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Preface

This volume reflects some of the themes that were discussed during the 2014
Symposium of the International Society of Dynamic Games, which was held 9–12
July 2014 in Amsterdam. The plenary lectures of the Symposium were given by
Ariel Pakes, from Harvard, and Eilon Solan, from Tel Aviv University. The tutorial
lectures were given by Mark Broom, from London City University, and by Cees
Withagen, from the Vrije Universiteit Amsterdam. We are grateful that professors
Broom, Pakes and Solan found the opportunity to write a companion piece to their
lectures. We are also grateful to professors Altman and Petrosyan, who were both
awarded the Isaacs Award for 2015 by the Society, that they contributed to this
volume.

In his acceptance speech of the Isaacs Award, Leon Petrosyan reminded the
audience that there are still a number of pursuit-evasion games, dating from the early
days of differential game theory, that are still poorly understood. In his contribution,
he describes several of these: they are united by the common theme that there may
be several evaders, or several pursuers. Like in the three-body problem of celestial
mechanics, the addition of a third actor in the pursuit-evasion game complicates
matters considerably. The remainder of his contribution gives a highly didactical
exposition of the theory how cooperative solutions of a dynamic game can be
made time consistent by choosing an appropriate distribution of payments, and
that this can be supported by a non-cooperative Nash equilibrium in punishment
strategies in a specially constructed game. After first illustrating the ideas for the
conceptually simpler situation of a game with a finite number of decision nodes, the
treatment of cooperative differential games in the last section has by then become
fully transparent.

The second recipient of the Isaacs Awards 2015 is Eitan Altman. In his award
lecture, he took a bird’s-eye perspective and went over many areas of dynamic
games that his work has touched upon. For this volume however, he selected just
one of these topics. Together with Tania Jiménez, he contributes a joint chapter
that revisits the first problem studied in the area of optimal control of queues,
which goes back to a seminal paper by Pinhas Naor from 1969. Naor considered
problems relating to an M/M/1 queue model, in which decisions have to be made
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for arrivals on whether or not to enter the queue. Decisions are either made by
the individuals themselves or by a social controller. Naor uses full information
for the decision makers and derives optimal policies of a threshold type. In their
contribution, Altman and Jiménez examine what happens when decision makers are
only informed of the queue length being above or below a certain threshold and
compare performances with the full information case.

In his contribution, Ariel Pakes investigates the question what kind of dynamic
game models can be used to analyse the evolution of competitive industries
empirically. He sets out by discussing the common assumption that the behaviour of
economic agents or firms can be described by a Markov perfect Nash equilibrium: its
limits become evident when trying to apply this to empirical data, as the numerical
complexities become formidable. He continues then by the natural question how
much can be gained by abandoning the requirement of Markov perfectness while
retaining the assumption that firms make rational decisions based on the information
that is available to them. This necessitates a rather precise description of the
information set and the learning procedure of the firms. He discusses both of these
clearly and in great detail, also taking into account the practical issues that arise
when developing such a model, and finishes by illustrating it by the maintenance
decisions of power-generating firms operating in an electricity market.

In his plenary address, Eilon Solan focused on the theory of zero-sum stochastic
games with finitely many states, actions and signals. After defining basic concepts,
like �-discounted value, asymptotic value, uniform value and max-min value, and
after surveying the main results on the complete information case, he turned to the
incomplete information case and guided the audience to the latest results in this
area, as have been derived by Ziliotto. In their joint contribution to this volume,
they proceed along the same lines and exhibit the difficulties that arise in case
players do not perfectly observe the state or the actions. A relatively simple example
based on the Big Match illustrates that the uniform value may well fail to exist.
However, it was long thought that every zero-sum stochastic game with signals has
an asymptotic value and that this asymptotic value can be characterized by means of
the limits of the discounted values and of the finite horizon values. Ziliotto’s 2013
example shows that neither of these conjectures is true. In their chapter, Solan and
Ziliotti discuss this important example and how it relates to other research questions.

At the Symposium, Mark Broom provided a tutorial on evolutionary game
theory that was based on his joint book with Jan Rychtář titled Game-Theoretical
Models in Biology. Together, they contribute a chapter on the topics that were
addressed in the tutorial. Both the static and dynamic aspects of classic evolutionary
game theory, and the relationships between them, are explained in a very clear
way. Next, the authors explain various ways in which non-linearity can appear in
evolutionary games, including pairwise games with strategy-dependent interaction
rates and playing the field games, where payoffs depend upon the entire population
composition. The chapter also discusses multiplayer games in which the payoffs
depend on interactions in groups of more than two players. Altogether, the authors
touch upon many topics from evolutionary game theory, give lots of references and
provide an excellent introduction to the field.
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The contribution by Mahmoud El Chamie and Tamer Başar addresses the
problem of designing optimal strategies in consensus protocols for networks that
are vulnerable to adversarial attacks. Consensus protocols are based on neighbour-
to-neighbour interactions among the nodes in the network. While each node is
updating iteratively based on its local information, the goal for the entire set of
nodes is to reach consensus. However, the network may be susceptible to attacks
from adversaries that want to drive the system away from consensus. The authors
propose a game theoretical framework to model this problem as a two-player game
between the network designer and the adversary. They use this model to derive
optimal strategies for the players within the solution concept of mixed-strategy
saddle-point equilibrium. Moreover, they consider a distributed implementation of
the optimal control and report on simulations to corroborate the theoretical findings.

Liudmila Kamneva and Valerii Patsko consider a linear differential zero-sum
game, where during a fixed time interval two players pull a point over a plane.
The first player wins if at the end of the period, the point is located within a given
polygonal target set; the second player wins if the point is located in its complement.
The force vectors each player can apply are restricted to time-invariant closed
convex polygons, possibly degenerate. It is known that if the target set is convex, the
appropriate solution set can be constructed exactly in a one-step procedure. In the
case that neither the target set nor its complement is convex, Kamneva and Patsko
show that the solution set can also be constructed in a one-step procedure, if the
time interval is not too large.

In his contribution, Meir Pachter examines a linear-quadratic Gaussian dynamic
game (LQGDG) in which the players have partial information. More specifically, the
players’ initial state and their measurements are private information, but each player
is able to observe his opponent’s past inputs. It is shown that the specific control-
sharing information patterns render the game amenable to solution by the method of
dynamic programming, and a Nash equilibrium for the “zero-sum” case of LQGDG
is established. Moreover, the correct solution of LQGDGs with a control-sharing
information pattern is obtained in closed form.

Josef Shinar, Valery Glizer and Vladimir Turetsky examine a pursuit-evasion
differential game of kind with bounded controls and prescribed duration. It is the
mathematical model of an interception engagement between two vehicles, a pursuer
and an evader, that are both moving with constant velocities in a plane. Each player
has two possible dynamics and each can switch between these once during the game.
Each player also knows the two possible dynamics the opponent can choose from,
but not the actual one that was chosen. The order of the dynamics and the time
of change are elements of the player’s control that are unknown to the respective
opponent, which makes this game a differential game with partial information. An
algorithmic example illustrates the complexity of this game with hybrid players.

The chapter by Sourabh Bhattacharya, Ali Khanafer and Tamer Başar relates
to the vulnerability of wireless ad hoc networks to security threats. A prominent
example of such a threat is jamming, which refers to a malicious attack with the
objective to intentionally disrupt communication in the victim network by causing
interference or collision of packets. The authors examine a scenario where a team
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of malicious nodes launches a jamming attack on another team, which is capable
of jamming as well. Their analysis takes into consideration constraints on energy
and power among the agents. Moreover, they relate the problem of optimal power
allocation for communication and jamming to the communication model between
the agents. Finally, they provide a sufficient condition for the existence of an
optimal decision strategy among the agents based on the physical parameters of
the problems.

Sébastien Mitraille and Henry Thille return to an old problem that is still highly
relevant and which has already been discussed by Adam Smith in the context of
wheat speculation: what is the effect of speculative inventories on prices? In the
literature, this question has been extensively discussed for perfectly competitive
production, which covers, for instance, many agricultural markets. Mitraille and
Thille discuss the situation where there is imperfect competition between producers.
Their result confirms Adam Smith’s basic insight: speculation effectively helps
consumers to smoothen out their consumption over time and always increases
consumer’s surplus. They also find that it lowers average firm profits. The welfare
effects of speculation are ambiguous though: they are positive if there are only a few
producers, but negative if there are many.

The contribution by Dharini Hingu, K.S. Mallikarjuna Rao and A.J. Shaiju
focuses on evolutionary games with a continuous (pure) strategy space. More
specifically, they establish necessary and sufficient conditions for a dimorphic
population state P, which is a convex combination of two Dirac measures ıx and
ıy, to be a rest point of the associated replicator dynamics. They provide necessary
and sufficient conditions for the replicator dynamics to converge to P when it starts
on the line L between ıx and ıy. Moreover, for the special case where all points on
L are rest points of the dynamic, they provide sufficient conditions for the dynamics
to converge to L, when starting outside L. For the latter case, sufficient conditions to
stay away from L are provided as well. Several examples illustrate these results.

Monica Abrudan, Li You, Kateřina Staňková and Frank Thuijsman study which
aspects of microbial interactions have an impact of the possible coexistence of
different types of bacteria. For this, they use a simple evolutionary game model:
bacteria are spread out over a spatial grid, and at each time step, selected cells are
attacked by one of their neighbours and possibly replaced by it, depending on the
interaction rules. The authors investigated the effects of changing the timing of the
interactions, the number of neighbours, the effect of a quorum—attacks are only
successful if the attacker is backed up by sufficiently many other neighbours of the
same type—and, finally, the mechanics of the interactions. Besides reporting the
statistical data obtained by their simulations, they flag an interesting phenomenon,
which they call coexistence by small numbers. In that case, a rare species can survive
through the protection of a second species with whom it does not interact.

Christopher Andrey, Olivier Bahn and Alain Haurie take the basic idea of
robust control theory, to model nature as an antagonistic player, and apply it to a
multiplayer game. The translation of robust control to a game setting necessitates
some changes in the Nash equilibrium concept, for nature cannot be treated as just
another player. Rather each player tries to choose the action optimally, given the
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actions of the other players, and assuming that nature tries to hit himself hardest.
There is some latitude in modelling the impact of nature: here, the authors propose
the notion of ˛-robust equilibrium. The authors propose this as a natural framework
to study R&D investments in clean technologies in the face of climate change, and
they proceed to give the results of some numerical simulations; in particular, they
find that in such a framework, the switch to a low-carbon economy occurs much
earlier in the robust equilibrium than in the non-robust one.

The contribution of Frédéric Babonneau, Alain Haurie and Marc Vielle is related
to that of Andrey, Bahn and Haurie, in that it also uses a robust Nash equilibrium
concept to model an environmental problem, albeit that the concept used here
differs slightly from the previous one. Also, their application is different: they
investigate pollution abatement and emission permit trading in the face of uncertain
abatement costs. Their methods allow them to compute a burden sharing amongst
EU countries that distributes equitably over the countries’ welfare losses arising
from CO2 abatement costs.

Maastricht, The Netherlands Frank Thuijsman
Amsterdam, The Netherlands Florian Wagener
November 2015
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Chapter 1
Dynamic Games with Perfect Information

Leon A. Petrosyan

Abstract In this paper we formulate some easy looking but hard to solve problems
from pursuit-evasion game theory. Then we focus on the main problem which,
from our point of view, arises in dynamic cooperative games: this is the time-
inconsistency of optimal solutions. We propose a system of payments, which we call
imputation distribution procedure, that can keep the solution time-consistent when
the game develops along the cooperative trajectory. It is shown that if payments are
made according to an imputation distribution procedure, the cooperative solution
can be achieved as a specially constructed Nash equilibrium in punishment strate-
gies. This brings together noncooperative and cooperative approaches in modern
game theory, as cooperation can be supported strategically.

Keywords Pursuit-evasion games • Dynamic cooperative games • Imputation
distribution procedure

1.1 Introduction

Game theory is one of most sophisticated paradigms that applied mathematics has
to offer to study and analyze decision making under real world conditions. Since
every human activity is a dynamic process, any type of such activity would be more
appropriately analyzed in an inter-temporal framework. One particularly complex
and fruitful branch of game theory is the theory of dynamic or differential games,
which investigates interactive decision making over time. The dynamic process of
pursuit represents a typical conflict and it is therefore not surprising that pursuit and
evasion is one of the oldest topics within the field of differential game theory. This
area was pioneered by Steinhaus (1925), who was the first to formulate in 1925
the problem of pursuit as differential game of pursuit. After a prolonged silence,
in the 1950s mathematicians resumed their research in differential games. The
fundamental book of Isaacs (1965) was published and papers of Berkovitz (1964)

L.A. Petrosyan (�)
Faculty of Applied Mathematics, Saint Petersburg State University, Universitetskiy pr., 35,
Petrodvorets, Saint Petersburg 198504, Russia
e-mail: spbuoasis7@peterlink.ru
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2 L.A. Petrosyan

and Fleming (1961) appeared. About 10 years later Pontryagin (1967), Krasovskii
(1963) and myself (Petrosyan 1965) started to investigate differential games in the
USSR. But these were merely zero-sum pursuit-evasion games. In the late 1960s
mathematicians turned to n-person differential games (Petrosyan and Murzov 1967).
The first papers concerned noncooperative games [see the fundamental book Basar
and Olsder (1982)], but starting from the late 1970s cooperative differential game
theory was formed.

In this paper we shall formulate some unsolved problems, which we think may
encourage specially young mathematicians to get new fruitful results in the theory
of differential games and also in practical applications. Of course in a short paper
it is not possible to cover the whole variety of unsolved problems, and because
of this we shall try to formulate problems which from our point of view are most
interesting and about which we were thinking for a long time. We shall start with
pursuit games and then will continue with general n-person dynamic and differential
games. In the second part of the paper, we concentrate on the time-inconsistency of
the main optimality principles in cooperative dynamic game theory.

1.2 Differential Games of Pursuit

In this section we shall deal with pursuit games with simple motion in the plane,
since even in the very simple setting many unsolved problems remain. These
problems are easy to formulate and to understand but difficult to solve. Their
investigation may show the way to the solution of more complicated problems.

Lifeline Games The pursuit takes place in a closed convex set S � R2. The
equations of motion have the form of “simple motion”

Pxi D ui; u2
1 C u2

2 � ˛2;

Pyi D vi; v2
1 C v2

2 � ˇ2;

xi.t0/ D x0
i ; yi.t0/ D y0

i :

i D 1; 2; ˛ > ˇ; (1.1)

Here x D .x1; x2/ is the state variable of the Pursuer P and y D .y1; y2/ that of the
Evader E. The payoff function is defined in the following way. Let x.t/; y.t/ be the
solution of (1.1) with initial condition

x0 D .x0
1; x0

2/; y0 D .y0
1; y0

2/ 2 S:

Let moreover

tSP D infft W x.t/ 2 Sg; tSE D infft W y.t/ 2 Sg:
It is supposed that x.t/ … S if t � tSP and y.t/ … S if t � tSE . Let finally

tP D minft W �.x.t/; y.t// D lI l � 0g;
where �.x; y/ is the Euclidean distance.
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The game is zero-sum, with the payoff K of player P defined as

K.x0; y0I u.�/; v.�// D
8
<

:

C 1; if tp � tSE ;

0; if tp D tSE D 1;

� 1; if tp > tSE :

It is supposed that at each instant of time player P knows t, x.t/, y.t/, v.t/, and E
knows t, x.t/, y.t/.

The solution of this game is known (see Petrosyan 1965). For l D 0 it can be
described geometrically as follows. The optimal strategy of P is the parallel pursuit
strategy (˘ -strategy): P has to approach E with maximal velocity in such a way that
the segment Œx.t/; y.t/� moves parallel to itself (i.e. parallel to Œx0; y0�). The optimal
strategy of E is to move with maximal velocity along a straight line on which her
capture occurs after she penetrates the boundary of S. If such a straight line does not
exist, any strategy of E is optimal and E will be captured in S. The solution in the
case l > 0 is similar (Dutkevich and Petrosyan 1972).

Suppose now that we have two evaders E1, E2, and that P can l-capture (to
approach up to distance l > 0) both of them if playing against either E1 or E2

separately. But what if E1, E2 cooperate and want to maximize the number of alive
evaders, that is, the number of evaders that reach the boundary of S before capture
(this number can be only 1 or 0)? The solution is unknown.

What is the difficulty? Suppose P is using the ˘ -strategy against E1; then the
question is what E2 should do in the time interval Œt0; tP1 �, where tP1 is the capture
time of the first evader E1, and how E1 should behave to maximize the time tP1 and to
bring the capture point in the worst position for P to continue the pursuit against E2.
This problem is not solved yet.

Similarly there is no complete solution of the simple pursuit game in the plane
with one pursuer P and m evaders E1; : : : ; Em. In the case m D 2 the solution was
found in Petrosyan and Shiryaev (1978) for the case when the pursuer is restricted
to choose one of the following two strategies: to use the parallel pursuit strategy
(˘ -strategy) to pursue E1 first, and E2 afterwards, or conversely to pursue E2

first and E1 afterwards (see Petrosyan and Shiryaev 1978). More general cases are
however still open.

It is also interesting to consider the (noncooperative) non-zero sum game
between E1; : : : ; Em and P, where each of evaders plays for herself. For some initial
conditions and some parameter values it is possible to construct a very strange Nash
equilibrium, where P dictates the behavior of the evaders by using the threat to
start the pursuit of those evaders which do not follow his orders (and these will be
captured first).

Also not solved is the pursuit evasion game with a team of pursuers and one
evader in the following case: the pursuers move faster than the evader (˛ > ˇ), the
payoff is the capture time, and at the beginning the evader is surrounded by the team
of pursuers.
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1.3 Cooperative Multistage Games with Perfect Information

In what follows we shall consider a game in extensive form with perfect information
as basic model.

Definition 1. A game tree is a finite oriented treelike graph Y with root x0.

We shall use the following notations. Let x be some vertex (position). We denote by
Y.x/ a subtree Y with root in x, and by Z.x/ the immediate successors of x. Vertices
y that directly follow after x are called alternatives in x (y 2 Z.x/). The player who
makes a decision in x, and thereby selects the next alterative position in x, will be
denoted by i.x/. The choice of player i.x/ in position x will be denoted by Nx 2 Z.x/.

Let N D f1; � � � ; ng be the set of all players in the game.

Definition 2. A game in extensive form with perfect information G.x0/ is a graph
tree Y.x0/ with the following additional properties:

1. The set of vertices (positions) is split into n C 1 subsets P1; P2; : : : ; PnC1 that
form a partition of the set of all vertices of the graph tree Y . For i D 1; : : : ; n, the
vertices (positions) x 2 Pi are called the personal positions of player i; vertices
(positions) x 2 PnC1 are called terminal positions.

2. Each pair of vertices x … PnC1 and y 2 Z.x/ defines an arc .x; y/ of the graph
Y . On each arc .x; y/, there are n real numbers hi.x; y/, i D 1; : : : ; n defined, the
payoffs of players on this arc. Moreover, for x 2 PnC1, i D 1; : : : ; n, terminal
payoffs Hi.x/ of player i are given.

See Kuhn (1953) for this definition.

Definition 3. A strategy of player i is a mapping Ui.�/ that associates to each
position x 2 Pi a unique alternative y 2 Z.x/.

Denote by Ki.xI u1.�/; : : : ; un.�// the payoff function of player i 2 N in the subgame
G.x/ starting from the position x, when the n-tuple of strategies .u1.�/; : : : ; un.�// is
played. That is

Ki.xI u1.�/; : : : ; un.�// D
l�1X

kD0

hi.xk; xkC1/ C Hi.xl/;

where xl 2 PnC1 is the last vertex (position) in the path Qx D .x0; x1; : : : ; xl/ realized
in the subgame G.x/.

Furthermore, denote by Nu.�/ D .Nu1.�/; : : : ; Nun.�// the n-tuple of strategies, and by
Nx D .Nx0; Nx1; : : : ; Nxl/, Nxl 2 PnC1 the trajectory (path), which satisfy

max
u1.�/;:::;un.�/

nX

iD1

Ki.x0I u1.�/; : : : ; un.�//

D
nX

iD1

Ki.x0I Nu1.�/; : : : ; Nun.�// D
nX

iD1

 
l�1X

kD0

hi.Nxk; NxkC1/ C Hi.Nxl/

!

: (1.2)

This path Nx we shall call “optimal cooperative trajectory”.
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The characteristic function of G.x0/ is defined classically by

V.x0I N/ D
nX

iD1

 
l�1X

kD0

hi.Nxk; NxkC1/ C Hi.Nxl/

!

;

V.x0I ;/ D 0; V.x0I S/ D Val GS;NnS.x0/;

where Val GS;NnS.x0/ is the value of the zero-sum game that is played between the
coalition S acting as first player and the coalition N n S acting as second player, with
the payoff of player S equal to

X

i2S

Ki.x0I u1.�/; : : : ; un.�//:

Using the characteristic function we define the set C.x0/ of imputations in the game
G.x0/ as

C.x0/ D
(

� D .�1; : : : ; �n/ W �i � V.x0I fig/;
X

i2N

�i D V.x0I N/

)

;

and the core Mcore.x0/ � C.x0/ as

Mcore.x0/ D
(

� D .�1; : : : ; �n/ W
X

i2S

�i � V.x0I S/; S � N

)

:

Other optimality principles of classical game theory, as Neumann–Morgenstern
(NM) solutions, Shapley values etc. are defined analogously. In what follows we
shall denote by M.x0/ � C.x0/ any of these optimality principles.

Suppose that at the beginning of the game players agree to use the optimality
principle M.x0/ � C.x0/ as basis for the selection of the “optimal” imputation
N� 2 M.x0/. Playing cooperatively means then that after choosing a common strategy
maximizing the common payoff, each player obtains a payoff N�i from the optimal
imputation N� 2 M.x0/ after the end of the game, and after the maximal common
payoff V.x0I N/ is really earned by the players.

But when the game G actually develops along the “optimal” trajectory Nx D
.Nx0; Nx1; : : : ; Nxl/, at each vertex Nxk the players find themselves in a new multistage
game with perfect information G.Nxk/, k D 0; : : : ; l, which is the subgame of the
original game G that starts at Nxk, and which has payoffs

Ki.NxkI u1.�/; : : : ; un.�// D
l�1X

jDk

hi.xj; xjC1/ C Hi.xl/; i D 1; : : : ; n:
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It is important to mention that for problem (1.2) the Bellman optimality principle
holds: the part Nxk D .Nxk; : : : ; Nxj; : : : ; Nxl/ of the trajectory Nx that starts at Nxk maximizes
the sum of the payoffs in the subgame G.Nxk/, i.e.

max
xk ;:::;xj;:::;xl

nX

iD1

2

4
l�1X

jDk

hi.xj; xjC1/ C Hi.xl/

3

5 D
nX

iD1

2

4
l�1X

jDk

hi.Nxj; NxjC1/ C Hi.Nxl/

3

5 ;

which means that the trajectory Nxk D .Nxk; : : : ; Nxj; : : : ; Nxl/ is also “optimal” in the
subgame G.Nxk/.

Before entering the subgame G.Nxk/, player i has already earned the amount

K Nxk
i D

k�1X

jD0

hi.Nxj; NxjC1/; i D 1; : : : ; n:

Moreover, at the beginning of the game G D G.x0/ player i was expecting to get
the payoff N�i—the ith component of the “optimal” imputation N� 2 M.x0/ � C.x0/.
From this it follows that in the subgame G.Nxk/ he expects to get a payoff equal to

N�i � K Nxk
i D N� Nxk

i ; i D 1; : : : ; n:

Then the question arises whether the new vector

N� Nxk D
� N� Nxk

1 ; : : : ; N� Nxk
i ; : : : ; N� Nxk

n

�

is in the same sense optimal for the subgame G.Nxk/ as the vector N� is for the game
G.Nx0/. If this is not the case, it means that the players in the subgame G.Nxk/ will not
orient themselves on the same optimality principle as for the game G.Nx0/. This may
lead them to end the cooperation by changing the chosen cooperative strategies Nui.�/
and thus changing the optimal trajectory Nx in the subgame G.Nxk/. We shall now try
to formalize this reasoning.

Introduce for each subgame G.Nxk/, k D 1; : : : ; l, the characteristic function
V.NxkI S/, S � N, in the same manner as it was done for the game G.x0/. As
before, but now based on the characteristic function V.NxkI S/, we introduce the set
of imputations

C.Nxk/ D
(

� D .�1; : : : ; �n/ W �i � V.NxkI fig/;
X

i2N

�i D V.NxkI N/

)

;

the core Mcore.Nxk/ � C.Nxk/

Mcore.Nxk/ D
(

� D .�1; : : : ; �n/ W
X

i2S

�i � V.NxkI S/; S � N

)

;
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NM solutions, Shapley values and all the other standard solution concepts. Denote
again by M.Nxk/ � C.Nxk/ the optimality principle that is used in the subgame
G.Nxk/. This is the same optimality principle that was selected by the players in the
game G.x0/.

If we suppose that the players of the game G.x0/, when moving along the optimal
trajectory .Nx0; Nx1; : : : ; Nxl/, stick to the same optimality principle M, then the vector
N� Nxk D N� � K Nxk must belong to the set M.Nxk/ for all k D 0; : : : ; l.

It is very difficult to find games and corresponding solution concepts for which
this condition is satisfied. We shall illustrate this using the following example.

Suppose that for a game G, we have that hi.xk; xkC1/ D 0 for k D 0; : : : ; l � 1,
and Hi.xl/ ¤ 0; that is, the game G is a game with terminal payoff only. Then the
last condition would mean that

N� D N� Nxk 2 M.Nxk/; k D 0; : : : ; l; (1.3)

which implies

N� 2
l\

kD0

M.Nxk/: (1.4)

For k D l, it follows from Eq. (1.3) that

N� 2 M.Nxl/:

But M.Nxl/ D C.Nxl/ D fHi.Nxl/g. Moreover, this has to be valid for all imputations
of the set M.Nx0/ and for all optimality principles M.x0/ � C.x0/, which means
that in the cooperative game with terminal payoffs the only reasonable optimality
principle is

N� D fHi.Nxl/g;

the payoff vector obtained at the endpoint of the cooperative trajectory in the game
G.x0/. At the same time, simple examples show that the intersection (1.4), except
for trivial cases, is void for games with terminal payoffs.

How to overcome this difficulty? A plausible way is to introduce a special
payment rule, a stage salary, for each stage of the game in such a way that the
following two conditions are met. First, the payments at each stage do not exceed
the common amount earned by the players until this stage; second, the payments
received by the players starting from the stage k, in the subgame G.Nxk/, belong to
the same optimality principle as the imputation N� on which players agree in the game
G.x0/ at the beginning of the game. We shall now investigate whether or not it is
possible to find such a payment rule.

We introduce the notion of imputation distribution procedure (IDP).
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Definition 4. Suppose that � D f�1; : : : ; �i; : : : ; �ng 2 M.x0/. Any matrix ˇ D
fˇikg, with i D 1; : : : ; n, k D 0; : : : ; l, such that ˇik � 0 for all i and k, and such that

�i D
lX

kD0

ˇik; (1.5)

is called an imputation distribution procedure (IDP).

Denote ˇk D .ˇ1k; : : : ; ˇnk/ and ˇ.k/ D
k�1P

mD0

ˇm. The interpretation of the IDP ˇ is

that ˇik is the payment to player i at stage k of the game G.x0/, i.e. at the first stage of
the subgame G.Nxk/. From Definition 4 it follows that in the game G.x0/ each player
i gets the amount �i, i D 1; : : : ; n, which he expects to get as the ith component of
the optimal imputation �i 2 M.x0/ in the game G.x0/.

Likewise, the quantity ˇi.k/ is the amount received by player i after the first k
stages of the game G.x0/.

Definition 5. The optimality principle M.x0/ is called time-consistent if for every
� 2 M.x0/ there exists an IDP ˇ such that

�k D � � ˇ.k/ 2 M.Nxk/; k D 0; 1; : : : ; l: (1.6)

Definition 6. The optimality principle M.x0/ is called strongly time-consistent if
for every � 2 M.x0/ there exists an IDP ˇ such that

ˇ.k/ ˚ M.Nxk/ � M.x0/; k D 0; 1; : : : ; lI

here a ˚ A D fa C a0 W a0 2 A; a 2 Rn; A � Rng.

Time-consistency of the optimality principle M.x0/ implies that for each imputation
� 2 M there exits an IDP ˇ such that the following holds: if on each arc .Nxk; NxkC1/

of the optimal trajectory Nx payments are made to the players according to ˇ, then in
every subgame G.Nxk/ the players may expect to receive payments N�k that are optimal
in the subgame G.Nxk/ in the same sense as in the game G.x0/.

Strong time-consistency means the following: assume that payments are made in
stage k according to an IDP ˇ, and that the players then reconsider the choice of
(optimal) imputation in the subgame. If they stick to the same optimality principle
in the subgame G.Nxk/ as they use in the game G.x0/, then the resulting modified
imputation for the game G.x0/ still belongs to the set M.x0/ of imputations that are
optimal under the optimality principle M.

For any optimality principle M.x0/ � C.x0/ and for every imputation N� 2 M.x0/

we can define ˇik by the following formulas

ˇik D N� Nxk
i � N� NxkC1

i ; i D 1; : : : ; n; k D 0; : : : ; l � 1

ˇil D N� Nxl
i ; i D 1; : : : ; n: (1.7)
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It follows that

lX

kD0

ˇik D
l�1X

kD0

� N� Nxk
i � N� NxkC1

i

�
C N� Nxl

i D N� Nx0

i D N�i;

as well as

N� � ˇ.k/ D N� Nxk 2 M.Nxk/; k D 0; : : : ; l:

This last inclusion implies time consistency of M.x0/.
The strong time consistency condition is more involved: for instance, we cannot

even derive a formula like (1.7).

The Regularized Game G˛ For every ˛ 2 M.x0/ we introduce a noncooperative
game G˛.x0/, the regularization of G.x0/, that differs from the game G.x0/ only
by having different payoffs along optimal cooperative path Nx D .Nx0; : : : ; Nxl/. It is
possible to choose G˛ such that there exists a Nash equilibrium in G˛.x0/ with
payoffs equal to ˛.

To see this, take ˛ 2 M.x0/. Define an imputation distribution procedure (IDP),
given by ˇ.k/ D .ˇ1k; : : : ; ˇnk/ for k D 0; 1; : : : ; l, such that

˛i D
lX

kD0

ˇik: (1.8)

Let the subgames G.Nxk/ along the optimal path Nx, as well as the imputation sets
C.Nxk/, be defined as before. Denote by K˛

i .x0I u1.�/; : : : ; un.�// the payoff function
in the game G˛.x0/.

Suppose x D .x1; x2; : : : ; xl/ is the path resulting from the initial state x0, when
strategies .u1.�/; : : : ; un.�// are played, and suppose that m is the maximal index for
which xk D Nxk, that is, the maximal number of stages in which the path coincides
with the cooperative path Nx. Then

K˛
i .x0I u1.�/; : : : ; un.�// D

m�1X

kD0

ˇik C
l�1X

kDm

hi.xk; xk C 1/ C Hi.xl/

and

K˛
i .x0I Nu1.�/; : : : ; Nun.�// D ˛i:

By defining the payoff function in the game G˛.x0/ appropriately, we obtain that the
payoffs along the optimal cooperative trajectory are equal to the components of the
imputation ˛ D .˛1; : : : ; ˛n/.
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Definition 7. The game G˛.x0/ is called a regularization (or ˛-regularization) of
the game G.x0/ if an IDP ˇ can be defined in such a way that

˛k
i D

lX

jDk

ˇij:

Note: this implies that

ˇik D ˛k
i � ˛kC1

i

for all i D 1; : : : ; n and all k D 0; 1; : : : ; l � 1, and

ˇil D ˛l
i and ˛i D ˛0

i

for all i. Moreover ˛k 2 C.Nxk/ for all k.

Theorem 1. In the regularization G˛.x0/ of the game G.x0/ there exist a Nash
equilibrium with payoffs ˛ D .˛1; : : : ; ˛n/.

Proof. Along the cooperative path we have

˛k
i � V.NxkI fig/; i D 1; : : : ; n; k D 0; 1; : : : ; l;

since ˛k D .˛k
1; : : : ; ˛k

n/ 2 C.Nxk/ is an imputation in G.Nxk/; note that V.NxkI fig/ is
computed for the subgame G.Nxk/, not for G˛.Nxk/. At the same time

˛k
i D

lX

jDk

ˇij

and we obtain

lX

jDk

ˇij � V.NxkI fig/; i D 1; : : : ; n; k D 0; 1; : : : ; l: (1.9)

But
lP

jDk
ˇij is the payoff of player i in the subgame G˛.Nxk/ along the cooperative

path, and from (1.9) one can construct a Nash equilibrium in punishment strategies
with payoffs ˛ D .˛1; : : : ; ˛n/ and resulting cooperative path Nx D .Nx0; : : : ; Nxl/.

Example. In this example we shall take the Shapley value (Shapley 1953) as
solution concept. Using the proposed regularization of the game, we shall see that
there exists a Nash equilibrium with payoffs equal to the components of the Shapley
value.
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Fig. 1.1 Game G.x1/

Table 1.1 Characteristic functions of the
games G.xk/, for k D 1; : : : ; 5

i 1 2 3 4 5

Vi.1; 2; 3; 4/ 12 12 12 12 12

Vi.1; 2; 3/ 5 5 5 0 9

Vi.1; 2; 4/ 5 5 0 9 9

Vi.1; 3; 4/ 5 0 9 9 9

Vi.2; 3; 4/ 0 9 9 9 9

Vi.1; 2/ 5 5 0 0 6

Vi.1; 3/ 5 0 5 0 6

Vi.1; 4/ 5 0 0 6 6

Vi.2; 3/ 0 5 5 0 6

Vi.2; 4/ 0 5 0 6 6

Vi.3; 4/ 0 0 6 6 6

Vi.1/ 5 0 0 0 3

Vi.2/ 0 5 0 0 3

Vi.3/ 0 0 5 0 3

Vi.4/ 0 0 0 5 3

There are four players (n D 4) and nine vertices x1; : : : ; x9. The sets of personal
positions of the players are P1 D fx1g, P2 D fx2g, P3 D fx3g, and P4 D fx4g.
The set of terminal positions is P5 D fx5; x6; x7; x8; x9g. There are only terminal
payoffs; that is hi.xk; xkC1/ D 0 for all i and all k. The terminal payoffs are
g.x5/ D .3; 3; 3; 3/, g.x6/ D .5; 0; 0; 0/, g.x7/ D .0; 5; 0; 0/, g.x8/ D .0; 0; 5; 0/,
and g.x9/ D .0; 0; 0; 5/. See Fig. 1.1 for the game G.x1/.

The cooperation path is clearly

Nx D fx1; x2; x3; x4; x5g:

It can be easily seen that .D; D; D; D/ is a Nash equilibrium, and that the cooperative
path .A; A; A; A/ is not a Nash equilibrium.

The characteristic function of the game G.x1/ is given in the first column of
Table 1.1. Figure 1.2 gives the subgames G.xk/ of G.x1/, for k D 2; : : : ; 5; their
characteristic functions are also given in Table 1.1.
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Fig. 1.2 Subgames of G.x1/. (a) Subgame G.x2/. (b) Subgame G.x3/. (c) Subgame G.x4/.
(d) Subgame G.x5/
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The Shapley values Shk of G.xk/ are, respectively:

Sh1 D
�

27

4
;

7

4
;

7

4
;

7

4

�

I

Sh2 D
�

9

12
;

85

12
;

25

12
;

25

12

�

;

and Sh1 ¤ Sh2I

Sh3 D
�

1; 1;
90

12
;

30

12

�

;

and Sh2 ¤ Sh3I

Sh4 D
�

16

12
;

16

12
;

16

12
;

96

12

�

I

and Sh4 ¤ Sh3I
Sh5 D .3; 3; 3; 3/ ;

and Sh5 ¤ Sh4:

Compute now the IDP (imputation distribution procedure): for k D 1; : : : ; 4:

Shk D ˇ.k/ C ShkC1;

implying

ˇ.k/ D Shk � ShkC1

or
5X

kDj

ˇ.k/ D Shj

for j D 1; : : : ; 5. This results in

ˇ.1/ D
�

72

12
; �64

12
; � 4

12
; � 4

12

�

;

ˇ.2/ D
��3

12
;

73

12
; �65

12
;

�5

12

�

;

ˇ.3/ D
�

� 4

12
; � 4

12
;

74

12
; �66

12

�

;

ˇ.4/ D
�

�20

12
; �20

12
; �20

12
;

60

12

�

;

ˇ.5/ D .3; 3; 3; 3/ :
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Fig. 1.3 Game G˛

The regularization G˛ of the game G.x1/ [when ˛ is the Shapley value in G.x1/]
and the Nash equilibrium strategically supported cooperation are given in Fig. 1.3.

The payoffs

�
72

12
; �64

12
; � 4

12
; � 4

12

�

;

��3

12
;

73

12
; �65

12
;

�5

12

�

;

�

� 4

12
; ��4

12
;

74

12
; ��66

12

�

;

�

�20

12
; �20

12
; �20

12
;

60

12

�

are defined on the arcs .1; 2/, .2; 3/, .3; 4/, .4; 5/ respectively.
We can see that the inequalities (1.9) hold for the game G˛ .

4X

jD1

ˇ1j D 72

15
C �3

12
� 4

12
� 20

12
C 3 D 27

4
> 5 D V.Nx1I f1g/;

4X

jD2

ˇ2j D 73

12
� 4

12
� 20

12
C 3 D 85

12
> 5 D V.Nx2I f2g/;

4X

jD2

ˇ3j D 74

12
� 20

12
C 3 D 15

2
> 5 D V.Nx3I f3g/;

4X

jD3

ˇ4j D 60

12
C 3 D 32

4
> 5 D V.Nx4I f4g/:

This means that in the Nash equilibrium .A; A; A; A/ of the regularized game G˛ ,
the payoffs are . 27

4
; 7

4
; 7

4
; 7

4
/, and hence exactly equal to the Shapley value. Thus the
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computed Nash equilibrium supports the cooperative outcome and the cooperative
payoffs of the original game; these payoffs are redistributed according to an IDP
that guarantees the time-consistency of the Shapley value.

1.4 Cooperative Differential Games

In this section we extend the ideas introduced in the previous section to differential
games. We define cooperative differential games in characteristic function form,
and introduce the notions of optimality principle and, based on it, solution concept.
“Imputation distribution procedures” (IDP) are defined for the differential case
and connected to the basic definitions of time-consistency and strongly time-
consistency. Finally, we derive sufficient conditions of the existence of time
consistent solutions.

1.4.1 Definition of Cooperative Differential Games
in Characteristic Function Form

We will investigate n-person differential games starting from an initial state x0 2 Rn

at an initial time t0 2 R1 and with a prescribed duration T � t0 where the end time
T > t0 is a finite number. To indicate the dependence of the game on initial state
and duration, we denote it by � .x0; T � t0/.

Let N D f1; : : : ; ng be the set of all players of the game, and let the equations of
motion have the form

Px D f .x; u1; : : : ; un/; x.t0/ D x0I (1.10)

here x 2 Rn is the state variable and ui 2 Ui is the control variable of player i 2 N,
with Ui a compact set. The payoff function of player i is defined in the following
way:

Ki.x0; T � t0I u1; : : : ; un/ D
TZ

t0

hi.x.t//dt C Hi.x.T//; (1.11)

where hi.x/ > 0, Hi.x/ > 0 are given positive continuous functions and where
x.t/ is the trajectory realized from the initial state x0 under the strategy choice u D
.u1; : : : ; un/ of the players. We restrict attention to feedback or closed loop strategies
ui D ui.t; x/, t 2 Œt0; T�, x 2 Rn.
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Consider the cooperative form of the game � .x0; T � t0/. That is, we suppose
that the players, before starting the game, agree to play strategies u�

1 ; : : : ; u�
n such

that the resulting trajectory x�.t/ maximizes the sum of the payoffs

max
u

nX

iD1

Ki.x0; T � t0I u1; : : : ; un/ D
nX

iD1

Ki.x0; T � t0I u�
1 ; : : : ; u�

n /

D
nX

iD1

�Z T

t0

hi.x
�.t//dt C Hi.x

�.T//

�

D v.NI x0; T � t0/;

The trajectory x�.t/ is called conditionally optimal.
To define the cooperative game one has to introduce the characteristic function.

We will do this in a classical fashion by considering a zero-sum game, defined with
the same structure as the game � .x0; T � t0/, between the coalition S as first player
and the coalition NnS as second player, where the payoff of S is equal to the sum
of payoffs of players from S. Denote this game as �S.x0; T � t0/. Suppose that the
value v.SI x0; T �t0/ of this game exists (existence of values of zero-sum differential
games has been proved under very general conditions). The characteristic function
is then defined for each S � N as the value v.SI x0; T � t0/ of �S.x0; T � t0/.

Note that the positiveness of the payoff functions Ki, i D 1; : : : ; n implies
positiveness of the characteristic function. From the superadditivity of v it follows
moreover that

v.S0I x0; T � t0/ � v.SI x0; T � t0/

for all coalitions S; S0 � N such that S � S0; that is, superadditivity of v in S implies
that v is monotone in S.

The pair .N; v.SI x0; T � t0//, where N is the set of players and v the characteris-
tic function, is called a cooperative differential game in characteristic function form,
and is denoted by �v.x0; T � t0/.

A method to allocate the total profit “equitably” among the players constitutes
a solution of the cooperative game. The set of equitable allocations satisfying an
optimality principle is a solution of the cooperative game in the sense of this
optimality principle.

We will now define solutions of the game �v.NI x0; T � t0/.

Definition 8. A vector � D .�1; : : : ; �n/, whose components satisfy the condi-
tions:

(1) �i � v
�figI x0; T � t0

	
for each i 2 N;

(2)
P

i2N �i D v.NI x0; T � t0/;

is called an imputation in the game �v.x0; T � t0/.

Here �i should be thought of as the share of player i 2 N in the total gain
v.NI x0; T � t0/.
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Denote the set of all imputations in �v.x0; T � t0/ by Lv.x0; T � t0/. A solution of
�v.x0; T � t0/ will be for us a subset Wv.x0; T � t0/ � Lv.x0; T � t0/ of imputations
which satisfies additional “optimality” conditions.

An allocation � D .�1; : : : ; �n/ represents an equitable imputation if each player
receives at least a maximal guaranteed payoff and the entire maximal payoff is
distributed evenly without a remainder.

1.4.2 The Principle of Time-Consistency (Dynamic Stability)

The formalization of the notion of optimal behaviour constitutes one of the
fundamental problems in the theory of n-person games. At present, for various
classes of games different solution concepts are constructed. The behaviour of
the players in the game is characterised by their strategies, if the game is non-
cooperative, or by their imputations, if the game is cooperative. Behaviour that
satisfies a given optimality principle is called a solution of the game in the sense
of this principle and must possess two properties. First, it must be feasible in the
game; second, it must adequately reflect the conceptual notion of optimality, taking
into account the special features of the class of games for which it is defined.

For dynamic games, it is natural to add one more requirement: feasibility and
purposefulness of the optimality principle are to be preserved throughout the game.
This requirement is called time-consistency or dynamic stability of a solution of the
game (see Yeung and Petrosyan 2006; Haurie 1976; Petrosyan 1977; Petrosyan and
Danilov 1979; Petrosyan and Zaccour 2003).

Time-consistency of a solution of a differential game means the following: if the
game proceeds along a “conditionally optimal” trajectory, and players are guided by
the same optimality principle at each instant of time, they never have an incentive
to deviate from the previously adopted “optimal” behaviour. Time-consistency is
violated if at some point in time continuation of the initial behaviour becomes non-
optimal and hence the initially chosen solution proves to be unfeasible.

Assume now that at the start of the game the players have adopted an optimality
principle and have constructed a solution based on it; that is, they have chosen an
imputation satisfying the chosen principle of optimality, say the core, nucleolus,
Neumann–Morgenstern solution etc. From the definition of cooperative game it
follows that the evolution of the game is to be along the trajectory providing
a maximal total payoff for the players. When moving along this “conditionally
optimal” trajectory, the players pass through subgames with current initial states
and current duration. In due course, not only the conditions of the game and the
opportunities of the players, but even the players’ interests may change: at an instant
t the optimal solution of the current game may not keep to the initially chosen
“conditionally optimal” trajectory. If this occurs, the chosen optimality principle is
time-inconsistent and, as a result, the motion itself is dynamically unstable; we have
seen the time-inconsistency of the Shapley value in the last example of the previous
section.
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From now on, we focus our attention on time-consistent solutions of cooperative
differential games.

Choose therefore an optimality principle in the game �v.x0; T � t0/. Denote by
Wv.x0; T � t0/ the solution of this game, based on the chosen principle of optimality
and constructed in the initial state x.t0/ D x0. The set Wv.x0; T � t0/, which is
assumed to be nonempty, is a subset of the imputation set Lv.x0; T � t0/. Denote by
x�.t/, for t 2 Œt0; T�, the conditionally optimal trajectory; by definition of conditional
optimality, players obtain the largest total payoff along this trajectory. We assume
henceforth that such a trajectory exists.

Consider now the behaviour of the set Wv.x0; T � t0/ along the conditionally
optimal trajectory. For each current state x�.t/, we define the characteristic function
v.SI x�.t/; T � t/ as the value of the zero-sum differential game �S.x�.t/; T � t/
between coalitions S and NnS from the initial state x�.t/ and with duration T � t, as
it was done already for the game � .x0; T � t0/ above.

The current cooperative subgame �v.x�.t/; T � t/ is, as before, defined as the
pair

�
N; v.S; x�.t/; T � t/

	
. The imputation set in the game �v.x�.t/; T � t/ is of the

form:

Lv.x�.t/; T � t/ D



� 2 Rn W �i � v.figI x�.t/; T � t/; i D 1; : : : ; nI
X

i2N

�i D v.NI x�.t/; T � t/

�

;

where

v.NI x�.t/; T � t/ D v.NI x0; T � t0/ �
Z t

t0

X

i2N

hi.x
�.�//d�:

In this expression, the quantity

Z t

t0

X

i2N

hi.x
�.�//d�

can be interpreted as the total gain of the players on the time interval Œt0; t� when the
motion is carried out along the trajectory x�.t/.

We have in this way obtained a family of current games

�v.x�.t/; T � t/ D �
N; v.SI x�.t/; T � t/

	
; parametrised by t 2 Œt0; T�;

which is parametrised by t 2 Œt0; T� and which is defined along the conditionally
optimal trajectory x�.t/; the corresponding family of solutions Wv.x�.t/; T � t/ has
the property that each solution is generated by the same principle of optimality as
the initial solution Wv.x0; T � t0/.
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It is obvious that the set Wv.x�.T/; 0/ is a solution of terminal game �v.x�.T/; 0/

and that it is composed of the only possible imputation

H.x�.T// D �
H1.x�.T//; : : : ; Hn.x�.T/

	
;

where Hi.x�.T// is the terminal payoff of player i along the trajectory x�.t/.

1.4.3 Time-Consistent Solutions

Let the conditionally optimal trajectory x�.t/ be such that

Wv.x�.t/; T � t/ ¤ ;; t0 � t � T:

If this condition is not satisfied, it is impossible for players to adhere to the chosen
optimality principle, since at the first instant t for which the condition is violated,
the players have no possibility to follow the principle any longer.

Assume that in the initial state x0 the players agree upon the imputation �0 2
Wv.x0; T � t0/. This means that in the state x0 the players agree upon such an
allocation of the total maximal gain that, when the game terminates at the instant
T , the share of ith player is equal to �0

i , i.e. the ith component of the imputation �0.
Suppose player i’s payoff—his share—after the time interval Œt0; t� has elapsed is
equal to �i.x�.t//. Then on the remaining time interval Œt; T� he has to receive
the gain �t

i D �0
i � �i.x�.t// in order to be consistent with �0. For the original

agreement—the imputation �0—to remain in force at the instant t, it is therefore
necessary that

�t D .�t
i; : : : ; �t

n/ 2 Wv.x�.t/; T � t/;

i.e. that �t is a solution of the current subgame �v.x�.t/; T � t/. If such a condition
can be satisfied for each t 2 Œt0; T� along the trajectory x�.t/, then the imputation �0

can be realized. This is the conceptual idea of time-consistent imputations.
Restricted to the time interval Œt; T�, t0 � t � T , the coalition N obtains the payoff

v.NI x�.t/; T � t/ D
X

i2N

� Z T

t
hi.x

�.�//d� C Hi.x
�.T//

�

along the trajectory x�.t/. The difference

v.NI x0; T � t0/ � v.NI x�.t/; T � t/ D
Z t

t0

X

i2N

hi.x
�.�//d�
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is then equal to the payoff the coalition N obtains over the time interval Œt0; t�. The
share of the ith player in this payoff, assuming that payoffs are transferable, can be
represented as

	i.t/ D
Z t

t0

ˇi.�/

nX

jD1

hj.x
�.�//d� D 	i.x

�.t/; ˇ/; (1.12)

where the function ˇi.�/ is integrable over Œt0; T� and satisfies the condition

nX

iD1

ˇi.�/ D 1; t0 � � � T: (1.13)

From (1.12) we immediately obtain

d	i

dt
D ˇi.t/

X

j2N

hj.x
�.t//:

This quantity may be interpreted as the instantaneous gain of player i at the
moment t. Hence it is clear that the vector ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t// prescribes
the distribution of the total gain among the members of coalition N. By properly
choosing ˇ.t/, the players can ensure the desirable outcome, i.e. they can regulate
how the players receive their gains over time. They can do this in such a way that at
no instant t 2 Œt0; T� there will be an objection against the realization of the original
agreement, that is, against the imputation �0.

Definition 9. The imputation �0 2 Wv.x0; T � t0/ is called time-consistent in the
game �v.x0; T � t0/ if the following conditions are satisfied:

(1) there exists a conditionally optimal trajectory x�.t/ along which

Wv.x�.t/; T � t/ ¤ ;

for t0 � t � T ,
(2) there exists a vector function ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t//, integrable over Œt0; T�,

such that for each t0 � t � T ,
Pn

iD1 ˇi.t/ D 1 and

�0 2
\

t0�t�T

Œ	.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t/�; (1.14)

where 	.x�.t/; ˇ/ D .	1.x�.t/; ˇ/; : : : ; 	n.x�.t/; ˇ//.

The cooperative differential game �v.x0; T � t0/ with side payments has a time-
consistent solution Wv.x0; T � t0/ if all of the imputations � 2 Wv.x0; T � t0/ are
time-consistent.
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The conditionally optimal trajectory along which there exists a time-consistent
solution of the game �v.x0; T � t0/ is called an optimal trajectory.

For t D T , time-consistency implies that �0 2 	.x�.T/; ˇ/˚Wv.x�.T/; 0/. Recall
that Wv.x�.T/; 0/ is a solution of the current game �v.x�.T/; 0/; this game occurs at
the last moment t D T of the trajectory x�.t/, has a duration 0 and is made up of the
only imputation �T D H.x�.T// D .H1.x�.T//; : : : ; Hn.x�.T///. The imputation �0

may therefore be represented as

�0 D 	.x�.T/; ˇ/ C H.x�.T// (1.15)

or

�0 D
Z T

t0

ˇ.�/
X

i2N

hi.x
�.�//d� C H.x�.T//:

The time-consistent imputation �0 2 Wv.x0; T � t0/ may be realized as follows.
From (1.14) at any instant t0 � t � T we have

�0 2 	.x�.t/; ˇ/ ˚ Wv.x�.t/; T � t/; (1.16)

This relation implies the existence of a vector � t 2 Wv.x�.t/; T � t/ such that �0 D
	.x�.t/; ˇ/ C � t. By combining (1.12) and (1.15), we see that

� t D �0 � 	.x�.t/; ˇ/ D
Z T

t
ˇ.�/

X

i2N

hi.x
�.�//d� C H.x�.T//:

The integrand in this expression, denoted

˛i.�/ D ˇi.�/
X

j2N

hj.x
�.�//; i 2 N;

is called the imputation distribution procedure (IDP).
We conclude that for any vector valued function ˇ.t/ satisfying conditions (1.12)

and (1.13) at each time instant t0 � t � T , the players are guided by the imputation
� t 2 Wv.x�.t/; T � t/ and the associated optimality principle throughout the game.

Let us make the following additional assumption.

Assumption A. The vector � t 2 Wv.x�.t/; T � t/ may be chosen as a continuously
differentiable function of the argument t.

We shall show that under assumption A, we can always ensure time-consistency
of the imputation �0 2 Wv.x0; T � t0/ by properly choosing ˇ.t/.

To see this, choose � t 2 Wv.x�.t/; T � t/ such that it is a continuously differen-
tiable function of t, which is possible according to the assumption. Constructing the
difference 	.t/ D �0 � � t, we obtain that

� t C 	.t/ 2 Wv.x0; T � t0/:
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We are looking for a vector function ˇ.t/ D .ˇ1.t/; : : : ; ˇn.t//, integrable on Œt0; T�,
that satisfies conditions (1.12), (1.13). For the sake of simplicity, we shall write 	.t/
instead of 	.x�.t/; ˇ/. Rewriting (1.12) in vector form yields

Z t

t0

ˇ.�/
X

i2N

hi.x
�.�/d� D 	.t/:

By differentiating with respect to t and rearranging terms we obtain the following
expression for ˇ.t/

ˇ.t/ D 1
P

i2N hi.x�.t//
� d	.t/

dt
D � 1

P
i2N hi.x�.t//

� d� t

dt
I (1.17)

the last equality follows from differentiating the identity

�0 D 	.t/ C � t:

Taking (1.17) as the definition of ˇ.t/, it is clear that this function is continuous. It
remains to check that condition (1.13) is satisfied. Indeed, since

X

i2N

� t
i D v.NI x�.t/; T � t/;

it follows that

X

i2N

ˇi.t/ D �
P

i2N
d� t

i
dtP

i2N hi.x�.t//
D �

d
dt v.NI x�.t/; T � t/
P

i2N hi.x�.t//

D �
d
dt

�
P

i2N

�
R T

t hi.x�.�//d� C Hi.x�.T//

��

P
i2N hi.x�.t//

D
P

i2N hi.x�.t//
P

i2N hi.x�.t//
D 1:

We have proved the following theorem.

Theorem 2. If assumption A is satisfied and for all t 2 Œt0; T� the condition

Wv.x�.t/; T � t/ ¤ ; (1.18)

is satisfied, then the solution Wv.x0; T � t0/ is time-consistent.

The main problem in subsequent theoretical developments is to find conditions
that can be imposed on the vector function ˇ.t/, which ensure time-consistency
of specific solution forms Wv.x0; T � t0/ in various classes of games.
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In the remainder of this section, we discuss the new concept of strong time-
consistency, and we define time-consistent solutions for cooperative games with
terminal payoffs.

1.4.4 Strongly Time-Consistent Solutions

Recall that for a time-consistent imputation �0 2 Wv.x0; T � t0/, by definition there
are an integrable vector valued function ˇ.t/ and an imputation � t from the solution
Wv.x�.t/; T � t/ of the current game �v.x�.t/; T � t/, neither of which is in general
unique, such that

�0 D 	.x�.t/; ˇ/ C � t

for each t 2 Œt0; T�, where 	.x�.t/; ˇ/ is the vector of total payoffs to the players up
to time t.

The condition of time-consistency does not affect imputations from the set
Wv.x�.t/; T � t/ that fail to satisfy this equation. It is now interesting to consider the
situation where any imputation from the current solution Wv.x�.t/; T � t/ provides
a “good” continuation of the original agreement. This situation obtains if �0 2
Wv.x0; T � t0/ is a time-consistent imputation and if for every � t 2 Wv.x�.t/; T � t/,
the condition

	.x�.t/; ˇ/ C � t 2 Wv.x0; T � t0/;

is satisfied.
By slightly strengthening this requirement, we obtain the concept of strong time-

consistency.

Definition 10. An imputation �0 2 Wv.x0; T � t0/ is called strongly time-consistent
in the game �v.x0; T � t0/, if the following conditions are satisfied:

(1) the imputation �0 is time-consistent;
(2) for any t0 � t1 � t2 � T and for ˇ.t/ corresponding to the imputation �0 we

have

	.x�.t2/; ˇ/˚Wv.x�.t2/; T �t2/ � 	.x�.t1/; ˇ/˚Wv.x�.t1/; T �t1/: (1.19)

A cooperative differential game �v.x0; T � t0/ with side payments has a strongly
time-consistent solution Wv.x0; T � t0/ if all imputations from this solution are
strongly time-consistent.
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1.4.5 Terminal Payoffs

In this section, we consider the situation that the players do only obtain payoffs at
the termination of the game, that is

Ki.x0; T � t0I u1; : : : ; un/ D Hi.x.T//; i D 1; : : : ; nI

this expression is obtained from (1.11) by setting hi � 0 for all i. The resulting coop-
erative differential game with the terminal payoffs is again denoted by �v.x0; T�t0/.
In the following, we write

H.x�.T// D �
H1.x�.T//; : : : ; Hn.x�.T//

	
;

for the vector whose component are the payoffs at the end point of the conditionally
optimal trajectory.

Theorem 3. In the cooperative differential game �v.x0; T � t0/ with terminal pay-
offs Hi.x.T//, the vector �0 D H.x�.T// is the unique time-consistent imputation.

Proof. Time-consistency of the imputation �0 2 Wv.x0; T � t0/ implies that

�0 2
\

t0�t�T

Wv.x�.t/; T � t/:

But since the current game �v.x�.T/; 0/ is of zero duration,

Lv.x�.T/; 0/ D Wv.x�.T/; 0/ D H.x�.T//:

Hence

\

t0�t�T

Wv.x�.t/; T � t/ D H.x�.T//;

i.e. �0 D H.x�.T// and there are no other imputations.

Theorem 4. For a time-consistent solution to exist in the game with terminal
payoffs it is necessary and sufficient that for all t0 � t � T

H.x�.T// 2 Wv.x�.t/; T � t/:

This theorem is a corollary of the previous one.
Thus, if in the game with terminal payoffs there is a time-consistent imputation,

then in the initial state x0 the players have to agree upon the imputation H.x�.T// 2
Wv.x0; T � t0/; moreover, while moving along the optimal trajectory x�.t/, for
each t0 � t � T this imputation belongs to the solution of the current game
�v.x�.t/; T � t/.
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The theorem states that in the game with terminal payoffs only a single imputa-
tion from the set Wv.x0; T � t0/ can be time-consistent. This is a highly improbable
event, as this means that imputation H.x�.T// belongs to the solution of every
subgame along the conditionally optimal trajectory. For such games the notions
of time-consistency and strong time-consistency of the solution Wv.x0; T � t0/ is
therefore largely irrelevant.

It is important to mention that a theorem analogous to Theorem 1 is true for
an n-person differential game (see Petrosyan and Zenkevich 2009). This shows
that dynamic games are a very effective tool for constructing the bridge between
noncooperative and cooperative game theory.
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Chapter 2
Dynamic Admission Game into an M/M/1 Queue

Eitan Altman and Tania Jiménez

Abstract Around 50 years ago, P. Naor has derived the optimal social and
individual admission rules to an M/M/1 queue. In both cases, the optimal policies
were identified to be of a pure threshold type: admit if and only if the number queued
upon arrival is below some threshold. The value of the threshold in the individual
optimal case was shown to be larger than the one for the social optimal criterion.
We make the observation that admitting according to a threshold policy requires
only the information of whether the queue is above or below a threshold. We call
these “red” and “green” light, respectively, associated with a threshold, say L. The
question that we pose in this paper is: what happens if one restricts to the above
information pattern but let the threshold level L be chosen by the system which
signals to arrivals whether the queue is above or below the threshold. Can one
find a choice of a threshold that will induce an equilibrium that performs better
than in the case that full information is available? We also examine the question of
what is the threshold that maximizes the revenue for the queue. We show that the
choice of threshold that maximizes the system’s performance at equilibrium is the
same as under the full information case if the service in the queue follows the FIFO
discipline.
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2.1 Introduction

This paper is devoted to revisiting the problem of whether an arrival should queue
or not in an M/M/1 queue. To the best of our knowledge, this is the first problem
to be studied in optimal control of queues, going back to the seminal paper of
Naor (1969). Naor considered an M/M/1 queue, in which a controller has to decide
whether arrivals should enter a queue or not. The objective was to minimize a cost
with the form of a weighted difference between the average expected waiting time of
those that enter, and the acceptance rate of customers. The strategy that minimizes
the above cost was shown to be of a threshold type where arrivals are accepted as
long as the queue size does not exceed some threshold L and are otherwise denied
access.

Naor then considered the individual optimality problem in which an arrival at
the queue decides whether to enter the queue and receive service. The individual
knowing the size i of the queue, joins the queue if its expected waiting time does
not exceed the value of being served. The solution to this individual optimization
problem can be viewed as a Nash equilibrium in a non-cooperative game between
the players. A simple argument shows that this equilibrium is also of a threshold
type with a threshold L0 which satisfies L0 � L. Thus, under individual optimality,
arrivals that join the queue wait longer in average.

Finally, he showed that there exists some toll such that if it is imposed on arrivals
for joining the queue then the threshold value of the individually optimal policy can
be made to agree with the social optimal one. Since this seminal work of Naor
there has been a huge amount of research that extend the model. More general
interarrival and service times have been considered, more general networks, other
objective functions and other queuing disciplines, see e.g. Yechiali (1971), Stidham
and Weber (1989), Stidham et al. (1995), Hsiao and Lazar (1991), Korilis and Lazar
(1995), Altman and Shimkin (1998), Hordijk and Spieksma (1989), Altman et al.
(2000), Stidham (1985) and references therein.

In the original work of Naor, the decision maker(s) have full state information
when entering the system. However, the fact that a threshold policy is optimal
implies that for optimally controlling arrivals we only need partial information—we
need a signal to indicate whether the queue exceeds or not the threshold value L.
The fact that this much simpler information structure is sufficient for obtaining
the same performance as in the full information case motivates us to study the
performance of threshold policy and related optimization issues.

We first consider the socially optimal control policy for a given (non-necessarily
optimal) threshold value L. When L is chosen non-optimally then the optimal policy
for the partial information problem does not anymore coincide with the policy with
full information.

We then study the individual optimization problem with the same partial
information: a signal (red) if the queue length exceeds some value L and a green
signal otherwise.
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For both the social and the individual optimization problems we show that
the following structure holds: either whenever the signal is green all arrivals are
accepted with probability 1, or whenever the signal is red all arrivals are rejected
with probability 1.

We note that by using this signaling approach instead of providing full state
information, users cannot choose any threshold policy with parameter different
than L. Thus, in the individual optimization case, one could hope that by determining
the signaling according to the value L that optimizes the socially optimal problem
(in case of full information), one would obtain the socially optimal performance.
We show that this is not the case, and determine the value L for which the reaction
of the users optimizes the system performance. We compare this to the performance
in case of full information.

2.2 The Model

2.2.1 The General Threshold Framework

Consider an M/M/1/k queue, i.e. a single server queue with an independent Pois-
son arrival process, independent exponentially distributed service times provided
according to the FCFS (first come first served) regime, and with a storage capacity
of k customers; both finite and infinite k will be considered. The input rate of
admitted customer is state dependent. We are in particular interested in threshold
admission rates given by � for i � L and by � otherwise. Here i, the number of
queued customer at the queue, is taken to be the state of the queue. With this as the
state, the queue process is Markovian. If we take � D 0 then we obtain the model of
Naor. � can be interpreted as some non-controlled (or non strategic) flow which is
always accepted at the queue. The rest of the flow (of rate � � �) is fully controlled.

Let 
 be the service rate and set � D �=
 and � D �=
. For the case of
infinite k we shall make the standard stability assumption that � < 1. Without loss
of generality we may assume that L � k.

The Optimal Control Framework We assume that � < � is the rate of some
uncontrolled Poisson flow. In addition there is an independent Poisson arrival flow of
intensity � � 0. We restrict to stationary policies, i.e. policies that are only function
of the observation. A policy is thus a set of two probabilities: qs where s is either
R or G. qs is the probability of accepting an arrival when the signal is s. Define
q D .qG ; qR/.

� D � C �qR ; � D � C �qG : (2.1)

The Non-cooperative Game Problem We again assume that there is some
uncontrolled flow � and a flow of identical strategic players with intensity �. All
users receive the signal G or R—as before—and we restrict to stationary polices as
in the optimal control case.
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Assume that an arrival has a reward 	 > 0 for being processed in the queue,
and a waiting cost of EqŒWjs� where W is the waiting time, and s corresponds to
the signal that the customer receives upon arrival. Note that EqŒWjs� D EqŒIjs�=


where I stands for the number of customers at the queue ahead of the arrival.
Let Y.q/ be the set of best responses of an individual if all the rest use q and the

system is in the corresponding steady state.
Then q is an equilibrium strategy if and only if q 2 Y.q/.

2.3 Steady State Probabilities for Threshold Policies

We compute the steady state probabilities as well as the performance measures that
will appear in the utilities within the general framework. They will be used in both
the optimal control framework as well as in the game framework.

The balance equations are given


.i C 1; L/ D �.i/.i; L/

where �.i/ D � for i � L and is otherwise given by �.i/ D �. The solution of these
equations give

.i; L/ D .0; L/�i

for i � L and otherwise

.i; L/ D .L; L/�i�L: (2.2)

Hence

.0; L/ D 1
PL�1

iD0 �i C �L Pk�L
iD0 �i

D 1

1��L

1��
C �L

1��
.1 � �k�LC1/

Thus

.L; L/ D .0; L/ � �L D �L

1��L

1��
C �L

1��
.1 � �k�LC1/

(2.3)

Assume that an arrival receives the information on whether the size of the queue
exceeds L � 1 or not. If it does not exceeds we shall say that it receives a “green”
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signal denoted by G, and otherwise a red one (R). The conditional state probabilities
given the signals are denoted by

.i; LjR/ D �i�L
1 � �

1 � �k�LC1

for k � i � L, and is otherwise zero. The conditional tail distribution is

P.I > njR/ D �nC1�L
1 � �k�nC1

1 � �k�LC1

for n � L � 1, and is otherwise 1. Thus

E.IjR/ D L � 1 C 1

1 � �
(2.4)

when k D 1 and

E.IjR/ D L � 1 C 1

1 � �
� .k � L/ � �k�LC1

1 � �k�LC1
(2.5)

otherwise.
For a green light we have:

.i; LjG/ D 1 � �

1 � �L �i

for 0 � i < L and is otherwise zero. Hence the tail probabilities are

P.I > njG/ D �nC1 � �L

1 � �L

for n < L, and is otherwise 0. Hence

E.IjG/ D
L�1X

nD0

P.I > njG/ D 1

1 � �L

 
.�L � �/

� � 1
� .L � 1/�L

!

(2.6)

In the sequel we shall add often q in order to stress the dependence of various
quantities on q. The dependence is through � and � [due to (2.1)].
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2.4 The Partially Observed Control Problem

The global optimisation problem is to minimize Jq over q where Jq is the following
weighted difference between the expected queueing cost and a payoff per rate of
accepted customers:

Jq D EqŒI� � 	Tacc.q/ D
X

sDG;R

Pq.s/.EqŒIjs� � 	Tacc.q// (2.7)

where

Tacc D � � P.G/ C � � P.R/ D 
ŒP.R/.� � �/ C ��

and P.R/ D P.I � L/ is given by

P.R/ D .L; L/
1 � �k�LC1

1 � �
(2.8)

EŒI� D EŒIjR� � P.R/ C EŒIjG� � P.G/ D .EŒIjR� � EŒIjG�/ � P.R/ C EŒIjG�;

D
�

L � 1 C 1

1 � �
� .k � L/ � �k�LC1

1 � �k�LC1
� 1

1 � �L

 
.�L � �/

� � 1
� .L � 1/�L

!
�

� �L

1��L

1��
C �L

1��
.1 � �k�LC1/

.
1 � �k�LC1

1 � �
/ C 1

1 � �L

 
.�L � �/

� � 1
� .L � 1/�L

!

when k ¤ 1 and

D ...L � 1/ C 1

�L.1 � �/
/ � .

1

1 � �L

 
.�L � �/

� � 1
� .L � 1/�L

!

//

� .1 � �/�L

.1 � �/ C �L.� � �/
C
� 1

1 � �L

 
.�L � �/

� � 1
� .L � 1/�L

!
�

when k D 1.
The expression obtained for Jq is lower semi-continuous in the policy

q D fqs; s D G; Rg. Hence a minimizing policy q� exists.

Lemma 1. Consider the case of k D 1. Assume that � > 0. If �
R

� 1 then for any

L, EŒI� is infinite.

Proof. The expected queue length EŒIt] at any time t and for any L is bounded from
below by EŒI0

t � � L where I0
t is the queue size obtained when replacing qG with

qG D qR . EŒI0
t � corresponds to an M/M/1 queue with a workload � � 1 which is

known to have infinite expectation. �



2 Dynamic Admission Game into an M/M/1 Queue 33

L=1 L=2 L=7 L=10L=1 L=2 L=7 L=10

–10

–9

–9

–8,5

–7,5

–6,5

–7

–8

–8

–7

0,6

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

0,8 1,0 1,2 1,4 1,6
r1

r2

Fig. 2.1 The performance (Jq in y-axis and � and � x-axis) of different policies for several values
of L for k D 1
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Fig. 2.2 The performance (Jq in y-axis and � and � x-axis) of different policies for several values
of L for k D 8

2.4.1 The Structure of Optimal Policies

Figure 2.1 shows the values of Jq for various values of � and � for k infinite. We
assume that � and � are such that � D 0:8 and � D 0:3. We further took 
 D 1,
	 D 15, for four different values of the threshold L. In the left part of the figure, �

is varied while keeping � D 0:3 constant. In the right part of the figure � is varied
while keeping � D 0:8 constant. Similar plots are given in Fig. 2.2 for the case of
finite storage capacity of k D 8.
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Consider the case of L D 10 in Fig. 2.1. Consider the case of � D 0:3; � D 0:8.
At these fixed values, it is seen that no unilateral change in either � or in � can
further increase Jq. This is thus a (locally) optimal policy. It is seen to satisfy the
following: qR is an interior point while qL D 0 is on the boundary.

We shall show the following more general structure. For any L the optimal vector
q satisfies the following property: whenever the minimum cost is achieved at an
interior point for one of the components of q, then it is achieved on the boundary for
the other component. We shall next prove this structure for the partially observable
control problem with k D 1.

Theorem 1. Consider k D 1. Assume that 0 < �=
 < 1. Then there is a unique
optimal stationary strategy and it has the following property: either q�.G/ D 1 or
q�.R/ D 0.

Proof. Let q be optimal. We first show that ˛ > 0 where ˛ WD 
 � .� C qR�/.
Indeed, if it were not the case then we would have � � 1 so by the previous lemma,
the queue length and hence the cost would be infinite. But then q cannot be optimal
since the cost can be made finite by choosing qR D 0.

Assume that an optimal policy q does not have the structure stated in the
Theorem. This would imply that qR can be further decreased and qG increased. In
particular, one can perturb q in that way so that Tacc is unchanged. More precisely,
note first that Tacc is monotone increasing in both qR and in qG . Hence

Tacc.1; q.R// � Tacc.q/ � Tacc.qG ; 0/;

Hence, if Tacc.1; 0/ < Tacc.q/ then there is some q2 such that

Tacc.q2/ D Tacc.q/

where

q2 WD .1; q2
R
/; or q2 WD .q2

G
; 0/ if Tacc.1; 0/ � Tacc.q/

We have

Pq2.I D 0/ D 1 � Tacc.q2/ D 1 � Tacc.q/

(e.g. from Little’s Theorem). From rate balance arguments it follows that

Pq2.I D i/ D .1 � Tacc.q2//�i
2 for i � L. (2.9)

Hence

Pq2.I � i/ < Pq.I � i/ (2.10)
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for i � L. Thus

Pq2.R/ < Pq.R/:

By combining this with (2.2) it follows that

Pq2.I � i/ D Pq2.R/�.q2/i�L � Pq2.R/�.q2/i�L � Pq2.I � i/

Hence (2.10) holds for all i. Taking the sum over i we thus obtain that

Eq2 ŒI� < EqŒI�:

Since Tacc are the same under q and q2, it follows that Jq2 < Jq. Hence q is
not optimal, which contradicts the assumption in the beginning of the proof. This
establishes the structure of optimal policies. �

2.4.2 Optimizing the Signal

Here we briefly discuss the case of choosing L so as to minimize Jq not only with
respect to q but also with respect to the value L of the threshold.

To that end we first consider the problem of minimizing J over all stationary
policies in case that full state information is available. This is a Markov decision
process and an optimal policy is known to exists within the pure stationary policies.
Moreover, a direct extension of the proof in Naor (1969) can be used to show that
the structure of the optimal policy is of a threshold type: accept all arrivals as long
as the state is below a threshold and reject all controlled arrivals otherwise. Note
however that this policy makes use only of the information available also in our
cases, i.e. of whether the state exceeds L or not.

We conclude that the problem of optimizing Jq over both L and q has an optimal
pure threshold policy i.e. with qR D 0 and qGD1, or in other words q D .1; 0/.

The optimal L for our problem can therefore be computed by minimizing Jq

over pure threshold policies. Using Fig. 2.3, we compute this optimal L for 
 D 1,
� D 0:01, � D 0:98 and 	 D 1; 5; 10; 15; 20 and obtain L D 5 for 	 D 20.

