they might use, others on efforts teachers might make to help them with that learning. 
The following remarks address some of the many issues raised in the section. 

    Addressing  Cognitive Demands   

 Cai and Lester point out that the mathematical problems that students are given to 
solve should make a variety of cognitive demands on them so that they learn differ-
ent ways of making sense out of problematic situations. Many teachers, at least in 
the United States, however, commonly fi nd various ways of reducing the cognitive 
demands of the problems they pose so that their students will be more successful. 
Cai and Lester offer some criteria for evaluating “worthwhile” mathematics prob-
lems and some suggestions for raising the cognitive demand of a task, or at least 
keeping it reasonably high. 

    In their chapter in this section, Ambrus and Barczi-Veres report a study of “average” 
Hungarian students, in contrast to their more mathematically talented peers for whom 
Hungary is well known. The authors explored some ways to address what they term the 
 cognitive load  of the mathematical problems the students were solving. After a brief 
introduction to cognitive load theory, they report a teaching experiment in which cog-
nitive load was reduced by having students work cooperatively in groups; setting open-
ended problems; and providing worked examples and the sorts of “guiding questions,” 
or heuristic questions, proposed by Pólya ( 1945 ) and Schoenfeld ( 1992 ). In this study, 
the goal was to reduce the cognitive demand in a constructive fashion that would allow 
the students to address a problem without becoming overwhelmed by its demands. 
Even though Cai and Lester reported that the research literature claims that “teaching 
students to use general problem-solving strategies and heuristics has little effect on 
students’ being better problem solvers,” it appears that the selected, more specifi c 
questions in the Ambrus and Barczi-Veres study helped lead to improved problem-
solving  performance   on the part of the participating students.  

    Working Together 

 The  group work   that Ambrus and Barczi-Veres promoted was seen by the students 
as contributing to their performance:

  Many students mentioned that one of the main benefi ts of working together was that students 
with different ways of thinking were able to fi nd the solution easier—which refers to the 
reduction of the cognitive load of individual students. 
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         Not all students in the study, however, found the group work benefi cial, and in 
particular, some “better achievers” found it boring. The authors’ conclusion seems 
justifi ed: “All in all, the students’ comments suggest that teachers should use coop-
erative teaching but should be careful not to ‘overuse’ it.” 

 The chapter by Pehkonen, Ahtee, and Laine focuses on the evaluation of the 
emotional atmosphere in classrooms where so-called  open problems   are being used. 
Students’ drawings provided the stimuli. As part of that evaluation, Pehkonen et al. 
looked at what they termed the  type of work  being done: teacher centered or student 
centered. They were able to classify most of the drawings according to whether they 
showed students working independently, in groups, or with the teacher in charge. 
The students appeared almost never to be working in groups. Although they 
appeared to be working independently twice as often as working with the teacher in 
charge, Pehkonen et al. concluded that the teacher centeredness of a lesson was not 
something that could be defi nitively assessed from the snapshot provided by students’ 
drawings. The drawings give information about the classroom’s emotional tone and 
students’ feelings and attitudes, but the drawings clearly need to be supplemented 
by other data. 

    In his chapter, Fritzlar reports work done by pairs of students working together 
to solve what he calls an   exploratory problem   . The problem allowed students at the 
end of primary school or beginning secondary school to engage in the kind of induc-
tive reasoning promoted by mathematicians such as Pólya ( 1954 ). Exploratory 
problems provide, as Frizlar says, “mathematically rich situations whose processing 
can be characterized by the following: exploring examples ideally with regard to 
self-derived questions, gathering and analyzing data, constructing relations or 
patterns and conjecturing and verifying hypotheses.”  

    Reasoning Inductively and Analogically 

 Fritzlar’s  attention   to inductive reasoning is echoed in the chapters by Cai and 
Lester and by Ambrus and Barczi-Veres. Cai and Lester emphasize the value, for 
even very young students, of “exploring problem situations and inventing strategies 
to solve the problems.” Students need to encounter problem situations in which 
there is no standard algorithm, so instead they must try out various approaches to 
see what works. Ambrus and Barczi-Veres, by using open problems and guiding 
questions, promoted a “bottom-up” inductive method of problem solving. By using 
worked examples, the authors were encouraging the students in their study to reason 
inductively, looking across problems to get a better sense of what makes for similar 
solutions. 

    In their chapter, Degrande, Verschaffel, and Van Dooren emphasize what they 
call   quantitative analogical reasoning   , that is, “looking for a mathematical relation 
between two magnitudes that are given in a word problem, and applying this relation 
to a third given magnitude.” Their focus is on proportional reasoning, but by expand-
ing that focus to include reasoning that involves other relations—in particular, 
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additive reasoning—they are able to provide a more nuanced picture of the thinking 
of students when they encounter word problems. The chapter is concerned with 
what the authors term a   modeling disposition    in solving proportional reasoning 
problems: Are students sometimes undeservedly successful in solving such problems 
because the numbers in the problem suggest the needed arithmetic operation, or can 
their attention to those numbers actually demonstrate an “initial but important” 
modeling disposition? The answer, shown in two carefully designed empirical 
research studies, is both. The moral appears to be that as students progress from the 
additive reasoning, they tend to show as third graders in solving missing-value 
problems, whether additive or not, to the correct use of multiplicative reasoning they 
tend to show as sixth graders, and in the intermediate stage, they rely on the numbers 
in the problem as indicators of which operation to perform. Only gradually do 
students learn to make use of  the   mathematical model underlying a word problem.  

    Dealing with  Learning Diffi culties   

 As already noted, Ambrus and Barczi-Veres studied ways of improving the problem- 
solving performance of average students, some of whom undoubtedly had learning 
diffi culties of various types. The chapter by Xin addresses the issue directly, explor-
ing the use of computer-assisted mathematics intervention programs for students 
identifi ed as having learning disabilities or diffi culties in mathematics. Xin has 
developed what she terms a “ Conceptual Model-based Problem Solving (COMPS) 
approach   that aims to promote elementary students’ generalized word problem- 
solving skills.” She reports studies of the effectiveness of the approach in helping 
students avoid such misleading strategies as focusing on so-called keywords and 
instead use modeling to solve various types of single-operation word problems in 
 arithmetic  .  

    Using  Information Technology   

    The COMPS computer tutorial program developed by Xin is unlike any of the other 
programs discussed in the section, especially in its use of a mastery-learning para-
digm. The program uses algebraic expressions to promote students’ conceptual 
understanding of the problems posed as well as creation of their own word problems. 
In their chapter, Santos-Trigo and Moreno-Armella explore the use of  mathematical 
action technologies —in particular, dynamic geometry software—to promote the 
solution of one problem in multiple ways. They illustrate their approach with multi-
ple solutions to the problem of constructing an equilateral triangle given one vertex 
and the line on which the other two vertices are located. Both chapters illustrate the 
value of information technology in advancing the study of strategies and processes 
for solving mathematics problems.      
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    Learning to  Pose Problems   

 In her chapter, Xin reports her use of what she terms  problem representation  “to help 
students understand the problem structure and the mathematical relations involved 
(e.g., two parts make up the whole, or ‘part + part = whole’).” She would give students 
so-called  word stories   with no unknowns such as the following: “Jane had 34 crayons. 
Her sister, Sally, gave her 16 more crayons. Now Jane has 50 crayons.” Then she would 
ask them questions such as “What is this story about?” and “How many crayons did 
Jane have at the beginning?” The questions would lead to the making of a model with 
bars to represent the quantities in the problem, and then the quantities would be inserted 
into a fi gure showing an equation with boxes representing the addends and the sum. 
After considerable practice making bar models and diagram equations for a variety of 
situations, students are then given part-part- whole problems to solve. 

    Although Xin’s program does not make room for problem posing, it certainly 
could be modifi ed to include that activity. Once students have learned to work with 
situations represented in problem representations, they could be asked to form their 
own word problems for a situation by introducing an unknown for one of the quanti-
ties. An alternative would be to give the students an equation with a missing term 
and ask them to make up a situation, and thus a problem, that the equation models. 
Cai and Lester point out that “writing story problems to match number sentences 
or posing mathematical problems based on situations are . . . the sorts of tasks that 
can engage students in learning important mathematics and develop their problem- 
solving  abilities  .” 

 Santos-Trigo and Moreno-Armella illustrate how information technologies can 
be used not only to solve problems but also to formulate related problems by using 
such heuristic techniques as considering special cases or relaxing the conditions of 
a given problem (Pólya,  1945 ). As Cai and Lester note, problem posing is much less 
common in mathematics classes than problem solving is, and it receives much less 
attention in the chapters in this section than problem solving does. It deserves more 
consideration by researchers and teachers alike, and information  technologies   may 
make that possible.  

     Refl ections   

 Although in this reaction paper, I have highlighted instances in which two or three 
chapters in the section addressed the same issue, many more issues were touched on 
by only one chapter. The theme of students, problem posing, and problem solving 
obviously has a multitude of aspects still to be addressed by theory, research, and 
practice. I noted at the outset that we now have a vast but incomplete literature on 
mathematical problem solving and problem posing, and there is obviously room for 
much more. Each of the chapters in this section can lead to important new work in 
countless directions. I hope that readers will see at least a few promising directions 
for their own work.     
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When Is a Problem…? “When” Is Actually 
the Problem!

John Mason

Abstract Bill Brookes (1976) suggested that something is a problem only when a 
person experiences it as a problem. Ten years later, Christiansen and Walther (1986) 
suggested, following Vygotsky, that a task is what students are offered or inveigled 
to undertake, and activity is what happens as they attempt to carry out their interpre-
tation of the task. Combining these, something or some situation is a problem only 
when someone experiences a state of problematicity, takes on the task of making 
sense of the situation, and engages in some sense-making activity.

The principal issue then is what makes a situation problematic for some students 
and not others and what activates activity through having possible actions come to 
mind. Although real problem-solving and authentic mathematics are popular slo-
gans, and although it is popular to try to make mathematics “real” for students by 
drawing on situations from the material world, the proposal here is that the issue is 
not about whether the situation arises in the material world, but rather, in alignment 
with the Realistic Mathematics Project at the Freudenthal Institute (Developing 
Realistic Mathematics Education. Utrecht: Freudenthal Institute, 1994), whether 
the situation can become “real” for students, enabling them to experience a “prob-
lem”. A great deal can be said about the complex interaction between teacher’s 
demeanour and vision, student initiative, and classroom practices, but it is not the 
focus of this paper.

The real issue in adopting a problem-solving approach to teaching mathematics 
is when to introduce exploratory tasks, when to intervene, and in what way. Thus it 
is the “when” that is the real problem for teachers, not the “what”. There is of course 
no general theory which tells one how to act, but there are ways to prepare for action.

Title is taken from Brookes (1976).

J. Mason (*) 
University of Oxford and Open University, 27 Elms Rd, Oxford OX2 912, UK
e-mail: john.mason@open.ac.uk
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Since my interest is in lived experience and practical action, I take a phenomeno-
logical stance. Readers are invited to engage in a series of tasks, some mathematical 
and some reflective, through which they might consider conjectures about the ori-
gins and state of problematicity, about how and when students can be invited to 
engage with problems, about how and when a teacher might intervene, and why.

 Introduction

I first became aware of problem-solving as a label for an activity when I arrived in 
the UK in 1970, after completing my Ph.D. in combinatorial geometry in the 
USA. But it took only seconds to realise that for me that was what mathematics is 
about: solving problems. As a teenager I posed (and sometimes resolved) my own 
problems, and I was a reasonably “Moore-oriented” student in that I preferred to 
work on problems myself rather than seek help, though when I was thoroughly 
stuck, I did also read other people’s solutions in order to learn techniques (Jones, 
1977; MAA Videotape, 1966). When I encountered George Pólya (1965) on film, 
then later in his books, I felt I had met a kindred spirit, and I was gratified to find I 
was also in alignment with Paul Halmos (1980), and later, with Schoenfeld (1985) 
amongst many others.

During my 55 years of teaching and 43 years of employment as an academic 
in mathematics and in mathematics education, I have seen the theme of problem- 
solving comes into focus as the centre of attention and then fade away again, 
perhaps four or five times. It seems to be back again, rising to the top of the cur-
riculum agenda in many countries. Have we as a community actually learned 
anything over the years? It seems that each generation has to rediscover and 
restate in their own vernacular the insights that inform effective teaching, and 
this includes problem- solving. The book Thinking Mathematically (Mason, 
Burton, & Stacey, 1982/2010) was indeed a recasting of Pólya’s sage advice into 
the vernacular of “processes”. The new edition (2010) adds a chapter suggesting 
that the language of “students’ natural powers” is now even more appropriate 
than the language of processes. In Mason (2012), I look back over his advice and 
recast it yet again.

My title is supposed to indicate an ambiguity, raising the question of when some-
thing actually becomes a problem for people (so that they initiate action to resolve 
it or avoid it) and proposing that the real “problem” in teaching mathematics is 
“when to initiate, when to intervene, and when to draw work to a conclusion”. Of 
course, in parallel with “when”, there is the question of “how”. I eschew the notion 
of “how best”, finding from my experience that there are always choices, and though 
some may be more effective than others in particular situations, there is no “best” 
way of doing anything in mathematics education. Often it is the very multiplicity 
which is powerful.
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 Quick Summary

There are three possibly fresh ideas that might contribute to the development of 
mathematical problem-solving in classrooms, which form the core of this paper and 
which are developed in it. First, there is a difference between reacting and respond-
ing, second there is the notion of appropriate challenge for particular students in a 
particular situation, and third, there is the notion that work can be suitably drawn to 
a conclusion with one or more conjectures together with evidence, as long as the 
inner task, the key ideas have been encountered and registered.

Reacting is an automatic somatic function, while responding involves cognition 
(Leron & Hazzan, 2006; Mason, 2009). We often speak of having an idea that comes 
to mind and of “being stuck” as a state of tunnel vision in which nothing seems to 
come to mind. Here “mind” is usually interpreted as cognition or “thoughts”. But 
the human psyche consists of more than cognition, and it is well known from ancient 
psychology and from modern neuroscience that in response to a stimulus, the body 
(enaction) fires first, followed by emotion (affect) and then rather later by intellect 
(cognition) (Mcleod & Adams, 1989; Norretranders, 1998; Ravindra, 2009). Stimuli 
cause energy to flow into and through whichever selves (Bennett, 1964) or micro- 
identities (Varela, 1999) are dominant at the moment, and these activate acts and 
produce emotions characteristic of that particular self, which in turn enable or block 
thoughts including access to less routine actions and alternative emotions. Thus, it 
might be helpful to think in terms of acts that come to action (enactively), emotions 
that come to the heart (traditionally the heart is the seat of affect/emotions), and 
ideas, thoughts, or images that come to thought (cognitively). All of these contribute 
to the experience of coming to mind. Some suggestions will be made on how this 
perspective can inform pedagogic choices in the future.

When students are reacting spontaneously and out of habit, the teacher’s role is 
to prompt them to withdraw from the action, emotion, or mind set and become 
aware of other possibilities. The intervention may be more sociopsychological than 
mathematical. The temptation to intervene mathematically (directing attention to 
some mathematical action or structural relationship) may lead to progress locally 
but may not be of much help globally when the student encounters another situation 
and reacts in the same way. The whole point of working on tasks is to learn from the 
experience, but one thing we do not seem to learn from experience is that we do not 
often learn from experience alone (Mason, 1992). Put another way, “succession of 
experiences does not add up to an experience of succession” which turns out to be a 
version of an assertion by James (1890, p. 628) that a succession of feelings does 
not add up to a feeling of succession. Something else is required, namely, withdraw-
ing from the action and becoming aware of the habitual (re)actions and of other 
possibilities, what Schön (1983) called reflecting in action.

An enriched sense of “coming to mind” contributes a small part to the issue of 
“when and how to intervene”, which is an immense topic well beyond the scope of 
this chapter. In order to intervene effectively, it is necessary to have some way to 
speak to the experience of learners. Questions and prompts need to bring to  learners’ 
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minds, in the full sense, possible actions, positive emotions, and insightful thoughts. 
As an example, a lesson learned at the Open University over several years, and 
manifested in the Thinking Mathematically (Mason et al., 1982/2010) but often 
overlooked, is that instead of dropping students into extensive investigations, explo-
rations, or open problem-solving, it is vital first to initiate them into mathematical 
thinking so that they have access to mathematical acts that can actually help them 
when they get stuck, whether when working on new ideas, when exploring, or when 
attempting exercises and assessment tasks.

One effective approach is to give students tasks in which their natural response 
(if not reaction) is to act in some desirable manner. Their attention can then be 
drawn to this self-initiated act, a label can be given or negotiated, and then that label 
can be used in a scaffolding-and-fading form (Love & Mason, 1992; Seeley Brown, 
Collins, & Duguid, 1989) to inform interactions with the teacher and with mathe-
matics over a period of time, until students have internalised the action as something 
they can initiate for themselves when stuck. According to van der Veer and Valsiner 
(1991), Vygotsky’s notion of the Zone of Proximal Development describes a state in 
which a learner is on the edge of being able to initiate acts for themself which previ-
ously had to be initiated or cued by a relative expert. By fading the directness of 
prompts, students can be encouraged to internalise and integrate acts into their func-
tioning. In this way learners can develop a repertoire of appropriate mathematical 
habits, whether using their natural powers (Mason et al., 1982/2010) or as delin-
eated by Cuoco, Goldenberg, and Mark (1996), for example.

 Method of Enquiry

In this paper, I want to summarise what I have learned about supporting other peo-
ple in their problem-solving, or as I like to describe it, “fostering and sustaining 
mathematical thinking in others” (Mason et al., 1982/2010). My preference is for a 
somewhat extreme form of phenomenology: offering a series of task exercises. 
What you get from them is what you notice about yourself (or selves), about how 
those selves characteristically channel energy into the mathematical use of your 
natural powers, and about how the different parts of your psyche work together or 
against each other. Thus the data being offered here will be your own experience. 
The products of enquiry are refreshed or fresh sensitivity to notice pertinent distinc-
tions and to be guided by those to make informed choices in the future, together 
with your own modifications, refinements, and additions to the task exercises as you 
use them in turn with others (Mason, 2002).

It is impossible, however, to resist some commentary on the task exercises, mak-
ing observations which may resonate (or dissonate) with your experience in such a 
way as to sharpen, extend, and enrich your awareness and making links with 
frameworks of distinctions which have proved fruitful for many in the past. Thus I 
permit myself to indulge in some theorising as background to your noticing.
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 Some Phenomena

Here are some descriptions of incidents that it might be useful to link to effective 
pedagogic strategies. In each case, try to find an example in your own experience:

Given a task, some students immediately do the first thing that comes to action.
Given a task, some students immediately decide that they cannot do it (the first thing 

that comes to the heart); progress is blocked by their affective reaction (see 
Dweck, 2000 for ways to overcome this).

Given a task, some students wait until the teacher comes round so they can get more 
specific instructions as to what they are supposed to do (a form of funnelling).

Given a task, students ask “Why are we doing this?” or “When will I ever need to 
know/do this outside of school?”; this may be a desire for application, but more 
often it is a plea for help, a statement that “I cannot cope”.

Given an extended or vaguely specified task, students unused to anything other than 
rehearsing recently encountered techniques do not know what to do and may 
resist taking any initiative, waiting until they are told “what to do”.

These phenomena will be addressed in the theorising that follows the core of the 
paper, which is the data collection based on some immediate experience.

 Data Collection

The key point about the following task exercises is to become aware of how you use 
yourself and of how your psyche reacts and responds, bearing in mind the adage that 
“A solved problem is as useful to the mind as a broken sword on the battlefield” 
(Shah, 1970, p. 119).

 Task Exercise 1: Five Settings

TE1(a) What would happen if the minimum wage was set at a level judged to be a 
minimum living wage, or if the government rewarded employers who adopted this?

TE1(b) At the airport you find various stated rates for buying and selling currency, 
together with the statement that there is no commission for exchanges over some 
stated amount. For example:

 

EurosSell Buy

Rand Sell Buy

: . : .

: : . : .

1 224 1 32

13 237 17 549  

What is the actual commission at these rates?
TE1(c) When and where might you see a vertical half-moon?
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TE1(d) What numbers can be expressed as one more than the product of four 
consecutive numbers?

TE1(e) Imagine a triangle. Imagine a circle exterior to the triangle and touching it 
at one point (tangent to it at a point). Allow the circle to roll or slide around the 
triangle, always keeping one point of the circle in touch with the triangle. What 
is the length of the locus of the centre of the circle as it moves once around the 
triangle?

 Comment

TE1a requires extensive modelling and knowledge of economics and so is unlikely 
to attract interest, except for people with specific expertise or interest already. 
TE1b seems a little out of reach for most people to whom I have posed it and so 
attracts little interest, despite being of considerable importance when travelling 
between countries and obtaining relevant currencies. TE1c often attracts interest, 
but most people are unaware of ever seeing a vertical half-moon!

TE1d moves into pure mathematics. It usually provokes people to try some exam-
ples in order to see what might be the case or to write down some algebra and get 
totally stuck and then resort to specific cases. As such it generates immediate 
experience of the power of specialising, not simply to get some answers, but as 
fodder for detecting some underlying structural relationships.

TE1e calls upon imagining before drawing any diagrams and sorting out precisely 
the implications of the circle remaining in contact with the triangle at all times; 
the result is then relatively straightforward if slightly unexpected.

The important observation is that interest is (or is not) attracted: it is not the 
problem that is interesting but rather the person who is or is not, becomes or does 
not become, interested under particular conditions (at a particular time in a particular 
place and situation with a particular recent experience and with particular personal 
propensities and dispositions). Interest is a state of attention: active (taking an inter-
est in …) or passive (being interested by…). The word “interest” is a way of describ-
ing investment of energy of a self, which may involve a letting go or backgrounding 
of other concerns and desires, perhaps even a different self to dominate, and allowing 
one’s self to be “touched”.

As most teachers and comedians know, interest needs to be aroused and attention 
attracted within the first few minutes of an encounter, though as students develop 
trust in their teacher and their teacher’s practices, that period can be extended. 
Furthermore, what appeals to someone depends on their current state (within a 
social group, perhaps) which in turn depends on their recent past experience.

One of the factors that affects interest, engagement, and motivation is having a 
sense of possible actions. I learned through experience at the Open University that 
starting with tasks that invoke natural powers, that is, natural mathematical actions, 
students can become aware of what to do when they feel stuck. Having developed a 
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repertoire of actions makes the novel more interesting and reduces the blocking 
effect of feeling powerless. The next task exercise presents some of the tasks that we 
found useful at the Open University Summer Schools, but first, think back to your 
activity in response or reaction to the five tasks:

Did you specialise in order to make sense of any of them?
Did you take the opportunity to vary, extend, or generalise the tasks for yourself?

If not, then you overlooked the real contribution that the tasks can make to your 
future practice.

 Task Exercise 2

The following tasks are taken from the Open University Summer Schools that ran 
from 1971 until 1996 (Mason, 1996). These took place in the middle of the first 
mathematics course. Again it is essential that the reader attempts each task and pays 
attention to the ebb and flow of energy in the form of immediate (re)action or 
response such as interest, surprise, tedium, and subsequent affect when some par-
ticular possible actions have been tried.

 TE2a: Shifting Heavy Objects

Heavy objects like cupboards, armchairs, and settees can be moved by rotating them 
about one corner. Suppose we permit only 90° rotations, and we wish to move a 
settee (twice as long as wide) as shown:

 

What positions can you reach? Don’t be satisfied with a yes/no answer: an explana-
tion is wanted.

What happens if the settee is of different proportions?

 TE2b: Products

Show that the product of any two numbers, each of which is the sum of two squares 
of integers, is itself the sum of two squares of integers.
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 TE2c: Differences

In a certain collection of objects, there are some which differ in colour and some 
which differ in shape. Must there be objects differing in both colour and shape?

 TE2d: Number Patterns

 1. I was using a calculator to subtract numbers from their square, when Pat, looking 
over my shoulder, turned to me and said:

“I can get your answers by adding numbers to their squares”.
Is she right? Always?

 2. What sorts of numbers arise from the sequence:

 3 5 1 4 6 1 5 7 1´ + ´ + ´ + ¼, , ,  

Convince me!
 3. What sorts of numbers arise from the sequence:

 
3 5 4 1 4 6 5 1 5 7 6 12 2 2– ; – ; – ;( ) + ( ) + ( ) + ¼

 

 4. “Look at this!”, said S.P.:

 

10 1 1 2 5 1 1 1 29

10 2 2 2 5 2 1 2 29

10 3 3

2 2 4

2 2 4

´ ´( ) + ´ +( ) = +

´ ´( ) + ´ +( ) = +

´ ´

–

–

–– 2 5 3 1 3 29
2 2 4( ) + ´ +( ) = +  

“Aha!”, said G.E.N., “The general pattern is … ”, (he mumbled). Comment! 
Convince!

 5. What sorts of numbers arise when you add one to the product of four consecutive 
numbers?

 6. What sorts of numbers do you get from calculations like:

 4 1 5 1 1 6 1 7 1 1 8 1 9 1 12 2 2 2 2 2– – ; – – ; – – ; ?( )( )+ ( )( )+ ( ) ( )+ ¼  

Generalise? Convince!

 TE2e: One Sum

I have written down two numbers that sum to one. I square the larger and add the 
smaller. I also square the smaller and add the larger. Which of my results will be 
bigger: sometimes? always? (Conjecture, then convince.) Try using a diagram.
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 TE2f: Similitude

What shapes of paper have the property that they can be cut in half by a straight line 
to yield two pieces each similar to the original?

 TE2g: Arithmagons

 

Hidden at each vertex of the triangle is a number.
The edge numbers are the sums of the numbers on adjacent vertices.
Can you reconstruct the vertex numbers? Can you find a quick rule of thumb to reveal 

vertex numbers that always works? Convince! Generalise to other polygons.

See Mason and Houssart (2000) for a history of variations to Arithmagons.

 TE2h: Fare is Fair

I wish to divide 18 identical chocolate bars equally amongst 30 children. How many 
cuts must be made, and how many pieces must there be? Generalise!

These tasks display a range of mathematical domain, yet require very little in the 
way of technical knowledge. They are intended to bring students into contact with 
important mathematical themes and to direct attention to the use of their natural 
powers used mathematically (Mason, 2008).

Themes Powers

Invariance in the midst of change Imagining and expressing
Doing and undoing Specialising and generalising
Freedom and constraint  Conjecturing and convincing
Extending and restricting

 Reflection

Since withdrawing from action and reflecting is of particular importance, it would be 
wise for readers to pause and ask themselves what powers of their own they used. 
What made you choose to stop work on each task? Was it when you could “see” your 
way through to a resolution, or was it as the result of increasingly negative emotions, 
perhaps connected with a sense of either excessive or inadequate challenge?
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 Comment

The range of tasks was designed to appeal to students in different states with differ-
ent dispositions. Each task is intended to generate surprise or curiosity, releasing 
energy so that students would initiate action to try to find out more, and each was 
effective for at least some students. Most are intended to invoke the power to spe-
cialise to or use particular cases so as to locate, express, and then justify a generali-
sation. All of the TE2 tasks illustrate the fact that problem-solving is really the same 
as modelling (Lesh & Fennewald, 2010) in the sense that resolution comes about 
through finding some way to represent the information to oneself in a manipulable 
form. Searching for a suitable action to get oneself going on a problem is largely 
about finding something relevant to manipulate through which underlying structure 
can be encountered, expressed, and then exploited.

One thing we found, informally, at the Open University, was that how the tutor 
introduced the tasks made a huge difference. Of importance, but less so, was how 
they sustained activity, as was how they drew work to a close. This is the “how” and 
the “when” of intervention. We never tried to be prescriptive, though we did try to 
influence tutors by getting them to work together on similar tasks at their own level 
in order to sensitise them to what students might experience and for them to experi-
ence types of intervention that they might not have encountered previously.

There are many different ways to introduce a task, too many to summarise or 
survey here (see Mason & Johnston-Wilder, 2006 for a few). To illustrate some pos-
sible variation, consider the following, bearing in mind that simply reading the task 
may not provide sufficient experience to contrast the different ways in which a task 
setting can incite or block the flow of energy.

 Task Exercise 3: Ride and Tie

 Setting A

In a Ride and Tie race, two competitors and one horse cover a course as quickly as 
possible under various constraints (a minimum number of exchanges between walk-
ing and riding, minimum rest times for the horse each hour, at most one person on 
the horse at any time). All three have to cross the finish line to complete their run.

 Setting B

In the eighteenth and nineteenth centuries, both in the USA and in the UK, people 
developed a means of sharing transport on a journey. For example, person A sets out 
walking while person B rides a horse. At some point B ties the horse and proceeds 
on foot. When A reaches the horse he/she mounts and rides on to a suitable place to 
tie the horse and again proceeds on foot. They alternate in this way until they reach 
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their destination. Given the speeds of each when riding and walking, how do they 
minimise their collective travel time?

 Setting C

Same as setting B together with: here is a proposed graph of such a journey, with the 
rates shown as slopes of arrows on the left. However, they do not arrive at the same 
time. How should they adjust their journey so as to complete the journey in the 
shortest possible time?

AR

Ride & Tie

Distance

Time

BR

Aw

Bw

 

 Reflection

What is the same and what is different about these tasks? What sort of recent past 
experience might be necessary, or be being appealed to in the choice of setting? 
What made you start thinking about the mathematics rather than about the difference 
in stimulation of the settings? What led you to stop work and carry on reading?

 Comment

The third version of the task is designed to provoke students to reason with and 
about graphs rather than to treat graphs as the end product of some sequence of 
tasks. Trying to express the geometric relations algebraically is a bonus. But 
whether the task attracts, their interest depends on some extent on how the task is 
presented, hence the three presentations, by way of contrast. Setting A requires the 
reader to specialise by adding in imagined details and then to formulate a task, 
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which may or may not be the task envisaged by the author. Students are expected 
to ask themselves questions such as how to minimise the time taken and still have 
A and B arrive together. Setting B offers details which may make it easier for a 
reader to enter into the situation. Specific details such as variables and relation-
ships are still left open. If mental imagery is invoked, then, as in the Realistic 
Mathematics Education project (Gravemeijer, 1994), students are likely to find 
themselves involved, whereas if it is presented drily and at length, student interest 
is less likely to be attracted. Setting C focuses attention on a graphical presentation 
and its interpretation and as such forces specific values for the walking and riding 
speeds, but with an indication that these could be varied. Since getting students to 
interpret graphs is an overlooked aspect of graphical presentation, there is more 
likelihood that students will engage in this than in the other less specific, less 
focused settings.

 Detailed Comment

The first thing to notice is that the graph does not work because the two people do 
not arrive at the same time, and if one arrives first, an adjustment to the timings 
could have reduced the time taken. However, it is actually worse than that, 
because according to the graph, the horse has to be in two places at once!

The second thing is to realise that for purposes of calculation, A and B need only 
ride once and walk once, since they can then divide up these periods to exchange 
more often and give the horse short rests rather than one long rest. Algebraic 
expressions can then be developed to find relationships to ensure that they arrive 
together and to calculate how long the horse has been allowed to rest, or in a 
dynamic environment, the journeys can be adjusted so as to bring them to the 
destination at the same time. Why will that minimise the time for all three to 
arrive? The walking and running speeds, together with the total distance, uniquely 
determine the arrival time when they arrive together and the total horse-resting 
time.

An additional feature of the core task is the opportunity to generalise firstly by 
replacing specific ride and walk rates by parameters, secondly by being aware that 
walking and horse riding could be replaced by any two modes of transport, and 
thirdly by extending the task to three people and two modes of transport, or beyond. 
As with any of the tasks, getting an answer to the task as posed is simply a way sta-
tion in the exploration of a whole domain of related tasks. Thinking in this way 
helps prepare students for facing unknown and nonroutine tasks when being 
assessed.

Again it is best to attempt the following tasks, especially in regard to expressing 
a generality, for only then is it possible to appreciate what the task is offering 
students.
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 Task Exercises 4

TE 3(a) What is the same and what is different about the following facts?

 37 28 38 27 95 42 92 45 65 32 62 35+ = + + = + + = +  

Make up some of your own like these and generalise!
TE 3(b) Generalise the following facts:

 
1

1

2
1

1

3
1 1

2

5
1

2

7
1 1

3

8
1

3

1
+æ

è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷ -æ
è
ç

ö
ø
÷ = +æ

è
ç

ö
ø
÷ -

11
1

æ
è
ç

ö
ø
÷ =

 

What relationship is being displayed? What do these have to do with percentages, 
discounts, and taxes?

