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Stochastic Games with Signals
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Abstract We survey old and new results concerning stochastic games with signals
and finitely many states, actions, and signals. We state Mertens’ conjectures
regarding the existence of the asymptotic value and its characterization, and present
Ziliotto’s (Ann Probab, 2013, to appear) counter, example for these conjectures.
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4.1 Introduction

Stochastic games is a model for dynamic interactions in which the state of nature
evolves in a way that depends on the actions of the players. The model was first
introduced by Shapley (1953), who proved that two-player zero-sum discounted
games have a value and both players have optimal stationary strategies. Bewley and
Kohlberg (1976) proved that the limit of the discounted value, as the discount factor
goes to 0, exists, and is equal to the limit of the value of the n-stage game, as n
goes to infinity. This limit is called the asymptotic value of the game. Mertens and
Neyman (1981) further showed that for every � > 0 Player 1 (resp. Player 2) has
a (history dependent) strategy, which guarantees that the payoff in any sufficiently
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long game, as well as in any discounted game with discount factor sufficiently close
to 0, is at least (resp. at most) the asymptotic value minus � (resp. plus �). Such a
strategy is called uniform �-optimal.

Mertens et al. (1994) presented a general model of stochastic games with signals,
in which the players neither observe the state nor the actions of the other player, but
rather observe at every stage a signal that depends on the current state as well as
on the pair of actions chosen by the players. Mertens (1986) made the following
two conjectures concerning stochastic games with signals and finitely many states,
actions, and signals:

• In every stochastic game with signals, the limit of the discounted value, as the
discount factor goes to 0, exists, and is equal to the limit of the value of the
n-stage game, as n goes to infinity. In other words, the asymptotic value exists.

• If the signal that Player 2 receives is included in the signal that Player 1 receives,
then the asymptotic value is equal to the max-min value of the game, which is the
maximal quantity that Player 1 can uniformly guarantee in every sufficiently long
finite game as well as in every discounted game, provided the discount factor is
sufficiently close to 0.

These two conjectures proved to be influential to game theory, and in the attempt
to prove them various new tools have been introduced to the field. The conjectures
have been shown to hold in quite a few classes of stochastic games with signals
(see, e.g., Gensbittel et al. 2014; Neyman 2008; Renault 2006, 2012; Rosenberg
2000; Rosenberg and Vieille 2000; Rosenberg et al. 2002, 2003, 2004; Sorin 1984,
1985; Venel 2014).

Recently Ziliotto (2013) provided an example in which the limit of the discounted
value, as the discount factor goes to 0, as well as the limit of the value of the n-stage
game, as n goes to infinity, do not exist. In particular, Mertens’ conjectures have
been refuted.

In this paper we survey the topic of stochastic games with signals and finitely
many states, actions, and signals, with an emphasis on the asymptotic value, and
present Ziliotto’s (2013) example.

4.2 Zero-Sum Standard Stochastic Games

4.2.1 The Model

A two-player zero-sum standard stochastic game is described by:

• The set of players I D f1; 2g.
• A finite state space S.
• For each player i 2 I and every state s 2 S, a finite set of actions Ai.s/ that are

available to player i at state s. The set of action pairs available at state s is A.s/ WD
A1.s/�A2.s/, and the set of all pairs (state, action pair) is � WD f.s; a/W a 2 A.s/g.
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• A payoff function uW � ! R.
• A transition function qW � ! �.S/, where �.X/ is the set of probability

measures over X for every finite set X.

Given an initial state s1 2 S, the game � .s1/ proceeds as follows. At each stage
m � 1, each player chooses an action ai

m 2 Ai.sm/, and a new state smC1 is chosen
according to the probability measure q.sm; am/, where am WD .a1

m; a2
m/.

The history up to stage m is the sequence .s1; a1; s2; a2; : : : ; sm/, and the set of all
histories of length m is Hm WD �m�1 � S.

In this section we assume perfect monitoring; that is, at the end of each state m
the players observe the new state smC1 and the pair of actions that were just played
am. Throughout the paper we assume that players have perfect recall; that is, they
do not forget information that they learn along the game. Consequently, a strategy
� i for player i assigns a probability measure over the set of available actions to each
finite history. That is, it is a function � iW [m�1Hm ! [s2S�.Ai.s// such that for
every m 2 N and every finite history hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm we have
� i.hm/ 2 �.Ai.sm//. The set of strategies for player i is denoted by ˙ i and the set
of strategy pairs is ˙ WD ˙1 � ˙2.