2.5 The Game Problem

Note that the cost J.q; P/ corresponding to a strategy q of a player, when all others
play P satisfies the following in order to be a best response to P: for each s, if q.s/
is not pure (is not 0 or 1) then at s, any other probability q0 is also a best response.
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Fig. 2.3 The optimal performance for several values of L and 	

The cost for a user for entering when the signal is s given that the strategy of
other users is q D .qG ; qR/ is given by

Vq.s/ D EqŒWjs� � 	 D EqŒIjs�=
 � 	 (2.11)

It is zero if it does not enter. Here, EqŒIjs� are given by

Eq.IjR/ D .L � 1/ C 1

.1 � �/
(2.12)

where q D .1; qR/ and where � D .� C �qR/=
, and

Eq.IjG/ D 1

1 � �L

�
.�L � �/

� � 1
� .L � 1/�L

�

(2.13)

where q D .qG ; 0/ and where � D .� C �qG/=
. (The derivations of the above are
as in (2.4) and (2.6), respectively.)
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2.5.1 Structure of Equilibrium

The following gives the structure of equilibrium policies.

Theorem 2. (1) The equilibrium policy is to enter for any signal if and only if
V.1;1/.R/ � 0.

(2) The equilibrium is of the form q D .1; qR/ where qR 2 .0; 1/ if and only if
V.1;1/.R/ > 0 > V.1;0/.R/. In this case, the equilibrium is given by the q D
.1; qR/ where qR is the solution of V.1;qR /.R/ D 0 where Vq.R/ is given in (2.11).

(3) The equilibrium is of the form q D .qG ; 0/ where qG 2 .0; 1/ if and only if
V.1;0/.G/ < 0. In this case, the equilibrium is given by the q D .qG ; 0/ where qG

is the solution of V.qG ;0/.G/ D 0 and where Vq.G/ is given in (2.11).
(4) The equilibrium policy is not to enter for any signal if and only if V.0;0/.G/ � 0.
(5) The equilibrium is (1,0) if and only if V.1;0/.R/ � 0 and V.1;0/.G/ � 0/.

Note that if the condition V.1;0/.G/ � 0 in statement 3 holds then the condition
of statement 2 does not hold since V.1;0/.G/ � V.1;0/.R/.

Proof. We note that Eq.IjR/ > Eq.IjG/ and hence

Vq.R/ > Vq.G/: (2.14)

Assume V.1;1/.R/ � 0 then (1,1) is an equilibrium since no deviation of an arrival
from (1,1) (i.e. always enter) can make its cost lower (since when a customer does
not enter its cost is zero).

Let q be an equilibrium policy. Assume that qR > 0. Then Vq.R/ � 0.
Equation (2.14) implies that Vq.G/ < 0. Thus the following holds: (1) if (1,1) is an
equilibrium then V.1;1/.s/ � 0 s D R; G. (2) At equilibrium, qG D 1 and if qR < 1

then by monotonicity in q2 we have V.1;1/.R/ > 0 and V.1;q/.R/ D V.1;q/.G/ D 0.
Conversely, if V.1;1/.R/ > 0 > V.1;0/.R/ then by continuity we have some q 2 .0; 1/

for which V.1;q/.R/ D 0 and hence .1; q/ is an equilibrium: an arrival that receives a
signal R is indifferent between joining or not the queue, whereas an arrival receiving
a signal G has strict preference in joining the queue. This establishes the two first
statements of the theorem.

Let again q be an equilibrium policy. Assume that qG < 1. Then Vq.G/ � 0

so (2.14) implies that Vq.R/ > 0. Thus at equilibrium, qR D 0. Thus the following
holds: (1) if (0,0) is an equilibrium then V.0;0/.s/ � 0 s D R; G. (2) At equilibrium,
qR D 0 and if qG > 0 then by monotonicity in q1 we have V.1;0/.R/ > 0 and
V.q;0/.R/ D V.q;0/.G/ D 0. Conversely, if V.1;0/.R/ > 0 > V.0;0/.R/ then by
continuity we have some q 2 .0; 1/ for which V.q;0/.R/ D 0 and hence .q; 0/ is
an equilibrium: an arrival that receives a signal G is indifferent between joining or
not the queue, where as an arrival receiving a signal R prefers strictly not to join the
queue. This establishes statements 3–4 of the Theorem.

If the conditions in (5) hold then no user can benefit by entering the queue when
the signal is red and no one can benefit by not entering when it is green. Hence (1,0)
is an equilibrium. If the first condition of (5) is violated then deviating from (1,0)
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at a red signal is strictly better than not entering. If the second condition is violated
then from (1,0) at a green signal and not entering the queue strictly improves the
utility of a user. This proves statement 5. �

2.5.2 Numerical Examples

We consider here as an example the parameters 	 D 20; 
 D 1; � D 0:98 D �

and � D 0:01. For all L condition (1) of Theorem 2 does not hold, so (1,1) is
not an equilibrium. Condition (2) of the Theorem holds for L � 20. In that case, the
equilibrium is given by .1; qR/ where qR is given in Fig. 2.4. The value at equilibrium
is given in Fig. 2.5 for the case of the signal G and is otherwise zero for all L � 20.
For the case of L > 20 we have the opposite, i.e. VR D 0. VG is given by EŒIjG� � 	

where EŒIjG� is expressed in (2.6).

2
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Fig. 2.4 Equilibrium action qR as a function of L
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Fig. 2.5 Equilibrium value VG for signal G as a function of L. We used case (2) in Theorem 2 and
the results are therefore valid only for L � 20
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Fig. 2.7 The social value J at equilibrium as a function of L

Figure 2.6 depicts Vq.s/ for s D G; R. We see that for L between 20 and 44, the
conditions of statement 5 of Theorem 2 hold and thus the equilibrium is q D .1; 0/

for this whole range of L.
Let L� denote one plus the largest value L for which V1;0 < 0. L� thus separates

case (2) and (5) in Theorem 2. Then L� equals the smallest integer greater than or
equal to 	
. In our case it is given by 20 as is seen in Fig. 2.5. For every L > L� we
know that, in fact, qR D 0.

2.5.3 Optimizing the Signal

We are interested here in finding the L for which the induced equilibrium gives the
best system performance. We plot the system performance J at equilibrium as a
function of L in Fig. 2.7.
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The optimal L is seen to equal 20 and the corresponding performance measures at
equilibrium are J D �0:02 and Tacc D 0:947. We conclude that the policy for which
the social cost is minimized has the same performance as the full state information
equilibrium policy.

If we take the L D 5 which we had computed for optimizing the system
performance, and use it in the game setting, we obtain Tacc D 0:829 and J� D
�0:0088 which indeed gives a much worse performance than the performance under
the L D 20.

2.6 Concluding Remarks

We revisited in this paper the model introduced by P. Naor who studied the social
and the individual optimal acceptance policy of arrivals at a queue. We studied a
partially observable version in which arrivals are only informed on whether the
queue length exceeds or not some given threshold value. We presented the structure
of the optimal and the equilibrium policies and computed the value of L that leads
to the best system performance at equilibrium.

Appendix: Uniform f -Geometric Ergodicity
and the Continuity of the Markov Chain

The continuity of the steady state probabilities and thus of the expected queue length
hold for the case of finite k since the chain is ergodic with finitely many states. We
thus focus below on the case of infinite k. We show continuity of the expected queue
length in q for qR restricted to some closed interval for which the corresponding
value of �

R
is smaller than 1. (Due to Lemma 1 there exists indeed an interval such

that any policy for which qR is not in the interval cannot be optimal.)
We show that the Markov chain is f -Geometric Ergodic and then use Lemma 5.1

from Spieksma (1990).
Consider the Markov chain embedded at each transition in the queue size. Thus

for I � max.L; 1/, with probability ˇ the event is a departure and otherwise it is an
arrival, where

ˇ WD 



 C � C qR�
:

Note ˛ > 0 implies that ˇ > 1=2 (˛ is defined in the proof of Theorem 1).



2 Dynamic Admission Game into an M/M/1 Queue 41

Define f .i/ D exp.	 i/, for any I � max.L; 1/,

EŒf .ItC1/ � f .It/jIt D i� D ˇ expŒ	.i � 1/� C .1 � ˇ/ expŒ	.i C 1/� � exp.	 i/

D f .i/� where � D ˇz�1 C .1 � ˇ/z � 1

and where z WD exp.�	/. Note that � D 0 at

z1;2 D 1 ˙p
1 � 4ˇ.1 � ˇ/

2.1 � ˇ/
D f1;

ˇ

1 � ˇ
g

Thus � < 0 for all 	 in the interval
�
0; log

�
ˇ

1�ˇ

��
(which is nonempty since

we showed that 1 > ˇ > 1=2). We conclude that for any 	 in that interval, f is a
Lyapunov function and the Markov chain is 	 -geometrically ergodic uniformly in q.
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Chapter 3
Methodological Issues in Analyzing Market
Dynamics

Ariel Pakes

Abstract This paper investigates progress in the development of models capable of
empirically analyzing the evolution of industries. It starts with a parallel between the
development of empirical frameworks for static and dynamic analysis of industries:
both adapted their frameworks from models taken from economic theory. The
dynamic framework has had its successes: it led to developments that have enabled
us to control for dynamic phenomena in static empirical models and to useful
computational theory. However when important characteristics of industries were
integrated into that framework it generated complexities which both hindered
empirical work on dynamics per se, and made it unrealistic as a model of agent
behavior. This paper suggests a simpler alternative paradigm, one which need
not maintain all the traditional theoretical restrictions, but does maintain the core
theoretical idea of optimizing subject to an information set. It then discusses
estimation, computation, and an example within that paradigm.
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3.1 Introduction

It will be helpful if I start out with background on some recent methodological
developments in empirical Industrial Organization, concentrating on those I have
been more closely associated with. I start with an overview of what we have been
trying to do and then move on to how far we have gotten. This will bring us naturally
to the analysis of market dynamics, the main topic of the paper.

Broadly speaking the goal has been to develop and apply tools that enable us to
better analyze market outcomes. The common thread in the recent developments is a
focus on incorporating the institutional background into our empirical models that is
needed to make sense of the data used in analyzing the issues of interest. These are
typically the causes of historical events, or the likely responses to environmental
and policy changes. In large part this was a response to prior developments in
Industrial Organization theory which used simplified structures to illustrate how
different phenomena could occur. The empirical literature was trying to use data
and institutional knowledge to narrow the set of possible responses to environmental
or policy changes (or the interpretations of past responses to such changes). The
field was moving from a description of responses that could occur, to those that
were “likely” to occur given what the data could tell us about appropriate functional
forms, behavioral assumptions, and environmental conditions.

In pretty much every setting this required incorporating

• heterogeneity of various forms into our empirical models,

and, when analyzing market responses

• using equilibrium conditions to solve for variables that firms could change in
response to the environmental change of interest.

The difficulties encountered in incorporating sufficient heterogeneity and/or using
equilibrium conditions differed between what was generally labeled as “static” and
“dynamic” models. For clarity I will use the textbook distinction between these two:
(1) static models solve for profits conditional on state variables, and (2) dynamics
analyzes the evolution of those state variables (and through that the evolution of
market structure). By state variables here I mean: the characteristics of the products
marketed, the determinants of costs, the distribution of consumer characteristics, the
ownership structure, and any regulatory or other rules the agents must abide by. I
begin with a brief review of the approach we have taken with static models, as that
will make it easier to understand how the dynamic literature evolved.
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Static Models
The empirical methodology for the static analysis typically relied on earlier work by
our game theory colleagues for the analytic frameworks we used. The assumptions
we took from our theory colleagues included the following:

• Each agent’s actions affect all agents’ payoffs, and
• At the “equilibrium” or “rest point”

1. agents have “consistent” perceptions,1 and
2. each agent does the best they can conditional on their perceptions of nature’s

and their competitors’ behavior.

Our contribution was the development of an ability to incorporate heterogeneity
into the analysis and then adapt the framework to the richness of different real
world institutions. This was greatly facilitated by progress in our computational
abilities, and the related increased availability of data and econometric methodology.
Of particular importance were econometric developments which enabled the use of
semi-parametric (see Powell 1994) and simulation (see McFadden 1989; Pakes and
Pollard 1989) techniques. The increased data, computing power and econometric
techniques enabled the framework to be applied to a variety of industries using
much weaker assumptions than had been used in the theory literature.

Indeed I would make the claim that the tools developed for the analysis of market
allocations conditional on the state “variables” of the problem have passed a “market
test” for success in an abundance of situations. I come to the conclusion for three
reasons.

• First these tools have been incorporated into applied work in virtually all of
economics that deals with market allocation when productivity and/or demand
is part of the analysis.

• The tools are now used by public agencies, consultancies and to some extent by
firms.

• The tools do surprisingly well, both in fit and in providing a deeper understanding
of empirical phenomena.

For examples of the last point I note that empirical analysis of equilibrium pricing
equations in retail markets that followed Berry et al. (1995) both (1) typically fit
exceptionally well for a behavioral equation and (2) generated markups which were
in accord with other sources of information on markups. Similarly the productivity
analysis that followed Olley and Pakes (1996) was able to separate out and analyze
changes in aggregate productivity attributable to (1) increases in productivity at the
firm level and (2) increases resulting from reallocating output among differentially
productive firms.

1Though the form in which the consistency condition was required to hold differed across
applications.
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I do not want to leave the impression that there is nothing left to be done in
the analysis of equilibrium conditional on state variables. There have been several
recent advances which have enhanced our ability to use static analysis to analyze
important problems. This includes (1) the explicit incorporation of adverse selection
and moral hazard into the analysis of insurance and capital markets (see e.g. Einav
et al. 2012), (2) the analysis of upstream contracts in vertical markets characterized
by bargaining (see Crawford and Yurukoglu 2013) and (3) the explicit incorporation
of fixed (and other non-convex) costs into the analysis of when a good will be
marketed (see Pakes et al. 2015).

Dynamic Models
Empirical work on dynamic models proceeded in a similar way to the way we
proceeded in static analysis: we took the analytic framework from our theory
colleagues and tried to incorporate the institutions that seemed necessary to analyze
actual markets. The initial frameworks by our theory colleagues made assumptions
which ensured that the

• state variables evolve as a Markov process,
• and the equilibrium was some form of Markov Perfection (no agent has an

incentive to deviate at any value of the state variables).

In these models firms chose “dynamic controls”: investments that determine the
likely evolution of their state variables. Implicit in the second condition above is that
players have perceptions of the controls’ likely impact on the evolution of the state
variables (their own and those of their competitors) and through that on their current
and future profits, and that these perceptions are consistent with actual behavior (by
nature, as well as by their competitors). The standard references here are Maskin
and Tirole (1988a,b) for the equilibrium notion and Ericson and Pakes (1995) for the
framework brought to applied work. Though, as we will see, there were a number
of ways that this framework was successful, it has not had nearly the impact on
empirical work that the static framework has, and I want to explore why.2

3.2 The Assumptions of the Dynamic Framework

We start by examining the two assumptions above in the context of symmetric
information Markov Perfect models, the first dynamic models to be brought to data.

The Markov Assumption
Except in situations involving active experimentation and learning, where policies
are transient, applied work is likely to stick with the assumption that states evolve as
a (controlled) time homogeneous Markov process of finite order. There are a number

2There are, of course, some structural dynamic papers that are justifiably well known, see for
example Benkard (2004), Collard-Wexler (2013), and Kalouptsidi (2014).
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of reasons for this. First the Markov assumption is convenient and fits the data well
in the sense that conditioning on a few past states (maybe more than one period in
the past) is often all one needs to predict the controls. Second we can bound the gains
from unilateral deviations from the Markov assumption (see Ifrach and Weintraub
2014), and have conditions which ensure those deviations can be made arbitrarily
small by letting the length of the kept history grow (see White and Scherer 1994).

Finally, but perhaps most importantly, realism suggests information access and
retention conditions as well as computational constraints limit the variables agents
actually use in determining their strategies. I come back to this below, as precisely
how we limit the memory has implications for the difference between the conditions
empirical work can be expected to impose and those most theory models abide by.

Perfection
The type of rationality built into Markov Perfection is more questionable. It has
clearly been put to good use by our theory colleagues, who have used it to explore
possible dynamic outcomes in a structured way. It has also been put to good use
as a guide to choosing covariates for empirical work which needed to condition on
the impacts of dynamic phenomena [e.g. conditioning on the selection induced by
exit in the analysis of productivity in Olley and Pakes (1996)]. However it has been
less successful as an explicit empirical model of agents’ choices that then combine
to form the dynamic response of markets to changes in their environment. This
because for many industries it became unwieldly when confronted with the task
of incorporating the institutional background needed for an analysis of dynamic
outcomes that many of us (including the relevant decision makers) would be willing
to trust. The “unwieldliness” resulted from the dimension of the state space that
seemed to be needed (this included at least Maskin and Tirole’s, 1988, “payoff
relevant” states, or the determinants of the demand and cost functions of each
competitor), and the complexity of computing equilibrium policies. The difficulties
with the Markov Perfect assumption became evident when we tried to use the
Markov Perfect notions to structure

• the estimation of parameters, or to
• compute the fixed points that defined the equilibria or rest points of the system.

The initial computation of equilibrium policies in Pakes and McGuire (1994)
discretized the state space and used a “synchronous” iterative procedure. The
information in memory allowed the analyst to calculate policies and value functions
for each possible state. An iteration circled through each state in turn and updated,
first, their policies to maximize the expected discounted value of future net cash
flow given the competitors’ policies and the current firm’s value function from
the last iteration (i.e. it used “greedy” policies given the information in memory),
and then the values the new policies implied. The test for equilibrium consisted of
computing a metric in the difference between the values at successive iterations. If
the metric was small enough we were close enough to a fixed point, and the fixed
point satisfied all of the equilibrium conditions. The computational burden of this
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exercise varied directly with the cardinality of the discretized state space which grew
(either exponentially or geometrically, depending on the problem) in the number of
state variables.

At least if one were to use standard estimation techniques, estimation was
even more computationally demanding, as it required a “nested fixed point”
algorithm. For example a likelihood based estimation technique would require
that the researcher compute equilibrium policies for each value of the parameter
vector that the search algorithm tried in the process of finding the maximum to the
likelihood. The actual number of equilibria that would need to be calculated before
finding the maximum would depend on the problem but could be expected to be in
the thousands.

The profession’s initial response to the difficulties we encountered in using the
Markov Perfect assumptions to structure empirical work was to keep the equilibrium
notion and develop techniques to make it easier to circumvent the estimation and
computational problems that the equilibrium notion generated. There were a number
of useful contribution in this regard. Perhaps the most important of them were:

• The development of estimation techniques that circumvent the problem of
repeatedly computing equilibria when estimating dynamic models (that do not
require a nested fixed point algorithm). These used non-parametric estimates of
the policy functions (Bajari et al. 2007), or the transition probabilities (Pakes
et al. 2007), instead of the fixed point calculation, to obtain the continuation
values generated by any particular value of the parameter vector.

• The use of approximations and functional forms for primitives which enabled
us to compute equilibria quicker and/or with less memory requirements. There
were a number of procedures used; Judd’s (1998) book explained how to use
deterministic approximation techniques, Pakes and McGuire (2001) showed
how to use stochastic algorithms to alleviate the computational burden, and
Doraszelski and Judd (2011) showed how the use of continuous time could
simplify computation of continuation values.

As will be discussed in several places below many of the ideas underlying these
developments are helpful in different contexts. Of particular interest to this paper,
the new computational approaches led to an expansion of computational dynamic
theory which illuminated several important applied problems. Examples include
the relationship of collusion to consumer welfare (Fershtman and Pakes 2000), the
multiplicity of possible equilibria in models with learning by doing (Besanko et al.
2010), and dynamic market responses to merger policy (Mermelstein et al. 2014).
On the other hand these examples just sharpened the need for empirical work as the
results they generated raised new, and potentially important, possible outcomes from
the use of different policies, and we needed to determine when these outcomes were
relevant. That empirical work remained hampered by the complexity of the analysis
that seemed to be required were we to adequately approximate the institutional
environment, at least if we continued to use the standard Markov Perfect notions.
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3.2.1 The Behavioral Implications of Markov Perfection

I want to emphasize that the fact that the Markov Perfect framework becomes
unwieldly when confronted by the complexity of real world institutions both limits
our ability to do empirical analysis of market dynamics and raises the question of
whether some other notion of equilibrium will better approximate agents’ behavior.
One relevant question then is: if we abandon Markov Perfection, can we both

• better approximate agents’ behavior and,
• enlarge the set of dynamic questions we are able to analyze?

It is helpful to start by examining why the complexity issue arises. When we try to
incorporate what seems to be the essential institutional background into our analysis
we find that agents are required to both (1) access a large amount of information (all
state variables), and (2) either compute or learn an unrealistic number of strategies
(one for each information set). To see just how demanding this is consider markets
where choices of consumers, as well as producers, have a dynamic component. This
includes pretty much all markets for durable, experience and network goods—that
is, it includes much of the economy.

In a symmetric information Markov Perfect equilibrium of, say, a durable
good market, both consumers and producers would hold in memory at the very
least (1) the Cartesian product of the current distribution of holdings of the good
across households crossed with household characteristics, and (2) each firm’s cost
functions, both for the production of existing products and for the development of
new products. Consumers would hold this information in memory, form a perception
of likely product characteristics and prices of future offerings, and compute the
solution to a sequential single agent dynamic programming problem to determine
their choices. Firms would use the same state variables, take consumers decisions
as given, and compute their equilibrium pricing and product development strategies.
Since these strategies would not generally be consistent with the consumer’s per-
ceptions of those strategies that determined the consumers’ decisions, the strategies
would then have to be communicated back to consumers who would then have to
recompute their value functions and choices based on the updated firm strategies.
This process would need to be repeated until we found a “doubly nested” fixed point
to the behavior of the agents; that is, until we found strategies where consumers
do the best they can given correct perceptions of what producers would do and
producers do the best they can given correct perceptions on what each consumer
would do. It is hard to believe that this is as good an approximation to actual
behavior as the social sciences can come up with.

A Theory “Fix”
One alternative to assuming that agents know all the information that would be
required in a symmetric information Markov Perfect equilibrium is to assume agents
only have access to a subset of the state variables. Since agents presumably know
their own characteristics and these tend to be persistent, a realistic model would
then need to allow for asymmetric information. In that case use of the “perfectness”
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notion would lead us to a “Bayesian” Markov Perfect solution. Though this will
likely reduce information access and retention conditions, it causes a substantial
increase in the burden of computing optimal strategies (by either the agents or the
analyst). The additional burden results from the need to compute posteriors, as well
as optimal policies, and the requirement that they be consistent with one another and
hence with equilibrium strategies. The resulting computational burden would make
it all but impossible to actually compute optimal policies (likely for many years to
come). Of course there is the possibility that agents might learn these policies, or
at least policies which maintain some of the logical features of Bayesian Perfect
policies, from combining data on past behavior with market outcomes.

Learning Equilibrium Policies
Given its importance in justifying the use of equilibrium policies, there is surpris-
ingly little empirical work on certain aspects of the learning process. There are at
least three objects the firms need to accumulate information on: the primitives;
the likely behavior of their competitors; and market outcomes given primitives,
competitor behavior, and their own policies. There has been empirical work on
learning about primitives,3 but very little empirical (in contrast to lab experimental
or theoretical) evidence on how firms formulate their perceptions about either their
competitors’ behavior, or about the impact of their own strategies given primitives
and the actions of competitors.

An ongoing study by Doraszelski et al. (2014) delves into these questions. We
study the British Electric Utility market for frequency response. Frequency response
gives the Independent System Operator (a firm by the name of “National Grid”)
the ability to keep the frequency of the electricity network within regulated safety
bounds. Until November 2005 frequency response was obtained by fiat through a
regulation that required all units to allow National Grid to take control of a certain
portion of their generating capacity. Starting in November 2005 a monthly auction
market for frequency response replaced the regulatory requirement. We have data
on bids, acceptances, and auxiliary information on this market from November 2005
until 2012. Note that when this market started the participants had no information
available on either competitors’ past bids, or about the response of price and
quantities to the firms’ own bids conditional on the competitors’ bids. However
they had dealt with the exogenous demand and supply characteristics of this market
(monthly variation in demand, prices of fuel, etc.) for some time.

The results from that study which we are reasonably confident about and have
relevance for this paper are that (1) the bids do eventually converge to what looks
like an equilibrium, (2) after an initial stage where the learning process was too com-
plex for our simple models to approximate adequately, bids for this good converge
(and since the good is nearly homogeneous, there is a consequent dramatic fall in
the inter-firm variance in bids), and (3) the many smaller changes in the environment
thereafter do not seem to lead to further experimentation. Unfortunately I have

3See, for e.g. Crawford and Shum (2005), or for a recent contribution and a review of earlier work
see Covert (2014).
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little to say about modeling the periods of active experimentation that seem to have
occurred in the period just after this market was formed. However I will come back
below to the issue of learning models that do not involve experimentation.

I now turn to a notion of equilibrium that is less demanding than Markov
Perfect for both the agents, and the analyst, to use. As we shall see many of the
computational and estimation ideas that were developed for Markov Perfect models
can be used with the new equilibrium notion, but new issues do arise. In particular,
as is explained below, the notion of equilibrium that we propose admits a greater
multiplicity than standard Markov Perfect models allow, so we will consider realistic
ways of restricting the equilibria analyzed. The last section of the paper uses a
computed example to explore associated computational issues.

3.3 Less Demanding Notions of Equilibria

I begin by considering conditions that would be natural candidates to characterize
“rest points” of a dynamic system. I then consider a notion of equilibrium that
satisfies those, and only those, conditions. The next subsection introduces an
algorithm designed to compute policies that satisfy these equilibrium conditions.
The algorithm can be interpreted as a learning process. So the computational
algorithm could be used to model the response to a change in the industry’s
institutions, but only a change for which it is reasonable to model responses with
a simple reinforcement learning process. In particular, I do not consider changes
that lead to active experimentation.

Focusing on the equilibrium, or the rest point, makes the job of this subsection
much easier, because strategies at a rest point likely satisfy a Nash condition of
some sort; else someone has an incentive to deviate. However it still leaves open
the question of the form and purview of the Nash condition. The conditions that I
believe are natural and should be integrated into our modeling approach are that

• agents perceive that they are doing the best they can conditional on the
information that they condition their actions on, and that

• if the information set that they condition on has been visited repeatedly, these
perceptions are consistent with what they have observed in the past.

Notice that I am not assuming that agents form their perceptions in any “rational” (or
other) way; just that they are consistent with what they have observed in the past, at
least at conditioning sets that are observed repeatedly. Nor am I assuming that agents
form perceptions of likely outcomes conditional on all information that they have
access to. The caveat that the perceptions must only be consistent with past play at
conditioning sets that are observed repeatedly allows firms to experiment when a
new situation arises. It also implicitly assumes that at least some of the conditioning
information sets are visited repeatedly; an assumption consistent with the finite state
Markov assumption that was discussed above and which I will come back to below.
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I view these as minimal conditions. It might be reasonable to assume more
than this, for example that agents know and/or explore properties of outcomes of
states not visited repeatedly. Alternatively it might the case that there is data on
the industry of interest and the data indicate that behavior can be restricted further.
I come back to both these possibilities after a more formal consideration of the
implications of the two assumptions just listed.

Formalizing the Implications of Our Two Assumptions
Denote the information set of firm i in period t by Ji;t. The set Ji;t will contain both
public (�t) and private (!i;t) information, so Ji;t D f�t; !i;tg. The private information
is often information on production costs or investment activity (and/or its outcomes).
The public information varies considerably with the structure of the market. It can
contain publicly observed exogenous processes (e.g. information on factor price and
demand movements), past publicly observed choices made by participants (e.g. past
prices), and whatever has been revealed over time on past values of !i;t.

Firms chose their “controls” as a function of the information at their disposal, i.e.
Ji;t. Typically potential entrants will decide whether or not to enter and incumbents
will decide whether or not to remain active, and, if they remain active, how much
to invest (in capital, R&D, advertising, etc.). Denote the policy chosen by firm i in
period t by mi;t 2 M , and for simplicity assume that the number of feasible actions,
or #M , is finite [one can deal with continuous values of the control as do Ericson
and Pakes (1995); see Fershtman and Pakes (2012)].

Also for simplicity assume we are investigating a game in which firms invest
in their own privately observed state (!i;t) and the outcomes depend only on the
firms’ own investment choices (not on the choices of their competitors).4 In these
games the evolution of the firm’s own state is determined by a family of distributions
which determine the likelihood of the firm’s state in the next period conditional on
its current state and the amount it invests, or

P! � fP.�j!; m/I ! 2 ˝!; m 2 M g: (3.1)

We assume the number of possible elements in ˝! , that is its cardinality (which will
be denoted by #˝), to be finite [though one can often derive this from primitives,
see Ericson and Pakes (1995)].

4Though the outcomes could depend on the exogenous processes with just notational changes. This
assumption, which generates games which are often referred to as capital accumulation games,
is not necessary for either the definition of equilibrium, or the computational and estimation
algorithms introduced below. Moreover, though it simplifies presentation considerably, there
are many I.O. applications where it would be inappropriate. Consider, for example, a repeated
procurement auction for, say timber, where the participants own lumber yards. Their state variable
would include the fraction of their processing capacity that their current timber supply can satisfy.
The control would be the bid, and the bids of others would then be a determinant of the evolution
of their own state. For an analysis of these situations using the notion of equilibrium proposed here
see Asker et al. (in process).
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The firm’s choice variables evolve as a function of Ji;t, and conditional on
those choices, the private state evolves as a (controlled) Markov process. This
implies that provided the public information evolves as a Markov process, the
evolution of Ji;t is Markov. In our computational example (Sect. 3.4), which is about
maintenance decisions of electric utility generators, firms observe whether their
competitors bid into the auction in each period (so the bids are public information),
but the underlying cost “state” of the generator is private information and it evolves
stochastically. Here I am simply going to assume that the public information, �t,
evolves as a Markov process on ˝� and that #˝� is finite.

In many cases (including our example) the finite state Markov assumption is
not obvious. To derive it from primitives we would have to either put restrictions
on the nature of the game [see the discussion in Fershtman and Pakes (2012)], or
invoke “bounded rationality” type assumptions. I will come back to a more detailed
discussion of this assumption below. This because the finite state Markov chain
assumption is an assumption I need, and one that can be inconsistent with more
demanding notions of equilibrium. For what is coming next one can either assume
it was derived from a series of detailed assumptions, or just view it as an adequate
approximation to the process generating the data.

Equation (3.1) and our assumption on the evolution of public information imply
that Ji;t evolves as a finite state Markov process on, say, J , and that #J is finite.
Since agents choices and states are determined by their information sets, the “state”
of the industry, which we label as st, is determined by the collection of information
sets of the firms within it

st D fJ1;t; : : : ; Jnt ;tg 2 S :

If we assume that there are never more than a finite number of firms ever active
[another assumption that can be derived from primitives, see Ericson and Pakes
(1995)], the cardinality of S , or #S , is also finite. This implies that any set of
policies will ensure that st will wander into a recurrent subset of S , say R �
S , in finite time, and after that stC� 2 R with probability one forever (Freedman
1971). The industry states that are in R, and the transition probabilities among them,
will be determined by the appropriate primitives and behavioral assumptions for the
industry being studied.

For applied work, it is important to keep in mind that in this framework agents
are not assumed to either know st or to be able to calculate policies for each
of its possible realizations. Agent’s policies (the exit and investment decisions
of incumbents, and the entry and investment decisions of potentials entrants) are
functions of their Ji;t 2 J which is lower dimensional than st 2 S .

Back to Our Behavioral Assumptions
Our first assumption is that agents choose the policy (the m 2 M ) that maximizes
their own perception of the expected discounted value of future net cash flow. So we
need notation for the agent’s perceptions of the expected discounted value of future
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net cash flow that would result from the actions it could chose. The perception of
the discounted value from the choice of policy m at state Ji will be denoted

W.mjJi/; 8m 2 M ; 8Ji 2 J :

Our second assumption is that at least for a Ji that is visited repeatedly, that is
for a Ji which is a component of an s 2 R, the agents’ perceptions of these values
are consistent with what they observe. So we have to consider what agents observe.
When they are at Ji in period t they know the associated public information (our
�t) and observe the subsequent public information, or �tC1. So provided they visit
this state repeatedly they can compute the distribution of �tC1 given �t. Assuming it
is a capital accumulation game and that they know the actual physical relationship
between investment and the probability distribution of outcomes (our P!), they can
also construct the distribution of !tC1 conditional on !t and m. Together this gives
them the distribution of their next period’s state, say J0

i , conditional on Ji and m.
Letting a superscript e denote an empirical distributions (adjusted for the impacts of
different m), the conditional distributions are computed in the traditional way, that
is by

(

pe.J
0

i jJi; m/ � pe.J
0

i ; Ji; m/

pe.Ji; m/

)

J
0

i ;Ji

:

A firm at Ji which chooses policy m will also observe the profits it gets as a
result of its choice. For simplicity we will assume that the profits are additively
separable in m, as would occur for example if profits were a function of all observed
firms’ prices and m was an additive investment cost. Then once the firm observes the
profits it obtains after choosing m it can calculate the profits it would have earned
from choosing any m 2 M . The empirical distribution of the profits it earns from
playing m then allows the firm to form an average profit from playing any m at Ji.
We denote those average profits by

e.Jijm/; 8m 2 M ; 8Ji 2 J :

Note that the profits that are realized at Ji when playing m depend on the policies
of (in our example the prices chosen by) its competitors. These in turn depend on its
competitors’ states. In reality there will be a distribution of competitors’ states, say
J�i, when the agent is at Ji, say

(

pe.J�ijJi/ � pe.J�i; Ji/

pe.Ji/

)

J�i;Ji

;

so in reality the actual expected profits of a firm who plays m at Ji is

e.Jijm/ D
X

J�i

.Ji; J�i/p
e.J�ijJi/ � m:

Given this notation, our two equilibrium conditions can be formalized as
follows.
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• If m�.Ji/ is the policy chosen at Ji, our first equilibrium condition, i.e. that
each agent chooses an action which maximizes its perception of its expected
discounted value, is written as

W.m�.Ji/jJi/ � W.mjJi/; 8m 2 M ; 8Ji 2 J : (3.2)

Note that this is an equation which describes optimal choices of the agent. Note
that provided the agent can learn the fW.�j�/g (see below) the agent can make
that choice without any information on the choices made by its competitors; the
choice becomes analogous to that of an agent playing against nature.

• The second equilibrium condition is that for states that are visited repeatedly, i.e.
that are in R, these perceptions are consistent with observed outcomes. Since
W.mjJi/ is the perception of the expected discounted value of future net cash
flows, for all m and for each Ji that is a component of an s 2 R we require
W.mjJi/ to equal the average profit plus the discounted average continuation
value where the distribution of future states needed for the continuation value
is the empirical distribution of those states; that is, we require

W.mjJi/ D e.mjJi/ C ˇ
X

J
0

i

W.m�.J
0

i /jJ
0

i /p
e.J

0

i jJi/: (3.3)

Restricted Experience Based Equilibrium (or REBE)
The conditions in Eqs. (3.2) and (3.3) above are the conditions of a REBE as
defined in Fershtman and Pakes (2012).5 There also is related earlier work on “self-
confirming” equilibria (see Fudenberg and Levine 1983) which is similar in spirit
but differs in the conditions it imposes.

A Bayesian Perfect equilibrium satisfies the conditions of a REBE, but so do
weaker notions of equilibrium. In particular the REBE does not restrict evaluations
of states outside of the recurrent class to be consistent with the outcomes that play
at those points would generate. As a result the REBE notion of equilibrium admits
greater multiplicity than does Bayesian Perfect notions of equilibrium. We return
to the multiplicity issue after explaining how to compute a REBE, as once one has
the computational procedure clearly in mind, the multiplicity issue and ways of
mitigating it can be explained in a transparent way.

The Equilibrium Conditions and Applied Work
We already noted that agents are not assumed to compute policies on, or even
know, all of st; they only need policies conditional on Ji. Now note that there is
nothing in our equilibrium conditions that forbids Ji from containing less variables
than the decision maker has at its disposal. For example, if agents do not have the
capacity to either store too much history or to form differing perceptions of expected

5In games where the agent can only use past data to calculate fe.Jijm/g for m D m�.Ji/

and/or pe.J0
i jJi; m/ for m D m�.J/i, Fershtman and Pakes (2012) consider weakening the second

condition to only require Eq. (3.3) to hold at m D m�.Ji/. They call the equilibrium that results
from the weaker notion an EBE (without the adjective ‘restricted’).
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discounted values for information sets that detail too much history, one might think
it is reasonable to restrict policies to be functions of a subset of the information
available to the decision maker. This subset may be defined by a segment of the
history, or a coarser partition of information from a given history. We come back to
the question of how the analyst might determine the information sets that agents’
policies condition on below.

The second point to note is related. There is nothing in these conditions that
ensures that the policies we calculate on R satisfy all the equilibrium conditions
typically assumed in the game theoretic literature. In particular it may well be
the case that even if all its competitors formulated their policies as functions of
a particular set of state variables, a particular firm could do better by formulating
policies based on a larger set. For example in a model with asymmetric information
it is often the case that, because all past history may be relevant for predicting the
competitors’ state, all past history will be helpful in determining current policies. In
the absence of finite dimensional sufficient statistics, which for games are hard to
find, this would violate the finite state Markov assumption on the evolution of public
information. We could still, however, truncate the history and compute optimal
policies for all agents conditional on the truncated history, and this would generate
a Markov process with policies that satisfy our conditions (3.2) and (3.3).

Fershtman and Pakes (2012) discuss this in more detail; they consider alternative
ways to ensure that REBE policies are the best an agent can do conditional on all
agents forming policies as functions of the same underlying state space. Section 3.4
uses one of these for comparisons.6 However I view the less restrictive nature of
our conditions as an advantage of our “equilibrium” notion, as it allows agents to
have limited memory and/or the ability to make computations, while it still imposes
an appealing sense of rationality on the decision making process. Moreover in
empirical work restrictions on the policy functions may be testable (see Sect. 3.3.2
below).

3.3.1 Computational Algorithm

The computational algorithm is a “reinforcement learning” algorithm,7 similar
to the algorithm introduced in Pakes and McGuire (2001). I begin by focusing
on computational issues and consider the algorithm’s behavioral interpretation
thereafter.

6The example focuses on particular restrictions on the formation of policies, but there are many
other ways of restricting policies which would generate Markov chains with similar properties.
Indeed the papers I am aware of that compute “approximations” to Markov Perfect equilibria can
be reinterpreted in this fashion; see for example Benkard et al. (2008) and Ifrach and Weintraub
(2014), and the literature cited in those articles.
7For an introduction to reinforcement learning, see Sutton and Barto (1998).
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From a computational point of view one of the algorithm’s attractive features is
that an increase in the number of variables that policies can be a function of—below,
we will refer to these variables as “state” variables—does not (necessarily) increase
the computational burden in an exponential, or even geometric, way.8 Traditionally
the burden of computing equilibria scales with both (1) the number of states at
which policies must be computed, and with (2) the number of states we must
integrate over in order to obtain continuation values. Depending on the details of the
problem, both grow either geometrically or exponentially with the number of state
variables, generating what is sometimes referred to as a “curse of dimensionality”.
The algorithm described below is designed to get around both these problems.

The algorithm is iterative and iterations will be indexed by a superscript k. It is
also “asynchronous”: each iteration only updates a single point in the state space.
Thus an iteration has associated with it a location (a point in the state space), and
certain objects in memory. The iterative procedure is defined by procedures for
updating the location and the memory.

The location, say Lk D .Jk
1; : : : Jk

n.k// 2 S , is defined as the collection of
information sets of agents that are active at that iteration. The objects in memory,
say Mk, include

1. a set of perceptions of the discounted value of taking action m at location J:

W k � fWk.mjJi/; 8m 2 M and 8J 2 J g;

2. a set consisting of the expected profits when taking action m at location J:

˘ k � fk.mjJi/; 8m 2 M and 8J 2 J g;

3. the number of times each J has been visited prior to the current iteration, which
we denote by hk.

So the algorithm must update .Lk;W k; ˘ k; hk/.
Exactly how we structure and update the memory will determine the size of

memory constraint and the compute time. Here I restrict myself to a structure that is
easy to explain; the most efficient structure is likely to vary with the properties
of the model and the computational facilities available. Also for clarity I work
with a model with a specific specification for public and private information. I will
assume that the private information, or !, are payoff relevant states (e.g. costs of
production), and the public information that is observed at any state is a function
b.m.J// of agents’ controls. For instance, in the electric utility example computed
below all agents see whether a generator is bid into the market, but only the owner
of the generator sees whether maintenance is done on the generators not bid into
the market. In addition the agent is assumed to know the primitive profit function

8The number of state variables in a problem is typically the number of firms that can be
simultaneously active times the number of state variables of each firm.
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.�; b.m�i//, which can be used to compute counterfactual profits for any set b.m�i/

of competitors’ controls; i.e. agents can compute .�; m; b.m�i// for m ¤ m�
i .

Updating the Location
The fWk.mjJi;k/gm in memory represent the agent’s perceptions of the expected
discounted value of the future net cash flow that would result from choosing
m 2 M . The agent chooses that value of m that maximizes these discounted values
(it chooses the “greedy” policies). That is for each agent we choose

m�
i;k D arg max

m2M
Wk.mjJi;k/:

Next we take pseudo random draws on outcomes from the family of conditional
probabilities in Eq. (3.1) conditional on m�

i;k and !i;k 2 Ji;k, that is from the family
P.�j!i;k; m�

i;k/. The outcomes from those draws determine !i;kC1, which, together
with the current bids of all agents (which is the additional public information),
determine the fJi;kC1g and hence the new location LkC1.

Updating the Memory
Updating the number of visits is done in the obvious way. I now describe the
update of perceptions .˘ k;W k/. I do so in a way that accentuates the “learning”
interpretation of the algorithm. Since we are using an asynchronous algorithm,
each iteration only updates the memory associated with the initial location of that
iteration.

We assume that the agent forms, for each hypothetical choice m 2 M , an ex
post perception of what its profits and value would have been given the observed
choices b.m�i;k/ made by other agents. These profits would have been found by
evaluating the profit function at the alternative feasible policies conditional on its
private state and its competitors’ choice of policies, resulting in .!i;k; m; b.m�i;k//.
Similarly the value would have been those profits plus the continuation values that
would have emanated from the alternative choices

VkC1.Ji;k; m/ D .!i;k; m; b.m�i;k// C max
Qm2M

ˇWk. QmjJi;kC1.m//; (3.4)

where JkC1
i .m/ is what the time-(k C 1) information would have been, had the agent

played m and had the competitors played their actual play. In the example this would
require computing their returns from a counterfactual bid given the bids of the other
agents.

The agent knows that b.m�i;k/ is only one of the possible actions its competitors
might take when it is at Ji;k, as the actual action will depend on its competi-
tors’ private information, which the agent does not have access to. So it treats
VkC1.Ji;k; m/ as a random draw from the possible realizations of W.mjJi;k/, and
updates Wk.mjJi;k/ by averaging this realization with those that have been generated
from those prior iterations at which the agents’ state was Ji;k. Formally

WkC1.mjJi;k/ D 1

hk.Ji;k/ C 1
VkC1.Ji;k; m/ C hk.Ji;k/

hk.Ji;k/ C 1
Wk.mjJi;k/;
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or equivalently

WkC1.mjJi;k/ � Wk.mjJi;k/ D 1

hk.Ji;k/ C 1
ŒVkC1.Ji;k; m/ � Wk.mjJi;k/�:

An analogous formula is used to update expected profits fk.mjJi;k/g, i.e.

kC1.mjJi;k/ D 1

hk.Ji;k/ C 1
.mjJi;k; b.m.J�i;k/// C hk.Ji;k/

hk.Ji;k/ C 1
k.mjJi;k/:

This is a simple form of stochastic integration (see Robbins and Monro 1951).
There are more efficient choices of weights for the averaging, as the earlier iterations
contain less relevant information then the later iterations, but I do not pursue that
further here.9

Properties of the Algorithm
Before moving to computational properties note that the algorithm has the inter-
pretive advantage that it can be viewed as a learning process. That is agents (not
only the analyst) could use the algorithm, or something very close to it, to learn
equilibrium policies. This could be important for empirical work as it makes the
algorithm a candidate tool for analyzing how agents might change their policies in
reaction to a perturbation in their environment.10

We now consider computational properties of the algorithm. First note that if
we had equilibrium valuations we would tend to stay there; i.e. if � designates
equilibrium, then

EŒV�.Ji; m�/jW�� D W�.m�jJi/;

so there is a sense in which the equilibrium is a rest point to the system of
stochastic difference equations. I do not know of a proof of convergence of
reinforcement learning algorithms for (non zero-sum) games. However we provide
a computationally convenient test for convergence below, and my experience is that
the randomness in the outcomes of the algorithm together with the averaging over
past outcomes that it uses typically is enough to overcome cycling problems that
seem to be the most frequent (if not the only) manifestation of non-convergence.

9Except to note that the simple weights used here do satisfy Robbins and Monro’s, 1951, conditions
for convergence: the limit of the sum of the weights is infinite, while the limit of the sum of
the squared weights is finite. Though those criteria do not ensure convergence in game theoretic
situations, all applications I am aware of chose weights that satisfy them.
10Note, however, that were our algorithm to be used as tool for analyzing how agents react to
a change in their environment one would have to clarify what information each agent has at its
disposal when it updates its perceptions and modify the algorithm accordingly. That is in the
algorithm described above we use all the information generated by the outcomes to all agents
to update the perceptions of each agent, and this may not be possible in an actual application.
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As noted algorithms for computing equilibria to dynamic games have two charac-
teristics that generate computational burdens which increase rapidly as the number
of state variables increases, and hence can generate a “curse of dimensionality”.
One is the increase of the number of points at which values and policies need to
be calculated. In the algorithm just described the only states for which policies
and values are updated repeatedly are the points in R. The number of points in
R need not increase in any particular way, indeed it need not increase at all, with
the dimension of the state space. In the problems I have analyzed #R does increase
with the dimension of the state space, but at most linearly, rather than geometrically
or exponentially (see the discussion in Sect. 3.4).

The second source of the “curse of dimensionality”, as we increase the number
of state variables, is the increase in the burden of computing the sum over possible
future values needed to compute the continuation values at every point updated at
each iteration. In this algorithm the update of continuation values is done as a sum
of two numbers regardless of the number of state variables. Of course our estimate
of continuation values involves simulation error while explicit integration does not.
The simulation error is reduced by repeated visits to the point. The advantage of the
simulation procedure is that the number of times a point must be visited to obtain a
given level of precision in the continuation values does not depend on the dimension
of the state space.

A computational burden of our algorithm that is not present in, say, the Pakes and
McGuire (1994) algorithm, is that after finding a new location, the reinforcement
learning algorithm has to search for the memory associated with that location.
In traditional synchronous algorithms one simply cycles through the possible
locations in a fixed order. The memory and search constraints typically only
become problematic for problems in which the cardinality of R is quite large, and
when they are problematic one can augment our algorithm to use functional form
approximations such as those used in the “TD Learning” stochastic approximation
literature (see Sutton and Barto 1998).

Convergence and Testing
Though the algorithm does not necessarily converge, Fershtman and Pakes (2012)
provide a test for convergence whose computational burden is both small and
independent of the dimension of the state space. To execute the test we first
obtain a consistent estimate of R. We then compute a weighted sum of squares
of the percentage difference between (1) the actual expected discounted values from
the alternative feasible policies and (2) our estimates of W at the points in R. The
weights are equal to the fraction of times the points in R would be visited, were
those policies followed over a long period of time. This sum is an L2

�
P.R/

	
norm

of the difference at the different points in R, where P.R/ denotes the invariant
measure on R.

First note that any fixed estimate QW of W generates policies which define a
finite state Markov process for fstg11. To obtain a candidate for a recurrent class

11Formally we could gather the implied transition probabilities into a Markov matrix Q.s0; sj QW /

and describe our first step as finding a candidate for an R that is generated by Q.s0; sj QW /.
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R. QW / generated by those policies, start at any s, say s0, and use the policies that
QW implies to simulate a sample path fstgT1CT2

tD1 . Let R.T1; T2; �/ be the set of states
visited at least once between t D T1 and t D T2. This discards the points that are
only visited during the first T1 iterations of the algorithm, and keeps those that are
visited between T1 and T2. Formally one can show that if T1; T2 ! 1 in a way
that ensures T2 � T1 ! 1, the set R.T1; T2; �/ will converge to a recurrent class
generated by the policies implied by QW . An operational way of checking whether a
couple .T1; T2/ of finite times is large enough is to continue simulating from T2 to
T3, where, say, T3 � T2 	 T2 � T1. Now check to see if the points visited between
T2 and T3 are contained in R.T1; T2; �/.

Note that the policies we associate with QW are optimal by construction; i.e.
m�.Ji/ is chosen to maximize f QW.mjJI/gm2M . This brings us to our last equilibrium
condition, the requirement that QW is consistent with the actual outcomes from play
for points in R; i.e. we need to check whether

QW.mjJi/ D Q.mjJi/ C ˇ
X

J
0

i

QW.m�.J
0

i /jJ
0

i /p
e.J

0

i jJi/; 8m 2 M ; Ji � s 2 R;

where Q.mjJi/ is the algorithm’s estimate of expected profits.
In principle we could check this condition by direct summation, but that would

be computationally burdensome (indeed it would bring the curse of dimensionality
back into play). So we now show how to use simulated sample paths to check it.
Start at an s0 2 R and use the policies generated by QW to forward simulate. At each
Ji visited compute perceived values; that is, compute VkC1.�/ as in Eq. (3.4). Since
we are simulating a recurrent process on its recurrent class the simulation run will
visit each Ji in R repeatedly. Keep track of the average and the sample variance of
the simulated perceived values at each point, say

 

O

� QW.m.Ji/jJi/

�
; O�2

� QW.m.Ji/jJi/
�
!

:

Let E.�/ take expectations over the simulated random draws and, for expositional
simplicity, omit the index i. Then note that we can compute

Tm;J � E

 
O
. QWm;J/ � QWm;J

QWm;J
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D E

 
O
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!2

C
0
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E
h

O
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� QWm;J

QWm;J
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A

2

D % Var. O
. QWm;J// C % Bias2. O
. QWm;J//:
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The quantity Tm;J is the percentage mean square error in our estimate of the
expected discounted value of taking action m when at state J; i.e. it is the sum of the
percentage bias and the percentage variance of the estimate.

Let

TJ � M�1
X

m2M
Tm;J;

where M D #M . Then TJ is the average percentage mean square error in the
evaluation of the actions that can be taken when at J. As the number of simulation
draws grows, the law of large numbers implies that we can obtain a consistent
estimate of the contribution of the variance in the sample paths to TJ . That is

X

J

fJ
1

M

X

m2M

 
O�2. QWm;J/

QW2
m;J

!

�
X

J

fJ
1

M

X

m2M

 
O
. QWm;J/ � EŒ O
. QWm;J/�

QWm;J

!2
a:s:! 0:

Consequently if

Bias.WR/ �
X

J

fJTJ �
X

l

fJ
1

M

X

m2M

 
O�2. QWm;J/

QW2
m;J

!

;

then

Bias.WR/
a:s:!
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J
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m2M
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O
. QWm;J/
i

� QWm;J

QWm;J
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;

which is an L2.PR/ norm in the percentage bias, where PR is the invariant
measure associated with .R; QW/.

If Bias.WR/ is zero and R is a recurrent class then all of our equilibrium
conditions are satisfied. Notice that this test statistic has an easy interpretation:
it is the percentage difference between our estimate of and the actual expected
discounted value of the net cash flow from the policies that can be undertaken from
points in the recurrent class. The test is integrated into the computational algorithm
by calling it after every fixed number of iterations, and stopping the algorithm when
the estimate of Bias.WR/ is sufficiently small.

3.3.2 Empirical Challenges and Estimation

I am going to assume that the static profit function is known, as there has been a
large literature devoted to empirically analyzing its components [see for instance
the first two sections of Ackerberg et al. (2007), and the literature cited there].
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The empirical researcher will still need to determine Ji and possibly estimate
“dynamic” parameters, that is, parameters that are not determinants of the static
profit function.

Determining Ji

In most empirical work the authors simply assume knowledge of Ji, or of the
arguments of the policy functions. However given that part of our motivation is to
reduce the complexity of the problem by limiting the content of Ji, some discussion
of how to determine Ji is in order.

The first thing to note is that what we need to find out is the determinants of
the dynamic controls (investment, entry, and exit in our example). In particular it
may well be the case that decision makers do not condition on all the information
available to them in making these decisions, possibly because making predictions
for too fine a partition of the state space is too complicated. As a result specifying a
Ji that includes all the information we know the decision maker has access to may
not be necessary or even appropriate.

This suggests two, hopefully reinforcing, methods of determining Ji. The first
is an empirical analysis of the determinants of the dynamic controls. The second,
which may not always be possible, is to ask decision makers from the industry
about which information their decisions on the dynamic controls depends (see for
e.g. Wollmann 2015). There are likely to be two sources of error or disturbances
in our predictions for the dynamic controls (1) a “structural” disturbance which
results from a determinant of the agent’s choice that we do not observe and (2)
a disturbance due to measurement error. Ideally the structural error would be
independently distributed over time. and the measurement error component should
not be correlated with variables which are thought to be correctly measured. As
a result a test of whether the disturbance we obtain from our predictions for the
controls satisfies these ideal conditions is that they be uncorrelated with—actually
independent of—past values of correctly measured variables. If there is an indication
that the disturbances have a noticeable correlation with past values of correctly
measured variables, one should allow for a serially correlated unobserved state
variable (see below for further discussion).

Estimating Dynamic Parameters
The estimates needed will be obtained from firm or establishment level data
(depending on the parameters being estimated). As a result they will often be based
on data sets of similar size as the data sets used in estimating “static” models. These
are frequently large enough to obtain reasonably precise parameter estimates (see
Sect. 3.1).

Typically many of the dynamic parameters can be estimated by careful analysis
of the relationship between observables without using any of the constructs that
need to be computed from the equilibrium to the dynamic model (such as expected
discounted values). For example if investment (our control, m) is observed and
directed at improving a measure of a stock of some form (our !), and the stock is
either observable or can be backed out of the profit function analysis, the parameters
of P.�jm; !/ can be estimated directly from the relationship between m and !’s
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in adjacent periods. However there often are some parameters that can only be
estimated through their relationship to perceived discounted values; sunk and fixed
costs often have this feature. Also, where possible, more efficient estimators of
dynamic parameters that can be estimated without using discounted values can be
obtained by using these values.

There is a review of the literature on estimating parameters using the implications
of the dynamic model in the third section of Ackerberg et al. (2007). That review
focuses on symmetric information Markov Perfect models and emphasizes the
tradeoff between statistical efficiency (in the sense of lower asymptotic variance of
an estimated parameter), and computational efficiency (or the computational burden
of the estimator), in the choice of estimators. It assumes that the state variables
of the problem are known to the analyst and provides details on estimators which
use them but avoid nested fixed point algorithms.12 These estimators are all two-
step estimators. The first step obtains non-parametric estimates of either (1) the
probabilities of various actions, (i.e. of the “dynamic” controls), as functions of the
state variables of the model—typically this includes the probability of entry and
exit and a distribution for investment policies; see Bajari et al. (2007)—or (2) direct
estimates of the Markov transition matrix for the state variables derived from those
policies (Pakes et al. 2007). The second step then uses the transitions implied by the
non-parametric estimates and the profit function to compute the discounted value of
alternative actions conditional on the parameter of interest. It then finds that value
for the parameter vector which makes the prediction for the optimal value of the
control as close as possible to the choices actually made for that control.

For example given the profit function, the evolution of the state variables, and
the probabilities of exit at each state, we can compute the expected discounted
value of an entrant in any period. If the model is correct and we observe entry,
the expected discounted value generated by entering should be higher than the sunk
cost of entry, whereas if we do not observe entry, this expected discounted value
should be lower than those costs. Since the average of the realized discounted values
should approximate the average of the expected discounted values, the average of
the discounted values in the periods when we do, and when we do not, observe
entry can be used to estimate bounds on the sunk cost of entry. At the cost of a
slight increase in computational burden, one can incorporate heterogeneity in sunk
costs and use point (instead of set) estimators in these models (see Ackerberg et al.
2007). Given Ji, estimators for Markov Perfect models with asymmetric information
can be computed analogously.

In addition I now describe a “perturbation” estimator, similar to the Euler equa-
tion estimator for single agent dynamic problems proposed by Hansen and Singleton
(1982). This estimator does not require the first step non-parametric estimator, and
can be used for estimation in models with asymmetric information; these estimators
are not available for symmetric information Markov Perfect models, see below.

12Nested fixed point estimators are estimators that require the analyst to compute a new equilibrium
every time one evaluates a different parameter vector in the estimation algorithm; see Rust (1994).
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The perturbation estimator uses the inequality condition W.m�jJi/ � W.mjJi/ for
equilibrium policies to generate (set) estimators of parameters. As in the literature
on estimating parameters from symmetric information dynamic models, we assume
that information on the equilibrium values of controls chosen on the recurrent states
are available from past play.

Recall that Ji contains both public and private information. Let J1 have the same
public information as J2, but different private information. If a firm is at J1 it knows
it could have played m�.J2/ and its competitors would respond by playing on the
equilibrium path from J2.13 If J2 is in the recurrent class we will have data on what
competitors would have done were the agent to have chosen m�.J2/. Provided that
this choice results in outcomes in R, we can simulate a sample path from J2 using
only observed data on equilibrium play in R. The Markov property ensures that
the simulated path starting from the deviation to m�.J2/ will intersect the actual
observed sample path at a random stopping time with probability one. From that
time forward the two paths would generate the same profits. So the difference in
discounted net cash flow from the sequence starting at the actual m�.J1/ and the
sequence starting from the deviation, i.e. from m�.J2/, is just the difference in
discounted returns from the period of the deviation to the time when the paths meet;
this difference we can calculate. Since the initial choice of m�.J1/ was optimal, the
conditional expectation of the difference in discounted profits between the simulated
and actual path from the period of the deviation to the random stopping time,
should, when evaluated at the true parameter vector, be positive. This yields moment
inequalities for estimation as in Pakes et al. (2015), or the alternatives noted in Pakes
(2010).

As noted it may well be important to integrate serially correlated unobservables
into these estimation routines. Integrating serially correlated unobservables into
these procedures can raise additional issues, particularly if the choice set is discrete.
There has been recent work on discrete choice models that allow for serially
correlated unobservables (see Arcidiano and Miller 2011; Pakes and Porter 2014),
but it has yet to be used in problems that involve estimating parameters that
determine market dynamics.

3.3.3 Multiplicity of Equilibrium Policies

We noted in Sect. 3.3 that REBE conditions admit more equilibria than Bayesian
Perfect conditions. To see why, partition the points in R into “interior” and
“boundary” points.14 Points in R at which there are feasible (but inoptimal)

13It is the fact that data would not tell us the response to off the equilibrium path behavior for
symmetric information Markov Perfect models that makes the perturbation technique inappropriate
for estimating parameters based on those models.
14This partitioning is introduced in Pakes and McGuire (2001).
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strategies which can lead outside of R are boundary points. Interior points are points
that can only transit to other points in R no matter which of the feasible policies are
chosen.

Our conditions only ensure that perceptions of outcomes are consistent with the
results from actual play at interior points. Perceptions of outcomes for feasible
(but non-optimal) policies at boundary points need not be tied down by actual
outcomes. As a result differing perceptions of discounted values at points outside
of the recurrent class can support different equilibria. This is a major reason for the
existence of REBE which are not Bayesian Perfect.15

One can mitigate the multiplicity problem by adding either empirical information
or by strengthening the behavioral assumptions. Without going into details we
note that in an empirical application the data will contain information on which
equilibrium has been played. For example, if Ji and m� are observable we will know
policies for states in R. This in turn implies inequalities on the equilibrium fW.mj�/g
which should rule out some equilibria. Moreover if profits are observed or estimated
they can be used, together the transition probabilities, to directly compute estimators
of fW.mj�/g by simulating sample paths. This may well eliminate other equilibria.16

These sources of information will be less helpful in two important cases: (1)
when attempting to analyze counterfactuals, as we often want to do when examining
the impacts of policy or environmental changes,17 or when (2) computing equilibria
in cases where we are willing to specify primitives but do not have historical data.
In these and other cases where we need to augment whatever empirical information
is available on the choice of equilibrium, it may be reasonable to invoke stronger
behavioral assumptions. One possibility is to invoke learning rules, like the one in
our algorithm, and simulate equilibria using one or more such rules. This is likely to
be more helpful in analyzing counterfactual perturbations to a known environment,
as then there is a natural initial condition, the current state of the industry, to start
the learning process from. A second possibility is to impose additional restrictions
on the equilibrium concept per se. I turn to this possibility now.

15There are other reasons for differences between REBE and Bayes Nash equilibria. For example,
as noted above we do not assume that agents necessarily base their decisions on all the information
they either have, or could have, access to. Also typically Bayes Nash Equilibria are defined in terms
of consistency of perceived probability distributions with actual actions, whereas we are defining
the equilibria in terms of consistency of perceived expected values with actual realized values.
There can be different probability distributions that lead to the same expectation. Assuming agents
wish to maximize expected discounted value they should be indifferent between two distributions
with the same expectations, so I do not see this difference as substantive.
16However I know of no formal work which provides details on the extent to which the information
in a particular data set limits the set of equilibria that could have generated it.
17Assuming historical data is available, there are two different cases here: one is a counterfactual
which changes the underlying state space, and one that does not. If the state space is unchanged
and one assumes that the counterfactual does not change the equilibrium selection mechanism, it
would be possible to use historical data to guide the choice of the counterfactual equilibrium.
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In many cases prior knowledge or past experimentation will endow agents with
realistic perceptions of the value of states outside, but close to, the recurrent class.
In these cases we will want to impose conditions that ensure that the equilibria
we compute are consistent with this knowledge. To accommodate this possibility,
Asker et al. (2014) propose an additional condition on equilibrium play that ensures
that agents’ perceptions of the outcomes from all feasible actions at points in the
recurrent class are consistent with the outcomes that those actions would generate.
They label the new condition “boundary consistency” and provide a computational
simple test to determine whether the boundary consistency condition is satisfied for
a given set of policies. We now formalize that condition.

Let B.JijW / be a set of actions at Ji, which is a component of s 2 R, that could
generate outcomes which are not in the recurrent class (so Ji is a boundary point),
and let B.W / D [Ji2RB.JijW / be the set of all possible actions of this kind. Then
the notion of “boundary consistency” is formulated as follows.

Boundary Consistency Let � index future periods, and consider a fixed estimate
QW of W . Then QW generates boundary consistent policies if for all .m; J/ 2 B. QW /

E

"

.mi; Ji; J�i;0/ C
1X

�D1

ı� 
�

m.Ji;� /; m.J�i;� /
�ˇ
ˇ
ˇmi D m; Ji D J; QW

#

� QW.m�jJ/;

where EŒ�jmi D m; Ji D J; QW � takes expectations over the current states of the
competitors, and the future states of all firms, conditional on Ji D J and mi D m,
using the policies generated by QW : 


The boundary consistency condition ensures that the policies chosen at the
boundary points yield higher discounted values than those of other feasible actions
if competitors follow the policies in memory at all states, including the states not
in the recurrent class but that communicate with a boundary point if some feasible
policy is taken.

The test for boundary consistency uses the fact that we have W estimates in
memory for points outside of R. It uses these W to determine policies at those
points and then to simulate sample paths from each .m; Ji/ in B. QW /. The null
hypothesis states that the values of all sample paths from feasible but non-optimal
policies are less than the values of sample paths from optimal play from the same
state. Asker et al. (2014), show how to formulate a test of this null.18 The test
should rule out equilibria that are supported by perceptions of play outside of R
that are unrealistic in the sense that they do not accord with the profits to be earned

18The test statistic is formed by taking a weighted average of the positive parts of the difference
between the estimated value of feasible play and of optimal play of the states in B.W /, normalized
by the variance of that difference. Since this is a statistic formed from moment inequalities (in
contrast to moment equalities), the distribution of this statistic does not have a pivotal form and
so needs to be simulated. However the critical values for it are relatively easy to simulate and are
compared to the actual value of the test statistic to determine whether to accept the null (for details
see Asker et al. 2014).
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in those locations. The accuracy of the estimates of the sample paths from boundary
points will depend on the components of W that are not associated with points in
R. However they are connected to R through feasible play, and hence may well
have been explored both by agents and by the computational algorithm we use to
compute equilibria.

Ergodicity
There is another type of multiplicity that may be encountered as there may
be multiple recurrent classes for a given equilibrium policy vector. A sufficient
condition for the policies to generate an ergodic process—a process with a unique
recurrent class—is that there is a single state which can be reached from all
states (Freedman 1971). Ericson and Pakes (1995) use this condition together with
assumptions on primitives to prove ergodicity for a certain class of Markov Perfect
models. However, in our notation those conditions would be a function of W on all
of S , and our estimates of the W at points not in R are imprecise (which would
make it difficult to determine if those conditions are satisfied). Moreover there are
cases of interest where multiple separate recurrent classes are likely (see Besanko
et al. 2014). Of course data on, or even qualitative knowledge of, industry structures
should help us pick out which (if there are many) recurrent class is appropriate for
the problem at hand.

3.4 Computational Results from an Example

It is easiest to explain the computational issues in the context of an example, so
most of my focus will be on the example in Fershtman and Pakes (2012) which is
concerned with the maintenance decisions of electric utility generators.

The restructuring of electricity markets has focused attention on the design of
markets for electricity generation. One issue in this literature is whether the market
design would allow generators to make super-normal profits during periods of high
demand. In particular the worry is that the twin facts that currently electricity is not
storable and has extremely inelastic demand might lead to sharp price increases in
periods of high demand.

The analysis of the sources of price increases during periods of high demand
typically conditions on whether or not generators are bid into or withheld from
the market. Generators have to go down for maintenance periodically. Since the
benefits from incurring maintenance costs today depend on the returns from bidding
the generator in the future, and the latter depend on what the firms’ competitors
bid at future dates, an equilibrium framework for analyzing maintenance decisions
requires a dynamic game with strategic interaction. The Fershtman-Pakes paper
provides a simple example of a REBE to a game that endogenizes maintenance
decisions.
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Table 3.1 Model details

Parameter Firm L Firm S

Number of generators 2 3

Range of ! 0–4 0–4

MC @ ! D .0; 1; 2; 3/a (20,60,80,100) (50,100,130,170)

Capacity at constant MC 25 15

Costs of maintenance 5000 2000
aMC is constant at this cost until capacity and then goes up
linearly. At ! D 4 the generator shuts down

Details of the Model
The model has two firms. Firm “S” has three small generators with low start up costs
and high marginal costs (they represent “gas fired” generators), and firm “L” has
two large generators with high start up costs and low marginal costs (they represent
“coal fired” generators); see Table 3.1. Each generator can bid supply functions into
an independent system operator (the ISO). The ISO sums the bid functions, and
then intersects the resultant supply curve with demand (which varies by day of the
week) to determine a price. That price is paid to all electricity bid in at any price
below it (this is a uniform price auction). The generators have constant marginal cost
until the capacity listed in Table 3.1 after which marginal costs are increasing. Each
generator also has a productivity variable, our !, which is a private information state
variable; productivity decays stochastically with use. The demand curve is inelastic.

Each period the firm choses among three actions for each of its generators. It
can

• bid the generator into the market, which we denote by m D 2,
• withhold the generator from the market and use the period to do maintenance on

the generator, our m D 1, or
• withhold the generator from the market and do not do any maintenance, which

we denote by m D 0.

If the generator is bid in we assume, for simplicity, that it always bids in the same
supply curve: so the firm’s bid function is b.mi/ W mi ! f0; bigni , where bi is the
fixed bid schedule for the generators of firm i, and firm i has ni generators. Firms do
not see whether their competitors do maintenance but they do see their competitors’
bids. So mi is not in the public information, but b.mi/ is.

The cost of producing electricity on each firm’s generators is private information;
it is a function of the productivity of the generator (our ! 2 ˝) and the quantity
of electricity the generator produces (qi;t). So the cost function, our ci.!i;t; qi;t/, is
increasing in both its arguments. The state ! increases stochastically with use, but
reverts to a starting value if the firm does maintenance. If generators are indexed by
r, formally

• mi;r;t D 0 implies !i;r;tC1 D !i;r;t,
• mi;r;t D 1 implies !i;r;tC1 D ! i;r where ! is the starting value, and
• mi;r;t D 2 implies !i;r;tC1 D !i;r;t C �i;r;t where � is a random “productivity

shock” with P.�/ > 0 for � 2 f0; 1g.
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If d is demand on that day and f is maintenance cost (our “investment”), the price
p is determined by a function p D p.b.mi/; b.m�i/; d/ and q D q.b.mi/; b.m�i/; d/

is the allocated quantity vector. Realized profits for firm i are the sum of its profits
from its generators minus the cost of maintenance, or

i.!i; mi; b.m�i/; d/ �
X

r

ptqi;r;t �
X

r

ci.!i;r;t; qi;r;t/ � fi
X

r

fmi;r;t D 1g:

In this game the bid function b.m/ is the only signal sent in each period. In particular
b.m�i;t�1/ is a signal on !�i;t�1, which cannot be observed by i, but which is a
determinant of b.m�i;t/, and consequently of i;t.

3.4.1 Conceptual Issues and Their Computational Analogues

We assumed “a priori” that the state space was finite. As noted above without further
restrictions models with asymmetric information will generally have to have policies
that depend on all past history in order to ensure the equilibrium is perfect; to ensure
that if my competitors’ condition on a particular public history of play, I can do
no better than to condition on that same public history.19 We noted a number of
different rationales for restricting the history that agents can condition their play on.
Perhaps most telling among them is that agents have limited memory and/or ability
to make computations, and as a result do not have the capacity to either store too
long a history, and/or to form differing perceptions of expected discounted values for
information sets that detail too much history. Additionally it might be the case that
the finite state space is rich enough to adequately approximate an infinite state space,
so there is very little to gain by incorporating more detailed information sets. The
example investigates this latter possibility in the context of the model just described
[see also the discussion in Ifrach and Weintraub (2014)].

To determine whether or not we have an adequate approximation to a perfect
equilibrium, we first need to compute a perfect equilibrium to which we can
compare to. Fershtman and Pakes (2012) prove that one way to ensure that there is a
perfect equilibrium with a finite state space is to assume that there is full revelation
of information every T periods. The policies generated by this equilibrium condition
only on: the information revealed in the revelation period, the public information
that has accumulated since revelation, and the current private information.

19To see this in the current model note that whether firm 1 bids in during a particular period depends
on whether it thinks firm 2 will bid in, since if firm 2 does not bid in the price firm 1 receives for
its electricity will be higher. Firm 1’s perception of whether firm 2 bids in will depend on the last
time firm 2 did not bid in, as this is the only time it could have done maintenance. If we go back to
the period of when firm 2 did not bid in, its decision at that time depended on whether it thought
firm 1 would bid in, which depended on the time before that at which firm 1 bid in, and so on. This
recursion on the importance of past information set can go on indefinitely.
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Table 3.2 Periodic full revelation with different T

T D 3 T D 4 T D 5 T D 6

Summary statistics

Consumer surplus (�10�3) 58,000+ 550 572 581 580

Profit B (�10�3) 393 389 384 383

Profit S (�10�3) 334 324 322 324

Maintenance cost B (�10�3) 25.9 21.6 20.2 19.4

Maintenance cost S (�10�3) 12.1 11.8 11.8 11.8

Production cost B (�10�3) 230.2 235.3 235.1 234.3

Production cost S (�10�3) 230.4 226.9 228.1 229.2

They then compute policies that are functions of (1) the same variables but with
revelation occurring at different T , and (2) coarser partitions of the information set
than that used to form perfect equilibrium policies. The policies from (1) are perfect
equilibrium policies, just different equilibria for each different T . The policies from
the calculations in (2) are not perfect “equilibrium” policies, but do satisfy the
conditions in Eqs. (3.2) and (3.3) for the restricted information sets. Fershtman and
Pakes (2012) then compare statistics of interest that result from simulations using
the different policies.

Table 3.2 presents summary statistics from calculating equilibria assuming
different T . It is clear from the table that, at least in this problem, the policies
from the T D 5 equilibria generate results which are very similar to those from
T D 6, but the polices from the T D 3 equilibria, or even those from T D 4,
generate results which do not adequately approximate the results from the T D 6

equilibria. This suggests that conditioning on a sufficiently long history, in our case
T D 5, will generate policies that are sufficiently close approximations to the
results from policies based on yet longer histories, though I have not made any
attempt to formally prove this supposition.

Tables 3.3 and 3.4 present results from two coarser partitions of information
sets than the full information set for the T D 5 model. In the columns labeled
“Finite History T” the results are from a model where there is no revelation of
private information and the competitors only keep track of the information publicly
revealed in the last T D 5 periods. In the columns labeled “Finite History G” the
results are from a model where the agents only keep track of the last time each of
its competitors’ generators was not bid in.

Table 3.3 gives the size of the recurrent class and compute times for the three
models. Recall that the only points that are visited repeatedly in the algorithm are
in the recurrent class. Table 3.3 provides both the number of such points and the
compute time per 100 million iterations of the algorithm. There are two findings
to keep in mind; the size of the recurrent class depends on the fineness of the
partition of the information sets, and the compute time per million iterations varies
directly with the size of the recurrent class. More precisely compute times per a
hundred million iterations are increasing and concave in the number of points in the
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Table 3.3 Cardinality of R and compute times

Finite history Equilibrium
G T (full revelation)

Cardinality of recurrent class

1. Firm B (�106) 5650 38,202 67,258

2. Firm S (�106) 5519 47,304 137,489

Compute times per 100 million iterations (h; includes test)

3. Hours 3:04 11:08 17:14

Hours (100 million)/size of recurrent class (in thousands)

4. = 3./(1.+2.) 0.26 0.130 0.083

Table 3.4 Three asymmetric information models

Finite history Equilibrium

G T (full revelation)

Summary statistics

Consumer surplus (�10�3) 58,000+ 270 580 581.5

Profit B (�10�3) 414 384.7 384.5

Profit S (�10�3) 439 323.5 322.8

Maintenance cost B (�10�3) 28.5 20.0 20.2

Maintenance cost S (�10�3) 18.0 11.7 11.8

Production cost B (�10�3) 226.8 235.5 235.1

Production cost S (�10�3) 254.6 228.4 228.1

recurrent class. A similar result was found in Pakes and McGuire (2001) who used
an analogous algorithm to compute a sequence of symmetric information equilibria
with increasing market sizes and hence increases in the cardinality of the underlying
state space.20 The relationship between compute times and the size of the recurrent
class is largely the result of the time it takes to search for the data in memory
associated with a new location; a point I come back to below.