TE 3(c) Evaluate efficiently:

 

10000 10004 10002 9998

10000 10001 10001 9999

´ - ´
´ - ´

= ?
 

 Reflection

Again, did you vary, extend, or generalise the tasks? If not, you overlooked an 
opportunity to express generality, lack of experience of which lies at the heart of 
student struggles in mathematics. What was appealing and what put you off? What 
led to you moving on to the next?

 Comment

The first two are intended to invoke students’ power to discern details, recognise 
relationships amongst what is changing and what is not, then express these as 
instances of a general property and thus to generalise, calling upon or re- encountering 
fundamental properties of numbers (what I would call mathematics; doing calcula-
tions with numbers is at best arithmetic). The second one might be recognised as the 
relationship associating fractional increase with subsequent decrease in order to 
return to the original state, and when expressed as decimals, interest and discount or 
percentage increase and decrease. The third one might provoke “parking” of the first 
act that comes to action (to calculate, or resistance to calculation) while looking for 
some way to ease the strain, namely, seeking relationships by treating 10,000 as a 
place holder and expressing everything in terms of it.

Tahta (1980) suggested that tasks have both an outer aspect (what you are explicitly 
asked to do) and an inner aspect (what you are likely to encounter, such as the use 
of your powers, pervasive mathematical themes, and problem-solving strategies). 
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There is also a meta-aspect (personal propensities and dispositions which can block 
possibilities of progress). Here the invitations to generalise provide a prompt to try 
to articulate perceived conjectured relationships and to want to verify that they do 
indeed always hold true. An inner aspect of the third is that sometimes complex 
calculations can be avoided by looking for underlying structure before calculating.

These tasks are only likely to be useful when students have already begun to 
develop their awareness (conscious and unconscious) of their own powers and of 
pervasive mathematical themes.

 When, Then, Is a Problem?

When Brookes (1976) raised the question “when is a problem?”, I was at first 
intrigued and then inspired. He pointed out that it is the person who experiences 
problematicity, who experiences some “thing” as problematic. School “problems” 
are simply ink on paper and, now, activated pixels on screens. They do not have 
attributes such as “real”, “authentic”, “difficult”, “routine”, “open”, “closed”, 
“interesting”, etc. These are all attributes of the state of one or more people in 
response to some stimulus at some time in some situation and under some condi-
tions. Unfortunately the transfer of attributes of a person’s state to attributes of some 
stimulus or situation is a widespread phenomenon which leads to unfortunate con-
clusions about how learning comes about and how teaching can support and stimu-
late learning. Competent teachers are well aware that it is unwise to label the child 
and that it is much better to label the behaviour. So too with tasks: it is unwise to 
classify or label the task; it is much better to label the behaviour of particular people 
in a particular situation at a particular time.

As Ride and Tie may have indicated, how a task is proposed can make a differ-
ence in whether people find themselves experiencing “a problem”, or not, and 
whether they find their interest attracted. But it is not a simple matter of classifying 
presentations, because what matters is an alignment between the setting, the situa-
tion, the conditions, and the participants. Pavel Shmakov and Hannula (2010) have 
found that the use of fantasy characters (crocodiles, comic characters) enhances the 
attractiveness of tasks in primary and early secondary. This is an example of appeal-
ing to the subculture of particular students at a particular time. Care is needed; 
however, adolescents, for example, may not enjoy attempts by adults to enter their 
world. Indeed, the whole role of schooling, as articulated by Vygotsky (1986, 
pp. 172–173), is to provide students with experiences that they would not normally 
have outside of school. This is the philosophy of the Realistic Mathematics Project 
(Gravemeijer, 1994), where “real problem-solving” is based on what students can 
“make real” through the use of their imagination.
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 How Then Do “Problems” Arise? How Is Interest Generated? 
How Is Attention Attracted?

For me the most important contribution to engaging students is to get them to make 
use of their own powers, because this releases small amounts of endorphins. To start 
with, getting students to imagine some situation already invokes their imagination. 
Getting them to express relationships that underpin the situation that “make it what 
it is” continues to make use of their powers by drawing attention to a phenomenon. 
The question then arises as to whether the phenomenon can be explained, and the 
desire to do this will depend on a combination of the extent of the surprise or uncer-
tainty and the feeling that the challenge is within the scope of possibility for the 
student. The student has to trust in the teacher or feel for themselves that they have 
a chance of making sense mathematically; otherwise negative affect will trip in. I 
hope that readers will have a taste of this from the tasks offered earlier and of the 
range of ways in which energies flow from and through different selves.

Acknowledged as a state of an individual, problematicity arises when someone’s 
stasis is disturbed. Heidegger (1927/1949) articulated what has been known for 
probably thousands of years: change and growth are a response to disturbance. 
Piaget (1971) drew on the biological terms assimilation and accommodation as 
ways of describing cognitive as well as enactive response to disturbance; Festinger 
(1957, p. 3) coined the expression cognitive dissonance to refer to cognitive distur-
bance that can initiate rethinking, and this was developed by Bell (1986, 1991) as 
diagnostic teaching; Bruner (1996, pp. 94–95) noticed that at the heart of a compel-
ling narrative lies some disturbance; Shah (1970, p. 119) noted enigmatically that 
“sleep is to the hunter as excitement is to students”, a protasis worthy of contempla-
tion, seeking out multiple and not necessarily compatible interpretations in relation 
to response to disturbance. For example, preparation is vital (sleep), but falling 
asleep means you might miss your prey, and excitement in students means they 
might miss the intended inner tasks or fail to notice their transitions between various 
states. A similar protasis, also worthy of contemplation through seeking multiple 
interpretations, is “wounds are to a patient as assessment is to students” (Mason, 
1992, 1998). Again it is only through disturbance that an awareness to act is initi-
ated and, in this case, verified.

Movshovits-Hadar (1988) pointed to the surprise that underpins any mathemati-
cal result of significance but which becomes ordinary as expertise grows; Vergnaud 
(1982) proposed that problems are the source of the meaning of mathematical 
knowledge, but also that intellectual productions turn into knowledge only if they 
prove to be efficient and reliable in solving problems that have been identified as 
being important practically (they need to be used frequently and thus economically) 
or theoretically (their solution allows a new understanding of the related conceptual 
domain). Calling something a “problem” is therefore a shorthand for “a stimulus 
that provokes a disturbance” for particular people in a particular situation with par-
ticular recent experience.
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In order to be disturbed, it is necessary to be in an appropriate state, that is, to 
have an appropriate self in the dominant role, to be prepared. A self-doubting self 
makes it harder to initiate action and may be used as an excuse for not acting; an 
overly confident self with tried and trusted actions may similarly block access to the 
novel, the creative, and the responsive. An Aristotelian golden mean seems desir-
able. Self-doubt and self-confidence arise from past experience (which contribute to 
the formation of one or more selves), from affirmation from “significant others” 
(Mead, 1934), and from having a repertoire of acts, emotions, and thoughts coming 
to mind (action, emotion, and thought).

 When (and How) to Intervene?

The real question in working with others on mathematical problems is deciding 
when to intervene and in what way. Responses to the question of how and when to 
propose exploration, to intervene in exploration, or to draw exploration to a conclu-
sion will depend on what exploration is considered to contribute to students’ appre-
ciation, comprehension, and understanding of mathematics. Put another way, it will 
depend on the intended inner task, and the intensity of desire that the inner task 
actually be realised.

For example, exploration can be seen as a motivational route into a topic, prepar-
ing the students to appreciate concepts and techniques which help resolve problems 
through their not being able to resolve problems initially for themselves (see, e.g., 
Burn, 2009). One view of tasks set to students is to prepare them to be able to appre-
ciate and comprehend what is then expounded.

Exploration can also be seen as the principal means whereby students come into 
direct contact with concepts and techniques, and it can be seen as a powerful way to 
stimulate student sense-making of concepts and techniques to which they have 
already been introduced, placing the ideas in a more general context and appreciat-
ing the scope of the kinds of problems they can be used to resolve. Thus, when to 
introduce an exploration depends on a student’s experience and the teacher’s episte-
mological stance and reading of the particular situation (students, course, timing, 
importance of the concept or technique, etc.).

Most of the tasks presented earlier can be used in all three ways, as introduction 
and scene setting, as preparation for encountering fresh ideas or actions, and as 
review and consolidation of ideas already encountered. To be used effectively, the 
teacher needs to be aware of the affordances of a task, of the likely themes, powers, 
and concepts that are likely to arise.

There is, in my view, no “right answer” to the “when and how” question. Rather 
it is a matter of developing sensitivity to student experience so as to have possible 
actions come to mind (action, emotion, thought, and will) rather than reacting auto-
matically out of habit. The greater the variety of possible actions that become avail-
able to the teacher, and, likewise, to the student, the richer and more extensive the 
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repertoire, the more likely some effective action will become available to be chosen. 
The best way to develop sensitivity is to engage regularly in personal and collective 
mathematics to oneself and to spend time actually listening to and observing 
students.

Sometimes it is helpful to learners to let them become immersed in being stuck 
(Mason, 2014; Mason et al., 1982/2010); other times it is useful to offer them 
prompts which can be the subject of scaffolding and fading so that over a period of 
time, those prompts are internalised by learners; other times it is not relevant to 
attend to details on which someone might become stuck, but rather to work on 
developing an overview. To recognise different possibilities requires, in addition to 
a rich repertoire of mathematically based questions and prompts (e.g., see Watson 
& Mason, 1998), some awareness of broad mathematical themes and connections 
with other topics: what might be called mathematical vision, together with a suit-
able classroom ethos or atmosphere, that is, a mathematically based way of working 
on mathematics with others.

In the case of the Open University Investigation prompts in Task Exercise 2, 
tutors were free to intervene whenever and in whatever manner seemed appropriate 
to them. There was a wide variation in what tutors focused on and consequently in 
their interventions. For example, some took the view that students should be nudged 
or pushed so that they had some result before break (this was in a 3 h session with a 
break in the middle); others held back and only moved to plenary discussion near 
the end, when they would draw attention to various themes and problem-solving 
processes that had been described in course materials. Mary Boole (Tahta, 1972) 
captures the tutor dilemma beautifully in her phrase teacher lust: that welling up of 
desire to tell someone what you know. Sometimes it is appropriate, but often it cuts 
off student access to rich experience of coming to something for themselves. That is 
why it is vital to allow time for reflection, indeed to insist on occasionally “coming 
up for air” by withdrawing from the action to consider the effectiveness of that 
action, for students to reconstruct what they have done, what others have done, and 
what they would wish to do in the future, so that they genuinely learn from the 
experience. Tahta (1991) explores the influence of teacher desire that students learn 
and how that can sometimes support but other times block student development 
through influencing their disposition and inclination.

One approach to the “when and how” question is to try to live out the adage “try 
to do for students only what they cannot yet do for themselves”. It is an admirable 
sentiment but difficult to live up to. When the end of time available approaches, it 
is tempting to succumb to teacher lust and tell students what they might have 
found. Although it can be frustrating to leave students at the end of a session, or 
even the end of a topic, without resolving all the uncertainties and misconceptions, 
it is not clear that “giving results correctly stated” at the end makes any difference 
to students: if it did, exposition would work much more efficiently and frequently 
than it does.
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 Mathematical Vision

Ball (1993) introduced the notion of mathematical horizon as part of what teachers 
need to be aware of in order to teach effectively, as do Guttiérez, Sengupta-Irving, 
and Dieckmann (2010) and Noss and Hoyles (1996). Of critical importance is 
awareness of how the components of a specific topic relate to or connect with other 
topics (see, e.g., the Structure of A Topic framework in Mason and Johnston-Wilder 
(2004a, 2004b)). One useful way to become aware of connections is through becom-
ing alert to pervasive mathematical themes such as doing and undoing, invariance in 
the midst of change, freedom and constraint, and local and global characterisation 
of properties. Another is to be aware of specifically mathematical actions such as 
the vertical mathematisation (Treffers, 1987) move of isolating characteristic prop-
erties, abstracting these, and using them to define or characterise through generalis-
ing. Many people have tried to articulate what this might encompass, for example, 
Cuoco et al. (1996) talk about habits of mind, while Dyrszlag (1984) referred to 
controlling (in the sense of both guiding and assessing) students’ understanding of 
mathematical concepts.

If mathematics is seen as a necessary drudge, being forced to work on it is likely 
to amplify feelings of negativity such as resentment, resistance, and dislike. If math-
ematics is seen solely as a domain of correct tools for getting correct answers, it is 
likely to appeal to those aspects of the human psyche with a preference for clear and 
certain rules. Emotional satisfaction is likely to be associated with correctness rather 
than with the engagement and creativity. If mathematics is seen as a human endeav-
our involving the use and development of human powers, it could come to be associ-
ated with creativity and release, with insight, and connection making. Using powers 
such as to imagine and to express what is imagined in words, gestures, drawings, 
and symbols; to specialise and to generalise; to conjecture and to convince; and to 
classify and to characterise releases endorphins which can provide a frisson of plea-
sure. The use of such powers is a way for selves to channel energies in positive 
directions. Encountering major mathematical themes such as doing and undoing; 
freedom and constraint; and invariance in the midst of change can provide the basis 
for making connections between otherwise apparently disparate ideas and again 
provide pleasure.

 Conjecturing Atmosphere

Choosing when to initiate and when to intervene is situation dependent, and the 
dominant aspect is the ethos or atmosphere of the classroom, which can make a 
significant difference. Instead of dwelling on being right, on not saying anything in 
case it might be wrong, and on trying to “get there first”, a conjecturing atmosphere 
in which everything that is said or done is treated as a conjecture can contribute to 
access to the unexpected, the creative, and the novel and to not being rushed on 
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before one is ready. A conjecturing atmosphere is another way of referring to a 
classroom rubric (Floyd, 1981), the socio-mathematical norms and values (Yakel & 
Cobb, 1996) which inform and justify mathematical practices (Jeffcoat et al., 2004; 
Watson & Mason, 1998).

In a conjecturing atmosphere, you never tell someone they are wrong, merely 
“invite them to modify their conjecture”; the euphemism can make a significant dif-
ference. Those who are sure wait, check, and ask questions that might help others, 
rather than blurting out an answer; those who are uncertain take opportunities to 
articulate what they think they do know and to try to articulate what they are uncer-
tain about. Learning is marked by the growing ease and articulateness of self- 
constructed narratives (Chi & Bassok, 1989; Chi, Bassok, Lewis, Reiman, & Glasser, 
1989). Pedagogically, you learn little when always getting answers correct; you 
learn something when you make a mistake or an incomplete conjecture and then 
modify it, and you learn a lot when you make and then distrust your conjectures and 
work at reflecting on the process by which a conjecture was modified and justified.

Important aspects which make problem posing and solving more or less attrac-
tive for students include the milieu (conjecturing atmosphere), the way tasks are 
posed, the way the teacher intervenes in support, the relationship between teacher 
and mathematics, and the relationship between teacher and students, because these 
all influence the relationship between student and mathematics.

 Paying Attention to Student Attention

The purpose of listening to and observing students is to try to enter their world, to 
see things from their perspective. Armstrong (1980) shows just how powerful this 
can be, and it is a common practice in many teacher education courses near the 
beginning. Unfortunately there is rarely time in a busy schedule to reinforce it by 
further close observation near the end of a course, when sensitivities and issues have 
been enriched, and the same is true in the first few years of teaching: there are appar-
ently more pressing activities which displace this most fundamental of all ways to 
sensitise oneself to students. Davis (1996) goes further, coining the expression 
teaching by listening, and shows how powerful it can be to provoke students to try 
to resolve issues themselves, or at least to delineate the boundaries, before being 
presented with someone else’s deeply considered approach.

Of course, what is observed is mostly what you are already sensitised to discern. 
Montaigne (1580, p. 960) put it beautifully: “Human eyes can only perceive things 
in accordance with such forms as they [already] know”. Hanson (1958, p. 19) 
rephrased it as “There is a sense in which seeing is a ‘theory-laden’ undertaking”, 
which Goodman (1978, pp. 96–97) extended to “[facts] are as theory-laden as we 
hope our theories are fact-laden”.

Observing the ebbs and flows of one’s own attention can prompt observation of 
how student attention changes, not simply in its focus, but in the nature or form of 
that attention. In parallel with van Hiele (1986) and in alignment with the structure 
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of observed learning outcomes (SOLO) taxonomy (Biggs & Collis, 1982), some 
microchanges in the structure of attention can be discerned (Mason, 2003), includ-
ing holding wholes (gazing), discerning details, recognising relationships, perceiv-
ing properties, and reasoning on the basis of agreed properties. By sensitising 
oneself to these different forms of attention in themselves, that is, in their own 
experience, teachers can sensitise themselves to the movements of their students’ 
attention and thereby gauge the pace and focus of their interactions with students. It 
also provides a framework for analysing student productions (Molina & Mason, 
2009; Scataglini-Belghitar & Mason, 2012).

Another way of working on developing sensitivity to notice opportunities to act 
freshly rather than out of habit is to make brief-but-vivid accounts of incidents in 
lessons and then to compare responses with colleagues (Mason, 2002; Tripp, 1993). 
The website www.lessonsketch.org provides cartoons with classic teaching issues 
which can be used to stimulate discussion amongst colleagues from which can 
emerge fresh insights as to possibilities for action.

Choosing when to initiate and when to intervene is an art not a science; it depends 
on sensitivity to student experience achieved through sensitivity to one’s own experi-
ence. By developing sensitivity to student experience, by working on the ethos of the 
classroom, and by seeking to enrich the range of possible actions as a teacher, students 
can begin to notice themselves developing a disposition to pose their own problems 
and to enjoy the pleasure that is available from working on challenging problems.
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      Novice Chilean Secondary Mathematics 
Teachers as Problem Solvers                     

       Patricio     Felmer      and     Josefa     Perdomo-Díaz    

    Abstract     In this chapter we present a research on a group of 30 novice Chilean 
mathematics teachers as problem solvers. We study their performance while work-
ing on two problems, how they felt when they worked on them and how do they see 
as problem solver in a self-evaluation. 

 The analysis we present is part of a larger research project whose general objec-
tive is to explore relationships among (a) the opportunities that initial teacher train-
ing programs offer them to grow as problem solvers and as teachers able to promote 
problem solving in their class, (b) the mathematical knowledge of novice mathe-
matics teachers as problem solvers, and (c) their pedagogical practices regarding the 
way they promote their students as problem solvers.  

  Keywords     Problem solving   •   Problem solver   •   Mathematics teacher   •   Teacher 
training  

      Introduction 

 In modern educational practice, there is an increasing tendency to let students expe-
rience in classroom what experts do regularly in their work, in an important portion 
of their learning activities. These ideas that get roots in  Dewey’s learning approach   
( 1933 ,  1938 ) were devised from the general perspective of philosophy, psychology, 
and education and propose something that is quiet obvious in music classes, where 
students are supposed to sing, play instruments, and sometimes even create songs, 
all regular activities of a professional musician. 

 This tendency has had an important manifestation in science through the per-
spective   inquiry-based learning    (Barrow,  2006 ) where students are invited to face 
research problems in the spirit of science, proposing hypothesis, getting evidence 
and analyzing it to confront the hypothesis, and reshaping the preestablished 
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 knowledge, obtaining new one. A long way has taken place since Dewey presented 
his ideas and there are still enormous challenges to make students practice science 
in classrooms. Barrow describes the evolution of the interpretation of  inquiry-based 
learning  and mentions teacher personal experiences with science as one of the dif-
fi culties this endeavor faces. Barrow presents the heart of the matter: before teach-
ing, teachers should experience science by themselves.  Preservice teachers   should 
have their science courses where science should be experienced in a realistic way, 
where no recipe or script is previously known, and where guided demonstration is 
not considered an experiment. In the same way, in-service teachers that want to 
change their approach to learning should experience science by themselves; they 
should be involved in professional development programs that provide opportuni-
ties for making authentic experiments, before expecting to implement science in 
their classrooms. From the side of children, a vast study conducted under the aus-
pices of the National Academies put together research on cognitive and develop-
mental psychology, education, and history and philosophy of science to synthesize 
the current knowledge about how children learn the ideas of science (Duschl, 
Schweingruber, & Shouse,  2007 ). This study gave rise to a book with practical 
ideas about the implementation of science in school (Michaels, Shouse, & 
Schweingruber,  2008 ). It is interesting to notice that this report and subsequent 
book came out from a scientist organization, showing that these ideas make a lot of 
sense among scientists as well as among educators. 

 In mathematics there also exist the tendency of bringing mathematician’s work 
inside school classrooms putting in place practices like representing, conjecturing, 
defi ning, arguing, proving, communicating, etc. In this sense, inquiry-based learn-
ing is one of the options of teaching in which students are invited to work in a simi-
lar way as mathematicians and scientists do (Artigue & Blomhøj,  2013 ). The 
dramatic call by Lockhart ( 2009 ) is an expression of mathematicians’ agreement 
with these ideas that come together with the educational approach of learning 
through experience. Research about this tendency is getting more common and 
Hähkiöniemi (2013) on the use of technology to implement mathematics in the 
classroom and the work by Rasmussen and Kwon (2007) about the involvement of 
undergraduate students in differential equations through an inquiry-oriented 
approach exemplify the diversity of existing research. Another perspective that 
points to introduce mathematicians’ work in the classroom is  modeling .  Mathematical 
modeling   is a regular activity of an applied mathematician and its interest in educa-
tion is ample and very active (e.g., Galbraith, Henn, & Niss,  2007 ; Stillman, Kaiser, 
Blum, & Brown,  2013 ). But probably the most developed and vastly spread way of 
introducing mathematician’s work into classroom is  problem solving . This regular 
activity of professional mathematicians involves also mathematizing (modeling), 
representation, reasoning and arguing, and communication of mathematics, all 
competences evaluated every 3 years in PISA international mathematics tests. 
 Inquiry-based learning ,  modeling , and  problem solving  are not separate perspec-
tives at all; their main difference is on the lens used. In this chapter we remain on 
the problem-solving perspective. 
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 It was Polya ( 1957 ,  1966 ) who opened the way to numerous investigations and 
actions to rethink mathematics education, by setting his famous four steps to solve 
a problem. However, in too many cases, these steps were popularized and reduced 
to the extent that is considered a “model” or the recipe to solve problems and teach 
problem solving (e.g., Kilpatrick,  1987 ; Santos-Trigo, 2007). This idea of the great 
model to solve repeated problems may make us forget that Polya understood that in 
order to teach problem solving, teachers should have experienced problem solving 
by themselves. The importance of the experience on problem solving that teachers 
need for teaching has also been emphasized by many other authors. Mason ( 1992 ) 
pointed out how  “teacher-proof” materials   or guides have not been successful for 
teaching mathematics. It is necessary that teachers had struggled with a problem to 
appreciate the struggle that a student may have when solving a problem. In this line, 
we also quote Kilpatrick ( 1978 ), with a review on research and the central ideas of 
problem solving at that time, Schoenfeld and Kilpatrick (2008) that summarize the 
key elements for mathematics teaching, and Isoda and Katagiri (2012) describing 
the tradition of solving problems in Japan. 

 This idea of bringing mathematician’s world to classroom, to make students 
experience authentic problem solving as a learning activity and as a  motivational 
activity  , makes them experience the emotions a mathematician experiments. In 
front of a problem, the student, like the mathematician, will face the anxiety of not 
knowing the way the problem can be solved, the frustration of a failed strategy, and 
certainly the glory of triumph, the sensation of achievement, and the power of the 
victorious. But if we want this to really happen in classroom, we cannot forget the 
teacher that, in the line between the mathematician and the student, has to create the 
situation, has to propose the problem, and has to ask the questions or create the 
opportunity for students do it. Thus, the teacher should be just one of them; the 
teacher should have lived the same emotions while solving problems as mathemati-
cians and students. Regrettably, a teacher passing through years of formation, fi rst 
as a school student and then as a university student, preparing for being a teacher, 
had not experienced mathematics in the way mathematicians do. 

 The purpose of this study is to portray secondary mathematics teachers as prob-
lem solvers; we want to know how they solve problems, what they feel while doing 
it, and how they see themselves as problem solvers. Our aim is to center the atten-
tion on the teacher as  problem solver  , as mathematicians experiencing mathematics. 
An enormous amount of research has been directed to understand how students 
experience problem solving and also to pedagogical techniques and approaches for 
teachers to make students work in problem solving. However, not much attention 
has been given to teachers as problem solvers, that is, to look at them experiencing 
the emotion, the frustration and anxiety while working a problem, and the joy and 
triumph when the problem is solved. The few works we know on teachers are in 
professional development settings. In the fi rst one, Chapman ( 1999 ) reports on six 
elementary teachers participating in a 30 h program, experiencing problem solving. 
As a result of the experience, teachers were signifi cantly infl uenced on their per-
sonal meaning of problem solving and obtained a more positive view of themselves 
as problem solvers. In the second work we know, Yimer ( 2009 ) reports on 42 
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 middle school teachers participating in a 2-week intensive refresher course where 
problem solving was the focus; problems with emphasis on fractions, measure-
ments, and geometry were given to teachers to work during the course and a follow-
up pedagogically focused came after for 2 months. As a result of this professional 
development program, teachers moved from imitating strategies to inventing them, 
and they developed the feeling that  mathematical ideas   are developed as a result of 
mathematical discourse within a community of problem solvers. In both cases, the 
teachers were considered as problem solvers and encouraged gradually to be like a 
mathematician, working in a problem not knowing the way to solve it. Our research 
differs from Chapman and Yimer ones in that teachers were not engaged in a pro-
fessional development setting, but we just inquire on the way secondary mathemat-
ics teachers solve problems, looking for the abilities, feelings, and their view of 
themselves as problem solvers. 

 The work described in this chapter was conducted in the context of important 
developments in all aspects of education in Chile. Regarding  school mathematics  , 
Chile has experienced the introduction of problem solving in all areas of mathemat-
ical school curriculum in 2009, but with the recently approved new curriculum its 
status was raised as a clearly distinguished mathematical ability, together with rep-
resentation, modeling and communication, and reasoning (Mineduc, 2012). This 
new curriculum puts enormous challenges to the system as a whole and it is very 
consistent with the ideas of bringing mathematicians’ world into classroom. Teacher 
then is a focus of attention and many questions are posed, like, for example, what 
do we do to make universities provide opportunities to preservice teachers to expe-
rience authentic mathematics and how do we do so that in-service teachers experi-
ence the same?  

    Framework 

 This research is based on the idea that a  problem  is a mathematical task that a person 
tries to solve and for which that person does not have a straight and known way to 
solve it. To be a problem is not an inherent attribute of a mathematical task; it 
depends on the relationship between the task  and   the person who is interested on the 
problem and tries to solve it, the problem solver. In this sense, for being a problem, 
a mathematical task has to be diffi cult enough but not too diffi cult for the problem 
solver and with a different diffi culty from just an operational one (Schoenfeld, 
1985). Mathematical tasks posed during the  Problem-Solving Workshop (PSW)  , 
the source for this research data, were selected having in mind that they could be 
problems for novice secondary mathematics teachers. Answers of teachers that par-
ticipated in the PSW show that the proposed tasks were actually problems for them 
because they did not know a direct way to solve them, the solution could not be 
obtained straightaway, and diffi culties were not just operational. 

 There exist different models to describe mathematical problem-solving process 
(e.g., Carlson & Bloom,  2005 ; Polya,  1957 ; Yimer & Ellerton,  2010 ). Most of them 
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agree that problem solving is not a linear and unidirectional process, so different 
problem solvers can use different ways to solve the same problem correctly. Some 
of the questions a problem solver asks herself or himself are: How to answer the 
given question? How to fi nd a strategy? How to know if a strategy will give the 
solution? How to know if the found solution is correct? How to know if it is the only 
solution? If there are more solutions, how many are there? How can they be 
obtained? Schoenfeld (1985) points out that the way persons solve a problem 
depends on their previous knowledge, heuristics, metacognition, their belief sys-
tem, and the educative practices in which they have been involved. 

 In this chapter we are interested on knowing  secondary mathematics teachers   as 
problem solvers in a different perspective from that of knowledge and beliefs pro-
posed by Schoenfeld. We are interested on behavior, feelings, and self-perception 
of novice secondary mathematics teachers relating with problem solving and how 
similar they are from mathematicians’ ones. On the base of our view is the point that 
mathematics classroom must provide students the opportunity to experience math-
ematics as mathematicians, and teachers are in charge to make it possible. So, it will 
be desirable that mathematics teachers consider problem solving in a similar way 
than mathematicians do. To do this we have to consider how mathematicians behave 
when solving a problem and how do they feel during the process of solving a prob-
lem. Information about mathematicians’ work solving problem is limited, and if we 
restrict to our focus on behavior, feelings, and self-perception, the situation is not 
better. One source is a book of Burton ( 2004 ) who talks about mathematicians as 
learners and the challenge that mathematics teachers have in translating to students 
the mathematicians’ way of learning. She points out many interesting ideas for our 
research: the existence of different thinking styles among mathematicians and that 
every mathematician uses just one of them and the importance of heterogeneity of 
approaches and that intuition and feelings play a prominent role in the thinking and 
working of mathematicians. 

 In our view, a mathematician tries to solve a problem when he/she considers hav-
ing enough knowledge to do it and he/she is interested or motivated in solving it for 
some reason. A mathematician tries different strategies and persists in looking for 
the way to the solution. When a mathematician fi nds a solution, he/she asks him-/
herself if there are more and if there exists a better way to solve the problem. When 
a mathematician solves the problem, he/she understands the problem in a compre-
hensive way, and he/she may explain it to others. These ideas were the basis for 
defi ning the variables for the analysis of teachers’ solutions to the problems pro-
posed in the  PSW   (see section “Teachers as Problem Solvers: Performance”). 

 Feelings when solving problems and  self-evaluation   of the process of problem 
solving belong to the affective domain, which includes beliefs, attitudes, emotions, 
and motivation (Hannula, 2012; McLeod,  1992 ). From these four aspects, emotions 
have been less studied than the others due in part to their nature (Pekrun, 2005). 
Study of emotions is important for several reasons: (a) emotions refl ect success or 
failure of an individual with a task, so emotions inform about and to the cognitive 
and motivational domains (Hannula, 2012); (b) emotions are a principal component 
for decisions making (Schoenfeld, 1998); and (c) emotions are the basis on which 
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attitudes and beliefs toward mathematics are built (Mandler, cited in McLeod,  1992 , 
p. 578). Moreover, to know how a person feels, solving a problem informs about the 
relationship that such person has had with this type of task (Efklides & Volet, 2005). 
McLeod ( 1992 ) proposes fi ve dimensions to characterize emotions: direction (posi-
tive or negative), magnitude, length, level of consciousness, and level of control of 
the person. In this research we only consider the direction of emotions that second-
ary teachers report after solving the two problems of the PSW (see section “The 
Teachers’ Feeling While Solving Problems”). 

 The process of self-evaluation includes  metacognitive aspects   and it is related 
with the belief system too. In the case of problem solving, a problem solver’s self- 
evaluation is related with their beliefs about mathematics and about self (McLeod, 
 1992 ). In this research we are interested on secondary teachers’ self-evaluation as a 
way to know how they see themselves as problem solvers and what they consider 
important in problem-solving processes (see sections “Participants and the Problem- 
Solving Workshop” and “Teachers Self-perception as Problem Solvers”). We con-
sider that this point is especially important in the case of teachers because their 
conception of problem and problem solving would be transmitted to their students.  

    Participants and the Problem-Solving Workshop 

 This study is part of a research project whose main goal is the analysis of the oppor-
tunities that universities provide to future secondary teachers to experience problem 
solving and the use of problem solving at schools. The participants were 30  second-
ary mathematics teachers   that fi nished their university studies, becoming teachers, 
between 2010 and 2011. They were selected from three leading universities in 
Chile, 10 from each one, chosen randomly within the universities. Participant teach-
ers were invited to a Problem-Solving Workshop (PSW) that consisted on solving 
three problems (two individually and one in group), answering four questionnaires 
with questions about the situation experienced at the PSW and its relation with their 
university training and a fi nal full group discussion about proposed problems, their 
feelings while solving them, and the opportunities they have had of experiencing 
something similar at the university. Those three were the only activities of the 
workshop. 

 Attending to the aim of this paper, we just take into account the two individually 
solved problems and two of the questionnaires. The two problems proposed to the 
teachers are the following:

     The slot machine    (Problem 1). Six friends played with 25 tokens in a slot machine. 
If everyone played a different number of tokens, how many tokens did every 
player play?  

