
Chapter 8
Linear-Quadratic Gaussian Dynamic Games
with a Control-Sharing Information Pattern

Meir Pachter

Abstract A “zero-sum” Linear-Quadratic Gaussian Dynamic Game (LQGDG)
where the players have partial information is considered. Specifically, the players’
initial state information and their measurements are private information, but each
player is able to observe his antagonist’s past inputs: the protagonists’ past controls
is shared information. Although this is a game with partial information, the control-
sharing information pattern renders the game amenable to solution by the method
of dynamic programming. The correct solution of LQGDGs with a control-sharing
information pattern is obtained in closed-form.
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8.1 Introduction

The complete solution of Linear-Quadratic Gaussian Dynamic Games (LQGDGs)
has been a longstanding goal of the controls and games communities. That LQGDGs
with a nonclassical information pattern can be problematic has been amply illus-
trated in Witsenhausen’s seminal paper (Witsenhausen 1968)—see also Pachter
and Pham (2014). Control theorists have traditionally emphasized control theoretic
aspects and the backward induction/dynamic programming solution method, which
however is not applicable to dynamic games with partial information—one notable
exception notwithstanding, being the game with partial information that will be
discussed herein. And game theorists have focused on information economics,
that is, the role of information in games, but for the most part, discrete games.
The state of affairs concerning dynamic games with partial information is not
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satisfactory. In this respect, the situation is not much different now than it was in
1971 when Witsenhausen made a similar observation (Witsenhausen 1971). In this
article a careful analysis of dynamic games with partial information is undertaken.
We exclusively focus on LQGDGs, which are more readily amenable to analysis.
Indeed, Linear-Quadratic Dynamic Games (LQDGs) with perfect information stand
out as far as applications of the theory of dynamic games are concerned: a canonical
instance of an application of the theory of LQDGs can be found in Ho et al. (1965)
where it has been shown that its solution yields the Proportional Navigation (PN)
guidance law which is universally used in Air-to-Air missiles. Furthermore, the
theory of LQDGs has been successfully applied to the synthesis of H1 control
laws (Basar and Bernhard 2008). The theory of LQDGs with perfect information
has therefore received a great deal of attention (Basar and Olsder 1995; Engwerda
2005; Pachter and Pham 2010). In these works, the concepts of state, and state
feedback, are emphasized and the solution method entails backward induction,
a.k.a., Dynamic Programming (DP).

Concerning informational issues in LQGDGs: In previous work Radner (1962)
and Pachter and Pham (2013) a static Linear-Quadratic Gaussian (LQG) team
problem was addressed and a static “zero-sum” LQG game with partial information
was analyzed in Pachter (2013). In this article a dynamic “zero-sum” LQG game,
that is, a LQGDG, where the players have partial information, is addressed. The
information pattern is as follows. The players’ initial state information and their
measurements are private information, but each player is able to observe the
antagonist’s past inputs: the protagonists’ past controls is shared information. This
information pattern has previously been discussed by Aoki (1973), and in the
context of a team decision problem, this information pattern has also been discussed
in Sandell and Athans (1974). However, Aoki (1973) took “a wrong turn”: as so
often happens in the literature of games with partial information, one is tempted
to assume the players will try to second guess the opponents’ private information,
say, their measurements. The vicious cycle of second guessing the opponent’s
measurements leads to a mirror gallery like setting and to a dead end. This point
is discussed in Sect. 8.4. Concerning reference Sandell and Athans (1974) where
a decentralized dynamic team problem with a control-sharing information pattern
is considered: It is argued that an infinite amount of information is contained in
a real number, which, in theory, is correct. And since the control information is
shared, then at least in a cooperative control/team setting, a player/agent could in
principle encode in the controls information about to be sent to his partner his private
information, for example, his measurements history. This is due to the fact that the
controls which are about to be communicated can be modified slightly to encode the
measurements information of the protagonists without significantly disturbing the
control, and consequently, have a barely noticeable effect on the value of the game.
One then falls back on the solution of the LQG cooperative control problem with
a one-step-delay shared information pattern (Kurtaran and Sivan 1974). However,
this scheme has no place in an antagonistic scenario, a.k.a., “zero-sum” LQGDG
as discussed in our paper, and also does not properly model a decentralized control
scenario. Moreover, this scheme totally depends on the players’ ability of obtaining
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a noiseless observation of the broadcast control and as such, exhibits a lack of
robustness to measurement error and is not a viable proposition. In the end, it is
acknowledged in Sandell and Athans (1974) that the control-sharing information
pattern leads to a stochastic control problem that is ill posed and it is stated that
“the need for future work on this problem is obvious”. Unfortunately, the analysis
of LQGDGs with a control-sharing information pattern presented in Aoki (1973)
and Sandell and Athans (1974) is patently incorrect. In this paper LQGDGs with
a control-sharing information pattern are revisited. A careful analysis reveals that
although this is a game with partial information, the control-sharing information
pattern renders the game amenable to solution by the method of DP. It is shown that
the solution of the LQGDG with a control-sharing information pattern is similar in
structure to the solution of the LQG optimal control problem in so far as the principle
of certainty equivalence/decomposition holds. A correct closed-form solution of a
LQGDG with a control-sharing information pattern is obtained.

The paper is organized as follows. The LQGDG problem statement and the
attendant control-sharing information pattern are presented in Sect. 8.2. The state
estimation algorithm required for the solution of LQGDGs with a control-sharing
information pattern is developed in Sect. 8.3. The analysis of Linear-Quadratic
Gaussian Games with a control-sharing information pattern is anchored in Sect. 8.4
where the end-game is solved and the solution of the LQGDG with a control-
sharing information pattern is obtained in Sect. 8.5 using the method of backward
induction/DP. The results are summarized in Sect. 8.6, followed by concluding
remarks in Sect. 8.7. For the sake of completeness, the solution of the baseline
deterministic LQDG game with perfect information (Pachter and Pham 2010) is
included in the Appendix. The somewhat lengthy exposition could perhaps be
excused in light of Witsenhausen’s observation when discussing LQG control
(Witsenhausen 1971): “The most confused derivations of the correct results are also
among the shortest”.

8.2 Linear Quadratic Gaussian Dynamic Game

Two player Linear Quadratic Gaussian Dynamic Games (LQGDGs) are considered.
The players are designated P and E, and the game is specified as follows.