Table 3.4 compares results of interest generated by policies that are a function
of coarser partitions of the information then the information set which generates
policies which are “perfect” on the recurrent class. It shows that the partitioning
implicit in Finite History T is rich enough to give us an accurate picture of the
implications of equilibrium play, while that in Finite History G is not. That is,
we do not seem to need the partition implicit in the full information set, but we
do need a partition of that information set that is “rich enough” to provide an
adequate approximation to equilibrium play. Of course the conditioning variables
that generate such an approximation are likely to vary from problem to problem.

20For example the maximum number of firms active on recurrent points, an endogenous variable
which increased with market size, varied from five to ten in those calculations.
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The results in Tables 3.3 and 3.4 are of both analytic and behavioral interest.
They suggest three conjectures: (1) the monotonicity of the compute times in the
size of the recurrent class, (2) the coarser the partition of the state space the
smaller the recurrent class, and (3) coarser partitions that are sufficiently rich can
provide adequate approximations to optimal policies. Taken together these well may
help explain why the decision makers themselves might partition the information
available to them in less detailed ways then they could. It also further emphasizes
the question of whether we can investigate the issue of the appropriate conditioning
set empirically, a task not attempted in Fershtman and Pakes (2012).

Computational Methods and Burdens
There are many computational issues left to be explored. Two that seemed important
determinants of compute time in the work I have been involved in are (1) the way
information is stored, and (2) the relationship between initial conditions and the
computational burden of the algorithm. For storage we have found that storing the
public information with a tree structure and the private information with a hash table
conditional on public information worked better than using only one or the other of
these two possibilities.

Not surprisingly, we have found that if one starts with sufficiently high values
for the initial conditions of the algorithm, that is for the components of W and
˘ , the algorithm’s iterations will explore almost all possible sample paths.21 As
a result the equilibrium which it eventually generates will typically satisfy the
“boundary consistency” condition given in Sect. 3.3.3. This tends to ensure we are
not supporting the equilibrium by misperceptions of values at boundary points;
though whether actual equilibria are supported by such misperceptions is ultimately
an empirical question. On the other hand the higher the initial conditions the longer
the compute times before the test in Sect. 3.3.1 is likely to be satisfied. Further,
in any given application we can now test whether using smaller starting values
results in an equilibrium which is boundary consistent by using the testing procedure
discussed in Asker et al. (2014). That is, we can determine whether any set of
policies are supported by unrealistic beliefs on outcomes outside of the recurrent
class.

This suggest a number of possibilities for reducing the computational burden.
For example it may be efficient to use functional form approximations, at least for
points outside of the recurrent class, as has been explored in the operations research
literature (see Sutton and Barto 1998). Alternatively, the results above indicate that it
might be helpful to start out by computing policies that satisfy the test in Sect. 3.3.1
with a coarse partition of the information set. A second step would use those policies
as starting values for computing policies for the full information set, or a finer
partition of this set.

21For the results we discuss below we set 
E;kD0
i .mi; Ji/ D i.mi; m�i D 0; d; !i/, and

WkD0.�i; mijJi/ D i.mi; m�i D 0; d; !i C �i.mi//=.1 � ˇ/: They are based on 500 million
iterations and generated an L 2.P.R// norm, i.e., a weighted R2, of over 0.99995. The L 2.P.R//

norm was larger than 0:99 at about 200 and flattened out to the minimum between 250 and 350
million, depending on the run.
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3.5 Conclusion

This paper is meant as a contribution to the development of empirical models
for the dynamics of market interactions. It argues for a more realistic framework
for that analysis, a framework that does not require agents to either acquire
and retain excessive amounts of information, or to compute or learn excessively
complicated strategies. What we do require is that agents do not make consistent
errors conditional on the information they use to compute their policies. The hope
is that this weakening of the traditional restrictions of equilibrium play enables
both a better approximation to agents behavior and an analytically more convenient
framework for the analyst to use in analyzing that behavior empirically.
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Chapter 4
Stochastic Games with Signals

Eilon Solan and Bruno Ziliotto

Abstract We survey old and new results concerning stochastic games with signals
and finitely many states, actions, and signals. We state Mertens’ conjectures
regarding the existence of the asymptotic value and its characterization, and present
Ziliotto’s (Ann Probab, 2013, to appear) counter, example for these conjectures.

Keywords Stochastic games • Signals • Mertens’ conjectures • Asymptotic
value • Uniform value • Counter example

MSC Classification: 91A15, 91A05

4.1 Introduction

Stochastic games is a model for dynamic interactions in which the state of nature
evolves in a way that depends on the actions of the players. The model was first
introduced by Shapley (1953), who proved that two-player zero-sum discounted
games have a value and both players have optimal stationary strategies. Bewley and
Kohlberg (1976) proved that the limit of the discounted value, as the discount factor
goes to 0, exists, and is equal to the limit of the value of the n-stage game, as n
goes to infinity. This limit is called the asymptotic value of the game. Mertens and
Neyman (1981) further showed that for every � > 0 Player 1 (resp. Player 2) has
a (history dependent) strategy, which guarantees that the payoff in any sufficiently
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long game, as well as in any discounted game with discount factor sufficiently close
to 0, is at least (resp. at most) the asymptotic value minus � (resp. plus �). Such a
strategy is called uniform �-optimal.

Mertens et al. (1994) presented a general model of stochastic games with signals,
in which the players neither observe the state nor the actions of the other player, but
rather observe at every stage a signal that depends on the current state as well as
on the pair of actions chosen by the players. Mertens (1986) made the following
two conjectures concerning stochastic games with signals and finitely many states,
actions, and signals:

• In every stochastic game with signals, the limit of the discounted value, as the
discount factor goes to 0, exists, and is equal to the limit of the value of the
n-stage game, as n goes to infinity. In other words, the asymptotic value exists.

• If the signal that Player 2 receives is included in the signal that Player 1 receives,
then the asymptotic value is equal to the max-min value of the game, which is the
maximal quantity that Player 1 can uniformly guarantee in every sufficiently long
finite game as well as in every discounted game, provided the discount factor is
sufficiently close to 0.

These two conjectures proved to be influential to game theory, and in the attempt
to prove them various new tools have been introduced to the field. The conjectures
have been shown to hold in quite a few classes of stochastic games with signals
(see, e.g., Gensbittel et al. 2014; Neyman 2008; Renault 2006, 2012; Rosenberg
2000; Rosenberg and Vieille 2000; Rosenberg et al. 2002, 2003, 2004; Sorin 1984,
1985; Venel 2014).

Recently Ziliotto (2013) provided an example in which the limit of the discounted
value, as the discount factor goes to 0, as well as the limit of the value of the n-stage
game, as n goes to infinity, do not exist. In particular, Mertens’ conjectures have
been refuted.

In this paper we survey the topic of stochastic games with signals and finitely
many states, actions, and signals, with an emphasis on the asymptotic value, and
present Ziliotto’s (2013) example.

4.2 Zero-Sum Standard Stochastic Games

4.2.1 The Model

A two-player zero-sum standard stochastic game is described by:

• The set of players I D f1; 2g.
• A finite state space S.
• For each player i 2 I and every state s 2 S, a finite set of actions Ai.s/ that are

available to player i at state s. The set of action pairs available at state s is A.s/ WD
A1.s/�A2.s/, and the set of all pairs (state, action pair) is � WD f.s; a/W a 2 A.s/g.
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• A payoff function uW � ! R.
• A transition function qW � ! �.S/, where �.X/ is the set of probability

measures over X for every finite set X.

Given an initial state s1 2 S, the game � .s1/ proceeds as follows. At each stage
m � 1, each player chooses an action ai

m 2 Ai.sm/, and a new state smC1 is chosen
according to the probability measure q.sm; am/, where am WD .a1

m; a2
m/.

The history up to stage m is the sequence .s1; a1; s2; a2; : : : ; sm/, and the set of all
histories of length m is Hm WD �m�1 � S.

In this section we assume perfect monitoring; that is, at the end of each state m
the players observe the new state smC1 and the pair of actions that were just played
am. Throughout the paper we assume that players have perfect recall; that is, they
do not forget information that they learn along the game. Consequently, a strategy
� i for player i assigns a probability measure over the set of available actions to each
finite history. That is, it is a function � iW [m�1Hm ! [s2S�.Ai.s// such that for
every m 2 N and every finite history hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm we have
� i.hm/ 2 �.Ai.sm//. The set of strategies for player i is denoted by ˙ i and the set
of strategy pairs is ˙ WD ˙1 � ˙2.

An initial state s1 2 S and a pair of strategies � 2 ˙ induce a probability measure
Ps1;� over the set of all plays H1 WD �N. The corresponding expectation operator
is Es1;� . For every discount factor � 2 .0; 1�, the �-discounted payoff under the
strategy pair � at the initial state s1 is

	�.s1; �/ WD Es1;�

0

@
X

m�1

�.1 � �/m�1u.sm; am/

1

A :

For every positive integer n 2 N D f1; 2; : : :g, the n-stage payoff under the strategy
pair � at the initial state s1 is

	n.s1; �/ WD Es1;�

 
1

n

nX

mD1

u.sm; am/

!

:

The game ��.s1/ is the normal form game .I; ˙1; ˙2; 	�.s1; ://, and the n-stage
game �n.s1/ is the normal form game .I; ˙1; ˙2; 	n.s1; ://.

4.2.2 The Value

Definition 1. Let � 2 .0; 1� be a discount factor, let n 2 N be a positive integer, and
let s1 2 S be the initial state. The real number v�.s1/ is the value of the �-discounted
game ��.s1/ if
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v�.s1/ D max
�12˙1

min
�22˙2

	�.s1; �1; �2/ (4.1)

D min
�22˙2

max
�12˙1

	�.s1; �1; �2/: (4.2)

The real number vn.s1/ is the value of the n-stage game �n.s1/ if

vn.s1/ D max
�12˙1

min
�22˙2

	n.s1; �1; �2/ (4.3)

D min
�22˙2

max
�12˙1

	n.s1; �1; �2/: (4.4)

When the initial state is chosen according to a probability distribution p 2 �.S/,
the discounted (resp. n-stage) value is denoted by v�.p/ (resp. vn.p/). In this case,
v�.p/ D P

s2S p.s/v�.s/ and vn.p/ D P
s2S p.s/vn.s/, provided the discounted and

n-stage values exist for all initial states.
A strategy �1� 2 ˙1 (resp. �2� 2 ˙2) that attains the maximum (resp. minimum)

in Eq. (4.1) [resp. Eq. (4.2)] is called a �-discounted optimal strategy. Similarly, a
strategy �1� 2 ˙1 (resp. �2� 2 ˙2) that attains the maximum (resp. minimum) in
Eq. (4.3) [resp. Eq. (4.4)] is called an n-stage optimal strategy.

A strategy is stationary if � i.hm/ is a function of sm, for every m 2 N and
every finite history hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm. A strategy is Markovian
if � i.hm/ is a function of sm and m, for every m 2 N and every finite history
hm D .s1; a1; s2; a2; : : : ; sm/ 2 Hm. The following two results assert the existence
of the value and of stationary (resp. Markovian) optimal strategies in the discounted
(resp. n-stage) game.

Theorem 1 (Shapley 1953). In every standard stochastic game, for every initial
state, the �-discounted value exists. Moreover, both players have stationary strate-
gies that are optimal for all initial states.

Theorem 2 (Neumann 1928). In every standard stochastic game, for every initial
state, the n-stage value exists. Moreover, both players have Markovian strategies
that are optimal for all initial states.

4.2.3 Zero-Sum Standard Stochastic Games with Long
Duration

Considerable effort has been invested on studying properties of stochastic games
with long duration, and trying to understand how the value and optimal strategies
evolve as the duration goes to infinity. In the discounted game this corresponds to
the case where � converges to 0, and in the n-stage game to the case where n goes
to infinity.
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In other words, we ask whether there is a quantity w that players can guarantee
in every discounted game ��.s1/, provided � is sufficiently close to 0, and in every
n-stage game �n.s1/, provided n is sufficiently large.

Two approaches can be singled out, the asymptotic approach and the uniform
approach. The asymptotic approach assumes that players know the discount factor
� (resp. the length of the game n) and that the discount factor is close to 0 (resp. the
length is very large). Consequently, this approach is interested in whether the two
limits lim�!0 v�.s1/ and limn!1 vn.s1/ exist and are equal.

The uniform approach assumes that the discount factor is close to 0 (resp. the
length of the game is very large), yet it does not assume that players know the
discount factor � (resp. the length of the game n). Consequently, this approach
is interested in the existence of a strategy that simultaneously guarantees (at least
approximately) a payoff greater than lim�!0 v�.s1/ and limn!1 vn.s1/ in all games
��.s1/ and �n.s1/, provided that � is sufficiently close to 0 and n is sufficiently
large.

Definition 2. A stochastic game � has an asymptotic value if .vn/ and .v�/

converge (pointwise) to the same limit.

Bewley and Kohlberg (1976) proved that for every initial state s1, the function
� ! v�.s1/ is a semi-algebraic function (thus continuous at 0), and deduced the
following theorem.

Theorem 3 (Bewley and Kohlberg 1976). Any standard stochastic game has an
asymptotic value.

Definition 3. Let s1 2 S be a state and let ˛ 2 R be a real number. Player 1 (resp.
Player 2) can uniformly guarantee ˛ at the initial state s1 if for every � > 0 there
exist a strategy �1� 2 ˙1 (resp. �2� 2 ˙2) and a positive integer n0 2 N such that for
every n � n0 and every strategy �2 2 ˙2 (resp. �1 2 ˙1),

	n.s1; �1�; �2/ � ˛ � � .resp. 	n.s1; �1; �2�/ � ˛ C �/: (4.5)

The real number ˛ is the uniform value at the initial state s1 if both players can
uniformly guarantee ˛ at s1. A strategy �1� (resp. �2�) that satisfies (4.5) is called
uniform �-optimal strategy.

The uniform value at the initial state s1, when it exists, is denoted by v1.s1/. If a
stochastic game has a uniform value at every initial state, then it has an asymptotic
value, and both .vn/ and .v�/ converge pointwise to v1 (see Sorin 2002, Chap. 2).

Theorem 4 (Mertens and Neyman 1981). Any standard stochastic game has a
uniform value.

This result extends to a game with random duration, in which the duration is long in
expectation and is independent of the play (see Neyman and Sorin 2010).
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Player 1
Player 2

L R

T 1∗ 0∗
B w w

Player 1
Player 2

L R

T 1 0
B 0 1

Fig. 4.1 Transition function (left) and payoff function (right) in state !

4.2.4 An Example: The “Big Match”

Consider the following stochastic game, known as the “Big Match”, which was
introduced by Gillette (1957). The state space is S D f!; 1�; 0�g, where 1� (resp.
0�) is an absorbing state with payoff 1 (resp. 0): in each of these states, each of the
players has a single action, say A1.1�/ D fTg and A2.1�/ D fLg (resp. A1.0�/ D
fTg and A2.0�/ D fLg), and once the play moves to state 1� (resp. 0�), it remains
there: q.1� j 1�; T; L/ D 1 (resp. q.0� j 0�; T; L/ D 1). The action sets for the
players in state ! are A1.!/ D fT; Bg and A2.!/ D fL; Rg. The payoff and transition
functions in this state are described in Fig. 4.1.

For example, if the action pair .T; L/ is played at state !, then the stage payoff
is 1 and the play moves to state 1�, where it stays forever. Using Shapley (1953)
one can show that v�.!/ D 1

2
for every � 2 .0; 1�, and by induction one can show

that vn.!/ D 1
2

for every n 2 N. In particular, the game has an asymptotic value,
which is 1

2
. The stationary strategy Œ 1

2
.L/; 1

2
.R/� is an optimal strategy for Player 2

in ��.!/ and �n.!/, for every � 2 .0; 1� and every n 2 N, and in particular it is a
uniform 0-optimal strategy at the initial state !.

The stationary strategy Œ �
1C�

.T/; 1
1C�

.B/� is an optimal strategy for Player 1
in ��.!/. The time-dependent strategy that plays at stage t the mixed action
Œ 1

n�tC2
.T/; n�tC1

n�tC2
.B/� is optimal for Player 2 in �n.!/.

Given � < 1=2, constructing a uniform �-optimal strategy for Player 1 is
quite tricky. One can show that Player 1 has no stationary or Markovian strategy
that is uniform �-optimal at the initial state !, nor does he have a uniform
�-optimal strategy that can be implemented by a finite automaton. It follows from
Blackwell and Ferguson (1968) that given a positive integer M, the following
history-dependent strategy for Player 1 is uniform 1

2.2MC1/
-optimal at !: at stage

m, if the play is at state !, play T with probability 1
.MCRm�Lm/2 , where Rm (resp.

Lm) is the number of stages up to stage m in which Player 2 played the action R
(resp. L). Thus, Player 1 adapts the probability in which he plays T to Player 2’s
past behavior: as the difference between the number of times that Player 2 played R
and the number of times that he played L increases, Player 1’s total payoff increases
as well, and therefore he lowers the probability to play T and end the play at an
absorbing state.
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4.3 Zero-Sum Stochastic Games with Signals

So far we assumed that players observe both the current state and past choices of the
other player. In many situations, this assumption is unrealistic. For instance, if the
state represents a resource stock (like the amount of oil in an oil field), the quantity
left, which represents the state, can be evaluated, but is not exactly known. Similarly,
various decisions of firms that affect the market price are often not observed by
other firms. In this section we extend the model of stochastic games with perfect
monitoring to the case in which players do not perfectly observe the state or the
actions (see Mertens et al. 1994).

4.3.1 The Model

A stochastic game with signals is similar to a standard stochastic game as defined
in Sect. 4.2.1 with the following changes:

• There are two finite sets of signals, C for Player 1 and D for Player 2.
• The transition function is a function qW � ! �.S � C � D/.

At every stage m, each player i chooses an action ai
m 2 Ai.sm/, and a triplet

.smC1; cm; dm/ 2 S � C � D is drawn according to the probability measure
q.sm; a1

m; a2
m/. Player 1 (resp. Player 2) observes the signal cm (resp. dm) and the new

state is smC1. We emphasize that the only information that Player 1 (resp. Player 2)
has at stage m is the initial state

(or the probability distribution according to which the initial state is chosen), the
sequence of past actions that he played, and the sequence of past signals that he
received.

A history at stage m is a vector .s1; a1; c1; d1; s2; a2; c2; d2; � � � ; sm/ and a play is
a vector in .��C �D/N. Since players have private information, the private history
of Player 1 (resp. Player 2) at stage m is .s1; a1; c1; a2; c2; � � � ; am�1; cm�1/ (resp.
.s1; a1; d1; a2; d2; � � � ; am�1; dm�1/).

Since a player knows the set of actions available for him at every stage of the
game, we assume that the private history of a player uniquely identifies his set of
actions. For Player 1 this condition translates as follows: for every two histories
.s1; a1; c1; d1; s2; a2; c2; d2; � � � ; sm/ and .s0

1; a0
1; c0

1; d0
1; s0

2; a0
2; c0

2; d0
2; � � � ; s0

m/, if a1
t D

a0
t
1 and ct D c0

t for 1 � t < m then A1.sm/ D A1.s0
m/. The condition for Player 2 is

analogous.
Many models that have been studied in the literature are special cases of

stochastic games with signals. These include:

1. Standard stochastic games. These are stochastic games with signals in which
the signal contains the new state and the actions that were just played: C D
S � f[s2SA.s/g and cm D dm D .smC1; a1

m; a2
m/.
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2. Partially observed Markov decision processes, which are stochastic games with
signals that involve only one player: jIj D 1.

3. Stochastic games with imperfect monitoring. These are stochastic games with
signals in which the signal contains the new state, and possibly additional
information: for every s; s0 2 S, every a 2 A.s/, every a0 2 A.s0/, every c 2 C,
and every d 2 D, if q.c j s; a/ > 0 and q.c j s0; a0/ > 0 then s D s0 (the signal of
Player 1 uniquely identifies the state), and if q.d j s; a/ > 0 and q.d j s0; a0/ > 0

then s D s0 (the signal of Player 2 uniquely identifies the state).
4. Hidden stochastic games. These are stochastic games with signals in which

players receive public signals on the state, and the players observe each other’s
action: C D D D [s2SA.s/ � C0 and cm D dm D .am; c0

m/.
5. Stochastic games played in the dark. These are stochastic games with signals in

which the players observe neither the new state nor the action of the opponent:
jCj D jDj D 1.

6. Repeated games with incomplete information on both sides. These are stochastic
games with signals in which the state does not change along the play and each
player receives a private signal about the state at the outset of the game and no
further information about the state afterwards.

A strategy for a player is a function that assigns a probability measure over the
set of his available actions to every finite private history of the player.

When the game has perfect monitoring, at each stage m the players know the state
sm. When the game does not have perfect monitoring, and the signal that a player
receives reveals the other player’s action, he can form a belief over the state, which
is a probability measure over the set of states S. Consider for example Player 1. At
the initial stage his belief over states is the Dirac measure on s1. If his belief at stage
m is 
m 2 �.S/, he played the action a1

m, Player 2 played the action a2
m (which he,

Player 1, observes), and he observed the signal cm, then his belief 
mC1 at the next
stage can be calculated by Bayes rule:


mC1.s/ D P.smC1 D s j 
m; cm; a1
m; a2

m/ D
P

s02S 
m.s0/q.s; cm j s0; a1
m; a2

m/
P

s02S q.s; cm j s0; a1
m; a2

m/
;

where q.s; cm j s0; a1
m; a2

m/ is the marginal probability of .s; cm/ given .s0; a1
m; a2

m/.
When the signals of the two players differ, their belief over the state differs as well,
and then each player also has a belief over the belief of the other player, each player
has a belief over the belief of the other player on his own belief, and so on. This
infinite hierarchy of beliefs that arises naturally in stochastic games with signals
explains the challenge that their analysis poses. Note that when the signal does not
reveal the action of the other player, the player cannot use Bayes rule to calculate
his belief, and in fact the player cannot form a belief over the state, unless he knows
the strategy used by the other player.

The concepts of asymptotic value, uniform value, and uniform �-optimal strate-
gies are analogous to the definitions provided above. A natural question is whether
stochastic games with signals have an asymptotic value or a uniform value.
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By Theorem 1, in the �-discounted game each player has a stationary strategy
that is optimal for all initial states. Consequently, the �-discounted value of a
stochastic game with imperfect monitoring is equal to the �-discounted value of
the same game with perfect monitoring. A similar conclusion holds for the n-stage
game, because by Theorem 2, in this game each player has a Markovian strategy
that is optimal for all initial states. By Theorem 3 it follows that in stochastic games
with imperfect monitoring the asymptotic value exists.

Unfortunately the uniform value may fail to exist in stochastic games with
imperfect monitoring. Indeed, consider the “Big Match” and assume that Player 1
observes the state but not the actions of Player 2. Whatever be the signals received
by Player 2 about the actions of Player 1, Player 2 can uniformly guarantee 1

2
, but

he cannot guarantee any quantity lower than 1
2
. Player 1, on the other hand, can

uniformly guarantee 0 but not any positive quantity.
This leads us to the following definition.

Definition 4. Let s1 2 S and let ˛ 2 R. Player 2 can uniformly defend ˛ if for every
� > 0 and every strategy �1 2 ˙1, there exist a strategy �2� 2 ˙2 and a positive
integer n0 2 N such that for every n � n0,

	n.s1; �1; �2�/ � ˛ C �:

The real number ˛ is the uniform max-min value at the initial state s1 if Player 1 can
uniformly guarantee ˛ and Player 2 can uniformly defend ˛.

The result of Mertens and Neyman (1981) generalizes in the following way (see
Rosenberg et al. 2003 or Coulomb 2003):

Theorem 5. In any stochastic game with imperfect monitoring, the uniform max-
min value exists for every initial state. Moreover, the uniform max-min value
depends only on the signals that Player 1 gets, that is, on the marginal distribution
of q over S � C.

4.3.2 Mertens’ Conjectures

Two natural questions that arise are the following. Does the asymptotic value exist
in every stochastic game with signals? If it does, can we characterize it?

Mertens (see Mertens 1986, p. 1572 and Mertens et al. 1994, Chap. VIII, p. 378
and 386) stated two conjectures. The first involves the existence of the asymptotic
value in any stochastic game with signals.

Conjecture 1. Every zero-sum stochastic game with signals has an asymptotic
value.
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We say that Player 1 is more informed than Player 2 if the signal of Player 1
contains the signal of Player 2. That is, C D D � C0, and cm D .dm; c0

m/ for every
stage m. The second conjecture of Mertens identifies v1.

Conjecture 2. In a zero-sum stochastic game with signals where Player 1 is more
informed than Player 2, limn!1 vn and lim�!0 v� are equal to the max-min value
of the game.

The Mertens conjectures have been proven true in numerous special classes of
stochastic games with signals, including standard stochastic games (Bewley and
Kohlberg 1976; Mertens and Neyman 1981), stochastic games with imperfect mon-
itoring (Rosenberg et al. 2003; Coulomb 2003), repeated games with incomplete
information on both sides (Aumann and Maschler 1995; Mertens and Zamir 1971),
and partially observed Markov decision processes (Rosenberg et al. 2002). Other
classes of stochastic games in which the conjectures have been proven can be
found in Gensbittel et al. (2014), Neyman (2008), Renault (2006, 2012), Rosenberg
(2000), Rosenberg and Vieille (2000), Rosenberg et al. (2003, 2004), Sorin (1984,
1985), Venel (2014).

Recall that a hidden stochastic game is a stochastic game in which players
receive public signals on the state, and the players observe each other’s action. In
particular, this is a game in which Player 1 has more information than Player 2.
Moreover, in such a game, at every stage both player share the same belief over
the state. Ziliotto (2013) provided an example of a hidden stochastic game in which
limn!1 vn and lim�!0 v� do not exist. This example in particular refutes both of
Mertens’ conjectures. We provide this example in the next subsection.

4.3.3 A Counterexample to the Mertens’ Conjectures

Let s 2 S be a state. We say that Player 1 (resp. Player 2) controls state s if the
transition q.s; a1; a2/ and the payoff u.s; a1; a2/ are independent of a2 for every a1 2
A1.s/ (independent of a1 for every a2 2 A2.s/).

Consider the following hidden stochastic game � , with state space˚
1�; 1CC; 1T ; 1C; 0�; 0CC; 0C�, action sets fC; Qg for each player, and signal

sets fD; D0g for each player. The payoff function does not depend on the actions,
and is equal to 1 in states 1�, 1CC, 1T and 1C, and to 0 in states 0�, 0CC and 0C.
Player 2 controls states 1CC, 1T and 1C. Player 1 controls states 0CC and 0C. States
0� and 1� are absorbing, and the other states are nonabsorbing. Figure 4.2 describes
the transition function.

In Fig. 4.2 we adopt the following notation: an arrow going from state s to state
s0 with the caption .a; p; c/ 2 fC; Qg � Œ0; 1� � fD; D0g indicates that if the player
who controls state s plays action a, then with probability p the state moves to state
s0 and the signal is c. For example, if the state is 1CC and Player 2 plays action C,
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States controlled by Player 1 States controlled by Player 2

Absorbing states

0++

0+

0∗

1++ 1T

1+

1∗

C, 14 ,D

C, 14 ,D

C, 12 ,D′

C, 12 ,D

C, 12 ,D′ Q,1,D

Q,1,D′

C, 12 ,D

C, 12 ,D′
C, 18 ,D

C, 38 ,D

C, 12 ,D′

C, 12 ,D

C, 12 ,D′
Q,1,D

Q,1,D′ Q,1,D′

Fig. 4.2 Transitions in the game �

then with probability 1
2

the game moves to state 1T and the signal is D, and with
probability 1

2
the game stays in state 1CC and the signal is D0.

This game is a hidden stochastic game. As mentioned above, in such a game, at
every stage the players share the same belief over the states. In particular, we can
consider an equivalent auxiliary stochastic game with perfect monitoring but with
countably many states; a state in the auxiliary game corresponds to a belief over
states in the original game. Since the number of states, actions, and signals is finite,
the number of possible beliefs at each stage is finite, so that in the auxiliary game
there are countable many states. By Theorems 1 and 2 (generalized to games with
countably many states) in the discounted game the players have optimal stationary
strategies and in the n-stage game they have optimal Markovian strategies. Any
stationary or Markovian strategy in the auxiliary game has an equivalent strategy in
the original game, and vice versa, and therefore the original game and the auxiliary
game are equivalent in terms of the discounted value, the n-stage value, and optimal
strategies.

Call the states
˚
1�; 1CC; 1T ; 1C� 1-states and the states

˚
0�; 0CC; 0C� 0-states.

In our example, the players know when the play moves from 1-states to 0-states and
vice versa. Indeed, the initial state is known, so that the players know whether it is
a 1-state or a 0-state. The play moves to a 1-state (resp. 0-state) to a 0-state (resp. 1-
state) only when Player 2 (resp. Player 1) plays Q and the signal is D. Consequently
the possible beliefs of the players along the play are:
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• Œ1.0�/� and Œ1.1�/�: the players know when the play moves to an absorbing state.
This is the belief at stage m when the player who controls state sm�1 played Q
and the signal was D0.

• Œ2�n.0CC/; .1 � 2�n/.0C/� for n � 0: players believe that with probability 2�n,
the state is 0CC, and with probability .1 � 2�n/, the state is 0C. For n D 0, this
is the belief at stage m when (a) the state in stage m � 1 was a 1-state, Player 2
played Q and the signal was D, or (b) the state in stage m � 1 was a 0-state,
Player 1 played C and the signal was D0. For n � 1, this is the belief at stage m
when the belief at stage m � 1 was Œ2�.n�1/.0CC/; .1 � 2�.n�1//.0C/�, Player 1
played C and the signal was D.

• Œ2�2n.1CC/; .1�2�2n/.1C/� for n � 0: players believe that with probability 2�2n,
the state is 1CC, and with probability .1 � 2�2n/, the state is 1C. For n D 0, this
is the belief at stage m when (a) the state in stage m � 1 was a 0-state, Player 1
played Q and the signal was D, or (b) the state in stage m � 1 was a 1-state,
Player 2 played C and the signal was D0. For n � 1, this is the belief at stage
m when the belief at stage m � 1 was Œ2�2n�2.1T/; .1 � 2�2n�2/.1C/�, Player 2
played C and the signal was D.

• Œ2�2n.1T/; .1 � 2�2n/.1C/� for n � 0: players believe that with probability 2�2n,
the state is 1T , and with probability .1�2�2n/, the state is 1C. This is the belief at
stage m when the belief at stage m � 1 was Œ2�2n.1CC/; .1 � 2�2n/.1C/�, Player
2 played C and the signal was D.

To simplify notation, we denote these beliefs as follows:

• 0� is the belief Œ1.0�/�; 1� is the belief Œ1.1�/�.
• 0n is the belief Œ2�n.0CC/; .1 � 2�n/.0C/�.
• 12n is the belief Œ2�2n.1CC/; .1 � 2�2n/.1C/�.
• 12nC1 is the belief Œ2�2n.1T/; .1 � 2�2n/.1C/�.

Thus, the auxiliary game is a stochastic game with perfect information that is
given by

• The set of states is f0�; 00; 01; 02; 03; � � � ; 1�; 10; 11; 12; 13; � � � g.
• In all states the players have two actions, fC; Qg.
• The payoff in states f0�; 00; 01; 02; 03; � � � g is 0; the payoff in states

f1�; 10; 11; 12; 13; � � � g is 1.
• States 0� and 1� are absorbing. The transition function in states f0n; n � 0g is

described in Fig. 4.3 and the transition function in states f1n; n � 0g is described
in Fig. 4.4.

We will show below that the limit lim�!0 v�.s/ does not exist for every
nonabsorbing state of the auxiliary game. We thus consider now the discounted
game.

Since the action of Player 2 (resp. Player 1) in states f00; 01; 02; 03; � � � g (resp.
f10; 11; 12; 13; � � � g) affects neither the payoff nor the transitions, and since the
players know the current state of the auxiliary game, for the calculation of the
value we can assume that in states f00; 01; 02; 03; � � � g only Player 1 chooses an
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Fig. 4.4 Transitions in the states 12n and 12nC1

action, while in states f10; 11; 12; 13; � � � g only Player 2 chooses an action. This
implies that the decision problems of the two players, namely, the decision problem
of Player 1 in states f00; 01; 02; 03; � � � g and the decision problem of Player 2 in
states f10; 11; 12; 13; � � � g, can be disentangled into two separate Markov decision
problems. It follows that in the discounted game each player has an optimal pure
stationary strategy. Denote by �1

n (resp. �2
n ) the stationary strategy for Player 1 (resp.

Player 2) that chooses action C in states f0k; k ¤ ng (resp. f1k; k ¤ ng) and chooses
action Q in state 0n (resp. 1n).

Assume that the initial state is p D 00. Since the payoff is 1 in states f1n; n 2 Ng
and 0 in states f0n; n 2 Ng, and since Player 1 maximizes the payoff, Player 1
wants the play to move to state 10. If he plays Q in state 00, the game is absorbed in
state 0� with probability 1, which is the worst state for him. If he never plays Q, the
payoff is 0 forever, which is also an unfavorable outcome for Player 1. If he plays
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strategy �1
n , then the play reaches state 0n after a random finite number of stages.

It is then absorbed in state 0� with probability 2�n (we will call this probability the
absorbing risk taken by Player 1), and moves to state 10 with probability .1 � 2�n/.

Inspecting the transition function in Fig. 4.3 reveals that to reach state 0n from
state 00, Player 1 needs on average 2n stages. Thus, Player 1’s decision of when to
play Q is influenced by two contradicting forces: on the one hand he wants to lower
the absorbing risk, which means adopting a strategy �1

n with high n; on the other
hand he wants to minimize the time he spends in states f00; 01; 02; 03; � � � g, which
means he should not choose n too high. Since the game is discounted, the discount
factor determines the positive integer n such that �1

n is optimal. It turns out that in the
�-discounted game, the optimal strategies for Player 1 is �1

n , where 2�n is as close
as possible to

p
2� (the real number

p
2� corresponds to the optimal absorbing risk

if players could choose any absorbing risk in Œ0; 1�, which is not the case).
Player 2 faces the same issue in states f10; 11; 12; 13; � � � g. However the difference

between the transitions in states f10; 11; 12; 13; � � � g and in states f00; 01; 02; 03; � � � g
leads to a slightly different optimal strategy. We claim that the strategy �2

2n is strictly
better than the strategy �2

2nC1. Indeed, both strategies exhibit the same absorbing
risk, yet the former requires much fewer stages to move to state 10 than the latter.
In particular, the optimal strategy of Player 2 is �2

2n for some positive integer n.
In fact, there exists two mappings �1; �2 W .0; 1� ! R such that lim�!0 �1.�/ D
lim�!0 �2.�/ D 0, and if 2�2n�1C�1.�/ � p

2� � 2�2nC1C�2.�/, then the optimal
strategy is �2

2n.
Set �k WD 2�4k�1, so that

p
2�k D 2�2k. In the game ��k .10/ the optimal

strategies of the players are �1
2k and �2

2k, and the play is symmetric: the sequence
.v�k .10//k�1 converges to 1

2
. Set 
k WD 2�4k�3, so that

p
2
k D 2�2k�1. In this case,

Player 1’s optimal strategy is �1
2kC1, yet Player 2’s optimal strategy is not �2

2kC1,
because his optimal strategy is taken from the set f�2

2n; n � 0g. Player 2’s optimal
strategy is either �2

2k or �2
2kC2. But choosing �2

2k or �2
2kC2 instead of �2

2kC1 leads to a
different dynamics of the state. For instance, under the strategy �2

2kC2, starting from
state 10 Player 2 waits on average 22kC2 stages before playing Q, instead of 22kC1.
Thus, intuitively, Player 1 has an edge over his opponent in the 
k-discounted game.
Standard computations confirm this intuition, and show that .v
k .10// converges to
5
9
. In particular, the limit lim�!0 v�.10/ does not exist, which implies that the limit

lim�!0 v�.s/ does not exist for every state in f1n; n 2 Ng. Similar arguments show
that this limit does not exist for every state in f0n; n � 0g.

4.3.4 Link Between the Convergence of .vn/ and .v�/

In the previous example, neither .v�/ nor .vn/ converge. There is an example of
a hidden stochastic game for which there exists an initial belief p 2 �.S/ such
that .v�.p// converges but .vn.p// does not, and conversely, an example where
.vn.p// converges and .v�.p// does not converge. Moreover, there are examples
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in which both .v�.p// and .vn.p// converge, but to different limits (Ziliotto 2015).
Nonetheless, Ziliotto (2015) proved the following Tauberian theorem, which is a
generalization of the one-player case result of Lehrer and Sorin (1992):

Theorem 6. Consider the auxiliary game of a hidden stochastic game. The follow-
ing two statements are equivalent:

1. For every initial state p1, limn!1 vn.p1/ exists.
2. For every initial state p1, lim�!0 v�.p1/ exists.

Moreover, when these statements hold, we have limn!1 vn.p1/ D lim�!0 v�.p1/

for every initial state p1.

This theorem is in fact true in a much wider class of stochastic games with compact
state space and actions sets.

4.4 Multiplayer Stochastic Games

A multiplayer stochastic game is similar to a two-player zero-sum stochastic game
as defined in Sect. 4.2.1 with the following changes:

• The set of players I is any finite set.
• For every player i 2 I and each state s, the set Ai.s/ is a finite set of actions

available to player i at state s. Denote A.s/ WD �i2IAi.s/ and � WD f.s; a/W s 2
S; a 2 A.s/g.

• For every player i 2 I the payoff function is ui W � ! R.

In this case we consider the asymptotic behavior of the set E�.s1/ of all �-
discounted equilibrium payoffs at the initial state s1 and of the set En.s1/ of all
n-stage equilibrium payoffs at the initial state s1.

4.4.1 Asymptotic Approach

The natural generalization of the result of Bewley and Kohlberg (1976) to the
multiplayer case would be the convergence of the set of �-discounted Nash
equilibrium payoffs E� when � goes to 0 and the convergence of the set of n-stage
Nash equilibrium payoffs En (w.r.t. the Hausdorff distance).

Note that for a repeated game (that is, a stochastic game with one state) that
satisfies certain technical conditions, the Folk theorem answers this question, and
gives a characterization of the limit set. A Folk theorem for multiplayer stochastic
games has been proven by Dutta (1995), under the strong assumption that the
dependence of E�.s1/ in s1 vanishes as � goes to 0 (in particular, this excludes
the presence of absorbing states with different payoffs).
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In the general case, E� and En may fail to converge, even in the two-player case,
as proved by Renault and Ziliotto (2014), who prove in addition that the set of
discounted (or n-stage) subgame perfect equilibrium payoffs may fail to converge,
but the set of discounted stationary Nash equilibrium payoffs converges.

4.4.2 Uniform Approach

The concept of uniform value can be generalized in the following way to the
nonzero-sum case.

Definition 5. A vector v 2 R
I is a uniform equilibrium payoff at the initial state s1

if for every � > 0 there exist �0 2 .0; 1�, n0 2 N, and a strategy vector � 2 ˙ , such
that for every player i 2 I and every strategy � 0i 2 ˙ i,

	 i
�.s1; � 0i; ��i/ � 2� � vi � � � 	 i

�.s1; �/ � vi C �; 8� 2 .0; �0�;

and

	 i
n.s1; � 0i; ��i/ � 2� � vi � � � 	 i

n.s1; �/ � vi C �; 8n � n0:

Vrieze and Thuijsman (1989) proved the existence of a uniform equilibrium
payoff in two-player absorbing games, which are stochastic games with a single
nonabsorbing state. Vieille (2000a,b) extended this result to any two-player stochas-
tic game. Flesch et al. (1997) provided an example of a three-player absorbing game
in which the uniform equilibrium strategies are periodic. Solan (1999) proved that
any three-player absorbing game has a uniform equilibrium in which the players
execute a periodic play path, and supplement their play with threats of punishment.

For N � 3, the existence of a uniform equilibrium payoff in multiplayer
stochastic games is still open, and is one of the most important and challenging
question in mathematical game theory to date. When players are allowed to use a
correlation device, this question was solved positively by Solan and Vieille (2002).

4.4.3 Multiplayer Stochastic Games with Imperfect Monitoring

Like in the zero-sum case (see Sect. 4.3), we assume that players do not observe
the actions of the other players, but rather receive signals about them. This model is
more general than the one of the previous section, thus .E�/ may not converge (see
Renault and Ziliotto 2014). In the literature, Folk theorems for stochastic games
with imperfect monitoring are stated under two kinds of assumptions. The first one
is an ergodic assumption on the transition function of the game. The second one
is either that players do not use their private information [public equilibrium, see
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Hörner et al. (2011), or public signals, see Fudenberg and Yamamoto (2011)], or an
assumption on the signaling function (connectedness, as in Fudenberg and Levine
1991).

4.4.4 Stochastic Games with Signals on the State

When the state is imperfectly observed, it does not seem possible to generalize the
result of Bewley and Kohlberg (1976). Indeed, Renault and Ziliotto (2014) provided
an example of a two-player hidden stochastic game (public signals on the state and
perfect observation of the actions), in which E� has full dimension for all � 2 .0; 1�

(which is a standard assumption in the literature under which Folk theorems are
usually stated), but the set of discounted correlated equilibrium payoffs, discounted
Nash equilibrium payoffs, discounted sequential equilibrium payoffs, discounted
stationary equilibrium payoffs, all fail to converge. Under an ergodic assumption,
Yamamoto (2015) recently proved a Folk theorem for multiplayer hidden stochastic
games.
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Chapter 5
Nonlinear and Multiplayer Evolutionary Games

Mark Broom and Jan Rychtář

Abstract Classical evolutionary game theory has typically considered populations
within which randomly selected pairs of individuals play games against each other,
and the resulting payoff functions are linear. These simple functions have led to a
number of pleasing results for the dynamic theory, the static theory of evolutionarily
stable strategies, and the relationship between them. We discuss such games,
together with a basic introduction to evolutionary game theory, in Sect. 5.1. Realistic
populations, however, will generally not have these nice properties, and the payoffs
will be nonlinear. In Sect. 5.2 we discuss various ways in which nonlinearity can
appear in evolutionary games, including pairwise games with strategy-dependent
interaction rates, and playing the field games, where payoffs depend upon the entire
population composition, and not on individual games. In Sect. 5.3 we consider
multiplayer games, where payoffs are the result of interactions between groups of
size greater than two, which again leads to nonlinearity, and a breakdown of some
of the classical results of Sect. 5.1. Finally in Sect. 5.4 we summarise and discuss
the previous sections.
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5.1 Introduction

In this paper we consider nonlinear and multiplayer evolutionary games. We start
in Sect. 5.1 with an introduction to evolutionary games for those not familiar with
them, focusing on matrix games, which are linear in character, and discussing a
number of the key results. We then move on to consider the general idea of nonlinear
evolutionary games, including some specific types of such games in Sect. 5.2. We
believe that these results, and those in the following section, will generally be less
familiar to the audience. In Sect. 5.3 we consider multiplayer games. The specific
type that we consider, and the most commonly used, is multiplayer matrix games,
which can be though of as a special type of the nonlinear games in Sect. 5.2,
although we note that multiplayer games in general do not simply reduce to
this type. The text in significant part follows a tutorial talk given by MB at the
International Society on Dynamic Games Symposium in Amsterdam in July 2014,
which in turn followed aspects of the book (Broom and Rychtář 2013).

5.1.1 What is Evolutionary Game Theory?

Evolutionary game theory as we know it today began in the 1960s, in particular
with the consideration of the sex-ratio problem (Hamilton 1967), although similar
reasoning on this problem goes back much earlier to Dusing (see Edwards 2000)
and Fisher 1930. The most influential work on our modern understanding is that
of Maynard Smith and collaborators (Maynard Smith et al. 1973; Maynard Smith
1982).

In (non-cooperative) game theory, a game is comprised of three key elements, the
players, the strategies available to be employed by the players, and the payoffs to
the players, which are functions of the strategies chosen. For an evolutionary game
we also need a population, and a way for our population to evolve through time, an
evolutionary dynamics.

A pure strategy is a choice of what to play in a given interaction. Supposing that
the pure strategies comprise the finite set fS1; S2; : : : ; Sng, then a mixed strategy is
defined as a probability vector p D .p1; p2; : : : ; pn/, pi being the probability that the
player will play pure strategy Si. Thus a pure strategy can be written in this way,
e.g. Si is .0; : : : ; 0; 1; 0; : : : ; 0/ with 1 at the ith place, and a mixed strategy can be
written as a convex combination of pure strategies,

p D .p1; p2; : : : ; pn/ D
nX

iD1

piSi: (5.1)

The set of all mixed strategies can be represented by a simplex in R
n with vertices at

fS1; S2; : : : ; Sng (Fig. 5.1). The Support of p, S.p/, is defined by S.p/ D fi W pi > 0g,
so that it is the set of pure strategies which have a positive probability of being
played by a p-player. The notion of a mixed strategy is naturally extended even to
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Pure strategy Pure strategyMixed strategy
S1 = (1, 0) S2 = (0, 1)p = (p1, p2)

p2 p1

Pure strategy Pure strategy

Pure strategy

S1 = (1, 0, 0) S2 = (0, 1, 0)

S3 = (0, 0, 1)

p1

p3

p2

p = (p1, p2, p3)

Fig. 5.1 Visualization of pure and mixed strategies for games with two or three strategies

cases where the set of pure strategies is infinite, as in the “war of attrition” game,
for example Bishop and Cannings (1978).

Payoffs for a game played by two players with each having a finite number of
pure strategies can be represented by two matrices. For example, if player 1 has the
strategy set S D fS1; : : : ; Sng and player 2 has the strategy set T D fT1; : : : ; Tmg,
then the payoffs in this game are written as

A D .aij/iD1;:::;nIjD1;:::;m; B D .bij/iD1;:::;mIjD1;:::;n; (5.2)

where aij (bji) is the reward to players 1 (2) after player 1 (2) chooses pure strategy
Si (Tj). We thus have the payoffs written as a pair of n � m matrices A and BT , which
is known as a bimatrix representation. This is often written as a single matrix whose
entries are ordered pairs of values.

Note that here we write the payoffs from the point of view of the player receiving
the reward (i.e. the index of their strategy comes first). It is often the case in other
works that the index of player 1 is written first.

Often in evolutionary games, the choice of which player is player 1 is arbitrary,
and thus the strategies available to the two players are identical. In this case, n D m
and (after a possible renumbering) Si D Ti for all i. Since the ordering of players is
arbitrary, if we swap them their payoffs are unchanged, so that bij D aij, i.e. A D B.
This means that all payoffs can be written as a single n � n matrix

A D .aij/i;jD1;:::;n; (5.3)

where in this case, aij is the payoff to a player playing pure strategy Si when its
opponent plays strategy Sj. Such a game is called a matrix game.

Consider a game with payoffs given by a matrix A. If player 1 plays p and player
2 plays q, then the proportion of games involving the first player playing Si and
the second player playing Sj is simply piqj. The expected reward to player 1 is thus
given by

EŒp; q� D
X

i;j

aijpiqj D pAqT: (5.4)
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Note that, when comparing payoffs, we can ignore difficult cases involving
equalities by assuming our games are generic (Samuelson 1997; Broom and Rychtář
2013). In most of the following we will make this assumption.

In the above, we have considered a single game between two individuals. How-
ever, evolutionary games consist of populations, and individuals are not (usually)
involved in only a single contest. They may play many different contests, against
many different opponents, with each contributing a relatively small contribution to
the total reward.

We consider a function E Œ� I ˘�, the fitness of an individual using a strategy � in
a population represented by ˘ . The term ıp is used to represent a population where
the probability of a randomly selected player being a p-player is 1. The term ıi

similarly denotes a population consisting only of individuals playing pure strategy Si

(with probability 1). The term
P

i piıi thus means a population where the proportion
of Si-playing individuals is pi.

5.1.2 Two Approaches to Game Analysis

5.1.2.1 Dynamic Analysis

In all that follows we assume a very large (effectively infinite) population, with
overlapping generations and asexual reproduction, where offspring are direct copies
of their parent. The evolution of a population can be modelled using evolutionary
dynamics, where the proportion of individuals playing a given strategy changes
according to their fitness.

In the following we shall assume a population consisting only of pure strategists.
Thus we consider a population represented by pT D P

i piıi, i.e. where the
frequency of Si-playing individuals is pi. We denote the fitness of individuals playing
Si in this population to be fi.p/. The birth rate of individuals in the population is
proportional to their fitness.

We assume that the composition of the population changes according to the
differential equation

d

dt
pi D pi

�
fi
�
p.t/

	 � Nf .p.t//
�
: (5.5)

This is the continuous replicator dynamics, the most commonly used evolutionary
dynamics, originating in Taylor and Jonker (1978) (see also Hofbauer and Sigmund
1998). For a derivation see Broom and Rychtář (2013). We also note the existence
of the discrete replicator dynamics, the equivalent dynamics for non-overlapping
generations (see Bishop and Cannings 1978).

For matrix games the continuous replicator dynamics (5.5) becomes

d

dt
p

i
D pi

��
A
�
p.t/

	T
�

i
� p.t/A

�
p.t/

	T
�

: (5.6)
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5.1.2.2 Static Analysis

An alternative methodology is to use a static analysis, which does not consider how
the population reached a particular point in the strategy space, but assuming that
the population is at that point, asks whether other strategies can do better within the
population?

Consider a population where the vast majority of individuals play strategy S,
while a very small proportion " > 0 of “mutants” play strategy M. The strategies
S and M thus compete within the population .1 � "/ıS C "ıM . A strategy S is
evolutionarily stable against strategy M if there is "M > 0 such that

E ŒSI .1 � "/ıS C "ıM� > E ŒMI .1 � "/ıS C "ıM� (5.7)

for all " < "M . S is an evolutionarily stable strategy (ESS) if it is evolutionarily
stable against M for every other strategy M ¤ S (Maynard Smith et al. 1973;
Maynard Smith 1982).

For matrix games, the linearity of the payoffs gives

E ŒpI .1 � "/ıp C "ıq� D EŒp; .1 � "/p C "q� D (5.8)

pA..1 � "/p C "q/T D .1 � "/pApT C "pAqT: (5.9)

It is easy to show that this means a strategy p is an Evolutionarily Stable Strategy
(ESS) for a matrix game, if and only if for any mixed strategy q ¤ p

EŒp; p� � EŒq; p�I (5.10)

if EŒp; p� D EŒq; p�, then EŒp; q� > EŒq; q�; (5.11)

(see e.g. Broom and Rychtář 2013).
We note that inequality (5.10) is the Nash equilibrium condition, but that, while

necessary, it is not sufficient for stability. If (5.11) does not hold, then p may be
invaded by a mutant that does equally well against the majority of individuals in the
population (that play p) but gets a (tiny) advantage against them by outperforming
them in the (rare) contests with other mutants (playing q).

Alternatively there is the possibility that the mutant and the residents do equally
well against the mutants too. In this latter case invasion can occur by “drift”; both
types do equally well, so in the absence of selective advantage random chance
decides whether the frequency of mutants increases or decreases.

We define T.p/ as the set of pure strategies with equal payoffs against p, i.e.

T.p/ D fi W EŒSi; p� D EŒp; p�g: (5.12)

Theorem 1 (Bishop Cannings Theorem). If p is an ESS of the matrix game A and
q ¤ p is such that S.q/ � T.p/, then q is not an ESS of matrix game A.

For a proof, see Bishop and Cannings (1976).



100 M. Broom and J. Rychtář

5.1.2.3 Dynamic Versus Static Analysis

Dynamic and static analyses are mainly complementary, however the relationship
between the two is not straightforward, and there is some apparent inconsistency
between the theories. Comparing the static ESS analysis and replicator dynamics,
we see that the information required for each type of analysis is different. To
determine whether p is an ESS, we need the minimum of a function

q ! E ŒpI .1 � "/ıp C "ıq� � E ŒqI .1 � "/ıp C "ıq� (5.13)

to be attained for q D p for all sufficiently small " > 0.
To understand the replicator dynamics, however, we need E ŒSiI pT� for all i and

all p. Thus a major difference between the two methods is that the static analysis
considers monomorphic populations ıp while the dynamic analysis considers mixed
populations pT D P

i piıi.
The analyses can thus produce the same (or at least similar) results only if there is

an identification between ıp and pT, as in the case of matrix games, and we note that
most of the comparative analysis between the methods has assumed matrix games.

Theorem 2 (Folk Theorem of Evolutionary Game Theory, Hofbauer and Sig-
mund 2003). For a matrix game with payoffs given by matrix A, we have:

1. If p is a Nash equilibrium, and so an ESS, of a matrix game, then pT is a rest
point of the dynamics , i.e. the population does not evolve further from the state
pT D P

i piıi.
2. If p is a strict Nash equilibrium, then p is locally asymptotically stable.
3. If the rest point p� of the dynamics is also the limit of an interior orbit, then it is

a Nash equilibrium.
4. If the rest point p is Lyapunov stable, then p is a Nash equilibrium.

An ESS is an attractor of the replicator dynamics, and the population converges
to the ESS for every strategy sufficiently close to it. If p is an internal ESS, then
global convergence to p is assured (Zeeman 1980).

It is also true that if the replicator dynamics has a unique internal rest point p�,
under certain conditions (satisfied for matrix games)

lim
t!1

1

T

Z T

0

pi.t/dt D p�
i ; (5.14)

so that the long-term average strategy is given by this rest point, even if there is
considerable variation at any given time.

Thus for matrix games, identifying ESSs and Nash equilibria of a game gives a
lot of important information about the dynamics. For example, if p is an internal
ESS, then global convergence to p is assured.

However, there are cases when an ESS analysis does not provide such a complete
picture. In particular, there are attractors of the replicator dynamics that are not
ESSs. To see this, consider the matrix
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0

@
0 1 �1

�2 0 2

2 �1 0

1

A (5.15)

(see Hofbauer and Sigmund 1998). The replicator dynamics for this game has a
unique internal attractor, but this attractor is not an ESS. This happens because we
can find an invading mixture for p where the dynamics effectively forces the mixture
into a combination that no longer invades. Thus if the invading group is comprised
of mixed strategists it can invade, whereas if it is comprised of a mixture of pure
strategists it cannot. Note that for the discrete dynamics the situation is even more
complex, since then it is not guaranteed that an ESS is an attractor (Cannings 1990).

5.1.3 Two Classic Matrix Games

Two well-known examples of matrix games are the Hawk-Dove game
(Maynard Smith et al. 1973) and the prisoner’s dilemma (Tucker 1980). These
both represent important biological/social scenarios.

5.1.3.1 The Hawk Dove Game

For the Hawk-Dove game, individuals compete against other randomly chosen
individuals for a reward (e.g. a territory) of value V > 0. Each of the contestants has
two pure strategies available, Hawk (H) and Dove (D). Hawks fight, whereas Doves
merely display. Doves divide the reward, a Hawk always beats a Dove, whereas two
Hawks fight, with the loser incurring a cost C. This gives the payoff matrix as

0

B
@

Hawk Dove

Hawk
V � C

2
V

Dove 0
V

2

1

C
A: (5.16)

Denoting a mixed strategy p D .p; 1 � p/ to mean to play Hawk with probability p
and to play Dove otherwise, it is easy to show that pure Dove is never an ESS, pure
Hawk is an ESS if V � C. For V < C, p D .V=C; 1 � V=C/ is the unique ESS (see
e.g. Broom and Rychtář 2013).

5.1.3.2 The Prisoner’s Dilemma

In the Prisoner’s dilemma, a pair of individuals can either cooperate (play C) or try
to obtain an advantage by defecting and exploiting the other (play D). The payoffs
are given by the payoff matrix
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�
Cooperate Defect

Cooperate R S
Defect T P

�

: (5.17)

Whilst the individual numbers are not important, for the classical dilemma we need
T > R > P > S. We also need the additional condition 2R > S C T which
is necessary for the evolution of cooperation. In this game Defect is the unique
ESS, although if both players cooperated they would do better. The game is widely
used to consider the issue of (especially human) cooperation, and of how it can
be established against cheating. Many variants of the above game, usually using
multiple interactions of some kind, have been developed to this end (see e.g. Axelrod
1981; Nowak 2006).

5.2 Nonlinear Games

5.2.1 Overview and General Theory

In the previous section we considered matrix games, where

E ŒpI qT � D pAqT: (5.18)

The above payoffs can alternatively be written in the form
P

i pi.AqT/i orP
j.pA/jqj, and so payoffs are linear in both the strategy of the focal individual

and the strategy of the population and, as we have seen, this has nice static and
dynamic properties.

More generally, we say that E is linear on the left if it is linear in the strategy of
the focal player, i.e.

E

"
X

i

˛ipiI ˘

#

D
X

i

˛iE ŒpiI ˘� (5.19)

for every population ˘ , every m-tuple of individual strategies p1; : : : ; pm and every
collection of constants ˛i � 0 such that

P
i ˛i D 1 (Broom and Rychtář 2013).

We say that E is linear on the right if it is linear in the strategy of the population,
i.e.

E

"

pI
X

i

˛iıqi

#

D
X

i

˛iE ŒpI ıqi � (5.20)

for every individual strategy p, every m-tuple q1; : : : ; qm and every collection of ˛i’s
from Œ0; 1� such that

P
i ˛i D 1 (Broom and Rychtář 2013).
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Recall that for matrix games, the payoff to an individual is the same whether it
faces opponents playing a polymorphic mixture of pure strategies or a monomorphic
population. We say that a game has polymorphic-monomorphic equivalence if for
every strategy p, any finite collection of strategies fqigm

iD1 and any corresponding
collection of m constants ˛i � 0 such that

Pm
i ˛i D 1 we have

E

"

pI
X

i

˛iıqi

#

D E

pI ıP

i ˛iqi

�
(5.21)

(Broom and Rychtář 2013). Note that the concept of polymorphic-monomorphic
equivalence holds only in respect of static analyses, and there is no such concept in
terms of dynamics.

The payoff is linear on the left for many evolutionary games because E ŒpI ˘� is
often defined to be the average of the payoffs to players of pure strategy Si, weighted
by the selection probability pi, for all i. It is common, however, that the payoff is
nonlinear on the right, which occurs whenever the game does not involve pairwise
contests against randomly selected opponents.

The payoff function can be nonlinear on the left, if a strategy is a pure strategy
drawn from a continuum, but that the payoff is nonlinear as a function of this pure
strategy, such as in the tree height game from Kokko (2007) that we consider in
Sect. 5.2.4. Nearly all real situations feature nonlinearity of some type, and when
models of real behaviours are developed, the payoffs involved are indeed generally
nonlinear in some way.

Some results for linear games can be generalized and reformulated for nonlinear
games. The conditions (5.10) and (5.11) can be generalized as follows:

Theorem 3. For games with generic payoffs, if the incentive function

hp;q;u D E ŒpI .1 � u/ıp C uıq� � E ŒqI .1 � u/ıp C uıq� (5.22)

is differentiable (from the right) at u D 0 for every p and q, then p is an ESS if and
only if for every q ¤ p;

1. E ŒpI ıp� � E ŒqI ıp� and

2. if E ŒpI ıp� D E ŒqI ıp�, then @
@u

ˇ
ˇ
ˇ
.uD0/

hp;q;u > 0.

For a proof, see Broom and Rychtář (2013).

Theorem 4. Let E be linear in the focal player strategy, i.e. (5.19) holds, and let
the function hp;q;u be differentiable w.r.t u at u D 0. Let p D .pi/ be an ESS. Then
E ŒpI ıp� D E ŒSiI ıp� for any pure strategy Si such that i 2 S.p/ D fjI pj > 0g.

For a proof see Broom and Rychtář (2013). We note that it is enough to assume
hp;q;u to be continuous.
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If the payoff is not linear but strictly convex so that, for all q and all p with at
least two elements in S.p/,

X

i

piE ŒSiI ıq� > E ŒpI ıq�; (5.23)

then any ESS must be a pure strategy.
Lemma 1 below shows that the payoffs of games that are linear in the focal

player strategy and satisfy polymorphic monomorphic equivalence (5.21) must be
of a special form. These games are called population games, or playing the field
games.

Lemma 1. If the payoffs of the game are linear in the focal player strategy (i.e.
satisfy (5.19)) and satisfy polymorphic monomorphic equivalence (5.21), then for
every x; y; z and every " 2 Œ0; 1�

E ŒxI .1 � "/ıy C "ız� D
X

i

xifi
�
.1 � "/y C "z

	
(5.24)

where fi.q/ D E ŒSiI ıq�.

Below we write payoffs in the form E ŒpI ıq� D P
i pifi.q/ for some functions fi,

and this indicates that payoffs are linear in the focal player strategy and also satisfy
polymorphic monomorphic equivalence.

Theorem 5. Let the payoffs be such that E ŒpI ıq� D P
i pifi.q/ for some continuous

functions fi. Then the strategy p is an ESS if and only if it is locally superior, i.e. there
is U.p/ a neighbourhood of p such that

E ŒpI ıq� > E ŒqI ıq�; for all q.¤ p/ 2 U.p/: (5.25)

For a proof, see Palm (1984).

5.2.2 Playing the Field

In this section we consider payoff functions of the form

E ŒpI ˘� D
X

pifi.˘/ (5.26)

where the fi’s are (in general nonlinear) functions of the population strategy ˘ .
Such playing the field games are the most natural way of incorporating nonlinearity
into a game model, since the fitness function automatically includes the population
frequencies of the different strategies.
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An example is the sex ratio game, one of the classical models of evolutionary
game theory (Hamilton 1967). The model considers the question of why the sex
ratio in most animals is close to a half? At first sight there needs to be far less
males than females, since often the only male contribution is in mating; in many
species most offspring are fathered by a small number of males and the rest make
no contribution.

Assume that the strategy of an individual female is its choice of the proportion of
male offspring. Let p be the strategy of a small invading group in a population that
plays strategy m. Every individual has the same number of offspring, so fitness is
given proportional to the number of grandchildren. Given that every individual has
one mother and one father, if generation sizes remain constant it is easy to show that
the fitness of an individual with strategy p is given by

E ŒpI ım� D p

m
C 1 � p

1 � m
(5.27)

so that in the notation of Eq. (5.26) we have

f1.m/ D 1

m
; f2.m/ D 1

1 � m
: (5.28)

The unique ESS of this game is m D 1=2, i.e. an equal sex ratio. The sex ratio
game is in fact effectively just a special case of the following foraging problem (with
N D 2 and r1 D r2).

Consider a population of animals foraging on N food patches, with resources
ri > 0 per unit time for i D 1; : : : ; N, equally shared by all individuals on the patch
(Parker 1978).

The game has N pure strategies for this game, each corresponding to foraging
on a given patch, and a mixed strategy x D .xi/ means to forage at patch i
with probability xi. The payoff to an individual using strategy x D .xi/ against a
population playing y D .yi/ is

E ŒxI ıy� D

8
ˆ̂
<

ˆ̂
:

1; if xi > 0 for some i such that yi D 0,
NX

iIxi>0

xi
ri

yi
otherwise.

(5.29)

It is clear from (5.29) that any ESS p must have pi > 0 for all i D 1; : : : ; N.
Thus any potential problems with infinite payoffs do not need to be considered. In
particular Theorem 3 holds despite the discontinuities in the fitness functions, since
they are continuous in the vicinity of any potential ESS.

The unique ESS p D .pi/ is given by pi D ri=
PN

iD1 ri. This solution can
alternatively be written as

pi

pj
D ri

rj
: (5.30)

This is called Parker’s matching principle.
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We can show this as follows. It is clear that E ŒqI ıp� D E ŒpI ıp� for all q.
Moreover, since this game satisfies polymorphic monomorphic equivalence (5.21)
then

E ŒxI .1 � u/ıy C uız� D E ŒxI ı.1�u/yCuz� (5.31)

and so

hp;q;u D E ŒpI .1 � u/ıp C uıq� � E ŒqI .1 � u/ıp C uıq� D (5.32)

NX

iD1

.pi � qi/
ri

pi C u.qi � pi/
D (5.33)

NX

iD1

pi � qi

pi
ri

�

1 � u
qi � pi

pi
C : : :

�

: (5.34)

This implies that

@

@u

ˇ
ˇ
ˇ
uD0

hp;q;u D
NX

iD1

ri

�
pi � qi

pi

�2

> 0: (5.35)

So from Theorem 3, p is an ESS.

5.2.3 Nonlinearity due to Non-constant Interaction Rates

Another way for nonlinear games to occur is where the strategies employed by the
players affect the frequency of their interactions. The pairwise interactions may be
simple, but if the strategy affects the interaction rate, then the overall payoff function
can be complicated.

The simplest non-trivial scenario is a two player contest with two pure strategies
S1 and S2, with payoffs given by the usual payoff matrix

�
a b
c d

�

; (5.36)

but where the three types of interaction happen with probabilities not proportional
to their frequencies.

Assume that each pair of S1 individuals meet at rate r11, each pair of S1 and S2

individuals meet at rate r12 and each pair of S2 individuals meet at rate r22 (see
Taylor and Nowak 2006). This yields the following nonlinear payoff function
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E ŒS1I pT� D ar11p1Cbr12p2

r11p1Cr12p2
; (5.37)

E ŒS2I pT� D cr12p1Cdr22p2

r12p1Cr22p2
: (5.38)

This reduces to the standard payoffs for a matrix game for the case r11 D r12 D r22.
In the standard game with uniform interaction rates, if a < c and b > d there is a

mixed ESS, and this is also true for non-uniform interaction rates, although the ESS
proportions change. If a > c and b < d then there are two ESSs in the uniform case,
and this is also true for non-uniform interactions, although we note that the location
of the unstable equilibrium between the pure strategies changes.

Otherwise for the uniform case there is a unique ESS. For non-uniform interac-
tion rates, there is always a single pure ESS, but sometimes there is a mixed ESS
too. For c > a > d > b, and setting r12 D 1, this occurs if

r11r22 >

 p
.a � b/.c � d/ Cp

.a � c/.b � d/

d � a

!2

: (5.39)

The Prisoner’s Dilemma is an example where c > a > d > b. Setting r11 D r22 D r
and letting r ! 1 the proportion of cooperators in the mixture tends to 1 and
the basin of attraction of the proportion of cooperators p in the replicator dynamics
increases, tending to p 2 .0; 1�. Thus in extreme cases, the eventual outcome of
the game can be effectively the opposite to that implied by the game with uniform
interaction rates.

5.2.4 Nonlinearity in the Strategy of the Focal Player

Here we consider a third case, involving games where the strategy of an individual
is described by a single number (or a vector) that does not represent the probability
of playing a given pure strategy, but rather represents a unique behaviour such as
the intensity of a signal. We note that this is also the scenario generally considered
in Adaptive Dynamics (see e.g. Metz et al. 1992; Metz 2008), though in practice
stronger assumptions are generally made than we use here.

Consider the following game-theoretical model of tree growth (Koch et al. 2004;
Kokko 2007). We assume that a tree has to grow large enough in order to get sunlight
and not get overshadowed by neighbours; yet the more the tree grows the more of
its energy has to be devoted to “standing” rather than photosynthesis.

Let h 2 Œ0; 1� be the normalized height of the tree, so that 1 is the maximum
possible height of a tree. In Kokko (2007), the fitness of a tree of height h in a forest
where all other trees are of height H was given by

E ŒhI ıH� D .1 � h3/ � �1 C exp.H � h/
	�1

; (5.40)
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where f .h/ D 1 � h3 represents the proportion of leaf tissue of a tree of height h and
g.h � H/ D �

1 C exp.H � h/
	�1

represents the advantage or disadvantage of being
taller/ shorter than neighbouring trees.

What are the ESSs for the tree, i.e. the evolutionarily stable heights? Differentiat-
ing (5.40) with respect to h obtains the unique maximum for h, i.e. the best response
to a given H in the population. Any ESS must be a best response to itself, and so
setting h D H after the above differentiation yields

1

4

��6H2 C .1 � H3/
	 D 0: (5.41)

Equation (5.41) has only one root in (0,1) and the crossing of the x axis happens
with negative derivative, so that the root is the unique ESS.

5.3 Multi-Player Games

In the previous sections we have considered games with two individuals only,
or games played against “the population”. We shall now consider situations with
contests involving groups of individuals which are of size three or larger, selected
randomly from a large population. We shall only consider multi-player matrix
games (Broom et al. 1997) here. Note that another important example of a multi-
player game is the multi-player war of attrition (Haigh and Cannings 1989). For
an extensive review of multiplayer evolutionary games, see Gokhale and Traulsen
(2014).

5.3.1 Introduction to Multi-Player Matrix Games

Consider an infinite population, from which groups of m players are selected at
random to play a game. The expected payoff to an individual is obtained by simply
averaging over the rewards for all possible cases, weighted by their probabilities, as
for matrix games.

In general where the ordering of individuals matter, extending the bimatrix game
case to m players, the payoff to each individual in position k is governed by an
m-dimensional payoff matrix. However, as in matrix games, as opposed to bimatrix
games, we assume that there is no significance to the ordering of the players.
Thus an individual’s payoff depends only upon its strategy and the combination
of its opponents’ strategies. We will call such games symmetric, and we have the
following symmetry conditions:

ai1:::im D ai1�.i2/:::�.im/ (5.42)
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for any permutation � of the indices i2; : : : ; im. For the three player case, these are
simply

apqr D aprq, for all p; q; r D 1; 2; : : : ; n: (5.43)

The payoff to an individual playing p in a contest with individuals playing
p1; p2; : : : ; pm�1 respectively is written as EŒpI p1; p2; : : : ; pm�1�. As the ordering
is irrelevant, for convenience when some strategies are identical we use a power
notation, for example EŒpI p1; p2; p3

m�3�.
The payoffs function is given as follows

EŒpI p1; p2; : : : ; pm�1� D
nX

iD1

pi

nX

i1D1

� � �
nX

im�1D1

aii1i2:::i.m�1/

k�1Y

jD1

pj;ij ; (5.44)

where pj D .pj;1; pj;2; : : : ; pj;n/.
We note that, as pointed out by Gokhale and Traulsen (2010), as long as groups

are selected from the population completely at random, as is usually assumed,
then symmetric and non-symmetric games will have identical payoff functions. For
example in the case of 3-player games, every individual is equally likely to occupy
any of the ordered positions. In particular the term aijk has identical weighting to aikj

in the payoff to an i-player, so that the sum of these two can be replaced by twice
their average.

A multi-player matrix is super-symmetric if

ai1:::im D a�.i1/:::�.im/ (5.45)

for any permutation � of the indices i1; : : : ; im.
For example, for super-symmetric three-player three strategy games, there are

ten distinct payoffs. Without loss of generality we can define the three payoffs
a111 D a222 D a333 D 0, and this leaves seven distinct payoffs to consider
a112; a113; a221; a223; a331; a332 and a123. Broom et al. (1997) considers the replicator
dynamics for such games in detail, including every case where the last seven payoffs
above take values of either 1 or �1. We will only discuss the simpler two strategy
games here.

5.3.2 ESSs in Multi-Player Matrix Games

A strategy p in an m-player game is called evolutionarily stable against a strategy
q if there is an "q 2 .0; 1� such that for all " 2 .0; "q�

E ŒpI .1 � "/ıp C "ıq� > E ŒqI .1 � "/ıp C "ıq�; (5.46)
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where

E ŒxI .1 � "/ıy C "ız� D
m�1X

lD0

 
m � 1

l

!

.1 � "/l"m�1�lEŒxI yl; zm�1�l�: (5.47)

p is an ESS for the game if for every q ¤ p, there is "q > 0 such that (5.46) is
satisfied for all " 2 .0; "q� (Broom et al. 1997).

Similarly as in inequalities (5.10) and (5.11), we have the following:

Theorem 6. For an m-player matrix game, the mixed strategy p is evolutionarily
stable against q if and only if there is a j 2 f0; 1; : : : ; m � 1g such that

EŒpI pm�1�j; qj� > EŒqI pm�1�j; qj�; (5.48)

EŒpI pm�1�i; qi� D EŒqI pm�1�j; qi� for all i < j. (5.49)

For a proof see Broom et al. (1997) or Bukowski and Miȩkisz (2004).
A strategy p is an ESS at level J if, for every q ¤ p, the conditions (5.48)–(5.49)

of Theorem 6 are satisfied for some j � J and there is at least one q ¤ p for which
the conditions are met for j D J precisely.

If p is an ESS, then by Theorem 6, for all q,

EŒpI pm�1� � EŒqI pm�1�: (5.50)

The payoffs are linear on the left so that

EŒpI pm�1� D EŒqI pm�1�; for all q with S.q/ � S.p/: (5.51)

We note that in the generic case, any pure ESS is of level 0. A mixed ESS cannot be
of level 0, but in the generic case, any mixed ESS must be of level 1.

Analogues of the strong restrictions on possible combinations of ESSs for matrix
games do not hold for multi-player games. In particular, the Bishop-Cannings
Theorem fails already for m D 3. For m > 3, there can be more than one ESS
with the same support as we shall see in Sect. 5.3.3. On the other hand, we still have
the following for m D 3.

Theorem 7. It is not possible to have two ESSs with the same support in a three
player matrix game.

For a proof, see Broom et al. (1997) or Broom and Rychtář (2013).
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5.3.3 Two-Strategy Multi-Player Games

We shall now consider games with only two pure strategies. The possible situations
for a given individual are thus all combinations of that individual playing pure
strategy i D 1; 2 against m � 1 players, j of which play strategy S1 (and the other
m � 1 � j play strategy S2), for any 0 � j � m � 1. We shall denote these payoffs
by ˛ij.