    Cristina’s cans  (Problem   2). Cristina lined up her cans in two rows and one is left 
alone. Then she tried with three rows and with four rows and in both cases she 
left one alone. Finally, she treated with fi ve rows and then no can was left alone! 
How many cans did Cristina have?    
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 These problems were chosen among others because they could be solved with 
mathematical contents studied in primary and secondary school, they allow for dif-
ferent approaches and strategies to be solved, and they have more than one solution. 
In Problem 1, the solutions can be listed, while in Problem 2, a formula should be 
given to describe its infi nitely many solutions. These  characteristics   make these 
problems appropriate for teachers to exhibit their familiarity with problem solving 
and their ability and training to solve them. Teachers had 30 min to work on the 
two problems. The idea of the PSW was to give teachers enough time to work on 
the problems freely and to display their knowledge so we can observe their mathe-
matical behavior, even though there may be not enough time to solve both of them. 

 After working on these problems, teachers answered four questionnaires. For 
this study, we took four questions out of two of the  questionnaires  :

   Q1:  How did you feel solving the problems ?  
  Q2:  If you had to evaluate your performance in the solutions of these problems , 

 what grade would you assign to your work ? ( Give at least three criteria that you 
take into account for assigning yourself that grade ).  

  Q3:  For    each     of the following four topics ,  mark the reasons that may have lead you 
to assign yourself this grade .   

 Topic  Yes  No  Justifi cation 

 Personal reasons.  For example, I do not like this kind of problems/I 
got nervous  
  Contextual and/or environmental reasons. For example, short time/
working place  
  Reasons related to your previous experience. For example, I lack of 
practice with these kinds of problems/I am well trained with these 
problems  
  Reasons related to your formation. For example, high school 
subjects/courses  

    Q4:  Thinking about your process to solve the problems, assign to yourself a grade 
in each of the following items and justify.    

 Grade  Justifi cation 

  Interest on the problems  
  Familiarity with the knowledge related with the problems  
  Search of different strategies in solving the problems  
  Carrying out the selected strategies  
  Certainty that the found solution is correct  

   Teachers solved the problems on papers that we collected and they answered 
questionnaires in a Google Doc format. Thus the data to be analyzed consists on 
documents written by the teachers (on paper and online). In the following sections, 
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 we   will discuss the way we analyzed the information obtained during the PSW 
through the instruments we just described and we present the results obtained. We 
dedicate one section to each of the research questions.  

    Teachers as Problem Solvers: Performance 

 In this section we analyze teachers’ performance based on the written notes handed 
in by them after 30 min working on the problems. We consider some of the charac-
teristics described in the framework about mathematicians’ behavior when solving 
problems: to persist looking for the way to solve the problem, try different  strate-
gies  , and ask itself if there are more than one solution. In relation with the reasons 
for trying to solve proposed problems, novice teachers try to solve the problem 
because it was part of the agreement for participating in the research. The point that 
when a mathematician solves the problem, he/she understands the problem in a 
comprehensive way and can explain it to others was not possible to be considered 
in the analysis of data because of time restrictions of the  PSW  . Based on this, writ-
ten teachers’ answers to each problem were analyzed according to fi ve descriptors 
of teachers’ performance: ( a) fi nd one solution ,  (b) notice the existence of more 
solutions ,  (c) fi nd more than one solution ,  (d) fi nd all solutions , and  (e) use more 
than one strategy.  In case of “ use more than one strategy ,” we just consider the 
cases where to use more than one strategy were necessary, for example, if a teacher 
notices that a problem has more than one solution and could not obtain them with 
the strategy used. 

 In terms of the framework, only 10 % of the teachers reached the complete solu-
tion to Problem 1 and the same percentage was observed in Problem 2 (Table  1 ). All 
the teachers found one solution for the fi rst problem but just 2/3 of them showed 
evidence of thinking about the existence of more than one solution and only the half 
of the teachers found more than one solution. In the case of the second problem, 
almost 25 % of the teachers did not fi nd any solution; just a bit more than 10 % of 
the  teachers’ written work   has evidence of looking for another solution and less than 
10 % fi nd more than one. Taking into account the nature of the mathematical con-
ceptual knowledge needed to solve the proposed problems, we consider that this 
analysis suggests that an important number of teachers are not familiar with  multiple 
solution problems. A little percentage of this group of novice secondary mathemat-
ics teachers behaves in a similar way than mathematicians do while solving a 
problem.

   Table 1    Teachers achievement solving the two proposed problems   

 Teacher 
 Finding at least one 
solution 

 Noticing more 
solutions 

 Finding more 
solutions 

 Finding all 
solutions 

 Problem 1   30    20  16  3 
 Problem 2  23  12  8  3 
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   We  classifi ed teachers   in three groups: low, intermediate, and high, according to 
their performance in the two problems they worked out in PSW.

•    A teacher was classifi ed as having  low  performance if he/she at most noticed the 
existence of more than one solution in the two problems.  

•   A teacher was classifi ed as having  intermediate  performance if he/she found 
more than one solution in one problem or he/she noticed that at least in one prob-
lem there are more than one solution and try to fi nd them with more than one 
strategy, exhibiting certain mathematical fl exibility.  

•   Finally, a teacher was classifi ed as having  high  performance if he/she solved 
completely one problem, fi nding all the solutions, or if he/she found more than 
one solution in one problem and tried more than one strategy.    

 This classifi cation takes into account that some teachers may have concentrated in 
only one problem, solving it and thus exhibiting good performance, and that a low 
performance is considered when the teacher did not do well in both problems. We use 
this classifi cation to make some analysis with other variables, but we would like to 
recall that this is a descriptive analysis, without intending to make statistical state-
ments. The terms low, intermediate, and high used in defi ning our  categories   have a 
meaning relative to our sample, and they do not refl ect an absolute appraisal for teach-
ers’ performance. In Table  2  we display the teachers belonging to each category.

   Although there are an important number of teachers in the high category (40 %), 
we consider that the number of teachers in low category is quite large (30 %), hav-
ing into account that the selected problems can be solved with school mathematics 
knowledge and that teachers in this study have obtained their formation in leading 
universities in Chile. 

  Teachers at the    Low Category   . Teachers classifi ed having low performance are 
those who did not obtain more than one solution for each problem or realize the 
existence of more than one solution in just one problem. There are six out of nine 
teachers in this category that did not even show evidence of thinking about the exis-
tence of more than one solution in one of the problems. The other three (P01, P12, 
P19) thought about the existence of another solution although none of them could 
fi nd another one. Just one of them (P01) tried to use different strategies in one prob-
lem and realized the other has more than one solution. Figure  1  shows two examples 
of responses of teachers at this category.

    Teachers in the    Intermediate Category   . There are nine teachers classifi ed in this 
category, the same number as in the low category. Most of them (seven) were clas-
sifi ed as intermediate just because in one of the problems they found one more 

   Table 2    Teachers’ performance classifi cation   

 Category  Description  Teachers   N  

 Low  Both grades below  or   equal to 3.4  01, 11, 12, 19, 25, 26, 27, 29, 30  9 
 Intermediate  Both grades below 5.8, one above 3.4  02, 03, 06, 07, 16, 17, 20, 21, 23  9 
 High  One grade above or equal to 5.8  04, 05, 08, 09, 10, 13, 14, 15, 

18, 22, 24, 28 
 12 
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solution, without showing interest on fi nding more than one in the other problem. 
This means that the profi ciency to solve problems  of   the teachers in this category is 
not so different than that of teachers in the low category. 

 What really makes the difference between teachers in low and intermediate cat-
egories is that last ones showed some interest about the possibility that one of the 
problems could have more than one solution and try to obtain them with different 
strategies or obtained more than one solution with one strategy. Eight of the nine 
teachers got more than one solution at least in one of the two problems. Teacher 
P17 could not to obtain more than one solution, but she tried different strategies. 
Figure 2 shows an example of the answer of one teacher in this group. 

  Teachers at the    High Category    .  In this category are teachers that completely 
solve one of the problems, fi nding all solutions, found more than one solution in one 
problem, and tried more than one strategy to obtain the other solutions. This is the 
largest of the three categories, with 12 teachers in it, but there are big differences in 
performance in the two problems, between teachers in this category. More than a 
half of teachers in this category showed a very low level or response in one of the 
problems, characterized by trying to obtain a second solution but do not reaching it. 
Two teachers had the maximum grade in the fi rst problem and the minimum grade 
in the second one (P08 and P09), and according to their response to Q3, in the ques-

  Fig. 1    Answers of low category teachers       

  Fig. 2    P20’s solution to  The slot machine        
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tionnaire, the main reason for the second grade was lack of time. As an example of 
this, we have selected teacher P05 answer to Cristina’s cans problem. Teacher P05 
started with a graphical representation of the situation and follow with a high-level 
mathematical concept: congruencies (Fig.  3 ). Although this teacher’s answer 
included the correct general expression for all the solutions of the problem, we did 
not mark it with the maximum because the teacher hesitated on her solution and did 
not try neither verify nor look for another strategy. 

 We conclude with some remarks regarding teachers’ performance and our view 
on what a problem is and how a problem solver should behave in front of a problem, 
as discussed in the framework. First, in view of teachers’  achievement  , we may say 
the two proposed tasks were problems. On the other hand, we see that most teachers 
did not behave as a mathematician, in the sense that many of them did not try vari-
ous strategies while intending to solve the problems; they did not question their 
answer until they understand the problem completely, in particular, try to fi nd all 
solutions of the problems. As part of an ongoing research, we are relating the fi nd-
ings on performance  of   teachers while solving problems with their teaching prac-
tices and their initial formation.  

    The Teachers’ Feeling While Solving Problems 

 In this section we describe and analyze the information gathered during the  PSW   
regarding teachers’ feelings while solving the two proposed problems. As it was 
indicated in the framework of this research, feelings while solving a problem give 
information about the familiarity of teachers with problem solving in general and 
with the solution of the particular type of problems proposed. 

 As described in section “Participants and the Problem-Solving Workshop,” we 
asked teachers to answer question Q1:  How did you feel while solving the problems?  
They wrote an answer expressing freely about their feelings after having worked for 
30 min on the problems. We isolated the main feelings expressed in their writing and 
we recorded the number of teachers expressing similar feelings, as shown in Table  3 .

   We observe the variety of feelings expressed and that  positive feelings   were more 
frequent. Next we addressed the questionnaire again and we classifi ed teachers in 

   Table 3    Feelings  expressed   by teachers after solving problems   

 Positive feelings 
 No. of 
teachers  Negative feelings 

 No. of 
teachers 

 Challenged  11  Confused/doubtful/unsure  6 
 Motivated/enthusiastic  7  Uncomfortable/nervous  3 
 Entertained  1     Distressed  2 
 Quiet/safe  2  Disappointed/frustrated  3 
 Inspired  1  Disputed  1 
 Comfortable/at ease/well  6 
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three categories depending on the type of feeling they expressed: we assigned (1) if 
the teacher clearly expressed positive feelings, (1/2) if the teacher expressed neutral 
feelings or if he/she expressed both positive and negative feelings, and (0) if the 
teacher clearly expressed negative feelings. With this information, we obtained the 
following summary (Table  4 ).

   The following examples of answers given by teachers to question Q1 illustrate 
their expressed feelings and the way we assigned the value.

  Examples of Positive Feelings 

  P19: It was very pleasant; the truth is that since a long time, I have not solved this 
kind of problems; I think not even in the university;    it was a challenge to have 
found the solutions, through various strategies.  

  P20: Enthusiastic. I was totally concentrated and immersed in them. I wish to have 
given a better answer. I didn’t realize as time passed.  

  P25: Each of the problems allowed me to develop a much more playful than struc-
tured resolution; so, I felt motivated to respond without the need for elaborated 
solutions, but a practical answer to the problem.   

  Examples of Neutral or Positive and Negative  Feelings   

  P05: I felt challenged. I would have liked to have more time to reach to a more sat-
isfactory answer; I did not manage to generalize my mathematical ramblings into 
mathematical statements.  

  P30: In the slot machine, I felt more convinced about my answers. In the one on cans, 
I know the answer works, but I was not happy, since I did not fi nd an answer, or 
better, an algorithm to use in the solution, but I just solved it by trials.   

  Examples of  Negative Feelings   

  P08: I was frustrated because, despite of all my mathematical knowledge, I could 
not give a defi nitive answer to the problems. In any case, I guess this is the feel-
ing students have many times, although in their case, much of the time; it is dif-
ferent because sometimes the needed information is there, but they lack the 
ability of seeing it, not of using it.  

  P15: Strange, one normally expects that the problem can be solved with more com-
plex or higher-level mathematical objects;    that’s why I felt that perhaps other 
responses were expected from me. Anyway I know that this way of thinking is 
that often keeps us from mathematics itself when teaching.    

 It is interesting to see the feelings expressed by the teachers in each of the three 
categories defi ned from teachers’ performance in solving problems (low, 
 intermediate, and high). Graph  1  shows the proportion of each type of feelings for 

   Table 4    Classifi cation of teachers according to their feelings   

 Category  Value  Teachers 

 Positive  1  01, 02, 04, 07, 09, 18, 22, 19, 20, 21, 23, 25, 26 
 Neutral or ambiguous  1/2  05,    06, 10, 11, 12, 17, 24, 27, 28, 30 
 Negative  0  03, 08, 13, 14, 15, 16, 29 
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each category. It can be observed that teachers who expressed negative feelings are 
concentrated among those that obtained better grades (recall that the number of 
teachers in each category is 9–9–12). This may possibly mean that teachers with 
better grades are more critical than the others. In fact, three of the teachers (P08, 
P14 and P15) in the high category expressed negative feelings while they got the 
maximum grade in one of the problems. We would like recall the descriptive nature 
of this analysis.

       Teachers  Self-Perception   as Problem Solvers 

 An important portion of our data is concerned with novice teachers’ self-perception 
as problem solvers. This information mainly help to understand the familiarity of 
teachers with problem solving, complementing the rest of the information. Data 
analyzed in this section come from questions Q2 to Q4 of the questionnaires that 
teachers answered during the PSW. The information we gathered is the following:

    1.    A grade of self-evaluation of teachers’ work solving the problems   
   2.    What reasons (among personal, contextual, or environmental experiences and 

formation) they had to assign themselves this grade   
   3.    A grade of self-evaluation of teachers’ work solving problems regarding three 

criteria: search for different strategies, carrying out the strategies, and certainty 
of the solution     

 (1)   Self-evaluation as Problem Solver   . Teachers assigned themselves a grade 
(S-grade) between 1 and 7, as seen in Table  5 . One of the teachers (P15) did not 
answer this question, so data are about 29 teachers. S-grade average is 5.6, with 
standard deviation 0.9. We observe that all S-grade are greater than or equal 4, 
where 4 is the approving grade in Chile. This means that all the teachers in our 
investigation consider that they did well enough as problem solvers. Moreover, 
more than a half of teachers’ S-grade is 6 or 7 (17 teachers), that means that they 
consider that they do really well. Other 12 teachers’ S-grades are between 4 and 5.5.

negative

neutral

positive

Feelings vs. Grades

Low Intermediate High

1,2

1,0

0,8

0,6

0,4

0,2

0,0

   Graph 1 Proportion of each type of teachers' feelings for each performance group       
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  Fig. 3    Teacher P05’s work on  Cristina ’ s cans        

    Table 5 Teachers' self-grade on solving the two proposed problems                                       

 Teacher  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15 

 Self-grade  6.0  6.0  6.0  6.0  7.0  6.0  6.0  6.0  6.0  4.0  5.0  4.0  4.0  6.0  * 

 Teacher  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

 Self-grade  5.5  4.0  5.5  6.0  5.0  6.0  4.0  7.0  5.0  7.0  6.0  6.0  5.0  7.0  5.0 

   We would like to attract attention on those teachers whose S-grade is 7 (P05, 
P23, P25, and P29). Performance of two of them (P25, P29) was classifi ed in the 
low category because they obtained only one solution of each problem and they did 
not show any interest about the existence of other possible solutions (e.g., Fig.  1 ). 
P23 is in the intermediate level, according to his performance, and P05 is in the high 
level, but both of them had a very low performance in the second problem, 2.2 and 
3.4, respectively (e.g., Fig.  3 ).

    If we consider the three categories of performance defi ned in section “Teachers 
as Problem Solvers: Performance” (low, intermediate, high) and compute the 
average S-grade obtained by the teacher in each class, we observe that  low  grade 
teachers evaluated themselves better than the teachers that obtained  high  grade. 
The teachers that obtained  intermediate  grade self-evaluated slightly lower than the 
 low  class, but defi nitely higher than the  high  class (see Graph  2 ). However, we 
would like to attract attention about the descriptive nature of this analysis.
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     Table 6  Reasons and directions for teachers' self-evaluation                                       

 Teacher  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 

 Personal  1  1  0  1       −1  1  −1  −1  x  x 
 Contextual  −1  −1  −1  −1  −1  −1  −1  x  x 
 Experience  1  0  −1  1  1  −1  1  x  x 
 Formation  1  1  1  0  −1  1  1  −1  x  x 
 Sum  2  2  0  3  0  −1  −4  −1  2  −2  1  −1  −2  x  x 

 Teacher  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

 Personal  −1  x  1  −1  1  1  1  1  −1  −1  1 
 Contextual  x  −1  1  1 
 Experience  −1  −1  x  −1  1  −1  1  −1  −1  1 
 Formation  −1  x  −1  −1  1  1  −1  −1  1  −1 
 Sum  −1  −3  x  1  -1  −2  −3  3  −1  4  1  −3  −3  4  −1 

Low Intermediate

S-Grade vs. Grade

High
1

2

3

4

5

6

7

   Graph 2 Average teachers' self-grade in each of the three teachers' performance groups       

   (2)  Reasons for    Self-Evaluation   . We asked teachers about possible reasons that 
could have infl uenced their self-evaluation, related with personal, contextual, 
experiencing, or formation aspects (question Q3, section “Participants and the 
Problem- Solving Workshop”). Teachers had to say  yes  or  no  and explain their 
answer. For analyzing these data, we considered only those teachers that said  yes  in 
a given aspect and we assigned to each of them 1, 0, or −1 according to:

   1: If the teacher reported that the reason affected positively  
  0: If the teacher reported ambiguous reasons, of being affected positively or 

negatively  
  −1: If the teacher reported that the reason affected negatively    

 A summary of the assignments given to each teacher appears in the following two 
tables. Empty cells correspond to  no  answers, which is interpreted as the teacher’s 
self-evaluation was not affected by the given reason. Teachers P14, P15, and P18 
did not answer the questionnaire (Tables  6  and  7 ).
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    Most positive personal reasons put forward by teachers are because they found 
the problems challenging, while negative reasons are related to not being motivated 
or to feel nervous with this type of activity. In the case of  contextual reasons  , eight 
teachers reported negative infl uence, but seven of them justifi ed that on short time 
to answer the two problems (see Table  8 ).

   About experience reasons, teachers that pointed out negative reasons said that 
they do not have enough practice with this type of problem and those that exposed 
positive experience reasons mentioned that they use to solve this type of problem 
and in some cases they propose them to their students. Formation reasons men-
tioned by teachers are mainly related with university courses; some teachers 
recalled secondary level experiences or  extracurricular courses  . Some examples of 
the  reasons exposed by teachers can be read below. We select extreme examples 
from teachers that reported three or four reasons infl uencing negatively their 
S-grade (P7, P17) and those that reported three or four reasons infl uencing them 
positively (P4, P25). 

 Teacher P7  that   assigned S-grade 6.0

 Personal   I worked in slowly manner  
 Contextual   I needed more time  
 Experience   For some time I have not worked in this type of problems  
 Formation   The realization and development of problems need to be addressed in a better 

form in didactic courses  

   Teacher P17  that   assigned S-grade 4.0

 Personal   I like these problems, they challenge me, but I cannot deny that I get nervous 
because I do not know what is expected from my answer  
  I assigned myself 4.0 because I feel that it has been long since I did not work 
with these challenges and I do not know what I am doing and if I am doing well 
or not  

   Table 8    Contextual reasons infl uencing negatively   

  P08 :  Time was not enough ;  maybe if I had about 5 more minutes, then I could have explained 
in a better way the algorithm to determine the quantity of cans  
  P09: Time was short, so I could not work on the two problems  
  P12: I had some ideas for the second problem; with some more time, I could have studied the 
situation better  
  P20: Personally, I would have liked to have 10 more minutes  

     Table 7  Resume of the reasons and directions for teachers' self-evaluation   

 Reasons  YES  NO  Positive  Neutral  Negative  Difference 

 Personal  18  9  10  1  7  3 
 Contextual  10  17     2  0  8  −6 
 Experience  16  11  7  1  8  −1 
 Formation  17  10  8  1  8  0 
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 Contextual   –  
 Experience   I do feel that I lack of    practice     in this type of problems  
 Formation   At this time the courses I have taken are not related to mathematical problems, 

but to curriculum and assessment  

   Teacher P4  that   assigned S-grade 6.0

 Personal   I like challenging problems because they test my skills and knowledge. In case I 
fail to achieve the results, it helps me as an alert to strengthen some aspects of 
analysis, for example  

 Contextual   –  
 Experience   I felt I was not short on resources to tackle the problems. The conviction on my 

knowledge allowed me to work with ease and confi dence  
 Formation   I have had a rigorous mathematical formation, from mathematical reasoning to 

the mechanization of some processes. I think that helps me a lot when facing 
problems  

   Teacher P25  that   assigned S-grade 7.0

 Personal   I like problems that generate mathematical-logical reasoning, without the need 
to solve them in a structured and mechanical way, as when you solve an 
equation  

 Contextual   The space where the workshop was held was comfortable, no pressure or 
problems to develop problem solving in a quite manner  

 Experience   I feel that I have been trained in a good way in problem solving, working with 
case studies and problem-solving workshops in my university days  

 Formation   The possibility of attending mathematics meetings, colloquia and solving-days, 
allowed me to visualize the problems using methods similar to those used in 
earlier occasions  

   (3)   Self-evaluation     with Given Criteria . At last we consider teachers’ self- 
perception as problem solver with another form of self-evaluation, in this case with 
three given criteria that we think are important according to our framework (section 
“Framework”). Data analyzed here come from teachers’ answers to Q4 (section 
“Participants and the Problem-Solving Workshop”), where they assigned them-
selves a grade considering their work in relation with (1) search for different strate-
gies in solving the problems (S-strategies), (2) carrying out the selected strategies 
(S-working), and (3) certainty of the correctness of the given solution (S-certainty). 
Thus, we obtained three self-grades that illuminate the views that teachers have 
about themselves while solving the problems during the PSW. Here we have the 
summary of all grades (Table  9 ).

   We fi rst compute the average and standard deviation for each of the self-grades 
and compare them with the average grades obtained in each of the problems 
(Table  10 ). As we observed in the case of the S-grade, all other self-grades are much 
higher than average grades in problems, and with smaller standard deviation.
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   A second analysis can be made comparing the grades of each teacher, that is, a 
measure of its performance in solving the two proposed problems, with the grade 
they assigned themselves with the three given criteria. In this case we used the clas-
sifi cation of the teachers presented in section “Teachers as Problem Solvers: 
Performance”: low, intermediate, and high according to the performance in solving 
problems. In Graph  3  we observe that the S-grade on the search for different strate-
gies is lower in the  low  class than in the  high  class, which is consistent with the 
justifi cation they gave for the S-grade. Graph  4  is somehow the opposite of Graph  3 , 
but with less different between the three groups of teachers.

    When we compare the grade with the S-certainty, we fi nd that the teachers in the 
 low  class are more sure that their solution is correct than those teachers that actually 
belong to the  high  class, with intermediate S-certainty for the  intermediate  class 
(Graph  5 ). This situation can be further illustrated with the justifi cation that teachers 
gave for their assignment of S-certainty. Here some examples, where we also pro-
vide the grade they obtained in problems 1 and 2 for completeness.
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   Graph 3 Teachers' self-evaluation in relation with the strategies used by teachers' performance 
group       

     Table 9  Teachers' self-evaluation considering three specifi c criteria                                       

 Teacher  01  02  03  04  05  06  07  08  09  10  11  12  13  14  15 

 S-strategies  6.0  6.0  5.0  7.0  7.0  5.0  6.0  5.0  5.0  5.0  6.0  5.0  7.0  5.0  6.0 
 S-working  6.0  7.0  7.0  7.0  6.0  6.0  6.0  7.0  7.0  5.0  6.0  4.0  5.0  7.0  3.0 
 S-certainty  7.0  5.0  5.0  7.0  7.0  4.0  6.0  6.0  7.0  3.0  7.0  6.0  5.0  7.0  4.0 

 Teacher  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

 S-strategies  4.0  5.0  5.0  5.0  4.0  4.0  5.0  7.0  6.0  5.0  7.0  5.0  5.0  5.0  5.0 
 S-working  5.0  5.0  6.0  6.0  5.0  5.0  4.0  7.0  5.0  7.0  7.0  6.0  5.0  6.0  4.0 
 S-certainty  5.0  5.0  4.0  5.0  6.0  7.0  3.0  7.0  7.0  7.0  6.0  7.0  6.0  6.0  7.0 

     Table 10  Mean and standard deviation of teachers' self-evaluation   

 S-grade  S-strategies  S-working  S-certainty  Problem 1  Problem 2 

  x     5.59  5.43     5.73  5.80  4.20  3.24 

  σ   0.94  0.90  1.11  1.27  1.59  1.88 
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 Teacher  Grades  S-grade  Justifi cation 

 P08  7.0–1.0  6   Seeing different situations I could “narrow” the answer and see 
that it was in a margin which I could develop widely  

 P13  5.8–1.0  5   In the fi rst case I did not reach an elaborated conclusion; in the 
second one I think I have generalized, but I had the feeling that 
still there were conclusions to be drawn  

 P14  5.8–7.0  7   I knew it    was      correct, but I also knew that there were many others  
 P16  2.2–4.6  5   I am convinced about the solutions I found, which are consistent 

with the given information, but I think I missed others  
 P21  4.6–2.2  7   I am sure that, even if the road is not the “cleanest,” the answers 

are correct  
 P27  3.4–2.2  6   I feel confi dence of having reached the result  
 P30  2.2–2.2  7   I’m sure that the answers I gave are correct, since I checked and I 

got the expected result  

   In relation with teachers’ self-perception as problem solvers, the main focus of 
this section, we would like to highlight the high perception than they have about 
themselves, especially in the case of teachers in the low level. It is important to 
recall that teachers classifi ed with low performance just obtained one solution for 
each problem, most of  them    did not think about the possibility of another solution 
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   Graph 5 Teachers' certainty self-evaluation by performance group       
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mance group       

 

 

Novice Chilean Secondary Mathematics Teachers as Problem Solvers



306

and just one of the nine teachers of this category tried to use more than one strategy 
to solve the problems. Their average self-grade in the three criteria given by us is 
above 5.5 which is quite high in the Chilean system.  

    Final Discussion 

 In the context of a broader study, 30 novice teachers participated in a Problem- 
Solving Workshop, solving two problems, self-evaluating their accomplishment, 
and answering questions about their feelings while solving the problems. 
The chosen problems ( The slot machine  and  Cristina’s cans ) could be well used in 
a  problem- solving activity   with school students; they could be considered nonrou-
tine problems and their solutions are nonunique. One may expect that a teacher 
trained in problem solving or using problem solving in regular teaching activities 
would be familiar with this kind of problems, and their performance in solving 
them, self- perception, and feelings while solving the problems should be consistent 
with this familiarity. With this in mind we are going to make a fi nal discussion about 
what we have observed. 

 The average performance obtained by teachers in the two problems is 3.72 in a 
scale from 1 to 7, while they self-evaluated their performance with 5.59, showing a 
quite high difference of 1.87 point. The reason for this difference could be a simple 
shift in perception of teachers; however, we see that those students obtaining lower 
performance self-evaluated their work with a higher grade than those obtaining a 
higher performance (see Graph  2 ). We think that this is an  indication   that there is a 
number of teachers that are not familiar with this type of problems; this is further 
supported with explicit statements of nine teachers when explaining the infl uence of 
their formation in the self-evaluation; they said they did not see these type of prob-
lems before or very rarely (see, e.g., P7 and P17 in section “Teachers Self-perception 
as Problem Solvers”). 

 When looking with more details to the rubric used in grading the problems, we 
get more evidence of low or no exposure of some teachers to this type of problems. 
We notice that answers from 33 % of the teachers did not refl ect any interest on 
having more than one solution for  The slot machine  problem. The same happens 
with answers from 60 % of teachers in Cristina's cans problem. Especially eloquent 
is the fact that the three teachers that found only one solution for each problem self- 
evaluated themselves with 7.0, 7.0, and 6.0, somehow not realizing the nature of the 
problems. 

 When we asked teachers to explain the infl uence of their experience in their self- 
evaluation, we found that 12 of them mentioned explicitly that they do not have 
enough practice with this type of problems or that they do not use them for a while 
(see, e.g., P7 and P17 in section “Teachers Self-perception as Problem Solvers”). 
This raises questions about what is the incidence of problem-solving activities in 
the classroom of these novice teachers and about the quality of the activities in 
case they use them. This last point is important since, even if a problem may have 
good characteristic to let student experience mathematics, the way it is managed in 
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classroom may change completely its nature. The question is how teacher will react 
to questions like: How to solve the problem? How to fi nd a strategy? How do you 
know if the strategy will lead to the solution? How to know if the answer is correct? 
If the solution is unique, how to fi nd more solutions? How to know if all solutions 
were found? 

 Even though further research on the actual performance of teachers regarding 
problem solving in classroom is suggested by our fi ndings. The evidence obtained 
in this study already call for teacher professional development actions if problem 
solving is going to be part of the teaching activities. This is especially important in 
view of the prominence that problem solving has in the current Chilean national 
curriculum. 

 On the other hand, if we take into account that teachers participating in our study 
are novice teachers, it is suggested that some actions should also be taken in the 
initial formation institutions. It is regrettable that students passing through years of 
formation at the university, preparing for being teachers, do not experience mathe-
matics in the real way as mathematicians do. It is not about knowing mathematics, 
advanced mathematics; it is not about knowing pedagogical techniques for mathe-
matics, or special training about implementing problem solving in classroom. It is 
about the experience of being a mathematician. 

 Here we come back to arguments by Barrow ( 2006 ) for science that will apply to 
mathematics, saying that it is necessary that teachers wanting to change their 
approach to learning should experience mathematics fi rst hand; they should be 
involved in  professional development   programs that provide opportunity for carry-
ing authentic problem solving, being authentic mathematicians, before expecting to 
implement mathematics in their classrooms. We conclude with a quite eloquent 
statement by Polya ( 1966 ) “ … I shall not explain what is a non-routine mathemati-
cal problem: If you have never solved one, if you have never experienced the ten-
sion and triumph of discovery, and if, after some years of teaching, you have not yet 
observed such tension and triumph in one of your students, look for another job and 
stop teaching mathematics.”     
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      Infusing Mathematical Problem Solving 
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      There are many reports on how problem solving is successfully carried out in 
 specialised settings; relatively few studies report similar successes in regular math-
ematics teaching in a sustainable way. The problem is, in part, one of boundary 
crossings for teachers: the boundary that separates occasional (fun-type) problem 
solving lessons from lessons that cover substantial mathematics content. This chap-
ter is about an attempt to cross this boundary. We do so by designing “replacement 
units” that infuse signifi cant problem solving opportunities into the teaching of 
standard mathematics topics. 

    Introduction 

 In Singapore, mathematical problem solving has been established as the central 
theme of the primary and secondary mathematics curriculum since the early 1990s. 
The  Singapore      Ministry of Education (MOE) syllabus document states explicitly 
the importance of problem solving: “Mathematical problem solving is central to 
mathematics learning. It involves the acquisition and application of mathematics 
concepts and skills in a wide range of situations, including non-routine, open-ended 
and real-world problems” (MOE,  2007 , p. 3). 