An initial state s1 2 S and a pair of strategies � 2 ˙ induce a probability measure
Ps1;� over the set of all plays H1 WD �N. The corresponding expectation operator
is Es1;� . For every discount factor � 2 .0; 1�, the �-discounted payoff under the
strategy pair � at the initial state s1 is

	�.s1; �/ WD Es1;�

0
@X

m�1

�.1 � �/m�1u.sm; am/

1
A :

For every positive integer n 2 N D f1; 2; : : :g, the n-stage payoff under the strategy
pair � at the initial state s1 is

	n.s1; �/ WD Es1;�

 
1

n

nX
mD1

u.sm; am/

!
:

The game ��.s1/ is the normal form game .I; ˙1; ˙2; 	�.s1; ://, and the n-stage
game �n.s1/ is the normal form game .I; ˙1; ˙2; 	n.s1; ://.

4.2.2 The Value

Definition 1. Let � 2 .0; 1� be a discount factor, let n 2 N be a positive integer, and
let s1 2 S be the initial state. The real number v�.s1/ is the value of the �-discounted
game ��.s1/ if
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v�.s1/ D max
�12˙1

min
�22˙2

	�.s1; �1; �2/ (4.1)

D min
�22˙2

max
�12˙1

	�.s1; �1; �2/: (4.2)

The real number vn.s1/ is the value of the n-stage game �n.s1/ if

vn.s1/ D max
�12˙1

min
�22˙2

	n.s1; �1; �2/ (4.3)

D min
�22˙2

max
�12˙1

	n.s1; �1; �2/: (4.4)

When the initial state is chosen according to a probability distribution p 2 �.S/,
the discounted (resp. n-stage) value is denoted by v�.p/ (resp. vn.p/). In this case,
v�.p/ D P

s2S p.s/v�.s/ and vn.p/ D P
s2S p.s/vn.s/, provided the discounted and

n-stage values exist for all initial states.
A strategy �1� 2 ˙1 (resp. �2� 2 ˙2) that attains the maximum (resp. minimum)

in Eq. (4.1) [resp. Eq. (4.2)] is called a �-discounted optimal strategy. Similarly, a
strategy �1� 2 ˙1 (resp. �2� 2 ˙2) that attains the maximum (resp. minimum) in
Eq. (4.3) [resp. Eq. (4.4)] is called an n-stage optimal strategy.

A strategy is stationary if � i.hm/ is a function of sm, for every m 2 N and
every finite history hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm. A strategy is Markovian
if � i.hm/ is a function of sm and m, for every m 2 N and every finite history
hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm. The following two results assert the existence
of the value and of stationary (resp. Markovian) optimal strategies in the discounted
(resp. n-stage) game.

Theorem 1 (Shapley 1953). In every standard stochastic game, for every initial
state, the �-discounted value exists. Moreover, both players have stationary strate-
gies that are optimal for all initial states.

Theorem 2 (Neumann 1928). In every standard stochastic game, for every initial
state, the n-stage value exists. Moreover, both players have Markovian strategies
that are optimal for all initial states.

4.2.3 Zero-Sum Standard Stochastic Games with Long
Duration

Considerable effort has been invested on studying properties of stochastic games
with long duration, and trying to understand how the value and optimal strategies
evolve as the duration goes to infinity. In the discounted game this corresponds to
the case where � converges to 0, and in the n-stage game to the case where n goes
to infinity.
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In other words, we ask whether there is a quantity w that players can guarantee
in every discounted game ��.s1/, provided � is sufficiently close to 0, and in every
n-stage game �n.s1/, provided n is sufficiently large.

Two approaches can be singled out, the asymptotic approach and the uniform
approach. The asymptotic approach assumes that players know the discount factor
� (resp. the length of the game n) and that the discount factor is close to 0 (resp. the
length is very large). Consequently, this approach is interested in whether the two
limits lim�!0 v�.s1/ and limn!1 vn.s1/ exist and are equal.

The uniform approach assumes that the discount factor is close to 0 (resp. the
length of the game is very large), yet it does not assume that players know the
discount factor � (resp. the length of the game n). Consequently, this approach
is interested in the existence of a strategy that simultaneously guarantees (at least
approximately) a payoff greater than lim�!0 v�.s1/ and limn!1 vn.s1/ in all games
��.s1/ and �n.s1/, provided that � is sufficiently close to 0 and n is sufficiently
large.

Definition 2. A stochastic game � has an asymptotic value if .vn/ and .v�/

converge (pointwise) to the same limit.

Bewley and Kohlberg (1976) proved that for every initial state s1, the function
� ! v�.s1/ is a semi-algebraic function (thus continuous at 0), and deduced the
following theorem.

Theorem 3 (Bewley and Kohlberg 1976). Any standard stochastic game has an
asymptotic value.

Definition 3. Let s1 2 S be a state and let ˛ 2 R be a real number. Player 1 (resp.
Player 2) can uniformly guarantee ˛ at the initial state s1 if for every � > 0 there
exist a strategy �1� 2 ˙1 (resp. �2� 2 ˙2) and a positive integer n0 2 N such that for
every n � n0 and every strategy �2 2 ˙2 (resp. �1 2 ˙1),

	n.s1; �1�; �2/ � ˛ � � .resp. 	n.s1; �1; �2�/ � ˛ C �/: (4.5)

The real number ˛ is the uniform value at the initial state s1 if both players can
uniformly guarantee ˛ at s1. A strategy �1� (resp. �2�) that satisfies (4.5) is called
uniform �-optimal strategy.