We consider an individual playing strategy x in a population playing y. A group
of m � 1 opponents is chosen and each one of them chooses to play strategy S1 with
probability y1 (and so strategy S2 with probability y2 D 1 � y1). We obtain

E ŒxI ıy� D
m�1X

lD0

 
m � 1

l

!

yl
1ym�1�l

2 EŒxI Sl
1Sm�1�l

2 �; (5.52)

where

EŒxI Sl
1; Sm�1�l

2 � D
2X

iD1

xi˛il: (5.53)

Note that it does not matter whether the population is polymorphic or monomor-
phic and playing the mean strategy; thus multi-player matrix games have the
polymorphic-monomorphic equivalence property.

Recalling that the payoffs of the m-player two strategy matrix game are ˛il for
i D 1; 2 and l D 0; 1; : : : ; m � 1, we define ˇl D ˛1l � ˛2l and consider the incentive
function

h.p/ D E ŒS1I ı.p;1�p/� � E ŒS2I ı.p;1�p/� (5.54)

D Pm�1
lD0

�m�1
l

	
ˇlpl.1 � p/m�l�1: (5.55)

The function h quantifies the benefits of using strategy S1 over strategy S2 in
a population where all other players use strategy p D .p; 1 � p/. Note that h is
differentiable, and that the replicator dynamics now becomes

dq

dt
D q.1 � q/h.q/: (5.56)

Theorem 8. In a generic two strategy m-player matrix game

1. pure strategy S1 is an ESS (level 0) if and only if ˇm�1 > 0,
2. pure strategy S2 is an ESS (level 0) if and only if ˇ0 < 0,
3. an internal strategy p D .p; 1 � p/ is an ESS, if and only if

1. h.p/ D 0, and
2. h0.p/ < 0.
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0 0 01 1 1

Fig. 5.2 The incentive function and ESSs in multiplayer games. The full dots show equilibrium
points and the arrows show the direction of evolution under the replicator dynamics

It is shown in Broom et al. (1997) that the possible sets of ESSs are the
following:

1. 0 pure ESSs, and l internal ESSs with l � b m
2
c;

2. 1 pure ESS, and l internal ESSs with l � b m
2

� 1c;
3. 2 pure ESSs, and l internal ESSs with l � b m

2
� 2c (Fig. 5.2).

There can be more than one ESS with the same support in a 4-player game as
shown in the example below.

Consider an example with the following payoffs (Bukowski and Miȩkisz 2004):
with ˛11 D ˛22 D � 13

96
; ˛13 D ˛20 D � 3

32
and ˛10 D ˛12 D ˛21 D ˛23 D 0. Thus

ˇ0 D 3=32; ˇ1 D �13=96; ˇ2 D 13=96; ˇ3 D �3=32 giving

h.p/ D � 3

32
p3 C 13

32
p2.1 � p/ � 13

32
p.1 � p/2 C 3

32
.1 � p/3 D (5.57)

�
�

p � 1

4

��

p � 1

2

��

p � 3

4

�

: (5.58)

Using the ESS conditions from Theorem 8, we see that the game has two internal
ESSs at p D .1=4; 3=4/ and p D .3=4; 1=4/, and no pure ESSs.

5.4 Discussion

In this paper we have considered two main recent developments in the theory
of evolutionary games. In particular the extension from linear matrix games to
nonlinear games, and from two player to multiplayer games.

Nonlinearity within evolutionary games is introduced in its most natural way by
considering games played against the population as a whole, so-called playing the
field games. These can be generally expressed in the form of Eq. (5.26). They often
result from situations where individuals do not interact directly, but where their
behaviours have a direct effect on the environment, which then affects the payoffs
of individuals. Thus in foraging models, the value of food patches depends directly
on the intensity of their use by foragers within the population, as we saw from Parker
(1978). More recent and realistic models of this phenomenon are given in Cressman
et al. (2004), Křivan et al. (2008) for example.
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Even when games are pairwise, linearity only occurs because opponents are
chosen at random, with equal probability. If some opponents are more likely than
others and this is in any way related to the strategy of those involved, either through
individuals directly being more likely to interact with those choosing a particular
strategy or because evolution has led to different strategy distributions in different
geographical locations, then nonlinearity will result, as we saw in Taylor and Nowak
(2006). An example of this phenomenon occurs in food-stealing games, see e.g.
Broom et al. (2004, 2008).

The above games are linear in the strategy of the focal player, as its strategy is a
probabilistic weighting of distinct choices. When its strategy is a single trait chosen
from a continuum, such as the height of a tree as in Koch et al. (2004), Kokko
(2007), then there is nonlinearity in the focal player strategy too. Another example
is the sperm allocation games of Parker et al. (1997), Ball and Parker (2007). We
also note that this idea is central to the related concept of adaptive dynamics, where
populations evolve by successive small mutations, see Kisdi and Meszéna (1993),
Geritz et al. (1998).

Multiplayer games have been, and continue to be, common in Economics, for
instance see Kim (1996),Wooders et al. (2006), Ganzfried and Sandholm (2009).
However until recently they have been less common in evolutionary games. An
extension of the classical idea of well-mixed populations of pairwise games to
consider such populations with multiplayer games was first introduced with the
work of Palm (1984) and followed by Haigh and Cannings (1989), Broom et al.
(1997), Bukowski and Miȩkisz (2004). More recently Hauert et al. (2006), Gokhale
and Traulsen (2010), Han et al. (2012), Gokhale and Traulsen (2014) have developed
the theory further.

As for nonlinear games above, multiplayer games can occur from non-
independent pairwise games, for example within the formation of dominance
hierarchies, where the results of a contest directly dictate who an individual will
face next (if anybody). This was the focus of the games from Broom et al. (2000a,b).

Evolutionary game theory has also been extended to finite populations, based
upon the original Moran process (Moran 1962) where different concepts are needed
to deal with the stochastics effects which are not present in infinite populations,
and where the single most important concept is that of the fixation probability of a
rare mutant (equivalent to a small fraction of mutants within an infinite population,
whose establishment within a population is either certain or impossible), important
examples include Fogel et al. (1998), Nowak et al. (2004), Taylor et al. (2004),
Traulsen et al. (2005), Nowak (2006). Within this general theory, there have also
been developments based upon multiplayer games, and these are well-reviewed in
Gokhale and Traulsen (2014).

Interesting new work on multiplayer games in each of the above areas continues
to appear. For example the theory of adaptive dynamics is continually expanding,
and the nonlinearity that appeared in the food stealing games of Broom et al. (2008),
which was due to the effect of time constraints, is being considered more widely,
for instance in Cressman et al. (2014). The work on finite populations including
its multiplayer variants continues to be developed. In particular the modelling of
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structured populations from evolutionary graph theory Lieberman et al. (2005) has
been extended to incorporate multiplayer games (Broom and Rychtář 2012). This
area is at the relatively early stages of development, and there are many possibilities
for further research.
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Chapter 6
A Zero-Sum Game Between the Network
Designer and an Adversary in Consensus
Protocols

Mahmoud El Chamie and Tamer Başar

Abstract This article addresses the problem of designing optimal strategies in
consensus protocols for networks vulnerable to adversarial attacks. First, a set
of necessary conditions for optimal control is given in the case of the dynamic
(multi-stage) weight selection problem of consensus protocols. Under some mild
conditions, it turns out that only one-stage is sufficient for reaching consensus, and
the article derives a closed-form solution for the optimal control. Second, a (zero-
sum) game theoretical model with a “convex-convex” quadratic objective function
is considered for the problem of a network with an adversary corrupting the control
signal with noise. Mixed-strategy saddle-point (MSSP) strategies are obtained for
the players (the adversary and the network designer) in the resulting game. Further,
a totally distributed gradient method that computes the optimal control is provided.
Simulation results show that an adversary using an MSSP strategy can drive the
system away from consensus, while an adversary using a uniform random strategy
does not cause as much damage.
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6.1 Introduction

Consensus protocols are attracting increasing interest in recent years. Consensus
algorithms are based on neighbor-to-neighbor interactions among nodes, where
each node executes iteratively a weighted average linear update rule, and the
goal is for the entire set of nodes to reach consensus. Many applications such
as formation control (Fax and Murray 2004), load balancing (Cybenko 1989),
distributed state estimation in power systems (Vukovic and Dan 2014), and data
fusion in sensor networks (Avrachenkov et al. 2011) rely on such protocols.
Consensus in networks can be subject to time-varying network topology (Ren
and Beard 2005), quantization in communication (Nedic et al. 2009; El Chamie
et al. 2014), communication delays (Olfati-Saber and Murray 2004), and adversarial
intervention (Khanafer et al. 2013).

As in any protocol, some parameters can be tuned in the consensus algorithm.
Therefore optimizing the choice of these parameters leads to a better performance
in terms of energy savings, speed of convergence, or robustness of the system. For
instance, energy savings can be achieved by applying termination algorithms of the
consensus protocol. El Chamie et al. (2013) give distributed algorithms to reduce
communication overhead and (Ko and Gao 2009; Hendrickx et al. 2014) study
finite-time consensus using arbitrary time-varying weights selected before the start
of consensus that are based on matrix factorization techniques. For achieving a faster
asymptotic convergence rate using a fixed weight selection algorithm, the weights in
consensus protocols can be tuned in centralized manner by a semi-definite program
(SDP) (Xiao and Boyd 2004) or in distributed manner using projected sub-gradient
methods (El Chamie et al. 2015). For time-varying weights, the work in (Schwarz
and Matz 2012) selects the weights to reduce the mean square error in correlated or
uncorrelated initial node values. For a complete overview of consensus protocols,
we refer the reader to El Chamie (2014) and Olfati-Saber et al. (2007), and the
references therein.

Further, networks can be susceptible to attacks from adversaries willing to drive
the system away from consensus. There are different types of adversaries depending
on their action strategies. For example, compromised strategic nodes [like faulty
nodes or stubborn ones (Acemoglu et al. 2011; Ben-Ameur et al. 2012)] are inside-
system adversaries that have access to part of the physical network. Other types
of strategic intervention include adversaries that cut communication links or insert
noise signals in the agents’ interaction protocol (Khanafer et al. 2013). Adversaries
can also inject false data (collected by nodes) into the system, which bypass bad-
data detection mechanisms. False data injections are known as stealth attacks and
are widely studied in problems of security of state estimation in electric power
networks (Vukovic and Dan 2014; Liu et al. 2009). In order to mitigate the effect
of an adversary, security procedures should be taken into account in the design of
optimal strategies in consensus protocols.

Our present work shares with this set of references the same objectives of design-
ing time-varying weights for faster consensus and studying optimal strategies in
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networks that are vulnerable to adversarial attacks. We study time-varying weights
for consensus protocols within the framework an optimal control formulation. We
then study the effect of adversaries that can compromise these weights. We propose
a game theoretical framework for an adversary that can add noise to the weights
to drive the system away from consensus. We derive the optimal strategies for
both players (the adversary and the network designer) within the solution concept
of mixed-strategy saddle-point (MSSP) equilibrium. The difference with previous
related work is that in this article we consider the initial values as input to our
dynamic weight design. This article is an extension of our work reported in the
conference paper (El Chamie and Başar 2014); besides providing an overview
of the results in El Chamie and Başar (2014), we consider here a distributed
implementation of the optimal control using gradient methods and we further carry
out extensive simulations to corroborate the theoretical findings.

6.2 Problem Formulation

In a nutshell, a network is comprised of nodes (or agents) and links that connect
these nodes within a graph-theoretic topology. In this article we consider the links to
be communication links, which allow the nodes to share information and resources.
Let there be n nodes in the network, where each one has a scalar xi.k/ 2 R called
node’s state variable that is located (and can be updated) in its local memory, where
k is a discrete-time index and xi.0/ is the initial value at node i. Average consensus
protocol is an iterative process where nodes, subject to some given communication
constraints, reach consensus on the average of all initial values (i.e., they all end up
with the value xave WD 1

n

P
i xi.0/). The communication links in the network could

be uni-directional (i.e., information can flow only in one direction) or bi-directional
(i.e., information is allowed to flow in both directions); here we adopt the latter.
That is, we model the network as an undirected connected graph G D .V; E/ where
V D f1; : : : ; ng is the set of vertices (nodes) and E D f1; : : : ; mg is the set of edges
(links). We use the notation s � .ij/ to indicate that the vertices i and j are incident to
link s. One class of algorithms to achieve consensus is obtained by nodes updating
their values in a synchronized and iterative way as follows:

xkC1 D W.k/xk; (6.1)

where xk is the state vector having xi.k/ for i D 1; : : : ; n as its elements and
W.k/ is the weight matrix at iteration k satisfying, for its ij’th element, wij D 0

if .ij/ … E. The values of the state variables at the nodes are guaranteed to converge
asymptotically to the average (under some conditions on the weights W.k/),

lim
k!1 xk D Nx;
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where Nx D xave1 and 1 is the vector of all ones. One such set of conditions with
fixed weights (i.e., W.k/ D W 8k) is the following (Xiao and Boyd 2004):

1TW D 1T ; W1 D 1; �.W � 1

n
11T/ < 1;

where �.:/ is the largest eigenvalue in magnitude of a matrix. Let us now provide
some insight about these conditions. By the first condition, the average in the
network is conserved, namely

1Txk D 1Tx0 D nxave 8k: (6.2)

The second ensures stability (i.e., if the system reached consensus at a given
iteration, then the values of the nodes’ variables will be stable and would not change
in further iterations). The last condition guarantees contraction on the weight matrix
(i.e., the variables eventually converge to consensus). At any iteration k, the squared
error Lk from consensus is defined as follows:

Lk D jjxk � Nxjj22 D yT
k yk; (6.3)

where yk D xk � Nx.
In this article, we design time-varying weight matrices W.k/ such that consensus

is reached with the least number of iterations (that is, we are interested in achieving
fastest convergence) under the criterion of minimum squared error. In this work,
as opposed to others in the literature, the weight matrix is a function of both the
network structure and the initial values, i.e.,

W.k/ D W.k; x0/:

As the weight matrix depends on initial values, a centralized unit (such as the
network designer) is assumed to have a global knowledge on the network structure
and on these values. In the article, we will also discuss a decentralized design of
this weight matrix by using gradient methods that converge to the desired control
values.

6.3 Optimal Weight Selection on Undirected Graphs

Toward the goal stated above, as commonly assumed on undirected graphs, we
impose the following properties on the weight matrix:

W.k/ D W.k/T and W.k/1 D 1: (6.4)
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With these conditions, the average is conserved with every iteration (i.e., Eq. (6.2)
is satisfied). Let uk 2 R

m be the control variable. At stage k, the network designer
will select a control uk where each element in this vector corresponds to the weight
of a link in the graph at a given iteration. By considering the equality constraints
in Eq. (6.4), the weight matrix can be written as a function of the control vector as
follows:

W.k/ D In � Qdiag.uk/Q
T ; (6.5)

where In is the n by n identity matrix, Q is an n � m incidence matrix of the graph
G (each column corresponds to an edge such that if column s � .ij/ 2 E, then
Qis D C1 and Qjs D �1 while all other elements of the column are zeros).

For any iteration k, the system deviation from the average can be measured by
the squared error Lk. Since the goal is to reach consensus fast, in the criterion to
be optimized, the error is considered only at the last stage. The problem is then to
select a control that minimizes LN , for some pre-selected N. Let JN WD xT

NxN , and
note that

LN D yT
NyN

D xT
NxN � 2NxTxN C NxT Nx

D JN � 2xave1TxN C nx2
ave

D JN � nx2
ave:

Then any optimal control that minimizes LN minimizes also the function JN because
the term nx2

ave depends only on the initial values (through the average). In fact, JN

can be viewed as a cost on the system due to the control applied. The optimal control
problem can then be formulated as follows:

minimize
u0;:::;uN�1

JN

subject to

xkC1 D xk � Qdiag.uk/Q
Txk; for k D 0; : : : ; N � 1;

(6.6)

where N is the (fixed) number of stages in this optimization. We first show that an
optimal control exists.

6.3.1 Existence of a Solution

To show that an optimal control .u�
k ; k D 0; : : : ; N � 1/ exists, we first re-write the

optimal control problem (6.6) as an unconstrained optimization problem:

minimize
u0;:::;uN�1

f .u0; : : : ; uN�1/ (6.7)
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where

f .u0; : : : ; uN�1/ D JN D xT
NxN

D xT
0 UT

.N�1;0/U.N�1;0/x0; (6.8)

and U.N�1;0/ D W.N � 1/W.N � 2/ : : : W.0/. Notice that the elements of the matrix
U.N�1;0/ are linear in the control variables, and UT

.N�1;0/U.N�1;0/ is a positive semi-
definite matrix. Then f .:/ is a quadratic function and bounded from below. Hence
there exists at least one control vector sequence .u�

k ; k D 0; : : : ; N �1/ that globally
minimizes f . As both problems (6.6) and (6.7) are equivalent, then the existence of
a solution for (6.7) as demonstrated in this part guarantees a solution for (6.6).

6.3.2 Necessary Conditions

To find necessary conditions for the optimal control, we apply the maximum
principle (Lewis et al. 2012, p. 24) to problem (6.6). For k D 0; : : : ; N � 1, the
system equation, performance index, and Hamiltonian are given as:

• System equation:

xkC1 D xk � Qdiag.uk/Q
Txk; (6.9)

• Performance index:

JN D xT
NxN ;

• Hamiltonian:

Hk D �T
kC1

�
xk � Qdiag.uk/Q

Txk
	

; (6.10)

where �kC1 is the costate variable corresponding to iteration k.

Then, the costate equation and the associated boundary condition are:

• Costate:

�k D @Hk

@xk
D �

In � Qdiag.uk/Q
T
	

�kC1; (6.11)

• Boundary condition: �N D xN :

By Pontryagin’s minimum principle (also known as the maximum principle) any
optimal control should minimize the Hamiltonian (Lewis et al. 2012). This provides
necessary conditions for an optimum control because it should satisfy this principle
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along any optimum trajectory. Notice that the Hamiltonian in Eq. (6.10) can be
written as follows:

Hk D �T
kC1

�
xk � Qdiag.uk/Q

Txk
	

;

D �T
kC1xk � �T

kC1Qdiag.QTxk/uk; (6.12)

and hence Hk is linear in the unconstrained control variables uk. If any coefficient
of a control variable in (6.12) is nonzero, then a control that minimizes Hk would
be unbounded because it is unconstrained. But an optimal control exists as we have
already shown, so by applying the maximum principle, all the coefficients of the
control variables in (6.12) are necessarily equal to zero, i.e.,

@Hk

@uk
D �

QTxk
	ˇ �

QT�kC1

	 D 0; for k D 0; : : : ; N � 1; (6.13)

where ˇ is the element-wise product of the vectors and 0 is the vector of all
zeros. Equation (6.13) provides necessary conditions for a controller to minimize
(6.8) [and equivalently, these conditions are necessary for any optimal controller of
problem (6.6)].

When N D 1, the boundary condition gives �1 D x1, and then the necessary
conditions (6.13) would reduce to,

�
QTx0

	ˇ �
QTx1

	 D 0, i.e.,

.xi.0/ � xj.0//.xi.1/ � xj.1// D 0 for all .ij/ 2 E: (6.14)

Let us provide a graphical interpretation of these conditions. Let G0 D .V; E0/ be a
sub-graph of G defined on the same set of vertices, V , and with links E0 � E such
that .ij/ 2 E0 if .ij/ 2 E and xi.0/ � xj.0/ ¤ 0. Then we have:

Proposition 1 If G0 D .V; E0/ is connected, then any optimal control u� drives the
system to consensus in one iteration, i.e.,

Nx D �
In � Qdiag.u�/QT

	
x0:

Proof. From (6.14), xi.1/ D xj.1/ 8.ij/ 2 E0. If G0 is connected, then there is a
path in E0 between any two vertices, and thus xi.1/ D xj.1/ 8i; j 2 V . Using also
the fact that the average is conserved [by (6.2)], we get xi.1/ D xave 8i 2 V . ut

Notice that the assumption G0 D .V; E0/ being connected is not restrictive.
Without any loss of generality, we can assume that this condition is satisfied. For
example, if the node’s initial values xi.0/; i D 1; : : : ; n, are i.i.d. continuous random
variables, then G0 is connected almost surely because G is connected. This condition
can also be satisfied almost surely by a distributed pre-processing operation by the
nodes. For example the nodes can (1) add a random value to nodes’ initial values,
(2) perform one averaging iteration, and (3) subtract back the random value added
in step (1). This procedure will not change the average value xave but at the same
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time it gives new initial values satisfying the connectivity assumption almost surely.
In the rest of this article, we will assume that G0 is connected, and therefore only
one stage (N D 1) is needed for the operation to converge to the average.

Remark. The controls considered in this article are unconstrained. However, due to
the structure of the problem, the state is constrained. In particular, for any stage k,
1Txk D 1Tx0 as Eq. (6.2) demonstrates. In the presence of additional constraints on
the control, the problem would be much more challenging and the control derived
in this article can no longer have closed-form solutions. However, the maximum
principle can still reveal some structure for the optimal solution. Suppose, for
example, that N D 1 and that the control variables are restricted to nonnegative
values (i.e., u � 0). Since the Hamiltonian in Eq. (6.10) is linear in the control,
if the coefficient of a control ul is positive, u�

l would necessarily be equal to 0.
Otherwise, Eq. (6.14) must be satisfied. Therefore, for any link l � .ij/ such that
xi.0/ � xj.0/ ¤ 0, we have either u�

l D 0 or xi.1/ D xj.1/. This results in clusters
of nodes, where each cluster has nodes with equal state variables after one iteration.
But there are no simple conditions on the initial state for the cluster to include all
the nodes as Proposition 1 shows for the case of unconstrained control. ut

6.4 Closed-Form Solution for the One-Stage Problem

When N D 1, the control is a single vector u where each component is the weight
for the corresponding edge. The optimization problem in this case is the following:

uS D argmin
u

f .u/; (6.15)

where uS is the solution set (possibly an infinite set) and

f .u/ D xT
0 .In � Qdiag.u/QT/.In � Qdiag.u/QT/x0

D jjx0 � Qdiag.u/QTx0jj22
D jjx0 � Qdiag.QTx0/ujj22
D jjDu � x0jj22;

where

D D Qdiag.QTx0/: (6.16)

The problem is then convex and is reduced to a least squares approximation
problem, where any element in the solution set uS satisfies what is known as the
normal equations:
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DTDu D DTx0; 8u 2 uS: (6.17)

Moreover, uS is not empty, with at least one solution, given by

Ou D DCx0; (6.18)

where DC is the pseudo inverse of D that can be obtained using the singular value
decomposition of D. If DTD is a positive-definite matrix, then DC D .DTD/�1DT

and Ou is the unique solution to the least squares problem. Let us study in more detail
the singularity property of the matrix DTD. We have that

rank.DTD/ D rank.D/

� rank.Q/

� n � 1;

where the last equality is due to the fact that the rows are not linearly independent
because the sum of all rows in Q is equal to 0T where 0 is the vector of all zeros,
so that rank.Q/ D row rank.Q/ � n � 1. Since DTD is an m by m matrix, for this
matrix to be non-singular it is necessary that m � n � 1. But m is the number of
links in the network, so a necessary condition for the matrix to be non-singular is to
have a cycle-free graph (i.e., the graph G has a tree topology) where m D n � 1. In
fact, the solution set uS can be characterized by the following expression:

u D DCx0 C .Im � DCD/e;

where e 2 R
m is any vector. Notice that the second term in the sum is a vector

that belongs to the null space of DTD, and therefore with any vector e, the control
vector u satisfies the normal equations in (6.17). The solution Ou is obtained by taking
e D 0, and it is worth noting that Ou has the minimum L2-norm in uS, i.e., Ou D
argminu2uS

jjujj.
We denote by S the minimum value of the function f .u/:

S D f . Ou/ D jj.DDC � I/x0jj22; (6.19)

which we will have occasion to use later.

6.5 Network with an Adversary

Networks can be susceptible to attacks from adversaries. In this section, we consider
an adversary that can inject noise onto the weights of the links, with the objective
to drive the system away from consensus. Considering the one stage optimization
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(N D 1), the state equation would then become

x1 D W.u; v/x0

D .In � Qdiag.u C v/QT/x0; (6.20)

where W.u; v/ is the weight matrix that depends on the control u 2 U1 D R
m and

the noise of the adversary v 2 U2 D fyI y 2 R
m; jjyjj � Cg, where C is a given

positive constant and can be interpreted as the power constraint of the adversary (the
larger C, the more powerful is the adversary). The cost function is now

J.u; v/ D xT
1 x1

D jj.In � Qdiag.u C v/QT/x0jj22
D jjD.u C v/ � x0jj22; (6.21)

where D is given by (6.16). The adversary (v) is the maximizer of J.u; v/ while the
network designer (u) is the minimizer in this zero-sum two-person game having a
“convex-convex” quadratic objective function because J.u; v/ is convex in u and is
convex in v as well.

Definition 1. A pair .u� 2 U1; v� 2 U2/ is a pure-strategy saddle point (PSSP) of
J.u; v/ if the following holds:

J.u�; v/ � J.u�; v�/ � J.u; v�/; for all .u 2 U1; v 2 U2/:

From Definition 1, any saddle-point pair .u� 2 U1; v� 2 U2/ in pure strategies
for the zero-sum game satisfies the following property (Başar and Olsder 1999):

J.u�; v�/ D sup
v2U2

inf
u2U1

J.u; v/ D inf
u2U1

sup
v2U2

J.u; v/: (6.22)

As J is a quadratic function of u, and J.u; v/ � 0 for all .u 2 U1; v 2 U2/, for
any given v 2 U2, J attains a minimum on U1 (Hildebrandt 1908). Moreover,
since U2 is compact, and J is a continuous function on its domain of definition,
for any given u 2 U1, J attains a maximum on U2 by the Weierstrass Theorem.
Therefore, we can replace infu2U1 by minu2U1 and supv2U2

by maxv2U2 in (6.22).
In the sequel, we will show that actually in the formulated zero-sum game we have
maxv2U2 minu2U1 J.u; v/ < minu2U1 maxv2U2 J.u; v/, that is strict inequality holds
and hence the game does not have a saddle point (in pure strategies). It, however,
admits a mixed-strategy saddle-point solution (shortly to be defined and verified).
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6.5.1 The Max-Min Solution

In the max-min solution, the network designer has access to the choice of the
adversary:

argmin
u

J.u; v/ D argmin
u

jjD.u C v/ � x0jj22 D DCx0 � v:

Then we have,

max
v

min
u

J.u; v/ D max
v

J.DCx0 � v; v/ D max
v

S D S;

where S is the value of the one player optimization problem, given by (6.19), and
is independent of v. In other words, if the network designer knows exactly what
the strategy of the adversary is (by knowing v), then it is possible to tune his
unconstrained optimal control u so that it eliminates the effect of the added noise
vector by the adversary.

6.5.2 The Min-Max Solution

In the min-max solution, the adversary has access to the choice of the controller.
Note that J can be written as:

J.u; v/ D jjD.u C v/ � x0jj22
D xT

0 x0 C uTDTDu � 2xT
0 Du

C vTDTDv C 2vT
�
DTDu � DTx0

	
:

Consider the following strategy v1 by the adversary:

(
v1 2 R.DTD/ \ U2 if DTDu � DTx0 D 0

v1 D C .DT Du�DT x0/

jjDT Du�DT x0jj otherwise,
(6.23)

where R.DTD/ is the range of the matrix DTD. Therefore,

min
u

max
v

J.u; v/ � min
u

J.u; v1/

D min
u

n
vT

1 DTDv1 C 2vT
1

�
DTDu � DTx0

	

„ ƒ‚ …
>0 due to (6.23)
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C xT
0 x0 C uTDTDu � 2xT

0 Du
o

> min
u

˚
xT

0 x0 C uTDTDu � 2xT
0 Du

� D S:

Hence, maxv minu J.u; v/ < minu maxv J.u; v/, which means that there is no saddle
point in pure strategies.

6.5.3 Mixed-Strategy Saddle Point (MSSP)

Since a pure-strategy saddle point PSSP does not exist, we extend the strategy spaces
of the players to include randomization (i.e., probability distributions over their
action sets). A mixed strategy for the network designer is a probability distribution

 on U1, and we denote the space of all such probability distributions by M1.
Similarly, a mixed strategy for the adversary is a probability distribution � on U2,
and the space of all such probability distributions is denoted by M2. The average
cost corresponding to a pair .
 2 M1; � 2 M2/ is given by

NJ.
; �/ D
Z

U1�U2

J.u; v/d
.u/d�.v/:

Definition 2. A pair .
� 2 M1; �� 2 M2/ is a mixed-strategy saddle point (MSSP)
if the following holds:

NJ.
�; �/ � NJ.
�; ��/ � NJ.
; ��/; for all .
 2 M1; � 2 M2/:

Proposition 2 Consider the following strategies:


�.u/ W u D DCx0 with probability 1; (6.24)

and

��.v/ W
(

v D Cp with probability 1/2

v D �Cp with probability 1/2;
(6.25)

where p is any unit eigenvector of the matrix DTD corresponding to the largest
eigenvalue of DTD, that is �max.DTD/. Then the pair .
�; ��/ is an MSSP.

Proof. The cost function is the following:

J.u; v/ D xT
0 x0 C uTDTDu � 2xT

0 Du

C vTDTDv C 2vT
�
DTDu � DTx0

	

D jjDu � x0jj22 C vTDTDv C 2vT
�
DTDu � DTx0

	
:



6 A Zero-Sum Game in Consensus Protocols 129

Then the average cost under the given pair of strategies is,

NJ.
�; ��/ D jjDDCx0 � x0jj22 C .Cp/TDTD.Cp/ � .1=2/

C .�Cp/TDTD.�Cp/ � .1=2/

D S C C2�max: (6.26)

But we have,

NJ.
�; �/ D jjDDCx0 � x0jj22 C
Z

U2

�TDTD� d�.v/

� S C max
v;jjvjj�C

vTDTDv

D S C C2�max D NJ.
�; ��/; (6.27)

NJ.
; ��/ D C2�max C
Z

U1

jjD
 � x0jj22 d
.u/

� C2�max C min
u

jjDu � x0jj22
D S C C2�max D NJ.
�; ��/: (6.28)

Since we have for any pair .
 2 M1; � 2 M2/,

NJ.
�; �/ � NJ.
�; ��/ � NJ.
; ��/;

it follows that .
�; ��/ is a saddle-point equilibrium. ut
Remark. The saddle point is not unique, as any .
; �/ where 
 is a point
distribution in the set uS of (6.15) [or any distribution on this set due to the ordered
interchangeability property of saddle points (Başar and Olsder 1999)], and � as in
(6.25) where p is any eigenvector corresponding to �max.DTD/ (or any distribution
on these vectors) is also a saddle point. However, if D is full column rank, and �max

has geometric multiplicity of 1, then the saddle point is unique. ut

6.6 Distributed Implementation of the Optimal Control

The computation of an optimal control u� 2 uS (that satisfies the normal equation
(6.17) and drives the system to consensus in one iteration) depends on initial values
x0 and the network structure given by the matrix Q. Therefore, it is necessary that
the centralized unit be aware of these values to implement this optimal control.
However, distributed averaging can run in a decentralized manner by nodes applying
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the system equation (6.1) in a distributed way:

xi.k C 1/ D wii.k/xi.k/ C
X

j2Ni

wij.k/xj.k/ for i D 1; : : : ; n; (6.29)

where Ni is the set of neighbors of node i. Notice that due to Proposition 1, if
W� D In � Qdiag.u�/QT , then we have convergence in one iteration:

xave D w�
ii xi.0/ C

X

j2Ni

w�
ij xj.0/ for i D 1; : : : ; n:

In this section, we study the implementation of the optimal weights W� in a
distributed way. Since u� is a minimizer of the convex function f .u/ D jjDu � x0jj22
where D D Qdiag.QTx0/, then any local minimizer of this function is eventually a
global one. We can thus apply the gradient method in a distributed way to lead to
convergence to an optimal solution. Our starting point is the following lemma.

Lemma 1. For any link l � .ij/ we have

gl D @f .u/

@ul
D �2.xi � xj/.x

C
i � xC

j /; (6.30)

where xC D .I � Qdiag.u/QT/x0 D Wx0 and xC
i for i D 1; : : : ; n are its elements.

Proof. Since f .u/ D jjDu � x0jj22,

gl D @jjDu � x0jj22
@ul

D �
2DT.Du � x0/

	

l

D 2
�
DT.Qdiag.QTx0/u � x0/

	

l

D 2
�
DT.Qdiag.u/QTx0 � x0/

	

l

D �2
�
diag.QTx0/QTWx0

	

l

D �2.QTx0/l.Q
TWx0/l

D �2.xi � xj/.x
C
i � xC

j /: (6.31)

The last equality is due to the fact that each column l in the incidence matrix Q has
only 2 nonzero terms (C1 and �1) corresponding to the nodes incident to the link
l � .ij/. ut

Since the gradient at every link can be calculated in a distributed way by
Lemma 1, the following iterative gradient method can be used to find the optimal
control for the weights on links:
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ul.k C 1/ D ul.k/ � 	.k/gl.k/; (6.32)

where 	.k/ is the stepsize. The initial condition can be chosen arbitrarily, for example
one choice could be to select ul.0/ D 0 for l D 1; : : : ; m. Different choices of
the stepsize can guarantee the convergence to the optimal solution. For instance, a
constant small enough step (	.k/ D 	 for all k) is sufficient for the convergence
of the system to the optimal value because the convex function f is differentiable
(Polyak 1987, Theorem 1, p. 21), which guarantees that

lim
k!1 ul.k/ D u�

l : (6.33)

In particular, since the gradient of the f .u/ satisfies a Lipschitz condition:

jjrf .u1/ � rf .u1/jj D jj2DT.Du1 � x0/ � 2DT.Du2 � x0/jj
D jj2DTD.u1 � u2/jj
� 2�.DTD/jju1 � u2jj
D Ljju1 � u2jj;

where �.DTD/ is the largest eigenvalue of DTD and L D 2�.DTD/ is the Lipschitz
constant. Then any constant stepsize such that

0 < 	 <
2

L
(6.34)

would lead to the result in Eq. (6.33).
As a result, letting W.k/ D I � Qdiag.u.k//QT , the following system

y.k C 1/ D W.k/x0 (6.35)

converges to the average, i.e., limk!1 y.k/ D Nx. Notice that Eq. (6.35) differs
from the typical average consensus dynamics in Eq. (6.1) in that x0 is not changing
with time, but it is constant along the iterations while the weight matrix W.k/

converges to the optimal value W� and guarantees the convergence of the system
to the average. For a distributed implementation, we have that gl.k/ D �2.xi � xj/

.xC
i � xC

j / D �2.xi � xj/.yi.k/ � yj.k// for all l � .ij/. Therefore, at every
iteration k, each node first broadcasts its estimate yi.k/ to its neighbors. From the
received estimates, each node then calculates gl.k/ using Eq. (6.30) and ul.k/ using
Eq. (6.32) for all the links it is incident to. Then, from Eq. (6.35), yi.k C 1/ D
wii.k/xi.0/ CP

j2Ni
wij.k/xj.0/ and a new iteration starts.
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6.7 Simulations

6.7.1 Adversarial Intervention

We study by simulations the effect of an adversary disrupting the communication
on networks having connected random geometric graphs (RGGs) topology. In
RGGs, n nodes are thrown uniformly at random on a unit square, and any two
nodes within a connectivity radius r are connected by a link. The simulations are

done here with a connectivity radius r D
q

0:6 � loge.n/

n given that the graph is
connected. RGGs are generally used as models for wireless sensor networks, and
the disruption of communication can be achieved by insertion of high intensity
signals on communication links. The additive white noise can also be considered
as an adversarial input in our settings. We compare the results on different RGGs
with different sizes (number of nodes n) for n 2 f20; 40; 60; 80; 100g. Figure 6.1
shows the different costs on the resulting network with and without the presence
of the adversary, averaged over 150 independent runs to achieve 95 % confidence
intervals. We consider only one-stage games where the initial cost function is given
by J0 D xT

0 x0. For any node i, the initial node value xi.0/ is selected at random
uniformly within the interval Œ0; 1�. We assume that the adversary power constraint
is jjvjj � 1 (i.e., C D 1). As shown in Fig. 6.1, as to be expected the network
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Fig. 6.1 The cost function due to different adversary settings: absence of adversary, uniform
random adversary that adds a random noise to the control values, and saddle-point adversary that
randomizes its strategy in accordance with the saddle-point equilibrium
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without an adversary achieves the least cost J1. An adversary selecting uniformly
random strategy from the n-dimensional unit sphere does not substantially affect
the cost; however, an adversary with the same power constraint playing the strategy
of the saddle-point equilibrium (Eq. (6.25)) achieves significantly higher cost than
the uniform random adversary (even larger cost than J0 for graphs of n D 20 and
n D 40 nodes). Moreover, we can study the effect of the size of the graph on the
cost function. All curves seem to be linear in n. The initial cost J0 curve shows a
higher slope than other cost curves. In fact we can characterize the slope in this
case. Since the initial values are selected from a uniform random distribution in the
interval Œ0; 1�, we have EŒJ0� D EŒxT

0 x0� D P
i EŒxi.0/2� D nEŒX2� D 1

3
n where X is

a uniform random variable lying in the interval Œ0; 1�. Therefore, the slope of the line
J0 in expectation is 1=3. Without an adversary, the curve J1 from simulations shows
that it has the smallest slope. Let us characterize the slope in this case. With the
given initial conditions, Proposition 1 is satisfied almost surely. Then the network
reaches consensus in one iteration, i.e., x1 D xave1. With initial values following
a uniform variable between Œ0; 1�, EŒxave� D 0:5 independent of the size of the
network. Therefore, EŒJ1� D EŒxT

1 x1� D nx2
ave D 1

4
n. Hence, the graph without an

adversary shows, on the average, a slope of 1=4 (compared to 1=3 for the initial
distribution). For the graphs with an adversary, the analytic values of the average
cost depends not only on the distribution of values, but also on the random graph
topology. Based on simulations, the figure shows that the cost due to a uniform
random adversary does not change the slope of J1 graph without the adversary, but
only causes some offset. However, these simulations suggest that an adversary with
the saddle-point strategy seems to cause a slope slightly larger than 1=4, but still
less than 1=3. This confirms that an “intelligent” adversary can cause serious harm
on the system.

6.7.2 Optimal Control Using Gradient Iterations

As demonstrated in Sect. 6.6, gradient methods can be used to obtain the optimal
control for the weights on links. In this part of the simulations, we consider a line
network with four nodes, as depicted in Fig. 6.2, where the initial values are picked
as x0 D .1; 5; 4; 10/T and the control is given by u D .u12; u23; u34/T . Note that for
the given initial values x0, Proposition 1 says that there exists an optimal control
u� such that convergence is achieved in one iteration. By applying Eq. (6.18), we
obtain that

Fig. 6.2 A line network of
agents
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Fig. 6.3 Convergence of weights in the line network using the gradient method

u� D
�

1; �4;
5

6

�T

:

We will apply gradient methods with a constant stepsize 	 D 0:0125 for
convergence to the optimal value. Figure 6.3 shows the convergence of the weights
on links when using the gradient optimization in Eq. (6.32). The initial starting value
for the gradient is u.0/ D .0; 0; 0/T . Figure 6.3 shows that the control variables
converge to the optimal values with a reasonable accuracy within 200 iterations.

For further investigation of the proposed gradient method, we consider larger
graphs. We do the simulation on RGG graphs with 100 nodes and connectivity

radius r D
q

0:6 � log.n/

n 	 0:1662. To measure the distance from consensus at
every iteration k, we introduce the metric e.k/ defined as follows:

e.k/ D log10

�
Lk

L0

�

D log10

� jjxk � Nxjj22
jjx0 � Nxjj22

�

:

For example, e.k/ D �3 indicates that the current error Lk is 0:1 % of the initial
one. This can be used for example as a stopping criterion. Figure 6.4 shows that on
RGG graphs, the error from consensus decreases and reaches around 0:1 % with less
than 500 iterations. The figure shows the 95 % confidence interval and the resulting
graph is an average of 150 independent simulation runs. At each run, each node
initial value follows a random variable uniformly distributed between 0 and 1. Note
that with these initial values, G0 is connected almost surely and thus the optimal
control drives the system to consensus in one iteration.
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Fig. 6.4 The decrease in the error e.k/ with the gradient iterations using a constant stepsize 	 D
1

1:1�
[to satisfy Eq. (6.34)] shows that the system is eventually converging to consensus (i.e., the

gradient method converges to the optimal weights on links)

6.8 Conclusion

In this article, we have studied a zero-sum game between a network designer
applying consensus protocols, and an adversary that interrupts these protocols by
adding some noise to the weights on communication links. We have studied the
saddle-point equilibrium of the consensus problem. We have found that a saddle
point in pure strategies does not exist, but it does in mixed strategies. We have
obtained the expressions of the mixed strategies where the adversary selects the
noise using randomization, whereas the network designer’s strategy remains still
pure. We have used gradient methods that lead to convergence to this pure strategy
in a distributed way. Simulations on random geometric graphs have shown that an
adversary adhering to his saddle-point mixed strategy can cause more harm on the
system than applying just a random strategy.

For future work, it would be interesting to study the case when the adversary
does not have access to initial values, which would then lead to a game with
asymmetric information. Studying the equilibrium in the presence of a broader class
of adversaries (as malicious and misbehaving nodes, or adversaries that break links)
is also one of our future research interests.
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Chapter 7
Maximal Stable Bridge in Game with Simple
Motions in the Plane

Liudmila Kamneva and Valerii Patsko

Abstract It is known that the solvability set (the maximal stable bridge) in a
zero-sum differential game with simple motions, fixed terminal time, geometrical
constraints for controls of the first and second players, and convex terminal set
can be constructed by a program absorption operator. A backward procedure for
construction of a t-section of the solvability set does not need any partition of the
time segment. In the article, we assert the same property for a game with simple
motions, polygonal terminal set (generally non-convex), and polygonal constraints
for controls of the players in the plane. In the specific case of a convex terminal set,
the operator used in the article coincides with the program absorption operator.

Keywords Differential games with simple motions in the plane • Solvability set •
Backward procedure

Math Subject Classifications: 49N70, 49L99, 49N35

7.1 Introduction

In numerical solution of zero-sum differential game, a backward procedure is often
used (Subbotin and Patsko 1984; Taras’ev et al. 1987; Sethian 1999; Kumkov et al.
2005; Cristiani and Falcone 2006; Botkin et al. 2011; Dvurechensky and Ivanov
2014) to construct level sets (Lebesgue sets) of the value function. As a rule, at
each step Œtj�1; tj�, tj�1 < tj, of the backward procedure, dynamics of the game is
replaced (locally or in global state space) by dynamics of the type Px D u C v,
u 2 P , v 2 Q. Here, x is a state vector; u and v are controls of the first and second
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players; P , Q are convex compact sets. Such a dynamics is called dynamics of
simple motions (Isaacs 1965). If dimension of x is equal to 2 (i.e. the original game
or the equivalent one takes place in the plane) and the game dynamics is replaced
globally (it is typical for linear differential games with fixed terminal time), then
the level set Wc.tj/, which corresponds to the value c of the value function at tj, is
approximated by a polygon Wc.tj/, and the compacts P , Q are substituted with
convex polygons P, Q. As a result of the backward procedure, we get a polygon
Wc.tj�1/ approximating the “true” level set Wc.tj�1/ of the value function at tj�1.

A transition from Wc.tj/ to Wc.tj�1/ is often realized by the “program absorption”
operator (Krasovskii and Subbotin 1974, p. 122). If the set Wc.tj/ is convex, then the
set Wc.tj�1/ obtained in this case coincides with the exact solution of the differential
game of attainability of the set Wc.tj/ for dynamics of simple motions. We have an
analogous situation if the complement R2 n Wc.tj/, and hence its closure W 0

c.tj/ D
R2 n Wc.tj/, is convex. Thus, in the convex case, there exists an operator (namely
“program absorption” operator) that gives the exact solution of the approximating
problem without any additional partition of the interval Œtj�1; tj�.

A natural question is on existence of an operator with the same property, which
gives the exact solution Wc.tj�1/ based on Wc.tj/ in the case when neither the set
Wc.tj/ nor its complement is convex.

Our article is dedicated to this question. It is shown that in the case of dynamics
of simple motions, an arbitrary polygon M � R

2 given at the instant # , and arbitrary
convex polygonal constraints P, Q on the controls of the first and second players,
there exists an instant t� < # such that construction of the set Wc.t/, t 2 Œt�; #/, can
be realized exactly without any additional partition of the interval Œt; #� into smaller
subintervals and using them as elements of the backward procedure.

The operator proposed in the article does not coincide, in general, with the
“program absorption” operator, but uses it as a “fragment” in a more complex
structure. We use a geometric approach to define the operator.

At the end of the article, we give an example of a differential game, for
which applying the “program absorption” operator for the original terminal set and
its complement gives approximations of the required set from above and below
correspondingly. Each of the approximation sets is not coincide precisely with the
section of the true solution.

7.2 Differential Game with Simple Motions

Consider a control system with simple motions (Isaacs 1965) in the plane:

Px D u C v; u 2 P; v 2 Q; t 2 Œ0; #�; # > 0: (7.1)
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Here, x 2 R
2 is a state vector, u and v are controls of the first and second players,

each of the sets P and Q is either a convex closed polygon or a linear segment.
(We mean a polygon is a bounded closed set bounded by a polyline without self-
intersections and with a finite number of vertices.)

Let M be a given polygon. A differential game is formed by a problem of
M-attainability for the first player and a problem of M0-attainability for the second
player, M0 D R2 n M.

Statement of a problem of M-attainability for the first player is presented
in Subbotin (1995, § 13.1) as follows. The first player tries to guarantee x.#/ 2 M.
It is assumed that the player knows the current position .t; x.t// and generates a
feedback control u.t; x.t// 2 P. To solve the problem of M-attainability, a notion of
u-stable bridge is used.

A set-valued function Œ0; #� 3 t 7! W.t/ � R
2 defines the u-stable bridge

(the graph of the function) W D f.t; x/ W t 2 Œ0; #�; x 2 W.t/g in the problem of
M-attainability if W.#/ � M, the set W is closed on Œ0; #� � R

2, and for any v 2 Q
the set W is weakly invariant with respect to the differential inclusion

Px 2 P C v: (7.2)

The condition of weak invariance means that for any .t0; x0/ 2 W there exists a
motion x.�/ W Œt0; #� ! R

2 satisfying differential inclusion (7.2), the initial condition
x.t0/ D x0 and the viability condition: x.t/ 2 W.t/ for all t 2 Œt0; #�. In the theory
of differential game, this property (in an equivalent formulation) is called the u-
stability condition.

In the same way, the problem of M0-attainability for the second player is
formulated and the notion of v-stable bridge is introduced.

The original (equivalent) notions of stable bridges were presented in Krasovskii
and Subbotin (1974, pp. 52–54) and Krasovskii and Subbotin (1988, pp. 53, 58).

Let W0 denote the maximal (by inclusion) u-stable bridge in the problem of M-
attainability. In Cardaliaguet et al. (1999), an analogues set is called a discriminating
kernel.

It is known (Krasovskii and Subbotin 1974, § 16) that the set W is the maximal
u-stable bridge in the problem of M-attainability if and only if the set W 0 D f.t; x/ W
t 2 Œ0; #�; x 2 R2 n W.t/g is the maximal v-stable bridge in the problem of M0-
attainability. Thus, if we construct the maximal u-stable bridge, we get both the
solutions of M-attainability and M0-attainability problems.

The following property is true. Assume that for any t 2 Œt1; t2� the section W0.t/
of the maximal stable bridge W0 is a polygon. Then the set-valued function Œt1; t2� 3
t ! W0.t/ is continuous with respect to the Hausdorff metric topology.

The article aims to investigate a possibility of constructing the maximal stable
bridge for some interval Œt�; #� by an operator, which does not need any additional
partition of the interval.
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7.3 Spirals in the Plane, Semipermeable Tubes, and Surfaces

7.3.1 Spiral Polylines in the Plane

Polyline 	 D a0a1 : : : an	 in the plane is a union of a finite number of linear
segments Œai; aiC1�, i D 0; n	 � 1, ai ¤ aiC1, such that an end of each segment
(except possibly the last one) is the beginning of the next segment while segments
that have a common end do not belong to a straight line. A segment is also
considered as a polyline. Points a0, a1, : : : ; an	 are called vertices of the polyline;
segments Œai; aiC1�, i D 0; n	 � 1, are called edges of the polyline; segments that
have a common vertex are called adjacent edges. A polyline 	 is closed if the end
of the last edge coincides with the beginning of the first one, i.e. an	 D a0.

Normally, a polyline 	 is called a convex polyline if it is in the same half-plane
with respect to any straight line containing an edge of the polyline (so, a closed
convex polyline bounds a convex polygon). The boundary of a nonconvex polygon
can be represented as a union of nonclosed polylines of different types. To do this,
we generalize the notion of a nonclosed convex polyline as follows.

Definition 1. An angle of a polyline 	 at a vertex ai, i D 1; n	 � 1, is an oriented
(with respect to the sign) angle less then  formed by rays with the direction vectors
�!
aiaiC1,

�!
aiai�1 and the vertex at the point ai. An adjacent angle of the polyline 	 at

the vertex ai, i D 1; n	 � 1, is an oriented angle less then  formed by the rays

with the direction vectors
�!

ai�1ai,
�!
aiaiC1 and the beginning at ai. [An angle is called

positive (negative) if the transition from the first to the second direction vector is
counterclockwise (clockwise). The sum of the angle of a polyline at the vertex ai,
i D 1; n	 � 1, and the corresponding adjacent angle is equal to ˙ .]

Definition 2. A nonclosed polyline without self-intersections is called convex if its
adjacent angles have the same sign.

Definition 3. A single left (right) spiral is defined to be a nonclosed polyline
without self-intersections such that all its adjacent angles are positive (negative)
and its first edge Œa0; a1� belongs to the boundary of its convex hull.

Let an edge Œai; aiC1� of a single spiral 	 be assigned to a unit normal vector with

direction obtained by rotating the vector
�!
aiaiC1 by the angle �=2 (C=2) for left

(right) spiral, i D 0; n	 � 1. Note that the unit normal vectors for edges from the
boundary of the convex hull are directed outward the convex hull (Fig. 7.1a, b). The
“outward” and “inward” end vertices of the single spiral 	 are denoted by a	 and b	

correspondingly.

Definition 4. A polyline 	 is called a double spiral if it can be represented as a
union 	 D 	 l

0 [	0 [	 r
0 , where 	 l

0 , 	0, 	 r
0 are nonclosed polylines, 	0 D 	 \@.co 	/,

	 l
0 \ 	 r

0 D ¿, 	0 [ 	 l
0 D 	 l is a left spiral, and 	0 [ 	 r

0 D 	 r is a right spiral.
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Fig. 7.1 Single left (a) and right (b) spirals; double spiral (c)

Let the end vertices of the spiral 	 l be denoted by a l
	 , b l

	 ; and the end vertices of
the spiral 	 r be denoted by a r

	 , b r
	 (Fig. 7.1c).

Changing the numeration of vertices, we can refer any nonclosed convex polyline
to one of the following types: a single left spiral, a single right spiral, a double spiral.

7.3.2 Semipermeable Tube

Let O.z; "/ be an open circle of center z and radius " > 0 in R
2.

For " > 0, define a value �."/ > 0 such that for any z 2 R
2 a trajectory of (7.1)

with an initial position in the set O.z; "=2/ does not leave the set O.z; "/ on the
interval Œ0; �."/�.

Let 0 � t1 < t2 � # , and consider a continuous (by Hausdorff metric) set-valued
function Œt1; t2� 3 t 7! W.t/ � R

2 such that W.t/ is a polygon for all t 2 Œt1; t2�. The
mapping W.�/ defines the set (graph) W D f.t; x/ W t 2 Œt1; t2�; x 2 W.t/g.

We denote the lateral boundary of W by � :

� D f.t; x/ W t 2 Œt1; t2�; x 2 @W.t/g:

The set � is called a tube on the segment Œt1; t2�. Let � .t/ D @W.t/ be a section of
the tube at t. Define an "-neighborhood of the tube � :

O".� / D f.t; x/ W t 2 Œt1; t2�; x 2 O.z; "/; z 2 � .t/g:

Definition 5. A tube � is called semipermeable on the segment Œt1; t2� if there exist
" > 0 and open sets OC

" .� /, O�
" .� / such that

O".� / D OC
" .� / [ � [ O�

" .� /; OC
" .� / \ O�

" .� / D ¿;
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and

1) for any .t0; x0/ 2 O"=2.� / \ �
OC

" .� / [ �
	

and v 2 Q there exists a
measurable open-loop control u.t/ 2 P such that the solution x.t/ to the equation
Px.t/ D u.t/ C v with an initial condition x.t0/ D x0 satisfies the inclusion
.t; x.t// 2 OC

" .� / [ � for all t 2 Œt0; t0 C �."/� \ Œt1; t2�;
2) for any .t0; x0/ 2 O"=2.� / \ �

O�
" .� / [ �

	
and u 2 P there exists a measurable

open-loop control v.t/ 2 Q such that the solution x.t/ to the equation Px.t/ D
u C v.t/ with an initial condition x.t0/ D x0 satisfies the inclusion .t; x.t// 2
O�

" .� / [ � for all t 2 Œt0; t0 C �."/� \ Œt1; t2�.

Given the definition, we use notions of side .C/ and side .�/ of the semiper-
meable tube. We distinguish two types of semipermeable tubes: if the side .C/ is
internal and the side .�/ is external, then the semipermeable tube has a type ˙;
otherwise, the semipermeable tube has a type .

We have that if the lateral surface �0 D f.t; x/ W t 2 Œ0; #�; x 2 @W0.t/g of the
maximal u-stable bridge W0 is a tube, then �0 is a semipermeable tube of type ˙.
The results of the books (Isaacs 1965; Krasovskii and Subbotin 1974, 1988) imply
the converse:

Lemma 1. Assume that � is a semipermeable tube of type ˙ on a segment Œt1; #�,
t1 2 Œ0; #/, and � .#/ D @M. Then � is the lateral surface of the maximal u-stable
bridge W0 on Œt1; #� in the problem of M-attainability.

7.3.3 Semipermeable Surfaces

Let 0 � t1 < t2 � # , and consider a continuous (by Hausdorff metric) set-valued
function Œt1; t2� 3 t 7! �.t/ � R

2 such that �.t/ is a nonclosed polyline without self-
intersections. Additionally we assume that the end vertices of the polyline �.t/ form
two continuous trajectories without self-intersections for t 2 Œt1; t2�. The mapping
�.�/ defines the set (graph) � D f.t; x/ W t 2 Œt1; t2�; x 2 �.t/g, which is called a
surface. Let us denote by O�.�/ and L�.�/ the “end trajectories” of the graph, and we
will use the notion of a surface � with edges O�.�/ and L�.�/.

If �.t/ is a spiral for all t 2 Œt1; t2�, then the surface � is called spiral.
For " > 0, we define an "-neighborhood of the surface � by

O".�/ D f.t; x/ W t 2 Œt1; t2�; x 2 O.z; "/; z 2 �.t/g:

Definition 6. A surface � is called semipermeable on Œt1; t2� if there exist " > 0,
open sets OC

" .� /, O�
" .� /, and a surface Œ��" such that

O".�/ D OC
" .�/ [ Œ��" [ O�

" .�/; OC
" .�/ \ O�

" .�/ D ¿; � � Œ��"; (7.3)
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and

1) for any .t0; x0/ 2 O"=2.�/ \ �
OC

" .�/ [ Œ��"
	

and v 2 Q there exists a
measurable open-loop control u.t/ 2 P such that the solution x.t/ to the equation
Px.t/ D u.t/ C v with an initial condition x.t0/ D x0 satisfies the inclusion
.t; x.t// 2 OC

" [ Œ��" for all t 2 Œt0; t0 C �."/� \ Œt1; t2�;
2) for any .t0; x0/ 2 O"=2.�/ \ �

O�
" .�/ [ Œ��"

	
and u 2 P there exists a measurable

open-loop control v.t/ 2 Q such that the solution x.t/ to the equation Px.t/ D u C
v.t/ with an initial condition x.t0/ D x0 satisfies the inclusion .t; x.t// 2 O�

" [Œ��"
for all t 2 Œt0; t0 C �."/� \ Œt1; t2�.

Given the definition, we use notions of side .C/ and side .�/ of the semiperme-
able surface.

We distinguish two types of semipermeable surfaces: if the unit normal vectors
of the spiral are directed from side .C/ to side .�/, then the semipermeable surface
has a type ˙; otherwise the semipermeable surface is said to be of type .

By SC.�/ D SC. � I �; Œt1; t2�; O�.�/; L�.�// we mean a set-valued function taking a
value t 2 Œt1; t2� to a polyline SC.t/ that is a part of the section � .t/ of the tube �

obtained by moving along � .t/ from O�.t/ to L�.t/ counterclockwise. Analogously we
define a set-valued function S�.�/ D S�.�I �; Œt1; t2�; O�.�/; L�.�// moving along � .t/
from O�.t/ to L�.t/ clockwise.

The definitions of a semipermeable tube and a semipermeable surface directly
imply the following lemma.

Lemma 2. Assume that � is a semipermeable tube on Œt1; t2�. Then the mapping
�.�/ D SC.�/ D SC. � I �; Œt1; t2�; O�.�/; L�.�// defines a semipermeable surface � with
edges O�.�/, L�.�/ for any continuous disjoint trajectories O�.t/, L�.t/, t 2 Œt1; t2�, on the
tube � . The same property is valid for the mapping S�.�/.

Next, we formulate and prove an assertion on sewing semipermeable surfaces.

Lemma 3. Assume that

a) �i is a semipermeable surface with edges O�i.�/, L�i.�/ on Œt1; t2�, i D 1; 2;
b) �1 \ �2 is a surface with edges O�2.�/, L�1.�/ on Œt1; t2�;
c) � D �1 [ �2 is a surface with the edges O�1.�/, L�2.�/;
d) the side .C/ . side .�// of the surface �1 adjoins the side .C/ .side .�// of the

surface �2 via the intersection �1 \ �2 forming the side .C/ .side .�// of the
surface � .

Then � is a semipermeable surface with definite sides .C/ and .�/.

Proof. For t 2 Œt1; t2�, we consider the point ��.t/ that divides the polyline
�1.t/ \ �2.t/ into two polylines of equal length. The “average” path ��.�/ is a
continuous line and separates two parts ��

1 and ��
2 with edges O�1.�/, ��.�/ and ��.�/,

L�2.�/ correspondingly; a schematic view is shown in Fig. 7.2a.
Let h0 be the minimal distance between the end vertices O�2.t/ and L�1.t/ of the

polyline �1.t/ \ �2.t/ for t 2 Œt1; t2�, "i is a value defined in (7.3) by semipermeable
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Fig. 7.2 Sewing semipermeable surfaces into a semipermeable surface (a); a semipermeable
tube (b)

property of the surface �i, i D 1; 2. Fix " 2 .0; minf"1; "2; h0=2g/. We observe that

O.��.t/; "/ \ �i.t/ D O.��.t/; "/ \ �.t/; i D 1; 2; t 2 Œt1; t2�:

Therefore, O".�/ D O".�
�
1 / [ O".�

�
2 /.

Since O".�
�
i / � O"i.�i/, ��

i � �i, we have

O".�
�
i / D OC

" .��
i / [ Œ��

i �" [ O�
" .��

i /;

where

O"̇ .��
i / WD O"̇i

.�i/ \ O".�
�
i /; Œ��

i �" WD Œ�i�"i \ O".�
�
i /; i D 1; 2: (7.4)

Define

O"̇ .�/ D O"̇ .��
1 / [ O"̇ .��

2 /; Œ��" D Œ��
1 �" [ Œ��

2 �":

The sets O"̇ .�/ are open, OC
" .�/ \ O�

" .�/ D ¿, and � � Œ��".
Thus, we deduce the representation

O".�/ D OC
" .�/ [ Œ��" [ O�

" .�/:

Properties 1) and 2) from the definition of a semipermeable surface are valid by
virtue of (7.4).

In the same way, the following lemma can be proved (see Fig. 7.2b).
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Lemma 4. Assume that

a) �i is a semipermeable surface with edges O�i.�/, L�i.�/ on Œt1; t2�, i D 1; 2;
b) the intersection �1 \ �2 consists of two disjoint surfaces with edges O�2.�/, L�1.�/

and O�1.�/, L�2.�/ correspondingly;
c) � D �1 [ �2 is a tube;
d) the side .C/ . side .�// of the surface �1 adjoins the side .C/ .side .�// of the

surface �2 via the intersection �1 \ �2 forming the side .C/ .side .�// of the
tube � .

Then � is a semipermeable tube with definite sides .C/ and .�/.

7.4 Program Absorption Operator and Its Effect
on Convex Sets

We construct a semipermeable surface by sewing pieces of lateral boundaries of
the maximal stable bridges for convex polygonal terminal sets. To this end, we
formulate some assertions that are used in our analysis of t-sections of the bridges.
The corresponding proofs are given in the Appendix.

Let ˘.˛; �/ WD fx 2 R
2 W hx; �i � ˛g be a half-plane defined by a value ˛ 2 R

and a unit vector � 2 R
2 which is an outer normal to the boundary of the half-

plane; N .A/ is the set of outer unit normals to the edges of a convex polygon A;
�.�I A/ D supfha; �i W a 2 Ag is a value of the support function of a set A at a
vector �. Then ˘.�.�I A/; �/ is a supporting half-plane of the set A with the outer
normal �.

For � 2 Œ0; #� and an arbitrary set A � R
2, consider

T� .A/ WD fx 2 R
2 W x C �q 2 A � �P; 8 q 2 Qg D

\

q2Q

.A � �.P C q//:

The operator T� W A ! T� .A/ is called (Krasovskii and Subbotin 1974) a program
absorption operator. We use it for A � R

2.
Note the following properties of the operator T� (Pshenichnyy and Sagaydak

1971; Kamneva and Patsko 2013):

(1) if A � B, then T� .A/ � T� .B/ for all � > 0;
(2)

T� .A \ B/ � T� .A/ \ T� .B/I (7.5)

(3) if a set A is convex and �1; �2 > 0, then T�1 .T�2 .A// D T�1C�2.A/;
(4) for a half-plane ˘.˛; �/, we have

T� .˘.˛; �// D ˘.˛; �/ � �.p� C q�/;
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where

p� 2 Arg min
p2P

hp; �i; q� 2 Arg max
q2Q

hq; �i

[consequently the set f.�; x/ W � > 0; x 2 @T� .˘.˛; �//g is a half-plane of
variables .�; x/ in R � R

2];
(5) for a half-plane ˘.˛; �/ and r 2 R, we have

T� .˘.˛; �/ C r�/ D T� .˘.˛; �// C r�: (7.6)

We define dist .A; B/ to be the minimal distance between any two points of the
sets A and B:

dist .A; B/ D inf
a2A; b2B

ka � bk:

Lemma 5. Assume that A is a convex set in R
2, ˘0 D ˘.˛0; �0/ is a half-plane,

A � ˘0, � > 0, and T� .A/ ¤ ¿. Then dist .T� .A/; @T� .˘0// � dist .A; @˘0/.

Lemma 6. Assume that A is a convex polygon, each of the sets P and Q is either a
convex polygon or a segment, and � > 0. Then

T� .A/ D
\

fT� .˘.�.�; A/; �// W � 2 N .A/ [ N .�P/g:

Write

RP.A/ WD f˘.�.�I A/; �/ W � 2 N .A/ [ N .�P/g (7.7)

for extended set of supporting half-planes of the set A.

Lemma 7. Let A and B be convex polygons, and assume B � A. Then

T� .B/ D T� .A/
\�\

fT� .˘/ W ˘ 2 RP.B/ n RP.A/g
�

: (7.8)

Lemma 8. Let A be a convex polygon, and let ˘ be a half-plane. Assume that
�0 > 0, T�0 .A/ � T�0 .˘/, and T�0 .A/ \ @T�0 .˘/ is an edge of the polygon T�0 .A/.
Then T� .A/ \ @T� .˘/ is an edge of the polygon T� .A/ for all � 2 .0; �0/.

Lemma 9. Let A and B be convex polygons. Assume B � A, @A \ @B is a non-
degenerate nonclosed polyline, � > 0, and T� .B/ ¤ ¿. Then the set @T� .A/\@T� .B/

is either an empty set or a nonempty connected set (a point, a closed or nonclosed
polyline), and the set-valued mapping � ! @T� .A/ \ @T� .B/ is continuous.
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7.5 Construction of Semipermeable Spiral Surfaces

7.5.1 Spiral System A l.�; P/ of Convex Sets for a Single
Left Spiral

Let 	 D a0a1 : : : an	 be a single left spiral. Define �i to be the unit normal to the
edge Œai�1ai� of the spiral 	 , and let N	 D f�1; �2; : : : ; �n	 g. Remind that, for a left
spiral, the direction of the normal to the edge Œai�1ai� is obtained by rotating the

vector
�!

ai�1ai by the angle .�=2/. The vector �i rotates counterclockwise while the
subscript increases (for a left spiral).

Let us form a new set of normals N P
	 by adding the set N .�P/ to the set N	 as

follows. Looking over all pairs of adjacent normals �i and �iC1, i D 1; n	 � 1, we
find all the vectors from N .�P/ belonging to an open cone formed by the vectors �i

and �iC1, and we arrange them counterclockwise (for the left spiral): �1
i ; �2

i ; : : : ; �
ˇi
i .

Such a set may be empty. We insert these sets of vectors between the respective
pairs of the normals �i and �iC1, and we denote the result set by N P

	 :

N P
	 D f�1; �1

1; : : : ; �
ˇ1

1 ; �2; �1
2; : : : ; �

ˇ2

2 ; �3; : : : ; �n	 �1; �1
n	 �1; : : : ; �

ˇn	 �1

n	 �1 ; �n	 g:

For any vector h 2 N P
	 , consider the half-plane ˘	 .h/:

˘	 .h/ D fz 2 R
2 W hz � ai; hi � 0g if h D �i or h D �

j
i; j D 1; ˇi:

Here, the index i is defined by vector h.
We introduce a uniform indication of the elements of the set N P

	 :

N P
	 D fh1; : : : ; hmg:

Let the spiral 	 be associated to a spiral system

A l.	; P/ D fA1 � A2 � A3 � : : : � Ang

of nested convex sets Ai, i D 1; n, as follows. Define A1 WD co 	 . If 	 � @A1, then
write n D 1 and A l.	; P/ D fA1g. In the case 	 6� @A1, the value n1 D maxf i 2
1; m W A1 � ˘	 .hi/g satisfies the inequality n1 < m. Consider auxiliary sets

A�
n1

D A1; A�
j D A�

j�1 \ ˘	 .hj/; j D n1 C 1; m:

For all j D n1 C 1; m, the boundary @˘	 .hj/ of the half-plane ˘	 .hj/ divides the
set A�

j�1 into two non-empty subsets by the segment ŒOe�
j ; Le�

j � D @˘	 .hj/ \ A�
j�1. We

choose the notations for the vertices of the segment in such a way that the half-plane
˘	 .hj/ is on the left hand (for the left spiral) when moving along the segment from
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Oe�
j to Le�

j . Note that

A�
j D A1

\
0

@
j\

iDn1C1

˘	 .hi/

1

A ; j D n1 C 1; m:

We define the set A2 on the basis of the set A1 as follows. Let

˚
j
2 WD

j\

iDn1C1

˘	 .hi/ D
\

f˘ W ˘ 2 RP.A�
j / n RP.A1/g; j D n1 C 1; m:

Note that ˚
n1C1
2 is a half-plane and, consequently, it is unbounded. Find the maximal

number n2 2 n1 C 1; m such that the set ˚
n2

2 is unbounded.
Write

A2 WD A�
n2

D A1

\
0

@
n2\

iDn1C1

˘	 .hi/

1

A D A1 \ ˚
n2
2 ; Oe2.#/ WD Oe�

n1C1; Le2.#/ WD Le�
n2

:

If n2 D m, then write n D 2 and A l.	; P/ D fA1 � A2g. In the case n2 < m, we
construct the set A3 on the basis of the set A2. And so on.

Generally, let us define the set Ak on the basis of the set Ak�1 for the case
nk�1 < m. Let

˚
j
k WD

j\

iDnk�1C1

˘	 .hi/ D
\

f˘ W ˘ 2 RP.A�
j / n RP.Ak�1/g; j D nk�1 C 1; m:

(7.9)

The set ˚
nk�1C1
k is a half-plane. Find the maximal number nk 2 nk�1 C 1; m such

that the set ˚
nk
k is unbounded.

Write

Ak WD A�
nk

D Ak�1

\
0

@
nk\

iDnk�1C1

˘	 .hi/

1

A D Ak�1 \ ˚
nk
k ;

Oek.#/ WD Oe�
nk�1C1; Lek.#/ WD Le�

nk
:

If nk D m, we have n D k and A l.	; P/ D fA1 � A2 � � � � � Akg.
Figure 7.3 illustrates a construction of a spiral system. Here, a left spiral 	

consists of ten edges. The set P is a triangle. The set �P and its outer unit normals
are shown. The normal h3 to the third edge of the polyline 	 is coincide with one
of the normal to the triangle �P. There are no others coinciding normals. We have
m D 14.
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Fig. 7.3 Explanation of construction of a spiral system A l.	; P/ D fA1 � A2 � A3g for n1 D 7,
n2 D 11, and n3 D m D 14

The set A1 is defined as A1 D co 	 . Then, starting with the normal h1, we find a
normal with the maximal number n1 in the set hi, i D 1; m, such that the set A1 is
embedded in the half-plane ˘	 .hi/, i � n1. In our case, we get n1 D 7. We denote
the point Oe�

8 by Oe2.#/.
Next, starting from the point Oe2.#/, we move on the part of the polyline 	 , which

lies inside the set A1. In the set hj, j D n1 C 1; m, we find a normal with the maximal
number n2, such that the intersection ˚

n2

2 D \n2

iDn1C1˘	 .hi/ of half-planes ˘	 .hi/

is unbounded set. We get n2 D 11 and denote the point Le2.#/.
Write A2 D A1 \ ˚

n2

2 . The boundary of the set A2 consists of a polyline between
the points Oe2.#/ and Le2.#/ (when one moves counterclockwise from the point Oe2.#/)
and a part of the boundary of the set A1 between the points Le2.#/ and Oe2.#/ (when
one moves counterclockwise from the point Le2.#/).

In our case, the vector hn2C1 is a normal to the set �P. We define the vertex Oe3.#/

of the polyline 	 .
A part of the polyline 	 , starting from the vertex Oe3.#/, lies inside the set A2.

We get that n3 D m D 14, and we define the set A3. The boundary of the set
A3 consists of a two-edge polyline between the points Oe3.#/ and Le3.#/ (when
one moves counterclockwise from the point Oe3.#/) and a two-edge polyline on
the boundary of the set A2 between the points Le3.#/ and Oe3.#/ (when one moves
counterclockwise from the point Le3.#/).

7.5.2 Construction of a Semipermeable Spiral Surface
of Type ˙ for a Single Left Spiral

For a single left spiral 	 , let us define a spiral system A l.	; P/ D fA1 � A2 �
� � � � Ang. Consider the non-degenerated case n � 2. Let a	 .#/ and b	 .#/

be the start and end points of 	 [twisting from the start point to the end one is
counterclockwise (for the left spiral)].
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It is known (Pshenichnyy and Sagaydak 1971) that for the problem of Ai-
attainability (i D 1; n) the maximal u-stable bridge Wi is defined by

Wi WD f .t; x/ W t 2 Œ0; #�; x 2 T#�t.AiI P; Q/ g;

where

T� .AI P; Q/ WD T� .A/ D
\

q2Q

.A � �.P C q//; � D # � t:

The lateral surfaces of the bridges Wi, i D 1; n, are semipermeable tubes. Using
them, we construct a semipermeable spiral surface � of type ˙ such that �.#/ D 	 .

We define the length �� D ��.	/ of a time interval for construction of the
semipermeable surface � by the condition int T� .An/ ¤ ¿, � 2 .0; ���. Since An

is a non-degenerated polygon (not a point, and not a segment), then such a value
�� > 0 exists. Write t� D t�.	/ D # � ��.

Let �i be the lateral surface of the bridge Wi on Œt�; #�, and let

� #
i .t/ WD �i.t/ \ �i�1.t/; i D 2; n:

The surfaces �i, i D 1; n, are semipermeable tubes of type ˙.
By Lemma 7, for i D 2; n, t 2 Œt�; #�, � D # � t, we have the representation

T� .Ai/ D T� .Ai�1/
\�\

fT� .˘/ W ˘ 2 RP.Ai/ n RP.Ai�1/g
�

:

Here, the set RP.Ai/ of half-planes is defined by (7.7). In view of definition of Ai on
the basis of Ai�1 and the value ni, we have

˚
ni
i D

\
f˘ W ˘ 2 RP.Ai/ n RP.Ai�1/g:

The set ˚
ni
i is given by (7.9) and unbounded. Due to property (4) of the operator

T� , the image T� .˘/ of the half-plane ˘ is its shift by the vector ��.p� C q�/.
Therefore, the intersection

\
fT� .˘/ W ˘ 2 RP.Ai/ n RP.Ai�1/g

of the half-planes is also unbounded. So, since the set Ai is non-degenerated, we
deduce that the set � #

i .t/ is polyline (either closed or nonclosed) and the set-valued
function t ! � #

i .t/ is continuous.
Using symbols Oei.t/, Lei.t/, we denote the vertices of the polyline � #

i .t/ (if it is
nonclosed) in such a way that the set Wi.t/ is on the left hand when moving along
� #

i .t/ from Lei.t/ to Oei.t/, i D 2; n. The functions Oei.�/ and Lei.�/ are continuous. The
introduced notations are explained in Fig. 7.4 for t D # .
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Fig. 7.4 Construction of a semipermeable spiral surface: the basis (a) and the inductive step (b)

Choose some disjoint continuous trajectories a	 .t/, b	 .t/, t 2 Œt�; #�, with the
end points a	 .#/, b	 .#/, such that the trajectory a	 .�/ lies on the tube �1, and the
trajectory b	 .�/ lies on �n. We do not impose any geometric restrictions on location
of the curves a	 .�/ and b	 .�/ with respect to the surface � #

i .
Now we turn to the construction (by math induction on n) of a semipermeable

spiral surface � of type ˙ (with the edges a	 .�/, b	 .�/).
(1) The basis: let n D 2 (Fig. 7.4a). We have two semipermeable tubes �1 and �2.