 Over the last two decades, mathematics teachers in Singapore have become 
aware of the importance of problem solving and in bringing the notion  of      heuristics 
and Pólya’s model into their professional discourses. The success in promulgating 
mathematics problem solving is, however, limited. While there are many local 
research undertakings conducted within the fi eld of mathematics problem solving, 
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few studied the actual teaching of problem solving  in the classrooms . In one such 
recent study, Teong et al. ( 2009 ) noted that when teachers were avowedly conducting 
problem solving lessons, only a narrow set of heuristics was reinforced for usually 
closed problems. In other words, “problem solving” is restricted to an activity sepa-
rate from usual teaching of mathematics content and carried out mainly towards 
the end of a topic where “challenging questions” are encountered. This portrait of 
problem solving instruction hardly coheres with the vision of the centrality of prob-
lem solving as set forth in the intended curriculum. This mismatch is a common 
worldwide phenomenon: Writers who research in problem solving under different 
jurisdictions assert that, despite decades of curriculum development, problem 
solving instruction still requires signifi cant improvement (Kuehner & Mauch,  2006 ; 
Lesh & Zawojewski,  2007 ; Lester & Kehle,  2003 ). Similarly, Stacey ( 2005 ) noted 
that problem solving remained “elusive.” 

 In line  with   MOE’s curricular goal, this is our project team’s vision of problem 
solving instruction in Singapore classrooms: solving unfamiliar problems is a regular 
activity in the classroom; teachers provide scaffolds to help students not only to solve 
problems but also to make extensions beyond the original boundaries of the prob-
lems (i.e. carry out Pólya’s Stage 4 on “Look Back”); instead of being a separate 
activity unrelated to the learning of usual mathematics content, problem solving is 
weaved into the instructional development of mathematics topics so that it is an inte-
grated part of students’ learning of mathematics; problem solving processes become 
unrefl ectingly the tools of choice when encountering diffi culties with mathematics. 
We term the classroom realisation of this vision as  infusion  of mathematics problem 
solving. Infusion is one of the primary goals of our design research. In the remaining 
sections of this chapter, we explicate our design approach towards infusion. 

 We recognise that an endeavour so onerous—and erstwhile so elusive—as infu-
sion of problem solving is a complex enterprise that needs to take into consideration 
a confl uence of numerous design factors such as the nature of problems, the cogni-
tive and affective orientation of students, and the repertoire of classroom practices 
that would support problem solving. We thus state at the outset that this chapter 
focuses only on the overarching theoretical, curricular, and structural elements of 
this enterprise as they were brought together in our design experiment. Nevertheless, 
we think that these broad-grained features are critical for infusion. We begin with 
the theoretical considerations underpinning the design experiment.  

    Infusion and the Conceptions of Teaching Mathematics 
Problem Solving 

 In considering infusion, we make reference to the well-known three conceptions by 
Schroeder and Lester ( 1989 ) which are still widely used in the literature (e.g. Ho & 
Hedberg,  2005 ; Stacey,  2005 ):
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•    Teaching mathematics  for  problem solving  
•   Teaching  about  mathematics problem solving  
•   Teaching mathematics  through  problem solving    

    We think that these conceptions remain useful as descriptions of still common 
enactments of mathematics problem solving and as such can serve as an appropriate 
starting point in clarifying our stance on infusion and in locating the problems asso-
ciated with infusion. 

 The inquiry begins at the third conception which represents the fi nal (and most 
challenging) hurdle of infusion in the classroom. Indeed, infusion certainly must 
involve teachers (ultimately) utilizing problem solving as a means to help students 
learn standard mathematics content. When this takes place, then problem solving 
truly becomes an activity that is tightly integrated into (instead of being separate 
from) the learning of mathematics.    When teaching mathematics  through  problem 
solving takes place regularly, problem solving becomes an essential part of teach-
ers’ and students’ conception of “doing mathematics.” 

 However, upon closer examination and taking a curricular design perspective, 
the “through problem solving” approach may not  always  be the preferred way of 
teaching mathematics.    Take the example of defi nitions. While it may be argued that 
even defi nitions can be “discovered” through suitable problem solving activities, it 
may not be the most appropriate course of instructional action as the teacher may 
want to concentrate the problem solving activity on the applications rather than the 
“discovery” of the defi nitions. In which case, the sensible approach would be to 
state the defi nitions with suitable examples and shift the emphasis on utilizing the 
knowledge of these defi nitions in problem solving. Moreover, due to the realistic 
constraints of curriculum time and the need to fulfi l other instructional goals (such 
as helping students gain suffi cient fl uency with basic mathematics skills),    not all 
mathematics can be taught  through  problem solving. Thus, while the third concep-
tion captures much of our vision of infusion, it does not equate to infusion. 

 The reality of classroom teaching in Singapore is such that teachers see it as their 
social responsibility to cover “problems” that appear in high-stakes or national 
examinations. These problems are the ones that are usually found at the end of text-
book chapters (and thus, concomitantly, the end of an instructional unit). These 
problems are also usually tied to the content covered in the topic; as such, to “get to” 
these problems, teachers will need to help students learn the requisite mathematics 
content for solving the problems; in this sense, this practice is teaching  mathematics 
 for  problem solving.   For example, problems of this kind include: Given that the 
median is 6 for the data set: 3, 5, 4, 7, 8, 19, 11,  x , state the minimum value of  x . To 
solve this problem, it is clear that students need to fi rst learn about “median” (and 
thus the need to teach it  for  problem solving). There is a tendency for teachers to 
immediately prescribe a technique to deal with this type of problems (followed by 
repeated practice of related “problems”) as a matter of effi ciency. However, this 
approach is described by Schroeder and Lester ( 1989 , p. 34) as a “narrow” view of 
teaching mathematics  for  problem solving:
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  [A] solution of a sample … problem is given as  a   model for solving other, very similar 
problems. Often, solutions to these problems can be obtained simply by following the pat-
tern established in the sample, and when students encounter problems that do not follow the 
sample, they often feel at a loss. 

   This brings us to our conception  of   teaching  for  problem solving within the 
scheme of infusion. We do not challenge the practical realities to cover these prob-
lems usually found at the end of textbook chapters. When these problems arise, 
instead of always directly teaching the problem-specifi c technique, we think they 
are opportunities for students to attempt them as genuine problems. For example, 
referring back to the above problem on median, this could be a good juncture to 
allow students to explore the problem terrain better by, say, substituting values of  x  
as a way to understand the problem before devising a plan and so on. 

 Thus,  teaching    for  problem solving is to us about teaching students the mathe-
matics content—the “resources” in the words of Schoenfeld ( 1985 )—necessary to 
solve the later  unfamiliar  problems. In other words, the “problems” we have in mind 
are not exercises that vary slightly from earlier-practised exercises; they are prob-
lems in the usual understanding of it in the literature: non-routine and where the 
solution strategy is not immediately discerned. The mathematics resources learnt 
earlier are thus necessary but not suffi cient to solve the problems. To be successful 
at solving these problems, the students need to not “feel at a loss”; instead, they are 
required to use heuristics to help them understand the problem and devise produc-
tive plans to move forward in their attacks at the problem. In short, the students need 
to access problem solving strategies like the  ones   advocated by Pólya ( 1957 ). This 
leads us to the place of teaching  about  mathematics problem solving. 

 To us,    teaching  about  problem solving involves the explicit instruction of the use 
of Pólya’s ( 1957 ) four-stage model in problem solving as well as Schoenfeld’s 
( 1985 ) developments of the problem solving framework. We will describe how 
these models are used in our design in a later section. At this point, we state our 
position that it is important to teach  about  mathematics problem solving prior to 
attempts at teaching mathematics  for  and  through  problem solving. Without prob-
lem solving skills, students take a long time to solve problems successfully. Thus, 
attempts to teach much of mathematics  through  problem solving, though ideal, has 
not been realistic given the limitations of curriculum time. We think that teaching 
 about  problem solving fi rst as a separate module is a good investment of time in 
terms of the “returns” we may obtain later—as in, having learnt problem solving 
skills, students are more likely to make signifi cant headway in a shorter time when 
presented with unfamiliar problems meant to help them learn mathematics content. 
In addition, teaching  about  problem solving introduces to both teachers and  students 
a means or a language to talk about problem solving. The language introduced—for 
example, the language of “solve a simpler problem” —can then be more easily 
transferred and  reinforced   when solving other problems later. 

    We should perhaps clarify at this point that our conception of teaching  about  
problem solving does not divorce the teaching of problem solving strategies from 
the teaching of mathematics content. In other words, in teaching  about  problem 
solving, the teacher does not teach problem solving processes devoid of content; 
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rather, teachers use problems containing mathematical conditions and requiring 
mathematical solutions. However, the focus is on using the problems and their solu-
tions to  foreground  repeatedly the usefulness of the process such as the Polya’s 
stages, not the other way round. As such, the primary goal in teaching  about  prob-
lem solving is thus the learning of the problem solving process and language. 

 This  is   how we conceive of the infusion process in relation to the three concep-
tions of mathematics problem solving: fi rst, teach  about  mathematics problem solv-
ing in a separate introductory module to familiarise students with the language and 
tools of problem solving; second, within the standard mathematics curriculum time, 
provide regular opportunities to teach mathematics  for  problem solving (i.e. solve 
unfamiliar problems utilizing the mathematics content learnt in the topic), teach 
mathematics  through  problem solving (i.e. solve problems that will lead to learning 
content meant to be covered in the topic), and, in the process of solving these prob-
lems, revise and expand the tools to acquire  about  mathematics problem solving. 
The project entitled Mathematics Problem Solving for Everyone (MProSE) is a 
design experiment that seeks  to   study this infusion process.  

       MProSE Design Experiment 

 MProSE uses design experiment as the overarching methodological approach. 
Design experiment starts off with a clear set of product specifi cations—also known 
as “   parameters”—to guide and evaluate the degree of success of the innovation. 
Guided by well-established theories, the process of design then undergoes iterative 
cycles of testing and refi nement in localised conditions with a view of improving its 
fi t to the parameters and its “transportation” potential to other relevant contexts. 

 Design experiment appealed to us in that it allows for the unique demands and 
constraints of the schools to be met. The methodology’s advocacy of  an   implement- 
research- refi ne iterative approach to educational design appeared to us to hold 
potential in dealing with the complexity of school-based innovations. A design 
experiment can be described as the “   creation of an instructional intervention [in our 
context, a problem solving emphasis in instruction] on the basis of a local theory 
regarding the development of particular understandings” (Schoenfeld,  2009 ). We 
based our design experiment on the methodology and terminology of Middleton, 
Gorard, Taylor, and Bannan-Ritland ( 2006 ). 

  MProSE   parameters and brief justifi cation (for details, the reader can refer to 
Quek, Dindyal, Toh, Leong, and Tay,  2011 ): (1) model of problem solving follows 
the theoretical basis of Pólya and Schoenfeld. The well-known cornerstones of 
Pólya’s ( 1957 ) stages and heuristics as well as Schoenfeld’s ( 1985 ) framework of 
problem solving are well accepted by the professional community. As such we seek 
to build on their contributions, focusing especially on the work of translating these 
models into workable practices; (2) mathematical problem solving must include  the 
  Look Back stage of Pólya’s model. This point is really included in the earlier point 
under Polya’s model but is emphasised here as, over time, “Look Back” has become 
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variously interpreted. Mathematicians do indeed solve problems that they encoun-
ter; however, they do not stop at the solution of the immediate problem; rather, they 
use the solution strategy of the problem as a sort of kernel to generate solutions to 
related problems.    Thus, it is this disposition of mathematicians with regard to prob-
lems—where they extend, adapt, and generalise problems—that we fi nd essential to 
build into a school curriculum that seeks to inculcate mathematical thinking; (3) 
mathematics problem solving is a valued component in school assessment. What we 
see as the root of the lack of success for previous attempts to implement problem 
solving in the classroom is that problem solving is not assessed. Because it is not 
assessed, students and teachers do not place much emphasis on the processes of 
problem solving; students are more interested to learn the other components of the 
curriculum which would be assessed; (4) mathematics problem solving must be part 
of the mainstream curriculum. To “downgrade” mathematics problem solving to a 
form of enrichment or optional programme for students violates the value of math-
ematical problem solving; (5) teacher autonomy is important in the carrying out of 
problem solving lessons. While the beginning stages of innovation may include the 
involvement of expertise outside the school, ultimately, for the innovation to take 
root and sustain, teachers’ capacity must be built to a point where they own the 
innovation and possess the ability to carry out problem solving lessons on a regular 
basis.    

 At the time of writing, MProSE is entering its sixth year as a design experiment, 
and in the process, we have undergone several iteration cycles from the original 
design. It is not realistic, given the constraints of space, to detail the full journey in 
this chapter. The focus of this chapter is to bring the readers to our current stance 
with regard to infusion. As such, we will briefl y describe the fi rst phase of MProSE 
infusion (the development of teaching  about  problem solving) and then discuss 
more substantially our current progress within the second phase of infusion (bring-
ing problem solving into the regular work of teaching standard mathematics).  

       First Phase of MProSE: Teaching About Problem Solving 

 Based on the parameters, we designed a module on problem solving in which stu-
dents are explicitly taught the language and strategies used in problem solving. This 
refers to the second conception of problem solving, that is, teaching  about  problem 
solving. The translation of design parameters into actual curricula features will not 
be discussed. For details, the reader may refer to Leong et al. ( 2011 ). 

 The entire module consists of ten lessons. The duration of a typical problem 
solving lesson consists of 55 min. Each lesson consists of two main segments. The 
fi rst segment of the lesson involves the teacher explaining one particular aspect of 
problem solving (such as one of the four stages in the Pólya’s model) and discussing 
the homework problem of the previous lesson. The second segment emphasises one 
particular mathematical problem that is illustrative in demonstrating that particular 
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aspect of problem solving. Throughout the entire lesson, only one problem is high-
lighted in great depth. The students have to work out the problem on “the practical 
worksheet” guided by the instructions in the worksheet. The worksheet initially 
consisted of four pages, with each page corresponding to each of Pólya’s stages. 

    The practical worksheet is an important part of the design as it is a tangible 
embodiment of the problem solving process for teachers and students. Its introduc-
tion into the classroom is meant to fulfi l at least two roles: guide and reinforce the 
problem solving process along the lines of Pólya’s stages and heuristics and signal 
a switch from other modes of instruction to a problem solving paradigm. Due to its 
practical importance in the overall infusion process, the practical worksheet has 
undergone a number of refi nements in the course of the project. Figure  1  shows the 
compressed version of the three-page practical worksheet in its current form. For 
the detailed description of the evolvement of the module and the practical work-
sheet, readers could refer to Dindyal et al. ( 2013 ).

      In this phase of teaching  about  problem solving, the module is taught separately 
from the usual teaching of mathematics in regular lessons. As our MProSE project 
has now moved to a juncture where there is evidence of stability in the implementa-
tion of the module, moving to the next phase of infusion—where problem solving 
is to be a regular feature in the teaching of standard mathematical content—becomes 
a natural progression. In the sections following, we highlight the progress and 
 challenges in this next phase of infusion. In particular, we focus on the curricula and 
structural tweaks in response to challenges in teacher development for problem 
solving.     

Practical Worksheet
Problem

I Understand the problem
Use some heuristics such as Draw a Diagram, Restate the Problem, Use Suitable Numbers, etc. to help you.

I have understood the problem. (Circle your agreement below.)
Strongly Disagree Neutral Strongly Agree

1 2 3 4 5
You may proceed to the next page to work out a solution/partial solution.

II&III Devise a Plan and Carry it out
a) State your plan clearly, for example: (i) Use Suitable Numbers and Look for Patterns; or (ii) Find the areas of all 

smaller triangles and work out their ratios.
b) Number each plan as Plan 1, Plan 2, etc.
c) Carry out the plan that you have stated.

Plan 1 Statement of Plan:

Carry out Plan 1

IV Check and Expand
a) Check your solution.
b) Write down a sketch of any alternative solution(s) that you can think of.
c) Give one or two adaptations, extensions or generalisations of the problem. Explain succinctly whether your solution 

structure will work on them.

  Fig. 1       Practical worksheet (compressed by removing spaces for writing)       
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    Second Phase MProSE: The First Implementation 

 After students had been exposed to instruction  about  mathematical problem solving 
through the MProSE module, the next infusion step is to use the problem solving 
 s  kills acquired regularly in the learning of mathematics content in usual mathemat-
ics lessons. 

 One of our key principles was that inclusion of problem solving in regular math-
ematics should  help   teachers improve in the teaching of mathematics. If the teachers 
were satisfi ed with existing ways of teaching a mathematics topic, then there was no 
motivation to switch to the problem solving approach. A logical step to begin would 
be for teachers and researchers to select a diffi cult topic to teach or a concept where 
students always made mistakes. In the process of applying  the   skills and strategies 
that students had acquired in the MProSE module, they need to solve the mathemat-
ics problems through struggling using problem solving—the exploration of which 
would help them understand the topic better when it is taught later. 

 We also strongly advocated the continued use of the practical worksheet when-
ever students are instructed to attempt problems in this phase. We think that the ten 
lessons in the earlier MProSE module, while substantial, are not suffi cient yet in 
bringing about a habit in the students of  applying   Pólya’s processes when confronted 
with mathematics problems. Through the followed-up use of the practical worksheet 
within the teaching of topics, there is continuity in the learning and application of the 
problem solving skills over an increasingly broad range of mathematics problems. 
In the process of struggling through problem solving, it was hoped that the problem 
solving process will become part of the  students’ learning habit  . 

 In addition, we suggested to the teachers the  following   guidelines for 
implementation:

•    Infusion problems are to be worked on a practical worksheet.  
•   Problem is to be worked on for exactly 1 h.  
•   An infusion problem is to be given as homework in the following situations:

 –    On the last lesson prior to teaching a new topic, to prepare the student to 
constructively develop some feeling for the topic (preparation)  

 –   Within the span of a topic to allow the student, to explore the diffi cult nuances 
of the topic (exploration)  

 –   At the end of a topic, to consolidate his/her understanding of the topic 
(consolidation)     

•   These are the parameters for deciding on the suitability of an infusion problem:

 –    Diffi cult enough to take at least 30 min.  
 –   Allows student to discover some aspect of the topic: for example, a technique 

taught is superior to other techniques, or a particularly diffi cult aspect becomes 
clearer after enough time is spent exploring it, etc.  

 –   Very amenable to expansion (Pólya’s Stage 4).       
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    We also supplied suitable problems for each of the “diffi cult” topics that the 
teachers brought up. We were always in close contact with the teachers through 
email and school visits.  

    Second Phase MProSE: Evaluating the First Implementation 

 In keeping with the features of a design experiment, we examined implementation 
of the plan in order to refi ne the design for the next iteration. We held regular meet-
ings with the teachers to discuss pre-implementation details—the need to account 
for students’ affect, the suitability of the problems, and the instructional emphases 
intended for each problem—as well as post-implementation refl ections. From these 
meetings, it became clear to us that teachers were facing a number of challenges 
with regard to their attempts at infusing problem solving into their regular lessons:

    1.      Instructional goals behind problems   . Much time during the meetings was taken 
up to discuss the actual “location” of the problems in their teaching schedule. 
Questions that were addressed included: “Should it be given as an introductory 
problem at the beginning of the topic, or somewhere in the middle, or towards 
the end?” “Should the problem be done fully in class, purely as homework, or 
start as homework and completed in class?” On the surface, these questions 
appeared to be about the most natural or logical points to insert the problems 
along the content developmental track of the topic; upon deeper analysis, it 
revealed the teachers’ as-yet unclear instructional goals about what each prob-
lem can potentially fulfi l. To illustrate this point, we review the meeting discus-
sions over the “cat problem”: “5 cats take 5 days to catch 5 mice. How many cats 
will it take to catch 2 mice in 2 days? How long will it take 1.5 cats to catch 1.5 
mice?” First, the teachers shared that they inserted this problem at different junc-
tures in their teaching of the ratio/proportion topic—Karen did it as an introduc-
tory problem; Siva used it as a problem at the end of the topic; Mariam also used 
it at the end but she did only part of it in class and the rest as homework for stu-
dents. Second, when asked for their reasons for their respective decisions, they 
brought up mainly considerations related to availability of time pockets for in- 
class problem solving, but not about the goals that we originally in-built into the 
problem, such as the opportunity for students to learn conceptual distinctions 
between direct and indirect proportion through exploring the problem terrain 
instead of through teacher’s direct telling. In particular, the teachers seemed 
unaware that, by putting the problem at the end of the topic where direct and 
indirect proportion were explicitly covered through numerous practice ques-
tions, the “problem” lost its problem status—unfamiliarity and thus the need to 
apply problem solving processes—to the students, rendering it more like a rou-
tine exercise to them. This went against the original goal of infusing “problem 
solving” into the  topic  .   
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   2.     Affect-effi cacy of the    problems   . A number of the infusion problems were designed 
to account for students’ affect in mathematics through problem solving. An 
example of the “multiple choice problem” would illustrate this better. The prob-
lem statement is: “A student had to take a test consisting of 100 multiple choice 
questions. Each correct answer is given 5 marks while each wrong answer will 
have 3 marks deducted. Unanswered questions are given 0 marks. The student 
attempted all the 100 questions and obtained 444 marks. How many questions 
did the student get wrong?” We expected students to fi nd this problem accessi-
ble: substituting small numbers for correct and wrong answers can help them 
understand the problem easily; the familiar heuristic of “guess and check” can be 
utilised to obtain a solution to the problem. Thus, we anticipated that students 
would fi nd success at solving it and thus have a positive emotional orientation 
towards the problem. In addition, teachers could use the “check and expand” 
stage to ask questions—such as, “what if the numbers in the question are 
changed? Is there an alternative method that can take care of such changes in the 
question more easily?”—to provide the motivational link to the topic of alge-
braic equations. However, during the meetings, the teachers shared that their 
students were generally not motivated to solve the problems. We thought that 
more concrete strategies in scaffolding students’ attempt towards productive 
approaches would help teachers encourage more success in problem solving—a 
 necessary   ingredient for students’ long-term buy-in to problem solving.   

   3.     Time consumption of the    problems   . The teachers were very conscious of class 
time taken up for problem solving. And they were aware that meaningful prob-
lem solving takes time. [The Singapore mathematics syllabus is seen by most 
teachers as heavy content-wise. Coupled with the need to prepare students for 
high-stakes examinations, it is not uncommon for teachers to feel the constant 
time pressure to “cover syllabus” (e.g. Leong & Chick,  2007 )]. They saw it as a 
dilemma: if they used up class time to do problem solving, it would reduce the 
already limited time to “cover syllabus”; if they left problem solving as home-
work (to free up class time), teachers would then not be at hand to help the stu-
dents and it would exacerbate the problem of low levels of students’ motivation 
at problem solving. We saw it differently: it was not a case of problem solving 
versus content coverage; as described in the cases of the “cat problem” and the 
“multiple choice problem,” the problems could be used to explore content, deal 
with the problems within content, as well as provide motivational links to the 
more formal treatment of content. However, we understood that, unless teachers 
could see how the problems can indeed fulfi l these roles within the actual content 
development of a given topic, it would become increasingly harder for teachers 
to willingly “give up” class  time   for problem solving.     

 We thought that the challenges that the teachers faced were signifi cant, and we 
needed to address them in the next iteration of this phase. In summary, the infusion 
must include these  features  : (a) apart from the problems, there should be additional 
details that will help teachers realise the intended goals behind the problems. This also 
implies that teachers should be directly involved in the planning that leads to the 
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rationale and fi nalisation of the problems; (b) the planning should not be restricted 
to the problems and its immediate temporal surrounds; teachers need to see how the 
problem(s) fi t logically and developmentally within the entire topic progression; in 
other words, the unit of planning is “zoomed-out” to the whole topic; this will help 
teachers see how time spent on problem solving IS a form of content coverage; (c) 
motivational elements should be integrated into the unit planning. In determining a 
strategy to incorporate these elements in the refi nement of the design for the second 
phase, we also took into account broader structural challenges relating to policy 
 and   curriculum. 

 In addition to the  practical challenges   the teachers faced, we highlight some 
structural challenges that we need to confront when considering a refi nement of the 
envisioned infusion. The fi rst is the largely centre-to-periphery model of curriculum 
dissemination in Singapore. The effectiveness of this  dissemination approach   
depends on, among other factors, “the strength of the central resources,” the number 
of peripheral elements, and their distance from the centre (Kelly,  2004 ). One critical 
step in this  centre-to-periphery process   is the teachers’ interpretation of the offi cial 
curriculum (in the form of a syllabus document) and its translation into classroom 
practices. It is through these classroom experiences that students learn not just con-
tent for national examinations but content imbued with the disciplinarity of mathe-
matics. However, while teachers are consulted by curriculum planners and 
developers, they nevertheless remain at the far end of the change process (in the eye 
of the storm, safe from the fury of the blast). The curriculum as an end product is 
conveyed to teachers in the form of training workshops by the people at the centre. 
Thereafter, it is left very much to the teachers in a school to implement the curricu-
lum, within the given guidelines, and in view of the vision of the school. In this 
sense,  school-based teacher professional development   in interpreting and translat-
ing the local mathematics curriculum is key to ensuring the realisation of the 
overarching curricular goal of mathematical problem solving for all students. This 
school-based approach to teacher participation in developing a problem solving- 
centric curriculum—as a form of teacher development—is the model adopted by the 
MProSE team. 

 Another challenge to teaching problem solving is the lock-step grid of fi xed 
 teaching schedules  . Teachers are hard pressed into adhering to these schemes of 
work to prepare students for term tests or national examinations. In such a context of 
high time pressure to “ cover syllabus  ,” it is not uncommon for teachers to have the 
mind-set that problem solving is an unessential distraction. In addition (and perhaps 
related to teachers’ perception of limited time), teachers’ preferred mode of instruc-
tion is the teacher exposition type of teaching that is entrenched in many classrooms. 
Hattie and Yates ( 2014 ), citing Larry Cuban and Nathaniel Gage, pointed out that this 
teaching methodology, also known as the  initiate-response- evaluation approach or 
conventional-direct-recitation  , has survived “considerable criticism and attacks for 
over two centuries” (p. 44). It is not surprising to fi nd it a common approach in local 
classrooms. One reason is the easily recognisable and established roles and norms 
for both teachers and students in the classroom. 
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 As part of our design experiment approach, we need to “accommodate” these 
practical challenges and structural givens in teachers’ preferences and mind-sets. 
By accommodation, we mean a type of change we make to the design for meeting 
the (localised or systemic) constraints faced by teachers (Quek et al.,  2011 ). Our 
approach as a result was to use “replacement units” to bring about instructional 
change and teacher capacity building within this preferred teaching approach and 
the lock-step planned curriculum.  

          Refi nement of Second Phase MProSE: The Replacement 
Unit Strategy 

 In this last section of the chapter, we bring the readers to the most up-to-date refi ne-
ment of our MProSE infusion programme: use of the replacement unit strategy. 
Although this strategy was developed independently during our other projects 
(see, e.g. Leong et al.,  2013 ), the term “replacement unit” (RU) is attributable to 
Cohen and Hill ( 2001 ). While working on designing an RU, we develop—in con-
sultation with the teachers—a redesign for an entire mathematics topic. This rede-
sign involves restructuring of content and development of all the relevant 
instructional materials to accommodate the integration of problem solving without 
changing the original allocated time for the unit. As such, it is an authentic “replace-
ment unit”—in the sense that teachers can replace the original way of teaching the 
unit by this RU without upsetting the overall teaching schedule. 

 Cohen and Hill ( 2001 ) reasoned  t     hat the replacement units were an important 
innovation in the sense that “[curriculum] developers would be able to ground 
teachers’ professional education in the improved student curriculum that teachers 
would teach” (p. 47). Linking teachers’ professional development with a proposed 
improved curriculum was a novel way which differed from usual attempts which 
typically focused on one element at a time. They reported that workshops for teach-
ers on the materials and the pedagogy of the replacement units “had appreciable 
depth and allowed teachers to investigate more seriously individual mathematical 
topics, like fractions, in the context of student curriculum” (p. 55). They also 
reported the positive potential of replacement units for education reform:

  Teachers who took workshops that were extended in time and focused on students’ 
tasks—either the replacement units created for the reforms or new assessment tasks and 
students’ work on them—reported more practices that were similar to those which 
reformers proposed. In contrast, teachers who took workshops more loosely focused on 
hands-on activities, gender, cooperative learning, and other tangential topics were less 
likely to report such practices. (p. 88) 

   An RU, usually spanning 4–8 h in duration,       is a realistic and reasonable period 
of engagement with teachers for each attempt at curricular redesign. This avoids the 
onerous task of redesigning the entire curriculum all at once. Moreover, focusing 
the efforts on one RU at a time allows both the researchers and the teachers to trial 
(and retrial, if necessary) and to refi ne the RU as well as to gain familiarity with its 
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underlying design principles over time. This setup of studying and redesigning an 
RU based on a topic that is covered within realistic time limitations in the teachers’ 
teaching schedule provides the platform to accommodate the structural challenges 
discussed earlier. Teachers’ active involvement from initial discussion to implemen-
tation and refi nement of the RU also helps close the gap between curriculum plan-
ning and practice. 

 More importantly, an RU is a suitable “unit” to infuse problem solving. It is in 
the redesigning of a unit that the relevance and place of problem solving can be 
found. The RU is of appropriate size for problem solving to be weaved seamlessly 
with the development of mathematics content and thus allowing teachers to see, for 
example, how motivational elements can be inserted to connect problem solving to 
content to be learnt, how problem solving can be realistically employed within time 
constraints, or how problem solving IS the learning of content. In other words, the 
 RU      strategy addresses the local challenges discussed earlier. 

 At the time of writing, we are in the early stage of implementing the RU strategy 
in the MProSE project. As such, we are unable at this point to provide an analysis 
of the outcomes of its implementation and follow-up further refi nements. 
Nevertheless, as an infusion strategy that we have come to develop based on our 
experiences with a number of schools we worked with over more than 5 years, we 
think it holds promise. A summary of an RU on quadratic equations that  we      designed 
together with the teachers is given in the Appendix for the readers’ reference.  

    Conclusion 

 We think that the current big question in mathematics problem solving research is 
this: How do we make meaningful problem solving a regular feature in mathematics 
classrooms? We recast this as the “infusion problem.” There are many reasons why 
the classroom is so “resistant” to change, including change towards problem solving 
infusion. In this chapter, we focus our discussion of infusion hurdles on existing 
macro-issues such as the pressure towards content coverage, teachers’ readiness 
towards a problem solving approach, and the lock-step grid of  teaching schedules   
that renders additional curriculum time for problem solving unrealistic. Through 
our MProSE design experiment, we have come to learn that the way to tackle some 
of these challenges is not merely through minor tweaks in the way teachers teach; 
what is needed is a paradigm shift that requires changes to be implemented at the 
curricular and structural level in the school’s mathematics programme. In short, we 
think the intervention can be carried out in two steps: First, familiarise students with 
the processes and language of problem solving through a separate module desig-
nated to foreground the teaching  about  mathematics problem solving. This inten-
sive learning about problem solving is needed for both teachers and students; 
thereafter, follow up with integrating problem solving in the teaching of regular 
mathematics content through RUs. We argue that the RU strategy is a feasible 
way forward in realising the curricular and structural changes that need to be made; 
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the strategy also provides a suitable platform for teachers’ participation in learning 
and curriculum redesign. 

 We readily acknowledge that these broad design features are necessary but not 
suffi cient to deal with the infusion problem. Although not detailed in this chapter, 
we developed and tweaked classroom implements alongside these structural changes 
to help teachers and students cope with this “new” problem solving way of learning 
mathematics. There are ongoing efforts to refi ne the nature of problems to meet the 
intellectual and affective needs of the students; at the same time, we modify the 
practical worksheet so that it easier to use for both teachers and students. We are 
also currently working on the repertoire of teachers’ craft skills that are supportive 
of the teaching of problem solving. This includes the clarity in teacher’s visual rep-
resentations of the problem solving processes in the whole class setting and the 
kinds of scaffolds that teachers can use in table-table instruction to help students 
experience empowerment through problem solving. 

 In short, we can approach the infusion problem through various loci of study—
such as curriculum redesign, teacher development, and classroom task implements. 
The next stage of our research will involve a careful examination and integration of 
these factors in a way that fi ts the local conditions of respective schools so that it 
results in successful infusion.      

    Appendix: Description of an RU  on   Quadratic Equations 

 Under the topic of “Solving word problems that are reducible to quadratic equa-
tions,” a common observation among teachers is that some students struggle with 
translation of the statements in the “word problems” to equivalent equations. The 
frequently used trajectory can be summarised as such: Teacher demonstrates the 
steps involved in translating statements to equations over different types of word 
problems; students can usually follow the steps; but when asked to do it on their 
own, they are “stuck,” especially when confronted with an unfamiliar type of “word 
problem.” The usual response by teachers to such student diffi culty is more demon-
stration and more fi ne-grained breakdown of steps with the intent of making the 
skill acquisition process for students more gradual. Here, we propose the problem 
solving approach within the context of an RU. 