The uniform value at the initial state s1, when it exists, is denoted by v1.s1/. If a
stochastic game has a uniform value at every initial state, then it has an asymptotic
value, and both .vn/ and .v�/ converge pointwise to v1 (see Sorin 2002, Chap. 2).

Theorem 4 (Mertens and Neyman 1981). Any standard stochastic game has a
uniform value.

This result extends to a game with random duration, in which the duration is long in
expectation and is independent of the play (see Neyman and Sorin 2010).
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Player 1
Player 2

L R

T 1∗ 0∗
B w w

Player 1
Player 2

L R

T 1 0
B 0 1

Fig. 4.1 Transition function (left) and payoff function (right) in state !

4.2.4 An Example: The “Big Match”

Consider the following stochastic game, known as the “Big Match”, which was
introduced by Gillette (1957). The state space is S D f!; 1�; 0�g, where 1� (resp.
0�) is an absorbing state with payoff 1 (resp. 0): in each of these states, each of the
players has a single action, say A1.1�/ D fTg and A2.1�/ D fLg (resp. A1.0�/ D
fTg and A2.0�/ D fLg), and once the play moves to state 1� (resp. 0�), it remains
there: q.1� j 1�; T; L/ D 1 (resp. q.0� j 0�; T; L/ D 1). The action sets for the
players in state ! are A1.!/ D fT; Bg and A2.!/ D fL; Rg. The payoff and transition
functions in this state are described in Fig. 4.1.

For example, if the action pair .T; L/ is played at state !, then the stage payoff
is 1 and the play moves to state 1�, where it stays forever. Using Shapley (1953)
one can show that v�.!/ D 1

2
for every � 2 .0; 1�, and by induction one can show

that vn.!/ D 1
2

for every n 2 N. In particular, the game has an asymptotic value,
which is 1

2
. The stationary strategy Œ 1

2
.L/; 1

2
.R/� is an optimal strategy for Player 2

in ��.!/ and �n.!/, for every � 2 .0; 1� and every n 2 N, and in particular it is a
uniform 0-optimal strategy at the initial state !.

The stationary strategy Œ �
1C�

.T/; 1
1C�

.B/� is an optimal strategy for Player 1
in ��.!/. The time-dependent strategy that plays at stage t the mixed action
Œ 1

n�tC2
.T/; n�tC1

n�tC2
.B/� is optimal for Player 2 in �n.!/.

Given � < 1=2, constructing a uniform �-optimal strategy for Player 1 is
quite tricky. One can show that Player 1 has no stationary or Markovian strategy
that is uniform �-optimal at the initial state !, nor does he have a uniform
�-optimal strategy that can be implemented by a finite automaton. It follows from
Blackwell and Ferguson (1968) that given a positive integer M, the following
history-dependent strategy for Player 1 is uniform 1

2.2MC1/
-optimal at !: at stage

m, if the play is at state !, play T with probability 1
.MCRm�Lm/2 , where Rm (resp.

Lm) is the number of stages up to stage m in which Player 2 played the action R
(resp. L). Thus, Player 1 adapts the probability in which he plays T to Player 2’s
past behavior: as the difference between the number of times that Player 2 played R
and the number of times that he played L increases, Player 1’s total payoff increases
as well, and therefore he lowers the probability to play T and end the play at an
absorbing state.
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4.3 Zero-Sum Stochastic Games with Signals

So far we assumed that players observe both the current state and past choices of the
other player. In many situations, this assumption is unrealistic. For instance, if the
state represents a resource stock (like the amount of oil in an oil field), the quantity
left, which represents the state, can be evaluated, but is not exactly known. Similarly,
various decisions of firms that affect the market price are often not observed by
other firms. In this section we extend the model of stochastic games with perfect
monitoring to the case in which players do not perfectly observe the state or the
actions (see Mertens et al. 1994).

4.3.1 The Model

A stochastic game with signals is similar to a standard stochastic game as defined
in Sect. 4.2.1 with the following changes:

• There are two finite sets of signals, C for Player 1 and D for Player 2.
• The transition function is a function qW � ! �.S � C � D/.

At every stage m, each player i chooses an action ai
m 2 Ai.sm/, and a triplet

.smC1; cm; dm/ 2 S � C � D is drawn according to the probability measure
q.sm; a1

m; a2
m/. Player 1 (resp. Player 2) observes the signal cm (resp. dm) and the new

state is smC1. We emphasize that the only information that Player 1 (resp. Player 2)
has at stage m is the initial state

(or the probability distribution according to which the initial state is chosen), the
sequence of past actions that he played, and the sequence of past signals that he
received.

