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An Introduction to Knowledge
Representation and Reasoning in Healthcare

Arjen Hommersom and Peter J.F. Lucas

2.1 Development of the Field

Healthcare andmedicine are, and have always been, very knowledge-intensive fields.
Healthcare professionals use knowledge of the structure (molecular biology, cell
biology, histology, gross anatomy) and functioning of the human body as well as
knowledge of methods and means, some of them described by clinical guidelines,
to diagnose and manage disorders. In addition, knowledge of how healthcare is
organised is essential for the management of a patient’s disease.

Already in the early days of research in artificial intelligence, researchers realised
that healthcare and medicine would be suitably challenging fields to drive the devel-
opment of knowledge representation and reasoning techniques. Quite a large number
of different systems were developed in those early days (cf. [23] for a description
of the most important early ideas and systems). Typically, researchers developed
their own representation methods guided by thoughts on how to handle a particu-
lar medical problem. An example of how thoughts on clinical problem solving and
computer-based knowledge representation can interact is the work by Pople [21] on
heuristic methods for medical diagnostic problem solving. The key idea here is that
one needs a kind of structure of the hypothesis space to guide the problem-solving
process. In a medical context this means that one needs taxonomic knowledge, i.e.
medical knowledge organised according to the principles of a subsumption taxon-
omy, and causal knowledge, i.e. knowledge that describes the world according to
cause-effect relationships. Pople also realised that disease manifestations and the
diseases themselves are linked to each other by a, possibly abstract, model of the
pathophysiology, and those play a different role in the problem-solving process. Even
in that early work it already clear that medicine is a semantically rich field, not only
concerned with different type of knowledge of different kind, coming from different
sources, but also used for different purposes.

The development of these early systems gave rise to the phrase knowledge-based
system, or knowledge system, which is generally employed to denote information
systems in which some symbolic representation of human knowledge of a domain
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is applied, usually in a way resembling human reasoning, to solve actual problems
in the domain. As this knowledge is often derived from experts in a particular field,
and early knowledge-based systems were actually developed in close collaboration
with experts, the term expert system was the term used in the early days to refer to
these systems. Knowledge, however, can also be extracted from literature, or from a
datasets by using machine-learning methods. At the time of writing, the terminology
of systems that employ formalised knowledge to solve problems is even less clear
than it was in the past. For this book this is of little concern, as the focus is on
knowledge representation and reasoning for different medical purposes.

Present generation knowledge-based systems are capable of dealing with signifi-
cant (medical) problem domains. Gathering, maintaining and updating the incorpo-
rated knowledge taking into account its associated context, such as working environ-
ment, organisation and field of expertise belongs to an area referred to as knowledge
management. The art of developing a knowledge-based system is called knowledge
engineering, when there is emphasis on the pragmatic engineering aspects, or knowl-
edge modelling, when development of domain models is emphasises. The latter is
strictly speaking part of the former. The process of collecting and analysing knowl-
edge in a problem domain is called knowledge acquisition, or knowledge elicitation
when the knowledge is gathered from interviews with experts, normally using inter-
view techniques as developed by psychologists.

Although the early papers on knowledge representation for biomedical problems
are still worth reading, there has been significant progress in the techniques, i.e.
languages and tools, that act as the basis for knowledge representation. In contrast
to the early work, there is now a solid understanding of the importance of logical
language to act as a basis for knowledge representation. At the same time, specialised
logical languages, such as decoration logics, havebeendeveloped to dealwith specific
knowledge representation and reasoning problems. There has also been a lot of
progress in the development of reasoning with uncertainty. Probabilistic graphical
models, and in particular Bayesian networks, have come into play since the 1990s as
a natural formalism to represent uncertain biomedical knowledge. Specific types of
non-monotonic reasoning have also emerged and proven their use in the biomedical
context. The theory of argumentation is a typical example. For specific biomedical
problems, such as problems that can be handled by clinical guidelines, there are now
languages and tools available to represent and to reason with the relevant knowledge.