    We think the problem students encounter is not merely that of lacking familiarity 
with the different types of word problems; more fundamentally, it is the lack of 
opportunity for authentic exploration of the word problems—a necessary step for 
students to make sense of the problems and to appreciate the power of the algebraic 
approach. In other words, we need to “prepare the ground” so that when the alge-
braic method is “planted,” it will “take root”—students will receive it and learn it 
better instead of seeing it as a method forced upon them. In particular, we infuse 
problem solving. 

    For this RU on quadratic equations, instead of being taught a method of solving 
word problems right from the start, students are given time to attempt such a word 
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problem on the practical worksheet. In so doing, they are given the opportunity to 
explore the word problem and hence fi gure out its underlying structure. At the same 
time, we are conscious of all the realistic constraints—such as the need to cover 
standard content and the lock-step schedule which were elaborated in the earlier 
sections—and we are bound by the redesign of the RU. The lessons in this topic are 
thus reorganised in this way: 

  Lesson 1: Solve a word problem reducible to quadratic equation with a practical 
worksheet.  

    The “Employee problem”: A company wants to employ as many workers as it 
can afford to complete a project within a short timeframe. If the company pays each 
worker $6 per hour, there are only 30 applicants for the job. However, the company 
needs more workers. It is known that for every $1 increment in the hourly pay, it will 
attract two more applicants for the job. The company can only afford a maximum of 
$504 per hour in total. How much should the company offer to pay per hour in order 
to attract the maximum number of workers? 

    The main goal is to let students re-familiarise with the practical worksheet and 
feel a sense of empowerment at solving the problem when they use Pólya’s stages 
and heuristics. Note that to solve the problem, students need not use algebra. 
Students are expected to use other methods such as systematic listing and other 
heuristics such as “substitute values” to solve the problem. 

 At the fourth stage of Pólya, we can provide a motivation for algebra by asking, 
“What happens if we have an owner with greater resources beyond $504? Can your 
solution be easily adjusted to cope with this adaptation?” The point is to provide a 
link to the algebraic representation/solution, which is the scope of the next few 
lessons. 

  Lesson 2: Revision of quadratic factorisation and using it to solve quadratic 
equations.  

    The main goal is to help students use “zero product rule” and factorisation to 
solve quadratic equations with integer coeffi cients. After revision of quadratic 
factorisation, students are to be taught the steps in solving quadratic equations by 
factorisation. They then practise the method to gain fl uency. In other words, this is 
a “standard” lesson geared towards mastery of technique—a type of teaching that 
teachers are familiar with. 

  Lesson 3: Solve another given word problem using a practical worksheet.  
 The “Consecutive Numbers problem”: “Four consecutive even numbers are such 

that the product of the smallest and the largest is 186 more than the sum of the other 
two. What are the four numbers?” 

 Students are expected to use the resources gathered, both the experience in 
Lesson 1 on using the algebraic method as well as the method of solving quadratic 
equations in Lesson 2, to make productive attempts at solving the problem in this 
lesson. Under Stage 4, students can consider generalizing a standard procedure for 
solving “word problems” that are reducible to quadratic equations. The intended 
link from the working for this problem and the more generalised method is illustrated 
in Table  1 .
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    Lesson 4: Apply the general procedure abstracted in Lesson 3 to solve other 
“word problems.”  

    The main goal is to help students apply the general method in the right column 
of Table  1  to a variety of other word problems reducible to quadratic equations. The 
instructional approach is one of practising a learnt method—a style of teaching 
which is standard for teachers.   
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    Abstract     Getting teachers to enact mathematical problem posing (MPP) and having 
children do mathematics in the making ( How to solve it?  Princeton University Press, 
Princeton, NJ, 1945) is not easy. In a prior study ( Educational Studies in Mathematics  
83:103–116, 2013), a teacher educator reported on the development of research-
based tasks aligned to the math curriculum and worked with 60 teachers to explore 
for feasible methods to encourage children to pose mathematical problems. In the 
present study, three selected teachers continued their journeys and not only devel-
oped their own tasks but also designed their own problem-posing lessons. The 
teacher educator worked closely with these teachers for one whole year. Data collec-
tion included teachers’ journals, children’s written work, teachers’ interviews, and 
focus group interviews. This report includes the results of teachers’ actions as well 
as refl ections on the tasks used in problem-posing instruction, suggestions to other 
teachers, identifying arising problems, and attempts to solve such problems. 
The investigator will discuss how and why teachers develop and enact tasks to get 
children to pose mathematical problems and will suggest implications for research 
and practice in the future.  

  Keywords     Mathematical problem posing   •   Developing tasks   •   Teachers as 
researchers  

      Background 

 Educating the next generation is a responsibility for all. Among many school sub-
jects, mathematics is often considered a tough subject. When striving to learn or 
teach mathematics well, engaging in problem solving often leads to good results. In 
solving a problem, one must understand, plan, carry out, and look back (Polya, 
 1945 ), and through solving a problem, one can learn to make mathematics. This 
point is agreed upon by both  mathematicians and mathematics educators  . However, 
posing problems to solve is also an important activity for making mathematics 
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(Polya,  1945 ); mathematicians not only solve problems but also fi nd problems to 
solve (Leung,  2013 ). Hence, individuals can learn mathematics by solving given 
problems or by posing then solving their own problems. In this chapter, the author 
does not claim one activity is more important than the other. Both problem-solving 
and problem-posing activities are important and related, yet not the same, in terms 
of requiring one to propose a problem structure that can reasonably connect the 
“given” to the “goal.” 

 This is a report on a teacher educator’s continual effort since 1993 to implement 
mathematical problem-posing (MPP) instruction in the elementary schools in 
 Taiwan   which also includes the efforts of the school teachers involved. In initial 
studies on MPP, she studied products and processes of prospective teachers in the 
United States and Taiwan (Leung,  1993 ,  1994a ,  1994b ,  1997 ) and found that pro-
spective teachers were  inexperienced   in MPP but that they expressed interest in 
this activity and showed improvement after they did problem posing themselves. 
Another effort she made was to develop a systematic assessment (or evaluation) 
 method   for MPP (Leung & Silver,  1997 ). Though there are no standard criteria for 
evaluating a problem, an analysis of posed problems can hint at what posers see in 
a given situation and what they consider as mathematical and allow inferences 
about what they “do know” or “don’t know.” At the teachers’ college where she 
taught, the teacher educator offered a two-credit course on problem posing for 
prospective elementary school teachers, using various research-based MPP tasks 
to familiarize students with MPP over 18 weeks. The course is popular which can 
be seen from the subsequent student teaching of the students who took the course. 
Some of these students asked children to do MPP during their student teaching 
experiences. One student received award funding from the National Science 
Council of the country and conducted a systematic study during student teaching 
(Leung,  2001 ). 

 As with prospective teachers,  in-service teachers   have been found to be unfamil-
iar with MPP. In order to introduce MPP to in-service teachers, the teacher educator 
incorporated MPP into invited talks for teacher-training workshops at national, 
state, or district levels. When there was an imbalance in the number of invited talks 
from states in the North, Central, South, and East, she actively made contact with 
those institutions that did not send her invitations and suggested giving a talk on 
MPP. In addition, when she was attending national committee meetings on the 
development of textbooks, she made suggestions for textbooks to include activities 
on problem posing. Thus, by extending the introduction of MPP to prospective 
teachers from her institution to practitioners in different states, she learned more 
about practitioners’ views on MPP from all over the country. The frequently asked 
questions she received from in-service teachers pointed her to the need to direct 
research to teachers. 

 A  survey in Taiwan   indicated that teachers barely ever asked children to do MPP; 
children only solved problems given by teachers or from textbooks (Leung,  1994a , 
 1994b ). In the same survey, in-service teachers commented that they themselves 
needed to be able to do MPP. In addition, they said that it was diffi cult to implement 

S.-K.S. Leung



329

unless they (1) had access to tasks or were able to develop their own materials and 
(2) had guidelines on how to respond to children’s posed problems. 

 A 3-year funded research study was conducted to address teachers’ needs (Leung, 
 2013 ). In  Leung’s study     , the chief investigator (teacher educator) worked with 
teachers over time to integrate MPP into the elementary mathematics curriculum. 
The fi rst year was for the  development   of an MPP task inventory by grade and con-
tent. About 100 elementary school teachers in the district were invited to assist in 
piloting the tasks. After a year of piloting tasks, a resource book was produced 
which contained 52 tasks. In the second year of implementation, 60 teachers from 
year one participated. The 60 teachers attended a series of workshops for instruction 
on how to implement these tasks so that they could model MPP. The results of year 
two included fi ndings about how teachers solved problems that arose when enacting 
such tasks. To make MPP a part of instruction, the teacher educator succeeded in 
supplying an inventory of tasks and instructional guidelines as conditions for inte-
gration of this activity into regular math instruction. 

 In this report, the focus is on the third year of the project. This involved the action 
research of the practitioners. Only three teachers from year two were selected to 
participate. They represented those who were highly motivated and willing to com-
mit. The  teacher educator (the chief investigator)   decided to include the teachers as 
coinvestigators; they were to make up their own plans for teaching problem posing. 
The aim was to gain better information about the actions and refl ections of teachers 
who attempt to develop their own tasks to integrate MPP into ordinary grade 1–6 
classroom settings. There were three research questions for this phase of the 
 research  : (1) What types of MPP tasks are appropriate to use for children, and how 
should those tasks be set up? (2) What professional development resulted when 
teachers participated in this inquiry through action, refl ection, and seeking solu-
tions? What are some suggestions for other teachers? (3) What children’s learning 
can be witnessed through MPP instruction?     

    Literature Review 

    Mathematical Problem Posing 

 MPP is often considered an inseparable part of problem solving. The impor-
tance of problem solving and problem posing in mathematics education is high-
lighted in well-known books (Brown & Walter,  1983 ; Freudenthal,  1973 ; Polya, 
 1954 ) and in handbooks on mathematics education research (Grouws,  1992 ). 
Problem-posing reports appeared in a focus issue of  Teaching Children 
Mathematics   in   2005 and also in a special issue of   Educational Studies in 
Mathematics  in 2013  . The two are also key  components   in curriculum standards in 
the West and East (Cai & Nie,  2007 ; Leung,  2013 ; NCTM,  2000 ; Törner, Schoenfeld, 
& Reiss,  2007 ). 
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 A number of researchers have proposed categorization  schemes   for problem- 
posing situations and structure. In a commentary, Leung ( 2009 ) discussed problem 
structure, solving/posing and justifying solutions. If there is a structure with defi ned 
goals and specifi ed givens, then a problem exists. If not, one can perform problem 
posing and solving, and then additional problems can be posed. Reitman ( 1965 ) 
considered four cases of problem situations; in each case the author assumes MPP 
can be performed. They are defi ned by two specifi cations (defi ned or undefi ned) 
times two states (given and the goal), resulting in the four cases (see Table  1 : R1, 
R2, R3, R4). Besides these four cases,    MPP has two meanings (Silver,  1994 ): the 
reformulation of known problems (S1) or the formulation of new problems (S2). 
Silver’s reformulation of known problems included presentation known problems 
again: posing problems properly (Butt,  1980 ) or making up items in a test (Leung, 
 1996 ). In addition, MPP can be classifi ed according to structure (see Stoyanova & 
Ellerton,  1996 ): structured (SE1), semi-structured (SE2), or free (SE3). In the 
inventory of 52 MPP tasks (Leung,  2013 ), there are six types according to given 
state: known problem (solve then pose), an algorithm, a text, a fi gure or table, a 
math topic, or an answer (pose a problem with the given answer).  T  hese different 
classifi cations of the nature of problem posing, and to what extent the given or goal 
is known,  are   summarized in Table  1 .

   The  above   classifi cation is based on whether the given or the goal is defi ned, or 
to the extent to which it is defi ned. However, a word problem can be further classi-
fi ed into two types: (a) posing a mathematics problem using a situation and (b) 
posing a story problem matching a fi xed piece of mathematics. For example, an 
activity asking one to pose one easy and one diffi cult percent problem (Van den 
Heuvel- Panhuizen, Middleton, & Streefl and,  1995 ) belongs to the former type.  O  n 
the other hand, posing problems matching a given division (12 ÷ 8; answer = 13; 
12 ÷ 8; answer = 12; 12 ÷ 8; answer = 12.5; Chen, Dooren, Chen, & Verschaffel, 
 2011 ) belongs to the latter type. 

    Table 1    A summary of  the   nature of problem posing   

 Reitman ( 1965 )  Silver ( 1994 ) 
 Stoyanova and 
Ellerton ( 1996 )  Leung ( 2013 ) 

 Given defi ned  Reformulate known 
problems (S1) 

 Structured (SE1)  1. Known 
problem 

 Goal defi ned 
(R1) 
 Given defi ned  Formulate new problems 

(S2) 
 Semi-structured 
(SE2) 

 2. Algorithm 
 3. Text 

 Goal undefi ned 
(R2) 

 4. Figure/table 
 5. Math topic 

 Given undefi ned  Formulate new problems 
(S2) 

 Semi-structured 
(SE2) 

 6. Answer 
 Goal defi ned (R3) 
 Given undefi ned  Formulate new problems 

(S2) 
 Free (SE3) 

 Goal undefi ned 
(R4) 

S.-K.S. Leung



331

 There have also been  classifi cations   of problem-posing according to processes. 
In a study conducted in Cyprus, four MPP processes were considered: editing, 
selecting, comprehending, and translating. This classifi cation was used to study 
quantitatively how the four processes are related to children’s performance (Christou, 
Mousoulides, Pittalis, Pitta-Pantazi, & Sriraman,  2005 ). However, it is unclear if 
classifying tasks by process produces mutually exclusive categories. For example, in 
doing MPP, can a person exhibit only one process and not the other three? 

 Besides processes, there has also been a classifi cation based on problem-posing 
products. In the problems posed and not yet solved, there are four  characteristics  : 
(1) idiosyncratic, (2) exhibiting plausible reasoning, (3) formed before/during/after 
one does problem solving, and (4) insuffi cient or implausible (Leung,  1994a , 
 1994b ). The categories are not mutually exclusive and a posed problem (product) 
may contain one or more characteristics. 

 In short, one cannot tell what problem posing is until one studies closely and 
fully understands the nature of the task, what is given, what is required to take 
action, and what product is required (a story situation or a math structure). 

 Students’ MPP has been compared in cross-national  studies  . For example, a 
comparison of Chinese and American students found that grade six Chinese chil-
dren outperformed US students in routine problem-solving tasks, but that this result 
did not hold for open-ended tasks including problem posing (Cai & Hwang,  2002 ). 
The result is just the opposite in another study by Yuan and Sriraman ( 2011 ) for 
students in grades 11 and 12. The Chinese students posed more than double the 
number of problems posed by American students. However, it is hard to compare 
cultural differences without mentioning instruction on MPP such as how teachers in 
each nation taught problem posing and what MPP tasks were used. 

 In Taiwan, in the two most recent versions of  documents on mathematics curricu-
lum standards   (Ministry of Education, Taiwan ROC,  2008 ), problem posing is 
explicitly mentioned in the part concerning getting students to do inquiry. Even in 
textbooks, there are activities where children are asked to make up problems. For 
example, the following activity is found in a grade 2 unit about multiples: Children 
use given information in a picture of an amusement park and make up mathematics 
problems. In the amusement park, the number of persons (children/adults) in each 
game is the same: two in a race car, four in a coffee cup, six in a spinning insect, eight 
in an octopus, and ten in any merry-go-round. In addition to posing problems related 
to the information given, children also solve the problems they or peers produce. 

 Indeed, problem posing is an inseparable part of problem solving. The  cycle pose-
plan-carry out-look   back explains the never-ending process of a person doing posing 
and solving (Leung,  2009 ). It is customary for one to pose a problem and then solve it 
(pose then solve). But it is also a natural problem-posing task to require a student to 
solve a problem and then pose a problem (solve then pose). Instructional history is 
needed to explain  children’s performance   in these two activities. A commentary on four 
studies of problem solving and problem posing in Belgium, China, Sweden, and the 
United States says that reporting failings in student performance in posing and solving 
is insuffi cient, as students might be unprepared. After reporting that children are not 
competent in posing and/or solving, the next step is to do classroom interventions to 
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promote problem posing and/or solving. Exploring how children improve from not 
competent to competent in MPP when teachers give explicit instruction and teach chil-
dren to review one’s attempt in solving and posing adds more information to teacher 
training.   

       Teachers Participation in Taiwan Curriculum Reform 

 In the history of curriculum reform in Taiwan, and under different waves of reform, 
all teachers (teacher educators, teacher leaders, school teachers, and student teach-
ers) have been involved in curriculum reform and have assumed different roles. 
Some served as national committee members for writing curriculum standards doc-
uments; others served on the board for national experimental textbook development, 
and a few belonged to the national committee for supervision for the country. 
Whenever there has been a curriculum change, there have been training sessions for 
state/district school representatives. All representatives, upon completion of the 
training, would conduct workshops for schools in the state/district. The Ministry of 
Education would commission a committee to prepare books and video tapes as 
materials for the workshops. In all curriculum reform/revision, both teacher educa-
tors and school teachers were involved. 

    In fact, a revision in curriculum standards often calls for partnership between 
teacher educators and teachers. The partnership is established to work on a better 
understanding of the essence of the curriculum, evaluate textbooks, enact curricular 
materials, and evaluate implementation. In Bieda’s ( 2010 ) study on proof-related 
tasks and enactment, the teacher educators worked with veteran teachers. They met 
regularly to analyze curriculum materials, classifi ed and selected tasks, and fi nally 
implemented tasks. This partnership is a good start in initiating a change. Otherwise, 
teachers fi nd ideas suggested by teacher educators too theoretical and they cannot 
imagine how those ideas can be applied to their own classroom settings (Sowder, 
 2008 ). When such a partnership is established, the common goal for teacher educa-
tors and teachers is to better their knowledge in teaching and learning. 

    In this partnership, it is favorable for teacher educators to invite teachers to be 
involved in projects that require teachers to assume different roles with different 
participation at different levels. Hensen ( 1996 ) described teachers’ involvement in 
three levels. At Level One, teachers acted as helpers. The help could be data collec-
tion or arranging to let teacher educators “borrow” their students to teach. At Level 
Two, teachers acted as junior partners and decided on the research agenda together 
with teacher educators. At Level Three, teachers acted as lone researchers or col-
laborators/equal partners with teacher educators. That is to say, teachers’ 
 participation with respect to conducting a study and/or in using data and fi ndings 
increased at higher levels. In the present study, when teachers acted as lone research-
ers, the aim was to conduct research on MPP instruction: to experience MPP, to 
design their own activities or tasks for instruction, and to analyze children’s posed 
 problems  .  
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    Method 

 This action research was a response to curriculum revision. A teacher educator 
worked with three school teachers and followed action research principles (Kemmis, 
 1991 ). After identifying an instructional problem, the teacher planned, took action, 
and then refl ected upon practice. This cycle was repeated until the problem was 
solved. 

       Teachers as Action Researchers 

  The    Participation Project . In   year 1, 105 teachers administered MPP tasks, asked 
children to pose problems, then collected children’s sheets, and returned them. In 
year 2, 60 teachers from the original 105 participated. They attended a series of 
workshops and coinvestigated how MPP can be implemented using the set of 52 
tasks developed from year 1. Toward the end of the year, they exchanged ways to 
implement these tasks in the elementary school curriculum, and 46 returned ques-
tionnaires indicating a willingness to participate in the 3rd  year  . 

   Three Action Researchers . Af  ter interviews three teachers were chosen from the 
46 teachers to be involved in the 3rd year. They were teachers who taught in a 
school nearby, less than 1 h ride from the investigator’s institution. The three teach-
ers were willing to participate, to be observed, and to attend biweekly meetings. 
These three teachers’ attendance record was good over the fi rst 2 years. They were 
not paid; the incentive was to study how MPP ideas could be practiced over the 3rd 
year. All three are female and have taught for at least 10 years in the district near the 
teacher educator’s institution. In Taiwan, the six grades in elementary school are 
divided into lower grades (grades 1 and 2), middle grades (grades 3 and 4), and 
higher grades (grades 5 and 6) where the same teacher teaches the same class for 2 
consecutive years. In this study, the fi rst teacher taught grade two (Lin, lower 
grades), the second taught grade 4 (Ma, middle grades), and the third teacher taught 
grade  5   (Han, higher grades)   .  

    Data Sources 

 There were fi ve data sources: teachers’ journals (TJ: “TJ1” for Ms. Lin, “TJ2” for 
Ms. Ma, and “TJ3” for Ms. Han), children’s scripts (CS), teacher interviews (TI), 
children’s interviews (CI), and classroom observations (CO). 

  Teachers ’  Journals . Throughout  the      inquiry process, teachers kept journals and 
shared with investigators by mail, phone, or in person. The format of the journal was 
free. In addition, the investigator gave fi ve guided questions for refl ecting upon 
practice on MPP:
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    1.    What tasks did I use?   
   2.    How did my children perform?   
   3.    What were things that my children did not understand?   
   4.    If a colleague uses my tasks/instruction, what suggestions would I give?   
   5.    What  is      worth writing down in my journal?    

         Children ’ s Written Work . When children did problem posing in class, they were 
asked to write down the problems they posed. Teachers kept a record of the work in 
written form. Teachers used the coding scheme introduced in workshops they 
attended the year before and analyzed the children’s posed problems using fi ve cat-
egories: (1) Not a problem, (2) Non-math problem, (3) Implausible math problem, 
(4) Insuffi cient math problem, (5) Suffi cient math problem (Leung,  1997 ). Below is 
an example of a task (the Temperature Task) and categories of posed problems. The 
following example explained the fi ve categories. When a problem is implausible, it 
cannot be solved using the information given. For a problem that is insuffi cient, it 
cannot be solved unless one adds the missing  information  . 

   The   Temperature  Task   and Five Categories of Posed Problems 

      

        1.     The temperature of the cup of tea is 50  °C. (1) Not a problem   
   2.     Is there soup or    tea     in this cup ? (2) Non-math problem   
   3.     The temperature of the cup is 45  °C;  the volume is 450 cm   3   ; how many altogether?  

(3) Implausible problem   
   4.     The temperature of the cup of tea is 50  °C , it is cooled down in 2 h ,  what is the 

fi nal temperature ? (4) Insuffi cient problem   
   5.     If the cup of tea is 49  °C  and heated to 5 degrees warmer ,  what is the fi nal 

temperature ? (5) Suffi cient  p   ro  blem      

 Teachers sent the results of children’s work and the investigator commented, 
gave suggestions, and collated and sent the information to all three teachers on a 
 monthly   basis. 

  Teacher interviews  ( conducted by teacher educator )      . During school visits, the 
investigator interviewed the teachers after observing a lesson. The interview was 
semi-structured and was conducted in a free format, with a basis on children’s scripts, 
the teachers’ journals, and observation notes. The interviews were audio- taped. 
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The teacher educator read teachers’ journals before she conducted individual 
 interviews  .    

  Children ’ s interviews  ( conducted by teachers )      . A meeting was held for the inves-
tigator and the three teachers to decide on how to do these interviews. The teachers 
randomly chose eight children and paired them into four group interviews. Each 
teacher decided on the date and place to do the interviews. Ten guided questions 
were used to ask about children’s views on MPP, on mathematics problems, and 
what they thought they learned from MPP. The teacher asked if the questions were 
diffi cult to answer, asked the question again (if needed), and made sure the child 
answered after they had understood the teacher’s questions. The interviews were 
audio- taped     . 

  Classroom observations  ( conducted by teacher educator )      . During the second 
term of the year, the investigator arranged to visit the three teachers. She visited 
each teacher three times: The fi rst visit was to get to know the case; the second was 
to observe and audio-tape a lesson and then interview the teacher; the third was to 
plan a lesson collaboratively and then observe and tape the lesson. The teacher edu-
cator made observation notes each time she observed a lesson and the lesson was 
audio-taped.        

    Data Analysis 

 The fi ve sources of data, teachers’ journals (TJ), children’s scripts (CS), teacher 
interviews (TI), children’s interviews (CI), and classroom observations (CO), were 
analyzed qualitatively, with triangulation, to address to three research questions 
concerning the actions and refl ections of these teachers in developing tasks and 
designing  instruction  :

    1.    What types of MPP tasks are appropriate to use? How should those tasks be 
set up?   

   2.    What professional development resulted when teachers participated in this 
inquiry through action, refl ection, and seeking solutions? What are some sugges-
tions for other teachers?   

   3.    What children’s learning can be witnessed through MPP  instruct  ion?    

       Results and Discussion 

          MPP Tasks Used in Instruction 

  What MPP tasks did teachers use or develop when they designed MPP instruction ? 
The tasks were taken from multiple sources: adapted from textbooks (TJ3), sugges-
tions from colleagues (TI1-3), and from children’s or teachers’ own ideas (TJ1, TJ2, 
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TJ3). With respect to the information given in the task, they included algorithms 
(e.g., horizontal: 38 + 16 = 54; vertical addition of two one-digit decimals, TJ1), a 
math topic (e.g., “make a problem regarding approximation” TJ2), a fi gure (e.g., a 
calendar of a month with colors representing public holidays, TJ2; or a row of lamps 
along a road with each lamp being the same distance from another lamp, TJ3), and 
a text which is a typical word problem without a specifi c goal or with a goal that 
children solve then pose another problem using the word problem description (TJ2, 
TJ3). The inventory of 52 tasks from the preceding year (TJ1–3, TI1–3, CS1–3), 
given in a website, was also a source for these three teachers. 

        What criteria did teachers use to decide on a task ? The teachers expressed that 
the choice of tasks depended on the mathematical content she was teaching that 
week (TI1), and the source was usually from textbooks (TI1; TI2) or another teacher. 
However, she converted the tasks from requiring solving to posing according to 
children’s interests and level of profi ciency in reading and in mathematics (TI3). For 
lower grades, the teacher tended to use real-life situations with fi gures or even pho-
tos (TI1). For upper grades, the teacher would opt to link to mathematical expres-
sions or even symbols (TI3; CO3: distance between lamp posts). 

        How did teachers set up and use MPP tasks ? During observations, the tasks used 
involved shapes and statistics (CO1-Ms. Lin); quadrilaterals, cubes, and cuboids 
(CO2-Ms. Ma.); and approximation and distance/time/speed (CO3-Ms. Han.). The 
transcripts from the visits showed the effectiveness of Ms. Lin and Ms. Ma in using 
a 40 min session (grade 2; grade 4). In setting up MPP tasks, the teachers also asked 
children to pose problems in groups and then present their problems, discussing the 
merits or faults of the problems and fi nishing by solving them. Ms. Lin allowed 
drawing the problem out or orally presenting the posed problem. Ms. Lin pasted 
four pairs of cutout shapes (isosceles triangle, rectangle, squares, and circles) to the 
chalkboard and asked children to do MPP in groups. Ms. Ma used teaching aids and 
passed boxes of unit cubes (about 100) for each group to make up cubes and cuboids 
of varying size and shapes and then write a problem on a sheet of paper for another 
group to come to see the fi gures and solve the problems (CO2). The higher grade 
teacher, Ms. Han, conducted an MPP activity on two consecutive days (TJ3, CO3). 
She presented a textbook problem on distance/time/speed and asked each student to 
make up an item for her to consider for a test paper. She collected all questions on 
day one and went home to prepare a bit as there were contributions from over 30 
children. She divided the problems posed by the children into types and then used 
them accordingly the next day. For plausible problems (categories 4 and 5), she 
asked them to solve the problems on day 2 or actually included them on a test. For 
other problems (category 1, not a problem; category 2, non-math problem; category 
3, implausible problem), she showed children her selected examples carefully one 
by one. For each chosen example, she invited children to spot what was wrong and 
gave hints (e.g., “What happens when we add 50 cm 3  to 30 °C?”) for children to 
make the problems into plausible ones. In all, teachers used their own creativity in 
using tasks, setting up tasks, and evaluating the suitability of tasks after MPP teach-
ing and after children’s work. In terms of frequency of MPP, it depends on the topic 
that was taught. Over the school year, teachers did problem posing approximately 
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once a week. After each session during which they used MPP, they refl ected upon 
their practice, analyzed children’s problems, and considered using them. Finally 
they revised the way they attended to MPP tasks the next time they  taught  .     

    Professional Growth Through Teachers’ Actions and Refl ections 

 Toward the end of the year, the three teachers remarked: “This activity is neat and 
I’ll be great. I want to be a great teacher” (TI2; CO2). “I once read a posed problem 
I could not solve…I did not know what to do next” (TI3; TJ3). “On raining days 
when they did not have Physical Education lessons, they visited peer’s problems on 
the notice boards and solved them. The author graded solutions” ( TJ1 ;  CS2 ). 

 During the focus group  interview   toward the end of the fi rst term, all three teach-
ers expressed that they did not use extra instructional time on MPP. “If I use extra 
lessons, then I worry that I cannot fi nish teaching the topics using the allocated time 
each week.” Therefore, they integrated it into the ordinary lessons and followed the 
order of contents that appeared in the mathematics curriculum. Their specifi c actions 
and refl ections were given in journals (TJ1–3) and interviews (T11–3) and could 
also be inferred from the  investigator’s observation   of lessons during school visits. 
In their journals, the teachers wrote specifi c tips for other teachers. They also related 
their experiences, giving suggestions to peers. At the end of the year, the three 
teachers and the teacher educator shared what they learned from action and refl ec-
tions on MPP instruction. The teachers’ growth can be seen in the list of fi ve sug-
gestions they gave to other teachers who are considering MPP instruction. These 
suggestions are discussed below. 

  One suggestion is the use    of     teaching aids  ( TJ1 ,  TJ2 ,  TJ3 ). The investigator 
asked teachers to explain this suggestion further during interviews. Ms. Lin gave 
examples of teaching aids, such as using photographs of a stationery shop with 
marked prices.

  Children were  a  sked to be in a group of two; they then played the role of either a shop 
keeper or the customer. The photo on the blackboard was for all groups to read. Later, they 
marked their own prices in the small group. This was so much fun for them especially when 
they decided on the stationery items in the shop and the price of each item. (TI, CS1, TI1) 

   Ms. Ma used centimeter cubes in a  gra  de 4 lesson on volumes.

  I used boxes of centimeter cubes and asked each group to make cubes, cuboids of different 
size, then fi nally other shapes. Children were able to make up fancy problems on fi nding 
volumes. Compared to textbook problems, these problems were real and each fi gure was 
three-dimensional. The 6 groups of children walked around and each visited the other fi ve 
groups, rotated and solved altogether 6 real problems on volumes of solids in a 40-minute 
lesson.… Very effective use of  inst  ructional time using teaching aids. (TI2; TJ2, CS2) 

   The higher grade teacher, Ms. Han, used  m  eter rules and toothpicks as teaching aids.

  After solving a problem with the number of lampposts and the whole distance I asked them 
to do MPP. But I know drawing fi gures of varying distance apart took up a lot of the time. 
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So, I gave them a meter rule and toothpicks: they could pose problems on any desirable 
given length and their preferred number of trees then asked their friends to fi nd the distance 
between two trees; or vice versa. If they want to pose a new problem, they just removed the 
toothpicks and placed them on the meter ruler the second time (TI3, TI3, CO3). I like pos-
ing problems on distance apart using toothpicks  a  nd meter rule. (C13, CS3) 

    A second suggestion is to    design worksheets to go     with a task . This was espe-
cially a need for Ms. Ma and for Ms. Han, as the tasks’ instructions for middle and 
higher grades were complicated.

  Sometimes, I forget what I was supposed to ask them to do and write, so, I made up a worksheet 
and asked them to follow the steps. When facing 30 excited faces you got lost…. (TJ3; TI2) 

 A good thing about worksheets is, we can collect them and work on that after the bell 
rang. Sometimes, we could not think of any good ideas on how to respond to children’s 
work and so we collected the written work and  lef  t the extended discussion to future les-
sons. (TJ2; TJ1, TI3) 

   Another point for the use of worksheets was to study the work further with 
children.

  Children forgot what they produced quickly, when we talked about their work, we referred 
to the worksheet and they remembered…. 

   Finally, all three replied that sharing work in  c  lass was easy when there were 
worksheets. When there were common things to refer to the whole class would have 
a rich discussion session. 

  The third is    not to   give examples   . All teachers voiced that giving examples 
spoiled the fun and restricted children to posing problems that were similar.