(1a) First, suppose that W1.t/ ¤ W2.t/ for all t 2 Œt�; #/. In this case, the disjoint
trajectories Oe2.�/ and Le2.�/ (the edges of the surface � #

2 ) are given on the whole
segment Œt�; #�.

Define disjoint trajectories O�i.�/, L�i.�/ that lie on the tube �i, i D 1; 2. For t 2
Œt�; #�, let

L�1.t/ D

 Oe2.t/ if b	 .t/ 62 � #

2 .t/
b	 .t/ otherwise

; O�1.t/ D a	 .t/;

O�2.t/ D

 Le2.t/ if a	 .t/ 62 � #

2 .t/
a	 .t/ otherwise

; L�2.t/ D b	 .t/:

(7.10)

Since the trajectories a	 .�/, b	 .�/, Oe2.�/, and Le2.�/ are continuous, and Oe2.�/; Le2.�/ are
the edges of the surface � #

2 , we conclude that the trajectories O�i.�/ and L�i.�/ are also
continuous.

Write

�i.�/ D SC. � I �i; Œt�; #�; O�i.�/; L�i.�//; i D 1; 2I � D �1 [ �2:

The tubes �1 and �2 are semipermeable. So in view of Lemma 2 we obtain that
the surfaces �1 � �1 and �2 � �2 are semipermeable. Note that �1 \ �2 is a
semipermeable surface with the edges O�2.�/ and L�1.�/, and � D �1 [ �2 is a surface
with the edges O�1.�/, L�2.�/.
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Since W2.t/ � W1.t/ and �1, �2 are semipermeable tubes of type ˙, the sides
.C/ and .�/ of the surfaces �1 and �2 define the sides .C/ and .�/ of the surface � .
By Lemma 3, the surface � is semipermeable surface of type ˙ with definite sides
.C/ and .�/.

(1b) Consider the remaining case: there exists Nt 2 Œt�; #/ such that W1.Nt/ D
W2.Nt/. In this case, W1.t/ D W2.t/ for t 2 Œt�; Nt �.

For t 2 .Nt; #/, two different values Oe2.t/ and Le2.t/ are given, which are the ends of
the polyline � #.t/. Therefore we define the values O�i.t/ and L�i.t/ by (7.10), i D 1; 2.

For t 2 Œt�; Nt �, we have �1.t/ D �2.t/. Therefore we define O�1.t/ D O�2.t/ D a	 .t/

and L�1.t/ D L�2.t/ D b	 .t/.
We next prove that the trajectories O�i.�/ and L�i.�/ are continuous on Œt�; #�,

i D 1; 2. In virtue of definition of the functions O�i.�/ and L�i.�/, we are reduced
to proving right continuity of the functions L�1.�/ and O�2.�/ at t D Nt.

Define

a� D lim
t!NtC0

Oe2.t/ D lim
t!NtC0

Le2.t/:

The second equality is not trivial and based on Lemma 9. The proof is omitted.
We have a� 2 �2.Nt/ D �1.Nt/.

Let us begin with the function L�1.�/. Assume that there exists a sequence ftkg such
that tk ! Nt C 0 and L�1.tk/ D Oe2.tk/ 6! b	 .Nt/. Then b	 .tk/ 2 �2.tk/ n � #

2 .tk/. But
the polyline �2.tk/ n � #

2 .tk/ is collapsed to the point a�, i.e. b	 .tk/ ! a�. Therefore,
b	 .Nt/ ¤ a� and the point b	 .Nt/ does not belong to a neighbourhood G� of a�. The
points Oe2.tk/ and Le2.tk/ are required to get into the neighbourhood G� for sufficiently
large k. So given continuity of the trajectory b	 .�/, we obtain b	 .tk/ 2 � #

2 .tk/, i.e.
O�1.tk/ D b	 .tk/, that contradicts our assumption. Right continuity of L�1.�/ at t D Nt is
proved.

Now consider the function O�2.�/ and assume that there exists a sequence ftkg
such that tk ! Nt C 0 and O�2.tk/ D Le2.tk/ 6! a	 .Nt/. Then a	 .tk/ 2 �1.tk/ n �2.tk/.
Since the set �1.tk/ n �2.tk/ is collapsed to the point a�, we have a	 .tk/ ! a�.
At the same time, we observe a	 .tk/ ! a	 .Nt/ and Le2.tk/ ! a�. Thus a	 .Nt/ D a�
and Le2.tk/ ! a	 .Nt/, that contradicts our assumption. We get that O�2.�/ is also right
continuous at t D Nt.

Further arguments in case (1b) are the same as for case (1a).
(2) The inductive step: assume that we have an algorithm to construct a

semipermeable surface for n D k, k � 2; let us constructs it for n D k C 1.
Write the sequence �1, �2, . . . �k, �kC1 of semipermeable tubes on the time

interval Œt�; #�. Consider two possible cases like in the proof of the basis.
(2a) First assume that W1.t/ ¤ W2.t/ for all t 2 Œt�; #/. In this case, the disjoint

trajectories Oe2.�/ and Le2.�/ (the edges of the surface � #
2 ) are given on the whole

interval Œt�; #�. For t 2 Œt�; #�, we write
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a�
	 .t/ D


 Le2.t/ if a	 .t/ 62 � #
2 .t/

a	 .t/ otherwise.
(7.11)

Figure 7.4b illustrates the notations for t D # . Note that the trajectory a�
	 .�/ is

defined in the same way as the function O�2.�/ in item (1b), and therefore it is
continuous as well.

Applying the induction assumption for the sequence of k tubes �2, . . . , �k, and
�kC1, we construct the semipermeable surface �� with edge trajectories a�

	 .�/ and
b	 .�/.

The trajectories a	 .�/ and a�
	 .�/ lie on the tube �1 and are continuous. Write

�1.�/ D SC. � I �1; Œt�; #�; a	 .�/; Oe2.�//; � D �1 [ ��:

Using Lemma 3 for the surfaces �1 and ��, we find that the surface � is
semipermeable.

(2b) Assume that there exists Nt 2 Œt�; #/ such that W1.Nt/ D W2.Nt/. Then define
the value a�

	 .t/ by formula (7.11) for t 2 .Nt; #�, and let a�
	 .t/ D a	 .t/ for t 2 Œt�; Nt �.

We construct the semipermeable surface on .Nt; #� in the same way as in case (2a).
On the interval Œt�; Nt �, the semipermeable surface can be defined by the induction
assumption applied for the tubes �2; : : : ; �kC1 since �1.t/ D �2.t/, t 2 Œt�; Nt �. On
the whole interval Œt�; #�, we get a semipermeable surface.

7.5.3 Construction of Semipermeable Spiral Surfaces
of Types ˙ and � for Other Original Spirals

(a) When constructing a semipermeable spiral surface of type ˙ for a single right
spiral, we define the right spiral system A r.	; P/ by ordering all the normals
clockwise and moving along boundaries of the sets in the negative direction (the
set is on the right hand). We compose the spiral surface in the same way as for a
single left spiral replacing the operator SC.�/ by S�.�/.

(b) When constructing a semipermeable spiral surface of type  for a single left
(right) spiral, we define the spiral system A l.	; Q/ (correspondingly, A r.	; Q/).
We compose the spiral surface of type  in the same way as in the construction
of a semipermeable spiral surface of type ˙ replacing the operator T� .�I P; Q/ by
T� .�I Q; P/, and the set RP.A/ by RQ.A/.

(c) Let us describe a construction of semipermeable spiral surfaces of types ˙
for a double spiral 	 . By definition, we have the representation 	 D 	 l

0 [ 	0 [ 	 r
0 ,

where 	 l
0 , 	0, 	 r

0 are non-degenerated polylines,
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	0 D 	 \ @A0; A0 D co 	; 	 l
0 \ 	 r

0 D ¿;

	0 [ 	 l
0 D 	 l is a left spiral, 	0 [ 	 r

0 D 	 r is a right spiral (Fig. 7.1c).
Let al

	 .#/ D 	0 \ 	 r
0 and ar

	 .#/ D 	0 \ 	 l
0 be initials vertices of the spirals

	 l and 	 r, and let bl
	 .#/ and br

	 .#/ be its end vertices. Note that bl
	 .#/ 2 	 l

0 and
br

	 .#/ 2 	 r
0 are the end vertices of the spiral 	 (the both are “inner”).

Let trajectories al
	 .�/ and ar

	 .�/ be given. For the left spiral 	 l and right spiral 	 r,
we define the corresponding left and right spiral systems:

A l.	 l/ D fAl
1 � Al

2 � � � � � Al
nl

g; A r.	 r/ D fAr
1 � Ar

2 � � � � � Ar
nr

g:

We have Al
1 D Ar

1 D A0.
Choose an instant tl;r� < # such that int T� .Al

nl
/ ¤ ¿ and int T� .Ar

nr
/ ¤ ¿ for

� 2 .0; # � tl;r� �.
Let W0, Wl

2, Wr
2 be the maximal u-stable bridges in the problems of A0-, Al

2-,
Ar

2-attainability, correspondingly; and let �0, � l
2 , � r

2 denote the lateral surfaces of
the bridges W0, Wl

2, Wr
2.

We define a trajectory al
	 .�/ [correspondingly, ar

	 .�/] as the edge (along the time

axis) of the set �0 n � r
2 [correspondingly, �0 n � l

2 ], moving backward from al
	 .#/

[correspondingly, ar
	 .#/].

Find an instant Qt 2 Œtl;r� ; #/ such that the trajectories al
	 .�/ and ar

	 .�/ are not
intersect on Œ Qt; #�. Write

�0.�/ D SC. � I �0; Œ Qt; #�; al
	 .�/; ar

	 .�//:

On Œ Qt; #�, assume that trajectories bl
	 .�/ and br

	 .�/, that are the “inner” edges of
the semipermeable surface to be constructed, are given, and define the semiper-
meable surfaces � l and � r of type ˙ with the edges al

	 .�/, bl
	 .�/ and ar

	 .�/, br
	 .�/,

correspondingly. Let the value t� D t�.	/ 2 Œ Qt; #/ be defined by the condition of
non-intersection of sets � l.t/ and � r.t/ outside the set �0.t/ for t 2 Œt�; #�.

The surface � D � l [ � r is the desired semipermeable surface.

7.6 Sewing a Semipermeable Tube from Semipermeable
Spiral Surfaces

Consider a polygonal boundary 	 D @M of the nonconvex terminal set. We
represent the closed polyline 	 in the form of an ordered union of even number of
spirals 	i, i D 1; 2k, such that the last edge of a spiral coincides with the first edge
of the next spiral (common edges) while the corresponding normals to the common
edges are in opposite directions. Several variants of the set M is given in Fig. 7.5.
Common edges of the spirals are shown by bold lines.
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M

M

M

Fig. 7.5 Partition of the boundary of the terminal set M into convex and concave polyline arcs
intersecting by common edges

To be definite, assume that the normals of the spiral 	i are outward the set M
for an odd i (a convex arc on the boundary of the set). In this case, we construct
a semipermeable spiral surface of type ˙. For an even i, we assume that the
normals are inward the set M (a concave arc). For such a spiral, we construct a
semipermeable spiral surface of type .

Let each single spiral 	i be assigned to the value t[.	i/ D t�.	i/, where t�.	i/ is
introduced in Sect. 7.5.2. In the case of a double spiral, we write t[.	i/ D t�.	i/,
where t�.	i/ is introduced at the end of Sect. 7.5.3. On Œt[.	i/; #�, we construct
a semipermeable surface �i emanating backward in time from the spiral 	i, i.e.
�i.#/ D 	i.

Find

tM � max
i21;2k

t[.	i/;

such that the set � D �1 [ � � � [ �2k is a tube on ŒtM; #�. The value tM is defined
by the following conditions: (1) the common edges do not degenerate; (2) sections
�i.t/, t 2 ŒtM; #�, can intersect with adjacent surfaces only by the common edges.
Condition (1) means that the common edge of any two adjacent convex and concave
arcs of the original polyline 	 changes its length in a section for t 2 ŒtM; #�, when
the corresponding two spiral surfaces go backwards in time, but the common edge
does not collapse to a point.

Using Lemmas 3 and 4, we deduce that the tube � is semipermeable on ŒtM; #�,
and �.#/ D 	 . Consequently, in virtue of Lemma 1, the tube � coincides with the
lateral surface of the maximal u-stable bridge W0 on ŒtM; #�, i.e. the tube � gives the
solution of the differential game on the segment.
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7.7 Example

We illustrate our theoretical results by the following example. Let a nonconvex set
M and geometrical constraints P and Q for controls of the players be given (Fig. 7.6).
Write # D 1.

The boundary of M is divided into the four convex curves: one left spiral 	1 and
three ordinary convex curves 	2, 	3, 	4. In Fig. 7.7, a schematic images of the curves
are shown by dotted lines, where each dotted line is shifted from the corresponding
line on the boundary of M. The arcs 	1 and 	3 are convex arcs on the boundary of
M, and the arcs 	2 and 	4 are concave. Define M0 D R2 n M.

The result of the construction of the section W0.0/ of the maximal u-stable bridge
W0 at t D 0 is shown in Fig. 7.8 by a solid line 2, the boundary of the terminal set
W0.#/ D M is given by a polyline 1.

To make a comparison, we construct the sets T#.MI P; Q/ (dashed line 3) and
T#.M0I Q; P/ (dotted line 4). One can see that the set W0.0/ is smaller than the first
one, but it is larger than the closure of the complement of the second one. The same
property is valid for any t 2 Œ0; 1/ if we compute the sets W0.t/, T#�t.MI P; Q/, and
T#�t.M0I Q; P/.

Thus we have an example of a game problem of guidance with simple motions,
fixed terminal instant # D 1, and nonconvex terminal set M, for which the
solvability set is constructed on Œ0; 1� by the method described above. To construct
the t-section W0.t/, the method does not require an additional partition of the interval
Œt; #�. The set W0.t/ does not coincide with the set of program absorption by the first
player for the set M. The closure of its complement R2 n W0.t/ does not coincide
with the set of program absorption by the second player for the set R2 n M.

M

P

Q

0

0

Fig. 7.6 Example: the terminal set M, the constraints P and Q for controls of the players
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M

P

Q

0

0

γ1

γ2

γ3

γ4

Fig. 7.7 Example: the partition of the boundary of M into convex spirals 	1, 	2, 	3, and 	4

M

1

2

3

4

P

Q
0

0

Fig. 7.8 Example: 1 denotes the boundary of M D W0.#/; 2 denotes the boundary of W0.0/;
3 denotes the boundary of T# .MI P; Q/; 4 denotes the boundary of T# .M0I Q; P/, M0 D R2 n M;
# D 1

7.8 Conclusion

In the article, a zero-sum differential game with simple motions in the plane and a
fixed terminal time is considered. For a polygonal terminal set and convex polygonal
constraints on the players’ controls, it is shown that there exists a time interval
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such that it is adjacent to the terminal instant and the solvability set (maximal
stable bridge) on this interval can be constructed by open-loop controls without
any additional partitions and passages to the limits afterwards. In this paper, there is
no any lower estimate of the length of the time interval.
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Appendix

Proof (of Lemma 5). We define

r0 WD dist .A; @˘0/; ˘1 WD ˘0 � r0�0 D ˘.˛0 � r0; �0/:

Then A � ˘1 � ˘0. Using (7.6), we get

T� .˘1/ D T� .˘0/ � r0�0:

Since A � ˘1, we have T� .A/ � T� .˘1/. Consequently,

dist .T� .A/; @T� .˘0// D dist .T� .A/; @T� .˘1// C r0 � r0:

Proof (of Lemma 6). Since A is a convex polygon, we have

A D
\

f˘.�.�; A/; �/ W � 2 N .A/g: (7.12)

We add extra half-planes supporting A with the outer normals from N .�P/ to the
intersection (7.12):

A D
\

f˘.�.�; A/; �/ W � 2 N .A/ [ N .�P/g:

Then by (7.5), we observe

T� .A/ �
\

fT� .˘.�.�; A/; �// W � 2 N .A/ [ N .�P/g DW Y:

We prove the opposite inclusion by contradiction. Assume that we can choose
y 2 Y n T� .A/. Since y 62 T� .A/, there exists Qq 2 Q such that .yC�.PC Qq//\A D ¿,
i.e. we have .z C �P/ \ A D ¿ for z D y C � Qq.

So, there exists �� 2 N .A/ [ N .�P/ such that

˘.�.��; A/; ��/ \ .z C �P/ D ¿: (7.13)
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Property (4) of the operator T� implies the relation

y 2 T� .˘.�.��; A/; ��// D ˘.�.��; A/; ��/ � �.p� C q�/;

where

p� 2 Arg min
p2P

hp; ��i; q� 2 Arg max
q2Q

hq; ��i:

Thus y C �.p� C q�/ 2 ˘.�.��; A/; ��/, i.e. hy C �.p� C q�/; ��i � �.��; A/.
By definition of q�, for any q 2 Q the inequality hq; ��i � hq�; ��i holds.

Consequently, hy C �.p� C Qq/; ��i � �.��; A/, which implies y C � Qq C �p� 2
˘.�.��; A/; ��/. Since p� 2 P, we observe

˘.�.��; A/; ��/ \ .y C � Qq C �P/ ¤ ¿:

Using the definition of the point z, we get a contradiction to (7.13).

Proof (of Lemma 7). In virtue of Lemma 6, we have

T� .A/ D
\

f T� .˘/ W ˘ 2 RP.A/g; T� .B/ D
\

f T� .˘/ W ˘ 2 RP.B/g;

where the sets RP.A/, RP.B/ of half-planes are defined by (7.7). Hence, using the
inclusion of B � A, we obtain the representation (7.8).

Proof (of Lemma 8). Let E denote the set of all �1 2 .0; �0/ such that for any
� 2 Œ�1; �0� the set T� .A/ \ @T� .˘/ is a non-degenerated segment (an edge of the
polygon T� .A/). Property (4) of the operator T� and Lemma 6 imply that the set
E � .0; �0/ is nonempty and open.

Let N� D inf E. The assertion of this lemma is equivalent to the equality N� D 0.
Assume N� > 0. Since the set E is open, we observe that the set TN� .A/ \ @TN� .˘/ DW
fNag is a singleton.

Write ˘ D ˘.˛; �/. Define a straight line L� which is parallel to the vector �

and passes through the point Na.
In virtue of Lemma 6, the edges of the polygon TN� .A/ that are adjacent to

the vertex Na lie on the boundary of the half-planes TN� .˘1/ and TN� .˘2/ for some
˘1; ˘2 2 RP.A/. Let a1;2.�/ denote the orthogonal projection onto the line L� of
the point of intersection of two lines @T� .˘1/ and @T� .˘2/. Let a.�/ denote the
point of projection of @T� .˘/ onto L� . We observe that

a. N�/ D a1;2. N�/ D Na; ha.�/; �i < ha1;2.�/; �i; � > N�:

Property (4) of the operator T� implies that the velocity of the points a.�/ and
a1;2.�/ along the line L� is constant with respect to � . Consequently,

ha.�/; �i > ha1;2.�/; �i; � < N�
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therefore

T� .A/ \ @T� .˘/ D ¿; � 2 .0; N�/:

This relation contradicts to Lemma 5 since

dist .T� .A/; @T� .˘// > 0; dist .TN� .A/; @TN� .˘// D 0; � 2 .0; N�/:

Proof (of Lemma 9). We prove the assertion by contradiction. For brevity, we denote

� #.�/ WD @T� .A/ \ @T� .B/; � � 0:

Assume that the set � #.�/ is nonempty and disconnected.
Lemma 7 [representation (7.8)] implies that a connected component of � #.�/

cannot “split”, and disconnectedness can appear only with a new intersection. Since
� #.0/ D @A \ @B is a nondegenerate nonclosed polyline, there exists the first
instant �0 > 0 of disconnectedness. Consequently, we can find a point �0 2 � #.�0/,
a neighbourhood G0 3 �0, and a value ı0 2 .0; �0/ such that

G0 \ � #.�0 � ı/ D ¿; ı 2 .0; ı0/: (7.14)

Let �0 denote the unit outer normal to those edge of the polygon T�0 .A/ that
contains the point �0. Write

˘�0 D ˘.�.�0; T�0 .A//; �0/; ˘� D ˘�0 C .�0 � �/.p� C q�/; � 2 Œ0; �0�;

where

p� 2 Arg min
p2P

hp; �i; q� 2 Arg max
q2Q

hq; �i:

Property (4) of the operator T� implies

˘� D T� .˘0/; � 2 Œ0; �0�:

The half-plane ˘�0 is supporting to the sets T�0 .A/ and T�0 .B/.
Since T�0 .A/ \ @˘�0 is an edge of the polygon T�0 .A/, Lemma 8 implies that the

set T� .A/ \ @˘� is an edge of the polygon T� .A/ for � 2 Œ0; �0/.
We deduce that the set @˘�0 \ T�0 .B/ is not an edge of the polygon T�0 .B/,

otherwise we get a contradiction with (7.14) by Lemma 8. As a result, we have
@˘�0 \ T�0 .B/ D f�0g. Using Lemma 8 and relation (7.14), we observe that
@˘� \ T� .B/ D ¿. Therefore,

dist .T� .B/; @˘� / D r > 0:
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Applying Lemma 5 for the operator Tı.�/, ı WD �0 � � , we find

dist .Tı.T� .B//; @Tı.˘� // � r:

We have

Tı.T� .B// D T�0 .B/; Tı.˘� / D ˘�0:

Since the half-plane ˘�0 is supporting to the set T�0 .B/, we write

dist .Tı.T� .B//; @Tı.˘� // D 0;

that contradicts to the condition r > 0.
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Chapter 8
Linear-Quadratic Gaussian Dynamic Games
with a Control-Sharing Information Pattern

Meir Pachter

Abstract A “zero-sum” Linear-Quadratic Gaussian Dynamic Game (LQGDG)
where the players have partial information is considered. Specifically, the players’
initial state information and their measurements are private information, but each
player is able to observe his antagonist’s past inputs: the protagonists’ past controls
is shared information. Although this is a game with partial information, the control-
sharing information pattern renders the game amenable to solution by the method
of dynamic programming. The correct solution of LQGDGs with a control-sharing
information pattern is obtained in closed-form.

Keywords Linear quadratic Gaussian dynamic game • Partial information

MSC Codes: 91A25, 93C41, 49N70

8.1 Introduction

The complete solution of Linear-Quadratic Gaussian Dynamic Games (LQGDGs)
has been a longstanding goal of the controls and games communities. That LQGDGs
with a nonclassical information pattern can be problematic has been amply illus-
trated in Witsenhausen’s seminal paper (Witsenhausen 1968)—see also Pachter
and Pham (2014). Control theorists have traditionally emphasized control theoretic
aspects and the backward induction/dynamic programming solution method, which
however is not applicable to dynamic games with partial information—one notable
exception notwithstanding, being the game with partial information that will be
discussed herein. And game theorists have focused on information economics,
that is, the role of information in games, but for the most part, discrete games.
The state of affairs concerning dynamic games with partial information is not
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satisfactory. In this respect, the situation is not much different now than it was in
1971 when Witsenhausen made a similar observation (Witsenhausen 1971). In this
article a careful analysis of dynamic games with partial information is undertaken.
We exclusively focus on LQGDGs, which are more readily amenable to analysis.
Indeed, Linear-Quadratic Dynamic Games (LQDGs) with perfect information stand
out as far as applications of the theory of dynamic games are concerned: a canonical
instance of an application of the theory of LQDGs can be found in Ho et al. (1965)
where it has been shown that its solution yields the Proportional Navigation (PN)
guidance law which is universally used in Air-to-Air missiles. Furthermore, the
theory of LQDGs has been successfully applied to the synthesis of H1 control
laws (Basar and Bernhard 2008). The theory of LQDGs with perfect information
has therefore received a great deal of attention (Basar and Olsder 1995; Engwerda
2005; Pachter and Pham 2010). In these works, the concepts of state, and state
feedback, are emphasized and the solution method entails backward induction,
a.k.a., Dynamic Programming (DP).

Concerning informational issues in LQGDGs: In previous work Radner (1962)
and Pachter and Pham (2013) a static Linear-Quadratic Gaussian (LQG) team
problem was addressed and a static “zero-sum” LQG game with partial information
was analyzed in Pachter (2013). In this article a dynamic “zero-sum” LQG game,
that is, a LQGDG, where the players have partial information, is addressed. The
information pattern is as follows. The players’ initial state information and their
measurements are private information, but each player is able to observe the
antagonist’s past inputs: the protagonists’ past controls is shared information. This
information pattern has previously been discussed by Aoki (1973), and in the
context of a team decision problem, this information pattern has also been discussed
in Sandell and Athans (1974). However, Aoki (1973) took “a wrong turn”: as so
often happens in the literature of games with partial information, one is tempted
to assume the players will try to second guess the opponents’ private information,
say, their measurements. The vicious cycle of second guessing the opponent’s
measurements leads to a mirror gallery like setting and to a dead end. This point
is discussed in Sect. 8.4. Concerning reference Sandell and Athans (1974) where
a decentralized dynamic team problem with a control-sharing information pattern
is considered: It is argued that an infinite amount of information is contained in
a real number, which, in theory, is correct. And since the control information is
shared, then at least in a cooperative control/team setting, a player/agent could in
principle encode in the controls information about to be sent to his partner his private
information, for example, his measurements history. This is due to the fact that the
controls which are about to be communicated can be modified slightly to encode the
measurements information of the protagonists without significantly disturbing the
control, and consequently, have a barely noticeable effect on the value of the game.
One then falls back on the solution of the LQG cooperative control problem with
a one-step-delay shared information pattern (Kurtaran and Sivan 1974). However,
this scheme has no place in an antagonistic scenario, a.k.a., “zero-sum” LQGDG
as discussed in our paper, and also does not properly model a decentralized control
scenario. Moreover, this scheme totally depends on the players’ ability of obtaining
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a noiseless observation of the broadcast control and as such, exhibits a lack of
robustness to measurement error and is not a viable proposition. In the end, it is
acknowledged in Sandell and Athans (1974) that the control-sharing information
pattern leads to a stochastic control problem that is ill posed and it is stated that
“the need for future work on this problem is obvious”. Unfortunately, the analysis
of LQGDGs with a control-sharing information pattern presented in Aoki (1973)
and Sandell and Athans (1974) is patently incorrect. In this paper LQGDGs with
a control-sharing information pattern are revisited. A careful analysis reveals that
although this is a game with partial information, the control-sharing information
pattern renders the game amenable to solution by the method of DP. It is shown that
the solution of the LQGDG with a control-sharing information pattern is similar in
structure to the solution of the LQG optimal control problem in so far as the principle
of certainty equivalence/decomposition holds. A correct closed-form solution of a
LQGDG with a control-sharing information pattern is obtained.

The paper is organized as follows. The LQGDG problem statement and the
attendant control-sharing information pattern are presented in Sect. 8.2. The state
estimation algorithm required for the solution of LQGDGs with a control-sharing
information pattern is developed in Sect. 8.3. The analysis of Linear-Quadratic
Gaussian Games with a control-sharing information pattern is anchored in Sect. 8.4
where the end-game is solved and the solution of the LQGDG with a control-
sharing information pattern is obtained in Sect. 8.5 using the method of backward
induction/DP. The results are summarized in Sect. 8.6, followed by concluding
remarks in Sect. 8.7. For the sake of completeness, the solution of the baseline
deterministic LQDG game with perfect information (Pachter and Pham 2010) is
included in the Appendix. The somewhat lengthy exposition could perhaps be
excused in light of Witsenhausen’s observation when discussing LQG control
(Witsenhausen 1971): “The most confused derivations of the correct results are also
among the shortest”.

8.2 Linear Quadratic Gaussian Dynamic Game

Two player Linear Quadratic Gaussian Dynamic Games (LQGDGs) are considered.
The players are designated P and E, and the game is specified as follows.

Dynamics: Linear

xkC1 D Akxk C Bkuk C Ckvk C �kwk; x0 � x0; k D 0; : : : ; N � 1 (8.1)

At decision time k the controls of players P and E are uk and vk, respectively. The
process noise wk � N .0; Qp/; k D 0; : : : ; N � 1. The planning horizon is N.

Measurements: Linear

The N measurements of player P are:
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At time k D 0, x.P/
0 — player P believes that the initial state

x0 � N .x.P/
0 ; P.P/

0 /; (8.2)

and thereafter he takes the measurements

z.P/
kC1 D H.P/

kC1xkC1 C v
.P/
kC1; v

.P/
kC1 � N .0; R.P/

m /; k D 0; : : : ; N � 2 (8.3)

The N measurements of player E are:
At time k D 0, x.E/

0 — player E believes that the initial state

x0 � N .xE/
0 ; P.E/

0 /; (8.4)

and thereafter he takes the measurements

z.E/
kC1 D H.E/

kC1xkC1 C v
.E/
kC1; v

.E/
kC1 � N .0; R.E/

m /; k D 0; : : : ; N � 2 (8.5)

Cost/Payoff Function: Quadratic

We confine our attention to the antagonistic “zero-sum” game scenario where the
respective P and E players strive to minimize and maximize the cost/payoff function

J D xT
NQFxN C

N�1X

kD0

ŒxT
kC1QkC1xkC1 C uT

k R.P/
k uk � vT

k R.E/
k vk� ! min

fukgN�1
kD0

max
fvkgN�1

kD0

(8.6)

Specifically, players P and E minimize and maximize their expected cost/payoff
E.J j �/, conditional on their private information. The expectation operator is
liberally used in the dynamics game literature but oftentimes it is not clearly stated
with respect to which random variables the expectation is calculated and on which
random variables the expectation is conditional. This tends to mask the fact that what
appear to be “zero-sum” games are in fact nonzero-sum games. Upon considering
“zero-sum” games with partial information, the illusion is then created that a zero-
sum game is considered. One then tends to rely on the uniqueness of the saddle
point value and the interchangeability of non-unique optimal saddle point strategies
in zero-sum games. This argument is flawed because, as previously discussed, in
“zero-sum” games with partial information the P and E players calculate their
respective cost and payoff conditional on their private information, as is correctly
done in this paper; that’s why I put the term zero-sum in quotation marks. Thus,
although high powered mathematics is oftentimes used, serious conceptual errors
make the “results” not applicable. Contrary to statements sometimes encountered
in the literature, in “zero-sum” games with partial information one cannot look
for a saddle point solution and the correct solution concept is a Nash equilibrium,
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that is, Person by Person Satisfactory (PBPS) solution. In this paper a unique Nash
equilibrium is provided and the P and E players’ value functions are calculated.

Information pattern

1. Public information

(a) Problem parameters: Ak, Bk, Ck, H.P/
k , H.E/

k , Qp, Qk, QF, R.P/
k , R.E/

k , R.P/
m ,

R.E/
m .

(b) Prior information: P.P/
0 , P.E/

0 .

2. Private information
At decision time k D 0 the prior information of player P is x.P/

0 .

At decision time k D 0 the prior information of player E is x.E/
0 .

At decision time 1 � k � N � 1 the information of player P are his
measurements x.P/

0 , z.P/
1 ; : : : ; z.P/

k and ownship control history u0; : : : ; uk�1.
At decision time 1 � k � N � 1 the information of player E are his
measurements x.E/

0 , z.E/
1 ; : : : ; z.E/

k and ownship control history v0; : : : ; vk�1.

Sufficient statistics

The sufficient statistics of player P at decision time k D 0: x0 � N .x.P/
0 ; P.P/

0 /.

The sufficient statistics of player E at decision time k D 0: x0 � N .x.E/
0 ; P.E/

0 /.
The sufficient statistics of player P at decision time 1 � k � N � 1: The
p.d.f. f .P/

k .�/ of the physical state xk, as calculated by player P using his private
information.
The sufficient statistics of player E at decision time 1 � k � N � 1: The p.d.f.
f .E/
k .�/ of the physical state xk, as calculated by player E using his private

information.

Remark. In the static LQGDG (Pachter 2013) where N D 1 the respective sufficient
statistics of P and E are x.P/

0 and x.E/
0 .

8.2.1 Problem Statement

The LQGDG (8.1)–(8.6) is considered and it is assumed that the players’ infor-
mation sets are augmented as follows: At decision time k, k D 1; : : : ; N � 1,
player P is endowed with the additional information regarding the control history
v0; : : : ; vk�1 of player E. Thus, player P observed the past inputs v0; : : : ; vk�1 of
player E. Similarly, at decision time k, k D 1; : : : ; N � 1, player E is endowed with
the additional information regarding the control history u0; : : : ; uk�1 of player P.
Thus, player E observed the past inputs u0; : : : ; uk�1 of player P.

The information pattern considered herein is referred to as the control-sharing
information pattern. The dynamics and the measurement equations are linear, and
the cost/payoff function is quadratic, but the information pattern is not classical.
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Strictly speaking, the information pattern is not partially nested because E’s
measurements, which he used to form his controls, are not known to P, and vice
versa, P’s measurements, which he used to form his controls, are not known to E.
However, this is now a moot point because the information pattern is s.t. the control
history of player E is known to player P, and vice versa, the control history of player
P is known to player E. This, and the fact that player P and player E, each separately,
perceive the initial state x0 to be Gaussian, causes the state estimation problem faced
by the players at decision time k to be Linear and Gaussian (LG). Hence, at decision
time k, the knowledge of the complete control history u0; v0; : : : ; uk�1; vk�1 and their
private measurement records makes it possible for both players to separately apply
the linear Kalman filtering algorithm: based on his private measurements record,
each player runs a Kalman filter using his measurements and the complete input
history, and separately obtains an estimate of the state xk—strictly speaking, the
p.d.f. of xk is separately obtained by each player. Thus, players P and E perceive
the current state xk to be Gaussian distributed. Having run their respective Kalman
filters, at time k player P believes that the state

xk � N .x.P/
k ; P.P/

k / ; 8 k; N � 1 � k � 0 (8.7)

and player E believes that the state

xk � N .x.E/
k ; P.E/

k / ; 8 k; N � 1 � k � 0 (8.8)

but they are also aware that their state estimates are correlated—see Sect. 8.3.
Since the LQGDG (8.1)–(8.6) is LG, the P and E players’ separately calculated

sufficient statistics are given by Eqs. (8.7) and (8.8), and their controls will be
determined by their optimal strategies according to u�

k D .	
.P/
k .x.P/

k ; P.P/
k //� and

v�
k D .	

.E/
k .x.E/

k ; P.E/
k //�. In fact, we shall show that in LQGDGs with a control-

sharing information pattern the optimal strategies are of the form

u�
k D .	

.P/
k .x.P/

k //� ; (8.9)

v�
k D .	

.E/
k .x.E/

k //� ; 8 k; 0 � k � N � 1 (8.10)

and are linear.

8.3 Kalman Filtering

LQGDGs with a control-sharing information pattern are Linear-Gaussian (LG) and
consequently at decision time k each player can separately calculate his estimate of
the physical state xk using a linear Kalman Filter (KF). Player P runs the KF
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.x.P/
k /� D Ax.P/

k�1 C Buk�1 C Cvk�1; x.P/
0 � x.P/

0 (8.11)

.P.P/
k /� D AP.P/

k�1AT C � Qp� T ; P.P/
0 � P.P/

0 (8.12)

K.P/
k D .P.P/

k /�.H.P//T ŒH.P/.P.P/
k /�.H.P//T C R.P/

m ��1 (8.13)

x.P/
k D .x.P/

k /� C K.P/
k Œz.P/

k � H.P/.x.P/
k /�� (8.14)

P.P/
k D .I � K.P/

k H.P//.P.P/
k /� (8.15)

and so at decision time k player P obtains his estimate x.P/
k of the state xk. Similarly,

player E runs the KF

.x.E/
k /� D Ax.E/

k�1 C Buk�1 C Cvk�1; x.E/
0 � x.E/

0 (8.16)

.P.E/
k /� D AP.E/

k�1AT C � Qp� T ; P.E/
0 � P.E/

0 (8.17)

K.E/
k D .P.E/

k /�.H.E//T ŒH.E/.P.E/
k /�.H.E//T C R.E/

m ��1 (8.18)

x.E/
k D .x.E/

k /� C K.E/
k Œz.E/

k � H.E/.x.E/
k /�� (8.19)

P.E/
k D .I � K.E/

k H.E//.P.E/
k /� (8.20)

and so at decision time k player E obtains his estimate x.E/
k of the state xk. The P

and E players can calculate their respective state estimation error covariances and
Kalman gains P.P/

k , K.P/
kC1, P.E/

k and K.E/
kC1 ahead of time and off line.

In LQGDGs with a control-sharing information pattern the players’ sufficient
statistic is their state estimate; the latter is the argument of their strategy func-
tions (8.9) and (8.10). Hence, in the process of countering E’s action, P must
compute the statistics of E’s state estimate x.E/

k , and, vice versa, while planning

his move, E must compute the statistics of P’s state estimate x.P/
k . Momentarily

assume the point of view of player P: As far as P is concerned, the unknown to him
state estimate of player E at time k, x.E/

k , is a random variable (and consequently
E’s input at time k is a random variable). Similarly, player E will consider the
unknown to him state estimate of player P at time k, x.P/

k , to be a random variable
(and consequently P’s input at time k is a random variable). Hence, in the LQGDG
with a control-sharing information pattern, at time k player P will estimate E’s state
estimate x.E/

k using his calculated ownship state estimate x.P/
k , and vice versa, player

E will estimate P’s state estimate x.P/
k using his calculated ownship state estimate

x.E/
k . Thus, in the LQGDG with a control-sharing information pattern and with his

state estimate x.P/
k at time k in hand, player P calculates the statistics of E’s state

estimate x.E/
k , conditional on the public and private information available to him at

time k. Similarly, having obtained at time k his state estimate x.E/
k , player E calculates

the statistics of the state estimate x.P/
k of player P, conditional on the public and

private information available to him at time k. Let’s start at decision time k D 0.
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Player P models his measurement/estimate x.P/
0 of the initial state x0 as

x.P/
0 D x0 C e.P/

0 ; (8.21)

where x0 is the true physical state and e.P/
0 is player P’s measurement/estimation

error, whose statistics, in view of Eq. (8.2), are e.P/
0 � N .0; P.P/

0 /. In addition,

player P models player E’s measurement x.E/
0 of the initial state x0 as

x.E/
0 D x0 C e.E/

0 ; (8.22)

where, as before, x0 is the true physical state and e.E/
0 is player E’s measure-

ment/estimation error, whose statistics, which are known to P—see Eq. (8.4)—are
e.E/

0 � N .0; P.E/
0 /. The Gaussian random variables e.P/

0 and e.E/
0 are independent—

by hypothesis. From player P’s point of view, x.P/
0 is known but x.E/

0 is a random
variable. Subtracting Eq. (8.21) from Eq. (8.22), at time k D 0 player P concludes
that as far as he is concerned, player E’s measurement upon which he will decide,
according to Eq. (8.10), on his optimal control v�

0 , is the random variable

x.E/
0 D x.P/

0 C e.E/
0 � e.P/

0 ; (8.23)

In other words, as far as P is concerned, E’s estimate x.E/
0 of the initial state x0 is the

Gaussian random variable

x.E/
0 � N .x.P/

0 ; P.P/
0 C P.E/

0 / (8.24)

Thus, player P has used his measurement/private information x.P/
0 and the public

information P.P/
0 and P.E/

0 to calculate the statistics of the sufficient statistic x.E/
0 of

player E, which is the argument of E’s strategy function 	
.E/
0 .�/; the latter, along with

P’s control u0, will feature in player’s P cost functional. Similarly, as far as player
E is concerned, at time k D 0 the statistics of the sufficient statistic x.P/

0 of player P
are

x.P/
0 � N .x.E/

0 ; P.P/
0 C P.E/

0 / (8.25)

Similar to the case where k D 0, as far as player P is concerned the state estimate
of player E at decision time k � 1 is the random variable

x.E/
k D x.P/

k C e.E/
k � e.P/

k ;

that is, at decision time k player P believes that the state estimate x.E/
k of player E is

x.E/
k � N .x.P/

k ; P.E;P/
k / (8.26)
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where the covariance matrix

P.E;P/
k � E. .e.E/

k � e.P/
k /.e.E/

k � e.P/
k /T /

D P.P/
k C P.E/

k � E. e.P/
k .e.E/

k /T / � .E. e.P/
k .e.E/

k /T //T

At the decision time instants k D 1; : : : ; N � 1 the P and E players’ respective state
estimation errors e.P/

k and e.E/
k are now correlated—this is caused by the process

dynamics being driven in part by process noise.
Similarly, as far as he is concerned, player E believes that at decision time k the

state estimate x.P/
k of player P is the random variable

x.P/
k � N .x.E/

k ; P.E;P/
k / (8.27)

Concerning decision time k � 1: Let the covariance matrix

QP.E;P/
k � E. e.P/

k .e.E/
k /T / (8.28)

It can be shown that the recursion for the correlation matrix QP.E;P/
k is

QP.E;P/
kC1 D .I � K.P/

kC1H.P//.A QP.P;E/
k AT C � Qp� T /.I � K.E/

kC1H.E//T ; QP.P;E/
0 D 0;

k D 0; : : : ; N � 1 (8.29)

In summary, at decision time k D 0; : : : ; N �1 player P believes that the statistics
of E’s estimate x.E/

k of the state xk are given by Eq. (8.26) and player E believes that

the statistics of P’s estimate x.P/
k of the state xk are given by Eq. (8.27) where

P.E;P/
k D P.P/

k C P.E/
k � QP.E;P/

k � . QP.E;P/
k /T

The KF covariance matrices P.P/
k , P.E/

k and QP.E;P/
k are calculated ahead of time

by solving the respective recursions (8.12), (8.13), (8.15); (8.17), (8.18), (8.20);
and (8.29).

Finally, since in LQGDGs with a control-sharing information pattern the suf-
ficient statistic is the players’ state estimate, then upon employing the method of
Dynamic Programming, at decision time k player P must project ahead the estimate
of the physical state xkC1 that the Kalman filtering algorithm will provide at time
k C 1. It can be shown that at time k player P believes that the future state xkC1 at
time k C 1 will be the Gaussian random variable

x.P/
kC1 D Ax.P/

k C Buk C C	
.E/
k .x.P/

k C e.P/
k � e.E/

k / C K.P/
kC1.H.P/� wk

Cv
.P/
kC1 � H.P/Ae.P/

k / (8.30)
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Similarly, at decision time k player E’s estimate of the state xkC1 at time k C 1 will
be the Gaussian random variable

x.E/
kC1 D Ax.E/

k C B	
.P/
k .x.E/

k C e.E/
k � e.P/

k / C Cvk C K.E/
kC1.H.E/� wk

Cv
.E/
kC1 � H.E/Ae.E/

k / (8.31)

8.4 End Game

In the best tradition of backward induction/Dynamic Programming, the terminal
stage of the game, namely, the players’ decision time k D N � 1 is analyzed first. In
the end game the cost/payoff function is

JN�1.uN�1; vN�1I xN�1/ D xT
NQFxN C xT

NQxN C uT
N�1RuuN�1 � vT

N�1RvvN�1

D xT
N.Q C QF/xN C uT

N�1RuuN�1 � vT
N�1RvvN�1

It is convenient to momentarily set QF WD Q C QF whereupon the terminal
cost/payoff

JN�1.uN�1; vN�1I xN�1/ D xT
NQFxN C uT

N�1RuuN�1 � vT
N�1RvvN�1 (8.32)

The players’ sufficient statistics in this LG game are the expectation of the physical
state and the covariance of the state’s estimation error: having run their respective
Kalman filters during the time interval Œ1; N � 1�, at decision time N � 1 the
information available to player P is .x.P/

N�1; P.P/
N�1/ and the information of player

E is .x.E/
N�1; P.E/

N�1/. In other words, at decision time N � 1 player P believes the

physical state xN�1 to be xN�1 � N .x.P/
N�1; P.P/

N�1/ whereas player E believes the

physical state xN�1 to be specified as xN�1 � N .x.E/
N�1; P.E/

N�1/. This is tantamount
to stipulating that players P and E took separate measurements of the state xN�1.
The quality of the players’ “instruments” used to take the measurements and also
the degree of correlation of the players’ measurement errors is public knowledge—
we refer to the measurement error covariances P.E/

N�1, P.E/
N�1 and QP.E;P/

N�1 . At the same

time, the recorded measurements x.P/
N�1and x.E/

N�1 are the private information of the

respective players P and E: the “measurement” x.E/
N�1 recorded by player E is his

private information and is not shared with player P. Thus, player P has partial
information. Similarly, the “measurement” x.P/

N�1 recorded by player P is his private
information and is not shared with player E, so also player E has partial information.

To gain a better appreciation of the informational issues in games with partial
information, it is instructive to briefly digress and employ an “appealing” approach
which is familiar to workers in deterministic control and which, unfortunately, is
an approach sometimes employed in stochastic games. We now intentionally “take
a wrong turn” which quickly leads us to a dead end. A correct analysis of the
informational situation at hand follows.
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Consider the following flawed argument: At time N � 1 the state information
available to player P is xN�1 � N .x.P/

N�1; P.P/
N�1/ and thus Player P calculates the

expectation of his cost function

J
.P/
N�1.uN�1; vN�1I x.P/

N�1; P.P/
N�1/ � ExN�1 .J.uN�1; vN�1I xN�1/ j x.P/

N�1; P.P/
N�1/

D .x.P//T
N�1AT QFAx.P/

N�1 C Trace.AT QFAP.P/
N�1/

C uT
N�1.Ru C BT QFB/uN�1 � vT

N�1.Rv � CT QFC/vN�1

C 2uT
N�1BT QFAx.P/

N�1 C 2vT
N�1CT QFAx.P/

N�1

C 2uT
N�1BT QFCvN�1 C Trace.� T QF� Qp/ (8.33)

At the same time the state information available to player E is xN�1 �
N .x.E/

N�1; P.E/
N�1/ and Player E calculates the expectation of his payoff function

J
.E/
N�1.uN�1; vN�1I x.E/

N�1; P.E/
N�1/ � ExN�1 .J.uN�1; vN�1I xN�1/ j x.E/

N�1; P.E/
N�1/

D .x.E//T
N�1AT QFAx.E/

N�1 C Trace.AT QFAP.E/
N�1/

C uT
N�1.Ru C BT QFB/uN�1 � vT

N�1.Rv � CT QFC/vN�1

C 2uT
N�1BT QFAx.E/

N�1 C 2vT
N�1CT QFAx.E/

N�1

C 2uT
N�1BT QFCvN�1 C Trace.� T QF� Qp/ (8.34)

Now Player P’s optimization, that is, the differentiation of his deterministic cost
function (8.33), yields the relationship

.Ru C BTQFB/uN�1 C BTQFCvN�1 D �BTQFAx.P/
N�1 (8.35)

and Player E’s optimization, that is, the differentiation of his deterministic payoff
function (8.34), yields the relationship

CTQFBuN�1 � .Rv � CTQFC/vN�1 D �CTQFAx.E/
N�1 (8.36)

Have obtained two equations in the players’ optimal controls, namely, the two
unknowns u�

N�1 and v�
N�1, which players P and E must separately solve in order

to calculate their respective optimal controls. However player P cannot solve the set
of two equations (8.35) and (8.36) because he does not know the “measurement”
x.E/

N�1 of E, and player E cannot solve this set of two equations because he does

not know the “measurement” x.P/
N�1 of P—both players have reached a dead end

and it would appear that all that’s left to do is try to guess and outguess the
opponent’s “measurement”. This state of affairs is caused by the players having
partial information. This approach brings on the much maligned infinite regress
in reciprocal reasoning! Unfortunately, this flawed approach is not foreign to the
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literature on dynamic stochastic games and it leads to erroneous “results”—see
Aoki (1973) where, using this flawed argument, the LQGDG with a shared-control
information pattern was “solved” and complicated “strategies” were computed.

We now change course and undertake a correct analysis of our LQGDG with
a shared-control information pattern. To this end, it is imperative that one thinks
in strategic terms. The strategies available to player P are mappings f W Rn !
Rmu from his information set into his actions set; thus, the action of player P is
uN�1 D f .x.P/

N�1; P.P/
N�1/. Similarly, the strategies available to player E are mappings

g W Rn ! Rmv from his information set into his actions set—thus, the action of
player E is vN�1 D g.x.E/

N�1; P.E/
N�1/. However, we’ll show in the sequel that it suffices

to consider P and E strategies of the form (8.9) and (8.10), respectively.
It is now important to realize that from player P’s vantage point, the action vN�1

of player E is a random variable. This is so because as far as player P is concerned
the measurement x.E/

N�1 of player E used in (8.10) to form his control vN�1 is a
random variable. Similarly, from player E’s vantage point, the action uN�1 of player
P is also a function of a random variable, x.P/

N�1.

Consider the decision process of player P whose private information is x.P/
N�1. He

operates against the strategy g.�/ of player E. Therefore, from player P’s perspective,
the random variables at work are xN�1 and x.E/

N�1. At decision time k D N � 1

player P is confronted with a stochastic optimization problem and he calculates the
expectation of the cost function (8.32), conditional on his private information x.P/

N�1,

J
.P/

.uN�1; g.�/I x.P/
N�1/ � E

xN�1;x
.E/
N�1

.J.uN�1; g.x.E/
N�1/I xN�1/ j x.P/

N�1/ (8.37)

By correctly using in the calculation of his expected cost (8.37) player’s E
strategy function g.x.E/

N�1/ rather than, as before, player E’s control vN�1, player P
has eliminated the possibility of an infinite regress in reciprocal reasoning. This is
so because P now has all the information to be able, in principle, to calculate the
said expectation. Thus, player P calculates his expected cost

J
.P/

.uN�1; g.�/I x.P/
N�1/ D .x.P/

N�1/TATQFAx.P/
N�1 C Trace.ATQFAP.P/

N�1/

C uT
N�1.Ru C BTQFB/uN�1 C 2uT

N�1BTQFAx.P/
N�1

C 2E
xN�1;x

.E/
N�1

.gT.x.E/
N�1/CTQFAxN�1 j x.P/

N�1/

� E
x

.E/
N�1

.gT.x.E/
N�1/.Rv � CTQFC/g.x.E/

N�1/ j x.P/
N�1/

C 2uT
N�1BTQFCE

x
.E/
N�1

.g.x.E/
N�1/ j x.P/

N�1/

C Trace.� TQF� Qp/ (8.38)
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Player P calculates the expectations with respect to the random variable x.E/
N�1 which

features in Eq. (8.38), cognizant that it is x.E/
N�1 � N .x.P/

N�1; P.E;P/
N�1 /. In this game with

partial information, player P is using his measurement/private information x.P/
N�1 and

the public information to estimate the sufficient statistic x.E/
N�1 of player E, which

is the argument of E’s strategy function g.�/; the latter features in player’s P cost
functional (8.38) and thus enters the calculation of P’s cost.

The careful analysis of the optimization problem at hand leads to a Fredholm
equation of the second kind of the convolution type with a kernel which is a
Gaussian function; the unknown functions are the players’ optimal strategies.
Taking the point of view of player E yields a similar Fredholm integral equation
in the players’ optimal strategies. The solution of the set of two Fredholm equations
yields the optimal strategies of players P and E. The optimal strategies turn out to be
linear after all! The reader is referred to reference Pachter (2013) for the complete
derivation.

8.5 Dynamic Programming

We consider the LQGDG (8.1)–(8.6) with a control-sharing information pattern as
in Aoki (1973). The planning horizon N � 2.

8.5.1 Sufficient Statistics

The initial state information and the measurements of players P and E are their
private information but their past controls are shared information. Even though
the players have partial information because the initial state information and their
measurements are not shared, from the point of view of both players P and E, the
control system is nevertheless Linear Gaussian (LG). This is so because at decision
time k their respective adversary’s information state components v0; : : : ; vk�1 and
u0; : : : ; uk�1 are not random variables with unknown p.d.f.s but are known to the
players: The LQGDG with a control-sharing information pattern is LG and therefore
the conditions for the P-player’s information state to be Gaussian hold and at
decision time k the sufficient statistics of P and E are x.P/

k and x.E/
k , respectively.

Furthermore, as far as player P is concerned, at time k the sufficient statistic x.E/
k of

player E is the random variable x.E/
k � N .x.P/

k ; P.E;P/
k / and he uses this information

in the calculation of his cost-to-go/value function at time k. Similarly, player E
considers the sufficient statistic x.P/

k of player P to be x.P/
k � N .x.E/

k ; P.E;P/
k / and

player E uses this information in the calculation of his cost-to-go/value function at
time k.
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8.5.2 Analysis

The analysis is along the lines of the analysis of the static LQG game with partial
information (Pachter 2013) and the analysis of the end game in Sect. 8.4 where
k D N � 1. We shall require

Proposition 1. The value functions of players P and E are quadratic in their
respective sufficient statistics x.P/

k and x.E/
k , that is

VP/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D .x.P/

k /T˘kx.P/
k C c.P/

k .P.P/
k I P.E/

k ; QP.E;P/
k /; k D 0; 1; : : : ; N � 1;

VE/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D .x.E/

k /T˘kx.E/
k C c.E/

k .P.E/
k I P.P/

k ; QP.E;P/
k /; k D 0; 1; : : : ; N � 1

where

˘k are n � n real symmetric matrices and the scalars c.P/
k ; c.E/

k 2 R1; k D 0; : : : ; N:

�

Similar to the correct approach outlined in Sect. 8.4 we calculate the value functions
by taking the expectations over the relevant random variables.

V.P/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D minuk fuT

k ŒRu C BT.Q C ˘kC1/B�uk

C2uT
k BT.Q C ˘kC1/.Ax.P/

k

C CEQw .	
.E/
k .x.P/

k C Qw///g C .x.P/
k /TAT.Q C ˘kC1/Ax.P/

k

� EQw ..	
.E/
k .x.P/

k C Qw//T

ŒRv � CT.Q C ˘kC1/C�	
.E/
k .x.P/

k C Qw//

C 2EQw ..	
.E/
k .x.P/

k C Qw//T/CT.Q C ˘kC1/Ax.P/
k

� 2E
e

.E/
k ;e

.P/
k

..	
.E/
k .x.P/

k C e.E/
k � e.P/

k //TCT.Q

C ˘kC1K.P/
kC1H.P//Ae.P/

k / C Trace.ATQAP.P/
k /

C Trace.� TQ� Qp/ C Trace..K.P/
kC1/T˘kC1K.P/

kC1R.P/
m /

C Trace.� T.H.P//T.K.P/
kC1/T˘kC1K.P/

kC1H.P/� Qp/

C Trace.AT.H.P//T.K.P/
kC1/T˘kC1K.P/

kC1H.P/AP.P/
k /

C c.P/
kC1.P.P/

kC1I P.E/
kC1; QP.E;P/

kC1 /; (8.39)
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V.E/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D maxvk f�vT

k ŒRv � CT.Q C ˘kC1/C�vk

C2vT
k CT.Q C ˘kC1/.Ax.E/

k

C BEQw .	
.P/
k .x.E/

k � Qw///g C .x.E/
k /TAT.Q C ˘kC1/Ax.E/

k

C EQw ..	
.P/
k .x.E/

k � Qw//T

ŒRu C BT.Q C ˘kC1/B�	
.P/
k .x.E/

k � Qw//

C 2EQw ..	
.P/
k .x.E/

k � Qw//T/BT.Q C ˘kC1/Ax.E/
k

� 2E
e

.E/
k ;e

.P/
k

..	
.P/
k .x.E/

k � e.E/
k C e.P/

k //TBT.Q

C ˘kC1K.E/
kC1H.E//Ae.E/

k / C Trace.ATQAP.E/
k /

C Trace.� TQ� Qp/ C Trace..K.E/
kC1/T˘kC1K.E/

kC1R.E/
m /

C Trace.� T.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/� Qp/

C Trace.AT.H.E//T.K.E/
kC1/T˘kC1K.E/

kC1H.E/AP.E/
k /

C c.E/
kC1.P.P/

kC1I P.E/
kC1; QP.E;P/

kC1 / (8.40)

where the random variable Qw � e.P/
k � e.E/

k � N .0; P.E;P/
k /.

8.5.3 Optimization

Consider the minimization problem faced by P at decision time 0 � k � N � 2:
Differentiating the RHS of Eq. (8.39) in his control uk he obtains the optimality
condition

u�
k D �ŒRu C BT.Q C ˘kC1/B��1BT.Q C ˘kC1/.Ax.P/

k C CEQw. .	
.E/
k .x.P/

k C Qw/ //;

k D 0; 1; : : : ; N � 1 (8.41)

and similarly, upon differentiating the RHS of Eq. (8.40) in vk player E obtains

v�
k D ŒRv � CT.Q C ˘kC1/C��1CT.Q C ˘kC1/.Ax.E/

k C BEQw. .	
.P/
k .x.E/

k � Qw/ //;

k D 0; 1; : : : ; N � 1 (8.42)

Player P has obtained an expression for his optimal control u�
k where x.E/

k does not

feature and u�
k is a function of the parameter x.P/

k only. However, the strategy func-

tion 	
.E/
k .�/ of player E features in this equation. Indeed, the strategic relationship

holds
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.	
.P/
k .x.P/

k //� D �ŒRu C BT.Q C ˘kC1/B��1BT.Q C ˘kC1/.Ax.P/
k

C CEQw. ..	
.E/
k .x.P/

k C Qw//� //; k D 0; 1; : : : ; N � 1 (8.43)

We have obtained an expression for P’s optimal strategy function .	
.P/
k .x.P/

k //� in

terms of the strategy 	
.E/
k .�/ of player E. Payer P obtained a linear relationship

which directly ties together the as yet unknown optimal strategies .	
.P/
k .x.P/

k //� and

.	
.E/
k .x.E/

k //� of players P and E. Similarly, also player E obtains a linear relationship
among the players’ optimal strategies:

.	
.E/
k .x.E/

k //� D ŒRv � CT.Q C ˘kC1/C��1CT.Q C ˘kC1/.Ax.E/
k

C BEQw. ..	
.P/
k .x.E/

k � Qw//� //; k D 0; 1; : : : ; N � 1 (8.44)

Equations (8.43) and (8.44) constitute a linear system of Fredholm integral
equations of the second kind in the players’ optimal strategies .	

.P/
k .x.P/

k //� and

.	
.E/
k .x.E/

k //�. Similar to the analysis in reference Pachter (2013), the solution of
the linear system of Fredholm integral equations of the second kind, Eqs. (8.43)
and (8.44), yields the optimal strategies which are linear in the players’ sufficient
statistics, namely

	
.P/
k .x.P/

k / D F.P/
k � x.P/

k ; 	
.E/
k .x.E/

k / D F.E/
k � x.E/

k

and the formulae for the optimal gains

.F.P/
k /� D �S�1

B .Q C ˘kC1/BT.Q C ˘kC1/fI C CŒRv � CT.Q C ˘kC1/C��1CT.Q

C ˘kC1/gA; k D 0; : : : ; N � 1 (8.45)

.F.E/
k /� D �S�1

C .Q C ˘kC1/CT.Q C ˘kC1/fI � BŒRu C BT.Q C ˘kC1/B��1BT.Q

C ˘kC1/gA; k D 0; : : : ; N � 1 (8.46)

The control system is Linear - Gaussian (LG) and therefore the players’
information states are Gaussian, time consistency in this dynamic game is provided
by the application of the method of Dynamic Programming (DP) where the DP state
is the information state, and, by construction, the strategies are Person-By-Person-
Satisfactory (PBPS), so in the LQGDG with a control-sharing information pattern,
a Nash equilibrium is obtained—as was also the case in the static LQG game with
partial information (Pachter 2013).
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8.5.4 Value Functions

The parameters which specify the statistics of the random variables in the LQGDG
do not feature in the formulae (8.45) and (8.46) for the players’ optimal strategies
and consequently an inspection of the DP equations (8.39) and (8.40) tells us that
the matrices ˘k won’t be a function of the said parameters; in other words, the
matrices ˘k are exclusively determined by the deterministic plant’s parameters A,
B, C, Q, QF, R.P/

c and R.E/
c . Hence ˘k D Pk, where Pk is the solution of the Riccati

equation (8.57) derived for the deterministic LQDG discussed in the Appendix.
Upon defining Pk WD Pk C Q, the optimal gains correspond to the optimal gains
in the deterministic LQDG, Eqs. (8.61) and (8.62) in the Appendix and the players’
optimal gains are

.F.P/
k /� D �S�1

B .PkC1 C Q/BT.PkC1 C Q/fI C CŒRv � CT.PkC1 C Q/C��1CT.PkC1

CQ/gA (8.47)

.F.E/
k /� D �S�1

C .PkC1 C Q/CT.PkC1 C Q/fI � BŒRu C BT.PkC1 C Q/B��1BT.PkC1

CQ/gA (8.48)

The recursions for the scalars c.P/
k and c.E/

k are obtained from the respective DP
equations (8.39) and (8.40):

c.P/
k D c.P/

kC1

C 2 Trace..F.P/
k //�TCT.Q C PkC1K.P/

kC1H.P//A.P.P/
k � QP.P;E/

k /

C Trace.ATQAP.P/
k / C Trace.� TQ� Qp/

C Trace.� T.H.P//T.K.P/
kC1/TPkC1K.P/

kC1H.P/� Qp/

C Trace..K.P/
kC1/TPkC1K.P/

kC1R.P/
m /

C Trace.AT.H.P//T.K.P/
kC1/TPkC1K.P/

kC1H.P/AP.P/
k /; k D N � 2; : : : ; 0 (8.49)

and for k D N � 1 we use the end-game equation

c.P/
N�1.P.P/

N�1I P.E/
N�1; QP.P;E/

N�1 / D Trace. ATQFAP.P/
N�1 C 2.P.P/

N�1

� QP.P;E/
N�1 P.P/

N�1/ATQFC.F.E/
N�1/� � ..F.E/

N�1/�/T.Rv

� CTQFC/.F.E/
N�1/�P.E;P/

N�1 C � TQF� Qp / (8.50)
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Similarly,

c.E/
k D c.E/

kC1

C 2 Trace..F.E/
k /�/TBT.Q C PkC1K.E/

kC1H.E//A.P.E/
k � QP.E;P/

k /

C Trace.ATQAP.E/
k / C Trace.� TQ� Qp/

C Trace.� T.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/� Qp/

C Trace..K.E/
kC1/TPkC1K.E/

kC1R.E/
m /

C Trace.AT.H.E//T.K.E/
kC1/TPkC1K.E/

kC1H.E/AP.E/
k /; k D N � 2; : : : ; 0(8.51)

and for k D N � 1 we use the end-game equation

c.E/
N�1.P.E/

N�1I P.P/
N�1; QP.E;P/

N�1 / D Trace. ATQFAP.E/
N�1 C ..F.P/

N�1/�/T.Ru

C BTQFB/.F.P/
N�1/�P.E;P/

N�1 C 2..F.P/
N�1/�/TBTQFA.P.E/

N�1

� QP.E;P/
N�1 C � TQF� Qp/ / (8.52)

Remark. Only the parameters A, B, C, Q, QF, R.P/
c and R.E/

c feature in the Riccati
equation for Pk, as if the game would be the deterministic LQDG. The players’
measurement matrices, the process noise parameters and the measurement noise
covariances do not feature in Eq. (8.57). However the solution Pk of the Riccati
equation (8.57) and the LQGDG’s measurements—related parameters H.P/, H.E/,
the process noise parameters , R.P/

m and R.E/
m , and the Kalman gains, all enter the

recursions for the “intercepts” c.P/ and c.E/.

8.6 Main Result

The analysis of the LQGDG with a control-sharing information pattern is summa-
rized in the following

Theorem 1. Consider the LQGDG (8.1)–(8.6) with the information pattern:

1. The P and E players’ prior information is given in Eqs. (8.2) and (8.4),
respectively. The prior information x.P/

0 and x.E/
0 is private information of the

respective P and E players and it is not shared among the P and E players. The
covariances P.P/

0 and P.E/
0 are finite and are public information.

2. At decision time 1 � k � N � 1 the measurements of player P and player
E are z.P/

k and z.E/
k and their measurement equations are Eqs. (8.3) and (8.5),

respectively. At decision time 1 � k � N � 1 the respective measurement records
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Z.P/
k D fz.P/

1 ; : : : ; z.P/
k g and Z.E/

k D fz.E/
1 ; : : : ; z.E/

k g are the private information
of players P and E and the measurements are not shared among the P and E
players.

3. At decision time k D 1; : : : ; N � 1 the P and E players have complete recall
of their respective ownship control histories Uk D fu0; : : : ; uk�1g and Vk D
fv0; : : : ; vk�1g.

4. The players observe their opponent’s moves: at decision time 1 � k � N � 1

the control history Vk D fv0; : : : ; vk�1g of player E is known to player P and,
similarly, player E knows the control history Uk D fu0; : : : ; uk�1g of player P.

The players obtain their private state estimates x.P/
k and x.E/

k by running two
separate Kalman Filters (KFs) in parallel driven by their private prior information
and their separate measurements: Player P initialized his KF (8.11)–(8.15) with his
prior information .x.P/

0 ; P.P/
0 / and uses his measurements z.P/

k . Similarly, player E

initialized his KF (8.16)–(8.20) with his prior information .x.E/
0 ; P.E/

0 / and uses his

measurements z.E/
k . Both players use the shared complete input history.

The players reuse the state feedback optimal strategies derived for the determin-
istic LQDG as provided by Theorem A1: In Eq. (8.61) player P sets xk WD x.P/

k and

in Eq. (8.62) player E sets xk WD x.E/
k .

A Nash equilibrium for the “zero-sum” LQGDG with a control-sharing informa-
tion pattern is established. The value functions of players P and E are

V.P/
k .x.P/

k ; P.P/
k I P.E/

k ; QP.E;P/
k / D .x.P/

k /TPkx.P/
k C c.P/

k

V.E/
k .x.E/

k ; P.E/
k I P.P/

k ; QP.E;P/
k / D .x.E/

k /TPkx.E/
k C c.E/

k

where the matrices Pk are the solution of the Riccati equation (8.57). The
“intercepts” c.P/

k and c.E/
k are obtained by solving the respective scalar recur-

sions [(8.49), (8.50), (8.48)] and [(8.51), (8.52), (8.47)]. The covariance matrices
P.P/

k , P.E/
k and QP.E;P/

k exclusively feature in the intercepts’ recursions. The matrices
QP.E;P/

k are given by the solution of the Lyapunov-like linear matrix equation (8.29).
The control Riccati equation (8.57), the KF Riccati equation (8.12), (8.13), (8.15)
of player P, the KF Riccati equation (8.17), (8.18), (8.20) of player E , and the
Lyapunov-like linear matrix equation (8.29) can all be solved ahead of time and off
line. Once the three Riccati equations and the Lyapunov equation have been solved,
the value functions’ “intercepts” c.P/

k and c.E/
k are also obtained off line. ut

8.7 Conclusion

Linear-Quadratic Gaussian Dynamic Games with a control-sharing information
pattern have been considered. The players’ initial state information and their mea-
surements are private information, but each player is able to observe his antagonist’s
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past inputs: the protagonists’ past controls is shared information. Although this is a
game with partial information, the control-sharing information pattern renders the
game amenable to solution by the method of DP and a Nash equilibrium for the
“zero-sum” LQGDG is established. The attendant optimal strategies of the LQGDG
with a control-sharing information pattern are linear and certainty equivalence
holds. The linearity of the optimal strategies has not been artificially imposed
from the outset but follows from the LQG nature of the optimization problem at
hand, courtesy of the control-sharing information pattern. The correct solution of
LQGDGs with a control-sharing information pattern is obtained in closed-form.

Appendix: Linear-Quadratic Dynamic Game

The solution of Linear-Quadratic Dynamic Games (LQDG) with perfect infor-
mation, a.k.a., deterministic LQDGs, was derived in Pachter and Pham (2010,
Theorem 2.1). The Schur complement concept (Fuzhen 2005) was used to invert a
blocked .mu C mv/ � .mu C mv/ matrix which contains four blocks, its two diagonal
blocks being a mu � mu matrix and a mv � mv matrix. We further improve on
the results of Pachter and Pham (2010) by noting that a matrix with four blocks
has two Schur complements, say SB and SC. This allows one to obtain explicit
and symmetric formulae for the P and E players’ optimal strategies, thus yielding
the complete solution of the deterministic LQDG. These results are used in this
paper and for the sake of completeness, the closed form solution of the perfect
information/deterministic zero-sum LQDG is included herein.

The linear dynamics are

xkC1 D Axk C Buk C Cvk ; x0 � x0 ; k D 0; 1; : : : ; N � 1 (8.53)

Payer P is the minimizer and his control uk 2 Rmu . Player E is the maximizer and his
control vk 2 Rmv . The planning horizon is N. The cost/payoff functional is quadratic:

J.fukgN�1
kD0 ; fvkgN�1

kD0 I x0/ D xT
NQFxN C

N�1X

kD0

.xT
kC1QxkC1 C uT

k Ruuk � vT
k Rvvk/ (8.54)

and Q and QF are real symmetric matrices. The players’ control effort weighting
matrices Ru and Rv are typically real symmetric and positive definite. Oftentimes it
is stipulated that also the state penalty matrices Q and QF be positive definite, or, at
least, positive semi-definite; these assumptions can be relaxed. The following holds.

Theorem A1. A necessary and sufficient condition for the existence of a solution
to the deterministic zero-sum LQDG (8.53) and (8.54) is

Ru C BTPkB > 0 (8.55)
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and

Rv > CTPkC (8.56)

8 k D 1; : : : ; N � 1, where the real, symmetric matrices Pk are the solution of the
Riccati difference equation

PkC1 D ATfPk � PkŒBS�1
B .Pk/B

T C BS�1
B .Pk/B

TPkC.Rv

� CTPkC/�1CT C C.Rv � CTPkC/�1CTPkBS�1
B .Pk/B

T

C C.Rv � CTPkC/�1CTPkBS�1
B .Pk/B

TPkC.Rv

� CTPkC/�1CT C C.CTPkC � Rv/�1CT �PkgA C Q ;

P0 D Q C QF ; k D 0; : : : ; N � 1 (8.57)

In Eq. (8.57), the first Schur complement matrix function

SB.Pk/ � BTPkB C Ru C BTPkC.Rv � CTPkC/�1CTPkB

In addition, the problem’s parameters must satisfy the conditions

Ru C BT.Q C QF/B > 0 (8.58)

and

Rv > CT.Q C QF/C (8.59)

The value of the LQDG is

V0.x0/ D xT
0 .PN � Q/x0 (8.60)

The players’ optimal strategies are the linear state feedback control laws

u�
k .xk/ D �S�1

B .PN�k�1/BT ŒI C PN�k�1C.Rv

� CTPN�k�1C/�1CT �PN�k�1A � xk; (8.61)

v�
k .xk/ D �S�1

C .PN�k�1/CT ŒI � PN�k�1B.Ru

C BTPN�k�1B/�1BT �PN�k�1A � xk (8.62)

In Eq. (8.62) the second Schur complement matrix function

SC.PkC1/ � �fRv � CT.Q C PkC1/C C CT.Q

C PkC1/BŒBT.Q C PkC1/B C Ru��1BT.Q C PkC1/Cg �
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Chapter 9
Pursuit-Evasion Game of Kind Between
Hybrid Players

Josef Shinar, Valery Y. Glizer, and Vladimir Turetsky

Abstract A pursuit-evasion differential game of kind with bounded controls and
prescribed duration is considered. Both players have two possible dynamics and
both can switch between them once during the game. Each player knows the two
possible dynamics of the other, but not the actual one. The optimal strategies of
the players in this game include the order of the two modes and the time of the
mode change between them. The optimal use of the mode change enlarges the
winning zone of the respective player, compared to its winning zone when using
fixed dynamics. An algorithmic example illustrates the complexity of the game with
hybrid players.
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9.1 Introduction

The optimal performance of interceptor missiles against maneuverable targets
can be analyzed by using the mathematical model of pursuit-evasion differential
games. The complete solutions of planar linear pursuit-evasion games with bounded
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controls and linear-quadratic pursuit-evasion games are well known (Ho et al. 1965;
Gutman and Leitmann 1976; Gutman 1979; Shinar 1981; Shima and Shinar 2002;
Turetsky and Shinar 2003; Shinar et al. 2013).

Modern flying vehicles can use two modes to control their trajectories. The
aerodynamic mode, depending on the vehicle’s speed and altitude, can be used
only in the lower atmosphere. The magnitude of the lateral acceleration, created
by the respective lift force, can be rather large, but its dynamics, depending on
the aerodynamic configuration, can be rather slow. In high altitudes, where the air
density is low, as well as out of the atmosphere, only thrust vector control (TVC) can
be used. The magnitude of the lateral acceleration, created by TVC is rater limited,
but its dynamics is rather fast. Of course in the lower altitudes both control modes
can be applied. Changing the dynamics is an additional element in the hybrid flying
vehicle’s control options.

During recent decades, control problems of hybrid dynamics systems were
studied by many researchers. In the works devoted to this topic, mostly control
problems with a single decision maker are studied (see Utkin 1983; Bartolini and
Zolezzi 1986; Chen and Fukuda 1997; Sussmann 1999; Lee and Kouvaritakis 2000;
Riedinger et al. 2003; Choi 2004 and the references therein). Control problems with
two and more decision makers (games with hybrid dynamics) are investigated much
less. In Grigorenko (1991) a differential game of pursuit of a single evader by a
group of pursuers is considered. The structure of the game dynamics is changed
by the evader once during the game. Sufficient conditions for the existence of the
game solution are obtained. In Mitchell et al. (2001, 2005) the reachability sets for
pursuit-evasion games with nonlinear hybrid dynamics are numerically constructed
by using solutions of time-dependent Hamilton-Jacobi equations. In Gao et al.
(2007) a general pursuit-evasion differential game with hybrid dynamics is studied
using the viability theory and non-smooth analysis.