A history at stage m is a vector .s1; a1; c1; d1; s2; a2; c2; d2; � � � ; sm/ and a play is
a vector in .��C �D/N. Since players have private information, the private history
of Player 1 (resp. Player 2) at stage m is .s1; a1; c1; a2; c2; � � � ; am�1; cm�1/ (resp.
.s1; a1; d1; a2; d2; � � � ; am�1; dm�1/).

Since a player knows the set of actions available for him at every stage of the
game, we assume that the private history of a player uniquely identifies his set of
actions. For Player 1 this condition translates as follows: for every two histories
.s1; a1; c1; d1; s2; a2; c2; d2; � � � ; sm/ and .s0

1; a0
1; c0

1; d0
1; s0

2; a0
2; c0

2; d0
2; � � � ; s0

m/, if a1
t D

a0
t
1 and ct D c0

t for 1 � t < m then A1.sm/ D A1.s0
m/. The condition for Player 2 is

analogous.
Many models that have been studied in the literature are special cases of

stochastic games with signals. These include:

1. Standard stochastic games. These are stochastic games with signals in which
the signal contains the new state and the actions that were just played: C D
S � f[s2SA.s/g and cm D dm D .smC1; a1

m; a2
m/.
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2. Partially observed Markov decision processes, which are stochastic games with
signals that involve only one player: jIj D 1.

3. Stochastic games with imperfect monitoring. These are stochastic games with
signals in which the signal contains the new state, and possibly additional
information: for every s; s0 2 S, every a 2 A.s/, every a0 2 A.s0/, every c 2 C,
and every d 2 D, if q.c j s; a/ > 0 and q.c j s0; a0/ > 0 then s D s0 (the signal of
Player 1 uniquely identifies the state), and if q.d j s; a/ > 0 and q.d j s0; a0/ > 0

then s D s0 (the signal of Player 2 uniquely identifies the state).
4. Hidden stochastic games. These are stochastic games with signals in which

players receive public signals on the state, and the players observe each other’s
action: C D D D [s2SA.s/ � C0 and cm D dm D .am; c0

m/.
5. Stochastic games played in the dark. These are stochastic games with signals in

which the players observe neither the new state nor the action of the opponent:
jCj D jDj D 1.

6. Repeated games with incomplete information on both sides. These are stochastic
games with signals in which the state does not change along the play and each
player receives a private signal about the state at the outset of the game and no
further information about the state afterwards.

A strategy for a player is a function that assigns a probability measure over the
set of his available actions to every finite private history of the player.

When the game has perfect monitoring, at each stage m the players know the state
sm. When the game does not have perfect monitoring, and the signal that a player
receives reveals the other player’s action, he can form a belief over the state, which
is a probability measure over the set of states S. Consider for example Player 1. At
the initial stage his belief over states is the Dirac measure on s1. If his belief at stage
m is 
m 2 �.S/, he played the action a1

m, Player 2 played the action a2
m (which he,

Player 1, observes), and he observed the signal cm, then his belief 
mC1 at the next
stage can be calculated by Bayes rule:


mC1.s/ D P.smC1 D s j 
m; cm; a1
m; a2

m/ D
P

s02S 
m.s0/q.s; cm j s0; a1
m; a2

m/P
s02S q.s; cm j s0; a1

m; a2
m/

;

where q.s; cm j s0; a1
m; a2

m/ is the marginal probability of .s; cm/ given .s0; a1
m; a2

m/.
When the signals of the two players differ, their belief over the state differs as well,
and then each player also has a belief over the belief of the other player, each player
has a belief over the belief of the other player on his own belief, and so on. This
infinite hierarchy of beliefs that arises naturally in stochastic games with signals
explains the challenge that their analysis poses. Note that when the signal does not
reveal the action of the other player, the player cannot use Bayes rule to calculate
his belief, and in fact the player cannot form a belief over the state, unless he knows
the strategy used by the other player.

The concepts of asymptotic value, uniform value, and uniform �-optimal strate-
gies are analogous to the definitions provided above. A natural question is whether
stochastic games with signals have an asymptotic value or a uniform value.
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By Theorem 1, in the �-discounted game each player has a stationary strategy
that is optimal for all initial states. Consequently, the �-discounted value of a
stochastic game with imperfect monitoring is equal to the �-discounted value of
the same game with perfect monitoring. A similar conclusion holds for the n-stage
game, because by Theorem 2, in this game each player has a Markovian strategy
that is optimal for all initial states. By Theorem 3 it follows that in stochastic games
with imperfect monitoring the asymptotic value exists.

Unfortunately the uniform value may fail to exist in stochastic games with
imperfect monitoring. Indeed, consider the “Big Match” and assume that Player 1
observes the state but not the actions of Player 2. Whatever be the signals received
by Player 2 about the actions of Player 1, Player 2 can uniformly guarantee 1

2
, but

he cannot guarantee any quantity lower than 1
2
. Player 1, on the other hand, can

uniformly guarantee 0 but not any positive quantity.
This leads us to the following definition.