In general, the significant progress in techniques for knowledge representation
and reasoning render it possible to develop knowledge systems of which the founda-
tions are well understood in such way that certainty (computational) properties are
guaranteed to be satisfied. Of course, capturing andmodelling biomedical knowledge
is still a significant challenge. However, with the techniques available nowadays, the
modelling is at least supported by sound methods and techniques.

In this chapter, we will review common knowledge representation formalisms in
artificial intelligence and link these to the healthcare field.
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2.2 Techniques for Knowledge Representation
and Reasoning

The knowledge-representation formalism and the types of reasoning supported are
of major importance for the development of knowledge-based systems. Logic, prob-
ability theory and decision theory are sufficiently general to permit describing the
nature of knowledge representation, inference and problem solving without having
to resort to special-purpose languages. In the next section, some of the general ideas
underlying knowledge representation are summarised and illustrated by means of
simple examples.

2.2.1 Horn-clause Logic

Knowledge-based systems usually offer a number of different ways to represent
knowledge in a domain, and to reason with this knowledge automatically to derive
conclusions. Although the languages offered by actual systems and tools may differ
in a number of ways, there are also many similarities. The aspects that the languages
have in common can be best understood in terms of a logical representation, as
accomplished below.

A Horn clause or rule is a logical implication of the following form

∀x1 · · · ∀xm((A1 ∧ · · · ∧ An) → B) (2.1)

where Ai , B are literals of the form P(t1, . . . , tq), i.e. without a negation sign, repre-
senting a relationship P between terms tk , whichmay involve one ormore universally
quantified variables x j , constants and terms involving function symbols. As all vari-
ables in rules are assumed to universally quantified, the universal quantifiers are often
omitted if this does not give rise to confusion. If n = 0, then the clause consists only
of a conclusion, which may be taken as a fact. If, on the other hand, the conclusion B
is empty, indicated by ⊥, the rule is also called a query. If the conditions of a query
are satisfied, this will give rise to a contradiction or inconsistency, denoted by ⊥, as
the conclusion is empty. So, an empty clause means actually inconsistency.

A popular method to reason with clauses, and Horn clauses in particular, is resolu-
tion. LetR be a set of rules not containing queries, and let Q ≡ (A1∧· · ·∧ An) → ⊥
be a query, then

R ∪ {Q} � ⊥

where � means the application of resolution, implies that the conditions

∀x1 · · · ∀xm(A1 ∧ · · · ∧ An)
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are not all satisfied. Since resolution is a sound inference rule,meaning that it respects
the logical meaning of clauses, it also holds that R ∪ {Q} � ⊥, or equivalently

R � ∃x1 · · · ∃xm(A1 ∧ · · · ∧ An)

if R only consists of Horn clauses. This last interpretation explains why deriving
inconsistency is normally not really the goal of using resolution; rather, the purpose
is to derive certain facts. Since resolution is only complete for deriving inconsistency,
called refutation completeness, it is only safe to ‘derive’ knowledge in this indirect
manner. There exist other reasoningmethods which do not have this limitation. How-
ever, resolution is a simple method that is understood in considerable depth. As a
consequence, state-of-the-art resolution-based reasoners are very efficient. Resolu-
tion can also be used with clauses in general, which are logical expressions of the
form

(A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm)

usually represented as:

¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Rules of the form (2.1) are particularly popular as the reasoning with proposi-
tional Horn clauses is known to be possible in linear time, whereas reasoning with
propositions or clauses in general (where the right-hand side consists of disjunctions
of literals) is known to be NP-complete, i.e. may require time exponential in the
size of the clauses. Note that allowing negative literals at the left-hand side of a rule
is equivalent to having disjunctions at the right-hand side. Using a logical language
that is more expressive than Horn-clause logic is sometimes unavoidable, and special
techniques have been introduced to deal with their additional power.

Using logic to represent (medical) knowledge gives rise to a knowledge base that
is sometimes called object knowledge.