The pursuit-evasion game, considered in the present paper, is the mathematical
model of an interception engagement between two vehicles, an interceptor P
(pursuer) and its target E (evader) both moving with constant velocities in a
horizontal plane. The dynamics of each vehicle is approximated by a first-order
linear transfer function with time constants �p and �e, respectively. Moreover, it
is assumed that the players’ controls (their lateral acceleration commands) are
bounded by the constants amax

p and amax
e , respectively. Thus, the dynamics of each

player is defined by the respective vector !i D .amax
i ; �i/, i D p; e. The cost

function of the corresponding game of degree is the distance of closest approach
(miss distance). The fixed dynamics version of this game and its extension to the
case of time-varying velocities and lateral acceleration command bounds have been
studied extensively in the open literature, see Shinar (1981), Shima and Shinar
(2002), Gutman (2006), and Glizer and Turetsky (2008). It was shown that this
game has a saddle-point solution in feedback strategies. The solution leads to the
decomposition of the game space into two regions (singular and regular) of different
optimal strategies. The game space decomposition is completely determined by the
pair .!p; !e/. This pair also determines the existence or non-existence of a capture
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zone—the set of all initial positions of the game for which the value of the game of
degree equals zero. In other words this pair determines the playability of the game
of kind.

In Shinar et al. (2009b), the pursuit of an evader with fixed dynamics by a pursuer
with hybrid dynamics is studied, while in Shinar et al. (2009a), the evasion from a
pursuer with fixed dynamics by an evader with hybrid dynamics is analyzed. In
these papers, it was established that using the hybrid dynamics is helpful only if
the capture zones’ boundaries of the possible fixed dynamics games intersect. The
conditions of the intersection, as well as the optimal order of dynamics for the player
with hybrid dynamics were also determined. Moreover, in each case, the optimal
time of the mode change was derived in a closed form. It is important to note that
this optimal time depends only on the dynamic modes of the hybrid player. The
capture zone of the hybrid pursuer and the escape zone of the hybrid evader also
were constructed.

In the present paper, the case of a hybrid pursuer and a hybrid evader is treated
from the viewpoint of the pursuer. The players can change their dynamics from one
mode to another once during the game. The order of the dynamics and the time of the
change (the dynamic schedule) are additional elements of player’s control, unknown
to the opponent. The hybrid dynamics, unknown to the respective opponent, makes
this game a differential game with incomplete information (Shinar et al. 2009c,
2010, 2012). Such games were considered, for instance, in Krasovskii (1984), Pet-
rosjan (1993), Kumkov and Patsko (1995), and Chernousko and Melikyan (1975).

The chapter is organized as follows. The next section is devoted to the problem
formulation. In Sect. 9.3, main results of the fixed dynamics games are briefly
summarized. Section 9.4 contains the solution of the pursuit problem of a hybrid
evader by a fixed dynamics pursuer. For a hybrid pursuer two such phases can be
considered, before and after the change of its dynamic mode. Section 9.5 presents
the two phases assuming fixed dynamic schedules, leading to determine the game
optimal (minmax) schedules of each player, and it presents an example illustrating
the algorithmic solution methodology. Conclusions are summarized in Sect. 9.6. The
proofs of technical lemmas are presented in the Appendices.

9.2 Problem Statement

9.2.1 Engagement Model

A planar engagement between two moving objects (players)—a pursuer and an
evader—is considered. The schematic view of this engagement is shown in Fig. 9.1.
The X axis of the coordinate system is aligned with the initial line of sight. The
origin is collocated with the initial pursuer position. The points .xp; yp/, .xe; ye/

are the current coordinates, Vp and Ve are the velocities and ap, ae are the lateral
accelerations of the pursuer and the evader respectively, 'p; 'e are the respective
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angles between the velocity vectors and the reference line of sight; and y D ye � yp

is the separation normal to the initial line of sight.
It is assumed that the dynamics of each object is expressed by a first-order

transfer function with the time constants �p and �e, respectively. The velocities and
the bounds of the lateral acceleration commands of both objects are constant.

If the aspect angles 'p and 'e are small during the engagement then the linearized
engagement model is (Shinar 1981)

Px D Ax C bu C cv; x.0/ D x0; (9.1)

where the state vector is x D .x1; x2; x3; x4/T D .y; Py; ae; ap/T , the superscript T
denotes the transposition,

A D

2

6
6
4

0 1 0 0

0 0 1 �1

0 0 �1=�e 0

0 0 0 �1=�p

3

7
7
5 ; (9.2)

b D .0; 0; 0; amax
p =�p/T ; c D .0; 0; amax

e =�e; 0/T ; (9.3)

x0 D .0; x20; 0; 0/T ; x20 D Ve'e.0/ � Vp'p.0/: (9.4)

The small angles assumption allows one to calculate the final time of the engage-
ment as

tf D r0=.Vp C Ve/; (9.5)

where r0 is the initial range between the players.
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The normalized lateral acceleration commands of the evader v.t/ and the pursuer
u.t/ satisfy the constraints

jv.t/j � 1; ju.t/j � 1; 0 � t � tf : (9.6)

Remark 1. The engagement model (9.1)–(9.3) is completely determined by the two
vectors !e D .amax

e ; �e/ and !p D .amax
p ; �p/ called in the sequel the dynamic modes

of the evader and pursuer, respectively.

9.2.2 Pursuit-Evasion Game Between Hybrid Players

It is assumed that both the pursuer and the evader have two dynamic modes at their
disposal. Thus, in (9.1)–(9.3), !e 2 ˝e , f!1

e ; !2
e g, !p 2 ˝p , f!1

p ; !2
pg, where

! j
e D .amax

ej ; �ej/, j D 1; 2, ! i
p D .amax

ei ; �ei/, i D 1; 2 are given dynamic modes of
the evader and the pursuer. The pursuer and the evader can switch dynamics from
one mode to another once during the engagement. This means that they choose the
numbers j1; j2 2 f1; 2g, i1; i2 2 f1; 2g, and the time moments te; tp 2 Œ0; tf �, such that

!e D
8
<

:

! j1
e ; 0 � t � te;

! j2
e ; te < t � tf ;

!p D

8

<̂

:̂

! i1
p ; 0 � t � tp;

! i2
p ; tp < t � tf :

(9.7)

The triplets se , .j1; j2; te/ and sp , .i1; i2; tp/ are called the dynamic schedule of
the evader and the pursuer, respectively.

In the game of degree the cost function is the miss distance

J D jx1.tf /j: (9.8)

The objective of the pursuer is to minimize the miss distance by means of the
feedback strategy u.t; x/ and the dynamic schedule sp against optimal (worst case)
evader strategy v.t; x/ and dynamic schedule se. It is assumed that the pursuer
knows the evader set ˝e and the current state of the engagement x.t/, but not the
current dynamic mode of the evader. This is the pursuer’s view of the Hybrid Pursuit
Game (HPG).

Remark 2. If, in particular, te D 0 or te D tf , the dynamics of the evader is constant
during the engagement. However, the pursuer is not aware, which dynamics of two
possible the evader uses. This constant evader dynamics pursuit-evasion problem
with incomplete information forms a special case of the HPG.
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9.3 Fixed Dynamics Pursuit-Evasion Problem

In this section, the case, where the dynamic modes of the players are fixed, is briefly
presented. In the sequel, this problem is called the Original Fixed Dynamics Game
(OFDG). This game was solved in Shinar (1981). Its solution is stated in the sequel.

9.3.1 Zero-Effort Miss Distance

The solution of the OFDG is based on its scalarization by introducing a new state
variable

Z.t/ D Z.tI !e; !p/ D dT˚.tf ; tI �e; �p/x.tI !e; !p/; (9.9)

where x.tI !e; !p/ is the state vector of (9.1), ˚.tf ; tI �e; �p/ is the transition matrix
of the homogeneous system Px D Ax and dT D .1; 0; 0; 0/. The value of the function
Z.t/ has the following physical interpretation. If u � 0 and v � 0 on the interval
Œt; tf �, then the miss distance jx1.tf /j equals jZ.t/j. Therefore, this function is called
the zero-effort miss distance (ZEM). It is given explicitly by

Z.t/ D x1.t/ C .tf � t/x2.t/C
�2

e �
�
.tf � t/=�e

	
x3.t/ � �2

p �
�
.tf � t/=�p

	
x4.t/; (9.10)

where �.�/ , exp.��/ C � � 1 > 0, � > 0. By introducing a new independent
variable # D tf � t (time-to-go) and using (9.10), it can be shown that the function
of #

QZ.#/ D QZ.# I !e; !p/ , Z.tf � # I !e; !p/ (9.11)

satisfies the differential equation

d QZ
d#

D h.#; �p; amax
p /u.tf � #/ � h.#; �e; amax

e /v.tf � #/; (9.12)

where

h.#; �; amax/ D �amax�.#=�/: (9.13)

Note that QZ.0/ D x1.tf /, i.e., the performance index (9.8) can be rewritten as
J D j QZ.0/j. This allows to associate the OFDG with a scalar game consisting of the
dynamics
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dz

d#
D h.#; �p; amax

p /u � h.#; �e; amax
e /v; z.#0/ D z0; (9.14)

the performance index

J D jz.0/j; (9.15)

the control constraints

jv.#/j � 1; ju.#/j � 1; 0 � # � #0; (9.16)

where

#0 D tf ; z0 D #0x20; (9.17)

the pursuer and evader controls u.#/ and v.#/ are actually u.tf � #/ and v.tf � #/

of the OFDG.
The game described by (9.14)–(9.16) is called the Scalar Fixed Dynamics Game

(SFDG).

9.3.2 SFDG Solution

The solution of this problem is based on the decomposition of the game space D ,
f.#; z/ W # 2 Œ0; #0�; z 2 R1g into two regions of different strategies.

In the first (regular) region D1 the optimal pursuer strategy and the worst case
evader strategy have the “bang-bang” structure:

u0.#; z/ D v0.#; z/ D sign.z/; (9.18)

and the guaranteed result is nonzero, depending on the initial conditions. In the
second (singular) region D0 D DnD1 the optimal pursuer strategy u0.#; z/ and the
worst case evader strategy v0.#; z/ are arbitrary subject to (9.16) and the guaranteed
pursuit result is constant. Note that D1 and D0 are symmetrical with respect to the
#-axis.

If the following two inequalities, called the “capture conditions”, are satisfied
the pursuer can achieve zero miss distance (capture), from a part of the game space
(capture zone) and the corresponding game of kind is playable.

In this case

amax
p > amax

e ; amax
p =�p � amax

e =�e; (9.19)
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and the singular region is

D0 D D0.!e; !p/ D f.#; z/ 2 D W jzj < z�.#; !e; !p/g; (9.20)

where

z�.#; !e; !p/ D
#Z

0

H.�; !e; !p/d�; (9.21)

H.�; !e; !p/ , h.�; �p; amax
p / � h.�; �e; amax

e /: (9.22)

In this case, for any initial position .#0; z0/ the guaranteed result is given by

J0 D J0.#0; z0; !e; !p/ D
8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

0; .#0; z0/ 2 D0.!e; !p/;

jz0j �
#0Z

0

H.#; !e; !p/d#; .#0; z0/ 2 D1.!e; !p/:

(9.23)

Thus, subject to the conditions (9.19), the closure of the singular region clo.D0/

becomes the robust capture zone, i.e. the set of all initial positions, from which the
pursuer can guarantee zero miss distance against any admissible evader strategy.
In Fig. 9.2, the singular and the regular regions are shown for the parameters �p D
0:2 s, amax

p D 180 m/s2, �e D 0:4 s, amax
e D 130 m/s2, tf D 5 s.
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Fig. 9.2 The SFDG space decomposition
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9.4 Transformation of the HPG

In the sequel, it is assumed that the “capture conditions” (9.19) are satisfied for each
pair .! j

e; ! i
p/, j; i D 1; 2, i.e.

amax
pi > amax

ej ; amax
pi =�pi � amax

ej =�ej; j; i D 1; 2: (9.24)

9.4.1 New Aiming Point of the Pursuer

Due to (9.10)–(9.11),

QZ.#/ D QZ0.#/ C �2
e �.#=�e/Qx3.#/; (9.25)

where

QZ0.#/ D Qx1.#/ C # Qx2.#/ � �2
p �.#=�p/Qx4.#/; (9.26)

Qxi.#/ D xi.tf � #/; i D 1; : : : ; 4: (9.27)

Note that in the OFDG, the pursuer knows the current ZEM value perfectly,
and it serves as an aiming point in this game. In the HPG, the pursuer has
information only on the two possible current values of the ZEM, but does not
know the actual one. Thus, QZ.#/ cannot serve as an aiming point in the HPG
as in the OFDG. A new aiming point is defined based on the concept of an
uncertainty set (Kumkov and Patsko 1995; Petrosjan 1993). For any # 2 Œ0; #0�,
the ZEM uncertainty set consists of the two possible current values of the ZEM:
QZ.#/ , f QZ.#; !1

e ; !p/; QZ.#; !2
e ; !p/g, where, due to (9.25),

QZ.#; ! j
e; !p/ D QZ0.#/ C �2

ej�.#=�ej/Qx3.#/; j D 1; 2: (9.28)

The convex hull CZ.#/ D conv. QZ.#// is the closed interval with the end points
QZ.#; !1

e , !p/; QZ.#; !2
e ; !p/. Therefore, the center zc.#/ of CZ is given by

zc.#/ D QZ0.#/ C F.#/Qx3.#/; (9.29)

where

F.#/ ,
�
�2

e1�.#=�e1/ C �2
e2�.#=�e2/

�.
2: (9.30)

We choose zc.#/ as the pursuer’s aiming point in the HPG.
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Remark 3. For any # 2 Œ0; #0�, let us consider an auxiliary game, in which the
players choose the points Zp; Ze 2 CZ.#/ according to the performance index

jZp � Zej ! min
Zp2CZ.#/

max
Ze2CZ.#/

: (9.31)

This game is a particular case of the one considered in Petrosjan (1993). The value
of zc.#/ is the pursuer’s optimal choice in this game. The optimal evader’s choice
in this game is mixed: choosing one of the ends of CZ with equal probabilities 1=2.
Thus, zc.#/ is the guaranteed minimal distance between the new aiming point of the
pursuer and the actual ZEM value.

Note that

zc.0/ D x1.tf /: (9.32)

By direct differentiation, the new aiming point, along with Qx3, satisfies the system
of differential equations

dzc

d#
D h.#; �p; amax

p /u � he.#; �e; amax
e /v C hx.#; �e/Qx3; (9.33)

dQx3

d#
D 1

�e
.Qx3 � amax

e v/; (9.34)

where h.#; �p; amax
p / is given by (9.13), and

he.#; �e; amax
e / D F.#/

amax
e

�e
; (9.35)

hx.#; �e/ D F.#/

�e
� G.#/; (9.36)

G.#/ ,
�
�e1�.#=�e1/ C �e2�.#=�e2/

�.
2: (9.37)

Remember that in (9.34), !e D ! j1
e for # 2 Œ#e; #0�, while !e D ! j2

e for # 2 Œ0; #e/.
Due to (9.4), (9.26), (9.27) and (9.29), the initial conditions for (9.33)–(9.34) are

zc.#0/ D z0; Qx3.#0/ D 0: (9.38)

Based on the new aiming point, a new pursuit game is formulated for the
system (9.33)–(9.38), the control constraints (9.16) and the performance index

J D jzc.0/j ! min
u

max
v

: (9.39)
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This game is also with hybrid dynamics. However, in contrast with the ZEM in the
HPG, the new state variable is known perfectly by the pursuer. This new game is
called the Reduced Hybrid Pursuit Game (RHPG).

9.4.2 Impulsive Dynamics Pursuit Game (IPG)

By virtue of (9.26) and (9.29), the new state variable zc.#/ has a jump at # D #p

�zc

ˇ
ˇ
ˇ
#D#p

D ıQx4.#p/; (9.40)

where

ı D �2
p1�.#p=�p1/ � �2

p2�.#p=�p2/: (9.41)

Since the jump (9.40) depends on Qx4.#/, in the new game formulation the
dynamics (9.33)–(9.34) should be augmented by the differential equation for Qx4.#/.
Thus, by using (9.1), the new game dynamics is described by the system

dzc

d#
D h.#; �p; amax

p /u � he.#; �e; amax
e /v C hx.#; �e/Qx3; zc.#0/ D z0

dQx3

d#
D 1

�e
.Qx3 � amax

e v/ Qx3.#0/ D 0;

dQx4

d#
D 1

�p
.Qx4 � amax

p u/ Qx4.#0/ D 0:

(9.42)

Let Sp be the set of all triplets sp D fi1; i2; #pg, i1; i2 2 f1; 2g, i1 ¤ i2, #p 2 Œ0; #0�.
The triplet sp 2 Sp is called the pursuer dynamics schedule. Similarly, Se is the set
of all triplets se D fj1; j2; #eg, j1; j2 2 f1; 2g, j1 ¤ j2, #e 2 Œ0; #0�, and the triplet
se 2 Se is called the evader dynamics schedule.

The pursuer choice of sp 2 Sp and the evader choice of se 2 Sp mean that

!e D
8
<

:

! j1
e ; #0 � # > #e

! j2
e ; #e � # � 0;

!p D

8

<̂

:̂

! i1
p ; #0 � # > #p

! i2
p ; #p � # � 0;

(9.43)

Following (9.40), the zc-jump can be represented as

�zc D �zc.sp/ D ıQx4.#p/; (9.44)
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where

ı D �2
p;i1�.#p=�p;i1 / � �2

p;i2�.#p=�p;i2 /: (9.45)

Therefore, for a given pursuer dynamics schedule sp, the new dynamics (9.42) is
subject to a jump

zc.#p/ D zc.#p C 0/ C �zc.sp/: (9.46)

Thus, on the intervals .#p; #0� and Œ0; #p/, the new dynamics is described by the
system (9.42), while at the point # D #p, this dynamics is described by the jump
condition (9.46), i.e. the new dynamics has an impulsive character. The cost function
and control constraints in the new pursuit game remain the same as in the RHPG,
i.e. (9.39) and (9.16), respectively. This game is called the Impulsive dynamics
Pursuit Game (IPG).

9.5 IPG Solution

9.5.1 Optimal Pursuer Strategy on Œ#p; #0� for Fixed sp, se

For fixed schedules sp, se, the optimal pursuer strategy on the interval Œ#p; #0� is
constructed based on the Auxiliary Game-1 (AG1) with the dynamics (9.42) for
�p D �p;i1 , amax

p D amax
p;i1

, the control constraints (9.16) and the performance index

J#p , jzc.#p/ C ıQx4.#p/j ! min
u

max
v

: (9.47)

Note that J#p is the absolute value of zc for # D #p (after the jump). Due to Glizer
and Turetsky (2008), the AG1 is equivalent to the Scalar Auxiliary Game-1 (SAG1)
with the state variable

w.#/ D w.#; zc.#/; Qx3.#/; Qx4.#// D dT�.#p; #/

2

4
zc.#/

Qx3.#/

Qx4.#/

3

5 ; (9.48)

where

dT D Œ1; 0; ı�; (9.49)

and �.#; �/ is the fundamental matrix of the homogenous system, corresponding
to (9.42), for �p D �p;i1 :



9 Pursuit-Evasion Game Between Hybrid Players 199

�.#; �/ D

2

6
6
6
6
4

1

#Z

�

hx.�; �e/ exp..� � �/=�e/d� 0

0 exp..# � �/=�e/ 0

0 0 exp..# � �/=�p;i1 /

3

7
7
7
7
5

: (9.50)

By virtue of (9.48),

J#p D jw.#p/j: (9.51)

Due to (9.48) and (9.50),

w.#/ D zc.#/ C Qx3.#/

#pZ

#

hx.�; �e/ exp..� � #/=�e/d�C

ı exp ..#p � #/=�p;i1/Qx4.#/: (9.52)

By using (9.42) and (9.52), w.#/ satisfies the differential equation

dw

d#
D hp1.#; #p; �p;i1 ; �p;i2 ; amax

p;i1 /u � he1.#; #p; �e; amax
e /v; (9.53)

where

hp1.#; #p; �p;i1 ; �p;i2 ; amax
p;i1 / D h.#; �p;i1 ; amax

p;i1 /� ıamax
p;i1

�p;i1

exp..#p �#/=�p;i1 /; (9.54)

he1.#; #p; �e; amax
e / D he.#; �e; amax

e / C amax
e

�e

#pZ

#

hx.�; �e/ exp..� � #/=�e/d�:

(9.55)
The initial condition is

w.#0/ D z0: (9.56)

Thus, the SAG1 has the dynamics (9.53) with the initial condition (9.56), the control
constraints (9.16) and the cost function (9.51), to be minimized by the pursuer and
maximized by the evader.

Remark 4. If #e > #p, the coefficient function .�Ohe1.#; #p; �e; amax
e // for v in (9.53)

is piecewise continuous on .#p; #0�. Otherwise, it is continuous.

By virtue of Glizer and Turetsky (2008), the SAG1 solution is based on the
decomposition of the game space .#; w/ into two regions of different feedback
controls. In the first (singular) region OD0 the optimal feedback controls Ou�.#; w/ and
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Ov�.#; w/ are arbitrary subject to (9.16). In the second (regular) region OD1 D R2n OD0

the optimal feedback controls have a “bang-bang” structure:

Ou�.#; w/ D Ov�.#; w/ D sign w: (9.57)

Since w.#0/ D z0, the value of SAG1 is given by

OJ� D OJ�.#0; z0; sp/ D

8
ˆ̂
<̂

ˆ̂
:̂

C1 D const; .#0; z0/ 2 OD0;

jz0j C
#pZ

#0

H1.�; sp/d�; .#0; z0/ … OD0;
(9.58)

where

H1.#; sp/ , hp1.#; #1; �p;i1 ; �p;i2 ; amax
p;i1 / � he1.#; #p; �e; amax

e /: (9.59)

Remark 5. For the sake of simplicity, we use in the further analysis the bang-bang
strategies (9.57) in the entire SAG1 space.

9.5.2 Optimal Pursuer Strategy on Œ0; #p� for Fixed sp, se

The optimal pursuer strategy on the interval Œ0; #p� is constructed based on the
Auxiliary Game-2 (AG2) with the dynamics (9.33)–(9.34) for �p D �p;i2 , amax

p D
amax

p;i2
, the control constraints (9.16) and the performance index (9.39). The initial

conditions are

zc

ˇ
ˇ
ˇ
AG2

.#p/ D w.#p/; Qx3

ˇ
ˇ
ˇ
AG2

.#p/ D Qx3

ˇ
ˇ
ˇ
AG1

.#p/ , Qx30: (9.60)

Remark 6. Like in (9.53), if #e < #p, the coefficient functions in Eq. (9.33)� � he.#; �e; amax
e / for v and hx.#; �e/ for Qx3

	
are piecewise continuous on Œ0; #p/.

Otherwise, they are continuous.

The game AG2 is solved based on the results of Shinar et al. (2012). Namely, let
define two integers m; M 2 f1; 2g as follows:

�em D minf�e1; �e2g; �eM D maxf�e1; �e2g: (9.61)

Let the following conditions hold:

amax
p;i2 =amax

em > 0:5�p;i2 .3=�em � 1=�eM/; (9.62)

amax
p;i2 =amax

em > �eM=�em; (9.63)

amax
p;i2 =amax

eM > 0:5�p;i2 .1=�em C 1=�eM/: (9.64)
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Then by virtue of Shinar et al. (2012), the AG2 optimal strategies are

Nu�.#; zc/ D Nv�.#; zc/ D
8
<

:

arbitrary; .#; zc/ 2 ND0

sign zc; .#; zc/ … ND0;

(9.65)

where ND0, called in Shinar et al. (2012) the singular zone, is given as

ND0 D
n
.#; zc/ W # 2 .0; #0�; z�

c .#; #0I se; Qx30/ < zc < zC
c .#; #0I se; Qx30/

o
;

(9.66)

zC
c .#; #0I se; Qx30/ ,

#Z

0

R.�; #0I !p; !1
e ; !2

e ; se; Qx30/d� > 0; # > 0; (9.67)

z�
c .#; #0I se; Qx30/ ,

�
#Z

0

R.�; #0I !p; !1
e ; !2

e ; se; �Qx30/d� < 0; # > 0; (9.68)

R.#; #0I !p; !1
e ; !2

e ; se; �/ , R.#; #0/ D
8
<

:

R1.#; #0/; # 2 Œ#e; #0�;

R2.#; #0/; # 2 Œ0; #e/;

(9.69)

R1.#; #0/ D R1.#; #0I !p; ! je1
e / , h.#; �p; amax

p / � he.#; �e;je1 ; amax
e;je1

/�
hx.#; �e;je1 /

�
� � exp..# � #0/=�e;je1 / C G1.#/

�
; (9.70)

R2.#; #0/ D R2.#; #0I !p; ! je1
e ; ! je2

e / , h.#; �p; amax
p / � he.#; �e;je2 ; amax

e;je2
/�

hx.#; �e;je2 /
�

� � exp
h
.# � #e/=�e;je2 C .#e � #0/=�e;je1

i
C G2.#/ C G3.#/

�
;

(9.71)

G1.#/ , amax
e;je1

�
exp..# � #0/=�e;je1 / � 1

�
; (9.72)

G2.#/ , G1.#e/ exp..# � #e/=�e;je2 /; (9.73)

G3.#/ , amax
e;je2

�
exp..# � #e/=�e;je2 / � 1

�
: (9.74)
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The value of AG2 is

NJ� D NJ�.#p; w2p/ D

8
ˆ̂
<̂

ˆ̂
:̂

C2 D const; .#p; w2p/ 2 ND0;

jw2pj C
0Z

#p

H2.�/d�; .#p; w2p/ … ND0;
(9.75)

where

H2.#; sp/ , h.#; �p;i2 ; amax
p;i2 / � he2.#; �e; amax

e /: (9.76)

Remark 7. For the sake of simplicity, we use in the further analysis the bang-bang
strategies (9.65) in the entire AG2 space.

9.5.3 Optimal Pursuer Schedule

The AG2 value (9.75) depends on the dynamic schedules sp and se of the pursuer
and the evader: NJ� D NJ�.sp; se/. In order to obtain the minimal value of jzc.0/j
against the worst case evader control, the pursuer should choose the schedule as the
solution of the following min-max optimization problem:

s�
p D arg min

sp2Sp

max
se2Se

NJ�.sp; se/: (9.77)

The corresponding worst case (from the pursuer’s viewpoint) evader’s schedule is

s�
e D arg max

se2Se

NJ�.s�
p ; se/: (9.78)

Based on the schedules s�
p and s�

e , the hybrid robust capture zone is constructed as

Cp D ˚
. N#0; Nz0/ W N#0 2 Œ0; #0�; jNz0j � Zp. N#0/

�
; (9.79)

where

Zp. N#0/ D max
˚Nz0 W NJ�.s�

p ; s�
e / D 0

�
: (9.80)

9.5.4 Numerical Example

In this example, the hybrid robust capture zone Cp is constructed for the dynamics
data, presented in Table 9.1, and #0 D 4 s.
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Table 9.1 Players’ dynamics data

Time constant (s) Max. acc.command (m/s2)
Pursuer �p1 D 0:1 amax

p1 D 150

�p2 D 0:8 amax
p2 D 230

Evader �e1 D 0:4 amax
e1 D 100

�e2 D 0:5 amax
e2 D 120
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Fig. 9.3 Robust capture zones comparison

In the two following figures the characteristics of the hybrid robust capture zone
are illustrated. In Fig. 9.3, it is shown that the hybrid robust capture zone is larger
then the union of all the fixed dynamics robust capture zones:

Cp �
2[

i;jD1

C0.! i
p; ! j

e/: (9.81)

In Fig. 9.4, three optimal ZEM trajectories, emanating from the upper bound
of the hybrid robust capture zone for N#0 D 4 s, N#0 D 3:1 s and N#0 D 2:1 s, are
depicted. These trajectories are generated by the optimal schedules, defined in (9.77)
and (9.78), respectively, by using the AG1 and AG2 optimal strategies

u� D v� D
8
<

:

sign.w.#// #0 � # > #p;

sign.zc.#// #p � # > 0:

(9.82)

They show the discontinuities created by the “jumps” and demonstrate that along
all of them capture is achieved.

The schedules s�
p and s�

e for different values of N#0 are presented in Table 9.2.

From Table 9.2, we can observe that for all N#0, the optimal order .i�1 ; i�2 / of
the pursuer’s dynamic modes is the same as in the differential game with a hybrid
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Fig. 9.4 Optimal ZEM trajectories

Table 9.2 Schedules s�
p and s�

e

N#0 (s) Nz0 (m)
s�

p s�
e

i�1 i�2 #�
p (s) j�1 j�2 #�

e (s)

4.0 736.82 1 2 3.72 1 2 3.36

3.9 696.41 1 2 3.58 1 2 3.14

3.8 662.09 1 2 3.56 2 1 0

3.7 623.11 1 2 3.46 1 2 3.50

3.6 589.64 1 2 3.36 2 1 0

3.5 556.51 1 2 3.22 1 2 3.46

3.4 519.90 1 2 3.12 1 2 3.36

3.3 487.99 1 2 3.02 2 1 0.02

3.2 459.97 1 2 2.96 1 2 2.80

3.1 428.96 1 2 2.82 1 2 2.98

N#0 (s) Nz0 (m)
s�

p s�
e

i�1 i�2 #�
p (s) j�1 j�2 #�

e (s)

3.0 399.71 1 2 2.76 1 2 2.76

2.9 372.88 1 2 2.66 1 2 2.78

2.8 344.57 1 2 2.56 1 2 2.68

2.7 319.96 1 2 2.42 1 2 2.62

2.6 294.16 1 2 2.36 2 1 0.04

2.5 271.69 1 2 2.22 1 2 2.38

2.4 248.29 1 2 2.16 1 2 2.16

2.3 227.89 1 2 2.06 2 1 0.06

2.2 206.80 1 2 1.92 1 2 2.04

2.1 186.90 1 2 1.86 1 2 2.02

Table 9.2 Schedules s�
p and s�

e (contd.)

N#0 (s) Nz0 (m)
s�

p s�
e

i�1 i�2 #�
p (s) j�1 j�2 #�

e (s)

2.0 169.51 1 2 1.76 1 2 1.76

1.9 151.77 1 2 1.62 1 2 1.62

1.8 135.13 1 2 1.52 1 2 1.68

1.7 119.57 1 2 1.46 1 2 1.46

1.6 105.95 1 2 1.36 1 2 1.52

1.5 92.37 1 2 1.26 1 2 1.46

1.4 79.78 1 2 1.12 1 2 1.24

1.3 68.17 1 2 1.02 1 2 1.06

1.2 57.53 1 2 0.96 1 2 1.04

1.1 47.81 1 2 0.86 1 2 0.94

N#0 (s) Nz0 (m)
s�

p s�
e

i�1 i�2 #�
p (s) j�1 j�2 #�

e (s)

1.0 39.39 1 2 0.76 1 2 0.92

0.9 31.43 1 2 0.62 1 2 0.74

0.8 24.37 1 2 0.56 2 1 0.08

0.7 18.39 1 2 0.42 2 1 0.02

0.6 13.20 1 2 0.36 1 2 0.52

0.5 8.91 1 2 0.26 1 2 0.42

0.4 5.41 1 2 0.12 1 2 0.32

0.3 2.76 1 2 0.02 1 2 0.22

0.2 1.02 1 2 0 1 2 0.12

0.1 0.18 1 2 0.02 1 2 0.02
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Fig. 9.5 Optimal switch moments #�
p

dynamics pursuer and a fixed dynamics evader (Shinar et al. 2009b). Namely, the
pursuer switches from a smaller value of �p to a larger (�p1 D 0:1 s, �p2 D 0:8 s in
the example). Moreover, the optimal pursuer’s switch moment #�

p is very close to
the value calculated in Shinar et al. (2009b) as

Q#�
p D N#0 � �p1 ln

"
amax

p1 .�p2 � �p1/

�p1.amax
p2 � amax

p1 /

#

: (9.83)

The values of #�
p , obtained in the numerical example as functions of N#0, are

compared in Fig. 9.5 to the analytical results of Shinar et al. (2009b), indicating
almost coincidence, taking into account the limited numerical accuracy.

In the set of the optimal (worst case) evader’s schedules s�
e , two subsets can be

distinguished. The first subset corresponds to the seven values N#0 D 0:7, 0:8, 2:3,
2:6, 3:3, 3:6 and 3:8 s. In this subset, the evader’s switch moment #�

e is zero or
very close to zero, while the order .j�1 ; j�2 / is .2; 1/, meaning that the evader actually
do not change its dynamic mode and employs the second mode during the entire
engagement. The rest of the schedules s�

e are close to the optimal evader’s schedules
in the differential game with a fixed dynamics pursuer and a hybrid dynamics evader
(Shinar et al. 2009a): switch from a smaller �e to a larger (�e1 D 0:4 s, �e2 D 0:5 s
in the example) and calculating #�

e D Q#�
e by replacing the subscript “p” to “e”

in (9.83). The values of #�
e from the second subset and the respective values Q#�

e as
functions of N#0 are compared in Fig. 9.6, indicating a reasonable good matching,
taking into account the limited numerical accuracy.
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9.6 Conclusions

In this paper, a pursuit-evasion differential game of kind where both players have
hybrid dynamics was considered. Each player has two possible fixed dynamic
modes at its disposal and can switch from one mode to the other once during the
game. The cost functional of the associated game of degree is the miss distance,
to be minimized by the pursuer and maximized by the evader. This game was
solved from the pursuer’s viewpoint, thus called the Hybrid Pursuit Game (HPG).
In the HPG, the pursuer knows perfectly the current state vector and the set of the
possible evader’s dynamic modes, but not the current mode. Thus, the HPG is an
incomplete information game. By introducing a new aiming point of the pursuer (the
center of the convex hull of the uncertainty set), the HPG was converted to a new
complete information reduced dimension differential game, the Reduced Hybrid
Pursuit Game (RHPG). In the RHPG, a state jump occurs at the moment when
the pursuer changes its dynamic mode, introducing an impulsive character to the
dynamics.

The RHPG was solved in several stages.

1. Assuming a fixed order of the pursuer’s dynamics and a fixed switch moment
of the pursuer’s dynamics modes (constituting a fixed dynamic schedule of the
pursuer), an auxiliary differential game (AG1) was formulated on the time inter-
val between the engagement beginning and the switch moment of the pursuer’s
dynamics. This game, where the pursuer uses its first dynamic mode and the
cost functional is the zero effort miss distance immediately after the switch, was
solved by its scalarization.
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2. A second auxiliary differential game (AG2) was formulated and solved on the
time interval between the switch moment of the pursuer’s dynamics and the end
of the engagement. In this game, the pursuer uses its second dynamic mode.

3. The outcome of the second auxiliary differential game is maximized, for a given
fixed pursuer’s dynamic schedule, over all possible evader’s dynamic schedules
(i.e. over the two possible orders of the evader’s dynamic modes and its all
possible dynamics switch moments). The optimal (worst case) evader’s extended
strategy is composed of the evader’s strategy and the maximizing evader’s
dynamic schedule against the given pursuer’s strategy. This stage yields the
guaranteed RHPG value for a given pursuer’s schedule.

4. The next step is to find the pursuer’s dynamic schedule, minimizing the guar-
anteed RHPG value. This minimal guaranteed value is the upper value of the
RHPG. The minimizing pursuer’s schedule, along with the pursuer’s strategy
constructed at the first two stages, forms the pursuer’s extended optimal strategy.

5. Based on the solution of the RHPG, the (robust) capture zone of the game of kind
is constructed, as the set of all initial positions, for which the RHPG upper value
is zero.

In the numerical example, included in the paper, it is shown that the robust
capture zone of the HPG is larger than the union of all possible robust capture zones,
constructed for the four possible robust capture zones with fixed dynamics. The
example also shows that the optimal dynamic schedule of the pursuer coincides with
the optimal pursuer schedule in the differential game between a pursuer with hybrid
dynamics and an evader with fixed dynamics, solved previously by the authors.
Also, the optimal (worst case) dynamic schedule of the evader in the majority of
the samples of the example is rather close to the optimal dynamic schedule of the
evader in the differential game between a pursuer with fixed dynamics and an evader
with hybrid dynamics. In the few other cases the evader’s dynamics is not changed
during the game. These observations seem to be logical, but will need a rigorous
justification in a future work.
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Chapter 10
A Double-Sided Jamming Game
with Resource Constraints

Sourabh Bhattacharya, Ali Khanafer, and Tamer Başar

Abstract In this article, we study the problem of power allocation in teams of
mobile agents in a conflict situation. Each team consists of two agents who try
to split their available power between the tasks of communication and jamming
the nodes of the other team. The agents have constraints on their total energy and
instantaneous power usage. The cost function is the difference between the rates of
erroneously transmitted bits of each team. We present a 2-level game formulation:
At the higher level, the agents solve a continuous-kernel power allocation game at
each instant. Based on the communications model, we present sufficient conditions
on the physical parameters of the agents for the existence of a Pure Strategy Nash
Equilibrium for the continuous-kernel power allocation game. At the lower level,
we have a zero-sum differential game between the two teams and use Isaacs’
approach to obtain necessary conditions for the optimal trajectories. The optimal
power allocation scheme obtained at the upper level is used to solve the lower level
differential game. This gives rise to a games-in-games scenario which is one of the
first such phenomena documented in the literature.
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10.1 Introduction

The decentralized nature of wireless ad hoc networks makes them vulnerable to
security threats. A prominent example of such threats is jamming: a malicious attack
whose objective is to disrupt the communication of the victim network intentionally,
causing interference or collision of packets at the receiver side. Jamming attack
is a well-studied and active area of research in wireless networks. Unauthorized
intrusion of such kind has started a race between the network operators and the
hackers; accordingly, we have been witnessing a surge of new smart systems aiming
to secure modern instrumentation and software from unwanted exogenous attacks.

Many defense strategies have been proposed by researchers against jamming
in wireless networks. A brief survey of various techniques in jamming relevant to
our research is provided in Bhattacharya and Başar (2010b). In the past, networks
with multiple attackers have also been considered in the literature. In Han et al.
(2009a,b), the authors consider the interaction between a source-destination pair, an
eavesdropper, and friendly jammers. The source can buy “jamming power” from
the friendly jammers so as to disguise the eavesdropper. This allows the source to
achieve increased secrecy rate. In these papers, the authors study the problem in the
context of a Stackelberg game and show that a trade-off exists between the price
announced by the jammers and the resulting performance. A similar problem was
tackled in Dong et al. (2010) where relay nodes can help the source in the presence
of multiple eavesdroppers. The authors of Dong et al. (2010) propose different
relaying schemes and study two design problems: minimizing the transmission
power subject to a minimum secrecy rate and maximizing the secrecy rate subject to
a total power constraint. Analysis shows that relaying yields improved performance
when compared to direct transmission in malicious environments. Different from the
aforementioned references, our work here considers non-friendly jamming teams,
i.e., the security bottleneck considered here is jamming and not eavesdropping.
Moreover, it appears that pursuit-evasion strategies for jamming teams have not
been studied before.

In the past, we have analyzed various scenarios of evading jamming attacks
among autonomous agents. In the case of a single jammer trying to intrude the
communication link between a transmitter and a receiver, the problem can be
formulated as a multiplayer (specifically, three-player) pursuit-evasion game (Isaacs
1965; Başar and Olsder 1999). In Bhattacharya and Başar (2010b), we investigated
the problem of finding motion strategies for two unmanned autonomous vehicles
(UAVs) to evade jamming in the presence of an aerial intruder. We considered
a differential game theoretic approach to compute optimal strategies by a team
of UAVs. We formulated the problem as a zero-sum pursuit-evasion game. The
cost function was picked as the termination time of the game. We used Isaacs’
approach to derive necessary conditions to arrive at the equations governing the
saddle-point strategies of the players. In Bhattacharya and Başar (2010d), we
extended the previous analysis to a team of heterogeneous vehicles containing UAVs
and autonomous ground vehicles (AGVs). In Bhattacharya and Başar (2010a), we
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analyzed the problem of multiple jammers intruding the communication network in
a formation of UAVs. In Bhattacharya and Başar (2010c), we analyzed the problem
of connectivity maintenance in multi-agent systems in the presence of a jammer.
In this current work, we study a scenario where a team of malicious nodes launches
a jamming attack on another team, which is capable of jamming as well. Our
analysis takes into consideration constraints on energy and power among the agents.
Moreover, we relate the problem of optimal power allocation for communication
and jamming to the communication model between the agents. Finally, we provide a
sufficient condition for the existence of an optimal decision strategy among the
agents based on the physical parameters of the problems.

The rest of the article is organized as follows. We formulate the problem in
Sect. 10.2 and explain the underlying notation. In Sect. 10.3, we introduce and solve
an associated optimal control problem. The Nash equilibrium properties of the
team power control problem are studied in Sect. 10.4, and the specific example of
systems employing uncoded M-quadrature amplitude modulations (QAM) follows
in Sect. 10.5. We conclude the paper and provide future directions in Sect. 10.6.

10.2 Problem Formulation

Consider two teams of mobile agents. Each agent (synonymously, player) is
communicating with members of the team it belongs to and, at the same time,
jamming the communication between members of the other team. We consider
a scenario where each team has two members, though at a conceptual level our
development applies to teams comprised of more than two players as well. Team
A is comprised of the two players f1a; 2ag and Team B is comprised of the two
players f1b; 2bg. The players move on a plane and therefore, have two degrees of
freedom .x; y/. The dynamics of the players are given by the following equations:

• Team A:

Pxa
i D f a

xi
.xa

i ; ua
i ; t/

Pya
i D f a

yi
.xa

i ; ua
i ; t/

)

i 2 f1; 2g (10.1)

• Team B:

Pxb
i D f b

xi
.xb

i ; ub
i ; t/

Pyb
i D f b

yi
.xb

i ; ub
i ; t/

)

i 2 f1; 2g (10.2)

In the above equations, xi and ui denote vectors representing the state and control
input of agent i, with the superscript (a or b) identifying the corresponding team.
The state space of the entire system is represented by X ' R

2 � R
2 � R

2 � R
2.

Moreover, ui 2 Ui ' f� W Œ0; t� ! Ai j �.�/ is measurableg, where Ai � R
pi and

f W R2 � Ai � R ! R is uniformly continuous, bounded and Lipschitz continuous
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in xi for each fixed ui. Consequently, given a fixed ui.�/ and an initial point, there
exists a unique trajectory solving (10.1) and (10.2) (Arnold 1983).

Next, we describe the physical layer communications model in the presence of a
jammer, which is motivated by Tague et al. (2009). For each transmitter and receiver
pair, we assume a free space path loss (FSPL) model. In telecommunication, FSPL
is the loss in signal strength of an electromagnetic wave that would result from a
line-of-sight path through free space (usually air), with no obstacles nearby to cause
reflection or diffraction. Given that the transmitter and the receiver are separated
by a distance d, and the transmitter transmits with constant power PT , the received
signal power PR is given by

PR D �PT.1 C d/�˛; (10.3)

where � depends on the antennas’ gains and, under the FSPL model, is given by:

� D GTGR�2

.4/2
;

where � is the signal’s wavelength; GT and GR are the transmit and receive antennas’
gains, respectively, in the line of sight direction; and ˛ is the path loss exponent,
whose value is normally in the range of 2–4 (where 2 corresponds to propagation
in free space, and corresponds to 4 relatively lossy environments and for the case
of full specular reflection from the earth surface, the so-called Flat Earth model).
In real scenarios, � is very small in magnitude. For example, using nondirectional
antennas and transmitting at 900 MHz, we have � D 1�1�0:33

.4/2 D 6:896 � 10�4.
The signal-to-interference plus noise ratio (SINR) s is given by

s D PR

I C �
; (10.4)

where I is the interference level and � is the ambient noise level. The Bit Error Rate
(BER) is given by the following expression:

p.t/ D g.s/; (10.5)

where g.�/ is a decreasing function of s. Explicit expressions for g.�/ are provided in
Sect. 10.5 where we consider the example of M-QAM. Each player uses its power
for the following purposes: (1) communicating with the team-mate, and (2) jamming
the communication of the other team. We assume that the frequencies at which
agents within Team A and Team B communicate among themselves are different.

Let Pa
i .t/ and Pb

i .t/ denote the instantaneous power levels for communication
used by player i in Team A and Team B, respectively. Since the agents are mobile,
there are limitations on the amount of energy available to each agent, which are
dictated by the capacity of the power source carried by each agent. We model this
restriction as the following integral constraint for each agent:
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Z T

0

Pi.t/dt � E: (10.6)

The game is said to terminate when any one agent runs out of power, that is (6) is
violated for the first time.

In addition to the energy constraints, there are limitations on the maximum
power level of the devices that are used onboard by each agent for the purpose
of communication. For each player, this constraint is modeled by the following set
of inequalities:

0 � Pa
i .t/; Pb

i .t/ � Pmax: (10.7)

For an initial position x0 2 X, the outcome of the game  , is given by the
following expression:

.x0; ua
1; ua

2; ub
1; ub

2/ D
Z T

0

Œpa
1.t/ C pa

2.t/ � pb
1.t/ � pb

2.t/�
„ ƒ‚ …

L

dt;

where pa
i .t/ and pb

i .t/ are the bit error rates (BERs) for agent i in team A and
team B, respectively, and T is the time of termination of the game. The function
pi depends on si, i.e, the SINR perceived by agent i. From (10.3), si depends on
the mutual distances between the players. Therefore, we can see that the outcome
functional,  , depends on the states of the players and hence, their control inputs.
The outcome functional models the difference in the erroneous communication
packets exchanged between the members of the same team during the entire course
of the game. The objective of team A is to minimize  and the objective of team B
is to maximize it.

At every instant, each agent has to decide on the fraction of the power that needs
to be allocated for communication and jamming. Let 	 denote the variable that
represents the power allocation by a member of Team A. 	 i

j denotes the fraction
of power allocated by agent i in Team A for jamming the communication signal
received by agent j in Team B. 	 ij denotes the fraction of power allocated by agent i
in Team A to communicate with agent j in Team A. Similarly, ı denotes the variable
that represents the power allocation by a member of Team B. ı

j
i denotes the fraction

of power allocated by agent i in Team B for jamming the communication signal
received by agent j in Team A. ıij denotes the fraction of power allocated by agent
i in Team B to communicate with agent j in Team B. Each decision variable is a
non-negative real number and lies in the interval Œ0; 1�.

The variable d is used to represent the distance between two agents. di
j represent

the distances between agent i in Team A and agent j in Team B. dij and dij represent
the distances between two agents in Team A and Team B, respectively.

Table 10.1 provides a list of decision variables for the players that models this
allocation. The decision variables belonging to each row add up to one. The fraction
of the total power allocated by the player in row i to the player in column j is given
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Table 10.1 Decision variables and distances
among agents

1b 2b 1a 2a

1a 	1
1 ; d1

1 	1
2 ; d1

2 	12; d12

2a 	2
1 ; d2

1 	2
2 ; d2

2 	21; d21

1b ı12; d12 ı1
1 ; d1

1 ı2
1 ; d2

1

2b ı21; d21 ı1
2 ; d1

2 ı2
2 ; d2

2

P

P

P

P

P

A

B

a

a aP P

a
P

b

b

b

b

1

1
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1
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Fig. 10.1 Power allocations among the agents for communication as well as jamming

by the first entry in the cell .i; j/. This allocated power is used for jamming if the
player in column j belongs to the other team; otherwise, it is used to communicate
with the agent in the same team. Similarly, the distance between the agent in row i
and the agent in column j is given by the second entry in cell .i; j/. Since distance
is a symmetric quantity, dij D dji and dij D dji. Figure 10.1 summarizes the power
allocations between the members of the same team as well as between the members
of different teams.

In the above game, each agent has to compute the following variables at every
instant:

1. The instantaneous control, ui.t/.
2. The instantaneous power level, Pi.t/.
3. All the decision variables present in the row corresponding to the agent in

Table 10.1.

In the next section, we analyze the problem of computing the optimal controls
for each agent.
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10.3 Optimal Control Problem

From the problem formulation presented in the previous section, we can con-
clude that the objective functions of the two teams are in conflict. The tuple
.ua�

1 ; ua�
2 ; ub�

1 ; ub�
2 / is said to be optimal (or, in pair-wise saddle-point equilibrium)

for the players if it satisfies the following pair of inequalities:

Œx0; ua�
1 ; ua�

2 ; ub
1; ub

2� � Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � (10.8)

Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � � Œx0; ua
1; ua

2; ub�
1 ; ub�

2 � (10.9)

In simple terms, the above equations imply that agents in Team A are solving a
joint optimization problem of minimizing the outcome. Similarly, agents in Team B
are solving a joint optimization problem of maximizing the outcome. Moreover, the
two teams are playing a zero-sum game against one another. In this case, the value
of the game, denoted by the function J W X ! R, can be defined as follows:

J.x0/ D Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � (10.10)

The value of the game is unique at a point x0 in the state-space. An important
property satisfied by the value of the game is the Nash equilibrium property. The
tuple .ua�

1 ; ua�
2 ; ub�

1 ; ub�
2 / is said to be in Nash equilibrium if no unilateral deviation

in strategy by a player can lead to a better outcome for that player. Hence, there is
no motivation for the players to deviate from their equilibrium strategies. In terms of
the outcome of the game, the strategies .ua�

1 ; ua�
2 ; ub�

1 ; ub�
2 / are in Nash equilibrium

(for the 4-player game) if they satisfy the following 4-tuple of inequalities:

Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub

2�

Œx0; ua�
1 ; ua�

2 ; ub
1; ub�

2 �

�

� Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 �

Œx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � �



Œx0; ua
1; ua�

2 ; ub�
1 ; ub�

2 �

Œx0; ua�
1 ; ua

2; ub�
1 ; ub�

2 �
(10.11)

In general, there may be multiple sets of strategies for the players that are in Nash
equilibrium. Assuming the existence of a value, as captured by (10.10), and the
existence of a unique Nash equilibrium, we can conclude that the Nash equilibrium
concept of person-by-person optimality given in (10.11) is a sufficient condition to
be satisfied for the value of the game. In view of this, obtaining the set of strategies
that are in Nash equilibrium yields the optimal strategies for the players. In the
following analysis, we assume the aforementioned conditions in order to compute
the optimal strategies.

The Hamiltonian of the system is given by the following expression:

H D L C rJ � f .x/

D pa
1.t/ C pa

2.t/ � pb
1.t/ � pb

2.t/ C rJ � f .x/; (10.12)
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where the superscript associated with p represents the team, and the subscript
denotes the player. In order to compute the optimal control of the players, we will
use the Isaacs’ conditions (Isaacs 1965) which are the following:

1.

HŒx0; ua�
1 ; ua�

2 ; ub�
1 ; ub

2�

HŒx0; ua�
1 ; ua�

2 ; ub
1; ub�

2 �

�

� HŒx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 �

HŒx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � �



HŒx0; ua
1; ua�

2 ; ub�
1 ; ub�

2 �

HŒx0; ua�
1 ; ua

2; ub�
1 ; ub�

2 �

2. HŒx0; ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 � D 0

The agents in Team A want to minimize the Hamiltonian at every instant, and the
agents in Team B want to maximize it. The dynamics of the agents are decoupled.
Therefore, the Hamiltonian is separable in its controls and, hence, the order of taking
the extrema becomes inconsequential. As a result, the optimal controls of the players
are given by the following expression from Isaacs’ first condition

.ua�
1 ; ua�

2 ; ub�
1 ; ub�

2 / D arg max
.ub

1;ub
2/

min
.ua

1;ua
2/

H

The optimal control ui is obtained by the following expression:

ua�
i D arg minua

i

@J
@xa

i
� f a

i .xa
i ; ua

i ; t/

ub�
i D arg maxub

i

@J
@xb

i
� f b

i .xb
i ; ub

i ; t/

)

i D 1; 2

Additionally, the gradient of the value function satisfies the retrogressive path
equations (RPEs) given by the following partial differential equation:

@rJ

@�
D @H

@x
;

where � is the retrograde time or time left for termination.
Since termination is only a function of the power of each player, J is independent

of the position of the players on the terminal manifold. Therefore, rJ D 0 at
termination. This forms the boundary condition for the RPEs.

In the next section, we address the problem of power allocation.

10.4 Power Allocation

From (10.4), the SINR received by each agent in terms of the power levels of the
other agents as well as their mutual distances is given by the following expressions
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sa
1 D Pa

2.t/	21.1 C d12/�˛

�
�

C Pb
1.t/ı1

1.1 C d1
1/�˛ C Pb

2.t/ı1
2.1 C d1

2/�˛

sa
2 D Pa

1.t/	12.1 C d12/�˛

�
�

C Pb
1.t/ı2

1.1 C d2
1/�˛ C Pb

2.t/ı2
2.1 C d2

2/�˛

sb
1 D Pb

2.t/ı21.1 C d12/�˛

�
�

C Pa
1.t/	1

1 .1 C d1
1/�˛ C Pa

2.t/	2
1 .1 C d2

1/�˛

sb
2 D Pb

1.t/ı12.1 C d12/�˛

�
�

C Pa
1.t/	1

2 .1 C d1
2/�˛ C Pa

2.t/	2
2 .1 C d2

2/�˛
(10.13)

From the expression in (10.12), we can conclude that the power allocation among
the agents only affects the term L in the Hamiltonian. Therefore, Isaacs’ first
condition leads to the following power allocation problem among the agents.

10.4.1 Team A

The objective of each agent is to minimize L.

1. Player 1:

min
Pa

1;	1
1 ;	1

2 ;	12
L ) min

Pa
1;	1

1 ;	1
2 ;	12

.pa
2 � pb

1 � pb
2„ ƒ‚ …

La
1

/ (10.14)

subject to:

Pa
1.t/ � Pmax

	1
1 C 	1

2 C 	12 D 1; 	1
1 ; 	1

2 ; 	12 � 0 ) 	 2 �3;

where �3 denotes the simplex in R
3.

2. Player 2:

min
Pa

2;	2
1 ;	2

2 ;	21
L ) min

Pa
2;	2

1 ;	2
2 ;	21

.pa
1 � pb

1 � pb
2„ ƒ‚ …

La
2

/ (10.15)

subject to:

Pa
2.t/ � Pmax

	2
1 C 	2

2 C 	21 D 1; 	1
1 ; 	1

2 ; 	21 � 0 ) 	 2 �3
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10.4.2 Team B

The objective of each agent is to maximize L.

1. Player 1:

max
Pb

1;ı1
1 ;ı1

2 ;ı12

L ) max
Pb

1;ı1
1 ;ı1

2 ;ı12

.pa
1 C pa

2 � pb
2„ ƒ‚ …

Lb
1

/ (10.16)

subject to:

P1
b.t/ � Pmax

ı1
1 C ı2

1 C ı12 D 1; ı1
1; ı2

1; ı12 � 0

2. Player 2:

max
Pb

2;ı1
2 ;ı2

2 ;ı21

L ) max
Pb

2;ı1
2 ;ı2

2 ;ı21

.pa
1 C pa

2 � pb
1„ ƒ‚ …

Lb
2

/ (10.17)

subject to:

P2
b.t/ � Pmax

ı1
2 C ı2

2 C ı21 D 1; ı1
2; ı2

2; ı21 � 0

Since the players do not communicate, they possess information only about their
own decision variables. This gives rise to a game scenario. Since the decision
variables are continuous, the power allocation problem is a continuous kernel non-
zero sum game among the players. Since .pa

2 � pb
1 � pb

2/ is a decreasing function
of P1

a.t/, the optimal value of P1
a.t/ is Pmax. Using the same argument for the other

players leads to the conclusion that the optimum level of power consumption of
every player is Pmax. Therefore, the entire game terminates in a fixed time T D E

Pmax
irrespective of the initial positions of the agents.

Now we consider the problem of computing the optimal value of the decision
variables for the players. In order to do so, we use pre-existing results from
continuous kernel games that are presented here in Theorems 2 and 3 and are stated
without proof.

Theorem 1 (Başar and Olsder 1999). An N-person nonzero-sum game in which
the finite-dimensional action spaces Ui .i 2 N/ are compact and cost functionals Ji

.i 2 N/ are continuous on U1 � � � � � UN admits a mixed strategy Nash equilibrium
(MSNE).

From the above theorem, we can conclude that the power allocation game
has a Nash equilibrium in mixed strategies since the decision variables of each
player lie on a simplex, which is compact. Moreover, L is a continuous function
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of the decision variables of all the players. Therefore, the game admits a MSNE.
Although, the MSNE has been computed for some games by exploiting some special
characteristics in the cost functions, there are no standard techniques to compute
MSNE for general continuous-kernel games (Owen 2001; Başar and Olsder 1999).
Therefore, we search for the conditions under which the power allocation game
admits a pure-strategy Nash equilibrium (PSNE).

Theorem 2 (Başar and Olsder 1999). Let U be a closed, bounded and convex
subset of Rm, and for each i 2 N the cost functional Ji W U ! R be continuous on
U and convex in ui for every uj … Uj, j 2 N; j … i. Then, the associated N-person
nonzero-sum game admits a PSNE.

The above theorem provides the conditions under which we can guarantee
existence of a PSNE. Let us consider the case of agent 1a. The expressions for
SINR provided in (10.13) relevant to the optimization problem being solved by 1a

can be written in a concise form as shown below:

sa
2 D a1	12; sb

1 D b1

c1 C 	1
1

; sb
2 D d1

e1 C 	1
2

;

where

a1 D 1

�
Pmax�.1Cd12/�˛ C ı2

1

�
1Cd2

1

1Cd12

��˛

C ı2
2

�
1Cd2

2

1Cd12

��˛ ; b1 D ı21

�
1 C d12

1 C d1
1

��˛

;

c1 D �

Pmax�.1 C d1
1/�˛

C 	2
1

�
1 C d2

1

1 C d1
1

��˛

; d1 D ı12

�
1 C d12

1 C d1
2

��˛

;

e1 D �

Pmax�.1 C d1
2/�˛

C 	2
2

�
1 C d2

2

1 C d1
2

��˛

:

Note that a1; b1; c1; d1 and e1 are independent of the decision of 1a.

Theorem 3. The power allocation team game has a unique Nash equilibrium in
pure strategies if the following conditions hold for Team A:

g00.sa
i / > 0; (10.18)

g00.sb
1/ C 2

bi
.ci C 	 i

1/g0.sb
1/ < 0; (10.19)

g00.sb
2/ C 2

di
.ei C 	 i

2/g0.sb
2/ < 0; (10.20)

and equivalent conditions hold for Team B:

g00.sb
i / > 0; (10.21)
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g00.sa
1/ C 2

li
.mi C ı1

i /g0.sa
1/ < 0; (10.22)

g00.sa
2/ C 2

ni
.oi C ı2

i /g0.sa
2/ < 0; (10.23)

where i 2 f1; 2g. The constants b2, c2, d2, ei, li, mi, ni; and oi are obtained by re-
writing the SINR expressions as done above; their expressions can be found in the
Appendix.

Proof. Let us consider the case of 1a. From Theorem 2, we can conclude that a
PSNE exists if La

1 is convex in its arguments when the decision variables of the
other team players are fixed. From Boyd and Vandenberghe (2004), La

1 is convex if
and only if r2La

1 > 0 (for Team B, Lb
i is concave if and only if r2Lb

i < 0), where
the Hessian r2La

1 is given by (10.24).

r2La
1 D

2

6
6
4

a2
1g00.sa

2/ 0 0

0 � b2
1

.c1C	1
1 /4 Œg00.sb

1/ C 2
b1

.c1 C 	1
1 /g0.sb

1/� 0

0 0 � d2
1

.e1C	1
2 /4 Œg00.sb

2/ C 2
d1

.e1 C 	1
2 /g0.sb

2/�

3

7
7
5

(10.24)

This then says that g00.sa
2/ > 0; g00.sb

1/ C 2
b1

.c1 C 	1
1 /g0.sb

1/ < 0; and g00.sb
2/ C

2
d1

.e1 C 	1
2 /g0.sb

2/ < 0. The theorem then follows by following similar steps to

verify r2La
2 > 0, r2Lb

1 < 0, and r2Lb
2 < 0. ut

Applying the KKT conditions (Luenberger 1969), in addition to the assumptions
provided in the theorem that guarantee strict convexity of La

1, gives us the following
equations that need to be satisfied by the unique globally optimal solution . N	/:

rLa
1. N	/ C

3X

iD1

�irhi. N	/ C �rh. N	/ D 0

�ihi. N	/ D 0

�i; � � 0

�

i 2 f1; 2; 3g

where

h1. N	/ D �	12 � 0; h2. N	/ D �	1
1 � 0; h3. N	/ D �	1

2 � 0;

h. N	/ D 	12 C 	1
1 C 	1

2 � 1 D 0

Now, we present the necessary and sufficient conditions for the solution to the
optimization problem for the agents. Let us consider the case of 1a. The assumptions
in Theorem 3 regarding strict convexity of La

1 render the KKT conditions to be
necessary as well as sufficient for the unique global minimum.
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To this end, we obtain:

rLa
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6
6
6
4
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2/

b1g0.sb
1/
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1 /2

b1g0.sb
2/

.c1C	1
2 /2
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7
7
7
5
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6
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1
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Since 	 2 �3, at most three of the constraints can be active at any given point.
Hence, the gradient of the constraints at any feasible point are always linearly
independent.

If two of the three constraints among fh1; h2; h3g are active, then N	 has a unique
solution that is given by the vertex of the simplex that satisfies the two constraints.
If only one of the constraints among fh1; h2; h3g is active, then we have the following
cases depending on which constraint is active:

1. h1. N	1/ D 0: N	1 D .0; 	1�
1 ; 1 � 	1�

1 / satisfies the following equations

g0.sb
2/

d1

Œe1 C .1 � 	1�
1 /�2

D g0.sb
1/

b1

Œc1 C 	1�
1 �2

(10.25)

2. h2. N	2/ D 0: N	2 D .1 � 	1�
2 ; 0; 	1�

2 / satisfies the following equations

a1g0.sa
2/ D d1g0.sb

2/

.e1 C 	1�
2 /2

(10.26)

3. h3. N	3/ D 0: N	3 D .1 � 	1�
1 ; 	1�

1 ; 0/ satisfies the following equations

a1g0.sa
2/ D b1g0.sb

1/

.c1 C 	1�
1 /2

(10.27)

If none of the inequality constraints are active, then

N	4 D .1 � 	1�
1 � 	1�

2„ ƒ‚ …
	12�

; 	1�
1 ; 	1�

2 /;

is the solution to the following equations:

a1g0.sa
2/ � b1

Œc1 C 	1�
1 �2

g0.sb
1/ D 0; a1g0.sa

2/ � d1

Œe1 C 	1�
2 �2

g0.sb
2/ D 0 (10.28)

Here, N	 lies in the set f.1; 0; 0/; .0; 1; 0/; .0; 0; 1/; N	1; N	2; N	3; N	4g.
An important point to note is that a1; b1; c1; d1 and e1 depend on the decisions

of the other players. Therefore, the computation of the decision variables depends
on the value of the decision variables of the rest of the players. A possible way
to deal with this problem is to use iterative schemes for computation of strategies.
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Başar and Olsder (1999) provides some insights into the efficacy of such schemes
from the point of view of convergence and stability. In this article, we assume that
each agent has enough computational power so as to complete these iterations in a
negligible amount of time compared to the total horizon of the game.

In the next section, we express the conditions for the existence of PSNE in terms
of limitations imposed by the physical communications layer.

10.5 Existence of PSNE Under M-QAM Modulation Schemes

The bit error rate (BER) depends on the SINR, the modulation scheme, and the
error control coding scheme utilized. Communications literature contains closed-
form expressions and tight bounds that can be used to calculate g.s/ when the noise
and interference are assumed to be Gaussian (Goldsmith 2005). For example, using
uncoded M-QAM, where Gray encoding is used to map the bits into the symbols of
the constellation, the BER can be approximated by Palomar et al. (2005)

g.s/ 	 �

log.M/
Q
�p

ˇs
�

; (10.29)

where � D 4.1 � 1=
p

M/, ˇ D 3=.M � 1/, and Q(.) is the tail probability of
the standard Gaussian distribution which can be expressed in terms of the error
function erf:

Q.x/ D 1

2
� 1

2
erf

�
xp
2

�

:

The conditions of Theorem 3 depend, in this case, primarily on the employed
modulation and coding schemes.

Theorem 4. When all players employ uncoded M-QAM modulation schemes, the
power allocation team game has a unique PSNE if the following condition is
satisfied:

ˇ�Pmax
�
minfd12; d12g	�˛

< 3�: (10.30)

Proof. The conditions of Theorem 3 need to be satisfied for a unique pure-strategy
solution to exist. We first verify those conditions for Player 1a when uncoded
M-QAM modulations are used. To this end, we differentiate (10.29) to obtain:

g0.s/ D � �
p

ˇ

2 log.M/
p

2s
exp

�

� ˇ

2
s

�

; g00.s/ D �
p

ˇ.1 C ˇ
p

s2/

4 log.M/
p

2s3
exp

�

� ˇ

2
s

�

: (10.31)
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From (10.31), we conclude that condition (10.18) holds for any value of a1 and 	12.
Condition (10.19) holds given that

c1 >
ˇ

3
b1 � 	1

1 ) c1 >
ˇ

3
b1; (10.32)

which we can re-write as

�

Pmax�
C 	2

1 .d2
1/�˛ >

ˇ

3
ı21.d12/�˛;

�

Pmax�
>

ˇ

3
.d12/�˛: (10.33)

By following similar steps, we can show that (10.33) is sufficient for (10.20) to hold.
In fact, condition (10.33) is also sufficient for the convexity of La

2. For Team B, a
sufficient condition for the concavity of Lb

1 and Lb
2 is

�

Pmax�
>

ˇ

3
.d12/�˛; (10.34)

which can be derived following similar steps to the above. The theorem follows
from (10.33) and (10.34). ut

Note that the left-hand side of inequality (10.30) depends entirely on physical
design parameters; this is of particular importance for design purposes. Moreover,
the sufficient condition of Theorem 4 can be expressed in terms of the received
signal-to-noise ratios (SNRs) for all players, which could be more insightful from
a communication systems perspective. Consider, for example, Player 1a, and let

SNRx
y D Pmax	x

y �.dx
y/�˛

�
and SNRxy D Pmaxıxy�.dyx/�˛

�
. Expression (10.32) can then be

written as

SNR21 <
3

ˇ
.SNR2

1 C 1/:

Similarly, condition (10.20) holds if

SNR12 <
3

ˇ
.SNR2

2 C 1/:

Yet another useful way to interpret condition (10.30) is regarding it as a minimum
rate condition:

R > log

 

1 C �Pmax
�
minfd12; d12g	�˛

�

!

;

where R D log.M/.



224 S. Bhattacharya et al.

The specific conditions for Player 1a corresponding to (10.25)–(10.27) when
M-QAM modulations are utilized are:
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Also, (10.28) in this case becomes
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10.6 Conclusion and Future Work

This article has studied the power allocation problem for jamming teams. The
motion of the teams was modeled using the framework of pursuit-evasion games and
the optimal strategies were derived. An underlying static game was used to obtain
the optimal power allocation, where the power budget of each user is split between
communication and jamming activities. This work focused on the analysis of teams
consisting of two players only, but as mentioned earlier at the conceptual level the
analysis equally applies to the case when teams have more than two players. Still
such an extension presents a plethora of interesting questions to address. In view of
this, potential future directions include:

• Computation of Singular Surfaces: In this work, we have computed the trajec-
tories based on the necessary conditions of optimality imposed by the Isaacs’
conditions. In order to complete the construction of the optimal trajectories of
the agents, we have to identify the singular surfaces in the state space (Başar
and Olsder 1999). This is an interesting future research direction since the
construction and nature of the singular surfaces would depend on the value of
the decision variables obtained from the power allocation game.

• Computation of MSNE: As discussed in Sect. 10.3, the power allocation game
admits a MSNE without any constraints on the underlying communication
model. An important future problem is to compute the MSNE for the power
allocation game.

• Scheduling Schemes: An interesting direction would be exploring scheduling
algorithms, similar to the one proposed in Fu et al. (2010), in which players
take turns in communicating or jamming. For example, the users of a given team
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that are closest in distance to the other team could allocate all their resources
to jamming, while the other users allocate all their resources to communicating
with each other.

• Power Control: When a large number of users are present, and due to the
broadcast nature of wireless systems, networks become interference-limited. The
transmission power of one user can impede the links between other nodes due to
the interference; hence, it is important to regulate the transmission power of the
users in order to, for example, maximize the total capacity of the network.

• Routing: Multihop routing improves the total throughput and power efficiency
of a network through relaying packets via intermediate nodes to their final
destination. Because a portion of the energy of each node has to be allocated
to jam the other team, determining the optimal route for transmission becomes
a challenge, especially in the presence of mobility. An investigation of routing
protocols in the context of games is therefore essential for studying the overall
performance of the networks (Srivastava et al. 2005).

• Eavesdropping: When members of the two teams communicate at the same
frequency, another security issue arises as the agents of a given team can receive
and decode messages intended for internal communications of other teams.
To ensure secure communications, each team would need to allocate power to
jam the eavesdroppers. In fact, a more general scenario is when adversarial teams
consist of active eavesdroppers: malicious nodes that can act as jammers and
eavesdroppers (Mukherjee and Swindlehurst 2010).
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Appendix

We include here the expressions for the constant parameters used in the statement
of Theorem 3.
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Bhattacharya S, Başar T (2010c) Graph-theoretic approach to connectivity maintenance in mobile
networks in the presence of a jammer. In: Proceedings of the IEEE conference on decision and
control, Atlanta, pp 3560–3656
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Chapter 11
Speculative Constraints on Oligopoly
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Abstract We examine an infinite horizon game in which producers’ output can be
purchased by speculators for resale in a future period. The existence of speculators
serves to constrain the feasible set of prices that can result from producers’ output
game in each period. Absent speculation, producers play a repeated Cournot game
with random demand. With speculative inventories possible, the game becomes
a dynamic one in which speculative stocks are a state variable which firms can
control via their influence on price. We employ collocation methods to find
the unknown expected price and value functions required for computation of
equilibrium quantities. We demonstrate that strategic considerations result in an
incentive to sell to speculators that is non-monotonic in the number of producers:
speculation has the largest effect on equilibrium prices and welfare for market struc-
tures intermediate between monopoly and perfect competition. Using a computed
example, we demonstrate that the effect of speculative storage on the average price
level can be substantial, even though the effects on social welfare can be ambiguous.
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11.1 Introduction

The impact of speculative storage on prices, profits and welfare, has recently
received a surge of interest in the public debate, mostly due to substantial primary
commodity price increases combined with the difficulty of consumers in developing
countries to access some of these products. For example, the world oil market has
been the object of recent political interest due to the sudden increase in speculation
of the early 2000s. As pointed out in Smith (2009), this is an oligopolistic market
dominated by OPEC with both “commercial” and “non-commercial” speculators
active. Similarly, the impact of speculation on price, the importance of inventories,
the access to important resources for developing countries, and the overall economic
performance of commodity markets have been the subject of several recent debates.
For example, the U.S. Senate committee on Homeland Security and Governmental
Affairs pointed out in U.S. Senate (2006) that inventories of crude oil and natural
gas have increased in the U.S. and in OECD countries due to an overall increase
in speculation that sustained high prices and gave financial incentives to agents to
store. According to this report, the inventory-price relationship has been perturbed
compared to the usual negative correlation historically observed.1 Likewise, the
European Commission (2011) lists 14 critical raw materials2 for which production
is concentrated in the hands of few firms or a small number of countries. Finally,
the formation of speculative bubbles on markets of vital or strategic importance
for the development of emerging countries has attracted the attention of the United
Nations Conference on Trade and Development (Gilbert 2010), for their crucial
consequences on economic development and on the risks populations face. These
questions have triggered substantial academic interest investigating the relationship
between inventories and speculative trading on commodity markets from an econo-
metric point of view (Frankel and Rose 2010; Kilian 2008, 2009; Kilian and Murphy
2014).

The effects of speculative storage when production is perfectly competitive is
fairly well understood, with important contributions made in Newbery and Stiglitz
(1981), Newbery (1984), Williams and Wright (1991), Deaton and Laroque (1992),
Deaton and Laroque (1996), and McLaren (1999). The focus in these papers is
on the effects of storage on the distribution of prices caused by the movement of
production across periods due to random production (harvest) shocks. As aggregate
inventories cannot be negative, speculators smooth prices across periods only
when positive inventories exist. Unexpectedly large prices result in stock-outs
which leads to a breakdown of the price smoothing role of speculative storage.
These occasional stock-outs lead to a skewed distribution of price. Market power
has been considered by examining imperfect competition in the storage function

1U.S. Senate (2006), p.15, Fig. 6.
2Antimony, Beryllium, Cobalt, Fluorspar, Gallium, Germanium, Graphite, Indium, Magnesium,
Niobium, Platinum Group Metals, Rare earths, Tantalum, and Tungsten.
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(Newbery 1984; Williams and Wright 1991; McLaren 1999), but production itself
remains perfectly competitive in these papers, hence there is no scope for strategic
considerations on the part of producers. While this approach is reasonable for
modelling many agricultural commodities, where market power is often exhibited
by intermediaries instead of primary producers, for many other commodities, such
as the mineral and energy commodities discussed above, models with market power
at the producer level are more appropriate.