Definition 4. Let s1 2 S and let ˛ 2 R. Player 2 can uniformly defend ˛ if for every
� > 0 and every strategy �1 2 ˙1, there exist a strategy �2� 2 ˙2 and a positive
integer n0 2 N such that for every n � n0,

	n.s1; �1; �2�/ � ˛ C �:

The real number ˛ is the uniform max-min value at the initial state s1 if Player 1 can
uniformly guarantee ˛ and Player 2 can uniformly defend ˛.

The result of Mertens and Neyman (1981) generalizes in the following way (see
Rosenberg et al. 2003 or Coulomb 2003):

Theorem 5. In any stochastic game with imperfect monitoring, the uniform max-
min value exists for every initial state. Moreover, the uniform max-min value
depends only on the signals that Player 1 gets, that is, on the marginal distribution
of q over S � C.

4.3.2 Mertens’ Conjectures

Two natural questions that arise are the following. Does the asymptotic value exist
in every stochastic game with signals? If it does, can we characterize it?

Mertens (see Mertens 1986, p. 1572 and Mertens et al. 1994, Chap. VIII, p. 378
and 386) stated two conjectures. The first involves the existence of the asymptotic
value in any stochastic game with signals.

Conjecture 1. Every zero-sum stochastic game with signals has an asymptotic
value.
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We say that Player 1 is more informed than Player 2 if the signal of Player 1
contains the signal of Player 2. That is, C D D � C0, and cm D .dm; c0

m/ for every
stage m. The second conjecture of Mertens identifies v1.

Conjecture 2. In a zero-sum stochastic game with signals where Player 1 is more
informed than Player 2, limn!1 vn and lim�!0 v� are equal to the max-min value
of the game.

The Mertens conjectures have been proven true in numerous special classes of
stochastic games with signals, including standard stochastic games (Bewley and
Kohlberg 1976; Mertens and Neyman 1981), stochastic games with imperfect mon-
itoring (Rosenberg et al. 2003; Coulomb 2003), repeated games with incomplete
information on both sides (Aumann and Maschler 1995; Mertens and Zamir 1971),
and partially observed Markov decision processes (Rosenberg et al. 2002). Other
classes of stochastic games in which the conjectures have been proven can be
found in Gensbittel et al. (2014), Neyman (2008), Renault (2006, 2012), Rosenberg
(2000), Rosenberg and Vieille (2000), Rosenberg et al. (2003, 2004), Sorin (1984,
1985), Venel (2014).

Recall that a hidden stochastic game is a stochastic game in which players
receive public signals on the state, and the players observe each other’s action. In
particular, this is a game in which Player 1 has more information than Player 2.
Moreover, in such a game, at every stage both player share the same belief over
the state. Ziliotto (2013) provided an example of a hidden stochastic game in which
limn!1 vn and lim�!0 v� do not exist. This example in particular refutes both of
Mertens’ conjectures. We provide this example in the next subsection.

4.3.3 A Counterexample to the Mertens’ Conjectures

Let s 2 S be a state. We say that Player 1 (resp. Player 2) controls state s if the
transition q.s; a1; a2/ and the payoff u.s; a1; a2/ are independent of a2 for every a1 2
A1.s/ (independent of a1 for every a2 2 A2.s/).

Consider the following hidden stochastic game � , with state space˚
1�; 1CC; 1T ; 1C; 0�; 0CC; 0C�, action sets fC; Qg for each player, and signal

sets fD; D0g for each player. The payoff function does not depend on the actions,
and is equal to 1 in states 1�, 1CC, 1T and 1C, and to 0 in states 0�, 0CC and 0C.
Player 2 controls states 1CC, 1T and 1C. Player 1 controls states 0CC and 0C. States
0� and 1� are absorbing, and the other states are nonabsorbing. Figure 4.2 describes
the transition function.

In Fig. 4.2 we adopt the following notation: an arrow going from state s to state
s0 with the caption .a; p; c/ 2 fC; Qg � Œ0; 1� � fD; D0g indicates that if the player
who controls state s plays action a, then with probability p the state moves to state
s0 and the signal is c. For example, if the state is 1CC and Player 2 plays action C,
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States controlled by Player 1 States controlled by Player 2

Absorbing states

0++

0+

0∗

1++ 1T

1+

1∗

C, 14 ,D

C, 14 ,D

C, 12 ,D
′

C, 12 ,D

C, 12 ,D
′ Q,1,D

Q,1,D′

C, 12 ,D

C, 12 ,D
′

C, 18 ,D

C, 38 ,D

C, 12 ,D
′

C, 12 ,D

C, 12 ,D
′

Q,1,D

Q,1,D′ Q,1,D′

Fig. 4.2 Transitions in the game �

then with probability 1
2

the game moves to state 1T and the signal is D, and with
probability 1

2
the game stays in state 1CC and the signal is D0.