Dynamics: Linear

xkC1 D Akxk C Bkuk C Ckvk C �kwk; x0 � x0; k D 0; : : : ; N � 1 (8.1)

At decision time k the controls of players P and E are uk and vk, respectively. The
process noise wk � N .0; Qp/; k D 0; : : : ; N � 1. The planning horizon is N.

Measurements: Linear

The N measurements of player P are:
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At time k D 0, x.P/
0 — player P believes that the initial state

x0 � N .x.P/
0 ; P.P/

0 /; (8.2)

and thereafter he takes the measurements

z.P/
kC1 D H.P/

kC1xkC1 C v
.P/
kC1; v

.P/
kC1 � N .0; R.P/

m /; k D 0; : : : ; N � 2 (8.3)

The N measurements of player E are:
At time k D 0, x.E/

0 — player E believes that the initial state

x0 � N .xE/
0 ; P.E/

0 /; (8.4)

and thereafter he takes the measurements

z.E/
kC1 D H.E/

kC1xkC1 C v
.E/
kC1; v

.E/
kC1 � N .0; R.E/

m /; k D 0; : : : ; N � 2 (8.5)

Cost/Payoff Function: Quadratic

We confine our attention to the antagonistic “zero-sum” game scenario where the
respective P and E players strive to minimize and maximize the cost/payoff function

J D xT
NQFxN C

N�1X

kD0

ŒxT
kC1QkC1xkC1 C uT

k R.P/
k uk � vT

k R.E/
k vk� ! min

fukg

N�1
kD0

max
fvkg

N�1
kD0

(8.6)

Specifically, players P and E minimize and maximize their expected cost/payoff
E.J j �/, conditional on their private information. The expectation operator is
liberally used in the dynamics game literature but oftentimes it is not clearly stated
with respect to which random variables the expectation is calculated and on which
random variables the expectation is conditional. This tends to mask the fact that what
appear to be “zero-sum” games are in fact nonzero-sum games. Upon considering
“zero-sum” games with partial information, the illusion is then created that a zero-
sum game is considered. One then tends to rely on the uniqueness of the saddle
point value and the interchangeability of non-unique optimal saddle point strategies
in zero-sum games. This argument is flawed because, as previously discussed, in
“zero-sum” games with partial information the P and E players calculate their
respective cost and payoff conditional on their private information, as is correctly
done in this paper; that’s why I put the term zero-sum in quotation marks. Thus,
although high powered mathematics is oftentimes used, serious conceptual errors
make the “results” not applicable. Contrary to statements sometimes encountered
in the literature, in “zero-sum” games with partial information one cannot look
for a saddle point solution and the correct solution concept is a Nash equilibrium,
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that is, Person by Person Satisfactory (PBPS) solution. In this paper a unique Nash
equilibrium is provided and the P and E players’ value functions are calculated.

Information pattern

1. Public information

(a) Problem parameters: Ak, Bk, Ck, H.P/
k , H.E/

k , Qp, Qk, QF, R.P/
k , R.E/

k , R.P/
m ,

R.E/
m .

(b) Prior information: P.P/
0 , P.E/

0 .

2. Private information
At decision time k D 0 the prior information of player P is x.P/

0 .

At decision time k D 0 the prior information of player E is x.E/
0 .

At decision time 1 � k � N � 1 the information of player P are his
measurements x.P/

0 , z.P/
1 ; : : : ; z.P/

k and ownship control history u0; : : : ; uk�1.
At decision time 1 � k � N � 1 the information of player E are his
measurements x.E/

0 , z.E/
1 ; : : : ; z.E/

k and ownship control history v0; : : : ; vk�1.

Sufficient statistics

The sufficient statistics of player P at decision time k D 0: x0 � N .x.P/
0 ; P.P/

0 /.

The sufficient statistics of player E at decision time k D 0: x0 � N .x.E/
0 ; P.E/

0 /.
The sufficient statistics of player P at decision time 1 � k � N � 1: The
p.d.f. f .P/

k .�/ of the physical state xk, as calculated by player P using his private
information.
The sufficient statistics of player E at decision time 1 � k � N � 1: The p.d.f.
f .E/
k .�/ of the physical state xk, as calculated by player E using his private

information.

Remark. In the static LQGDG (Pachter 2013) where N D 1 the respective sufficient
statistics of P and E are x.P/

0 and x.E/
0 .

8.2.1 Problem Statement

The LQGDG (8.1)–(8.6) is considered and it is assumed that the players’ infor-
mation sets are augmented as follows: At decision time k, k D 1; : : : ; N � 1,
player P is endowed with the additional information regarding the control history
v0; : : : ; vk�1 of player E. Thus, player P observed the past inputs v0; : : : ; vk�1 of
player E. Similarly, at decision time k, k D 1; : : : ; N � 1, player E is endowed with
the additional information regarding the control history u0; : : : ; uk�1 of player P.
Thus, player E observed the past inputs u0; : : : ; uk�1 of player P.

The information pattern considered herein is referred to as the control-sharing
information pattern. The dynamics and the measurement equations are linear, and
the cost/payoff function is quadratic, but the information pattern is not classical.
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Strictly speaking, the information pattern is not partially nested because E’s
measurements, which he used to form his controls, are not known to P, and vice
versa, P’s measurements, which he used to form his controls, are not known to E.
However, this is now a moot point because the information pattern is s.t. the control
history of player E is known to player P, and vice versa, the control history of player
P is known to player E. This, and the fact that player P and player E, each separately,
perceive the initial state x0 to be Gaussian, causes the state estimation problem faced
by the players at decision time k to be Linear and Gaussian (LG). Hence, at decision
time k, the knowledge of the complete control history u0; v0; : : : ; uk�1; vk�1 and their
private measurement records makes it possible for both players to separately apply
the linear Kalman filtering algorithm: based on his private measurements record,
each player runs a Kalman filter using his measurements and the complete input
history, and separately obtains an estimate of the state xk—strictly speaking, the
p.d.f. of xk is separately obtained by each player. Thus, players P and E perceive
the current state xk to be Gaussian distributed. Having run their respective Kalman
filters, at time k player P believes that the state

xk � N .x.P/
k ; P.P/

k / ; 8 k; N � 1 � k � 0 (8.7)

and player E believes that the state

xk � N .x.E/
k ; P.E/

k / ; 8 k; N � 1 � k � 0 (8.8)

but they are also aware that their state estimates are correlated—see Sect. 8.3.
Since the LQGDG (8.1)–(8.6) is LG, the P and E players’ separately calculated

sufficient statistics are given by Eqs. (8.7) and (8.8), and their controls will be
determined by their optimal strategies according to u�

k D .�
.P/
k .x.P/

k ; P.P/
k //� and

v�
k D .�

.E/
k .x.E/

k ; P.E/
k //�. In fact, we shall show that in LQGDGs with a control-

sharing information pattern the optimal strategies are of the form

u�
k D .�

.P/
k .x.P/

k //� ; (8.9)

v�
k D .�

.E/
k .x.E/

k //� ; 8 k; 0 � k � N � 1 (8.10)

and are linear.