Let KB be a knowledge base consisting of a set (conjunction) of rules, and let F
be a set of facts observed for a particular problem P , then there are generally three
ways in which a problem can be solved, yielding different types of solutions. The
formalisation of problem solving gives rise to knowledge that is sometimes called
meta knowledge. LetP be a problem, then there are different classes of solutions to
this problem:

• Deductive solution: S is a deductive solution of a problemP with associated set
of observed findings F iff

KB ∪ F � S (2.2)

and KB ∪ F � ⊥, where S is a set of solution formulae.
• Abductive/inductive solution: S is an abductive solution of a problem P with
associated set of observed findings F iff the following covering condition
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KB ∪ S ∪ K � F (2.3)

is satisfied, where K stands for contextual knowledge. In addition, it must hold that
KB ∪ S ∪ C � ⊥ (consistency condition), where C is a set of logical constraints
on solutions. For the abductive case, it is assumed that the knowledge base KB
contains a logical representation of causal knowledge and S consists of facts; for
the inductive case, KB consists of background facts and S, called an inductive
solution, consists of rules.

• Consistency-based solution: S is a consistency-based solution of a problem P
with associated set of observed findings F iff

KB ∪ S ∪ F � ⊥ (2.4)

Note that a deductive solution is a consistent conclusion that follows from a knowl-
edge base KB and a set of facts, whereas an abductive solution acts as a hypothesis
that explains observed facts in terms of causal knowledge, i.e. cause-effect relation-
ships. An inductive solution also explains observed facts, but in terms of any other
type of knowledge. A consistency-based solution is the weakest kind of solution, as
it is neither required to be concluded nor is it required to explain observed findings.

2.2.2 Objects, Attributes and Values

Even though facts or observed findings can be represented in many different ways,
in many systems facts are represented in an object-oriented fashion. This means that
facts are described as properties, or attributes, of objects in the real world. Attributes
of objects can be either multivalued, meaning that an object may have more than
one of those properties at the same time, or singlevalued, meaning that values of
attributes are mutually exclusive.

In logic, multivalued attributes are represented by predicate symbols, e.g.:

Parent(John,Ann) ∧ Parent(John,Derek)

indicates that the ‘object’ John, representedas a constant, has twoparents (the attribute
‘Parent’): Ann and Derek, both represented by constants. Furthermore, singlevalued
attributes are represented as function symbols, e.g.

gender(John) = male

Here, ‘gender’ is taken as a singlevalued attribute, ‘John’ is again a constant object,
and ‘male’ is the value, also represented as a constant.

It is, of course, also possible to state general properties of objects. For example,
the following bi-implication:
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∀x∀y∀z((Parent(x, y) ∧ Parent(y, z)) ↔ Grandparent(x, z))

defines the attribute ‘Grandparent’ in terms of the ‘Parent’ attribute.
Another typical example of reasoning about properties of objects is inheritance

[2]. Here one wishes to associate properties of objects with the classes the objects
belong to, mainly because this yields a compact representation offering in addition
insight into the general structure of a problem domain. Consider, for example, the
following knowledge base KB:

∀x(Mammal(x) → Endotherm(x))

∀x(Human(x) → Mammal(x))

∀x(Human(x) → number-of-chromosomes(x) = 46)

Clearly, it holds that

KB ∪ {Human(John)} � number-of-chromosomes(John) = 46

as the third rule expresses that as a typical property of humans. However, the knowl-
edge base also incorporates more general properties of humans, such as:

KB ∪ {Human(John)} � Mammal(John)

Now, given the fact that a human is a mammal, we can now also conclude

KB ∪ {Human(John)} � Endotherm(John)

The example knowledge base discussed above can also be represented as a graph,
called an object taxonomy, and is shown in Fig. 2.1. Here ellipses indicate either
classes of objects (Human and Mammal) or specific objects (John). Solid arcs in the
graph indicate that a class of objects is a subclass of another class of objects; a dashed
arc indicates that the parent object is an element – often the term ‘instance’ is used
instead – of the associated class of objects. The term ‘inheritance’ that is associated
with this type of logical reasoning derives from the fact that the reasoning goes from
the children to the parents in order to derive properties.