This game is a hidden stochastic game. As mentioned above, in such a game, at
every stage the players share the same belief over the states. In particular, we can
consider an equivalent auxiliary stochastic game with perfect monitoring but with
countably many states; a state in the auxiliary game corresponds to a belief over
states in the original game. Since the number of states, actions, and signals is finite,
the number of possible beliefs at each stage is finite, so that in the auxiliary game
there are countable many states. By Theorems 1 and 2 (generalized to games with
countably many states) in the discounted game the players have optimal stationary
strategies and in the n-stage game they have optimal Markovian strategies. Any
stationary or Markovian strategy in the auxiliary game has an equivalent strategy in
the original game, and vice versa, and therefore the original game and the auxiliary
game are equivalent in terms of the discounted value, the n-stage value, and optimal
strategies.

Call the states
˚
1�; 1CC; 1T ; 1C� 1-states and the states

˚
0�; 0CC; 0C� 0-states.

In our example, the players know when the play moves from 1-states to 0-states and
vice versa. Indeed, the initial state is known, so that the players know whether it is
a 1-state or a 0-state. The play moves to a 1-state (resp. 0-state) to a 0-state (resp. 1-
state) only when Player 2 (resp. Player 1) plays Q and the signal is D. Consequently
the possible beliefs of the players along the play are:



88 E. Solan and B. Ziliotto

• Œ1.0�/� and Œ1.1�/�: the players know when the play moves to an absorbing state.
This is the belief at stage m when the player who controls state sm�1 played Q
and the signal was D0.

• Œ2�n.0CC/; .1 � 2�n/.0C/� for n � 0: players believe that with probability 2�n,
the state is 0CC, and with probability .1 � 2�n/, the state is 0C. For n D 0, this
is the belief at stage m when (a) the state in stage m � 1 was a 1-state, Player 2
played Q and the signal was D, or (b) the state in stage m � 1 was a 0-state,
Player 1 played C and the signal was D0. For n � 1, this is the belief at stage m
when the belief at stage m � 1 was Œ2�.n�1/.0CC/; .1 � 2�.n�1//.0C/�, Player 1
played C and the signal was D.

• Œ2�2n.1CC/; .1�2�2n/.1C/� for n � 0: players believe that with probability 2�2n,
the state is 1CC, and with probability .1 � 2�2n/, the state is 1C. For n D 0, this
is the belief at stage m when (a) the state in stage m � 1 was a 0-state, Player 1
played Q and the signal was D, or (b) the state in stage m � 1 was a 1-state,
Player 2 played C and the signal was D0. For n � 1, this is the belief at stage
m when the belief at stage m � 1 was Œ2�2n�2.1T/; .1 � 2�2n�2/.1C/�, Player 2
played C and the signal was D.

• Œ2�2n.1T/; .1 � 2�2n/.1C/� for n � 0: players believe that with probability 2�2n,
the state is 1T , and with probability .1�2�2n/, the state is 1C. This is the belief at
stage m when the belief at stage m � 1 was Œ2�2n.1CC/; .1 � 2�2n/.1C/�, Player
2 played C and the signal was D.

To simplify notation, we denote these beliefs as follows:

• 0� is the belief Œ1.0�/�; 1� is the belief Œ1.1�/�.
• 0n is the belief Œ2�n.0CC/; .1 � 2�n/.0C/�.
• 12n is the belief Œ2�2n.1CC/; .1 � 2�2n/.1C/�.
• 12nC1 is the belief Œ2�2n.1T/; .1 � 2�2n/.1C/�.

Thus, the auxiliary game is a stochastic game with perfect information that is
given by

• The set of states is f0�; 00; 01; 02; 03; � � � ; 1�; 10; 11; 12; 13; � � � g.
• In all states the players have two actions, fC; Qg.
• The payoff in states f0�; 00; 01; 02; 03; � � � g is 0; the payoff in states

f1�; 10; 11; 12; 13; � � � g is 1.
• States 0� and 1� are absorbing. The transition function in states f0n; n � 0g is

described in Fig. 4.3 and the transition function in states f1n; n � 0g is described
in Fig. 4.4.

We will show below that the limit lim�!0 v�.s/ does not exist for every
nonabsorbing state of the auxiliary game. We thus consider now the discounted
game.

Since the action of Player 2 (resp. Player 1) in states f00; 01; 02; 03; � � � g (resp.
f10; 11; 12; 13; � � � g) affects neither the payoff nor the transitions, and since the
players know the current state of the auxiliary game, for the calculation of the
value we can assume that in states f00; 01; 02; 03; � � � g only Player 1 chooses an
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Fig. 4.4 Transitions in the states 12n and 12nC1

action, while in states f10; 11; 12; 13; � � � g only Player 2 chooses an action. This
implies that the decision problems of the two players, namely, the decision problem
of Player 1 in states f00; 01; 02; 03; � � � g and the decision problem of Player 2 in
states f10; 11; 12; 13; � � � g, can be disentangled into two separate Markov decision
problems. It follows that in the discounted game each player has an optimal pure
stationary strategy. Denote by �1

n (resp. �2
n ) the stationary strategy for Player 1 (resp.