8.3 Kalman Filtering

LQGDGs with a control-sharing information pattern are Linear-Gaussian (LG) and
consequently at decision time k each player can separately calculate his estimate of
the physical state xk using a linear Kalman Filter (KF). Player P runs the KF
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.x.P/
k /� D Ax.P/

k�1 C Buk�1 C Cvk�1; x.P/
0 � x.P/

0 (8.11)

.P.P/
k /� D AP.P/

k�1AT C � Qp� T ; P.P/
0 � P.P/

0 (8.12)

K.P/
k D .P.P/

k /�.H.P//T ŒH.P/.P.P/
k /�.H.P//T C R.P/

m ��1 (8.13)

x.P/
k D .x.P/

k /� C K.P/
k Œz.P/

k � H.P/.x.P/
k /�� (8.14)

P.P/
k D .I � K.P/

k H.P//.P.P/
k /� (8.15)

and so at decision time k player P obtains his estimate x.P/
k of the state xk. Similarly,

player E runs the KF

.x.E/
k /� D Ax.E/

k�1 C Buk�1 C Cvk�1; x.E/
0 � x.E/

0 (8.16)

.P.E/
k /� D AP.E/

k�1AT C � Qp� T ; P.E/
0 � P.E/

0 (8.17)

K.E/
k D .P.E/

k /�.H.E//T ŒH.E/.P.E/
k /�.H.E//T C R.E/

m ��1 (8.18)

x.E/
k D .x.E/

k /� C K.E/
k Œz.E/

k � H.E/.x.E/
k /�� (8.19)

P.E/
k D .I � K.E/

k H.E//.P.E/
k /� (8.20)

and so at decision time k player E obtains his estimate x.E/
k of the state xk. The P

and E players can calculate their respective state estimation error covariances and
Kalman gains P.P/

k , K.P/
kC1, P.E/

k and K.E/
kC1 ahead of time and off line.

In LQGDGs with a control-sharing information pattern the players’ sufficient
statistic is their state estimate; the latter is the argument of their strategy func-
tions (8.9) and (8.10). Hence, in the process of countering E’s action, P must
compute the statistics of E’s state estimate x.E/

k , and, vice versa, while planning

his move, E must compute the statistics of P’s state estimate x.P/
k . Momentarily

assume the point of view of player P: As far as P is concerned, the unknown to him
state estimate of player E at time k, x.E/

k , is a random variable (and consequently
E’s input at time k is a random variable). Similarly, player E will consider the
unknown to him state estimate of player P at time k, x.P/

k , to be a random variable
(and consequently P’s input at time k is a random variable). Hence, in the LQGDG
with a control-sharing information pattern, at time k player P will estimate E’s state
estimate x.E/

k using his calculated ownship state estimate x.P/
k , and vice versa, player

E will estimate P’s state estimate x.P/
k using his calculated ownship state estimate

x.E/
k . Thus, in the LQGDG with a control-sharing information pattern and with his

state estimate x.P/
k at time k in hand, player P calculates the statistics of E’s state

estimate x.E/
k , conditional on the public and private information available to him at

time k. Similarly, having obtained at time k his state estimate x.E/
k , player E calculates

the statistics of the state estimate x.P/
k of player P, conditional on the public and

private information available to him at time k. Let’s start at decision time k D 0.



172 M. Pachter

Player P models his measurement/estimate x.P/
0 of the initial state x0 as

x.P/
0 D x0 C e.P/

0 ; (8.21)

where x0 is the true physical state and e.P/
0 is player P’s measurement/estimation

error, whose statistics, in view of Eq. (8.2), are e.P/
0 � N .0; P.P/

0 /. In addition,

player P models player E’s measurement x.E/
0 of the initial state x0 as

x.E/
0 D x0 C e.E/

0 ; (8.22)

where, as before, x0 is the true physical state and e.E/
0 is player E’s measure-

ment/estimation error, whose statistics, which are known to P—see Eq. (8.4)—are
e.E/

0 � N .0; P.E/
0 /. The Gaussian random variables e.P/

0 and e.E/
0 are independent—

by hypothesis. From player P’s point of view, x.P/
0 is known but x.E/

0 is a random
variable. Subtracting Eq. (8.21) from Eq. (8.22), at time k D 0 player P concludes
that as far as he is concerned, player E’s measurement upon which he will decide,
according to Eq. (8.10), on his optimal control v�

0 , is the random variable

x.E/
0 D x.P/

0 C e.E/
0 � e.P/

0 ; (8.23)

In other words, as far as P is concerned, E’s estimate x.E/
0 of the initial state x0 is the

Gaussian random variable

x.E/
0 � N .x.P/

0 ; P.P/
0 C P.E/

0 / (8.24)

Thus, player P has used his measurement/private information x.P/
0 and the public

information P.P/
0 and P.E/

0 to calculate the statistics of the sufficient statistic x.E/
0 of

player E, which is the argument of E’s strategy function �
.E/
0 .�/; the latter, along with

P’s control u0, will feature in player’s P cost functional. Similarly, as far as player
E is concerned, at time k D 0 the statistics of the sufficient statistic x.P/

0 of player P
are

x.P/
0 � N .x.E/

0 ; P.P/
0 C P.E/

0 / (8.25)

Similar to the case where k D 0, as far as player P is concerned the state estimate
of player E at decision time k � 1 is the random variable

x.E/
k D x.P/

k C e.E/
k � e.P/

k ;

that is, at decision time k player P believes that the state estimate x.E/
k of player E is

x.E/
k � N .x.P/

k ; P.E;P/
k / (8.26)
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where the covariance matrix