The effects of speculation when there is imperfect competition at the producer
level has been examined in Mitraille and Thille (2009) for monopoly production,
and in Mitraille and Thille (2014) for oligopoly production,3 although in a finite
horizon setting. In Mitraille and Thille (2014) a two-period model of oligopoly
production is used to demonstrate that speculative sales can result in a rich
set of equilibria, including (1) stockouts, (2) deterrence of speculative holdings,
(3) speculative holdings along with consumer purchases, (4) speculative purchases
of the entire output, and (5) zero production.

Our contribution in this paper is to extend the analysis of Mitraille and Thille
(2014) to an infinite horizon setting and to explore the implications of spec-
ulative storage on the price distribution under oligopolistic production. We do
this by analyzing the Feedback equilibrium to an infinite horizon game in which
oligopolists produce a commodity which can be purchased and stored for future
sale by competitive speculators. We demonstrate that speculative storage can have
significant effects on the distribution of prices and profits of an oligopoly compared
to what would happen in the absence of storage. We find that for every market
structure but monopoly, mean prices are lower or equal to the mean equilibrium
price that occurs in the absence of speculative storage. Moreover the distribution
of prices differences with and without speculative storage is asymmetric: prices
below those of the Cournot equilibrium occur relatively frequently which means
that speculative storage has a pro-competitive effect. When the number of firms
increases, the price distribution converges to the Cournot one, but from below.
Higher prices than those of the Cournot equilibrium are nonetheless possible: when
the number of firms is low enough the equilibrium price may be high enough to
exclude consumers from purchasing or to deter speculators from purchasing. This
is particularly true when the market is monopolized, in which case the mean price
is strictly higher when speculative storage is possible than when it is not.

We confirm these findings by studying the average profit deviation from Cournot
competition absent competitive speculation: profit is the smallest compared to
Cournot when the number of firms is intermediate, while profits converge to Cournot
from below when the number of firms increases. Despite the gains to an oligopoly
due to price and cost smoothing, the presence of competitive speculators increases
competition and lowers profits compared to Cournot. Similar results can be found

3The effects of producer storage on the equilibrium in a Cournot duopoly is examined in Thille
(2006), in which, rather than speculators engaging in storage, producers themselves store in the
face of random variations in demand and cost.
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when comparing consumers surplus and total welfare to Cournot competition: the
average gain in consumers surplus is the largest for an intermediate market structure.

In what follows we first describe the model and then explore the implications
of speculative storage for the nature of equilibria that we expect to find. We then
describe the computational approach that we take to finding the Feedback equilib-
rium to the game and finish with a description of the equilibrium for a computed
example.

11.2 The Model

The model that we present here is an infinite horizon version of that in Mitraille
and Thille (2014). We consider a discrete time model with an infinite number of
periods in which risk-neutral consumers, producers, and speculators interact on the
market for a homogeneous, non-perishable product. We assume that consumers and
speculators are price takers and behave competitively, while a finite number n of
producers behave as an oligopoly. Speculators are able to store the product while
producers and consumers cannot.

In every period t, consumers have a demand, Dt, which they can buy on a spot
market. Consumers’ demand in period t, Dt, is a decreasing function of the spot price
pt, and is an increasing function of a random state at. We assume that consumer’s
demand is a linear function of pt and at, given by

D.at; pt/ D maxfat � pt; 0g (11.1)

where the random state at is drawn by Nature at the beginning of period t and
known to every participant of the spot market before decisions are made. We assume
that the random states fatg are independently and identically drawn from period to
period as the random variable Qa, distributed over the support Œ0; A� with a continuous
cumulative distribution function F.a/, with f .a/ the associated density function.4

We denote the mean of Qa by

E.a/ D
Z A

0

a dF.a/: (11.2)

Random changes in at may be interpreted as random shocks affecting the distribu-
tion of income in the population of consumers from period to period, modifying in
turn the willingness to pay for the product sold by firms and stored by speculators.

In every period t, speculators are able to buy or sell on the spot market, and
are able to store the product. Let xt denote the position of speculators on the spot
market of period t: if xt is positive, then speculators are selling the product, while

4In Mitraille and Thille (2014) a uniform demand is considered.
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if xt is negative speculators are buying the product. Speculators are able to store the
product and we denote by St the amount of available inventories at the beginning of
period t. This amount St is observable to all market participants. We assume that the
rate of depreciation of inventories is constant and equal to 	 ; the transition equation
for inventories is then

StC1 D .1 � 	/ .St � xt/: (11.3)

Negative inventories are not allowed and initial inventories are equal to 0, S0 D 0.
Consequently in every period t aggregate speculative sales must satisfy

xt 2 .�1; St�: (11.4)

We assume that the cost of storage of speculators paid in every period is a linear
function of the level of initial inventories held in that period, and equal to

W.St/ D wSt (11.5)

with w � 0. Let the discount factor be ı 2 .0; 1�, and let Et denote the expectation
operator conditional on the information available in period t.

In every period t, there are n producers in Cournot competition, each of which
chooses the quantity it wants to produce, qi

t 2 R
C; i D 1; : : : ; n. All firms produce

their output using the same technology which results in the cost function

C.qi
t/ D c

2
.qi

t/
2 (11.6)

with c > 0.
Firms cannot store their production: the quantity they produce in any period is

equal to the quantity they sell on the market. We denote the aggregate quantity
produced in period t by Qt, and the aggregate quantity produced by all firms but i by
Q�i

t , where Qt D Pn
iD1 qi

t and Q�i
t D Pn

jD1;j¤i qj
t. The vector of individual producer

outputs will be denoted qt D .q1
t ; q2

t ; : : : ; qn
t /. Let pt denote the market price, then

producer i’s instantaneous profit in period t is equal to

 i
t D ptq

i
t � C.qi

t/ (11.7)

and the total expected profit discounted in period 0, ˘ i
0, is

˘ i
0 D E0

1X

tD0

ıt i
t for all i D 1; : : : ; n; (11.8)

where Et denotes the expectation operator conditional to the information available
to all agents in period t.
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The timing of the game adapts the Cournot timing to our dynamic setting where
long-lived speculators have rational expectations over future prices. We assume that
speculative inventories, St, and the demand state, at, are observed by all agents at
the beginning of period t. Consequently, information is symmetric across agents. In
period t, the timing of the interaction is therefore:

1. Demand level, at, is realized and observed by all agents. Aggregate inventory
holdings, St, is observed by all agents.

2. Producers choose qi
t; i D 1; 2; : : : ; n.

3. Speculators choose xt.
4. Auctioneer sets pt such that Dt � xt D qt.
5. Transactions occur and stage payoffs are realized.

Finally we assume that producers play stationary Feedback, or Markov, strate-
gies,5 depending only on the current state, .at; St/. Producer i’s strategy, � i, is a
mapping from the set of states .at; St/ to the set of quantities, � i W Œ0; A� � R

C !
R

C. Given a strategy for each producer, � � .�1; : : : ; �n/, define Vi.�/ D
E0

PC1
tD0 ıt i.�; at; St/ be the payoff to producer i under the strategy profile � .

Then,

Definition 1. A Feedback equilibrium with rational expectations is a n-tuple of
strategies �� � .�1�; : : : ; �n�/ such that

Vi.��/ � Vi..�1�; : : : ; � .i�1/�; � i; �.iC1/�; : : : ; �n�// 8 � i for all i D 1; : : : ; n
(11.9)

with, for every period t, inventories in period t C 1 follow

S�
tC1 D .1 � 	/

�
S�

t � X�.
X

� i.at; S�
t /; at; S�

t /
�

; (11.10)

the market price p�
t clears the market:

D�
t � X�.

X
� i.at; S�

t /; at; S�
t / D

X
� i.at; S�

t /; (11.11)

and the future market price EtŒp�
tC1� is rationally expected by all agents.

In a Feedback equilibrium, conditioning strategies to past prices or quantities
is ruled out, so strategies allowing firms to implement tacit collusion are not
considered.

5See Başar and Olsder (1995).



11 Speculative Constraints on Oligopoly 235

11.3 Speculators’ Behaviour and Firms’ Strategies

As in standard commodity storage models, speculators’ behaviour is driven by the
relationship between current and expected future prices. Speculators maximize their
profit taking the current price as given and expecting the future price that results
from the quantity of inventory carried into the next period, StC1. It will be useful to
introduce the notation pe.StC1/ D EtŒptC1jStC1� to represent the expected future
price conditional on the level of stocks carried into t C 1. As the behaviour of
speculators determines the demand that will be faced by producers, we need to
determine speculative sales as a function of producers’ output. As the derivation
is the same as for the finite horizon case, here we present a brief description of it.
For a more detailed derivation see Mitraille and Thille (2014).

The aggregate behaviour of these speculators ensures that pt � ı.1 �
	/.pe.StC1/ � w/ with a stock-out occurring if the inequality is strict. The non-
negativity constraint on aggregate speculative inventories implies that speculators’
aggregate behaviour satisfies the complementarity condition

.St � xt/.pt � ı.1 � 	/.pe.StC1/ � w// D 0;

St � xt � 0; pt � ı.1 � 	/.pe.StC1/ � w/ � 0 (11.12)

Either no inventories are carried (StC1 D 0) and the return to storage is negative,
or inventories are carried (StC1 > 0) and the return to storage is zero. Using
X�.Qt; at; St/ to denote the equilibrium storage undertaken when producers sell Qt

in aggregate and the state is .at; St/, the market clearing price, P.Qt; at; St/, must be
such that the total of consumer and speculative purchases satisfy

at � P.Qt; at; St/ � X�.Qt; at; St/ D Qt: (11.13)

From (11.12), there is a threshold level of aggregate output, which we denote
QL

t , below which pt > ı.1 � 	/.pe
t .0/ � w/, as speculators cannot carry negative

inventories. This threshold is the level of output which leads to zero return to
speculation when there is a stockout:

at � St � QL
t D ı.1 � 	/.pe

t .0/ � w/: (11.14)

It is also possible that speculators purchase the entire production of firms,
resulting in zero consumer purchases. This exclusion of consumers will occur
if speculators value producers’ output more highly than consumers do: ı.1 �
	/.pe

t .St C Qt/ � w/ > at. Consequently, there is another threshold output, which
we denote bQt, for which only speculators buy if Qt < bQt and consumers buy and
speculators carry inventories if Qt > bQt. This threshold is determined by the level
of aggregate output that just extinguishes consumer demand when that output is
purchased entirely by speculators:

at D ı.1 � 	/.pe
t .St C bQt/ � w/: (11.15)
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As with QL
t , the slope of the demand faced by producers changes discontinuously

at bQt. It is important to note that only one of QL
t and bQt can be positive as long as

pe
t ./ is a decreasing function.6

Finally, when aggregate output exceeds the relevant threshold, QL
t or bQt, spec-

ulative sales are determined implicitly by the relationship between pt and pe
t .StC1/

that must hold. We denote speculative sales in this case as eX.Qt; at; St/, which is the
solution in X to

at � X � Qt D ı.1 � 	/
�
pe

t .St � X/ � w
	

: (11.16)

Summarizing, speculative sales are given by

X�.Qt; at; St/ D

8
ˆ̂
<

ˆ̂
:

St if Qt � QL
t and QL

t > 0

�Qt if Qt � bQt and bQt > 0

eX.Qt; at; St/ otherwise:

(11.17)

As only one of QL
t and bQt can be positive, only one of the first two conditions

in (11.17) is possible for a given .St; at/.
Given the behaviour of speculators in (11.17), we can now state the inverse

demand function faced by producers:

P.Qt; at; St/ D
8
<

:

at � St � Qt if Qt � QL
t and QL

t > 0

ı.1 � 	/.pe
t .St C Qt/ � w/ if Qt � bQt and bQt > 0

at � eX.Qt; at; St/ � Qt otherwise:

(11.18)

We plot this inverse demand for alternative demand levels in Figs. 11.1 and 11.2.
Figure 11.1 illustrates a situation with QL

t > 0, in which speculators sell their entire
stock of inventories when aggregate production is low, shifting down demand in
a parallel fashion. Once aggregate production exceeds QL

t , a stockout no longer
occurs and price is linked to the expected future price, which is less steeply
sloped than consumer demand. Figure 11.2 illustrates demand for the same level
of speculative inventories but with a lower demand state. Here, for low levels
of aggregate production consumers do not buy any output as price exceeds their
maximal willingness to pay of 2.5 and the entire production is purchased and stored
by speculators. Once aggregate production exceeds bQt price is low enough to induce
consumer purchases on top of speculators demand.

With the behaviour of speculators determined by (11.17) and (11.18), payoffs to
producers can be specified entirely in terms of output. The marginal payoff to a firm

6If both thresholds were positive, both (11.14) and (11.15) must hold. The left hand side of (11.15)
is clearly higher than that of (11.14) while the right hand side of (11.15) is lower than that of (11.14)
if the expected price function is decreasing in future stocks, so both (11.14) and (11.15) cannot hold
simultaneously.
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Fig. 11.1 Net demand and consumer demand when QL
t > 0. Net demand is generated using the

same parameters as in the numerical solution reported below with the number of firms set at three

Fig. 11.2 Net demand and consumer demand when OQt > 0. Net demand is generated using the
same parameters as in the numerical solution reported below with the number of firms set at three
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in any period will be discontinuous at an output that results in aggregate output of
QL

t or bQt, so the nature of the equilibrium in period t depends on where aggregate
output falls in relation to these thresholds. First, a stockout may occur in which
speculators sell their entire stocks and consumers buy the total of speculative and
producer sales. We will denote this type of equilibrium with a C. Second, consumers
may buy nothing and speculators purchase the entire output of firms, which we
will denote with an S. Third, consumers may make some purchases and speculators
carry inventory into the following period, denoted with a CS. Finally, there is the
possibility that producers deter speculators by producing exactly QL

t in aggregate,
which we will denote with an L.

With the effects of speculation on the demand faced by producers determined,
we can write the profit received by a producer in period t as

 i.qt; at; St/ D P.Qt; at; St/q
i
t � c

2
.qi

t/
2 (11.19)

and the producer’s payoff as

˘ i
0 D E0

C1X

tD0

ıt i.qt; at; St/ for i D 1; : : : ; n: (11.20)

Given the behaviour of speculators determined above, we can express the dynamics
of speculative inventory as depending on production choices:

StC1 D .1 � 	/.St � X�.Qt; at; St//: (11.21)

Consequently, the game played by producers has payoffs given by (11.20) and state
dynamics given by (11.21).

As in Mitraille and Thille (2014), producer payoffs, while continuous, are non-
differentiable at the thresholds QL

t and bQt. As proven in that paper, in the context of
the two-period game starting in period T-1, the fact that payoffs are not differentiable
at threshold output levels QL

t and bQt generate discontinuities in the marginal profits,
which results in upward jumps at bQt, as well as upward or downward jumps at QL

t .
This implies that profit comparisons must be performed in order to determine
which of the different potential equilibria exist. For example when bQt > 0, the
equilibrium can be either the one with consumer exclusion (S), or the one with
consumer and speculative purchases (CS), and firms profits must be compared to
determine which one occurs, with potentially a multiplicity of outcomes when
none of the local equilibrium candidates can be ruled out by a global unilateral
deviation. Similarly, when QL

t > 0, profit comparisons must be performed to
determine which of the candidates, between a stock-out equilibrium (C) and an
equilibrium with consumers and speculative purchases (CS), is the equilibrium to
the game. Moreover, in this case, the discontinuities in marginal profits also implies
that an equilibrium with aggregate output equal to QL

t may exist. These forces,
demonstrated in Mitraille and Thille (2014) for the two period game, still exist in
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the infinite horizon game. The determination of the equilibrium of the game for a
given set of parameters requires verification of which of the potential candidates, C,
S, CS, or L, exist.

In order to solve the game, we need to determine the expected price function
and the value function associated with the equilibrium production strategies of
producers. The expected price function is required to determine the thresholds QL

t

and bQt as well as speculative sales when prices are smoothed [from (11.16)] and is
computed as

pe
t .StC1/ D

Z A

0

p�.a; StC1/dF.a/ (11.22)

where p�.a; S/ is the Feedback equilibrium price when producers play equilibrium
strategies ��.a; S/. The value function associates the expected payoff to a firm under
the equilibrium strategies when the current state is .at; St/:

V.at; St/ D p�.at; St/�
�.at; St/ � c

2
��.at; St/

2 C ıEtŒV.atC1; StC1/�; (11.23)

with StC1 D .1 � 	/.St � X�.n��.at; St/; at; St//. We next turn to describing the
method we use to compute these functions.

11.4 Numerical Approach

Following the strategy used by Williams and Wright (1991), who compute approx-
imations to the smooth pe.StC1/ rather than p�.at; St/ for the competitive case, we
approximate pe.StC1/ as well as the expected value function:

Ve.StC1/ D
Z A

0

V.a; StC1/dF.a/: (11.24)

We apply the collocation method,7 using cubic splines to approximate the expected
price and value functions, denoting these approximations � and �. We start with the
period T solution8 from Mitraille and Thille (2014) and iterate until convergence of
the expected price and value function approximations. Given a vector of m values

7Judd (1998), Chap. 11 provides a description of the method, which he applies to the competitive
storage problem in Chap. 17.4.
8In order to facilitate convergence of the expected value function we replace the terminal value
of zero in Mitraille and Thille (2014) with the value of an infinite stream of Cournot profit
following some “terminal time” beyond which speculation is not possible. In consequence, the
initial condition for the value function is that which occurs in a period in which speculators are
forced to sell their inventory and unable to replenish it again.
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for StC1, NS � .0; S1; : : : ; Smax/, in the jth iteration we compute the quantities Npe
jk and

NVe
jk which are the expected price and value associated with future stocks given by

each element of NS, i.e., for k D 1; 2; : : : ; m,

Npe
jk D

Z A

0

p�
j�1.a; NSk/dF.a/ (11.25)

and

NVe
tk D

Z A

0

Vj�1.a; NSk/dF.a/ (11.26)

with p�
j�1.a; S/ and Vj�1.a; S/ the equilibrium price and value functions found

in iteration j � 1 using the iteration j � 1 approximations �j�1 and �j�1. Our
approximation to pe

j .S/, �j.S/, is found by fitting a cubic spline to the NS and Npe
j

vectors. Similarly, we fit a cubic spline to NS and NVe
j to generate our approximation

to Ve
j , �j.S/.

In summary, to find the solution in any period t0:

Step 0 Compute the iteration 0 equilibrium price and value, p�
0 .a; NSk/ and

V0.a; NSk/, k D 1; : : : m, using (11.22) and (11.23). Set j D 1.
Step 1 For each k D 1; : : : ; m compute

Npe
jk D

Z A

0

p�
j�1.a; NSkj�j�1; �j�1/dF.a/; (11.27)

NVe
jk D

Z A

0

V�
j�1.a; NSkj�j�1; �j�1/dF.a/ (11.28)

Step 2 Fit a cubic spline to .NS; Npe
j / and .NS; NVe

j / to form �j.S/ and �j.S/.
Step 3 Return to Step 1 until �j.S/ and �j.S/ have not changed appreciably from

the previous iteration.

When computing the equilibrium for any iteration an equilibrium selection is
required for the cases in which multiple equilibria occur. We assume producers play
C when both C and CS are possible and CS when both CS and S are possible.9

11.5 Results

We solve the infinite horizon game for the same values of the model parameters
used in Mitraille and Thille (2014), namely ı D 0:95, w D 0:2, 	 D 0, and c D 0:6.
The random demand parameter is distributed uniform on [0, 20]. For the cubic spline
interpolations used in approximating the expected price and value functions, we use

9The code used to compute the solution uses numerical routines from NumPy and SciPy (Jones
et al. 2001). The code is available from the authors on request.



11 Speculative Constraints on Oligopoly 241

Fig. 11.3 Sample time series plot of the demand state, at, beginning of period stocks, St, and price,
pt, for the case n D 3

a grid of 25 values for the level of speculative stocks on a range between 0 and 60.
We present results from the solution obtained after 50 iterations, by which time the
maximal change in the expected value function is of the order of 0.1 %.10

In order to demonstrate the effects of speculation on oligopoly, we present
statistics gathered from running simulations of 1000 periods for each n and
computing statistics of interest. A short sample of a simulated time series with
three producers is presented in Fig. 11.3 in which we see instances of the alternative
equilibria. Large realizations of at are often associated with relatively high price
and a stockout. For example, periods 11 and 15 are ones in which the C equilibrium
occurs. It is interesting to note that a large at is not sufficient to generate a stockout:
in periods 9 and 10 there are relatively high realizations of at but a stockout has not
occurred due to the rather high level of inventory that was built up during a sequence
of below average realizations of at in periods 3–8. We also see examples of zero
consumer purchases in Fig. 11.3. For example, periods 18 and 19 see pt > at which
implies zero consumption. Producers are selling solely to speculators at this time
resulting in a rapid accumulation of speculative stocks. The overall frequencies of
the alternative equilibria from this simulation with three firms are 26.2 % C, 64.1 %
CS, and 9.7 % S, with no occurrences of the L equilibrium.11

10The expected price function converges much more quickly than the expected value function.
11It is demonstrated in Mitraille and Thille (2014) that the L equilibrium is unlikely to occur when
there are few, but more than one, firms.
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Fig. 11.4 Average difference between price with speculators and that without speculators over a
1000 period simulation

We now summarize the effects of speculation by examining deviations of the
quantities of interest in the game with speculation from that which occurs in the
absence of speculation (the repeated Cournot game with random demand12). First,
in order to see what effect speculators have on price levels, we plot the average
deviation from the Cournot price in Fig. 11.4. Consistent with Mitraille and Thille
(2009), speculation has an anti-competitive effect on prices in the case of monopoly.
The increase in average price for n D 1 in Fig. 11.4 is roughly 17 % of the mean
price in the absence of speculation. In this case, a monopolist’s desire to price in such
as way as to limit the building up of speculative inventories results in substantially
higher prices on average. However, for more than one firm, speculation has a pro-
competitive effect. In the oligopoly setting, firms compete to sell to speculators
(effectively competing to supply future demand) resulting in prices lower than in
the absence of speculation. Again, this effect is not trivial, the gap between prices

12In using this benchmark, we are examining the effects of adding speculators with a storage
technology to a model in which no storage technology exists. To examine the effects of speculation
alone, we would need to allow producers to store the good, which would be a substantial
complication. However, Thille (2006) has shown that, in the absence of speculators, the average
price level was the same in the equilibrium in which producers can store the commodity as in
the equilibrium in which they could not store. Consequently, we are confident that the results we
present below are predominantly due to the presence of speculation and not simply due to the
addition of a storage technology.



11 Speculative Constraints on Oligopoly 243

Fig. 11.5 Box and whisker plot for the difference in price between the model with and without
speculators. The box extends from the lower to the upper quartile, while the whiskers are set at 1.5
times the inter-quartile range

with and without speculation in Fig. 11.4 is more than 20 % in some cases. Hence,
simply by decoupling sales to consumers from production over time, speculation
has a substantial effect on the average level of price in an oligopoly. It is important
to note that in a similar setting in which there are no speculators, but producers
themselves have the ability to store, Thille (2006) demonstrates that the average
level of price is not affected by the addition of a storage technology for producers.
Consequently, we attribute the effects on average price in Fig. 11.4 to the presence
of speculators with a storage technology, and not to the addition of the storage
technology alone.

In order to illustrate the distribution of the deviation of prices from the Cournot
equilibrium, box-plots of price are plotted for each n in Fig. 11.5. Price deviations
from Cournot tend to be asymmetrically distributed, negative values being more
frequent than positive ones for n > 1. The opposite occurs when production
is monopolized, due to the fact that a monopoly selects more often the limit
equilibrium compared to a more competitive market structure. As the number of
firms in competition increases, the price distribution converges to that of the unique
Cournot equilibrium price, but largely from below. Figure 11.5 also illustrates that
the magnitude of the effect of speculation on price can be quite large for relatively
concentrated market structures.
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Fig. 11.6 Average difference between profit with speculators and that without speculators over a
1000 period simulation

The effects of speculation on mean profits are presented in Fig. 11.6. Not
surprisingly, the pro-competitive effect of speculation that results in lower average
prices in an oligopoly also reduces producer profits relative to the case in which
speculation is absent. This is true even for monopoly. By smoothing prices over
time, speculators restrict to some extent the ability of the monopolist to realize
maximal profit. This is easiest to see in the limit equilibrium, where the monopolist
chooses a level of output that is lower than the one that maximizes profit in
the absence of speculation in order to deter speculative purchases. Although the
monopolist does limit speculation this way, it still earns lower profit than it would if
speculators were absent.

Given these non-monotonic effects of speculation on price and profit, it is
interesting to examine the net effect on consumer surplus and welfare. These are
plotted in Figs. 11.7 and 11.8. The average consumer surplus, depicted in Fig. 11.7,
is positive for any number of firms. The gain is relatively low for n D 1, rises to a
maximum at n D 3, and then declines slowly as the number of firms increases. It is
interesting to note that for n D 1, consumers benefit from speculation even though
average price is higher. This is due to the variation in the effects of speculation as
shown in Fig. 11.5 and the fact that price affects consumer surplus in a non-linear
manner. Intuitively, in periods of high demand (large at) prices tend to be higher,
causing speculators to sell their stocks. Hence, speculators dampen price when it has
the largest effect on consumer surplus. The limit equilibrium does not exist at high
levels of demand, so the situations in which price is increased due to speculation
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Fig. 11.7 Average difference between consumer surplus with speculators and that without
speculators over a 1000 period simulation

Fig. 11.8 Average difference between welfare with speculators and that without speculators over
a 1000 period simulation
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Fig. 11.9 Box and whisker plot for the difference in welfare between the model with and without
speculators. The box extends from the lower to the upper quartile, while the whiskers are set at 1.5
times the inter-quartile range

occur in states where demand is lower, having a smaller effect on consumer surplus.
For n > 1 this effect is complemented by the average reduction in price due to
speculation.

Combining the effects of speculation for both consumers and producers, we see
from Fig. 11.8 that the average effect of speculation for social welfare is ambiguous.
For relatively concentrated market structures (n < 9), the large gain in consumer
surplus offsets the loss in profit resulting in a net welfare gain. However, for n � 9,
the smaller gain in consumer surplus no longer offsets the loss in profits and there is
a net loss in welfare. This is a rather counter-intuitive result: even though speculation
is “pro-competitive” on average for large n in the sense that average price is lower,
average welfare is lower than it would be in the absence of speculation. A box-and-
whisker plot of the welfare effect is plotted in Fig. 11.9, where the skewness of the
effects of speculation on welfare is evident: although the median change in welfare
due to speculation is positive, there are relatively few periods with large welfare
losses due to speculation. These welfare losses tend to occur in periods in which a
stockout occurs (the C equilibrium). Given the state of demand, at, price is lower
in these periods relative to the Cournot outcome. Although this generates benefits
to consumers, much of this lower price is due to speculative sales, not due to an
increase in output by producers. As producers see a lower price at the same time
that they are lowering output, the loss in profits they see are larger than the gain
that flows to consumers, resulting in a net welfare loss. In a sense, this welfare
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loss is due to storage costs as the “excess” loss of producer profit is compensating
speculators for their storage costs incurred when they carry stocks. Even though
speculators earn zero profit on average, their storage costs are essentially coming
out of producer profit in periods in which stocks are sold.

11.6 Conclusion

By examining a dynamic game in which oligopolistic producers are faced with
competitive speculators who can purchase, store and resell their output, we have
seen that predictions of oligopoly theory can be substantially affected. In particular,
the presence of speculators leads to more competitive behaviour by producers
resulting in a reduction in the average price as compared to what occurs in the
absence of speculators. In a computed example, we see that this effect can be quite
large, on the order of 20 %. Conversely, speculators can have a substantial anti-
competitive effect in the case of monopoly, where the attempts to deter speculative
purchases leads to higher prices.

In contrast to studies of speculation in markets with competitive production,
we find that the welfare effects of speculation are ambiguous in the oligopoly
setting. Both consumer gains and producer profits are affected in a non-monotonic
manner by speculative activity with the net effect either positive or negative. In
our computed example, speculation improves mean social welfare when production
is relatively concentrated, but reduces mean social welfare for less concentrated
market structures.
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Chapter 12
Evolutionary Stability of Dimorphic Population
States

Dharini Hingu, K.S. Mallikarjuna Rao, and A.J. Shaiju

Abstract We consider a dimorphic population state, P, which is a convex
combination of two Dirac measures ıx and ıy, in evolutionary games with a
continuous strategy space. We first establish necessary and sufficient conditions
for this dimorphic population state, P, to be a rest point of the associated replicator
dynamics. We provide sufficient conditions for the replicator dynamics trajectory to
converge to P when it originates from the line L D f�ıx C .1 � �/ıy W 0 < � < 1g.
If the trajectory emanates from a point outside L, then we derive sufficient conditions
for the trajectory to converge to L in the special case where each point in L is a rest
point. We have, also, obtained condition for the trajectory to stay away from the line
L in the limit. Furthermore, main results are illustrated using examples.

Keywords Evolutionary games with continuous strategies • Replicator dynam-
ics • Lyapunov stability • Dimorphic population state

MSC Classification Codes: 37B25, 91A05, 91A22, 92D25

12.1 Introduction

Evolutionary games can be studied either with a discrete (pure) strategy space
or with a continuous (pure) strategy space. Evolutionary games with a discrete
strategy space have been widely studied in literature (Smith 1982; Weibull 1995;
Hofbauer and Sigmund 1988; Cressmann 2003; Sandhlom 2010). There are many
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results available regarding the evolutionary stability of population states for these
evolutionary games. Moreover, these results are studied with respect to several
dynamics (Weibull 1995; Cressmann 2003; Sandhlom 2010). These results connect
the static stability of population states with their dynamic stability.

The theory of evolutionary games with a continuous strategy space was initiated
by Bomze and Pötscher (1989) and Bomze (1990), who introduced the concepts of
uninvadable and strongly uninvadable strategies. This theory was further developed
by Oechssler and Riedel (2001, 2002). In Oechssler and Riedel (2001), the authors
proved that an uninvadable monomorphic population state is Lyapunov stable with
respect to the replicator dynamics with the underlying topology as the variational
(or strong) topology. In Oechssler and Riedel (2002), it is proved that, for a doubly
symmetric game with compact strategy space and continuous payoff function,
an evolutionarily robust population state is Lyapunov stable with respect to the
replicator dynamics with the underlying topology as the weak topology.

The concept of a neighborhood attracting strategy was developed by Cressman
(2005). A population state, Q, is called a neighborhood attracting strategy when a
trajectory with the initial population state (whose support is close to the support
of Q) converges to Q in the weak topology. One of the main results in Cressman
(2005) is that a dimorphic neighborhood superior population state with finite support
is neighborhood attracting. The book by Vincent and Brown (2005) is one of
the latest references in the study of evolutionary games with continuous strategy
space. In Shaiju and Bernhard (2009), it is proved that an evolutionarily robust
monomorphic population state is weakly attracting.

In this paper, we first provide necessary and sufficient conditions for a dimorphic
population state, P D ˛ ıx C .1�˛/ ıy, to be a rest point of the replicator dynamics.
Then we give sufficient conditions for this dimorphic population state to be stable
when the initial population state is from the line L. We also provide with sufficient
conditions for the trajectory to converge to the line L, when the initial population
state is not from L. In this case we also give sufficient conditions for the trajectory
to move away from the line L. The underlying topology here is the variational
topology, i.e., the topology is defined using the variational norm (see the text before
Definition 3).

The rest of the paper is arranged as follows. Section 12.2 covers the basic game
getting along with the definitions of replicator dynamics and certain static and
dynamic stability concepts. Section 12.3 deals with all the results in the previous
paragraph. We end with some remarks in Sect. 12.4.

12.2 Preliminaries

Let S be a Borel set in R
n. Consider the symmetric two-player game, G, with the

pure strategy set S and the payoff function u W S � S ! R. We assume that the
payoff function is bounded and Borel measurable. Here, S is equipped with the Borel
� -algebra B. The measurability of u.z; w/ is with respect to this � -algebra. By the
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symmetry of the game, we mean that Player I receives u.z; w/ when Player I plays
z 2 S and Player II plays w 2 S, whereas, Player II receives u.w; z/.

We follow the population interpretation of evolutionary games. A population
state P is a probability measure on the measurable space .S;B/. Let � denote the set
of all the population states. The average payoff of population P against population
Q is given by,

E.P; Q/ D
Z

S

Z

S
u.z; w/ Q.dw/ P.dz/:

We now introduce some (static) stability concepts such as, evolutionary stable
strategy (ESS), uninvadable strategy and strongly uninvadable strategy (see Bomze
and Pötscher (1989) for more details).

Definition 1. A population state P is called an evolutionary stable strategy (ESS) if
for every “mutation” Q ¤ P, there exists �.Q/ > 0, such that, for all 0 < � � �.Q/,

E.P; .1 � �/P C �Q/ > E.Q; .1 � �/P C �Q/:

The number �.Q/ is called invasion barrier corresponding to the mutation Q.

Definition 2. A population state P is called uninvadable if the invasion barrier �.Q/

can be chosen independent of Q.

Note that, for R D .1 � �/P C �Q, from the definition of ESS, we have

E.P; R/ D .1 � �/E.P; R/ C �E.P; R/ > .1 � �/E.P; R/ C �E.Q; R/ D E.R; R/

if � < �.Q/.
When the set of pure strategies is finite, then a neighborhood of P is completely

characterized by the points R for � sufficiently small. However, this is not the case
with infinite strategy space. One can define many topologies and in this article, we
consider the topology induced by the variational (strong) norm i.e., the variational
(or strong) topology. The variational norm of a probability measure P is given by

kPk D 2 sup
B2B

jP.B/j:

Thus the distance between two probability measures P and Q is given by

kP � Qk D 2 sup
B2B

jP.B/ � Q.B/j:

Definition 3. A population state P is called strongly uninvadable if there is an � > 0

such that for all population states R ¤ P with kR � Pk � �, we have

E.P; R/ > E.R; R/:
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We now introduce replicator dynamics. For this, we consider a population
evolving over time. Recall that the state of the population is given by a probability
measure P on .S;B/.

The success (or lack of success) of a strategy z 2 S, against a strategy, w 2 S is
given by,

�.z; w/ D u.z; w/ � u.w; w/:

The average success (or lack of success) of a strategy z 2 S, if the population state
is Q, is given by,

�.z; Q/ WD
Z

S
u.z; w/ Q.dw/ �

Z

S

Z

S
u.z; w/Q.dw/Q.dz/ D E.ız; Q/ � E.Q; Q/:

The replicator dynamics is defined using the notion (similar to that in case
of games with a discrete pure strategy space) that the relative increment in the
frequency of strategies in a set B 2 B is given by the average success of strategies
in B. That is, for every B 2 B,

Q0.t/.B/ D
Z

B
�.z; Q.t// Q.t/.dz/ (12.1)

with the initial population state, Q.0/ D Q0.
The replicator dynamics may be written conveniently as : Q0.t/ D F.Q.t//,

where F.Q.t// is the signed measure which is absolutely continuous w.r.t. Q.t/ with
density �.�; Q.t//.

Theorem 1 (Oechssler and Riedel (2001)). If the payoff function u is bounded,
then the replicator dynamics is well-defined, in the sense that, (12.1) admits a unique
solution.

We now introduce some dynamic stability concepts, such as, Lyapunov stability,
strongly attracting strategy and weakly attracting strategy.

Recall that, a rest point of replicator dynamics is a population state P such that
F.P/ D 0.

Definition 4. P is called Lyapunov stable if for all � > 0, there exists an � > 0 such
that, for all t > 0

kQ.0/ � Pk < � ) kQ.t/ � Pk < �:

Definition 5. P is called strongly attracting if Q.t/ converges to P strongly,
whenever Q.0/ is close (strongly) to P.

Definition 6. P is called weakly attracting if Q.t/ converges to P weakly, whenever
Q.0/ is close (weakly) to P.
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Recall that a sequence of probability measures Pn on S converges weakly to a
probability measure P on S if for every bounded continuous function f W S ! R, we
have

Z

S
f .x/Pn.dx/ !

Z

S
f .x/P.dx/

as n ! 1. We will not discuss the metric defining the weak convergence, instead
we refer to Borkar (1995) for details.

In Oechssler and Riedel (2001), sufficient conditions are provided for a
monomorphic population state Q� D ıx to be Lyapunov stable and weakly
attracting. To be precise, the following result is proved in Oechssler and Riedel
(2001).

Theorem 2 (Oechssler and Riedel (2001)). If Q� D ıx is an uninvadable,
monomorphic population state, then Q� is Lyapunov stable. Moreover, if u is
continuous then Q� is weakly attracting.

As mentioned in the introduction, the objective of this paper is to study conditions
under which a dimorphic population state, P D ˛ıx C .1 � ˛/ıy (x ¤ yI 0 < ˛ < 1),
is stable in the strong topology. This will be done in the next section.

12.3 Main Results

In order to investigate the evolutionary stability of the dimorphic population state,

P D ˛ ıx C .1 � ˛/ ıy; x ¤ y; 0 < ˛ < 1 (12.2)

we first derive necessary and sufficient conditions for it to be a rest point of the
replicator dynamics.

Lemma 1. For the dimorphic population state P given in (12.2), the following are
equivalent:

(i) P is a rest point of the replicator dynamics.
(ii) ˛�.y; x/ D .1 � ˛/�.x; y/.

(iii) Either �.x; y/ D �.y; x/ D 0 or ˛ D �.x;y/

�.x;y/C�.y;x/
2 .0; 1/.

Remark 1. Note that the second and third parts of the lemma enforces that both
�.x; y/ and �.y; x/ have same sign. That is, the success of strategy x against y as
well as the success of strategy y against x have same sign. Later we show that, for
a dimorphic state P to be limit of a replicator trajectory, the success of strategy x
against y as well as the success of strategy y against x must be positive.
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Proof. First we will prove that (i) ” (ii). Note that P is a rest point of the
replicator dynamics if and only if

F.P/.B/ D
Z

B
�.z; P/P.dz/ D 0

for every Borel set B � S. Since B is arbitrary, this is equivalent to

�.�; P/ D 0 a.e. P

Since P is supported on fx; yg, this is equivalent to the fact that �.x; P/ D 0 D
�.y; P/. This implies and is implied by

E.ıx; P/ D E.ıy; P/ D E.P; P/:

A simple algebra reveals that this is equivalent to

˛�.y; x/ D .1 � ˛/�.x; y/;

completing the proof of (i) ”(ii).
Note that (ii) can be written as

˛Œ�.x; y/ C �.y; x/� D �.x; y/:

It is obvious from this that (ii) and (iii) are equivalent, completing the proof of the
lemma. ut

The Lyapunov stability of the population state P means that, if we start from a
population state Q.0/ near P, then the resulting trajectory Q.t/ with respect to the
replicator dynamics will also stay near P. We next try to understand when will the
population state Q.0/ be close to P. To this end, we first prove the following lemma.

Lemma 2. If Q.0/.fxg/ D ˇ > 0 and Q.0/.fyg/ D 0 then,

kQ.0/ � Pk � 2.1 � ˛/:

Proof. Let Q.0/ D ˇ ıx C .1 � ˇ/ R, where R 2 � with R.fxg/ D R.fyg/ D 0.
Then, by definition,

kQ.0/ � Pk D 2 sup
B2B

fjQ.0/.B/ � P.B/jg

� 2 jQ.0/.fyg/ � P.fyg/j

D 2.1 � ˛/:

ut
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Similarly, we can prove the following lemma:

Lemma 3. If Q.0/.fyg/ D 	 > 0 and Q.0/.fxg/ D 0 then,

kQ.0/ � Pk � 2˛:

In view of the above two lemmas, we note that any point in an arbitrarily small
neighborhood of P must have positive weights on both x and y. In fact, we can
say more.

Theorem 3. Let P be as in (12.2) and Q.0/ D ˇ ıx C 	 ıy C .1 � ˇ � 	/ R, where
R 2 � with R.fxg/ D R.fyg/ D 0. Then,

kQ.0/ � Pk � 2 maxfjˇ � ˛j; j	 � .1 � ˛/j; 1 � ˇ � 	g:

Proof. By the definition of variational norm, it follows that

kQ.0/ � Pk D 2 sup
B2B

jQ.0/.B/ � P.B/j

� 2 max
n

jQ.0/.fxg/ � P.fxg/j; jQ.0/.fyg/ � P.fyg/j; jQ.0/.fx; yg/ � P.fx; yg/j;
jQ.0/.S X fxg/ � P.S X fxg/j; jQ.0/.S X fyg/ � P.S X fyg/j;
jQ.0/.S X fx; yg/ � P.S X fx; yg/j

o

D 2 maxfjˇ � ˛j; j	 � .1 � ˛/j; jˇ C 	 � 1j; j	 C .1 � ˇ � 	/ � .1 � ˛/j;
jˇ C .1 � ˇ � 	/ � ˛j; j1 � ˇ � 	 � 0jg

D 2 maxfjˇ � ˛j; j	 � .1 � ˛/j; 1 � ˇ � 	g

which concludes the proof. ut
Remark 2. From Theorem 3, it follows that the initial population state Q.0/ can be
arbitrarily close to P only if it is of the form, Q.0/ D ˇ ıx C 	 ıy C .1 � ˇ � 	/ R
where, R 2 � with R.fxg/ D R.fyg/ D 0 and 0 < ˇ C 	 � 1. This leads us to
analyze the stability of P in two different cases. The first case is when ˇ C 	 D 1;
that is, the initial population state Q.0/ is from the line L D fQ 2 � W Q D
� ıx C .1 � �/ ıyI for some 0 < � < 1g. The second case is 0 < ˇ C 	 < 1.

12.3.1 Trajectory Q.t/ with Q.0/ 2 L

Since Q.t/ is absolutely continuous with respect to Q.0/ (follows from the replicator
equation), we must have Q.t/ 2 L if initially it lies on L. Thus, Q.t/ will be of the
form

Q.t/ D ˇ.t/ıx C .1 � ˇ.t//ıy
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with ˇ.0/ D ˇ, when Q.0/ D ˇıx C .1 � ˇ/ıy and 0 < ˇ < 1. Also note that
ˇ.t/ 2 .0; 1/ for every t. If ˇ D ˛, then Q.t/ � Q.0/. Thus to avoid the trivial case
we assume, in the sequel, that ˇ ¤ ˛.

Substituting the form of Q.t/ in the replicator equation, we obtain a differential
equation for ˇ.t/, which is given by

ˇ0.t/ D ˇ.t/ �.x; Q.t//I ˇ.0/ D ˇ (12.3)

We will now compute the value of �.x; Q.t//. It is easy to see that

E.ıx; Q.t// D
Z

S
u.x; z/Q.t/.dz/ D ˇ.t/u.x; x/ C .1 � ˇ.t//u.x; y/

and

E.ıy; Q.t// D
Z

S
u.y; z/Q.t/.dz/ D ˇ.t/u.y; x/ C .1 � ˇ.t//u.y; y/:

Using the above two expressions, we get

E.Q.t/; Q.t// D ˇ.t/
h
ˇ.t/u.x; x/ C .1 � ˇ.t//u.x; y/

i

C .1 � ˇ.t//
h
ˇ.t/u.y; x/ C .1 � ˇ.t//u.y; y/

i

From this, we obtain

�.x; Q.t// D E.ıx; Q.t// � E.Q.t/; Q.t//

D .1 � ˇ.t// fˇ.t/u.x; x/ C .1 � ˇ.t//u.x; y/ � ˇ.t/u.y; x/ � .1 � ˇ.t//u.y; y/g
D .1 � ˇ.t// f.1 � ˇ.t//�.x; y/ � ˇ.t/�.y; x/g

From Lemma 1, we know that P is a rest point if either �.x; y/ D �.y; x/ D 0 or

˛ D �.x; y/

�.x; y/ C �.y; x/
2 .0; 1/:

In the first case, we will have �.x; Q.t// D 0 and hence, from (12.3), we have
ˇ.t/ � ˇ.

In the second case, we have

�.x; Q.t// D .1 � ˇ.t//.˛ � ˇ.t//
�.x; y/

˛
:
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Substituting this in (12.3), we obtain

ˇ0.t/ D ˇ.t/.1 � ˇ.t//.˛ � ˇ.t//
�.x; y/

˛
:

which can be rewritten as

ˇ0.t/
ˇ.t/.1 � ˇ.t//.˛ � ˇ.t//

D �.x; y/

˛
(12.4)

Using partial fractions, we write the L.H.S. as

ˇ0.t/
ˇ.t/.1 � ˇ.t//.˛ � ˇ.t//

D ˇ0.t/
˛ˇ.t/

� ˇ0.t/
.1 � ˛/.1 � ˇ.t//

C ˇ0.t/
˛.1 � ˛/.˛ � ˇ.t//

:

Integrating (12.4) from 0 to t, we get, after some simplifications,

.1 � ˛/ ln

�
ˇ.t/

ˇ

�

C ˛ ln

�
1 � ˇ.t/

1 � ˇ

�

C ln

�
˛ � ˇ

˛ � ˇ.t/

�

D .1 � ˛/�.x; y/t:

Simplifying this further, we obtain

.ˇ.t//1�˛.1 � ˇ.t//˛

.˛ � ˇ.t//
D ˇ1�˛.1 � ˇ/˛

.˛ � ˇ/
exp

�
.1 � ˛/�.x; y/t

�
(12.5)

It can be observed from (12.5) that, the stability of P will depend on the sign of
�.x; y/ as stated in the following theorem.

Theorem 4. Let P D ˛ıx C .1�˛/ıy be a rest point of the replicator dynamics and
the initial population state be of the form Q.0/ D ˇıx C .1 � ˇ/ıy; .0 < ˇ < 1/.
Then,

1. the trajectory Q.t/ D Q.0/ for all t when �.x; y/ D 0,
2. the trajectory Q.t/ converges to P when �.x; y/ > 0, and
3. the trajectory Q.t/ either converges to ıx or ıy when �.x; y/ < 0.

Proof. Case 1. Suppose �.x; y/ D 0.
From Lemma 1, we have �.y; x/ D 0 and hence any point on line L is a rest point
of replicator dynamics. So Q.t/ D Q.0/ for every t.
Case 2. Suppose �.x; y/ > 0.
It is clear that the R.H.S. of (12.5) tends to 1 as t ! 1. Thus

.ˇ.t//1�˛.1 � ˇ.t//˛

.˛ � ˇ.t//
! 1:

Since ˇ.t/ is bounded, the numerator is always bounded. Thus the only way, the
above can happen, is that ˛ � ˇ.t/ ! 0. Hence Q.t/ converges to P as t ! 1.
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Case 3. Suppose �.x; y/ < 0.
From (12.5), we obtain

.ˇ.t//1�˛.1 � ˇ.t//˛

.˛ � ˇ.t//
! 0:

Since ˇ.t/ is bounded, the denominator can not go to 1. Thus, for this to happen,
we must have

.ˇ.t//1�˛.1 � ˇ.t//˛ ! 0:

Hence, ˇ.t/ ! 1 or 0. Consequently the trajectory Q.t/ converges to either ıx

or ıy. ut
The following example illustrates the above result.

Example 1 (Shaiju and Bernhard (2009)). Let S D Œ0; 1� and � 2 .0; 1/. Let the
payoff function be defined as,

u.z; w/ D maxfz � w; �.w � z/g 8 z; w 2 S:

Let ı0 and ı1 denote the Dirac measures concentrated on the points x D 0 and
y D 1 respectively. In this case,

�.x; y/ D �.0; 1/ D u.0; 1/ � u.1; 1/ D �

and similarly, �.y; x/ D �.1; 0/ D 1. Thus, by Lemma 1, P D ˛ı0 C .1 � ˛/ı1 is a
rest point of the replicator dynamics with

˛ D �

1 C �
:

Now, consider the replicator dynamics with the initial population state Q.0/ 2 L.
Then, as a consequence of Theorem 4, the trajectory Q.t/ converges to P since
�.x; y/ D � > 0.

12.3.2 Trajectory Q(t) with Q.0/ 62 L

In this case the initial population state is of the form

Q.0/ D ˇıx C 	ıy C .1 � ˇ � 	/R;
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where 0 < ˇ C 	 < 1 and R 2 � with R.fxg/ D R.fyg/ D 0. The trajectory Q.t/,
being absolutely continuous w.r.t. Q.0/, is of the form

Q.t/ D ˇ.t/ıx C 	.t/ıy C .1 � ˇ.t/ � 	.t//R.t/;

where ˇ.t/ and 	.t/ are solutions of the following system of differential equations
(obtained by substituting B D fxg and B D fyg respectively in the replicator
dynamics (12.1)),

ˇ0.t/ D ˇ.t/ �.x; Q.t// ˇ.0/ D ˇ (12.6)

	 0.t/ D 	.t/ �.y; Q.t// 	.0/ D 	: (12.7)

Further note that, R.0/ D R and R.t/ is absolutely continuous w.r.t. R.0/. As in the
previous subsection, ˇ.t/ 2 .0; 1/ and 	.t/ 2 .0; 1/ for all t.

We first analyze the case �.x; y/ D �.y; x/ D 0 where, each point on the line
L will be a rest point of the replicator dynamics. To this end, we now compute
E.ıx; Q.t//, E.ıy; Q.t// and E.Q.t/; Q.t//.

E.ıx; Q.t// D
Z

S
u.x; z/ Q.t/.dz/

D ˇ.t/u.x; x/ C 	.t/u.x; y/ C .1 � ˇ.t/ � 	.t//E.ıx; R.t//:

Since �.x; y/ D 0, we have u.x; y/ D u.y; y/ and hence

E.ıx; Q.t// D ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t// E.ıx; R.t//:

Similarly, by using the fact that �.y; x/ D 0, we have

E.ıy; Q.t// D ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t// E.ıy; R.t//:

Using the above expressions for E.ıx; Q.t// and E.ıy; Q.t// we get,

E.Q.t/; Q.t// D ˇ.t/
h
ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t//E.ıx; R.t//

i

C 	.t/
h
ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t//E.ıy; R.t//

i

C .1 � ˇ.t/ � 	.t//
h
ˇ.t/E.R.t/; ıx/ C 	.t/E.R.t/; ıy/

C .1 � ˇ.t/ � 	.t//E.R.t/; R.t//
i
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By using the expressions for E.ıx; Q.t// and E.Q.t/; Q.t// we get,

�.x; Q.t// D E.ıx; Q.t// � E.Q.t/; Q.t//

D ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t// E.ıx; R.t//

� ˇ.t/
h
ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t// E.ıx; R.t//

i

� 	.t/
h
ˇ.t/u.x; x/ C 	.t/u.y; y/ C .1 � ˇ.t/ � 	.t// E.ıy; R.t//

i

� .1 � ˇ.t/ � 	.t//
h
ˇ.t/ E.R.t/; ıx/ C 	.t/ E.R.t/; ıy/

C .1 � ˇ.t/ � 	.t// E.R.t/; R.t//
i
:

After rearranging the terms it becomes,

�.x; Q.t// D .1 � ˇ.t/ � 	.t//
h

� ˇ.t/�.R.t/; x/ � 	.t/�.R.t/; y/

C .1 � ˇ.t//�.x; R.t// � 	.t/�.y; R.t//
i

(12.8)

where

�.R.t/; x/ D E.R.t/; ıx/ � u.x; x/;

�.R.t/; y/ D E.R.t/; ıy/ � u.y; y/;

�.x; R.t// D E.ıx; R.t// � E.R.t/; R.t//; and

�.y; R.t// D E.ıy; R.t// � E.R.t/; R.t//:

In a similar fashion, we can obtain

�.y; Q.t// D .1 � ˇ.t/ � 	.t//
h

� ˇ.t/�.R.t/; x/ � 	.t/�.R.t/; y/

� ˇ.t/�.x; R.t/ C .1 � 	.t//�.y; R.t//
i

(12.9)

Let

c.t/ D min
n

� �.R.t/; x/; � �.R.t/; y/; �.x; R.t//; �.y; R.t//
o

(12.10)

C.t/ D max
n

� �.R.t/; x/; � �.R.t/; y/; �.x; R.t//; �.y; R.t//
o
: (12.11)

The following theorem describes some conditions for which the trajectory Q.t/
converges to a point on the line L.
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Theorem 5. Let the dimorphic population state P, as given in (12.2), be a rest point
of the replicator dynamics with �.x; y/ D �.y; x/ D 0 and the initial population
state Q.0/ be of the form

Q.0/ D ˇıx C 	ıy C .1 � ˇ � 	/R I 0 < ˇ C 	 < 1

where R 2 � with R.fxg/ D R.fyg/ D 0. If

Z 1

0

Œ2c.t/ � C.t/� dt D 1; (12.12)

where c.t/ and C.t/ are as defined by (12.10) and (12.11) respectively, then the
trajectory Q.t/ converges to the line L.

Proof. In order to prove the theorem, we consider lower bounds of �.x; Q.t// and
�.y; Q.t//. Using c.t/ and C.t/, we have

�.x; Q.t// � .1 � ˇ.t/ � 	.t//
h
ˇ.t/c.t/ C 	.t/c.t/ C .1 � ˇ.t//c.t/ � 	.t/C.t/

i

D .1 � ˇ.t/ � 	.t//
h
c.t/ � 	.t/fC.t/ � c.t/g

i

� .1 � ˇ.t/ � 	.t//
h
c.t/ � fC.t/ � c.t/g

i

D .1 � ˇ.t/ � 	.t//
h
2c.t/ � C.t/

i
:

Here, we have also used the fact that 	.t/ < 1. Similarly,

�.y; Q.t// � .1 � ˇ.t/ � 	.t//
h
ˇ.t/c.t/ C 	.t/c.t/ � ˇ.t/C.t/ C .1 � 	.t//c.t/

i

D .1 � ˇ.t/ � 	.t//
h
c.t/ � ˇ.t/fC.t/ � c.t/g

i

� .1 � ˇ.t/ � 	.t//
h
c.t/ � fC.t/ � c.t/g

i

D .1 � ˇ.t/ � 	.t//
h
2c.t/ � C.t/

i
:

Now let p.t/ D ˇ.t/ C 	.t/ 2 .0; 1/. Using these two lower bounds and
Eqs. (12.6) and (12.7), we have the following differential inequality

p0.t/ � p.t/.1 � p.t//

2c.t/ � C.t/

�

with the initial condition p0 D ˇ C 	 . This equation can be rewritten as

p0.t/
p.t/

C p0.t/
1 � p.t/

� 2c.t/ � C.t/
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A little bit of analysis will yield the estimate

p.t/

1 � p.t/
� exp


Z t

0

.2c.s/ � C.s//ds

�

Now the assumption (12.12) implies that p.t/ D ˇ.t/ C 	.t/ ! 1 as t ! 1. Thus,
the trajectory Q.t/ converges to the line L. ut

Next we look at an example which illustrates the above result.

Example 2. Let S D Œ0; 1� and the payoff function be defined as

u.z; w/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

.1 � z/.1 � w/ W z; w < 1
2

w.1 � z/ W z � 1
2
; w � 1

2

z.1 � w/ W z � 1
2
; w � 1

2

zw W z; w > 1
2

Let x D 0 and y D 1. Then,

�.x; y/ D �.0; 1/ D u.0; 1/ � u.1; 1/ D 0 and

�.y; x/ D �.1; 0/ D u.1; 0/ � u.0; 0/ D 0:

Thus, each point on the line L is a rest point of the replicator dynamics.
Consider, the initial population state of the form

Q.0/ D ˇı0 C 	ı1 C .1 � ˇ � 	/ı1=3I 0 < ˇ C 	 < 1:

Then the trajectory Q.t/ will be of the form

Q.t/ D ˇ.t/ı0 C 	.t/ı1 C .1 � ˇ.t/ � 	.t//ı1=3:

That is, R.t/ � ı1=3.
Now for this R.t/ we first evaluate the following to obtain c.t/ and C.t/.

��.R.t/; x/ D ��

�
1

3
; 0

�

D u.0; 0/ � u

�
1

3
; 0

�

D 1

3

��.R.t/; y/ D ��

�
1

3
; 1

�

D u.1; 1/ � u

�
1

3
; 1

�

D 1

3

�.x; R.t// D �

�

0;
1

3

�

D u

�

0;
1

3

�

� u

�
1

3
;

1

3

�

D 2

9

�.y; R.t// D �

�

1;
1

3

�

D u

�

1;
1

3

�

� u

�
1

3
;

1

3

�

D 2

9
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This implies that

c.t/ D min



1

3
;

2

9

�

D 2

9
and

C.t/ D max



1

3
;

2

9

�

D 1

3

We observe that,

Z 1

0

Œ2c.t/ � C.t/�dt D
Z 1

0

�

2

�
2

9

�

� 1

3

�

dt D
Z 1

0

1

9
dt D 1:

Hence by Theorem 5, the trajectory Q.t/ converges to the line L.

We, now, consider the case where the trajectory will go away from the line. This,
we accomplish in the following theorem.

Theorem 6. Let the dimorphic population state P, as given in (12.2), be a rest point
of the replicator dynamics with �.x; y/ D �.y; x/ D 0 and the initial population
state Q.0/ be of the form

Q.0/ D ˇıx C 	ıy C .1 � ˇ � 	/R I 0 < ˇ C 	 < 1

where R 2 � with R.fxg/ D R.fyg/ D 0. If

Z 1

0

Œ2C.t/ � c.t/� dt D �1; (12.13)

where c.t/ and C.t/ are as defined by (12.10) and (12.11) respectively, then the
trajectory Q.t/ converges (or diverges) away from the line L.

Proof. Idea of the proof is exactly same as the previous theorem. Here, we consider
upper bounds rather than the lower bounds.

Note that,

�.x; Q.t// � .1 � ˇ.t/ � 	.t//
h
ˇ.t/C.t/ C 	.t/C.t/ C .1 � ˇ.t//C.t/ � 	.t/c.t/

i

D .1 � ˇ.t/ � 	.t//
h
C.t/ C 	.t/fC.t/ � c.t/g

i

� .1 � ˇ.t/ � 	.t//
h
C.t/ C C.t/ � c.t/

i

D .1 � ˇ.t/ � 	.t//
h
2C.t/ � c.t/

i
:
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Similarly,

�.y; Q.t// � .1 � ˇ.t/ � 	.t//
h
2C.t/ � c.t/

i
:

Considering p.t/ D ˇ.t/ C 	.t/ 2 .0; 1/, we have the following differential
inequality

p0.t/ � p.t/.1 � p.t//

2C.t/ � c.t/

�

with the initial condition p0 D ˇ C 	 . This equation can be rewritten as

p0.t/
p.t/

C p0.t/
1 � p.t/

� 2C.t/ � c.t/

A little bit of analysis will yield the estimate

p.t/

1 � p.t/
� exp


Z t

0

.2C.s/ � c.s//ds

�

Now the assumption (12.13) implies that p.t/ D ˇ.t/ C 	.t/ ! 0 as t ! 1. Thus,
the trajectory Q.t/ goes away from the line L as t ! 1. ut

The above theorem can be illustrated using the next example.

Example 3. Let S D Œ0; 1� and the payoff function be defined as:

u.z; w/ D z.1 � z/ C w.1 � w/:

By Lemma 1, each point on the line joining ı0 and ı1 is a rest point of the
associated replicator dynamics as, �.0; 1/ D �.1; 0/ D 0. We take R D ı1=2 and
compute

�.0; R.t// D �

�

0;
1

2

�

D �1

4
;

�.1; R.t// D � 1
4
, �.R.t/; 0/ D 1

4
and �.R.t/; 1/ D 1

4
.

This implies that, C.t/ D c.t/ D � 1
4

and hence condition (12.13) is satisfied.
Therefore, by Theorem 6, ˇ.t/ C 	.t/ ! 0.

12.4 Concluding Remarks

In Sect. 12.3.2, we have discussed the convergence of the replicator dynamics
trajectory when Q.0/ 62 L. If �.x; y/ D �.y; x/ D 0, a set of sufficient conditions
are given (Theorem 5) for the convergence of the trajectory to L and also to be away
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from the line L (Theorem 6). It would be nice if one can weaken these assumptions.
Furthermore, the convergence of trajectories when Q.0/ 62 L and �.x; y/ 6D 0 is
also an interesting question for further investigation. To this end, it is interesting to
note that when we have a game G, in which R.t/ � R.0/ for all t, the system of
differential equations for ˇ.�/ and 	.�/ is equivalent to the replicator dynamics for a
3 � 3 game with the payoff matrix given by

U.R.0// D
0

@
u.x; x/ u.x; y/ E.ıx; R.0//

u.y; x/ u.y; y/ E.ıy; R.0//

E.R.0/; ıx/ E.R.0/; ıy/ E.R.0/; R.0//

1

A :

In this case, the dimorphic population state P D ˛ıx C .1�˛/ıy will be stable when
.˛; 1�˛; 0/ is a NSS (neutrally stable strategy) and it will be asymptotically stable
when it is an ESS. If R.t/ is different from R.0/ then, a generalization of such ideas
can be helpful to prove results regarding the stability of the dimorphic population
states.
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Chapter 13
A Game Theoretical Approach to Microbial
Coexistence

Monica Abrudan, Li You, Kateřina Staňková, and Frank Thuijsman

Abstract Huge numbers of microbes coexist in almost all habitats of our planet.
Their interactions are governed by complex mechanisms, where both competition
for resources and toxin production play important roles. Our goal is to understand
key mechanisms that lead to coexistence. In this chapter we study many possible
scenarios of microbial interactions and we analyze whether or not they can lead to
coexistence of species. To achieve this we implemented agent-based models that
mimic local dynamics of microbes; initially well mixed microbes from different
species interact in a grid with a regular structure. Among others, we show that the
coexistence rate is negatively correlated with the number of neighbors of each cell
in the grid. Another observation is that the order of selection of focal cells in the
grid influences the coexistence rate.
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13.1 Introduction and Literature Review

Bacteria outnumber by far any other living organisms on Earth (Dykhuizen 1998).
There are more bacteria on Earth than stars in the universe and it is thought
that 90 % of the cells associated with a human body are not ours, but belong to
microorganisms. With the help of new sequencing techniques, pyrosequencing and
next generation sequencing, even environments considered sterile until a short time
ago, like the uterus (Funkhouser and Bordenstein 2013) and mother milk (Hunt et al.
2011), were found to host microbes. Our faces are not clean either: recent research
found that Demodex mites might be colonizing all of us (Thoemmes et al. 2014).

What is fascinating about bacteria is not just their astronomically high numbers,
but also their very high species diversity. Two hundred and forty two healthy
individuals were found to host more that 1200 different microbes (Consortium 2012)
and a gram of soil can contain up to 8000 different operational taxonomic units
(OTUs) (Delmont et al. 2011).

These amazing numbers raise an obvious question: How is the diversity
maintained? Understanding the mechanisms that maintain microbial diversity
could prove to be very beneficial to humans, as explained in the following
examples: Firstly, equilibrium of commensal species could prevent invasion of
pathogens, keeping ecosystems and humans healthy. Secondly, it was proved that
the distribution of commensal species affects the homeostasis of the host. For
example, in the mouse gut an abnormal ratio between Firmicutes and Bacteroides
was found to be correlated to obesity (Ridaura et al. 2013).

Species interactions are thought to be a good proxy for understanding the
mechanisms that drive diversity. This fact has lead ecologists to study diverse
communities from the perspective of competition networks, mutualities networks,
and food webs (Verhoef and Morin 2010). The topologies of the interaction
matrices/networks are a key indicator of the species’ dynamics in a given
environment (Dunne et al. 2002; Bascompte et al. 2006; Montoya et al. 2006).

These observations in natural environments have led us to run a number of
simulation experiments as a first attempt in trying to understand the underlying
processes.

Bacterial interaction matrices are built using diverse
experimental parameters, like growth rates, ability
to produce toxins in pairwise interactions or “metabolic
burdens” associated to expressing different traits

A classical experiment with two strains of E. coli (Chao and Levin 1981) showed
that competition is regulated by the ability of the strains to produce toxins, as
well as by their initial densities. Kerr et al. (2002) showed that equilibrium could
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be maintained between three strains of E. coli, which followed the setups of the
Rock-Paper-Scissors game by careful control of their growth rates and of their
sensitivity to toxins.

Taking this rationale further, the interactions inside a community of different
strains of bacteria can be described through an n�n matrix A D .aij/ (where n is the
number of species), which describes the pairwise interactions between all species
present. If entry aij is 1, then type i can kill type j, if it is 0, it cannot. We will refer
to such a matrix as an interaction matrix.

While one can argue that in reality the entries of the interaction matrix should
be expressed by the probabilities pij 2 Œ0; 1� at which strain i can kill strain j, it
would be very difficult to derive these probabilities in laboratory measurements and
therefore experimentalists confine themselves to discrete 0=1 values. In this chapter,
we will confine ourselves to this simplification as well, bearing in mind that the
situation considered is a special case of the general case.

The structures of the interaction matrices of coexisting
bacteria are very diverse

We will refer to the density of an interaction matrix as the proportion of 1’s in that
matrix.

Several studies focused on the ability of bacteria to inhibit other bacteria,
that is, to secrete killing toxins. Vetsigian et al. (2011) characterized a set of
59 strains of Streptomyces and found that 43 % of the interactions assessed were
cases of inhibition. In (Kinkel et al. 2013) it is reported that in seven communities
of Streptomyces collected from seven different geographic locations, frequencies
of inhibitions between sympatric isolates varied between 10 % and 33 %. In two
different communities of Streptomyces collected from Leidse Hout in The Nether-
lands we found rates of inhibition of 33 % and 43 %, respectively. In communities of
E. coli inhibition is less common, with only 30 % of E. coli strains producing colicin
in natural environment (Riley and Gordon 1999). Seventy percent of the E. coli
strains assessed were resistant to at least one colicin, while 30 % were resistant to all
colicin produced. In a community of 25 strains of Streptococcus pneumoniae 22 %
of the interactions between strains were cases of inhibition, where all strains were
capable of producing toxins and all strains were vulnerable to at least one toxin.
At a first glance, what is interesting about these interaction matrices is that they
have very different densities. This data is summarized in Table 13.1. In all studies
presented, the interaction matrices were constructed based on pairwise antagonistic
interactions: in every community, each strain was tested whether it can secrete toxins
that kill the other strains.
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Table 13.1 Densities of different microbial interaction matrices

Species
Number of
strains

Density of the interaction
matrix

Streptomyces 59 0.43

Seven communities of Streptomyces 69 0.1–0.33

Streptomyces (unpublished data) 23 0.33

Streptomyces (unpublished data) 20 0.42

Streptomyces (unpublished data) 13 0.25

E. coli 0.07–0.21

E. coli ECOR collection 72 0.022

Streptococcus pneumoniae (unpublished
data)

25 0.22

Results were determined experimentally

Quorum sensing often regulates microbial interactions

It is important to notice that most bacterial strains do not live in isolation. Bacteria
can interact/communicate with one another using chemical signal molecules. This
form of signalling is termed quorum sensing and enables bacteria to coordinate their
behavior (Miller and Bassler 2001; Waters and Bassler 2005). As the environment
for a bacteria population always changes rapidly, bacteria need to respond quickly
in order to survive. These responses include adaptation to availability of nutrients,
defence against other microorganisms which may compete for the same nutrients
and the avoidance of toxic compounds potentially dangerous for the bacteria. As a
result bacteria are able to monitor the environment for other bacteria and to alter
behavior in response to changes in the numbers of strains present in a community
(Williams et al. 2007). In this study we implemented a quorum sensing model
(see Sect. 13.3.3).

The remainder of this chapter is composed as follows. In Sect. 13.2 our models
and their implementation are explained. In Sect. 13.3 we discuss four case studies
using different simulation setups. We end the chapter with remarks, conclusions and
ideas for future work (Sect. 13.4).

13.2 Model

13.2.1 Basics

Let us consider a thought experiment: At the beginning of the experiment there are
n bacterial strains and an equal number of cells of each strain, well mixed on a plate.

We will denote the set of all strains by N
defD f1; : : : ; ng. We will represent the cells

on the plate as a field, in two possible ways:
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Fig. 13.1 An illustration of a square field, in which each cell has eight neighbors (left) and a field
composed of hexagonal cells, in which each cell has six neighbors (right). In order to have the
boundary conditions satisfied we assume that each type of field forms the surface of a torus. No
cell is empty and cells with the same color belong to the same strain. In each figure only one focal
cell (the central one) and its neighbors are depicted

• a squared field in which each cell has eight neighbors (Fig. 13.1, left);
• a field composed of hexagonal cells in which each cell has six neighbors (right)

(Fig. 13.1, right).

We will assume that no cells are empty. Two different variants of the interactions
will be considered. The initial model in which only simple interactions among
cells will be taken into account, is introduced in Sect. 13.2.2, while a more advanced
model, in which quorum sensing takes place, is introduced in Sect. 13.2.3.

13.2.2 Basic Model

Let us assume that at each time step of the experiment, one cell (the so-called focal
cell) is randomly selected and interacts with another cell from its neighborhood
(where the neighborhood contains six or eight cells). If the cell is of the type that can
kill the neighbor, it will replace it, otherwise not. Killing the neighbor and replacing
it (i.e., taking over that neighbor cell) represent one way of reproduction. Focal
individuals that do not kill are assumed to reproduce in their own cell. No individual
can kill itself or an individual of its own type, each individual i 2 N can either kill
the strain j 2 N, j ¤ i or not. We can represent the ability of the strains to kill each
other by an interaction matrix of the following structure:

0

B
B
B
B
B
B
B
@

type 1 type 2 : : : type n

type 1 0 a12 : : : a1n

type 2 a21 0 : : : a2n

:::
:::

:::
: : :

:::

type n an 1 : : : an n�1 0

1

C
C
C
C
C
C
C
A

; (13.1)
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with

ai j D



1; if type i can kill type j
0; otherwise,

where i ¤ j. The interactions given by matrix (13.1) can be equivalently illustrated
in a directed graph with n vertices, in which a directed link from vertex i to vertex j
corresponds to ai j D 1 and there is no directed link from i to j when ai j D 0. Note
that ai j D 1 does not imply that aj i D 0, for type i may be able to kill type j, but
type j may not be able to kill type i. Obviously, we examine only one matrix from
each equivalence class, e.g. matrices

0

@
0 0 0

1 0 1

0 1 0

1

A ;

0

@
0 1 0

1 0 1

0 0 0

1

A ;

0

@
0 0 1

0 0 0

1 1 0

1

A ;

0

@
0 0 0

0 0 1

1 1 0

1

A (13.2)

are equivalent and correspond to isomorphic graphs.
In the remainder of the chapter, we will refer to any equivalence class of matrices

by giving one of its elements.
The number of interaction matrices increases rapidly with n W There are 15

nontrivial matrices with n D 3, 217 with n D 4, and 9608 with n D 5. These
matrices can be generated using software Nauty (McKay and Piperno 2014).

All experiments with the same number of elements (n D 3, n D 4, or n D 5)
of interaction matrices and the same type of field (hexagonal or square) are done
always with the same initial field, randomly generated.

13.2.3 Quorum Sensing Model

The quorum sensing model extends the basic model introduced in Sect. 13.2.2. In
this model, the interactions follow three steps, with prespecified threshold m:

1. Selection of a focal cell of type j.
2. Random selection of a neighbor of type i of the focal cell.
3. If aij D 1, then type i kills the focal cell of type j provided that there are at least

m cells of type i in the neighborhood of the focal cell. The selected neighbor of
type i cannot kill the focal cell if aij D 0, or if aij D 1 meanwhile there are less
than m cells of type i in the neighborhood of the focal cell.

Figure 13.2 shows an example of the quorum sensing model, where the minimum
quorum sensing threshold is set to m D 2. Consider the following interaction matrix:

0

@
0 0 0

1 0 1

0 1 0

1

A : (13.3)
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Fig. 13.2 An example of possible steps in the quorum sensing simulation. (a) A focal cell of type
2 and its neighbors. (b) Changing the focal cell type

A focal cell of type 2 is randomly selected. If a neighbor of type 1 or 2 is selected,
nothing would happen as a12 D a22 D 0. However, if a neighbor of type 3 is selected
and there are at least m D 2 type 3 neighbors of the focal cell, then the focal cell is
replaced by a cell of type 3, because a32 D 1. The latter is illustrated in Fig. 13.2b.

13.3 Case Studies on Coexistence

In this section we examine a number of conditions which might influence
coexistence of different types. By coexistence we mean that each type which was
initially introduced is represented by at least one cell at the end of the simulation.

13.3.1 Case Study 1: The Order in Which Competing
Cells Are Selected

This case study uses the model introduced in Sect. 13.2.2. Tests with three strains,
four strains, and five strains will be carried out. The test field will consist of 8100

cells, equally distributed between the strains. Two different ways of how the focal
cells are selected in each round, will be considered:

• Partially random: In each round all 8100 cells are selected, one by one, in random
order. The basic interactions introduced in Sect. 13.2.2 are performed for each of
them and the field is updated immediately after each interaction takes place for
one selected focal cell. There are 12;000 rounds in total.

• Random: We randomly select 8100 cells and each time we perform the basic
interactions introduced in Sect. 13.2.2. As in the previous case, the field is
updated immediately after each interaction takes place. We can call these
simulations “with random selection”, because after each interaction a new focal
cell is selected randomly from the entire field. In this case, some cells may be
updated more than once, while some may not be updated at all.

For each interaction matrix of sizes 3 � 3 and 4 � 4, respectively, we ran 100

simulations (15 � 100 and 217 � 100, respectively). For each interaction matrix
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of size 5 � 5 we ran 10 simulations (9608 � 10). We only ran ten simulations in the
latter case, because of the high computational time. Simulations were ran for two
sets of conditions, partially random and random. As before, the same initial field is
used for all runs and in each initial field all types are equally distributed.

We observe that a higher portion of interaction matrices leads to coexistence in
the set of simulations with random selection than in the set of simulations with
partially random selection. Why this happens is further explained:

In the set of simulations with partially random selection every cell interacts as
a focal cell in every round. Such is not true for simulations with random selection.
Therefore, in the simulation with partially random selection a larger part of the
field is changed in each round. After a finite number of rounds, random selection
simulations will still have some fraction of the initial field, because the cells in that
fraction simply have not interacted with their neighbors yet.