Player 2) that chooses action C in states f0k; k ¤ ng (resp. f1k; k ¤ ng) and chooses
action Q in state 0n (resp. 1n).

Assume that the initial state is p D 00. Since the payoff is 1 in states f1n; n 2 Ng
and 0 in states f0n; n 2 Ng, and since Player 1 maximizes the payoff, Player 1
wants the play to move to state 10. If he plays Q in state 00, the game is absorbed in
state 0� with probability 1, which is the worst state for him. If he never plays Q, the
payoff is 0 forever, which is also an unfavorable outcome for Player 1. If he plays
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strategy �1
n , then the play reaches state 0n after a random finite number of stages.

It is then absorbed in state 0� with probability 2�n (we will call this probability the
absorbing risk taken by Player 1), and moves to state 10 with probability .1 � 2�n/.

Inspecting the transition function in Fig. 4.3 reveals that to reach state 0n from
state 00, Player 1 needs on average 2n stages. Thus, Player 1’s decision of when to
play Q is influenced by two contradicting forces: on the one hand he wants to lower
the absorbing risk, which means adopting a strategy �1

n with high n; on the other
hand he wants to minimize the time he spends in states f00; 01; 02; 03; � � � g, which
means he should not choose n too high. Since the game is discounted, the discount
factor determines the positive integer n such that �1

n is optimal. It turns out that in the
�-discounted game, the optimal strategies for Player 1 is �1

n , where 2�n is as close
as possible to

p
2� (the real number

p
2� corresponds to the optimal absorbing risk

if players could choose any absorbing risk in Œ0; 1�, which is not the case).
Player 2 faces the same issue in states f10; 11; 12; 13; � � � g. However the difference

between the transitions in states f10; 11; 12; 13; � � � g and in states f00; 01; 02; 03; � � � g
leads to a slightly different optimal strategy. We claim that the strategy �2

2n is strictly
better than the strategy �2

2nC1. Indeed, both strategies exhibit the same absorbing
risk, yet the former requires much fewer stages to move to state 10 than the latter.
In particular, the optimal strategy of Player 2 is �2

2n for some positive integer n.
In fact, there exists two mappings �1; �2 W .0; 1� ! R such that lim�!0 �1.�/ D
lim�!0 �2.�/ D 0, and if 2�2n�1C�1.�/ � p

2� � 2�2nC1C�2.�/, then the optimal
strategy is �2

2n.
Set �k WD 2�4k�1, so that

p
2�k D 2�2k. In the game ��k .10/ the optimal

strategies of the players are �1
2k and �2

2k, and the play is symmetric: the sequence
.v�k .10//k�1 converges to 1

2
. Set 
k WD 2�4k�3, so that

p
2
k D 2�2k�1. In this case,

Player 1’s optimal strategy is �1
2kC1, yet Player 2’s optimal strategy is not �2

2kC1,
because his optimal strategy is taken from the set f�2

2n; n � 0g. Player 2’s optimal
strategy is either �2

2k or �2
2kC2. But choosing �2

2k or �2
2kC2 instead of �2

2kC1 leads to a
different dynamics of the state. For instance, under the strategy �2

2kC2, starting from
state 10 Player 2 waits on average 22kC2 stages before playing Q, instead of 22kC1.
Thus, intuitively, Player 1 has an edge over his opponent in the 
k-discounted game.
Standard computations confirm this intuition, and show that .v
k .10// converges to
5
9
. In particular, the limit lim�!0 v�.10/ does not exist, which implies that the limit

lim�!0 v�.s/ does not exist for every state in f1n; n 2 Ng. Similar arguments show
that this limit does not exist for every state in f0n; n � 0g.

4.3.4 Link Between the Convergence of .vn/ and .v�/

In the previous example, neither .v�/ nor .vn/ converge. There is an example of
a hidden stochastic game for which there exists an initial belief p 2 �.S/ such
that .v�.p// converges but .vn.p// does not, and conversely, an example where
.vn.p// converges and .v�.p// does not converge. Moreover, there are examples
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in which both .v�.p// and .vn.p// converge, but to different limits (Ziliotto 2015).
Nonetheless, Ziliotto (2015) proved the following Tauberian theorem, which is a
generalization of the one-player case result of Lehrer and Sorin (1992):

Theorem 6. Consider the auxiliary game of a hidden stochastic game. The follow-
ing two statements are equivalent:

1. For every initial state p1, limn!1 vn.p1/ exists.
2. For every initial state p1, lim�!0 v�.p1/ exists.

Moreover, when these statements hold, we have limn!1 vn.p1/ D lim�!0 v�.p1/

for every initial state p1.