P.E;P/
k � E. .e.E/

k � e.P/
k /.e.E/

k � e.P/
k /T /

D P.P/
k C P.E/

k � E. e.P/
k .e.E/

k /T / � .E. e.P/
k .e.E/

k /T //T

At the decision time instants k D 1; : : : ; N � 1 the P and E players’ respective state
estimation errors e.P/

k and e.E/
k are now correlated—this is caused by the process

dynamics being driven in part by process noise.
Similarly, as far as he is concerned, player E believes that at decision time k the

state estimate x.P/
k of player P is the random variable

x.P/
k � N .x.E/

k ; P.E;P/
k / (8.27)

Concerning decision time k � 1: Let the covariance matrix

QP.E;P/
k � E. e.P/

k .e.E/
k /T / (8.28)

It can be shown that the recursion for the correlation matrix QP.E;P/
k is

QP.E;P/
kC1 D .I � K.P/

kC1H.P//.A QP.P;E/
k AT C � Qp� T /.I � K.E/

kC1H.E//T ; QP.P;E/
0 D 0;

k D 0; : : : ; N � 1 (8.29)

In summary, at decision time k D 0; : : : ; N �1 player P believes that the statistics
of E’s estimate x.E/

k of the state xk are given by Eq. (8.26) and player E believes that

the statistics of P’s estimate x.P/
k of the state xk are given by Eq. (8.27) where

P.E;P/
k D P.P/

k C P.E/
k � QP.E;P/

k � . QP.E;P/
k /T

The KF covariance matrices P.P/
k , P.E/

k and QP.E;P/
k are calculated ahead of time

by solving the respective recursions (8.12), (8.13), (8.15); (8.17), (8.18), (8.20);
and (8.29).

Finally, since in LQGDGs with a control-sharing information pattern the suf-
ficient statistic is the players’ state estimate, then upon employing the method of
Dynamic Programming, at decision time k player P must project ahead the estimate
of the physical state xkC1 that the Kalman filtering algorithm will provide at time
k C 1. It can be shown that at time k player P believes that the future state xkC1 at
time k C 1 will be the Gaussian random variable

x.P/
kC1 D Ax.P/

k C Buk C C�
.E/
k .x.P/

k C e.P/
k � e.E/

k / C K.P/
kC1.H.P/� wk

Cv
.P/
kC1 � H.P/Ae.P/

k / (8.30)



174 M. Pachter

Similarly, at decision time k player E’s estimate of the state xkC1 at time k C 1 will
be the Gaussian random variable

x.E/
kC1 D Ax.E/

k C B�
.P/
k .x.E/

k C e.E/
k � e.P/

k / C Cvk C K.E/
kC1.H.E/� wk

Cv
.E/
kC1 � H.E/Ae.E/

k / (8.31)

8.4 End Game

In the best tradition of backward induction/Dynamic Programming, the terminal
stage of the game, namely, the players’ decision time k D N � 1 is analyzed first. In
the end game the cost/payoff function is

JN�1.uN�1; vN�1I xN�1/ D xT
NQFxN C xT

NQxN C uT
N�1RuuN�1 � vT

N�1RvvN�1

D xT
N.Q C QF/xN C uT

N�1RuuN�1 � vT
N�1RvvN�1

It is convenient to momentarily set QF WD Q C QF whereupon the terminal
cost/payoff

JN�1.uN�1; vN�1I xN�1/ D xT
NQFxN C uT

N�1RuuN�1 � vT
N�1RvvN�1 (8.32)

The players’ sufficient statistics in this LG game are the expectation of the physical
state and the covariance of the state’s estimation error: having run their respective
Kalman filters during the time interval Œ1; N � 1�, at decision time N � 1 the
information available to player P is .x.P/

N�1; P.P/
N�1/ and the information of player

E is .x.E/
N�1; P.E/

N�1/. In other words, at decision time N � 1 player P believes the

physical state xN�1 to be xN�1 � N .x.P/
N�1; P.P/

N�1/ whereas player E believes the

physical state xN�1 to be specified as xN�1 � N .x.E/
N�1; P.E/

N�1/. This is tantamount
to stipulating that players P and E took separate measurements of the state xN�1.
The quality of the players’ “instruments” used to take the measurements and also
the degree of correlation of the players’ measurement errors is public knowledge—
we refer to the measurement error covariances P.E/

N�1, P.E/
N�1 and QP.E;P/

N�1 . At the same

time, the recorded measurements x.P/
N�1and x.E/

N�1 are the private information of the

respective players P and E: the “measurement” x.E/
N�1 recorded by player E is his

private information and is not shared with player P. Thus, player P has partial
information. Similarly, the “measurement” x.P/

N�1 recorded by player P is his private
information and is not shared with player E, so also player E has partial information.

To gain a better appreciation of the informational issues in games with partial
information, it is instructive to briefly digress and employ an “appealing” approach
which is familiar to workers in deterministic control and which, unfortunately, is
an approach sometimes employed in stochastic games. We now intentionally “take
a wrong turn” which quickly leads us to a dead end. A correct analysis of the
informational situation at hand follows.
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Consider the following flawed argument: At time N � 1 the state information
available to player P is xN�1 � N .x.P/

N�1; P.P/
N�1/ and thus Player P calculates the

expectation of his cost function

J
.P/
N�1.uN�1; vN�1I x.P/

N�1; P.P/
N�1/ � ExN�1 .J.uN�1; vN�1I xN�1/ j x.P/

N�1; P.P/
N�1/

D .x.P//T
N�1AT QFAx.P/

N�1 C Trace.AT QFAP.P/
N�1/

C uT
N�1.Ru C BT QFB/uN�1 � vT

N�1.Rv � CT QFC/vN�1

C 2uT
N�1BT QFAx.P/

N�1 C 2vT
N�1CT QFAx.P/

N�1

C 2uT
N�1BT QFCvN�1 C Trace.� T QF� Qp/ (8.33)

At the same time the state information available to player E is xN�1 �
N .x.E/

N�1; P.E/
N�1/ and Player E calculates the expectation of his payoff function

J
.E/
N�1.uN�1; vN�1I x.E/

N�1; P.E/
N�1/ � ExN�1 .J.uN�1; vN�1I xN�1/ j x.E/

N�1; P.E/
N�1/

D .x.E//T
N�1AT QFAx.E/

N�1 C Trace.AT QFAP.E/
N�1/

C uT
N�1.Ru C BT QFB/uN�1 � vT

N�1.Rv � CT QFC/vN�1

C 2uT
N�1BT QFAx.E/

N�1 C 2vT
N�1CT QFAx.E/

N�1

C 2uT
N�1BT QFCvN�1 C Trace.� T QF� Qp/ (8.34)