  For once, they asked me to give an example. I did. Then most of them posed a problem 
identical or similar to mine! (TJ1; TJ2, TJ3) For 36 + 31 = ? My example is an orange costs 
$36 and an apple costs $31, then most of the problems posed by children are about fruit or 
money. There was no exception in a class of 30, can you imagine! (TJ1) 

   They  r  emembered not getting any examples when they attended the teacher 
workshop in the previous year offered by the teacher educator.

  Now I remember when we attended workshops in year two, we were advised not to give 
examples nor hinted a direction. Now we forgot that completely! (TJ2, TJ3) 

   These teachers forgot and gave examples, then reported the consequences of giv-
ing examples. The consequence is children followed examples and did not give any 
new  id  eas. 

  The fourth is to show interest in    children ’ s work and publish     the work . Teachers 
shared ideas by displaying children’s work to other children in class on the notice 
board (TJ3), hanging up colorful problem cards along corridors outside the class-
rooms (TJ1), writing on transparencies and pasting them to windows, or taking 
photos of the fi gures (TI2). At the end of a unit which included MPP, Ms. Han and 
the children edited their posed problems into a book. “Do not overlook the value of 
given problems that could not be solved” (TJ2, TI3, CS2, CS3). This is especially 
true for grade 4 and grade 5 children. The teacher and children could do follow-up 
work. “I select problems that cannot be solved and talk about ways to convert those 
problems into mathematics problems that can be solved” (TI3). “When they came 
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across problems that could not be solved, I invited revisions to suffi cient problems 
and to open for more opportunities in learning” (TI3). However, teachers must 
direct children’s attention to the problematic problem when children failed after one 
or two attempts. For example, in binding two pieces of ribbon, the length will be 
shortened and so adding two lengths is improper. Also, when the children’s critique 
was superfi cial (“the characters are too small” or “the handwriting is ugly”), then 
the teacher would ignore the comment or simply say “thank you, what else,” thus, 
not encouraging comments not related to problem posing/ solving   (TI1, TJ1, CO1). 

  The fi fth is to attend to    opportunities to learn   : “If you do not hit you miss!” ( TI1 ). 
From classroom observations, the investigator captured how a teacher’s decision 
would create or inhibit opportunities to learn. For example, the teacher set up an 
MPP task for grade 2 (30 children were divided into seven groups). She posted eight 
cutout geometric shapes on the blackboard.

     

    During the time when the teacher educator visited the class, the children worked 
in groups as usual. They read the blackboard and made up a problem together in a 
group. There were altogether seven problems; one from each group.

    1.    Which shape can be used to make a square?   
   2.    Which fi gures are the same? Please circle them.   
   3.    Name the fi gures posted on the chalkboard.   
   4.    What fi gure can we make using these shapes?   
   5.    Which cards are identical?   
   6.    Which ones are squares? Which ones are rectangles?   
   7.    How many  s  hapes are there in the following fi gure?    

     

    Ms. Lin, in addition to collecting the seven problems, purposely invited each group 
to present its problem. Each group used a marker to write the problem on a piece of 
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A3 size paper (horizontal). One representative came to the blackboard and pinned it 
to the blackboard using magnets. The representative presented the problem orally, 
asked if peers understood, edited, and then asked friends to solve the problem. 
These actions represented an intention to expand  from   focusing only on what 
problems were posed to communicating peers’ ideas and to add new knowledge by 
editing and solving problems. 

 In the discussion of the problem, “Which shape can be used to make a square?”, a 
friend came up and used two triangles to form a square (    ). Ms. Lin thought that was 
the only solution, but later another child made an attempt and made another square 
using two rectangles (    ). The teacher then directed the child who posed the problem 
to change the question stem “Which shape…” to “Which shapes…” as there were two 
possible shapes that could make squares. When similar problems were given, such as 
problems 2 and 5, the teacher took this opportunity to teach congruence although it 
was not intended for grade two, but she did not use the term “congruence.” Ms. Lin 
went to the chalkboard and used overlapping shapes to show why the shapes were the 
“same” or “identical,” using the children’s words. She praised the students, noting that 
all the problems were creative, and then added, “In addition to asking for shapes that 
were the same/identical, there were problems involving naming shapes and combin-
ing shapes too.” In all, she manipulated the responses and used them to develop into 
discussions that led to deeper understanding of the topic. She constantly collected 
children’s work using the copying machine or asking children to hand copy the work. 
“Displaying work reminded them of the successes in MPP” (TJ1). “I found that asking 
kids to hand copy is more effi cient (faster than copying machine)  and   more reliable 
(you may forget to copy the next day) (TJ2; TI1).  

       MPP Instruction and Children’s Learning 

  Wait time is    needed     for children to be familiar with MPP activity . The investigator 
got this message from the journals of teachers. At the beginning stage (fi rst 3 weeks) 
of introducing MPP, children tended to ask many questions. The frequently asked 
questions were: “What problem do I need to pose?” “Do I need to solve the prob-
lem?” “What actually is a problem?” “Who is going to solve this problem?” “Can I 
draw a fi gure?” However, after they got used to MPP, children were exceedingly 
involved and devoted time to discussion. In their given problems, they included 
persons they liked (talent contest winner in the school, superman in movies) and 
interesting things they do (building sand castles). To them, a problem consisted of 
information given in text. Later, they learned that they can “see” and pose mathe-
matics problems from almost any given text or drawing.    

     Children attended more to the    structure and reasonableness     of a mathematics 
problem after doing MPP . The teachers witnessed the children’s recognition of data 
in problems after they incorporated MPP into instruction. Before MPP was intro-
duced, children solved textbook problems or problems given by teachers. They were 
unaware of problems with insuffi cient data and did not notice what missing data 
was needed. After children attempted MPP, they challenged if the textbook prob-
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lems were relevant to the unit (TJ3), paid more attention to presentation of problems 
given by friends (TJ2), and learned to reply to a query (TJ1, TJ2) and to spot mis-
takes in test items (TI2, TJ3, CS3).    

     Children learned to attend to both the realistic and mathematics parts of a    prob-
lem   . Children learned to link mathematics to real-life situations. “Did you ever hear a 
song that lasted for 4 h? Children did not connect problem posing to real situations?” 
(TI3). When the problem is “The height of Ming is 35 cm and the height of his father 
is 2 cm taller,” Ms. Lin explained to grade 2 children that when a baby is born, its 
length is already more than 35 cm. “I must teach children to relate lengths to real life.” 
In a problem on air temperature, one posed problem was “The air temperature at noon 
is 30° and the air temperature at midnight is 20, fi nd the total temperature.” Ma 
explained to children that merely adding the two numbers and getting 50 would not 
add any knowledge on air temperatures. After the teacher’s explanation, children 
changed the goal to fi nd the difference. The children knew that the answer to this new 
problem represented a drop of temperature from noon to midnight.    

    There was one interesting result on posing division problems.    Attention to real- life 
situations can enable children to fi nd answers without doing any division. “I counted 
40 legs and 10 frogs in a cage, how many legs are there in a frog?” While children 
were busy with doing division, one child exclaimed, “Wait a minute, there is no need 
to divide (40 by 10). A frog has 4 legs!” The whole class laughed their hearts out. This 
attention to the realistic part of a problem was also a theme in a prior study on  division 
  (see Chen et al.,  2011 ). 

     Building up    socially shared meanings     and ending up with consensus . English 
( 1997 ) has acknowledged the social as well as psychological value of in-class 
problem- posing activities. In this study, children learned to express ideas when 
working in groups. When sharing problems, they learned to express themselves 
clearly in writing so that friends did not argue or misunderstand. One teacher com-
mented that when children befriended other children then the lessons went very 
smoothly (TJ2). One child remarked, “My presentation was not the best but I 
already tried my best and the whole class applauded!” 

 In one instance, the teacher invited the students to submit test items. After a test 
made with their peers’ contributed test items, the children complained that one 
problem was really cool but very diffi cult and asked who the author was. The teacher 
kept the information secret. After a few minutes, the child who posed that problem 
boldly admitted that the item was prepared by him. “It’s ME, I made up this item. I 
like problems that are challenging…” (CS3; CI3). Teachers remarked that in MPP 
children shared joy as well frustrations in solving but they expressed how they liked 
this sharing and enjoyed the friendship.    

     Children ’ s    scripts     of problem posing indicated the mathematical knowledge they 
possessed or missed . Based on children scripts, teachers could trace what children 
knew. For the Number Strand, in a task with a horizontal addition algorithm 
(38 + 16 = 54), children were able to ask change problems (e.g., There are 38 insects 
in the bush, 16 fl ew in, how many in all?) and group problems (Two rows of toy cars 
are combined to form one; if there are 38 in the fi rst row and 16 in the second, how 
many are there in the combined row?). For grade two, children could pose two-step 
problems matching a horizontal addition algorithm (25 + 8 − 7) using a bus stop situ-
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ation (e.g., There are 25 children in a school bus. Eight get on the bus at the fi rst stop 
and seven get off at the second stop. “How many children are in the bus?” For quan-
tity and measurement, a calendar (April) was used for children to make up problems 
(grade 4). Children initially asked about the meaning of the shadings in the calendar 
(which meant public holidays) but they were not related to mathematics. The others 
were mathematics problems related to reckoning the total number of days in April. 
In addition, the problems allowed teachers to become aware of the children’s atten-
tion to festivals, wedding parties, and paying a fi ne for overdue books. There were 
imaginative problems as well (e.g., Peter Pan fl ew to Paris on Monday and returned 
home in 3 days. What day of the week was it?). For grade 5, in a speed relationship 
situation, children manipulated the given state (known) and the goal state (unknown) 
to make more problems. After MPP they were excited to fi nd a rule: given two of 
the three (distance, time, speed), they could fi nd the third. The problem “Given the 
time and speed then fi nd the distance” could be converted to two other problems. 
The fi rst would be “Given the speed and distance then fi nd the time” and the second 
would be “Given the distance and time then fi nd the speed.” When the students 
posed a problem for peers to solve, the teacher would suggest the children to solve 
the problem at their ability levels. For example, if the posed problem was “40 
divided by 7” children could either reply “5 and 5/7” or “5, remainder = 5.” From the 
children’s scripts responding to each teaching unit and over time, the teachers 
reported a reduction in ill- posed   problems and an increase in the creation of feasible 
mathematics  problems  .   

    Conclusions and Implications 

 As stated in Leung ( 2013 ), problem-posing research is needed to explore the condi-
tions that allow students to perform well in MPP and for teachers to implement it in 
instruction. The fi ndings in this study suggest that given ample time for intervention 
and to involve active teachers, problem posing can be integrated into the elementary 
mathematics curriculum. In this study, teachers used tasks that were structured or 
semi-structured and did not use an entirely free format. They also extended their 
knowledge of  research-based tasks   (Leung,  2013 ; Reitman,  1965 ; Silver,  1994 ; 
Stoyanova & Ellerton,  1996 ) to incorporate MPP into specifi c content in the unit 
they were teaching (e.g., speed, addition, volume, or division). 

 When teachers are given MPP tasks and are willing to introduce MPP instruc-
tion, what else is needed to make children competent in problem posing, and in turn, 
contribute to mathematics learning? A promising MPP task and a profi cient teacher 
is a start. But a task cannot guarantee that learning will happen. The way teachers 
set up tasks, how teachers interact with students, and the way children work with 
peers in groups all contribute to enhancing learning (e.g., modeling and problem 
posing; English, Fox, & Watters,  2005 ). Finally, the teachers in this study made 
problem posing and solving a combined activity. The key to children being able to 
actively construct sensible problems relies on the actions of teachers in enacting 
tasks, refl ections upon practice, and inventing innovative steps in MPP instruction. 
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 The recruitment of the three teachers in action research improved the teacher 
educator’s knowledge on practitioners’ know-how regarding MPP implementation. 
The increasing involvement of teachers over time (Hensen,  1996 ) made a difference. 
The teacher educator also confi rmed the importance of having a common goal in a 
partnership for collaborative action research; the teacher educator and teachers work 
together toward a specifi c goal (e.g., a graduate thesis). Working with the results from 
all 3 years of the project, the teacher educator and teachers shared what they learned 
with colleagues and also parents (Leung,  2012 ,  2013 ). Materials from the project were 
also shared on the website of the teacher educator and in books (Leung,  2008 ,  2015 ). 
After having conducted research on children engaging in MPP, and after investigating 
how to develop tasks for in-class MPP, future studies on MPP include the possibility 
of working with parents to extend MPP from school to home.     
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      Mathematical Problem Solving and Teacher 
Professional Learning: The Case of a Modifi ed 
PISA Mathematics Task                     

       Edward     A.     Silver    

      Problem solving is a core activity in mathematics classrooms at all levels of schooling 
across the world. Problems are central to mathematics teaching and learning and 
constitute the basis for intellectual activity in the  classroom   (Lampert,  2001 ; Stein, 
Smith, Henningsen, & Silver,  2000 ). Thus, mathematics problems form the foundation 
of students’ opportunities to learn mathematics. In turn, the anticipation, examina-
tion, and evaluation of students’ work on problems constitute a substantial portion 
of the work of mathematics teachers. Thus, consistent with the so-called  practice-
based approach   to teacher professional learning, the anticipation and examination 
of students’ solutions to mathematics problems should be a strategic site for teach-
ers to learn in and from their instructional practice (Kazemi & Franke,  2004 ; Krebs, 
 2005 ). Yet, teacher learning does not occur as an automatic consequence of their 
using mathematics problems with students or witnessing the attempts of students to 
solve problems. Opportunities for teacher learning in and through close examina-
tion of aspects of instructional practice appear to be dependent on if and how profes-
sional development cultivates teacher inquiry and refl ection (Little, Gearhart, Curry, 
& Kafka,  2003 ). 

 The notion that  teacher learning   can emerge from focused inquiry into and refl ec-
tion on aspects of their normal is often called practice-based professional develop-
ment. Ball and Cohen ( 1999 ) suggested that the everyday work of teachers could be 
a rich source for the development of a curriculum for professional learning grounded 
in the tasks, questions, and problems of practice. To accomplish this goal, they 
argued that records of authentic practice (e.g., tasks used in instruction or assess-
ment, samples of student work) should become the core of professional education, 
providing a focus for sustained teacher inquiry and investigation. Other scholars 
have also pointed to the potential benefi ts of having teachers learn in and through 
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professional practice (e.g., Ball & Bass,  2002 ; Crockett,  2002 ; Lampert,  2001 ; 
Little,  1999 ,  2002 ,  2004 ; Smith,  2001 ; Stein et al.,  2000 ; Wilson & Berne,  1999 ). 

 This paper focuses on a group of  secondary mathematics teachers   in the USA 
whose work with a mathematics problem in the context of a teacher professional 
development program provided them with an opportunity for inquiry into and 
refl ection on their practice. In particular, I describe the  teachers’ interactions   with 
the mathematics task over time, including their own solution of the task, their antici-
pation of how students would solve (or attempt to solve) the problem at various 
grade levels, their unstructured examination and evaluation of student work on the 
problem, and their structured consideration of student work with a particular focus 
on students’ strategies and representations. Through this detailed examination of 
teachers’ work with this mathematics problem, I illuminate how mathematical problem 
solving, as a core activity in mathematics classrooms, can be a strategic site for 
those interested to practice-based approaches to teacher professional learning. 

    The Teachers 

 The  teachers   whose engagement and learning are described in the paper were par-
ticipants in DELTA (Developing Excellence in Learning and Teaching Algebra)—a 
3-year, multifaceted professional development initiative intended to support teach-
ers in mathematics in the middle and secondary grades (grades 7–11) in Oakland 
County, Michigan, with a particular focus on improving instruction in algebra. In 
this paper, I draw on a slice of work undertaken during the fi rst 2 years by teachers 
and professional development specialists involved in one component of DELTA—
 Who ’ s On First ?  Building Coherence and Connections Across Grade Levels , here-
after referred to as the curricular coherence component of DELTA. 

 The goal of the curricular coherence component of DELTA was to assist teams 
of teachers from participating school districts to develop a  coherent  vision of alge-
bra concepts, skills, and reasoning as it might be taught and learned across grades 
7–11. Almost 100 teachers of middle grades and high school mathematics partici-
pated in at least a portion of the curricular coherence component of DELTA during 
the 2-year period of interest in this paper. There were 56 participants in year 1, 26 
of whom continued in year 2, when 66 new participants joined them. The teachers 
were drawn from 13 different school districts that were demographically varied 
with respect to the socioeconomic status of the school communities and the ethnic 
composition of the student population.  

    The Apples Task 

 The  Apples task   and related student work used with the DELTA project teachers 
was an adapted version of an item [M136, Apples] that originally appeared on the 
mathematics assessment portion of the Programme for International Student 
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Assessment (PISA). It was one of the 50 PISA mathematics tasks that were publicly 
released in 2006 (OECD,  2006 ). 

 PISA is a collaborative effort of member countries of the  Organization for 
Economic Cooperation and Development (OECD)     . The main objective of PISA is 
to provide policy-relevant data on the  yield  of education systems. The assessed 
population is 15-year-olds, an age that marks the end of compulsory schooling in 
most OECD member countries. PISA assesses how well 15-year-old youth are able 
to use the knowledge and skills they have acquired in school to meet the literacy- 
related challenges they are likely to face outside of school as adult citizens. PISA 
focuses on literacy—the ability to use and apply knowledge and skills to real-world 
situations encountered in adult life—in the key subject areas of reading, mathemat-
ics, and science. The frameworks guiding the PISA assessments refl ect a consensus 
across the OECD countries regarding the skills and abilities that demonstrate liter-
acy in these areas. For the 2003 assessment, PISA defi ned mathematical literacy as 
follows:

   Mathematical    literacy     is an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgements and to use and engage 
with mathematics in ways that meet the needs of that individuals’ life as a constructive, 
concerned and refl ective citizen.  (OECD,  2003 , p. 24) 

   Compared to the original Apples task (OECD,  2006 , M136, pp. 11–14), the DELTA 
version (see Fig.  1 ) incorporated two variations. One was minor: replacing the word 
conifer with the word pine, thereby using a word thought to be more familiar to 
students in Michigan than the original wording. The other was a major revision of 
the wording of question 3.2.

   The rewording of question 3.2 was intended to make the task more accessible to 
middle school students. Question 3.2 appeared as follows in the PISA version of the 
Apples task:

  There are two formulae you can use to calculate the number of apple trees and the number 
of conifer trees for the problem described above: 

 Number of apple trees =  n  2  
 Number of conifer trees = 8 n  
 Where  n  is the number of rows of apple trees. 
 There is a value of  n  for which the number of apple trees equals the number of conifer 

trees. Find the value of  n  and show your method of calculating this. 

   The task modifi cations  were   intended to increase comprehension and accessibility 
for middle school students without affecting other key features of the task. In par-
ticular, the variation preserved the treatment of standard content in novel ways 
(e.g., juxtaposing a linear and quadratic pattern in the same problem context, 
including basic pattern fi nding with sophisticated reasoning about rates of change 
in the same item) and the cognitive complexity of the task (e.g., the use of multiple 
representations; calling for a range of processes, including analyzing, generalizing, 
and comparing). In fact, it could be argued that the modifi cation may have increased 
the cognitive complexity of the task by making it more open ended than the original 
version.  
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  Fig. 1    The Apples task used with the DELTA project teachers         

Adapted from Mathematics Sample Tasks
OECD’s 2009 PISA Assessment

A farmer plants apple tree in a square pattern. In order to protect the apple trees  
against the wind he plants pine trees all around the orchard.

Here you see a diagram of this situation where you can see the pattern of the
apple trees and the pine trees for any number (n) of the rows of apple trees:

× = pine n = 1

= apple tree

× × × × × × ×
× ×
× ×
× ×
× ×
× ×
× × × × × × ×

× × × × × × × × ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× × × × × × × × ×

Mathematics Unit 3 : Apples

× × ×
× ×
× × ×

× × × × ×
× ×
× ×
× ×
× × × × ×

n = 2

n = 3

n = 4

·

· ·

··

·

· · ·

· · ·

· · ·

· · · ·

· · · ·

· · · ·

· · · ·
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    Using PISA Tasks in  Teacher Professional Development   

 A central premise of a project that I direct—Using PISA to Develop Activities for 
Teacher Education (UPDATE)—is that PISA tasks can be a valuable resource for 
practice-based professional development aimed at assisting mathematics teachers to 

Adapted from Mathematics Sample Tasks
OECD’s 2009 PISA Assessment 

Question 3.1

Complete the table:

n Number of apple trees Number of pine trees

1 1 8

2 4

3

4

5

Question 3.2 [Note: different wording than in original PISA task]
Describe the pattern (words or symbols) so that you could find the number of apple trees

for any stage in the pattern illustrated on the previous page:

Describe the pattern (words or symbols) so that you could find the number of pine trees for

any stage in the pattern illustrated on the previous page:

For what value(s) of n will the number of apple trees equal the number of pine trees. Show

your method of calculating this.

Question 3.3
Suppose the farmer wants to make a much larger orchard with many rows of trees. As the

farmer makes the orchard bigger, which will increase more quickly: the number of apple 

trees or the number of pinet rees? Explain how you found your answer.

Fig. 1 (continued)
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inquire into and refl ect upon their instructional practice. In the UPDATE project, 
we have been exploring some potential uses of PISA tasks and data. 

 The project rests on a belief that PISA tasks and data can be useful in much the 
same way that the (US) National Assessment of Educational Progress tasks and data 
have long served as key resources for the US mathematics education community (e.g., 
Blume, Zawojewski, Silver, & Kenney,  1998 ; Brown & Clark,  2006 ; Kouba et al., 
 1988 ; Silver & Kenney,  2000 ). In UPDATE we have developed some prototype, 
PISA-based materials and partnered with other professionals to use the materials in 
initial teacher preparation settings and teacher professional development contexts 
with teachers of mathematics in grades 7–11.  

    Using PISA Tasks in the  DELTA Professional 
Development Project   

 The teacher professional development episodes described in this paper were the 
result of a partnership between the UPDATE project and the DELTA project. As 
noted above, DELTA was a mathematics teacher professional development project 
conducted under the auspices of Oakland (Michigan) Schools. DELTA consisted of 
multiple components involving several hundred teachers from schools in Michigan; 
one component involving more than 100 teachers for 2 years focused on enhancing 
curricular coherence in the treatment of algebra topics across grades 7–11. 

 Among the set of tasks used with teachers in the curricular coherence component 
of the DELTA project, there were two PISA tasks employed. In this paper I summarize 
what transpired with one of the tasks, the Apples task. Silver and Suh ( 2014 ) provide 
a more complete account of the DELTA project and the use of the Apples task in the 
project. Interested readers can fi nd there more information than I provide here. 

 PISA items were deemed to be good candidates for use in the curricular coher-
ence component of the DELTA project for several reasons. First, many PISA tasks 
require the use of algebra skills, concepts, or processes. The Apples task, for 
 example, involves legitimate algebraic content, including both linear and nonlinear 
(quadratic, in this instance) relationships and encompasses a range of algebraic 
skills, concepts, and processes, as a solver analyzes, generalizes, and compares two 
distinct patterns. 

 Second, PISA tasks often involve multiple  forms   of representation. The Apples 
task, in particular, involves a verbal representation of a situation, associated with 
a corresponding visual representation. Tabular and symbolic representations are 
used in subtasks, and the last subtask asks students to explain their reasoning 
verbally. 

 Third, because PISA tests the residual, usable knowledge gained by 15-year-old 
students, the tasks tend to involve applications of knowledge to problems that are 
embedded in real-world contexts and are not tied to specifi c formats and exercise 
types associated with particular curriculum topics in mathematics courses. In the 
case of the Apples task, there is a contextual embedding, though it is not as interesting 
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or authentic as in many PISA tasks, but the task exemplifi es well the way that PISA 
tasks often step outside curriculum boundaries. In particular, the task involves both 
linear and quadratic relationships, and the third part of task moves beyond simple 
equations to consider rates of change in a manner that approaches topics taught 
in calculus. 

 The modifi ed Apples task was used in several different ways with the DELTA 
project teachers on multiple occasions. We summarize here the varied uses of 
this single task in this professional development initiative because we think they 
 i  llustrate a range of possible uses of many PISA tasks in teacher professional 
education settings.  

    DELTA Teachers Work with the Apples Task 

 The Apples task was introduced in the third professional development session dur-
ing the fi rst year of the curriculum coherence component. Prior to this session, par-
ticipants had examined the state curriculum objectives for grades 7–11, with 
particular attention to proportionality, linear and quadratic relations, and functions. 
They had also begun to formulate teaching/learning trajectories for these topics. 
Teachers began their work with the task at this session, and they continued engag-
ing with the task over several months in several different ways that I summarize 
here. For more details see Silver and Suh ( 2014 ). 

    Teachers Solve the  Problem   

 When the Apples task was fi rst presented to the DELTA teachers, they were asked 
to solve the problem individually. Then they met in small groups to discuss and 
compare solution approaches. This provided teachers an opportunity to familiarize 
themselves with the mathematical concepts and skills associated with the problem. 
In this way, they were able to establish the relevance of the task to the mathematics 
they teach, even though the task presentation likely differed from what they would 
fi nd in the textbooks used in their classrooms.  

     Teachers Predict   How Students Will Solve the Problem 

 After solving the problem, DELTA teachers were asked to anticipate what students 
at the grade level they taught would be likely to do if asked to solve the problem. 
After working individually, they met in small grade-alike groups to develop a list of 
shared anticipations for students at each grade level. The expectations were recorded 
on posters and displayed for general discussion. 
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 The record of initial expectations came to play an important role in the learning 
of the DELTA project teachers. Subsequent examination of student work on the 
problem confi rmed some of the teachers’ expectations and challenged others. As we 
saw in a subsequent session,    the surprises afforded especially important opportuni-
ties for teacher learning.  

    Teachers  Examine   the PISA Scoring Rubric 

 Teachers were provided with the PISA scoring guide, which is available for each of 
the publicly released tasks. They could see in the guide how PISA assigned points 
for various kinds of responses. Because the PISA task was modifi ed when used in 
the DELTA project, only the portion of the rubric pertaining to the fi rst and third 
questions was considered.  

     Teachers Collect Student Work   on the Problem 

 As a homework following the session in which they solved the Apples task, DELTA 
participants were asked to administer the task to at least one class of students, if feasi-
ble to do so. Collecting student work allows teachers to watch their own students solve 
the problem. It also provides a set of student responses that can be pooled across teach-
ers to get more substantial sample of responses within and across grades. In DELTA, 
the teachers collected more than 900 responses from students in classrooms ranging 
from grades 5 to 12 and enrolled in a variety of mathematics courses (e.g., grade 7, 
Algebra I, Algebra II, Pre-calculus). The diversity of student responses provided a rich 
resource for subsequent examination and analysis.  

    Teachers Examine the  Student Work   on the Problem 

 DELTA teachers were asked to examine the solutions produced by their students and 
then to meet with a grade-level colleague to examine all the student responses at their 
grade level. In their initial examination, they were asked to identify what the responses 
reveal about what students appear to understand and appear not to understand and 
what implications their observations might have for instruction. During the session, 
the grade-level group observations were recorded on poster paper and displayed in the 
room to facilitate a large group discussion that occurred later in the day. 

 Just as students can sometimes make discoveries while exploring problem situa-
tions that infl uence their sense of identity and agency, this type of activity on the 
part of teachers—a minimally guided exploration of student work—may yield 
profound insights. But some teachers may benefi t from a more structured approach. 

 For a variety of reasons discussed by Silver and Suh ( 2014 ), including an emphasis 
on content coverage rather than on developing individual student understanding, 
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many secondary school mathematics and science teachers tend to focus almost 
exclusively on correctness when examining student work. Davis ( 1997 ) character-
izes this as an evaluative rather than interpretive orientation toward teaching. 
According to Crespo ( 2000 ), secondary school mathematics teachers tend to have 
an evaluative orientation in which they listen to students’ ideas in order to judge 
them correct or incorrect and to detect and correct misunderstandings, similar to 
what Otero ( 2006 ) called a “get it or don’t” conception of assessment. 

 An evaluative orientation was quite apparent among many DELTA teachers when 
they initially examined the student work on the Apples task. The poster displays and 
the grade-level and whole group discussions focused almost exclusively on right/
wrong categories and an elaboration of students’ errors and apparent misunderstand-
ings, such as diffi culties in setting up an equation to solve question 3.2c, missing 0 as 
a solution, rendering the repeated addition of 8 as  n  + 8 rather than as 8 n , and confus-
ing quadratic and exponential growth patterns. The professional development lead-
ers had hoped for more attention to students’ understandings, so they decided that it 
would be benefi cial to return to the student work one more time in a future session, 
with an eye toward shifting teachers’ attention to aspects of student  performance 
  other than correctness.  

    Teachers Analytically Examine the Student Work 
on the Problem 

 The research team from the UPDATE project undertook an independent analysis of 
the student work on the modifi ed Apples task, paying particular attention to stu-
dents’ use of representations and strategies on questions 3.2 and 3.3. Two general 
observations emerged from our examination of the student work that we judged to 
have potential to engage the DELTA participants:

•    When making claims and representing generalizations, students in upper grades 
and advanced classes were more likely to use mathematical symbolism and 
equations than middle school and lower-level mathematics class students who 
relied more often on verbal descriptions. Yet, even in upper-level classes, a size-
able number of students used verbal descriptions to express generalizations in 
this problem.  

•   Some students at all grade levels used recursive strategies to solve subtasks 3.2a 
and 3.2b, with more using recursion for subtask 3.2b; students using recursion 
used only verbal descriptions rather than symbolic expressions to express their 
generalizations.    

 This analysis suggested a scheme that might be useful in drawing teachers’ attention 
to more than right/wrong aspects of student work on the problem. Following our 
analysis of the student work, we created packets of student responses that contained 
specifi c examples to refl ect the major strategies and representations evident in the 
full sample of student work: recursive description, recursive equation, explicit 
description, and explicit equation. Figure  2  provides sample responses of each type.
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   The response packets were used with the DELTA teachers in a subsequent 
professional development session when the Apples task and student work once 
again became a focus of attention. Teachers were given the packets of student 
responses, and they were asked to sort the responses to questions 3.2a and 3.2b into 
the following categories:    describe recursive pattern in words, (try to) express a 
recursive pattern using symbolic notation, describe an explicit pattern using words, 
and express an explicit pattern using symbolic notation.  

    Teachers Predict Frequency of  Response Types   

 DELTA teachers were also asked to predict the percent of students who would be 
likely to produce each type of response at the grade level they teach (i.e., 15 % of 
grade 8 students will use words to describe a recursive pattern in question 3.2a). 
Teachers worked individually at fi rst, then in pairs, and fi nally in grade-level groups 
to compare and refi ne their predictions. 

  Fig. 2    Sample student responses         
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 Grade-level predictions were shared and discussed briefl y in a whole group session. 
In general, the predictions were that, as students progressed across the grades and 
through mathematics courses, they would become far more likely to express gener-
alizations explicitly rather than recursively, and they would also be far more likely 
to use symbolic expressions and equations rather than verbal descriptions. Once 
again, by having the teachers make such predictions, the professional developers 
hoped that the presentation of actual fi ndings might include some surprises that 
could stimulate teacher learning.  

    Teachers Consider a Comprehensive Analysis of  Student Responses   

 The UPDATE team presented its coding and analysis of the entire set of more than 
900 student responses. For questions 3.2a and 3.2b, graphs were created to depict 
the frequency of student responses that expressed the generalization explicitly or 

Fig. 2 (continued)
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recursively and that used verbal descriptions or symbolic expressions (see Fig.  3 ). 
The graphs vividly displayed the ways in which the student work aligned with or 
deviated from the teachers’ predictions. For example, looking across the grades, the 
graphs revealed not only a trend toward expressing generalizations explicitly and 
with symbolic expressions but also an unexpected persistence of both recursive 
reasoning and verbal descriptions.

   The fi ndings of the UPDATE analysis were discussed briefl y in whole group and 
then the participants met in grade-alike groups to discuss the fi ndings and graphs as 
they pertained to their grade level. Teachers were encouraged to identify instruc-
tional issues raised by these fi ndings—issues that pertained within their grade level 
and issues that might pertain across grade levels. Participants actively discussed and 
debated the fi ndings and possible implications, moving fl uidly between the graphs 
of general fi ndings and the specifi c student responses that were available to them in 
the packets examined earlier in the day. Following discussion in grade-alike groups, 
the participants moved into cross-grade groups that mixed middle school and high 
school teachers. In these groups, participants discussed what the fi ndings of this analysis 
suggested about what  students   were and were not learning from their mathematics 
instruction at each grade level and also across grade levels in order to increase curricu-
lar coherence. In their discussion they considered a number of critical issues related 
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  Fig. 3    Graphs depicting student response rates by type and grade       
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to using pattern generalization problems to assist students in learning to express 
generalizations algebraically; the complexity of such learning has been examined 
by several researchers interested in the development of algebraic profi ciency (e.g., 
Lannin,  2005 ). Thus, the DELTA teachers’ cumulative experience with the Apples 
task served as a springboard to their delving deeply into mathematical curricular 
issues that directly affected their instructional practice.   