The results are summarized in Fig. 13.3.
In order to test if there is a significant statistical difference between the results of

the two simulation setups, we performed statistical non-parametric tests [Wilcoxon
paired Signed-Rank tests (Bauer 1972; Hollander et al. 2013)] using the software
package R on the simulation results. The Wilcoxon paired Signed-Rank test is
suitable for comparing two matched samples. The test is an equivalent of the
paired t-test that does not assume normality of the data (Oyeka and Ebuh 2012).
We compared the simulation results in the case where focal cells are chosen with
random selection to the simulation results in the case where focal cells are chosen
with partially random selection. Three tests were performed, for the three strains,
four strains, and five strains in the field. We found that the differences in simulation
outcomes were not significant for the three strains (p-value = 3�10�1), but significant
for the four strains (p-value <5 �10�3) as well as for the five strains (p-value <10�3).
The results of the statistical tests confirm that a more random way of selecting the
focal cell is correlated with a higher chance of coexistence.

13.3.2 Case Study 2: The Number of Neighbors

The simulations in this case study use the basic model described in Sect. 13.2.2.
We examine how the coexistence evolves on two types of grids: one where each
cell has six neighbors and one where each cell has eight neighbors, as introduced in
Sect. 13.2.1. As before, interactions among three strains, four strains, and five strains
are studied. For each interaction matrix of sizes 3 � 3 and 4 � 4, respectively, we ran
100 simulations and for each interaction matrix of size 5 � 5 we ran 10 simulations.
The initial conditions are as before. Results are summarized in Fig. 13.4.

As in the previous case study, we ran Wilcoxon paired Signed-Rank tests (Bauer
1972; Hollander et al. 2013) to check the significance of the different simulation
outcomes.

We found that the differences in simulation outcomes were not significant for
the three strains (p-value 	 3 � 10�1), but significant for the four strains (p-value
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Fig. 13.3 Histograms showing simulation results. We ran two sets of simulations and each set
included 100 simulations for each of the 3 � 3 (a) and 4 � 4 (b) matrices of interactions and 10

simulations for each of the 5 � 5 matrices (c). In one set of simulations cells interacted randomly
and in the other set of simulations cells interacted in a partially random manner, as described in
Sect. 13.3.1. We assigned each matrix a coexistence percentage, representing the percentage of
simulations which lead to survival of all of the starting strains, out of 100 and 10 runs, respectively.
For the two sets of simulations the histogram depicts the number of matrices that lead to various
degrees of coexistence
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Fig. 13.4 Histograms showing simulation results. We ran two sets of simulations and each set
included 100 simulations for each of the 3 � 3 and 4 � 4 interaction matrices and ten simulations
for each of the 5 � 5 matrices. In one set of simulations cells had six neighbors and in one set
of simulations cells had eight neighbors, as presented in Sect. 13.2.1. We assigned each matrix a
coexistence percentage, representing the percentage of simulations which leads to 100 % survival
of all of the starting strains, out of all runs. The histogram depicts the number of matrices that lead
to different percentages of coexistence in two sets of simulations
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<5 �10�4), and for the five strains (p-value <2:2 �10�16). The statistical tests confirm
that the change from 6 to 8 neighbors for each focal cell decreases the fraction of
interaction matrices that lead to coexistence. Intuitively, this seems natural as higher
numbers of neighbors imply that it is more likely that a focal cell meets a predator
and is killed.

13.3.3 Case Study 3: Basic Model vs. Quorum Sensing Model

We compared the simulation outcomes of the basic model (described in Sect. 13.2.2)
with the simulation outcomes of the quorum sensing model (described in
Sect. 13.2.3).

For each interaction matrix of sizes 3 � 3 and 4 � 4, respectively, we ran 100

simulations and for each interaction matrix of size 5 � 5 we ran 10 simulations, for
each of two different setups: the first one using the basic model and the second using
the quorum sensing model. In both setups discussed here, cells have six neighbors
and the selection of the focal cell is done with random selection, as described in
Sect. 13.3.1. The initial conditions are the same as before.

In the quorum sensing model we considered the situations where the quorum
sensing threshold varies between 2 and 4, that is, the minimal number of neighbors
of the focal cell belonging to the same strain required to kill should be at least 2, 3
or 4, respectively. Figure 13.5 shows our results.

Note that as m increases, the focal cell must have more neighbors of the same
type to be killed, however also the number of types that meet this threshold goes
down.

Our results confirm previous studies that showed that the quorum sensing plays a
major role in promoting microbial coexistence. As seen in Fig. 13.5, the number of
interaction matrices that lead to coexistence increases with the increase of quorum
sensing threshold m.

Moreover, we showed that when the quorum sensing threshold is high (4 in
our case) the topology of the interaction matrices does not influence coexistence.
In the quorum sensing model 3, 4, or 5 strains can coexist regardless of the
interaction matrices, as it can be seen in Fig. 13.5. Obviously, this happens because
the threshold m is too high.

13.3.4 Case Study 4: Matrix Topology

In this case study we test how the topology of the interaction matrix affects the
simulation results. We picked two metrics that describe the topology of the matrices
of interactions: firstly, the density of the matrix and secondly, the number of cycles
in the matrix. For 3 � 3 matrices we looked at cycles of sizes 2 and 3, for 4 � 4
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Fig. 13.5 Histograms showing simulation results of the quorum sensing model. We ran four sets
of simulations [for m D 1 (the basic model), m D 2, m D 3 and m D 4 (the quorum sensing
model)] and each set included 100 simulations for each of the 3 � 3 (a) and 4 � 4 (b) matrices
of interactions and 10 simulations for each of the 5 � 5 matrices (c). We assigned each matrix a
coexistence percentage, representing the percentage of simulations which lead to 100 % survival
of all of the starting strains, out of 100 and 10 runs, respectively. For the fours sets of simulations
the histogram depicts the number of matrices that lead to various degrees of coexistence
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matrices we chose the cycles of sizes 2, 3, and 4, and for 5�5 matrices we chose the
cycles of sizes 2, 3, 4 and 5. We report the results we found in the simulations where
each cell has eight neighbors and focal cells are chosen with random selection, as
explained in Sect. 13.3.1. We again ran 100 simulations for each of the 3�3 and 4�4

matrices and 10 simulations for each of the 5�5 matrices. The initial conditions are
as before.

In order to test if the densities of the interaction matrices are correlated with the
simulation results, we performed a set of Pearson correlation tests. The output of
the correlation test, the correlation coefficient, can vary between �1 and 1, where
�1 shows perfectly negatively correlated samples and 1 shows perfectly positively
correlated samples. We found the following correlation coefficients: for the set of
the 3 � 3 interaction matrices (densities and their respective simulation results)
correlation coefficient 0:09; for the set of the 4 � 4 interaction matrices (densities
and respective simulation results) correlation coefficient <0:001; for the set of the
5 � 5 interaction matrices (densities and respective simulation results) correlation
coefficient <0:001.

Similarly, we tested whether there was any correlation between the total number
of cycles in the interaction matrices and the simulation results. We found that the
larger the interaction matrix the less correlated the cycles are with the simulation
results (correlation coefficient 0:534 for the set of the 3 � 3 interaction matrices;
correlation coefficient 0:185 for the set of the 4 � 4 interaction matrices; correlation
coefficient <0:001 for the set of the 5 � 5 interaction matrices).

13.4 Remarks and Conclusions

We would like to stress that the mechanism in the simulations we ran is not the
replicator dynamics frequently studied in evolutionary game theory. While for
replicator dynamics random interactions are used to decide reproductive success of
the interacting individuals, in our simulations the interactions are used to decide
whether or not the focal individual will be killed and replaced by one of its
neighbors. As such the matrices used in our models play a very different role from
those used as fitness matrices in evolutionary games. It would be interesting to see
whether the same results can be achieved using a replicator dynamics models.

As a second remark we wish to stress that in our simulations we observed
something that one could call “Coexistence by small numbers”. This means that
quite frequently we observed that a specific species would not go extinct simply
because of being completely surrounded and protected by harmless neighbors.
Consider for example the following interaction matrix:

0

@
0 0 0

1 0 0

0 0 0

1

A (13.4)
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Fig. 13.6 An example of coexistence by small numbers. This is a snapshop of a hexagonal field
at the last time step of a simulation where species follow the rules described in the interaction
matrix (13.4)

The first species is killed by the second species (position (2,1) in the matrix), but it
is immune to the third one (position (3,1) in the matrix). Few individuals of the first
species can survive until the end time step (time step 12,000) in 100 simulations, by
hiding inside islands formed by the third strain. Figure 13.6 shows the interaction
field at the end time step of one of the simulations.

This simulation result is consistent with experimental studies where it was
found that few strains dominate one habitat (McGill et al. 2007) and many others
are present in low numbers. A new study demonstrated that the presence of the
rare species is vital for the equilibrium of the community (Ren et al. 2014). Future
simulations will investigate the mechanisms that lead to this experimental result.
Moreover, we would like to be sure that this coexistence by small numbers is not a
mere artifact of the tight and uniform neighborhood structures we examined. In the
future we would like to examine models with more diverse neighborhood structures.

Our approach has three major limitations, which will be addressed in our future
research. Firstly, the models presented assume that the interactions of n microbial
species can be reduced to a binary matrix of size n�n. Although this may seem very
simplistic, the design of the model was motivated by previous experimental studies
that characterized communities of coexisting microbes in a similar fashion (the
results of those experimental studies were summarized in Table 13.1). Nevertheless,
with the advance of experimental techniques, we expect that the future experimental
characterizations of microbial communities will become more comprehensive and
thus will allow us to improve our models, with the addition of new parameters such
as, for example, the rate at which one type can kill another type. Secondly, the
study investigated the potential coexistence of 3, 4 and 5 different microbial species.
While this is informative, a future study should discuss coexistence of larger sets of
strains. Thirdly, our models assume that all individual population members remain
at fixed positions in space, while in reality the individuals move. We therefore wish
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to explore the effects of different mobility rules on coexistence and relate our models
to other studies on this aspect (c.f. Reichenbach et al. 2007; Avelino et al. 2012).

Even though we are using simple models, our results showing that higher
thresholds lead to higher rates of coexistence seem to be consistent with earlier
findings (Diggle et al. 2007; Henke and Bassler 2004; Shapiro et al. 1998) stating
that quorum sensing is a means of promoting coexistence among microbes.

Finally we would like to remark that all our simulations started from the
assumption that all strains were initially well mixed and in equal proportions.
Preliminary experiments suggest that having the strains clustered in patches
dramatically influences some strains’ ability to survive. In the future, we would
like to approach this problem in a more systematic way.
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Chapter 14
Computing ˛-Robust Equilibria in Two
Integrated Assessment Models for Climate
Change

Christopher Andrey, Olivier Bahn, and Alain Haurie

Abstract In this paper we show how to robustify the computation of equilibria in
two integrated assessment models for climate change. Both models deal with the
optimal timing of a transition to a ‘clean’ economy where a technology with low
emissions but high energy cost can be used in the production process. The game
represents the competition between industrialized and developing countries. A cost-
benefit approach is implemented with an economic loss factor that represents the
damages due to climate change. In the first model one assumes that both technolo-
gies, ‘dirty’ and ‘clean’ are available, but the economic loss factor is very uncertain.
In the second model one assumes that the ‘clean’ technology is not yet available and
some R&D investment must be made to get the technology breakthrough permitting
its penetration. In this second model, formulated in continuous time, the jump
rate of the controlled stochastic process describing the effect of R&D investment
on the probability of breakthrough, is also considered as very uncertain. In both
models we introduce a concept of ˛-robust equilibrium, where the robustification
is achieved through the use of ambiguous probability distributions with a Kullback-
Leibler divergence cost structure for the worst case choice by Nature.
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14.1 Introduction

Integrated assessment models (IAMs), like e.g. Bosetti et al. (2006), Gerlagh and
van der Zwaan (2003), Leimbach et al. (2010), Manne et al. (1995), Manne and
Richels (2005), Nordhaus and Boyer (2002), and Tol (2002a,b), combine a macroe-
conomic description of a production, investment, consumption, emission system
for a group of countries with a schematized representation of the carbon cycle
and resulting surface atmospheric temperature (SAT). An optimization approach,
typically a deterministic optimal control one, is used to perform a cost-benefit
analysis. The economic costs and benefits are evaluated through a utility function
applied to consumption, whereas the cost due to climate change are evaluated
through a damage function, linking the temperature change with a loss of economic
output. These models are used to provide a “social value of carbon” and to give an
indication of the optimal timing of abatement policies or of adaptation measures, as
in Bahn et al. (2012). Several controversies have developed (see Nordhaus 2007; Tol
2008; Stern 2006) about the validity of the scenarios and carbon values derived from
these models, motivated by the sensitivity of the models to the assumed value of key
parameters, which remain very uncertain. This is particularly the case for the pure
time preference rate, used to discount future utilities, and for the climate sensitivity
parameter. In a recent paper Pindyck (2013) has concluded that these models could
not be used to derive a correct social value for carbon. He has also advocated a cost
effectiveness approach rather than a cost benefit one, to cope with the possibility
of abrupt or catastrophic climate change. (Notice that Manne and Richels (1992)
had already adopted a cost effectiveness approach with random long term limits on
cumulative emissions to deal with an uncertain climate sensitivity.) In the same vein,
Lempert and Collins (2007) have proposed a “robust approach” in the use of climate
models. Babonneau et al. (2013) have implemented robust optimization technique
to deal with the uncertainty in a meta-modeling approach to climate negotiations.
In this game model cost effectiveness analysis was considered instead of the cost-
benefit analysis usually applied when a Nash equilibrium was to be computed in an
IAM as e.g. in Nordhaus and Yang (1996).

In this paper we propose the concept of ˛-robust equilibrium to deal directly with
the uncertainty plaguing multi-country noncooperative IAMs. We implement the
concept with a Kullback-Leibler divergence to measure the uncertainty deviation, in
order to robustify equilibrium solutions in a multi-country cost-benefit model. For
our demonstration we use two versions of an IAM already presented in Bahn and
Haurie (2008) and Bahn et al. (2010), respectively. In these models one distinguishes
between a ‘carbon’ and a ‘low-carbon’ economy. The first model is deterministic
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and we robustify the damage function, whereas the second model is stochastic
and we robustify the controlled jump rate which describes the access to the clean
technology as a breakthrough influenced by R&D investment.

The paper is organized as follows: in Sect. 14.2 we define the concept of
˛-robust equilibrium for a game described in its normal form, in Sect. 14.3 we adapt
an approach recently proposed in Li et al. (2014) to robustify the damage function
that drives the environmental game model proposed in Bahn and Haurie (2008); in
Sect. 14.4 we show how to use the stochastic control method developed by Todorov
(2009) to robustify the controlled jump rate in the stochastic game model proposed
in Bahn et al. (2010); in Sect. 14.5 we conclude with an interpretation of the robust
equilibrium solutions thus obtained. In this paper we focus on the technical game
theoretic aspects of the approach. The significance of robust game theory models
for climate change policy will be addressed in another paper.

14.2 Robust Equilibrium Concept

Consider an m-player game in normal form (Nash 1950) defined by the following
data:

Players j D 1; : : : ; m

Payoffs �j.uI �/; j D 1; : : : ; m

Controls u D .u1; : : : ; um/

uj 2 Uj; j D 1; : : : ; m:

� is an uncertain parameter taking value in a space � endowed with a pseudo-
metric, or in the case where � is a measure of probability, a divergence,1 denoted
k�k. This parameter has an a priori nominal value �0.

Definition 1. An ˛-robust equilibrium u? satisfies:

˚j.u?/ D max
uj2Uj

˚j.Œuj; u?�j�/; j D 1; : : : ; m (14.1)

where

˚j.u/ D �j.uI �?
j / (14.2)

and with

�?
j D argmin

�2�

f�j.uI �/ C ˛k� � �0kg; j D 1; : : : ; m (14.3)

1A divergence is a way to measure the distance between statistical distributions. Note that
divergences need not satisfy the triangle inequality nor be symmetric.
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We will consider in particular the case where � is a random variable and the
pseudo-metric is given by the Kullback-Leibler divergence.

Remark 1. The intuition on the use of ˛-robust equilibrium can be given as follows:
The parameter � is uncertain, so each player will consider a ‘worst case’, as if
‘Nature’ is a malevolent player trying to minimize the player’s payoff. However to
moderate the detrimental choice made by ‘Nature’ one assumes that there is a ‘cost’
for ‘Nature’ as the �?

j differs from the a priori nominal value �0. Changing the
weight ˛ given to this cost in the choice of ‘Nature’ one controls the risk aversion
for the players.

Remark 2. This definition of a robust equilibrium differs slightly from the one
proposed in Aghassi and Bertsimas (2006), which is directly derived from robust
optimization methods developed in Ben-Tal et al. (2009). Our definition is related
to the approach of Hansen and Sargent (2008) for robust macroeconomic modeling.

14.3 A Model with Two Players, Two Technologies
and Uncertain Damages

14.3.1 The Deterministic Model

The following indices and variables that enter in the description of the economic
model are gathered in Table 14.1.

Table 14.1 Indices and variables

Symbol Description

j Index of each of the m regions

t Running time (10 year periods)

C.j; t/ Total consumption in region j at time t, in trillions (1012) of dollars

Ii.j; t/ Investment in capital i in region j at time t, in trillions of dollars

Ki.j; t/ Physical stock of productive capital i of region j at time t, in trillions of
dollars

Li.j; t/ Part of the (exogenously defined) labor force L.j; t/ of region j allocated at
time t to economy i, in millions (106) of persons

Ei.j; t/ Yearly emissions of GHG (in Gt—109 tons—carbon equivalent) in the
economy i of region j at time t

Yi.j; t/ Economic output in the economy i of region j at time t, in trillions of dollars

M.t/ Atmospheric concentration of GHG at time t, in GtC equivalent

ELF.t/ Economic loss factor due to climate changes at time t, in %

WRG.j/ Discounted welfare of region j

W Total discounted welfare
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The economic description of each region j involves the following equations. First,
a social planner is assumed to maximize social welfare (WRG), given by the sum
over T 10-year periods of a discounted utility from available per capita consumption
with the discount rate dr:

WRG.j/ D
T�1X

tD0

10 dr.j; t/ L.j; t/ ln

�
ELF.t/ C.j; t/

L.j; t/

�

: (14.4)

Remark 3. Notice that we apply the economic loss factor ELF directly to consump-
tion C and not, as it is usually done, to the output Y . This is motivated by the
fact that we will soon consider this factor as a random variable, with ambiguous
distribution. Applying the economic loss on consumption allows us to keep an open-
loop formalism. Otherwise we would have been forced to introduce feedbacks as
player strategies and develop a stochastic game formalism, with all the difficulties
for implementing a numerical solution.

Total labor (L) is divided between labor allocated to the carbon economy (L1) and
labor allocated to the low-carbon economy (L2):

L.j; t/ D L1.j; t/ C L2.j; t/: (14.5)

Capital stock (Ki) evolves through investment (Ii) and a depreciation rate ıK as
follows:

Ki.j; t C 1/ D 10 Ii.j; t/ C .1 � ıK.j//10 Ki.j; t/ i D 1; 2: (14.6)

Economic output (Y) occurs in the two economies according to an extended Cobb-
Douglas production function in three inputs, capital (K), labor (L) and energy (which
use is measured through emission level E):

Y.j; t/ D A1.j; t/ K1.j; t/˛1.j/ .�1.j; t/ E1.j; t//�1.j;t/ L1.j; t/1�˛1.j/��1.j;t/

C A2.j; t/ K2.j; t/˛2.j/ .�2.j; t/ E2.j; t//�2.j;t/ L2.j; t/1�˛2.j/��2.j;t/ ; (14.7)

where Ai is the total factor productivity in the carbon (resp. low-carbon) economy
when i D 1 (resp. i D 2), ˛i is the elasticity of output with respect to capital Ki,
�i is the energy conversion factor for emissions Ei and �i is the elasticity of output
with respect to emissions Ei. Finally, economic output is used for consumption (C),
investment (I) and the payment of energy costs:

Y.j; t/ D C.j; t/CI1.j; t/CI2.j; t/C1.j; t/ �1.j; t/ E1.j; t/C2.j; t/ �2.j; t/ E2.j; t/; (14.8)

where i is the energy price in the carbon (resp. low-carbon) economy (when i D 1,
resp. i D 2).
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The simplified ‘climate module’ boils down here to computing the accumulation
M of GHG in the atmosphere:

M.t C 1/ D 10 ˇ

mX

jD1

.E1.j; t/ C E2.j; t// C .1 � ıM/ M.t/ C ıM Mp; (14.9)

where ˇ is the marginal atmospheric retention rate (the fraction of emissions
that remains in the atmosphere in the short run), ıM is the natural atmospheric
elimination rate (the rate of transfer from the atmosphere to the oceans) and Mp

is the preindustrial level of atmospheric concentration (Tables 14.2 and 14.3).

Table 14.2 Nash solution vs ˛-robust Nash solution

Nash ˛-Robust Nash

Period Region-1 Region-2 Region-1 Region-2

2005 0 0 0 0

2015 0 0 0 0

2025 0 0 0 117

2035 0 0 0 191

2045 0 190 0 251

2055 0 290 0 308

2065 0 363 101 366

2075 0 427 195 489

2085 0 492 223 554

2095 0 554 223 613

Table 14.3 Pareto solution vs ˛-robust Pareto solution

Pareto ˛-Robust Pareto

Period Region-1 Region-2 Region-1 Region-2

2005 0 0 0 0

2015 63 0 62 0

2025 95 0 95 116

2035 120 153 119 190

2045 143 239 142 249

2055 168 303 166 305

2065 194 363 192 362

2075 223 424 220 422

2085 253 287 250 484

2095 283 550 280 548
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14.3.2 Introducing Uncertainty in the Climate
Change Damages

Damages due to climate change are summarized by the economic loss factor
parameter ELF. These damages are uncertain. We shall assume that ELF is a
function of a random parameter, with an ambiguous probability distribution for this
random variable. More precisely:

Definition 2. ELF is defined by:

ELF.t/ D e� NM.t/� .t/; (14.10)

where, NM.t/ D M.t/ � M.1990/ and � .t/ is a random parameter that is a priori
distributed according to an exponential law with probability density function (pdf)
.	/ D �e��	 .

Remark 4. In most IAMs, the ELF is defined as a function of temperature change.
However, since this function is highly uncertain and since the temperature change is
induced by the change in concentration, it makes sense to consider that ELF depends
also in a highly uncertain manner on the evolution of GHG concentration, M.t/.

� can be interpreted as a random intensity of damages. For a given concentration
NM, when � increases, the ELF parameter decreases, so more losses are incurred.

The expected reward at time t is given by:

L.j; t/
Z 1

0

ln

�

e� NM.t/	 C.j; t/

L.j; t/

�

�e��	 d	 D L.j; t/ ln

�

e� NM.t/
�

C.j; t/

L.j; t/

�

: (14.11)

At each time t, the true distribution of the damage parameter � .t/ is ambiguous.
Let m.	/ D O.	/

.	/
be the likelihood ratio of the worst distribution w.r.t. the a priori

one. The K-L divergence between O.	/ and .	/, or relative entropy, is given by:

�. O.	/; .	// D
Z

�

Œm.	/ lnŒm.	/�� .	/ d	; (14.12)

where the integral is over the support of the random variable 	 .
In the characterization of an ˛-robust equilibrium, we will assume that each

player will consider the function m.�; t/ as a control used by a malevolent player
having the following criterion:

J.j/ D
T�1X

tD0

10 dr.j; t/ min
m.�;t/




L.j; t/
Z 1

0

�

m.	; t/ ln

�

e� NM.t/	 C.j; t/

L.j; t/

�

C˛ m.	; t/ lnŒm.	; t/�/ .	/ d	g ; (14.13)
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where the likelihood ratio control of nature is subject to the constraints:

0 � m.	.t/; t/ (14.14)

1 D
Z

m.	.t/; t/ .	.t// d	.t/: (14.15)

Writing the necessary optimality conditions (NOCs) for the minimizing m.�; t/,
we obtain:

0 D
Z

lnŒe� NM.t/	.t/ C.j; t/

L.j; t/
� C .˛.lnŒm.	.t/� C 1/ C �/.	.t// d	.t/; (14.16)

where � is a Lagrange multiplier associated with constraint (14.15). This yields to:

m?.	.t// D
exp

�

� lnŒe� NM.t/	.t/ C.j;t/
L.j;t/ �

˛

�

R
exp

�

� lnŒe� NM.t/	.t/ C.j;t/
L.j;t/ �

˛

�

.	.t// d	.t/
(14.17)

as a solution to the NOCs for a minimizing likelihood ratio.
Since:

exp

 

�
lnŒe� NM.t/	.t/ C.j;t/

L.j;t/ �

˛

!

D
�

e� NM.t/	.t/ C.j; t/

L.j; t/

��1
˛

; (14.18)

the second factor cancels when expressing m?.t/, which is thus given by:

m?.	; t/ D e
NM.t/
˛ 	

R1
0

e.
NM.t/
˛ ��/	 � d	

: (14.19)

We finally get:

?.	.t// D
�

� �
NM.t/

˛

�

e�
�

�� NM.t/ L.j;t/
˛

�

	.t/
: (14.20)

So the worst distribution is also an exponential law with intensity � � NM.t/
˛

, which
is well defined provided the parameter ˛ has been be chosen so that the expression
˛� � NM.t/ remains positive, that is:

˛ �
NM.t/

�
: (14.21)
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Remark 5. When ˛ ! 1, we keep the a priori distribution. When ˛ decreases, the
intensity tends also to decrease and the expected value for the intensity of damages
� tends to increase.

14.3.3 Robustified Payoffs and ˛-Robust Equilibrium

For a given ˛, we have characterized the worst distribution as an exponential law

with intensity � � NM.t/
˛

. Therefore, in accordance with Definition 1, the ˛-robust
equilibrium is the equilibrium computed with the robustified payoffs:

Z 1

0

ln

�

e� NM.t/	 C.j; t/

L.j; t/

�

�.	/ d	 D
Z 1

0

�

lnŒe� NM.t/	 � C ln

�
C.j; t/

L.j; t/

���

� �
NM.t/

˛

�

e�.�� NM.t/
˛ /	 d	: (14.22)

The first term is given by:

Z 1

0

� NM.t/	

�

� �
NM.t/

˛

�

e�.�� NM.t/
˛ /	 d	 D � ˛ NM.t/

˛� � NM.t/
; (14.23)

while the second term is lnŒ
C.j;t/
L.j;t/ �. So, the robust reward function is defined by

ln

�

e
� ˛ NM.t/

˛�� NM.t/

�

C ln

�
C.j; t/

L.j; t/

�

D ln

�

e
� ˛ NM.t/

˛�� NM.t/
C.j; t/

L.j; t/

�

(14.24)

The expected robust reward for Player j is then given by:

J.j; � I s0/ D
T�1X

tD0

10 dr.j; t/ L.j; t/ ln

�

e
� ˛ NM.t/

˛�� NM.t/
C.j; t/

L.j; t/

�

; (14.25)

whereas the minimized cost for nature is given by:

J.j; � I s0/ D
T�1X

tD0

10 dr.j; t/ L.j; t/




ln

�

e
� ˛ NM.t/

˛�� NM.t/
C.j; t/

L.j; t/

�

C˛

Z 1

0

m?.	; t/ lnŒm?.	; t/�.	/ d	

�

;
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with

˛

Z 1

0

m?.	; t/ lnŒm?.	; t/�.	/ d	 D

˛

�

ln

�

1 �
NM.t/ L.j; t/

˛ �

�

C
NM.t/

˛� � NM.t/

�

: (14.26)

14.3.4 Numerical Illustration

For this numerical illustration we use the same parameter values as in Bahn and
Haurie (2008) to show the effect of robustification on the equilibrium solution.
The world is divided into two regions: the first one (region j D 1) representing
the developed countries, the second region (j D 2) representing the developing
countries.

14.3.4.1 Numerical Results—Nash

We first compare the Nash equilibrium solution and the ˛-robust equilibrium,
looking more precisely at the accumulation of capital in the low-carbon economy
(variable K2).

Remark 6. We notice an important effect of the robustification on the equilibrium
solution. Capital accumulation in the low-carbon economy occurs much earlier for
both players.

14.3.4.2 Numerical Results—Pareto

Next, we do a similar comparison in the context of a Pareto equilibrium solution,
obtained when optimizing a weighted sum of the regional welfares with equal
weight given to each player. The next table reports again on the accumulation of
capital in the low-carbon economy.

Remark 7. We notice a much lower effect of the robustification on the Pareto
solution. Capital accumulation in the low-carbon economy is not much affected
by the robustification. This is probably due to the fact that the Pareto solution has
already reduced notably atmospheric GHG concentration and thus climate change
damages.
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14.4 Optimal R&D Investment in a Stochastic Continuous
Time Model

In this section we introduce robustification in the stochastic game model proposed
in Bahn et al. (2010). The key uncertainty considered in this model is the controlled
jump rate, which describes the probability of accessing to the clean, more efficient
technology. We use again K-L divergence in a formulation of the nature minimiza-
tion problem along the line of the general approach proposed by Todorov (2009) to
formulate and solve controlled Markov chains. The ˛-robust stochastic equilibrium
is formulated and a numerical illustration is provided.

14.4.1 A Continuous Time Framework

The dynamics is now represented by differential state equations:

PKi.j; t/ D Ii.j; t/ � ıiKi.j; t/; i D 1; 2; j D 1; : : : ; m;

PM D
mX

jD1

.E1.j; t/ C E2.j; t// � ıM .M.t/ � Mp/;

and the payoffs are given by random integrals

J.j/ D E

�Z 1

0

e��.j/tL.j; t/ ln

�

e� NM.t/
�

C.j; t/

L.j; t/

�

dtjK.0/; M.0/

�

; j D 1; : : : ; m;

where the expectations are taken with respect to the probability measure associated
with the stochastic jump process describing access to the clean technology.

Here again we consider a two-player game, i.e. we take m D 2.

14.4.2 Technological Breakthrough Dynamics

We assume that the technological breakthrough is driven by a stochastic jump
process with an uncertain jump rate.

Variable: To describe the access to the cleaner productive system a binary variable
� 2 f0; 1g is introduced which indicates if the clean technology is available
(� D 1) or not yet (� D 0).

Breakthrough dynamics: The initial value �.0/ D 0 indicates that there is no
access to the clean capital at the initial time. The switch to the value 1 occurs
at a random time which is controlled through the global accumulation of R&D
capital QK2 where:
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QK2.t/ D
2X

jD1

K2.j; t/: (14.27)

However this jump rate is uncertain. More precisely we assume that the elementary
probability of a breakthrough is given by

PŒ�.t C dt/ D 1j�.t/ D 0; QK2.t/� D �.t/ dt C o.dt/;

where

• �.t/ is a positive jump rate control that can be chosen by Nature with a K-L
running cost

˛

�

�.t/ ln

�
�.t/

qb.t; QK2.t//

�

C qb.t; QK2.t// � �.t/

�

: (14.28)

• where qb.t; QK2.t// D !b C �b QK2.t/ is the a priori nominal jump rate function,
where the parameters take the following values

!b : initial probability rate of discovery; !b D 0:05;
�b : slope w.r.t QK2.t/ of the probability rate of discovery; �b D 0:0019.

Remark 8. One can easily verify that the running cost defined in (14.28) is always
� 0 and attains its minimum, equal to 0, when �.t/ D qb.t; QK2.t//. It is directly
related to the K-L divergence for the elementary jump probabilities.

• Assume that the breakthrough jump occurs at time � . From time � onwards, the
carbon-free technology is available.

• At time � , for a given state s D .K; M/, a value function V.j; �; Nx/ is defined
as the current-valued payoff to Player j in the equilibrium solution to the robust
open-loop dynamic game defined as previously, but in a continuous time setting.
Here Nx refers to the initial values of all state variables, K1, K2 for all the players
and M.

The control problem that we assume to be solved by nature, is written as follows:

min
�.�/ E

�Z �

0

˛

�

�.t/ ln

�
�.t/

qb.t; QK2.t//

�

C qb.t; QK2.t// � �.t/

�

dt

CV.j; �; Nx.�// � V0.j; �; Nx.�//
�

(14.29)

s.t. state dynamics and jump stochastics. Here V.j; �; Nx.�// is the current valued
expected cost to go (or player-j’s payoff) from time � onward, when the new
technology is available (the jump has occurred). The function V0.j; �; Nx.�// is
current valued expected cost to go (or the player payoff) from time � onward, if
the new technology is never available (no jump can occur).
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Remark 9. This performance criterion used by Nature expresses the fact that the
jump rate, used by the players in the computation of an equilibrium, will be
determined in such a way that it reduces the payoff advantage given by an access
to the new technology, while not diverging too much from the nominal jump
rate function. This criterion for Nature is slightly different from the one used in
Definition 1 when introducing the ˛-equilibrium concept; however the general idea
is similar, Nature seeks to reduce the gains of the players.

14.4.3 Tenet of Transition and Optimal Control of Nature

The control problem that we assume to be solved by Nature is defined in (14.29).
Expliciting the probability density of the random jump time, and integrating by parts
leads to the deterministic equivalent control problem

min
�.�/

Z 1

0

e� R t
0 �.s/ ds

˚
�.t/.V.j; t; Nx.t// � V0.j; t; Nx.t///

C˛

�

�.t/ ln

�
�.t/

qb.t; QK2.t//

�

C qb.t; QK2.t// � �.t/

��

dt: (14.30)

Introduce the so-called desirability function z.j; t; Nx.t// D e� V.j;t;Nx.t//�V0.j;t;Nx.t//
˛ . Then

Eq. (14.30) becomes

min
�.�/

Z 1

0

e� R t
0 �.s/ ds˛

�

�.t/

�

� lnŒz.j; t; Nx.t//� C lnŒ
�.t/

qb.t; QK2.t//
�

�

Cqb.t; QK2.t// � �.t/
	

dt (14.31)

D min
�.�/

Z 1

0

e� R t
0 �.s/ ds˛

�

�.t/ lnŒ
�.t/

qb.t; QK2.t//z.j; t; Nx.t//
� C

qb.t; QK2.t// � �.t/
	

dt: (14.32)

As noticed in Remark 8 above, the minimum of the expression

�.t/ lnŒ
�.t/

qb.t; QK2.t//z.j; t; Nx.t//
� C qb.t; QK2.t//z.j; t; Nx.t// � �.t/

is equal to 0 when

�.t/ D qb.t; QK2.t//z.j; t; Nx.t// D qb.t; QK2.t// e� V.j;t;Nx.t//�V0.j;t;Nx.t//
˛ : (14.33)
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As the rest of the running cost does not depend on �.t/ this defines the optimal
control chosen by Nature.

Remark 10. Notice that the robustified jump rate is the a priori nominal jump rate
multiplied by a factor which depends on the cost-to-go or value function computed
for the after jump game equilibrium.

• When ˛ ! 1 then �.t/ ! qb.t; QK2.t//
• When ˛ ! 0 then �.t/ ! 0.

14.4.4 Computing an ˛-Robust Equilibrium

1. Solve, for an ensemble of initial states (space filling set) and times, the robustified
open-loop DG, when the new technology is available;

2. Adjust an analytical form to the set of cost-to-go and obtain an approximation of
V.j; t; Nx.t//;

3. Then solve the open-loop DG defined by the modified payoffs

V0.j; Nx0/ D max
u.j;�/

Z 1

0

e�.�.j/tCR t
0 qb.t; QK2.s// expŒ� V.j;s;Nx.t//�V0.j;s;Nx.t//

˛ � ds/

fL.j; t/ lnŒe� NM.t/	.t/ C.j; t/

L.j; t/
� C qb.t; QK2.t//

expŒ�V.j; t; Nx.t// � V0.j; t; Nx.t//

˛
�V.j; t; Nx.t//gdt (14.34)

s.t. the state equations.
4. Look at how the solution varies when ˛ decreases.

Remark 11. By adapting the results of previous section to a continuous time setting,
it is possible to combine both a robustification of ELF and a robustification of the
technology breakthrough rate.

14.4.5 Numerical Illustration

14.4.5.1 Parameters

We have run the model with the following parameter values:

Energy prices in carbon economy: 1.1/ D 0:35 1.2/ D 0:3;
Energy prices in carbon-free economy: 2.1/ D 0:75 1.2/ D 0:8;
Rate of social time preference: 3 %;
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Total factor productivity: Initial values Ai.j; t/ � 0:0302, initial growth rate
gAi.j; t/ � 0:1, rate of decrease of growth rate dgAi.j; t/ � 0:005

Capital elasticity in production function: ˛i.1/ � 0:3, ˛i.2/ � 0:35;
Annual capital depreciation rate: 10N %;
World population levels (in million): L.1; 0/ D 2205, L.2; 0/ D 4205, initial

growth rate gL.1; 0/ D 0:08, gL.2; 0/ D 0:08, rate of decrease of growth rate
dgL.1; t/ D 0:3, dgL.2; t/ D 0:3

Energy efficiency in carbon economy: �1.1; 0/ D 1:1 �1.2; 0/ D 0:9, initial
growth rate g�1.1; 0/ D 0:15, gL.2; 0/ D 0:15, rate of decrease of growth rate
dgL.1; t/ D 0:2, dgL.2; t/ D 0:2;

Energy efficiency in carbon-free economy: �2.1; 0/ D 3 �1.2; 0/ D 2:5, ini-
tial growth rate g�1.1; 0/ D 0:15, gL.2; 0/ D 0:15, rate of decrease of growth
rate dgL.1; t/ D 0:2, dgL.2; t/ D 0:2;

Energy elasticity in production function: �i.1; 0/ � 0:05, �i.2; 0/ � 0:05, initial
growth rate g�i.1; 0/ D �0:012, g�i D 0:012, rate of decrease of growth rate
dg�i.1; 0/ D �0:008, dg�i D 0:008, i D 1; 2;

Carbon concentration in 1990: 750;
K-L parameter for damage function: ˛1 D 1;
Expected value for random damage function parameter: � D 1250;
Initial values for capital stocks: K1.j; 0/ � 48:65, K2.j; 0/ � 0.

14.4.5.2 Effect of Robustification

We show below the accumulation paths for “dirty” K1.j; t/ and “clean” K2.j; t/
capital stocks when one varies the K-L coefficient ˛. Because of the orders of
magnitude of the value functions and the K-L divergence cost, the ˛ values must
be quite large.

14.4.5.3 Interpretation

A full exploitation of these numerical simulations will be the object of another paper.
The present one is dedicated to the description of the method. In the case under study
we have two regions in the world, with the same initial stock of “dirty” capital, i.e.
a carbon economy. However the population size is much larger in region 2, which
corresponds grossly to developing countries, whereas region 1 corresponds more or
less to industrialized countries. The clean capital stock is essentially used as an R&D
asset, which influences the probability of having access to a carbon-free economy.
Recall that the jump rate for a technological breakthrough is qb.t; QK2.t// D !b C
�b QK2.t/. In this numerical illustration we have chosen !b D 0 and �b D 0:1.

We see in Table 14.4 and Fig. 14.1, that for a “low” value ˛ D 900;000, the
pattern of investment in the R&D asset is higher than for the cases with “high” value
˛ D 9;000;000 or ˛ > 9;000;000. For these high values of ˛ the solution tends to
stabilize with a capital stock K2.2; t/ staying around 6 trillion $ for the developing
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Table 14.4 ˛ D 900;000

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095

K1.�; ; �/
Country 1 48:65 51:80 64:65 79:24 95:48 113:41 131:98 153:79 139:67 131:94

Country 2 48:65 68:20 78:76 97:14 119:92 146:40 176:26 208:80 243:37 166:53

K2.�; ; �/
Country 1 0:00 8:04 0:51 0:27 0:22 0:14 0:15 0:12 0:10 0:00

Country 2 0:00 0:41 8:16 9:04 9:34 9:58 9:43 9:14 8:77 7:42

Fig. 14.1 K1 and K2� ˛ D 900;000

Fig. 14.2 K1 and K2� ˛ D 9;000;000

Fig. 14.3 K1 and K2� ˛ D 90;000;000

countries and a much lower R&D capital stock K2.1; t/ for industrialized countries,
which, after an initial surge at 1.19 trillion $ is left declining (Figs. 14.2 and 14.3).

When ˛ D 900;000, i.e. for a low weight given to the K-L divergence cost,
the possible perturbation due to nature choice of a detrimental jump rate is more
important. Therefore in the ˛-robust equilibrium solution the R&D capital stock
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Table 14.5 ˛ D 9;000;000

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095

K1.�; ; �/
Country 1 48:65 56:19 67:96 82:45 92:36 98:37 107:70 118:18 115:60 120:84

Country 2 48:65 66:00 80:41 100:34 124:19 151:40 181:58 214:08 248:35 167:98

K2.�; ; �/
Country 1 0:00 3:65 0:66 0:39 0:29 0:18 0:19 0:15 0:12 0:00

Country 2 0:00 2:61 5:74 6:09 6:22 6:36 6:35 6:39 6:41 6:38

Table 14.6 ˛ > 90;000;000

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095

K1.�; ; �/
Country 1 48:65 58:64 69:20 83:13 92:52 98:57 107:84 118:08 115:72 120:65

Country 2 48:65 63:69 79:83 100:23 124:35 151:72 181:99 214:51 248:76 168:09

K2.�; ; �/
Country 1 0:00 1:19 0:68 0:52 0:42 0:26 0:27 0:20 0:16 0:00

Country 2 0:00 4:92 5:54 5:74 5:85 6:03 6:04 6:12 6:19 6:29

K2.2; t/ stays around 9 trillion $ for the developing countries and is still much lower
for industrialized countries, since K2.1; t/, after an initial surge at 8 trillion $ is left
declining (Tables 14.5 and 14.6).

14.5 Conclusion

In this paper we have shown how to introduce robustness in the computation of
Nash equilibrium solution for multi-country IAMs. Using the K-L divergence as a
cost to moderate the detrimental choice of a probability distribution by Nature, we
have been able to obtain closed form solutions for the robust payoffs of the players
in two versions of a multi-country IAM implementing cost-benefit analysis. The
numerical illustration provided shows that the robustification of the game has an
important influence on the solution. We advocate for the use of this robust game
theory approach or the more direct one developed in Aghassi and Bertsimas (2006)
in future analyses performed on multi-country IAMs. The clear advantage of the
˛-robust equilibrium with K-L divergence is that we can obtain closed form solution
for the minimization performed by Nature.
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Chapter 15
A Robust Noncooperative Meta-game
for Climate Negotiation in Europe

Frédéric Babonneau, Alain Haurie, and Marc Vielle

Abstract In this paper we define and solve a ‘robust game design’ problem that
could be used to assess the fair sharing of the abatement burden among the 28 EU
countries in their coming climate negotiations. The problem consists in finding a
distribution of a global ‘safety emission budget’ for the panning period 2010–2050,
among the 28 countries in such a way to obtain a balanced relative loss of welfare
(computed in percent of the discounted consumption in the reference case) when
the countries supply strategically their permit endowment on a permit trading
system with full banking and borrowing. We assume that the countries play a
noncooperative game, where the payoffs are constituted of the gains from the terms
of trade plus the gains in the permit trading and minus the abatement cost, expressed
as the compensative variation of income. These payoff functions are estimated
from an ensemble of numerical simulations of a detailed CGE model, GEMINI-
E3 representing the economic interactions among the 28 EU countries. To deal
with the uncertainty introduced by the statistical emulation technique we propose
to use the concept of robust equilibrium, where the results of robust optimization
are exploited in the definition of an equilibrium solution, when the payoff is subject
to uncertainties. A numerical illustration is performed and an interpretation of the
impact of the robustification approach on the solution of the game design problem
is provided.
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15.1 Introduction

In this paper we use a robust meta-game model to assess a fair burden sharing for
Greenhouse Gases (GHG) abatement among the 28 European Union (EU) countries.
The term ‘meta-game’ refers to the hierarchical structure of the game model and to
the use of statistical emulation of a large-scale Computable General Equilibrium
(CGE) model, GEMINI-E3 (Bernard and Vielle 2008), for the identification of
the payoff functions used in the game. The term ‘robust’ refers to the use of
the concept of robust optimization, to compute robust equilibrium, taking into
account the uncertainty resulting from the statistical emulation approach. This meta-
game approach has already been proposed, for a division of the whole world in
a few coalitions (four or five) in Drouet et al. (2008, 2010) and more recently
in Babonneau et al. (2013) and Haurie et al. (2013), where the robustification of
the game has also been proposed. The originality of the present application lies
in the consideration of a realistic context corresponding to the climate policy to be
decided by the EU, with 28 countries as players in the game. We will also evaluate in
more details the impact of robust equilibrium analysis on the solution of the burden
sharing problem.

In a companion paper (Babonneau et al. 2014), the economic aspects of our
approach are more fully developed and its implication for the assessment of the
climate policy adopted in Europe is discussed. The present paper is more technical.
Its focus is on the mathematical formulation of the robust game model, its resolution
and an evaluation of the impact of robustification on the solution of the burden
sharing problem that we present as a game design problem.

15.2 Fair Burden Sharing in EU Climate Policy

15.2.1 The Game Design Problem

We view the upcoming EU negotiation on climate as a ‘game design problem’.
More specifically one considers 2050 as the planning horizon and evaluates the
global effort from Europe as a whole in terms of a global cumulative emission
budget for the period 2010–2050, which we will call safety_budget. This global
budget will be distributed among the 28 countries. The EU has already implemented
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a market for a trading emission permits that is applied only to electricity generation
and energy intensive industries (Venmans 2012). We assume that the market will be
extended to all sectors including households and that full banking and borrowing
will be allowed. This means that the countries will have the possibility to supply
strategically over time their respective global allowances on the permit market in
order to optimize their payoff. The fair solution to the burden sharing problem will
consist in finding a repartition of the global safety budget among the 28 countries in
such a way that the payoffs received at equilibrium satisfy a Rawlsian criterion of
distributive justice (Rawls 1071). This is what we call a game design problem.

15.2.2 Relevance to EU Climate Negotiation

The declared EU goal is to limit to 2 ıC the global warming at the end of the century.
According to Matthews et al. (2009), this goal can be translated into a limit on
cumulative emissions budget of CO2. This requires an increase of the abatement
after 2020 and a worldwide reduction of 50 % of GHG emissions in 2050. In 2011
the European Commission has defined a roadmap to a low carbon economy in 2050
(European Commission 2011a). In this document the Commission reconfirmed the
EU objective of reducing European GHG emissions by 80 % in 2050 compared
to 1990 levels. A recent modelling analysis (European Commission 2011a) has
shown that the pathway to a low carbon society requires a 40 % reduction of GHG
emissions by 2030 and 60 % reduction by 2040, as displayed in Fig. 15.1. In the
following analysis on the design of EU climate agreements, we constraint European
countries to satisfy a global EU emissions budget for the period 2011–2050
compatible with the pathway associated to 80 % reduction by 2050. It corresponds
to a safety budget of 99 Gt CO2.

15.3 Definition of Robust Equilibrium in a m Player Game

The originality of our approach lies mainly in the use of a robust optimization
technique in the computation of the equilibrium in permit supply among the 28
EU countries. In this section we recall the definition and characterization of robust
equilibrium solutions in an m-player game.

15.3.1 From Nash Equilibrium to Robust Nash Equilibrium

We first recall the definition of a Nash equilibrium in a game in normal form (Nash
1950). The game is defined by:
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• a set of players j D f1; 2; : : : ; mg;
• a set of strategies Sj for each player j 2 M, where Sj � Rmj is convex;
• a set of payoffs �j.x/ W x 2 S D �m

iD1Si ! R, where we assume that �j.�/
is continuously differentiable and concave in xj 2 Sj and continuous in x�j D
.xi/i¤j.

Definition 1. A Nash equilibrium is a strategy m-tuple x? 2 S such that, for each
player j D 1; : : : ; m, the following holds

�j.x?/ D max
xj2Sj

�j.Œx?�j; xj�/; (15.1)

where Œx?�j; xj� is the strategy m-tuple obtained by replacing in x? the component
x?

j by xj.

If the strategy set of Player j is defined by a set of inequality constraints

Sj D ˚
xj 2 Rmj W hj.xj/ � 0

�
; (15.2)

where hj.�/ W Rmj ! Rpj is continuously differentiable and concave, and under
usual constraint qualification conditions, a Nash equilibrium is characterized by the
following first order conditions

rxj�j.x/ � �T
j

@

@xj
hj.xj/ D 0

hj.xj/ � 0

�j � 0

�T
j hj.xj/ D 0

j D 1; : : : ; m

Now we suppose that the payoff to Player j is rewritten 'j.x; �/, where 'j is
differentiable in xj and continuous in x and �j. Here �j is an uncertain parameter
which takes value in an uncertainty set �j which is supposed to be closed and
bounded. As proposed in Aghassi and Bertsimas (2006) we define the robust payoff
for Player j as the worst case function

��.x/ D min
�j2�j

'j.x; �j/: (15.3)

Definition 2. A robust equilibrium for the game defined by the uncertain payoffs
'j.x; �j/, is a Nash equilibrium for the game defined by the worst-case payoffs ��.x/.

Assume that 'j.x; �j/ has the following structure

'j.x; �j/ D N'j.x/
„ƒ‚…

C .PTx/T�j
„ ƒ‚ …

;

certain part uncertain part
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where N'j.x/ is the certain part of 'j and P is a matrix of appropriate dimension.
Assume also that the uncertainty set is ellipsoidal.

�j D f�j j jj�jjj2 � k2g;

Then one can apply a result of robust optimization theory [see Theorem 1 in
Babonneau and Apparigliato (2010)] to solve problem (15.3) and obtain

��.x/ D N'j.x; �j/ C kjj.PTx/jj2: (15.4)

A robust Nash equilibrium is thus characterized by the following first order
conditions

@

@xj
. N'j.x; �j/ C kjj.PTx/jj2/ � �T

j

@

@xj
hj.xj/ D 0

hj.xj/ � 0

�j � 0

�T
j hj.xj/ D 0

j D 1; : : : ; m

15.4 Mathematical Formulation of the EU Climate
Game Design Problem

In this section we give a mathematical formulation of the game design problem for
the EU 28 countries and we characterize the robust equilibrium solutions.

15.4.1 Variables and Parameters

Design Variables
�j, share of the safety emission budget given to player j.
These variables define the key element of the negotiations, namely the sharing of

the safety emission budget.

Strategic Variables
!j.t/, supply of quotas by player j during period t.
We assume that once an EU country has been given a share of the emission

budget, it can supply this global amount of quotas (emission rights) on the four
emissions trading markets organized in each of the four different decades of the
planning horizon. These supplies are strategic variables. They influence the carbon
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market, determining the price of carbon, then the emission levels chosen by each
country, and, finally, the transfers (buying and selling of permits) and the net surplus
variations.

Secondary (Passive) Variables
These are variables that will be computed from the values given to the strategic

variables. They will be used to describe the permits market functioning. The
abatements realized with respect to the business as usual (BAU) scenario are the
argument of the abatement cost and of the Gains from the Terms of Trade (GTT)
functions that have been identified through regression analysis of a sample of
GEMINI-E3 numerical simulations.

ej.t/: emission level for player j in period t;
qj.t/: abatement level for player j in period t;
p.t/: carbon price in period t;
ACj.t/: abatement cost for player j in period t;
MACj.t/: marginal abatement cost for player j in period t;
GTTj.t/: GTT for player j in period t;
�j: multiplier associated with the share of budget given to player j.

Parameters

safety_budget: global safety emission budget;
bcej.t/: BAU emissions for player j in period t;
ny.t/: number of years in period t;
n.t/: number of years in time interval Œ1; t�;
˛0

j .t/, ˛1
j .t/, ˛2

j .t/, ˛3
j .t/, ˛4

j .t/: coefficients in the abatement cost function;

0

j .t/, 
1
j .t/: coefficients in the gain from the terms of trade function;

ˇ: discount factor;
hcj: discounted household consumption in BAU over the planning horizon.

15.4.2 Payoffs and Constraints

Payoffs for the Game of Quotas Supply. We assume that the countries try to
minimize its discounted sum of surplus losses, denoted �Wj while taking into
account the strategic actions taken by the other players.

� Wj D
X

t

ˇn.t/ny.t/
˚
ACj.t/ � p.t/.!j.t/ � ej.t// � GTTj.t/

�
; (15.5)

is the discounted sum of the abatement cost, measured as the Compensative
Variation of Income (CVI), minus the GTT and the revenue from the permit trading
(can be negative). Equivalently we will define the payoffs Wj in terms of surplus
gains instead of losses.
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Optimality Criterion for the Game Design Problem. At the upper level where
one negotiates the sharing of the safety emissions budget, one will apply a criterion
of fairness inspired from the Rawlsian theory of justice:

z D max
�

min
j

W?
j

hcj
; (15.6)

where W?
j is the equilibrium payoff for the game designed by the choice of � and

hcj is the discounted sum of consumption in the BAU case. So we select the sharing
which, in the Nash equilibrium solution of the game of quotas supply, maximizes
the worst relative surplus gain among the players.

Constraints and Functions. They link the passive variables to the strategic
variables, define the cost and profit functions, limit the choices for the strategic
variables.

Shares of safety budget: The total supply of quotas by each player is equal to its
share of the safety budget:

X

t

!j.t/ D �j safety_budget: (15.7)

Lagrangian multipliers �j are associated to these constraints.
Price of carbon equal marginal abatement cost: In a competitive emission permits

market, each player will abate at a level where the price of permit equals the
marginal abatement cost:

p.t/ D MACj.t/; 8t; j: (15.8)

Permit market clears: In this market, the price is set at such a level that the total
emission equals the total supply of quotas:

X

j

!j.t/ D
X

j

ej.t/; 8t: (15.9)

Define emissions from abatements: One must compute abatement level to evaluate
abatement costs:

ej.t/ C qj.t/ D bcej.t/: (15.10)

Abatement cost: The abatement cost is a polynomial of degree 41 in the abatement
variable:

1Note that, as the second derivative of the AC appears in the mathematical game formulation, we
have thus imposed a convexity constraint on this second derivative in the regression model in order
to ensure the convexity of the overall problem. Moreover, polynomial forms of lower degree have
been tested but resulting in worse estimation quality.
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ACj.t/ D ˛1
j .t/ qj.t/ C ˛2

j qj.t/
2 C ˛3

j .t/ qj.t/
3 C ˛4

j .t/ qj.t/
4: (15.11)

Marginal abatement cost: The marginal abatement cost is obtained through deriva-
tion of the abatement cost:

MACj.t/ D ˛1
j .t/ C 2 ˛2

j .t/ qj.t/ C 3 ˛3
j .t/ qj.t/

2 C 4 ˛4
j .t/ qj.t/

3: (15.12)

Derivative of marginal abatement cost: One also needs to compute the derivative of
the marginal cost function:

DMACj.t/ D 2 ˛2
j .t/ C 6 ˛3

j .t/ qj.t/ C 12 ˛4
j .t/ qj.t/

2: (15.13)

Gains from the terms of trade: The GTT are expressed as a linear function of the
sum of the abatements decided by all the players:

GTTj.t/ D 
j.t/
X

i

qi.t/: (15.14)

15.4.3 Necessary Conditions for Equilibrium

Derivative of carbon price: The derivative of the market carbon price w.r.t. the
total supply !.t/ is given by [see Helm (2003)]:

DP.t/ D �1
P

j
1

DMACj.t/

: (15.15)

Pseudo-gradient of payoffs: The pseudo-gradient of the payoffs Wj w.r.t. the
strategic variables !j.t/ is given by

PSGRADj.t/ D �ˇn.t/ny.t/
˚
MACj.t/ � DP.t/ .!j.t/ � ej.t// � 
1

j .t/
�C �j:

(15.16)

First Order Conditions for a Nash Equilibrium. To compute a Nash equilibrium
one has to solve the following equations:

�j � 0

�j safety_budget �
X

�

!j.�/ � 0

�j .�j safety_budget �
X

�

!j.�// D 0

8j
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�PSGRADj.t/ � 0

!j.t/ � 0

!j.t/ PSGRADj.t/ D 0

8j; 8t:

15.4.4 Robustifying the Game Models

We now introduce robustness in the game analysis by applying robust optimization
techniques introduced in Ben-Tal et al. (2009) to approximation error of marginal
abatement cost function.

The reward function used for each period and each player is uncertain, since it
is obtained through statistical emulation of a large scale CGE model, GEMINI-E3.
In particular, as it will be shown in Sect. 15.5, we estimate in this way the avoided
abatement cost. In order to extract robust predictions from the game meta-model
we must robustify the marginal abatement cost (15.12) in which coefficients ˛i

j.t/
are estimated using a linear regression techniques as explained in Babonneau et al.
(2013). Let N̨ i

j.t/ be this estimate and Ǫ i
j.t/ be the estimate error, we describe the

uncertain coefficients as linear functions of an underlying random factor � t
j

˛i
j.t/ D N̨ i

j.t/ C � t
ij Ǫ i

j.t/

Let us consider an uncertainty set defined as follows

� t
j D f� W

4X

iD1

j� t
ijj2 � k2g:

Using robust optimization techniques sketched in Sect. 15.3, the worst case of the
marginal abatement cost function is given by

MACj.t/ D
4X

iD1

i N̨ i
j.t/ .qt

j/
i�1 C k

v
u
u
t

4X

iD1

.i Ǫ i
j.t/ .qt

j/
i�1/2:

Probabilistic Interpretation. The second component above corresponds to a
safety factor ensuring that the marginal abatement cost for all realizations of � within
the uncertainty set � t

j will be lower than the worst case MACj.t/. One can derive a

satisfaction probability for the marginal abatement cost to be lower than MACj.t/
for any realizations of � that depends on the radius k of the uncertainty set. This
probabilistic result is given in Theorem 1 below. This factor k plays a crucial role as
the larger its value, the greater the number of realizations � that are considered.
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Theorem 1 (From Ben-Tal et al. (2009) with Proof). Let �i, i D 1; : : : ; n be
independent random variables with values in interval Œ�1; 1� and with average zero:
E.�i/ D 0. If zi, i D 1; : : : ; n, are deterministic coefficients, we have for all k � 0

Prob




� j Pn
iD1 zi�i > k

qPn
iD1 z2

i

�

� exp.� k2

2:5
/:

Remark 1. The probabilistic interpretation given in Theorem 1 depends on the
support of the random variables, their expectation and their assumed independence.
No other assumption concerning the form of the probability distributions is made.

In the numerical experiment presented in Sect. 15.6, we use k D 3. This leads to a
97 % probability of satisfaction.

15.5 Implementation Issues

In this section we calibrate the robust dynamic game model, using the CGE
GEMINI-E3 as the provider of the data used in the estimation of the abatement
cost functions for each EU country. The GAMS implementation of the robust
formulation of the game is given in Appendix.

15.5.1 Estimation of the Abatement Cost Functions

GEMINI-E3, a CGE Model. GEMINI-E3 (Bernard and Vielle 2008) is a multi-
country, multi-sector, recursive CGE model comparable to the other CGE models
(EPPA, ENV-Linkage, etc.) built and implemented by other modeling teams and
institutions, and sharing the same long experience in the design of this class of
economic models. GEMINI-E3 has been extensively used to derive total costs
and benefits of various energy and climate policies. The GEMINI-E3 model is
now built on a comprehensive energy-economy dataset, the GTAP-8 database
(Narayanan et al. 2012). This database incorporates a consistent representation of
energy markets in physical units, social accounting matrices for each individualized
country/region, and the whole set of bilateral trade flows.

A Business as Usual Scenario. We build a BAU scenario on the period 2007–2050
with yearly timesteps. Assumptions on population and GDP are based on the recent
joint work of the Economic Policy Committee and the European Commission
(DG ECFIN) published in 2011 (European Commission 2011b). They suppose that
European GDP will grow by 1.6 % per year over the period 2010–2050. Evolution of
energy prices are based on assumptions on the current policies scenario of the World
Energy Outlook 2013 of the International Energy Agency (International Energy
Agency 2013). The oil price is assumed to reach 162$ in 2050, the price of imported
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Fig. 15.1 EU CO2 emissions in the BAU scenario (1990–2010: historical, 2011–2050: GEMINI-
E3 BAU scenario) and climate target in Mt CO2

gas in Europe is equal to 15.6$ per Mbtu in 2050, and the price of steam coal
imported in OECD countries reaches 125$ per ton in 2050.

Note that, in this BAU scenario, no climate policy is implemented, since it will
serve to evaluate the burden for each participating country of implementing the
European climate policy, considering 2050 target as well as existing 2020 objectives.
Associated CO2 emissions computed by GEMINI-E3 are presented in Fig. 15.1.
In 2050, total European CO2 emissions reaches 4625 MtCO2 corresponding to an
annual growth rate of 0.5 %. Our BAU is consistent with the “the no-policy baseline
scenario” performed within the EMF28 project (Knopf et al. 2013) where most of
the models suggest a more modest increase of CO2 emissions. Our emissions will
generate a cumulative emissions budget of 173 Gt CO2 over the period 2011–2050.

Statistical Analysis of a Sample of GEMINI-E3 Numerical Simulations. We
apply regression analysis to identify the payoff functions of a game where the strate-
gic variables are the quotas supplied on an EU emissions trading scheme by the
different regions, at different periods. The statistical analysis is based on a sample of
200 numerical simulations of different possible European climate policy scenarios
performed with GEMINI-E3. In each scenario, we assume that a carbon tax is
implemented at the European level without emissions trading. We suppose that only
carbon emissions are taxed. We compute for each group of countries:

• The abatement level relative to the BAU emissions (Net
j) expressed in million ton

of carbon; The abatement is thus defined by Net
j � et

j
• The welfare cost measured by the households’ surplus, and represented by the

CVI expressed in US $ (Bernard and Vielle 2003);
• The GTT representing the spill-over effects due to changes in international prices.

In a climate change policy these GTT come mainly from the drop in fossil energy
prices due to the decrease of world energy demand. The GTT are expressed
in US $.
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By subtracting the GTT from the surplus we obtain the deadweight loss of
taxation i.e. the domestic cost that would occur in a closed economy and which
only depends on the abatement done within the country. The GTT represents the
imported cost: negative for energy exporting countries such as OPEC and positive
for net energy importing countries like Europe and Japan (Böhringer and Rutherford
2002). This imported cost/benefit is function of the European carbon abatement.

Using regression analysis, we estimate the parameters ˛i
j.t/ of the abatement cost

function ACj.t/ given in (15.11) for player j and period t. The time periods (t) are
2020, 2030, 2040, 2050 with 10 years for each period.

The GTT of player j is assumed to be a linear function of the global abatement
in a given period

GTTj.t/ D 
j.t/
X

i

.Net
i � et

i/: (15.17)

These estimations serve to define the payoff functions introduced in the game of
Sect. 15.4.

15.6 Numerical Illustration

In this section we illustrate the potential impact of uncertain abatement costs when
one designs solutions using deterministic models. We first compute a deterministic
balanced equilibrium corresponding to an equilibrium solution where the welfare
losses, expressed in percent of total discounted consumption, are almost equal
among the 28 EU countries. This solution is simply obtained by using the
deterministic version of the game and by adjusting properly the weights �j until
a balanced equilibrium is reached. The balanced burden sharing and the welfare
losses are given in Table 15.1 in columns 2 and 3, respectively. We observe a total
EU welfare loss of 1.18 % of total discounted household consumption. The quotas
are concentrated among a limited number of countries, the top 5 represents 61 % of
the budget and the top 10 82 %. We find in the top 5 the largest European economy:
Germany, United Kingdom, France, Italy and Spain.

We then evaluate the welfare losses associated to this deterministic balanced
solution (column 2 of Table 15.1) using the robust version of the game that takes
into consideration the errors of meta-modelling observed in the calibration of the
coefficients ˛i

j.t/ in the abatement cost functions. Let � i
j .t/ be standard deviation

estimators computed from linear regression techniques associated to coefficients
˛i

j.t/, we assume variabilities Ǫ i
j.t/ D 2 � � i

j .t/. Column 4 of Table 15.1 shows
the results for k D 3. This corresponds to a confidence interval of 96 %. First
and as expected, the robust model yields a larger EU welfare loss (2.23 % of total
discounted household consumption). More importantly the deterministic burden
sharing does not anymore lead to a balanced solution (column 4 of Table 15.1).
Welfare losses now range from �0.25 to 6.41, with generally an increase of the
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Table 15.1 Deterministic vs. robust balanced burden sharing and associated deterministic and
robust welfare losses (in % of total discounted household consumption)

Burden sharing Welfare losses Burden sharing Welfare losses

Deterministic Deterministic Robust Robust Robust

Austria 1.85 1.04 2.20 1.85 2.20

Belgium 3.27 1.07 2.18 3.27 2.18

Bulgaria 0.83 1.07 1.55 0.82 2.26

Cyprus 0.42 0.98 6.23 0.46 2.28

Czech Republic 1.38 1.20 5.97 1.63 2.26

Germany 13.81 1.25 3.76 16.07 2.23

Denmark 1.85 1.05 2.46 1.88 2.22

Estonia 0.40 1.09 2.69 0.40 2.28

Finland 1.50 1.12 1.38 1.42 2.12

France 12.15 1.20 2.01 11.90 2.21

United Kingdom 14.82 1.20 1.27 13.30 2.26

Greece 5.05 1.19 6.41 5.75 2.28

Croatia 0.85 1.13 2.23 0.85 2.23

Hungary 1.30 1.01 1.55 1.25 2.21

Ireland 1.43 1.12 2.29 1.43 2.29

Italy 11.72 1.20 1.87 11.30 2.29

Latvia 0.30 1.15 3.54 0.32 2.23

Lithuania 0.30 1.23 3.66 0.33 2.26

Luxembourg 0.56 0.99 4.13 0.60 2.21

Malta 0.13 0.94 5.40 0.15 2.15

Netherlands 4.40 1.01 2.62 4.50 2.28

Poland 6.22 1.14 1.00 5.95 2.21

Portugal 1.50 1.06 1.92 1.47 2.22

Romania 1.93 1.12 �0.25 1.71 2.22

Spain 8.95 1.21 1.45 8.50 2.13

Slovak Republic 0.84 1.09 0.98 0.79 2.21

Slovenia 0.46 1.15 2.46 0.46 2.27

Sweden 1.79 1.25 1.43 1.65 2.18

EU-28 100.00 1.18 2.23 100.00 2.23

welfare loss. The countries which experience the worse degradation are Cyprus,
Greece, Malta, Czech Republic and Luxembourg. In contrary, only three countries
are in a better situation within the robust game: Slovak Republic, Poland and
Romania. Regarding the major economic areas, only Germany is significantly
impacted when considering the robust version. In the last two columns of Table 15.1
we display the robust balanced solution (burden sharing and welfare losses)
computed with the robust formulation. Of course the quotas are redistributed to
the benefit of countries whose welfare losses increase significantly, for example the
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Table 15.2 CO2 prices in $ per t
CO2

Deterministic Robust

2020 240 360

2030 391 586

2040 637 955

2050 1037 1554

budget allocated to Germany rises from 13.8 % to 16.1 %. But the hierarchy between
countries does not change significantly and we find in the tops 5 and 10 the same
countries.

Let us now observe CO2 prices associated to deterministic and robust solutions
and given in Table 15.2. For the deterministic solution, the CO2 price reaches 1037
US $ in 2050. This price is in the range of the carbon prices found in the AMPERE
(Capros et al. 2014) (243–824e/tCO2) and EMF28 (Weyant et al. 2013; Knopf et al.
2013) (240–1127e/tCO2) projects. When considering the uncertainties related to
the abatement cost functions the price in 2050 increases by 50 % and is equal to
1554 US $.

15.7 Conclusion

In this paper we have shown how a meta-game approach could provide an assess-
ment of the fair sharing of the abatement burden among the 28 countries negotiating
the EU climate policy with 2050 as an horizon. The game structure exploits the
existence of a permit trading market for the whole of EU, with full banking and
borrowing possibility. The countries payoff functions have been identified through
statistical emulation, based on an ensemble of 200 scenarios, of a detailed multi-
country CGE, GEMINI-E3. To cope with the uncertainty which is inherent of
this statistical emulation approach, we have proposed to use the notion of robust
equilibrium as a solution concept. We show that the 80 % reduction target can be
achieved with a significant but acceptable welfare losses at EU level. We see that
the robustification of the equilibrium concept has an important effect on the fair
sharing of the global safety emission budget and can significantly increase the cost
of the climate policy. Our results are in line with those computed from large-scale
economic models (Capros et al. 2014; Weyant et al. 2013; Knopf et al. 2013). The
proposed meta-Game approach, which results in a small and tractable robust model
could therefore be a useful tool to help in the definition of the next round of climate
negotiations.
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Appendix

GAMS Code of the Robust Game

We report below the GAMS implementation code of the robust formulation to the
game. This model is solved with the PATH solver (Ferris and Munson 2000).

sets
J PLAYERS
T PERIODS 2020 TO 2050
;

Table
EX(J,T) EXCHANGE RATES
GTT(J,T) GAINS FROM TERMS OF TRADE LINEAR TERM
EB(J,T) BAU emissions
A0(J,T) COEFF. CONST. MAC FUNCTION
A1(J,T) COEFF. LIN. MAC FUNCTION
A2(J,T) COEFF. QUAD. MAC FUNCTION
A3(J,T) COEFF. CUB. MAC FUNCTION
A1_var(J,T) VARIABILITY OF COEFF. LIN. MAC FUNCTION
A2_var(J,T) VARIABILITY OF COEFF. QUAD. MAC FUNCTION
A3_var(J,T) VARIABILITY OF COEFF. CUB. MAC FUNCTION
;

scalar
BUD GLOBAL EMISSION BUDGET
beta DISCOUNT FACTOR
;

parameter
BS(J) SHARES OF EM. BUDGET
;

positive variable
a(T,J) ALLOWANCES
e(T,J) EMISSION LEVELS
q(T,J) ABATEMENT LEVELS
P(T) PERMIT PRICES
nu(J) MULTIPLIER ALLOWANCE
;

variable
DAcost(T,J) MARGINAL ABATEMENT COSTS
DDAcost(T,J) SECOND DERIVATIVE ABATEMENT COST
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totA(T) TOTAL ALLOWANCES
totE(T) TOTAL EMISSIONS
cE CUMULATIVE EMISSIONS
dP(T) DIFF PRICE
dE(T,J) DIFF EMISS
TR(T,J) NET TRANSFERS
;

equations

* CHECK THAT THE SOLUTION USES THE BUDGET SHARE
BcumA(j).. BUD*BS(J)- (10*sum(T, a(T,J))) =g= 0;

* DEFINES TOTAL ALLOWANCES AT T
EtotA(T).. totA(T) - sum(J,a(T,J)) =e= 0;

* DEFINES TOTAL EMISSIONS
EtotE(T).. totE(T) - sum(J,e(T,J)) =e= 0;

* DEFINES EMISSIONS FROM ABATEMENT AT T
EQe(T,J).. -EB(J,T)+ e(T,J) + q(T,J) =e= 0;

* DEFINES TOTAL EMISSIONS
EQce.. cE =e= 10*sum(T, totE(T));

* DEFINES MAC
EQDAcost(T,J).. DAcost(T,J) - (A1(J,T)*q(T,J)+

A2(J,T)*q(T,J)**2+A3(J,T)*q(T,J)**3)/EX(J,T)
- k2*sqrt(abs(A1_var(J,T)*q(T,J))**2 +
abs(A2_var(J,T)*q(T,J)**2)**2 +abs(
A3_var(J,T)*q(T,J)**3)**2)/EX(J,T) =e= 0;

* DEFINES MINUS DERIVATIVE OF MAC
EDDAcost(T,J).. DDAcost(T,J)+(A1(J,T)+2*A2(J,T)

*q(T,J)+3*A3(J,T)*q(T,J)**2)/EX(J,T) + k2*(2*
abs(A1_var(J,T))**2*q(T,J)+4*abs(A2_var(J,T))**2

*q(T,J)**3 + 6*abs(A3_var(J,T))**2*q(T,J)**5)
/ (2*EX(J,T)*sqrt( abs(A1_var(J,T)*q(T,J))**2
+abs(A2_var(J,T)*q(T,J)**2)**2
+abs(A3_var(J,T)*q(T,J)**3)**2)) =e= 0;

* DEFINES DERIVATIVE OF MARKET PRICE WRT ALLOWANCE
EdP(T).. dP(T) - 1/sum(J,1/DDAcost(T,J)) =e= 0;

* DEFINES DERIVATIVE OF EMISSION WRT ALLOWANCE
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EdE(T,J).. dE(T,J) - 1/sum(I,DDAcost(T,J)
/DDAcost(T,I)) =e= 0;

* DEFINES PSEUDO-GRADIENT OF PAYOFFS W.R.T.

* ALLOWANCES, TAKING INTO ACCOUNT EFFECTS ON PRICES.
PSGRAD(T,J).. -(1+beta)**(-10*(ord(T)-1))

*(DAcost(T,J)
+ dP(T)*(a(T,J)-e(T,J)) - GTT(J,T))

+ Nu(J)

* (sqrt(var*sum(I,sum(TI,(10*a(TI,I))**2)))
+ a(T,J)*k*var)

=e= 0;

* MARKET CLEARS (TOTAL EMISSIONS EQUAL TOTAL

* ALLOWANCES AT T)
MARKETC(T).. totA(T)- totE(T) =e= 0;

* PRICE IS EQUAL TO MAC
MAXPRO(T,J).. DAcost(T,J) - P(T) =e= 0;

* TRANSFERS
TRANS(T,J).. TR(T,J)-P(T)*(a(T,J)-e(T,J)) =e= 0;

model robust-game
/
BcumA.Nu,
EtotA.totA,
EtotE.totE,
EQe.q,
EQce.cE,
EQDAcost.DAcost,
EDDAcost,
EdP.dP,
EdE.dE,
PSGRAD.a,
MARKETC.P,
MAXPRO.e,
TRANS.TR
/;

option mcp=path;
solve robust-game using mcp;
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