Now Player P’s optimization, that is, the differentiation of his deterministic cost
function (8.33), yields the relationship

.Ru C BTQFB/uN�1 C BTQFCvN�1 D �BTQFAx.P/
N�1 (8.35)

and Player E’s optimization, that is, the differentiation of his deterministic payoff
function (8.34), yields the relationship

CTQFBuN�1 � .Rv � CTQFC/vN�1 D �CTQFAx.E/
N�1 (8.36)

Have obtained two equations in the players’ optimal controls, namely, the two
unknowns u�

N�1 and v�
N�1, which players P and E must separately solve in order

to calculate their respective optimal controls. However player P cannot solve the set
of two equations (8.35) and (8.36) because he does not know the “measurement”
x.E/

N�1 of E, and player E cannot solve this set of two equations because he does

not know the “measurement” x.P/
N�1 of P—both players have reached a dead end

and it would appear that all that’s left to do is try to guess and outguess the
opponent’s “measurement”. This state of affairs is caused by the players having
partial information. This approach brings on the much maligned infinite regress
in reciprocal reasoning! Unfortunately, this flawed approach is not foreign to the
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literature on dynamic stochastic games and it leads to erroneous “results”—see
Aoki (1973) where, using this flawed argument, the LQGDG with a shared-control
information pattern was “solved” and complicated “strategies” were computed.

We now change course and undertake a correct analysis of our LQGDG with
a shared-control information pattern. To this end, it is imperative that one thinks
in strategic terms. The strategies available to player P are mappings f W Rn !
Rmu from his information set into his actions set; thus, the action of player P is
uN�1 D f .x.P/

N�1; P.P/
N�1/. Similarly, the strategies available to player E are mappings

g W Rn ! Rmv from his information set into his actions set—thus, the action of
player E is vN�1 D g.x.E/

N�1; P.E/
N�1/. However, we’ll show in the sequel that it suffices

to consider P and E strategies of the form (8.9) and (8.10), respectively.
It is now important to realize that from player P’s vantage point, the action vN�1

of player E is a random variable. This is so because as far as player P is concerned
the measurement x.E/

N�1 of player E used in (8.10) to form his control vN�1 is a
random variable. Similarly, from player E’s vantage point, the action uN�1 of player
P is also a function of a random variable, x.P/

N�1.

Consider the decision process of player P whose private information is x.P/
N�1. He

operates against the strategy g.�/ of player E. Therefore, from player P’s perspective,
the random variables at work are xN�1 and x.E/

N�1. At decision time k D N � 1

player P is confronted with a stochastic optimization problem and he calculates the
expectation of the cost function (8.32), conditional on his private information x.P/

N�1,

J
.P/

.uN�1; g.�/I x.P/
N�1/ � E

xN�1;x
.E/
N�1

.J.uN�1; g.x.E/
N�1/I xN�1/ j x.P/

N�1/ (8.37)

By correctly using in the calculation of his expected cost (8.37) player’s E
strategy function g.x.E/

N�1/ rather than, as before, player E’s control vN�1, player P
has eliminated the possibility of an infinite regress in reciprocal reasoning. This is
so because P now has all the information to be able, in principle, to calculate the
said expectation. Thus, player P calculates his expected cost

J
.P/

.uN�1; g.�/I x.P/
N�1/ D .x.P/

N�1/TATQFAx.P/
N�1 C Trace.ATQFAP.P/

N�1/

C uT
N�1.Ru C BTQFB/uN�1 C 2uT

N�1BTQFAx.P/
N�1

C 2E
xN�1;x

.E/
N�1

.gT.x.E/
N�1/CTQFAxN�1 j x.P/

N�1/

� E
x

.E/
N�1

.gT.x.E/
N�1/.Rv � CTQFC/g.x.E/

N�1/ j x.P/
N�1/

C 2uT
N�1BTQFCE

x
.E/
N�1

.g.x.E/
N�1/ j x.P/

N�1/

C Trace.� TQF� Qp/ (8.38)
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Player P calculates the expectations with respect to the random variable x.E/
N�1 which

features in Eq. (8.38), cognizant that it is x.E/
N�1 � N .x.P/

N�1; P.E;P/
N�1 /. In this game with

partial information, player P is using his measurement/private information x.P/
N�1 and

the public information to estimate the sufficient statistic x.E/
N�1 of player E, which

is the argument of E’s strategy function g.�/; the latter features in player’s P cost
functional (8.38) and thus enters the calculation of P’s cost.

The careful analysis of the optimization problem at hand leads to a Fredholm
equation of the second kind of the convolution type with a kernel which is a
Gaussian function; the unknown functions are the players’ optimal strategies.
Taking the point of view of player E yields a similar Fredholm integral equation
in the players’ optimal strategies. The solution of the set of two Fredholm equations
yields the optimal strategies of players P and E. The optimal strategies turn out to be
linear after all! The reader is referred to reference Pachter (2013) for the complete
derivation.

8.5 Dynamic Programming

We consider the LQGDG (8.1)–(8.6) with a control-sharing information pattern as
in Aoki (1973). The planning horizon N � 2.

8.5.1 Sufficient Statistics

The initial state information and the measurements of players P and E are their
private information but their past controls are shared information. Even though
the players have partial information because the initial state information and their
measurements are not shared, from the point of view of both players P and E, the
control system is nevertheless Linear Gaussian (LG). This is so because at decision
time k their respective adversary’s information state components v0; : : : ; vk�1 and
u0; : : : ; uk�1 are not random variables with unknown p.d.f.s but are known to the
players: The LQGDG with a control-sharing information pattern is LG and therefore
the conditions for the P-player’s information state to be Gaussian hold and at
decision time k the sufficient statistics of P and E are x.P/

k and x.E/
k , respectively.