    Refl ecting on the  Apples Task  : Problem Solving 
and Professional Learning 

 Though our presentation of the Apples task experience was necessarily brief and 
general, we think it embodies several points regarding the use of PISA tasks as 
stimuli for STEM teacher professional learning. One point is that the experience 
illustrates the diversity of ways that a PISA task might be used to stimulate teacher 
engagement and learning. The set of activity settings used in DELTA was extensive, 
and yet it represents only a sample of possibilities. Readers will undoubtedly be 
able both to generate other uses of the items for preservice and in-service teacher 
education settings and to think of variations on the specifi c activities and formats 
employed in DELTA. Moreover, it is important to think about the cumulative effects 
of a sequence of activities. In DELTA, the fi nal professional learning activity 
appeared to have been critically important, but the experience of project participants 
in solving the tasks and predicting student solutions on prior occasions almost certainly 
played an important role in creating the learning opportunities that were manifested 
on that occasion. 

 A second point is that PISA tasks can be used as found in PISA or modifi ed to fi t 
the needs of a particular teacher education context. The  original   PISA Apples task 
was a challenging mathematical task that treated important mathematics concepts 
and skills and allowed for many legitimate uses as a stimulus for teacher profes-
sional learning. 

 The modifi cation that was made when the task moved from PISA to DELTA did 
not reduce or alter the complexity of the original PISA task, yet it turned out to be 
important for two reasons. First, though it retained the mathematical character of 
the original PISA task, it made the task more accessible to middle school students 
who had not yet been taught to write and solve algebraic equations. Second, the 
modifi cation opened the door to students’ use of recursive reasoning to express the 
generalization. Our hunch is that recursion would have been far less likely to appear 
in the student work if the original PISA version of question 3.2 had been used, and 
the salience of recursion in the student work turned out to be a source of surprise for 
the teachers and thus an opportunity for their learning. 

 A closely related point is that the mixing of middle school and high school 
teachers in the participant group was useful for the teachers’ work with the Apples 
task. The hybridity of the participant group made available a range of perspectives 
on how students might solve the task, generated a rich sample of student work, 
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and supported participants’ consideration of cross-grade curricular coherence issues. 
As Silver and Suh ( 2014 ) note, these factors played a role in the learning opportuni-
ties available to the DELTA teachers. 

 A fi nal point is the importance  of   designing activities in ways that allow teachers, 
especially secondary school teachers, to move beyond a simple right/wrong evalu-
ation of student work. In DELTA, participants made signifi cant progress when they 
were presented with specifi c examples of student responses chosen in advance to 
represent particular strategies and representations and then directed to examine 
 student responses using criteria that drew their attention toward matters of strategy 
and away from considerations of correctness.  

     Coda   

 I recently presented the original and modifi ed Apples task to another group of math-
ematics teachers, asking them to predict how they might expect students to solve 
each version. As was the case with the DELTA teachers, this group also did not 
predict the use of recursion by students solving the modifi ed version of the task. 
When I later showed them the graphs displayed in Fig.  3 , they were surprised to see 
the frequent use of recursive approaches by students across the grades. 

 After some discussion, one of the teachers commented that the appearance of 
recursion was interesting not only for the reasons discussed earlier in this paper but 
also because recursive thinking could lead to a quite different solution of question 3.3, 
even though it was stated identically in both versions of the task. He went on to 
explain that students would be almost certain to focus on the relationship between  n  2  
and 8 n  to answer question 3.3 in the original PISA version of the task. In fact, this is 
the expectation evident in the PISA scoring guide (OECD,  2006 , p. 13): “Full Credit. 
Correct response (apple trees) accompanied by a valid explanation. … algebraic 
explanation based on the formulas n 2  and 8n.” In contrast, students who used a recur-
sive approach to solve question 3.2 on the modifi ed version of the task would be likely 
to focus on the change in difference between successive entries in the table for 
the apple trees, noting that the difference increases each time and that after  n  = 5 the 
difference for the apple trees will always exceed the constant difference for the pine 
trees. Though such an explanation would be unlikely to gain full credit using  the   PISA 
scoring guide, it is mathematically correct and quite elegant in its own right. 

 In this teacher’s observation, we see once again the interplay between mathemat-
ical problem solving and opportunities for teacher professional learning. PISA tasks 
should be useful resources in supporting the creation of such opportunities now and 
in the future.     
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      In this chapter, I fi rst introduce the notion of a thinking classroom and then present 
the results of over 10 years of research done on the development and maintenance 
of thinking classrooms. Using a narrative style, I tell the story of how a series of 
failed experiences in promoting problem-solving in the classroom led fi rst to the 
notion of a thinking classroom and then to a research project designed to fi nd ways 
to help teachers build such a classroom. Results indicate that there are a number of 
relatively easy-to-implement teaching practices that can bypass the normative 
behaviours of almost any classroom and begin the process of developing a thinking 
classroom. 

    Motivation 

    My work on this paper began over 10 years ago with my research on the AHA! 
experience and the profound effects that these experiences have on students’ beliefs 
and self-effi cacy about mathematics (Liljedahl,  2005 ). That research showed that 
even one AHA! experience, on the heels of extended efforts at solving a problem or 
trying to learn some mathematics, was able to transform the way a student felt about 
mathematics as well as his or her ability to do mathematics. These were descriptive 
results. My inclination, however, was to try to fi nd a way to make them prescriptive. 
The most obvious way to do this was to fi nd a collection of problems that provided 
enough of a challenge that students would get stuck, and then have a solution, or 
solution path, appear in a fl ash of illumination. In hindsight, this approach was 
overly simplistic. Nonetheless, I implemented a number of these problems in a 
grade 7 (12–13 year olds) class. 
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    The teacher I was working with, Ms. Ahn, did the teaching and delivery of prob-
lems and I observed. Despite her best intentions the results were abysmal. The stu-
dents did get stuck, but not, as I had hoped, after a prolonged effort. Instead, they 
gave up almost as soon as the problem was presented to them and they resisted any 
effort and encouragement to persist. After three days of constant struggle, Ms. Ahn 
and I both agreed that it was time to abandon these efforts. Wanting to better under-
stand why our well-intentioned efforts had failed, I decided to observe Ms. Ahn 
teach her class using her regular style of instruction.  

    That the students were lacking in effort was immediately obvious, but what took 
time to manifest was the realization that what was missing in this classroom was 
that the students were not thinking. More alarming was that Ms. Ahn’s teaching was 
predicated on an assumption that the students either could not or would not think. 
The classroom norms (Yackel & Rasmussen,  2002 ) that had been established had 
resulted in, what I now refer to as, a non-thinking classroom. Once I realized this, I 
proceeded to visit other mathematics classes—fi rst in the same school and then in 
other schools. In each class, I saw the same basic behaviour—an assumption, 
implicit in the teaching, that the students either could not or would not think. Under 
such conditions, it was unreasonable to expect that students were going to spontane-
ously engage in problem-solving enough to get stuck and then persist through being 
stuck enough to have an AHA! experience. 

 What was missing for these students, and their teachers, was a central focus in 
mathematics on thinking. The realization that this was absent in so many class-
rooms that I visited motivated me to fi nd a way to build, within these same class-
rooms, a culture of thinking, both for the student and the teachers. I wanted to build, 
what I now call, a  thinking classroom —a classroom that is not only conducive to 
thinking but also occasions thinking, a space that is inhabited by thinking individu-
als as well as individuals thinking collectively, learning together and constructing 
knowledge and understanding through activity and discussion.     

       Early Efforts 

 A thinking classroom must have something to think about. In mathematics, the 
obvious choice for this is a problem-solving task. Thus, my early efforts to build 
thinking classrooms were oriented around problem-solving. This is a subtle depar-
ture from my earlier efforts in Ms. Ahn’s classroom. Illumination-inducing tasks 
were, as I had learned, too ambitious a step. I needed to begin with students simply 
engaging in problem-solving. So, I designed and delivered a three session workshop 
for middle school teachers (ages 10–14) interested in bringing problem-solving into 
their classrooms. This was not a diffi cult thing to attract teachers to. At that time, 
there was increasing focus on problem-solving in both the curriculum and the text-
books. The research on the role of problem-solving as both an end unto itself and as 
a tool for learning was beginning to creep into the professional discourse of teachers 
in the region. 
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 The three workshops, each 2 h long, walked teachers through three different 
aspects of problem-solving. The fi rst session was focused around initiating problem- 
solving work in the classroom. In this session, teachers experienced a number of 
easy-to-start problem-solving activities that they could implement in their class-
rooms—problems that I knew from my own experiences were engaging to students. 
There were a number of mathematical card tricks to explain, some problems with 
dice, and a few engaging word problems. This session was called  Just do It , and the 
expectation was that teachers did just that—that they brought these tasks into their 
classrooms and had students just do them. There was to be no assessment and no 
submission of student work. 

    The second session was called  Teaching Problem-Solving  and was designed to 
help teachers emerge from their students’ experience a set of heuristics for problem- 
solving. This was a signifi cant departure from the way teachers were used to teach-
ing heuristics at this grade level. The district had purchased a set of resources built 
on the principles of Pólya’s  How to Solve It  ( 1957 ). These resources were pedantic 
in nature, relying on the direct instruction of these heuristics, one each day, fol-
lowed by some exercises for students to go through practicing the heuristic of the 
day. This second workshop was designed to do the opposite. The goal was to help 
teachers pull from the students the problem-solving strategies that they had used 
quite naturally in solving the set of problems they had been given since the fi rst 
workshop, to give names to these strategies and to build a poster of these named 
strategies as a tool for future problem-solving work. This poster also formed an 
effective vocabulary for students to use in their group or whole class discussions as 
well as any mathematical writing assignments. 

 The third workshop was focused on leveraging the recently acquired skills 
towards the learning of mathematics and to begin to use problem-solving as a tool 
for the daily engagement in, and learning of, mathematics. This workshop involved 
the demonstration of how these new skills could intersect with the curriculum in 
general and the textbook in particular. 

    The series of three workshops was offered multiple times and was always well 
attended. Teachers who came to the fi rst tended, for the most part, to follow through 
with all three sessions. From all accounts, the teachers followed through with their 
‘homework’ and engaged their students in the activities they had experienced within 
the workshops. However, initial data collected from interviews and fi eld notes were 
mixed. Teachers reported things like:

  “Some were able to do it.” 
 “They needed a lot of help.” 
 “They loved it.” 
 “They don’t know how to work together.” 
 “They got it quickly and didn’t want to do anymore.” 
 “They gave up early.”   

    Further probing revealed that teachers who reported that their students loved 
what I was offering tended to have practices that already involved some level of 
problem-solving. If there was already a culture of thinking and problem-solving in 
the classroom, then this was aided by the vocabulary of the problem-solving posters, 
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and the teachers got ideas about how to teach with problem-solving. It also revealed 
that those teachers who reported that their student gave up or didn’t know how to 
work together mostly had practices devoid of problem-solving and group work. In 
these classrooms, although some students were able to rise to the task, the majority 
of the class was unable to do much with the problems—recreating, in essence, what 
I had seen in Ms. Ahn’s class. In short, the experiences that the teachers were having 
implementing problem-solving in the classroom were being fi ltered through their 
already existing classroom norms (Yackel & Rasmussen,  2002 ).  

 Classroom norms are a diffi cult thing to bypass (Yackel & Rasmussen,  2002 ), 
even when a teacher is motivated to do so. The teachers that attended these work-
shops wanted to change their practice, but their initial efforts to do so were not 
rewarded by comparable changes in their students’ problem-solving behaviour. 
Quite the opposite, many of the teachers I was working with were met with resis-
tance and complaints when they tried to make changes to their practice.    

 From these experiences, I realized that if I wanted to build thinking classrooms—
to help teachers to change their classrooms into thinking classrooms—I needed a set 
of tools that would allow me, and participating teachers, to bypass any existing 
classroom norms. These tools needed to be easy to adopt and have the ability to 
provide the space for students to engage in problem-solving unencumbered by their 
rehearsed tendencies and approaches when in their mathematics classroom. 

 This realization moved me to begin a program of research that would explore 
both the elements of thinking classrooms and the traditional elements of classroom 
practice that block the development and sustainability of thinking classrooms. I 
wanted to fi nd a collection of teacher practices that had the ability to break students 
out of their classroom normative behaviour—practices that could be used not only 
by myself as a visiting teacher but also by the classroom teacher that had previously 
entrenched the classroom norms that now  needed   to be broken.  

    Thinking Classroom 

 As mentioned, a  thinking classroom  is a classroom that is not only conducive to 
thinking but also occasions thinking, a space that is inhabited by thinking individu-
als as well as individuals thinking collectively, learning together and constructing 
knowledge and understanding through activity and discussion. It is a space wherein 
the teacher not only fosters thinking but also expects it, both implicitly and explic-
itly. As such, a thinking classroom, as I conceive it, will intersect with research on 
mathematical thinking (Mason, Burton, & Stacey,  1982 ) and classroom norms 
(Yackel & Rasmussen,  2002 ). It will also intersect with notions of a didactic con-
tract (Brousseau,  1984 ), the emerging understandings of studenting (Fenstermacher, 
 1986 ,  1994 ; Liljedahl & Allan,  2013a ,  2013b ), knowledge for teaching (Hill, Ball, 
& Schilling,  2008 ; Shulman,  1986 ) and activity theory (Engeström, Miettinen, & 
Punamäki,  1999 ). 
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 In fact, the notion of a thinking classroom intersects with all aspects of research 
on teaching and learning, both within mathematics education and in general. All of 
these theories can be used to explain aspects of an already thinking classroom, and 
some of them can even be used to inform us how to begin the process of build a 
thinking classroom. Many of these theories have been around a long time, and yet 
non-thinking classrooms abound. As such, I made the decision early on to approach 
my work not from the perspective of a priori theory but from existing teaching 
practices.  

    General Methodology 

 The research to fi nd the elements and teaching practices that foster, sustain and 
impede thinking classrooms has been going on for over 10 years. Using a frame-
work of noticing (Mason,  2002 ), 1  I initially explored my own teaching, as well as 
the practices of more than 40 classroom mathematics teachers. From this emerged 
a set of nine elements that permeate mathematics classroom practice—elements that 
account for most of whether or not a classroom is a thinking or a non-thinking class-
room. These  nine   elements of mathematics teaching became the focus of my 
research. They are:

    1.    the type of tasks used and when and how they are used   
   2.    the way in which tasks are given to students   
   3.       how groups are formed, both in general and when students work on tasks   
   4.    student workspace while they work on tasks   
   5.    room organization, both in general and when students work on tasks   
   6.    how questions are answered when students are working on tasks   
   7.    the ways in which hints and extensions are used, while students work on tasks   
   8.     w  hen and how a teacher levels 2  their classroom during or after tasks   
   9.     assessm  ent, both in general and when students work on tasks    

  Ms. Ahn’s class, for example, was one in which:

    1.    practice tasks were given after she had done a number of worked examples   
   2.    students either copied these from the textbook or from a question written on the 

board   
   3.    students had the option to self-group to work on the homework assignment when 

the lesson portion of the class was done   

1   At the time, I was only informed by Mason ( 2002 ). Since then, I have been informed by an 
increasing body of literature on noticing (Fernandez, Llinares, & Valls,  2012 ; Jacobs, Lamb, & 
Philipp,  2010 ; Mason,  2011 ; Sherin, Jacobs, & Philipp,  2011 ; van Es,  2011 ). 
2   Levelling (Schoenfeld,  1985 ) is a term given to the act of closing of, or interrupting, students’ 
work on tasks for the purposes of bringing the whole of the class (usually) up to certain level of 
understanding. It is most commonly seen when a teacher ends students work on a task by showing 
how to solve the task. 
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   4.    students worked at their desks,    writing in their notebooks   
   5.    students sat in rows with the students’ desk facing the board at the front of the 

classroom   
   6.    students who struggled were helped individually through the solution process, 

either part way or all the way   
   7.    there were no hints, only answers, and an extension was merely the next practice 

question on the list   
   8.    when ‘enough time’ time had passed, Ms. Ahn would demonstrate the solution 

on the board, sometimes calling on ‘the  class’   to tell her how to proceed   
   9.    assessment was always through individual quizzes and tests     

 This was not, as determined earlier, a thinking classroom. Each of these elements 
was something that needed exploring and experimenting with. Many were steeped 
in tradition and classroom norms (Yackel & Rasmussen,  2002 ). 

 Research into each of these was done using  design-based methods   (Cobb, 
Confrey, diSessa, Lehrer, & Schauble,  2003 ;  Design-Based Research   Collective, 
 2003 ) 3  within both my own teaching practice as well as the practices of a number of 
teachers participating in a variety of professional development opportunities. This 
approach allowed me to vary the teaching around each of the elements, either inde-
pendently or jointly, and to measure the effectiveness of that method for building 
and/or maintaining a thinking classroom. Results fed recursively back into  teaching 
practice  , each time leading either to refi ning or abandoning what was done in the 
previous iteration. 

 This method, although fruitful in the end, presented two challenges. The fi rst had 
to do with the  measurement of effectiveness  . To do this, I used what I came to call 
  proxies for engagement   —observable and measurable (either qualitatively or quan-
titatively) student behaviours. At fi rst, this included only behaviours that fi t the  a 
priori  defi nition of a thinking classroom. As the research progressed, however, the 
list of these proxies grew and changed depending on the element being studied and 
teaching method being used. 

 The second challenge had to do with the  shift in practice need  ed when it was 
determined that a particular teaching method needed to be abandoned. Early results 
indicated that small shifts in practice did little to shift the behaviours of the class as 
a whole. Larger, more substantial shifts were needed. These were sometimes diffi -
cult to conceptualize. In the end, a contrarian approach was adopted. That is, when 
a teaching method around a specifi c element needed to be abandoned, the new 
approach to be adopted was, as much as possible, the exact opposite  to   the practice 
that had shown to be ineffective for building or maintaining a thinking classroom. 
When sitting showed to be ineffective, we tried making the students stand. When 
levelling to the top failed, we tried levelling to the bottom. When answering ques-
tions proved to be ineffective, we stopped answering questions. Each of these 

3   This research is now informed also by Norton and McCloskey ( 2008 ) and Anderson and Shattuck 
( 2012 ). 
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approaches needed further refi nement through the iterative design-based research 
approach, but it gave good starting points for this  process  . 

 In what follows, I will fi rst present the results of the research done on two of 
these elements—student workspace and how groups are formed—both indepen-
dently and jointly. I then present, in brief, the results of the research done on the 
remaining seven elements and discuss how all nine elements hold together as a 
framework to build and maintain thinking classrooms. All of this research is 
informed dually by data and analysis that looks both on the effect on students and 
the uptake by teachers.  

       Student Workspace 

 The research on student workspace began by looking at the default—students sit-
ting in their desks. It became obvious early in this work that this was not conducive 
to the building of a thinking classroom. As such, almost immediately, a new space 
was explored. Following the  contrarian approach   established early on, the next 
space to test was to have students standing and working somewhere other than at 
their desks. The shift to having students work on  whiteboards and blackboards   was 
then an obvious extension. 

 In many classrooms where the research was being done, however, there were not 
enough  whiteboards and blackboards   available for all groups to work at. Some stu-
dents would have to still be seated in their desks. This led to a phase of experimenta-
tion with alternative work surfaces, including poster board or fl ipchart  paper   
attached to the walls and smaller whiteboards laying on desks—with some class-
rooms using all three at the same time. Whenever this occurred, there was a general 
sense shared between whatever teachers were in the room, as well as myself, that 
the vertical whiteboards were superior to any of the other options available to stu-
dents. These observations led to the following  pseudo-quantitative study   focusing 
on this phenomenon. 

       Participants 

 The  participants   for this study were the students in fi ve high school classrooms; two 
grade 12 ( n  = 31, 30), two grade 11 ( n  = 32, 31) and one grade 10 ( n  = 31). 4  In each 
of these classes, students were put into groups of two to four and assigned to one of 
fi ve work surfaces to work on while solving a given problem-solving task. 

4   In Canada, grade 12 students are typically 16–18 years of age, grade 11 students 15–18 and grade 
10 students 14–17. The age variance is due to a combination of some students fast-tracking to be a 
year ahead of their peers and some students repeating or delaying their grade 11 mathematics 
course. 
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Participating in this phase of the research were also the fi ve teachers whose classes 
the research took place in. Most high school mathematics teachers teach anywhere 
from three to seven different classes. As such, it would have been possible to have 
gathered all of the data from the classes of a single teacher. In order to diversify the 
data, however, it was decided that data would be gathered from classes belonging to 
fi ve different teachers. 

    These teachers were all participating in one of several learning teams which ran 
in the fall of 2006 and the spring of 2007. Teachers participated in these teams vol-
untarily with the hope of improving their practice and their students’ level of 
engagement. Each of these learning teams consisted of between 4 and 6, a 2-h meet-
ing spread over half a school year. Sessions took teachers through a series of activi-
ties modelled on my most current knowledge about building and maintaining 
thinking classrooms. Teachers were asked to implement the activities and teaching 
methods in their own classrooms between meetings and report back to the team how 
it went. 

    The teachers, whose classrooms this data was collected in, were all new to the 
ideas being presented and, other than having individual students occasionally dem-
onstrate work on the whiteboard at the front of the room, had never used them for 
whole class activity.     

    Data 

 As mentioned, the students, in groups of 2–4, worked on one of fi ve assigned work 
surfaces: a wall-mounted whiteboard, a whiteboard laying on top of their desks or 
table, a sheet of fl ipchart paper taped to the wall, a sheet of fl ipchart paper laying on 
top of their desk or table, and their own notebooks at their desks or table. To increase 
the likelihood that they would work as a group, each group was provided with only 
one felt or, in the case of working in a notebook, one pen. To measure the  effective-
ness   of each of these surfaces, a series of  proxies for engagement  were established. 

It is not possible to measure how much a student is thinking during any activity, 
or how that thinking is individual or predicated on and with the other members of 
his or her group. However, there are a variety of proxies for this level of engage-
ment that can be established— proxies for engagement . For the research presented 
here, a variety of  objective and subjective proxies   were established. 

    1.      Time to task    
 This was an objective measure of how much time passed between the task being 
given and the fi rst discernable discussion as a group about the task.   

   2.      Time to fi rst mathematical notation    
 This was an objective measure of how much time passed between the task being 
given and the fi rst mathematical notation was made on the work surface.   

   3.      Eagerness to start    
 This is a subjective measure of how eager a group was to start working on a 
task. A score of 0, 1, 2 or 3 was assigned with 0 being assigned for no  enthusiasm 
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to begin and a 3 being assigned if every member of the group were wanting to 
start.   

   4.     Discussion  
 This is a subjective measure of how much  group discussion   there was while 
working on a task. A score of 0, 1, 2 or 3 was assigned with 0 being assigned for 
no discussion and a 3 being assigned for lots of discussion involving all mem-
bers of the group.   

   5.      Participation    
 This is a subjective measure of how much participation there was from the group 
members while working on a task. A score of 0, 1, 2 or 3 was assigned with 0 
being assigned if no members of the group were active in working on the task 
and a 3 being assigned if all members of the group were participating in the 
work.   

   6.      Persistence    
 This is a subjective measure of how persistent a group was while working on a 
task. A score of 0, 1, 2 or 3 was assigned with 0 being assigned if the group gave 
up immediately when a challenge was encountered and a 3 being assigned if the 
group persisted through multiple challenges.   

   7.      Non-linearity of work    
 This is a subjective measure of how non-linear groups work was. A score of 0, 1, 
2 or 3 was assigned with 0 being assigned if the work was orderly and linear and 
a 3 being assigned if the work was scattered.   

   8.      Knowledge mobility    
 This is a subjective measure of how much interaction there was between groups. 
A score of 0, 1, 2 or 3 was assigned with 0 being assigned if there was no interac-
tion with another group and a 3 being assigned if there were lots of interaction 
with another group or with many other groups.    

  These measures, like all measures, are value laden. Some proxies (1, 2, 3, 6) 
were selected partially from what was observed informally when being in a setting 
where multiple work surfaces were being utilized. Others proxies (4, 5, 7, 8) were 
selected specifi cally because they embody some of what defi nes a thinking class-
room—discussion, participation, non-linear work, and knowledge mobility. 

 As mentioned, these data were collected in the fi ve aforementioned classes dur-
ing a  group problem-solving activity  . Each class was working on a different task. 
Across the fi ve classes, there were ten groups that worked on a wall-mounted white-
board, ten that worked on a whiteboard laying on top of their desks or table, nine 
that worked on fl ipchart paper taped to the wall, nine that worked on fl ipchart paper 
laying on top of their desk or table, and eight that worked in their own notebooks at 
their desks or table. For each group, the aforementioned measures were collected by 
a team of 3–5 people: the teacher whose class it was, the researcher (me), as well a 
number of observing teachers. The data were recorded on a visual representation of 
the classroom and where the groups were located with no group being measured by 
more than one person.   
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    Results and Discussion 

 For the purposes of this chapter, it is suffi cient to show only  the   average scores of 
this analysis (see Table  1 ).

    Th  e data confi rmed the informal observations. Groups are more eager to start and 
there is more discussion, participation, persistence and non-linearity when they 
work on the whiteboards. However, there are nuances that deserve further attention. 
First, although there is no signifi cant difference in the time it takes for the groups to 
start discussing the problem, there is a big difference between whiteboards and 
fl ipchart paper in  the   time it takes before groups make their fi rst mathematical nota-
tion. This is equally true whether groups are  standin  g or sitting. This can be attrib-
uted to the non-permanent nature of the whiteboards. With the ease of erasing 
available to them, students risk more and risk sooner. The contrast to this is the very 
permanent nature of a felt pen on fl ipchart paper. For students working on these 
surfaces, it took a very long time and much discussion before they were willing to 
risk writing anything down. The notebooks are a familiar surface to students, so this 
can be discounted with respect to willingness to risk starting. 

    Although the measures for the whiteboards are far superior to that of the fl ipchart 
paper and notebook for the measures  of   eagerness to start, discussion, and participa-
tion, it is worth noting that in each of these cases, the vertical surface scores higher 
than the horizontal one. Given that the maximum score for any of these measures is 
3, it is also worth noting that eagerness scored a perfect 3 for those that were stand-
ing. That is, for all ten cases of groups working at a vertical whiteboard, ten inde-
pendent evaluators gave each of these groups the maximum score.  For      discussion 
and participation, eight out of the ten groups received the maximum score. On the 
same measures, the horizontal whiteboard groups received 3, 3, and 2 maximum 
scores, respectively. This can be attributed to the fact that sitting, even while work-
ing at a whiteboard, still gives students the opportunity to become anonymous, to 
hide and to not participate. Standing doesn’t afford this. 

   Table 1     Average times and scores   on the eight measures   

 Vertical 
whiteboard 

 Horizontal 
whiteboard 

 Vertical 
paper 

 Horizontal 
paper  Notebook 

  N  (groups)  10  10  9  9  8 

 1. Time to task  12.8 s  13.2 s  12.1 s  14.1 s  13.0 s 
 2. Time to fi rst 

notation 
 20.3 s  23.5 s  2.4 min  2.1 min  18.2 s 

 3. Eagerness  3.0  2.3  1.2  1.0  0.9 
 4. Discussion  2.8  2.2  1.5  1.1  0.6 
 5. Participation  2.8  2.1  1.8  1.6  0.9 
 6. Persistence  2. 6    2.6  1.8  1.9  1.9 
 7. Non-linearity  2.7  2.9  1.0  1.1  0.8 
 8. Mobility  2. 5    1.2  2.0  1.3  1.2 
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    With respect  to   non-linearity, it is clear that the whiteboards, either vertical or 
horizontal, allow a greater freedom to explore the problem across the entirety of the 
surface. Although the whiteboards provide an ease of erasing that is not afforded on 
the fl ipchart, work is rarely erased by the students working on whiteboard surfaces. 
It seems that rather than erasing to make room for more work, the workspace 
migrates around the whiteboard surface, representing the chronological nature of 
problem-solving. In contrast, the groups working on fl ipchart paper tended to not 
write any work down until they were clear it would contribute to the logical devel-
opment of a solution. 

    Finally, it is  worth   noting that groups that were standing also were more likely to 
engage with other groups that were standing close by. Although not measured, it 
was clear that this was more true for the vertical whiteboard groups. There are a 
number of reasons for this. Most obvious, vertical surfaces are more visible. 
However, there were very few observed instances of groups that were sitting down 
looking up to see what the groups that were standing were doing. Likewise, there 
were no instances of the students standing, looking at the work of the groups that 
were sitting. Amongst those that were standing, there was a lot of interaction 
between those working on whiteboards, and almost none between those working on 
fl ipchart paper. Finally, there was very little interaction between those working on 
fl ipchart paper and those working on whiteboards. Part of this can be explained by 
proximity—the whiteboard groups were clustered on one or two whiteboards, while 
the fl ipchart people were clustered elsewhere. But it also is the case that the white-
board groups had little reason to look to the fl ipchart groups. They worked slower 
and had little written on their work surfaces. This was also true between the fl ipchart 
groups—there was little to look at.    

 In short, groups that worked on vertical whiteboards demonstrated more think-
ing classroom behaviour—persistence, discussion, participation  and   knowledge 
mobility—than any of the other types of work surfaces. The next most conducive 
was a horizontal whiteboard. The remaining three were not only not conducive to 
promoting thinking classroom behaviour but they may actually have inhibited it. 
From this it is clear that the non-permanence of surfaces is critical for decreasing 
time to task, as well as improving enthusiasm, discussion, participation, and persis-
tence. It also increases the non-linearity of work which mirrors the actual work of 
thinking groups. Making these non-permanent surfaces vertical further enhances all 
of these qualities, as well as fostering inter-group collaboration, something that is 
needed to move the class from a collection of thinking groups to being a thinking 
classroom.     

    Vertical Non-permanent Surfaces: Teacher Uptake 

    Having this evidence that vertical non-permanent surfaces (VNPS) are so instru-
mental in the fostering of thinking classroom behaviour, a follow-up study was 
done with teachers vis-à-vis the use of this work surface. The goal of this follow-up 
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study was to see the degree to which teachers, when presented with the idea of non- 
permanent vertical surfaces, were keen to implement it within their teaching, actu-
ally tried it, and continued to use it in their teaching. 

    Participants 

  Participants   for this portion of the study were 300 in-service teachers of mathemat-
ics—elementary, middle and secondary school. They were drawn from three 
sources over a four-year period (2007–2011): participants in variety of single work-
shops, participants in a number of multi-session workshops, and participants in 
learning teams. The breakdown of participants, according to grade levels, and form 
of contact is represented in Table  2 .

   There were a number of teachers who attended a combination of learning teams, 
multi-session workshops and single workshops. In these cases, their data was regis-
tered as belonging to the group with the most contact. That is, if they attended a 
single workshop, as well as being a member of a learning team, their participation 
was registered as being a member of a learning team. 

       These participants are only a subset of all the teachers that participated in these 
learning teams, multi-session workshops, and single workshops. They were selected 
at random from each group I worked with by approaching them at the end of the fi rst 
(and sometimes only) session and asking them if they would be willing to have me 
contact them and, potentially, visit their classrooms.     

    Data 

  Data   consists primarily of interview data. Each participant was interviewed imme-
diately after a session where they were fi rst introduced to the idea of vertical non- 
permanent surfaces, 1 week later, and 6 weeks later. These interviews were brief 
and, depending on when the interview was conducted, was originally designed to 
gauge the degree to which they were committed to trying, or continuing to use, 
vertical non-permanent surfaces in their teaching and how they were using them. 
However, participants wanted to talk about much more than just this. They wanted 
to discuss innovations they had made, the ways in which this was changing their 

   Table 2    Distribution  of   participants in VNPS study   

 Elementary  Middle  Secondary  Total 

 Learning team  21  43  41  105 
 Multi-session workshops  12  28  42  82 
 Single workshops  35  24  54  113 
 Total  68  95  137   300  
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teaching practice as a whole, the reactions of the students and their colleagues, as 
well as a variety of other details pertaining to vertical non-permanent surfaces. With 
time, these impromptu conversations changed the initial interview questions to 
begin to also probe for these more nuanced details. For the purposes of this chapter, 
however, only the data pertaining to the original intent will be presented. 