2.2.3 Description Logics

Describing the objects in a domain, usually but not always in a way resembling a
taxonomy, usuallywith the intention to obtain a formal description of the terminology
in a domain, is known as an ontology. Instead of describing these properties in
standard first-order logic, it is common nowadays to use specialised description
logics for that purpose and in particular OWL, the Web Ontology Language [13,
16], is being used for that purpose.
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Fig. 2.1 An object taxonomy.

There are two primary ways in which knowledge is being described using OWL:

1. by combining concepts using Boolean operators, such as � (conjunction), and 
(disjunction);

2. by defining relationships between concepts (whether primitive or obtained by
combining primitive concepts) using the subsumption relation � (also called
general concept inclusion – GCI).

Thus, a concept description is constructed from

• primitive concepts C , e.g., Disease, � (most general), ⊥ (empty);
• primitive roles r , e.g., hasSymptom;
• conjunctions �, e.g., Cardiac_Disease � Cerebral_Disease;
• disjunctions , e.g., Hepatitis  Cirrhosis;
• a complement ¬, e.g., ¬Hepatitis;
• a value restriction ∀r.C , e.g., ∀causes.Fever;
• an existential restriction ∃r.C , e.g., ∃likelyFatal.Metastasis.

All understood in terms of (groups of) individuals and properties of individuals.
For example, by

Hepatitis  Cirrhosis

we have combined two concepts, but we have not established how they are related
to each other. By writing:

Hepatitis � LiverDisease
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we have established a relationship between the concepts ‘Hepatitis’ and ‘LiverDis-
ease’, where the first is less or equally general than the latter. By combining two
subsumption relations, it is possible to define a new concept:

Metastatic_Cancer � Cancer � ∃hasMetastasis.Tumour_Tissue

and
Cancer � ∃hasMetastasis.Tumour_Tissue � Metastatic_Cancer

is abbreviated to

Metastatic_Cancer ≡ Cancer � ∃hasMetastasis.Tumour_Tissue

Note that an expression such as ∃hasMetastasis.Tumour_Tissue is also a concept:
the role hasMetastasis establishes a relationship between an instance of the concept
Tumour_Tissue (the tumour discovered at a distance from the original cancer) and
all concepts that participate in the role, which are then intersected with the concept
‘Cancer’, yielding a definition of ‘Metastatic_Cancer’.

General descriptions of a domain form, what is called, the TBox (Terminology
Box). In a sense, the TBox restricts the terminology we are allowed to use when
describing a domain. The actual domain is described by means of assertions, which
together form the ABox (Assertion Box).

2.2.4 Temporal Logics

As soon we wish to model the execution of actions in biomedicine, we need to
incorporate time into our knowledge-representation formalism, and thus also when
it is based on logic.

Several temporal logics have been developed, in particular tense logics since the
1960s. Differences between logics result from different models of time and expres-
siveness. In linear temporal logics (e.g., Linear Temporal Logic (LTL) [19]), models
form a linear trace, while in branching logics models typically (e.g., Computation
Tree Logic (CTL) [1, 5, 10]) form a tree.

In LTL, propositional logic is extended with several temporal operators. The
temporal operators used are X, G, F, and U. With Xϕ being true if ϕ holds in the
next state, Gϕ if ϕ holds in the current state and all future states, Fϕ if ϕ holds in
the current state or some state in the future, and ϕUψ if ϕ holds until eventually ψ

holds.
For example:

G(Human → Mammal)

expresses that it is always the case that humans aremammals. To specify themortality
of humans, one could model this with a rule such as:
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G(Human → FDeath)

Note the subtle difference with a logical rule such as the following:

Human → FDeath

which states that only the humans existing at this moment are mortal; this does not
specify that those born in the future are mortal. One could even be slightly more
precise and specify that humans remain human at least until they die:

G(HumanUDeath)

Of course, reasoning with temporal knowledge is supported as well. One can
derive for example that:

G(HumanUDeath),Human |= FDeath

In contrast to LTL, CTL provides operators for describing events along a multiple
computation paths (possible futures), and is therefore sometimes referred to as a
‘branching’ temporal logic. The path quantifiersA andE, which are always combined
with one of the LTL operators, are used to specify that all or some of the paths starting
at a specific state have some property. While LTL formulas describe all possible
futures, in CTL we may describe what happens in some or all of the possible futures.