Furthermore, as far as player P is concerned, at time k the sufficient statistic x.E/
k of

player E is the random variable x.E/
k � N .x.P/

k ; P.E;P/
k / and he uses this information

in the calculation of his cost-to-go/value function at time k. Similarly, player E
considers the sufficient statistic x.P/

k of player P to be x.P/
k � N .x.E/

k ; P.E;P/
k / and

player E uses this information in the calculation of his cost-to-go/value function at
time k.
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8.5.2 Analysis

The analysis is along the lines of the analysis of the static LQG game with partial
information (Pachter 2013) and the analysis of the end game in Sect. 8.4 where
k D N � 1. We shall require

Proposition 1. The value functions of players P and E are quadratic in their
respective sufficient statistics x.P/

k and x.E/
k , that is

VP/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D .x.P/

k /T˘kx.P/
k C c.P/

k .P.P/
k I P.E/

k ; QP.E;P/
k /; k D 0; 1; : : : ; N � 1;

VE/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D .x.E/

k /T˘kx.E/
k C c.E/

k .P.E/
k I P.P/

k ; QP.E;P/
k /; k D 0; 1; : : : ; N � 1

where

˘k are n � n real symmetric matrices and the scalars c.P/
k ; c.E/

k 2 R1; k D 0; : : : ; N:

�

Similar to the correct approach outlined in Sect. 8.4 we calculate the value functions
by taking the expectations over the relevant random variables.

V.P/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D minuk fuT

k ŒRu C BT.Q C ˘kC1/B�uk

C2uT
k BT.Q C ˘kC1/.Ax.P/

k

C CEQw .�
.E/
k .x.P/

k C Qw///g C .x.P/
k /TAT.Q C ˘kC1/Ax.P/

k

� EQw ..�
.E/
k .x.P/

k C Qw//T

ŒRv � CT.Q C ˘kC1/C��
.E/
k .x.P/

k C Qw//

C 2EQw ..�
.E/
k .x.P/

k C Qw//T/CT.Q C ˘kC1/Ax.P/
k

� 2E
e

.E/
k ;e

.P/
k

..�
.E/
k .x.P/

k C e.E/
k � e.P/

k //TCT.Q

C ˘kC1K.P/
kC1H.P//Ae.P/

k / C Trace.ATQAP.P/
k /

C Trace.� TQ� Qp/ C Trace..K.P/
kC1/T˘kC1K.P/

kC1R.P/
m /

C Trace.� T.H.P//T.K.P/
kC1/T˘kC1K.P/

kC1H.P/� Qp/

C Trace.AT.H.P//T.K.P/
kC1/T˘kC1K.P/

kC1H.P/AP.P/
k /

C c.P/
kC1.P.P/

kC1I P.E/
kC1; QP.E;P/

kC1 /; (8.39)
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V.E/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D maxvk f�vT

k ŒRv � CT.Q C ˘kC1/C�vk

C2vT
k CT.Q C ˘kC1/.Ax.E/

k

C BEQw .�
.P/
k .x.E/

k � Qw///g C .x.E/
k /TAT.Q C ˘kC1/Ax.E/

k

C EQw ..�
.P/
k .x.E/

k � Qw//T

ŒRu C BT.Q C ˘kC1/B��
.P/
k .x.E/

k � Qw//

C 2EQw ..�
.P/
k .x.E/

k � Qw//T/BT.Q C ˘kC1/Ax.E/
k

� 2E
e

.E/
k ;e

.P/
k

..�
.P/
k .x.E/

k � e.E/
k C e.P/

k //TBT.Q

C ˘kC1K.E/
kC1H.E//Ae.E/

k / C Trace.ATQAP.E/
k /

C Trace.� TQ� Qp/ C Trace..K.E/
kC1/T˘kC1K.E/

kC1R.E/
m /

C Trace.� T.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/� Qp/

C Trace.AT.H.E//T.K.E/
kC1/T˘kC1K.E/

kC1H.E/AP.E/
k /

C c.E/
kC1.P.P/

kC1I P.E/
kC1; QP.E;P/

kC1 / (8.40)

where the random variable Qw � e.P/
k � e.E/

k � N .0; P.E;P/
k /.

8.5.3 Optimization

Consider the minimization problem faced by P at decision time 0 � k � N � 2:
Differentiating the RHS of Eq. (8.39) in his control uk he obtains the optimality
condition

u�
k D �ŒRu C BT.Q C ˘kC1/B��1BT.Q C ˘kC1/.Ax.P/

k C CEQw. .�
.E/
k .x.P/

k C Qw/ //;

k D 0; 1; : : : ; N � 1 (8.41)

and similarly, upon differentiating the RHS of Eq. (8.40) in vk player E obtains

v�
k D ŒRv � CT.Q C ˘kC1/C��1CT.Q C ˘kC1/.Ax.E/

k C BEQw. .�
.P/
k .x.E/

k � Qw/ //;

k D 0; 1; : : : ; N � 1 (8.42)

Player P has obtained an expression for his optimal control u�
k where x.E/

k does not

feature and u�
k is a function of the parameter x.P/

k only. However, the strategy func-

tion �
.E/
k .�/ of player E features in this equation. Indeed, the strategic relationship

holds
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.�
.P/
k .x.P/

k //� D �ŒRu C BT.Q C ˘kC1/B��1BT.Q C ˘kC1/.Ax.P/
k

C CEQw. ..�
.E/
k .x.P/

k C Qw//� //; k D 0; 1; : : : ; N � 1 (8.43)

We have obtained an expression for P’s optimal strategy function .�
.P/
k .x.P/

k //� in

terms of the strategy �
.E/
k .�/ of player E. Payer P obtained a linear relationship

which directly ties together the as yet unknown optimal strategies .�
.P/
k .x.P/

k //� and

.�
.E/
k .x.E/

k //� of players P and E. Similarly, also player E obtains a linear relationship
among the players’ optimal strategies:

.�
.E/
k .x.E/

k //� D ŒRv � CT.Q C ˘kC1/C��1CT.Q C ˘kC1/.Ax.E/
k

C BEQw. ..�
.P/
k .x.E/

k � Qw//� //; k D 0; 1; : : : ; N � 1 (8.44)

Equations (8.43) and (8.44) constitute a linear system of Fredholm integral
equations of the second kind in the players’ optimal strategies .�

.P/
k .x.P/

k //� and

.�
.E/
k .x.E/

k //�. Similar to the analysis in reference Pachter (2013), the solution of
the linear system of Fredholm integral equations of the second kind, Eqs. (8.43)
and (8.44), yields the optimal strategies which are linear in the players’ sufficient
statistics, namely