 In addition to the interview data, there were also fi eld notes from 20 classroom 
visits. These visits were implemented for the purposes of checking the fi delity of the 
interview data—to see if what teachers were saying is actually what they were 
doing. In each case, this proved to be the case. It was clear from these data that 
teachers were true to their words with respect to their use of vertical non-permanent 
surfaces. However, these visits, like the interviews, offered much more than what 
was expected. I saw innovations in implementation, observed the enthusiasm of the 
students, and witnessed the transformational effect that this was having on the 
teaching practices of the  participants  .   

    Results and Discussion 

    In general, almost all of the teachers who were introduced to the notion of vertical 
non-permanent surfaces were determined to try it within their teaching and were 
committed to keep doing it, even after 6  weeks   (see Fig.  1 ). This is a signifi cant 
uptake rarely seen in the literature. This is likely due, in part, to the ease with which 
it is modelled in the various professional development settings. During these ses-
sions, not only are the methods involved easily demonstrated but the teachers 
immediately feel the impact on themselves as learners when they are put into a 
group to work on a vertical non-permanent surface.

   An interesting result from this aggregated view is that there were more teachers 
using non-permanent vertical surfaces after 6 weeks than there was after 1 week. 
This has to do with access to these vertical non-permanent surfaces. Many teachers 
struggled to fi nd such surfaces. There were some amazing improvisations in this 
regard, from using windows to bringing in a number of novel surfaces, from shower 
curtains to glossy wall boards. One teacher even stood her classroom tables on end 
to achieve the effect. As time went on, teachers were able to convince their admin-
istrators to provide them with enough whiteboards that these improvisations no lon-
ger became necessary. For some teachers, this took more time than others and 
speaks to the delayed uptake seen in Fig.  1 . However, it also speaks to the persis-
tence with which many teachers pursued this idea with. 

    A disaggregated look at the data shows that neither the grade levels being  taught 
  (see Fig.  2 ) or the type of  professional development setting   in which the idea was 
presented (see Fig.  3 ) had any signifi cant impact on the uptake.

    Literature on teacher change typically implies that sustained change can only be 
achieved through professional development opportunities with multiple sessions 
and extended contact. That is, single workshops are not effective mediums for pro-
moting change (Jasper & Taube,  2004 ; Little & Horn,  2007 ; Lord,  1994 ; McClain 
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& Cobb,  2004 ; Middleton, Sawada, Judson, Bloom, & Turley,  2002 ; Stigler & 
Hiebert,  1999 ; Wenger,  1998 ). The introduction of vertical non-permanent surfaces 
as a workspace doesn’t adhere to these claims. There are many possible reasons for 
this. The fi rst is that the introduction of non-permanent vertical surfaces was 
achieved in a single workshop could be, as mentioned, due to the simple fact that it 
is a relatively easy idea for a workshop leader to model and for workshop partici-
pants to experience. Forty fi ve minutes of solving problems in groups standing at a 
whiteboard coupled with a whole group discussion on the affordances of recreating 
this within their own classrooms is enough to convince teachers to try it. And trying 
it leads to a successful implementation. Unlike many other changes that can be 
made in a teacher’s practice, vertical non-permanent surfaces (as demonstrated in 
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the fi rst study) was well received by students, was easy to manage at a whole class 
level, and had an immediate positive effects on classroom thinking behaviour. 
Together, the ease of modelling coupled with a successful implementation meant 
that vertical non-permanent surfaces did not need more than a single workshop to 
change teaching practice. 

 These  possible reasons   are supported by the comments of teachers from the 
interviews after week 1 and week 6. The following comments were chosen from the 
many collected for their conciseness.

  “ I will never go back to just having students work in their desks .” 
 “ How do I get more whiteboards ?” 
 “ The principal came into my class  …  now I’m doing a session for the whole staff on Monday .” 
 “ My grade - partner is even starting to do it .” 
 “ The kids love it. Especially the windows .” 
 “ I had one girl come up and ask when it will be her turn on the windows .” 

      Not only is the  implementation   of vertical non-permanent surfaces immediately 
effective for these teachers, it is also infectious with other teachers quickly latching 
on to it and administrators quickly seeing the affordances it offers. 

 But if vertical non-permanent surfaces are the solution, what was the problem? 
When I began the research on students’ workspace, the default was students sitting 
in desks—sometimes individually in rows, other times clustered in groups. The 
move from the desks to the vertical workspaces was made, not because I saw some-
thing specifi cally wrong with students being in desks, but rather through adherence 
to the  contrarian approach   that was adopted early on in the more general research 
project. Looking back now at students working in desks, from the perspective of the 
affordances that having them stand at a non-permanent vertical surface offers, I see 
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more clearly the problems that desks introduced into my efforts to build and main-
tain thinking classrooms. Primarily, this has to do with anonymity and how desks 
allow for and even promote this. When students stand at a whiteboard or a window, 
they are all visible. There is nowhere to hide. When students are in their desks, it is 
easy for them to become anonymous, hidden and safe—from participating and 
from contributing. It is not that all students want to be hidden, to not participate, but 
when the problems gets diffi cult, when the discussions require more thinking, it is 
easy for a student to pull back in their participation when they are sitting. Standing 
in a group makes this more diffi cult. Not only is it immediately visible to the teacher 
but it is also clear to the student who is pulling back. To pull back means to step 
towards the centre of the room, towards the teacher, towards nothing. There is no 
anonymity in this.     

    Forming Groups 

       The research into how best to form groups began, like it did with student work sur-
faces, by looking at how groups are typically formed in a classroom. In most cases, 
this is either a strategically planned arrangement decided by the teacher or self- 
selected groupings of friends as decided by the students. Teachers tend to make 
groupings in order to meet their educational goals. These may include goals around 
pedagogy, student productivity, or simply the construction of a peaceful work envi-
ronment. Meanwhile, students, when given the opportunity, tend to group them-
selves according to their social goals. This mismatch between educational and 
social goals in classrooms creates conditions where, no matter how strategic a 
teacher is in her groupings, some students are unhappy in the failure of that group-
ing to meet their social goals (Kotsopoulos,  2007 ; Slavin,  1996 ). 

       This disparity results in a decrease in the effectiveness of group work. This led to 
the exploration of alternative grouping methods. The fact that strategic grouping 
strategies were often not working, coupled with the contrarian approach of action in 
such instances, meant that random grouping methods needed to be explored. 
Working with the same type of population of teachers described above, a variety of 
random grouping methods were implemented and studied. This preliminary research 
showed, very quickly, that there was little difference in the effectiveness of strategic 
groupings and randomized groupings when the randomization was done out of sight 
of the students. The students assumed that all groupings had a hidden agenda, and 
merely saying that they were randomly generated was not enough to change class-
room behaviour. 

       However, when the randomization was done in full view of the students, changes 
were immediately noticed. When randomization was done frequently—twice a day 
in elementary classrooms and every class in middle and secondary classrooms—the 
changes in classroom behaviour was profound. Within 2–3 weeks:

•    Students became agreeable to work in any group they were placed in.  
•   There was an elimination of social barriers within the classroom.  
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•   Mobility of knowledge between students increased.  
•   Reliance on the teacher for answers decreased.  
•   Reliance on co-constructed intra- and inter-group answers increased.  
•   Engagement in classroom tasks increased.  
•   Students became more enthusiastic about mathematics class.    

    To confi rm these observations, one grade 10 (age 15–16) was studied. The details 
and results of this research have already been published in a chapter entitled  The 
Affordances of Using Visibly Random Groups in a Mathematics Classroom  
(Liljedahl,  2014 ). What follows is a summary of this research. 

    The class in which the study was done belonged to Ms. Carley, a teacher with 
eight years experience who was a participant in one of the learning teams I was 
leading. Ms. Carley had joined the team because she was dissatisfi ed with the results 
of group work in her teaching. She knew that group work was important to learning, 
but, until now, had felt that her efforts in this regard had been unsuccessful. She was 
looking for a better way. So, when I suggested to the group that they try using vis-
ibly random groups she made an immediate commitment to start using this method 
in one of her classrooms. 

    Data consisted of interview transcripts and fi eld notes collected over a 3-month 
period immediately prior to and during an implementation of visibly random groups 
in Ms. Carley’s class. These data were analysed using analytic induction (Patton, 
 2002 ) anchored in the  a priori  and grounded observations from my initial experi-
mentation with random groupings. 

    These results both confi rmed and nuanced the initial observations. Students very 
quickly shed their anxieties about what groups they were in. They began to collabo-
rate in earnest. After three weeks, a  porosity  developed between group boundaries 
as both intra- and inter-group collaboration fl ourished. With this heightened mobi-
lization of knowledge came a decrease in the reliance on the teacher as the  knower  
in the room. In the end, there was a marked heightening of enthusiasm and engage-
ment for problem-solving in particular, and in mathematics class in general. In 
short, Ms. Carley’s class became a thinking  classroom     .  

    Visibly Random Groupings: Teacher Uptake 

    Similar to the research on the vertical non-permanent surfaces a pseudo-quantitative 
study was done on the uptake by teachers on the idea of visibly random groupings 
(VRG). Tapping into the similar populations of teachers engaged in learning teams, 
multi-session workshops, and single workshops between 2009 and 2011, a popula-
tion of 200 teachers  were   selected to participate (see Table  3 ).

   These teachers were introduced to the idea of visibly random groupings in a 
similar fashion as above—through modelling and immersion. They were likewise 
interviewed immediately after their professional development experience, 1 week 
after their experience, and 6 weeks after.    The results of this analysis can be seen in 
Fig.  4 .

Building Thinking Classrooms: Conditions for Problem-Solving



378

   The dip in the uptake between week 1 and week 6 was minor. What was interest-
ing was the uptick in intension after week 6. From the interviews, it became clear 
that the teachers who had come away from using visibly random groups did so 
because, after 3–4 weeks, things were working so well that they thought they could 
now allow the students to work with who they wanted. Once they saw that this was 
not as effective, they recommitted to going back to random groupings. 

 Like with vertical non-permanent surfaces, there was no discernible difference in 
uptake between elementary, middle or secondary teachers. However, unlike the pre-
vious study, there was a slight difference depending on the nature of the profes-
sional development environment they  were   participating in (see Fig.  5 ).

      From the interviews, it seemed that although the immediate delivery of the idea 
was accomplished within a single session, the support of the learning team helped 
teachers to get on board late if they hesitated in implementing in the 1st week. This 
explains the uptick in the number of  learning team members   who started using ran-
domized groups in between the fi rst and the sixth week. This also explains why 
there was no such uptick amongst the single workshop participants who had no 
follow-up session, or amongst the multi-session participants who did not have a 
second session until 8 weeks after the initial idea was presented. 

 Regardless, there was still a signifi cant uptake by those teachers who only expe-
rienced one 90 min session on the use of visibly random groupings. This can be 
explained in the same way as it was for the vertical non-permanent surfaces—it was 
easily modelled and the affordances became immediately apparent. As well, the 
students took to it quickly with little resistance once the participants implemented it 
within their own classrooms. 

   Table 3    Distribution of  participants   in VRG study   

 Elementary  Middle  Secondary  Total 

 Learning team  15  22  31  68 
 Multi-session workshops  25  19  14  58 
 Single workshops  10  25  39  74 
 Total  50   66    84   200  
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 As with the research on the vertical non-permanent surfaces, the research on vis-
ibly random groupings included 14 classroom visits. Unlike the research on VNPS, 
however, the purpose of these visits was not to check the fi delity of the interview 
data. Rather, it was to see if teachers were continuing to use VRG’s even 6–9 
months after their last work with me. In each of the 14 visits, I saw a continued use 
of VRG strategies. And like with my visits in the VNPS research, these visits 
offered much more than what was expected. I saw innovations in implementation, 
observed the enthusiasm of the students, and witnessed the transformational effect 
that this was having on teaching practices.     

       VNPS and VRG Taken Together: Teacher Uptake 

    Once it was established that both vertical non-permanent surfaces and visibly ran-
dom groupings were effective practices for building aspects of a thinking classroom 
and that these methods had good uptake by teachers, it was easy to bring them 
together. From a professional development perspective, this is no more diffi cult 
than presenting each one separately. VNPS and VRG are easily modelled together, 
with the participants being put into visibly random groupings to work on vertical 
non-permanent surfaces. So, this is what was done with a population of teachers 
similar to the ones described above. From this, 124 participants were followed to 
gauge the uptake of being exposed to both of these methods simultaneously. The 
results can be seen in Fig.  6 .

93 93

99 99

91

88

83

91

95

92

82

89

0

10

20

30

40

50

60

70

80

90

100

immediate intension tried it in the first week still doing it after six
weeks

intends to keep doing it
after six weeks

PE
RC

EN
T

learning team (n=105) multi-session workshops (n=82) single workshop (n=113)

  Fig. 5    Uptake of VRG  by   professional development setting ( n  = 200)       

 

Building Thinking Classrooms: Conditions for Problem-Solving



380

         Like with visibly random groupings, there was no signifi cant difference in uptake 
by grade level and a slight difference in uptake as disaggregated by the professional 
development setting in which the combined methods were presented. Like with vis-
ibly random groupings, the teachers in the learning team setting were more consis-
tently implementing the methods presented, whereas those teachers in the single 
workshop sessions were less likely to get on board late and more likely to drop off 
early (see Fig.  7 ). Despite these differences, however, the uptake across for each 
group was impressive with much enthusiasm for it.

         With respect to the effect on students, my observations during ten classroom 
visits showed the combined benefi ts of the two interventions. The fact that the stu-
dents were so comfortable working with each other, coupled with the high visibility 
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of the work afforded by the vertical surfaces, allowed for enhanced intra-group 
knowledge mobilization. The teachers often commented that they saw huge 
improvements in the classroom community.

   “I used to think I had a community in my classroom. Now I see what a community can look 
like .” 

      My observation of the student actions during these ten classroom visits confi rmed  this  .  

    General Findings: All  Nine   Elements 

 The results from research on students’ workspace and grouping methods are indicative 
of the fi ndings of research into each of the nine aforementioned elements. From the 
design-based research on each of these—independently or in conjunction with 
others—emerged a set of teaching practices that are conducive to either the building, 
or maintenance, of a thinking classroom. In what follows briefl y, these are:

    1.     The type of tasks used and when and how they are used  
 Lessons need to begin with good problem-solving tasks. At the early stages of 
building a thinking classroom, these tasks need to be highly engaging, 
 collaborative tasks that drive students to want to talk with each other as they try 
to solve them (Liljedahl,  2008 ). Once a thinking classroom is established, the 
problems need to permeate the entirety of the lesson and emerge rich mathe-
matics (Schoenfeld,  1985 ) that can be linked to the curriculum content to be 
‘taught’ that day.   

   2.     The way in which tasks are given to students  
 Tasks need to be given orally. If there are data or diagrams needed, these can be 
provided on paper, but the instructions pertaining to the activity of the task need 
to be given orally. This very quickly drives the groups to discuss what is being 
asked rather than trying to decode instructions on a page.   

   3.      H    ow groups are formed, both in general and when students work on tasks  
 As presented above, groupings need to be frequent and visibly random. Ideally, 
at the beginning of every class, a visibly random method is used to assign stu-
dents to a group of 2–4 for the duration of that class. These groups will work 
together on any assigned problem-solving tasks, sit together or stand together 
during any group or whole class discussions.   

   4.     Student workspace while they work on tasks  
 As discussed, groups of students need to work on vertical non-permanent sur-
faces such as whiteboards, blackboards, or windows. This will make visible all 
work being done, not just to the teacher but to the groups doing the work. To 
facilitate discussion, there should be only one felt pen or piece of chalk per 
group.   

   5.     Room organization, both in general and when students work on tasks  
 The classroom needs to be de-fronted. The teacher must let go of one wall of the 
classroom as being the designated teaching space that all desks are oriented 
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towards. The teacher needs to address the class from a variety of locations within 
the room and, as much as possible, use all four walls of the classroom. It is best 
if desks are placed in a random confi guration around the room.   

   6.     How questions are answered when students are working on tasks  
 Students only ask three types of  qu  estions: (1) proximity questions—asked when 
the teacher is close; (2) stop-thinking questions—most often of the form ‘is this 
right’; and (3) keep-thinking questions—questions that students ask so they can 
get back to work. Only the third of these types should be answered. The fi rst two 
types need to be acknowledged but not answered.   

   7.     The ways in which hints and extensions are used while students work on tasks  
 Once a thinking classroom is established, it needs to be nurtured. This is done 
primarily through how hints and extensions are given to groups as they work on 
tasks. Flow (Csíkszentmihályi  1990 ,  1996 ) is a good framework for thinking 
about this. Hints and extensions need to be given so as to keep students in a per-
fect balance between the challenge of the current task and their abilities in work-
ing on it. If their ability is too high, the risk is they get bored. If the challenge is 
too great, the risk is they become frustrated.   

   8.     When and how a    t    eacher levels their classroom during or after tasks  
 Levelling needs be done at the bottom. When every group has passed a minimum 
threshold, the teacher needs to engage in discussion about the experience and 
understanding the whole class now shares. This should involve a reifi cation and 
formalization of the work done by the groups and often constitutes the ‘lesson’ 
for that particular class.   

   9.     Assessment, both in general and when students work on tasks  
 Assessment in a thinking classroom needs to be mostly about the involvement of 
students in the learning process through efforts to communicate with them where 
they are and where they are going in their learning. It needs to honour the 
 activities of a thinking classroom through a focus on the processes of learning 
more so than the products and it needs to include both group  wo  rk and individual 
work.      

    Discussion 

 However, this research also showed that these are not all equally impactful or pur-
poseful in the building and maintenance of a thinking classroom. Some of these are 
blunt instruments capable of leveraging signifi cant changes while others are more 
refi ned, used for the fi ne-tuning and maintenance of a thinking classroom. Some 
are necessary precursors to others. Some are easier to implement by teachers than 
others, while others are more nuanced, requiring great attention and more practice 
as a teacher. And some are better received by students than others. From the whole 
of these results emerged a three-tier hierarchy that represent not only the bluntness 
and ease of implementation but also an ideal chronology of implementation (see 
Table  4 ).
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   In the aforementioned research, I presented the results of research into teachers 
implementing teaching practices from stage one, either separately or together. 
However, the effect on these teachers is more profound than the numbers and graphs 
indicated above. This experience with elements in stage one propels them to thirst 
for more, both in particular and in general. They want more tasks, more examples 
of how to make random groupings, how to fi nd vertical surfaces. But they also want 
to know more about assessment, how to ask and answer questions, how to organize 
their rooms, how to give instructions and how to sustain the engagement they have 
experienced while at the same time feeling like they are getting through the curricu-
lum. In short, their experience with the teaching methods associated with stage one 
elements is quite naturally propelling them into wanting to engage in the elements 
in stages two and three. 

 These results are not defi nitive, exhaustive or unique. The teaching methods that 
emerged as effective for each of these elements emerged as a result of an  a priori  
commitment to make change in a contrarian fashion. This continued until positive 
effects began to emerge, at which point refi nements were recursively explored. It is 
possible that a different approach to the research would have yielded different 
methods. Different methods could, likewise, emerge a different set of stages opti-
mal for the development of thinking classrooms.  

    Conclusions 

 The main goal of this research is about fi nding ways to build thinking classrooms. 
One of the sub-goals of this work on building thinking classrooms was to develop 
methods that not only fostered thinking and collaboration but also bypassed any 
classroom norms that would potentially inhibit this from happening. Using the 
methods in stage one while solving problems, either together or separately, was 
almost universally successful. They worked for any grade, in any class and for any 
teacher. As such, it can be said that these methods succeeded in bypassing whatever 
norms existed in the over 600 classrooms in which these methods were tried. 
Further, they not only bypassed the norms for the students but also the norms of the 

   Table 4     Nine    elements   as chronologically implemented   

 Stage one  Stage two  Stage three 

 • Begin lessons with problem-solving 
tasks 

 • Oral instructions  • Levelling 

 • Vertical non-permanent surfaces  • De-fronting the room  • Assessment 
 • Visibly random groups  •  Ans  wering questions  • Managing fl ow 

  
BLUNTNESS

    

  DIFFICULTY OF IMPLEMENTATION     
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teachers implementing them. So different were these methods from the existing 
practices of the teachers participating in the research that they were left with what I 
have come to call  fi rst-person vicarious experiences . They are fi rst person because 
they are living the lesson and observing the results created by their own hands. But 
the methods are not their own. There has been no time to assimilate them into their 
own repertoire of practice or into the schema of how they construct meaningful 
practice. They simply experienced the methods as learners and then were asked to 
immediately implement them as teachers. As such, they experienced a different way 
in which their classroom could look and how their students could behave. They 
experienced, through these other ly  methods, an other ly  classroom—a thinking 
classroom. 

 The results of this research sound extraordinary. In many ways, they are. It 
would be tempting to try to attribute these to some special quality of the profes-
sional development setting or skill of the facilitator. But these are not the source of 
these remarkable results. The results, I believe, lie not in what is new but what is not 
old. The classroom norms that permeate classrooms in North America, and around 
the world, are so robust, so entrenched, that they transcend the particular classrooms 
and have become institutional norms (Liu & Liljedahl,  2012 ). What the methods 
presented here offer is a violent break from these institutional norms, and in so 
doing, offer students a chance to be learners much more so than students (Liljedahl 
& Allan,  2013a ,  2013b ). 

 By constructing a thinking classroom, problem-solving becomes not only a 
means but also an end. A thinking classroom is shot through with rich problems. 
Implementation of each of the aforementioned methods associated with the nine 
elements and three stages relies on the ubiquitous use of problem-solving. But at the 
same time, it also creates a classroom conducive to the collaborative solving of 
problems.  

    Afterword 

 Since this research was completed, I have gone back to visit several of the class-
rooms of teachers who fi rst took part in the research. These teachers are still using 
VNPS and VRG as well as having refi ned their practice around many of the other 
nine aforementioned elements. Unlike many other professional development initia-
tives and interventions I have seen implemented over the years, these really seemed 
to have had a lasting impact on teacher practice. The reason for this seems to come 
from two sources. First, teachers talk about how much their students like the ‘new’ 
way of doing mathematics. So much so, in fact, that when they go back to using 
direct instruction, even for brief periods of time, the students object. The second and 
more intrinsic reason is that they feel more effective as teachers. Their students are 
exhibiting the traits that they had been striving for but were unable to achieve 
through nuanced changes to their initial teaching practice.     
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      Reaction: Teachers, Problem Posing 
and Problem-Solving                     

       Kaye     Stacey    

      The six chapters of Part 3 report a variety of initiatives to study how teachers can 
support their students’ solving of mathematical problems. The chapters are from 
Asia, North and South America and Europe, underlining that improving students’ 
ability to solve mathematical problems is an international endeavour which chal-
lenges mathematics educators around the globe. There are local variations, but sub-
stantial commonalities arise from the contrast between the widespread perception 
that mathematics is mainly a set of rules to remember and the inspiring goal of 
making learning mathematics a creative, problem-solving activity. 

     Teachers   and  Problem-Solving   

 The chapters divide broadly into two groups, with three looking at teachers as 
problem- solvers and three examining how teaching of, about or through mathemati-
cal problem-solving can be better achieved in classrooms. Let us consider the chap-
ters on mathematics teachers fi rst. 

 Felmer and Perdomo-Diaz present part of a study that examines the support that 
pre-service university courses provide for teaching mathematical problem-solving. 
The chapter reports data gathered from 30 new teachers who had graduated from 
leading universities, and it examines how well they were able to solve two prob-
lems, their accompanying affect and self-evaluations. The instruments were very 
carefully targeted to relevant attributes. Felmer and Perdomo-Diaz selected two 
problems involving school mathematics, both of which have more than one numeri-
cal solution. The large proportion of the sampled teachers not seeking these multi-
ple solutions, and some of their comments, led the authors to conclude that despite 
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their years of studying mathematics at university, many teachers have not ever 
experienced ‘working like a mathematician’. This observation about teacher prepa-
ration is not unique to Chile, and there have been some infl uential calls to change 
this situation. See, for example, Conference Board of the Mathematical Sciences 
[CBMS] ( 2001 ). Stacey ( 2008 ) discusses four components of mathematical knowl-
edge needed for teaching, one of which is that teachers should have experienced 
mathematics in action by solving problems, conducting investigations and model-
ling the real world. Stacey also shows that the requirements for teacher certifi cation 
around the world very rarely specify anything about the nature of what is studied 
(such as giving students the experiences Felmer and Perdomo-Diaz recommend), 
commonly only specifying the number of mathematics courses studied. Through 
their analysis of the self-evaluations, Felmer and Perdomo-Diaz also draw attention 
to another phenomenon—that teachers who perform less well in problem-solving 
are often not aware of what they have missed. These fi ndings highlight the need for 
professional learning for practising teachers and the need for it to include experi-
ences of problem-solving. 

 John Mason’s contribution is also concerned with the development of teachers’ 
own mathematical powers. The underlying message is that developing sensitivity 
to students’ problem-solving experience comes from developing sensitivity to 
one’s own. The chapter contains many of Mason’s trademark mathematical tasks 
for ‘fostering and sustaining mathematical thinking in others’ and many of his 
memorable and thought-provoking epigrams and allusions to thinkers through the 
ages. Perspectives are offered on fundamental issues of teaching for, about and 
through problem-solving, including how to generate interest in a problem (Leung 
and Leong et al. also confront this), when and how a teacher might intervene in a 
student’s problem-solving and how to develop an atmosphere conducive to 
conjecturing. 

 Silver’s chapter demonstrates the benefi ts that teachers gain when they analyse 
students’ mathematical solutions. Teachers were able to delve deeply into issues 
which were directly related to their classroom practice. Silver recounts how teach-
ers’ comments about mathematical activity are very often only evaluative (the stu-
dents were successful or not, liked a task or not, etc.). Analysing students’ responses 
helped to broaden the range of solution features that teachers noticed. This in turn 
had instructional power. Teachers saw that students can often creatively solve prob-
lems without the standard effi cient mathematical techniques, and they also saw the 
 diffi culty    experienced by some students in using grade-level mathematical knowl-
edge for problem-solving. The chapter documents a successful way for teachers to 
learn from both their own students’ responses  and   summaries of responses from 
large samples. The mathematical task discussed in this chapter is a modifi cation of 
a publically released unit from the OECD’s PISA surveys. A further large set of 
items was released after the 2012 PISA survey (Organisation for Economic 
Co-operation and Development [OECD],  2013 ). This provides a rich source of 
problems set in engaging real-world contexts and involving a variety of mathematical 
competencies such as using multiple representations.  
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    Implementation Experiments 

 Three of the chapters in the section are concerned with the  classroom implementation 
of problem-solving   and with providing teachers with assistance (training, materials, 
etc.) to make it sustainable. 

 Leung Shuk-Kwan reports on a project to assist in integrating problem posing 
into mathematics instruction in elementary schools in Taiwan. This is now explic-
itly mentioned in the national curriculum standards. She has established that teach-
ers have little experience with problem posing, and that they improve with practice. 
The importance of problem posing within problem-solving is underlined by the 
fi ndings reported in the chapter by Felmer and Perdomo-Diaz that many of their 
subjects appeared not to pose even the seemingly obvious question of whether all 
solutions had been found. Working with large groups of teachers to solve practical 
issues of integration, Leung produced an inventory of tasks and instructional guide-
lines. The chapter reports in detail on the teaching methods developed by commit-
ted teachers working in partnership with the researcher. This has resulted in practical 
advice to teachers such as to spark problem posing by using concrete things like 
photographs or manipulatives (this is reminiscent of the advice in Liljedahl’s chap-
ter for teachers to present problems orally) and not to give sample problems. The 
benefi ts for children were found to be a greater attention to problem mathematical 
structure and to making contexts realistic and it also provided their teachers with  a 
  new window into their knowledge and misunderstandings. The chapter also con-
tains a substantial literature review on problem posing. 

 Work on the implementation of problem-solving in many countries over several 
decades has very frequently reported that even when teachers want to change, to 
make problem-solving and mathematical thinking a more prominent part of their 
practice, students often resist. The persistence of classroom norms (e.g. where stu-
dents expect to receive instructions on how to solve predictable problems) operates 
against teachers who are trying to change their practice. Teachers new to problem- 
solving (or other educational innovations) fi nd that it ‘does not work’ and give the 
innovation up. This has been a widely reported phenomenon for many years (see, 
e.g. Burkhardt, Groves, Schoenfeld, & Stacey,  1988 ). Liljedahl’s chapter gives a 
refreshing view on this. Instead of focussing on the deepest—and possibly most 
diffi cult—ways in which mathematical problem-solving can become a reality, 
Liljedahl demonstrates that there are ‘low-hanging fruit’ by which teachers can dis-
rupt those counterproductive classroom norms relatively easily. The chapter docu-
ments the research behind the development of two such innovations: having students 
stand to work in groups on vertical non-permanent writing surfaces and deciding on 
the group membership through a random process explicitly known by the students 
and frequently redone. Liljedahl’s chapter also demonstrates that honing the way 
that these ‘low fruit’ interventions are best implemented requires solid research, 
monitoring the frequency of desirable behaviours and long-term uptake. 

 The chapter by Leong, Tay, Toh, Quek, Toh, and Dindyal is especially interest-
ing from two points of view. Firstly, it aims to infuse a problem-solving approach 
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throughout teaching, and the chapter reports on the research path that has brought 
the authors to the use of ‘replacement units’. Additionally, the chapter is interesting 
because of its setting in Singapore, where problem-solving has consistently been 
promoted as the central plank of the mathematics curriculum for over two decades. 
The authors observe that problem-solving in the sense of preparing students to 
tackle very challenging problems has been implemented in Singapore, but that infu-
sion of teaching about and through problem-solving is not yet widespread. Through 
a 6-year design experiment, Leong and colleagues have identifi ed the obstacles that 
teachers face in infusing problem-solving throughout their teaching and have con-
verged on practical measures to overcome some of them. They recommend an intro-
ductory unit based around problems that are well suited to teaching about 
mathematical problem-solving so that students develop a language to discuss phases 
of problem-solving and heuristic strategies. Their approach draws the learning of 
strategies through the experience of solving problems, with class refl ection to draw 
the  strategies   from that experience. This successful formula gives depth to learning 
about strategies (see, e.g. Stacey & Groves,  2006 ). To promote infusion, the next 
design phase focussed on ‘infusion problems’, special problems designed to accom-
pany the teaching of diffi cult topics and guidelines on how to use them. The research 
highlighted diffi culties in using these problems, arising from structural issues (e.g. 
time pressure), unhelpful classroom norms and teachers puzzling about how the 
suggested problems fi tted logically and developmentally into a teaching sequence. 
Thus, the current round of experimentation uses complete ‘replacement units’ that 
aim to achieve all expected content and problem-solving goals within an unchanged 
time allocation. By research and development of replacement units with cooperat-
ing teachers, the authors intend to show by example how problem-solving infusion 
can be achieved.  

    Refl ections 

 After reading these chapters, I went back to the Proceedings of the Problem-Solving 
Theme Group at ICME 5 held in 1984 (Burkhardt et al.,  1988 ). Many of the obser-
vations in the chapters of this section echo what is there. We already knew, for 
example, that teachers would fi nd teaching for, about or through problem-solving to 
be diffi cult mathematically (as chapters here attest), diffi cult pedagogically in meet-
ing the multiple needs of students as they worked on problems and diffi cult person-
ally because it requires risk-taking and some loss of control (Stacey & Groves, 
 1988 ). So, what progress has been made? A simple observation is  that   many more 
countries are now involved in problem-solving as attested by these chapters, and 
they have offi cial curriculum backing. Only 3 of the 36 authors in the ICME 5 pro-
ceedings were not from Western countries (Japan, India, South Africa). Furthermore, 
these chapters illustrate how there are now long-term design research projects 
working with sizeable groups of ‘ordinary’ teachers to establish practical guidelines 
to make problem-solving (or as Liljedahl prefers, a thinking classroom) a 
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sustainable part of teaching. This approach is a new contribution. The fi ndings in 
these chapters will certainly provide advice for international work, but the efforts of 
the present authors also acknowledge the need for local work with local teachers  for 
  local conditions supported by creative research targeting the major obstacles. 
Problem-solving remains an elusive goal with no silver bullets, but this new phase 
of research will widen its reach.     
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