This theorem is in fact true in a much wider class of stochastic games with compact
state space and actions sets.

4.4 Multiplayer Stochastic Games

A multiplayer stochastic game is similar to a two-player zero-sum stochastic game
as defined in Sect. 4.2.1 with the following changes:

• The set of players I is any finite set.
• For every player i 2 I and each state s, the set Ai.s/ is a finite set of actions

available to player i at state s. Denote A.s/ WD �i2IAi.s/ and � WD f.s; a/W s 2
S; a 2 A.s/g.

• For every player i 2 I the payoff function is ui W � ! R.

In this case we consider the asymptotic behavior of the set E�.s1/ of all �-
discounted equilibrium payoffs at the initial state s1 and of the set En.s1/ of all
n-stage equilibrium payoffs at the initial state s1.

4.4.1 Asymptotic Approach

The natural generalization of the result of Bewley and Kohlberg (1976) to the
multiplayer case would be the convergence of the set of �-discounted Nash
equilibrium payoffs E� when � goes to 0 and the convergence of the set of n-stage
Nash equilibrium payoffs En (w.r.t. the Hausdorff distance).

Note that for a repeated game (that is, a stochastic game with one state) that
satisfies certain technical conditions, the Folk theorem answers this question, and
gives a characterization of the limit set. A Folk theorem for multiplayer stochastic
games has been proven by Dutta (1995), under the strong assumption that the
dependence of E�.s1/ in s1 vanishes as � goes to 0 (in particular, this excludes
the presence of absorbing states with different payoffs).
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In the general case, E� and En may fail to converge, even in the two-player case,
as proved by Renault and Ziliotto (2014), who prove in addition that the set of
discounted (or n-stage) subgame perfect equilibrium payoffs may fail to converge,
but the set of discounted stationary Nash equilibrium payoffs converges.

4.4.2 Uniform Approach

The concept of uniform value can be generalized in the following way to the
nonzero-sum case.

Definition 5. A vector v 2 R
I is a uniform equilibrium payoff at the initial state s1

if for every � > 0 there exist �0 2 .0; 1�, n0 2 N, and a strategy vector � 2 ˙ , such
that for every player i 2 I and every strategy � 0i 2 ˙ i,

	 i
�.s1; � 0i; ��i/ � 2� � vi � � � 	 i

�.s1; �/ � vi C �; 8� 2 .0; �0�;

and

	 i
n.s1; � 0i; ��i/ � 2� � vi � � � 	 i

n.s1; �/ � vi C �; 8n � n0:

Vrieze and Thuijsman (1989) proved the existence of a uniform equilibrium
payoff in two-player absorbing games, which are stochastic games with a single
nonabsorbing state. Vieille (2000a,b) extended this result to any two-player stochas-
tic game. Flesch et al. (1997) provided an example of a three-player absorbing game
in which the uniform equilibrium strategies are periodic. Solan (1999) proved that
any three-player absorbing game has a uniform equilibrium in which the players
execute a periodic play path, and supplement their play with threats of punishment.

For N � 3, the existence of a uniform equilibrium payoff in multiplayer
stochastic games is still open, and is one of the most important and challenging
question in mathematical game theory to date. When players are allowed to use a
correlation device, this question was solved positively by Solan and Vieille (2002).

4.4.3 Multiplayer Stochastic Games with Imperfect Monitoring

Like in the zero-sum case (see Sect. 4.3), we assume that players do not observe
the actions of the other players, but rather receive signals about them. This model is
more general than the one of the previous section, thus .E�/ may not converge (see
Renault and Ziliotto 2014). In the literature, Folk theorems for stochastic games
with imperfect monitoring are stated under two kinds of assumptions. The first one
is an ergodic assumption on the transition function of the game. The second one
is either that players do not use their private information [public equilibrium, see
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Hörner et al. (2011), or public signals, see Fudenberg and Yamamoto (2011)], or an
assumption on the signaling function (connectedness, as in Fudenberg and Levine
1991).

4.4.4 Stochastic Games with Signals on the State

When the state is imperfectly observed, it does not seem possible to generalize the
result of Bewley and Kohlberg (1976). Indeed, Renault and Ziliotto (2014) provided
an example of a two-player hidden stochastic game (public signals on the state and
perfect observation of the actions), in which E� has full dimension for all � 2 .0; 1�

(which is a standard assumption in the literature under which Folk theorems are
usually stated), but the set of discounted correlated equilibrium payoffs, discounted
Nash equilibrium payoffs, discounted sequential equilibrium payoffs, discounted
stationary equilibrium payoffs, all fail to converge. Under an ergodic assumption,
Yamamoto (2015) recently proved a Folk theorem for multiplayer hidden stochastic
games.
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