�
.P/
k .x.P/

k / D F.P/
k � x.P/

k ; �
.E/
k .x.E/

k / D F.E/
k � x.E/

k

and the formulae for the optimal gains

.F.P/
k /� D �S�1

B .Q C ˘kC1/BT.Q C ˘kC1/fI C CŒRv � CT.Q C ˘kC1/C��1CT.Q

C ˘kC1/gA; k D 0; : : : ; N � 1 (8.45)

.F.E/
k /� D �S�1

C .Q C ˘kC1/CT.Q C ˘kC1/fI � BŒRu C BT.Q C ˘kC1/B��1BT.Q

C ˘kC1/gA; k D 0; : : : ; N � 1 (8.46)

The control system is Linear - Gaussian (LG) and therefore the players’
information states are Gaussian, time consistency in this dynamic game is provided
by the application of the method of Dynamic Programming (DP) where the DP state
is the information state, and, by construction, the strategies are Person-By-Person-
Satisfactory (PBPS), so in the LQGDG with a control-sharing information pattern,
a Nash equilibrium is obtained—as was also the case in the static LQG game with
partial information (Pachter 2013).
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8.5.4 Value Functions

The parameters which specify the statistics of the random variables in the LQGDG
do not feature in the formulae (8.45) and (8.46) for the players’ optimal strategies
and consequently an inspection of the DP equations (8.39) and (8.40) tells us that
the matrices ˘k won’t be a function of the said parameters; in other words, the
matrices ˘k are exclusively determined by the deterministic plant’s parameters A,
B, C, Q, QF, R.P/

c and R.E/
c . Hence ˘k D Pk, where Pk is the solution of the Riccati

equation (8.57) derived for the deterministic LQDG discussed in the Appendix.
Upon defining Pk WD Pk C Q, the optimal gains correspond to the optimal gains
in the deterministic LQDG, Eqs. (8.61) and (8.62) in the Appendix and the players’
optimal gains are

.F.P/
k /� D �S�1

B .PkC1 C Q/BT.PkC1 C Q/fI C CŒRv � CT.PkC1 C Q/C��1CT.PkC1

CQ/gA (8.47)

.F.E/
k /� D �S�1

C .PkC1 C Q/CT.PkC1 C Q/fI � BŒRu C BT.PkC1 C Q/B��1BT.PkC1

CQ/gA (8.48)

The recursions for the scalars c.P/
k and c.E/

k are obtained from the respective DP
equations (8.39) and (8.40):

c.P/
k D c.P/

kC1

C 2 Trace..F.P/
k //�TCT.Q C PkC1K.P/

kC1H.P//A.P.P/
k � QP.P;E/

k /

C Trace.ATQAP.P/
k / C Trace.� TQ� Qp/

C Trace.� T.H.P//T.K.P/
kC1/TPkC1K.P/

kC1H.P/� Qp/

C Trace..K.P/
kC1/TPkC1K.P/

kC1R.P/
m /

C Trace.AT.H.P//T.K.P/
kC1/TPkC1K.P/

kC1H.P/AP.P/
k /; k D N � 2; : : : ; 0 (8.49)

and for k D N � 1 we use the end-game equation

c.P/
N�1.P.P/

N�1I P.E/
N�1; QP.P;E/

N�1 / D Trace. ATQFAP.P/
N�1 C 2.P.P/

N�1

� QP.P;E/
N�1 P.P/

N�1/ATQFC.F.E/
N�1/� � ..F.E/

N�1/�/T.Rv

� CTQFC/.F.E/
N�1/�P.E;P/

N�1 C � TQF� Qp / (8.50)
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Similarly,

c.E/
k D c.E/

kC1

C 2 Trace..F.E/
k /�/TBT.Q C PkC1K.E/

kC1H.E//A.P.E/
k � QP.E;P/

k /

C Trace.ATQAP.E/
k / C Trace.� TQ� Qp/

C Trace.� T.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/� Qp/

C Trace..K.E/
kC1/TPkC1K.E/

kC1R.E/
m /

C Trace.AT.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/AP.E/
k /; k D N � 2; : : : ; 0(8.51)

and for k D N � 1 we use the end-game equation

c.E/
N�1.P.E/

N�1I P.P/
N�1; QP.E;P/

N�1 / D Trace. ATQFAP.E/
N�1 C ..F.P/

N�1/�/T.Ru

C BTQFB/.F.P/
N�1/�P.E;P/

N�1 C 2..F.P/
N�1/�/TBTQFA.P.E/

N�1

� QP.E;P/
N�1 C � TQF� Qp/ / (8.52)

Remark. Only the parameters A, B, C, Q, QF, R.P/
c and R.E/

c feature in the Riccati
equation for Pk, as if the game would be the deterministic LQDG. The players’
measurement matrices, the process noise parameters and the measurement noise
covariances do not feature in Eq. (8.57). However the solution Pk of the Riccati
equation (8.57) and the LQGDG’s measurements—related parameters H.P/, H.E/,
the process noise parameters , R.P/

m and R.E/
m , and the Kalman gains, all enter the

recursions for the “intercepts” c.P/ and c.E/.

8.6 Main Result

The analysis of the LQGDG with a control-sharing information pattern is summa-
rized in the following

Theorem 1. Consider the LQGDG (8.1)–(8.6) with the information pattern:

1. The P and E players’ prior information is given in Eqs. (8.2) and (8.4),
respectively. The prior information x.P/

0 and x.E/
0 is private information of the

respective P and E players and it is not shared among the P and E players. The
covariances P.P/

0 and P.E/
0 are finite and are public information.

2. At decision time 1 � k � N � 1 the measurements of player P and player
E are z.P/

k and z.E/
k and their measurement equations are Eqs. (8.3) and (8.5),

respectively. At decision time 1 � k � N � 1 the respective measurement records
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Z.P/
k D fz.P/

1 ; : : : ; z.P/
k g and Z.E/

k D fz.E/
1 ; : : : ; z.E/

k g are the private information
of players P and E and the measurements are not shared among the P and E
players.

3. At decision time k D 1; : : : ; N � 1 the P and E players have complete recall
of their respective ownship control histories Uk D fu0; : : : ; uk�1g and Vk D
fv0; : : : ; vk�1g.

4. The players observe their opponent’s moves: at decision time 1 � k � N � 1

the control history Vk D fv0; : : : ; vk�1g of player E is known to player P and,
similarly, player E knows the control history Uk D fu0; : : : ; uk�1g of player P.

The players obtain their private state estimates x.P/
k and x.E/

k by running two
separate Kalman Filters (KFs) in parallel driven by their private prior information
and their separate measurements: Player P initialized his KF (8.11)–(8.15) with his
prior information .x.P/

0 ; P.P/
0 / and uses his measurements z.P/

k . Similarly, player E

initialized his KF (8.16)–(8.20) with his prior information .x.E/
0 ; P.E/

0 / and uses his

measurements z.E/
k . Both players use the shared complete input history.

The players reuse the state feedback optimal strategies derived for the determin-
istic LQDG as provided by Theorem A1: In Eq. (8.61) player P sets xk WD x.P/

k and

in Eq. (8.62) player E sets xk WD x.E/
k .

A Nash equilibrium for the “zero-sum” LQGDG with a control-sharing informa-
tion pattern is established. The value functions of players P and E are

V.P/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D .x.P/

k /TPkx.P/
k C c.P/

k

V.E/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D .x.E/

k /TPkx.E/
k C c.E/

k

where the matrices Pk are the solution of the Riccati equation (8.57). The
“intercepts” c.P/

k and c.E/
k are obtained by solving the respective scalar recur-

sions [(8.49), (8.50), (8.48)] and [(8.51), (8.52), (8.47)]. The covariance matrices
P.P/

k , P.E/
k and QP.E;P/

k exclusively feature in the intercepts’ recursions. The matrices
QP.E;P/

k are given by the solution of the Lyapunov-like linear matrix equation (8.29).
The control Riccati equation (8.57), the KF Riccati equation (8.12), (8.13), (8.15)
of player P, the KF Riccati equation (8.17), (8.18), (8.20) of player E , and the
Lyapunov-like linear matrix equation (8.29) can all be solved ahead of time and off
line. Once the three Riccati equations and the Lyapunov equation have been solved,
the value functions’ “intercepts” c.P/

k and c.E/
k are also obtained off line. ut

8.7 Conclusion

Linear-Quadratic Gaussian Dynamic Games with a control-sharing information
pattern have been considered. The players’ initial state information and their mea-
surements are private information, but each player is able to observe his antagonist’s
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past inputs: the protagonists’ past controls is shared information. Although this is a
game with partial information, the control-sharing information pattern renders the
game amenable to solution by the method of DP and a Nash equilibrium for the
“zero-sum” LQGDG is established. The attendant optimal strategies of the LQGDG
with a control-sharing information pattern are linear and certainty equivalence
holds. The linearity of the optimal strategies has not been artificially imposed
from the outset but follows from the LQG nature of the optimization problem at
hand, courtesy of the control-sharing information pattern. The correct solution of
LQGDGs with a control-sharing information pattern is obtained in closed-form.

Appendix: Linear-Quadratic Dynamic Game

The solution of Linear-Quadratic Dynamic Games (LQDG) with perfect infor-
mation, a.k.a., deterministic LQDGs, was derived in Pachter and Pham (2010,
Theorem 2.1). The Schur complement concept (Fuzhen 2005) was used to invert a
blocked .mu C mv/ � .mu C mv/ matrix which contains four blocks, its two diagonal
blocks being a mu � mu matrix and a mv � mv matrix. We further improve on
the results of Pachter and Pham (2010) by noting that a matrix with four blocks
has two Schur complements, say SB and SC. This allows one to obtain explicit
and symmetric formulae for the P and E players’ optimal strategies, thus yielding
the complete solution of the deterministic LQDG. These results are used in this
paper and for the sake of completeness, the closed form solution of the perfect
information/deterministic zero-sum LQDG is included herein.

The linear dynamics are

xkC1 D Axk C Buk C Cvk ; x0 � x0 ; k D 0; 1; : : : ; N � 1 (8.53)

Payer P is the minimizer and his control uk 2 Rmu . Player E is the maximizer and his
control vk 2 Rmv . The planning horizon is N. The cost/payoff functional is quadratic:

J.fukgN�1
kD0 ; fvkgN�1

kD0 I x0/ D xT
NQFxN C

N�1X

kD0

.xT
kC1QxkC1 C uT

k Ruuk � vT
k Rvvk/ (8.54)

and Q and QF are real symmetric matrices. The players’ control effort weighting
matrices Ru and Rv are typically real symmetric and positive definite. Oftentimes it
is stipulated that also the state penalty matrices Q and QF be positive definite, or, at
least, positive semi-definite; these assumptions can be relaxed. The following holds.

Theorem A1. A necessary and sufficient condition for the existence of a solution
to the deterministic zero-sum LQDG (8.53) and (8.54) is

Ru C BTPkB > 0 (8.55)
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and

Rv > CTPkC (8.56)

8 k D 1; : : : ; N � 1, where the real, symmetric matrices Pk are the solution of the
Riccati difference equation

PkC1 D ATfPk � PkŒBS�1
B .Pk/B

T C BS�1
B .Pk/B

TPkC.Rv

� CTPkC/�1CT C C.Rv � CTPkC/�1CTPkBS�1
B .Pk/B

T

C C.Rv � CTPkC/�1CTPkBS�1
B .Pk/B

TPkC.Rv

� CTPkC/�1CT C C.CTPkC � Rv/�1CT �PkgA C Q ;

P0 D Q C QF ; k D 0; : : : ; N � 1 (8.57)

In Eq. (8.57), the first Schur complement matrix function

SB.Pk/ � BTPkB C Ru C BTPkC.Rv � CTPkC/�1CTPkB

In addition, the problem’s parameters must satisfy the conditions

Ru C BT.Q C QF/B > 0 (8.58)

and

Rv > CT.Q C QF/C (8.59)

The value of the LQDG is

V0.x0/ D xT
0 .PN � Q/x0 (8.60)

The players’ optimal strategies are the linear state feedback control laws

u�
k .xk/ D �S�1

B .PN�k�1/BT ŒI C PN�k�1C.Rv

� CTPN�k�1C/�1CT �PN�k�1A � xk; (8.61)

v�
k .xk/ D �S�1

C .PN�k�1/CT ŒI � PN�k�1B.Ru

C BTPN�k�1B/�1BT �PN�k�1A � xk (8.62)

In Eq. (8.62) the second Schur complement matrix function

SC.PkC1/ � �fRv � CT.Q C PkC1/C C CT.Q

C PkC1/BŒBT.Q C PkC1/B C Ru��1BT.Q C PkC1/Cg �
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