For example, the specify that cancer may lead to metastatic cancer, but at the same
time be optimistic that there is a possibility that does not does not occur, one could
write the following rules:

AG(Cancer → EF Metastatic_Cancer)
AG(Cancer → EG ¬Metastatic_Cancer)

Automatic reasoning methods for temporal logics have been developed, although
reasoning with temporal logic is a hard problem (for example, checking satisfiability
and entailment for LTL is PSPACE-complete). One practical method is to look upon
temporal logics as first-order formula with a quantification over the temporal states,
i.e., each predicates has an additional argument that models the state (and path for
CTL) in which the predicate holds. Temporal quantification can then be mapped to
ordinary first-order quantification. For example:

Gp ≡ ∀t p(t)

Reasoning methods for first-order logic can then directly be applied to reason about
temporal logics, for example, resolution.
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2.3 Problem-Solving Methods

Using formalisations of medical knowledge to solve problems can be seen as a form
of meta-level reasoning, as discussed in Sect. 2.2.1. In the section on probabilistic
logic, we already saw a form of meta-level reasoning with uncertaint knowledge.
Just to illustrate the idea, we discuss various examples of diagnostic reasoning. In
addition, treatment planning— one of the aspects of guideline execution— is briefly
sketched.

2.3.1 Diagnostic Problem Solving

Above, the general features of knowledge representation and inferencewere sketched.
Most of the insight that has been gained in the field, however, concerns particular
methods with associated knowledge to handle classes of problems. As said above,
inference or reasoning methods can be used to implement problem-solving methods.
A typical example is the diagnosis of disorders in patients or faults in equipment by
diagnostic methods. Many different methods have been developed for that purpose.
Three well-known diagnostic methods with their associated types of knowledge will
be discussed in the following.

2.3.1.1 Deductive Diagnosis

Most of the early knowledge-based systems, including MYCIN [3], were based on
expert knowledge concerning the relationships among classes expressed by rules.
In the reasoning process these rules were subsequently used to classify cases into
categories. This problem-solvingmethod is known as heuristic classification, asmost
of the knowledge encoded in the rules is empirical or heuristic in nature rather than
based on first principles [4]. The form of the rules is:

(c1 ∧ · · · ∧ ck∧ ∼ ck+1 ∧ · · · ∧ ∼ cn) → c

where ci is either a condition on input data or on a subclass. The rules are generalised
rules, as conditions may be prefixed by a special negation sign ∼, called negation
by absence. It represents a special case of the closed-world assumption (CWA); a
condition∼ ci only succeeds if there is at least one finding concerning the associated
attribute. Formally:

∼ A(o, v) ≡ ∃x(A(o, x) ∧ x �= v)

for object o and value v, where o and v are constants. If the attribute A represents
a measurement or test, then negation by absence checks whether the test has been
carried out, yielding a result different from the one specified.
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Consider the following toy medical knowledge base KB:

∀x((Symptom(x, coughing)∧ ∼ Symptom(x, chest-pain) ∧ Sign(x, fever))

→ Disorder(x, flu))

∀x((temp(x) > 38) → Sign(x, fever))

Then it holds that:

KB∪{temp(John) = 39,Symptom(John, coughing)}�NADisorder(John, coughing)

using negation by absence (NA). Note that Sign(John, fever) is true, and may be
viewed as a classification of the finding temp(John) = 39; ∼ Symptom(John,
chest-pain) holds due to negation by absence. Both rules in the knowledge base
KB above are examples of heuristic classification rules.

2.3.1.2 Abductive Diagnosis

In abductive diagnosis, use is made of causal knowledge to diagnose a disorder in
medicine or to determine faults in amalfunctioning device [6, 18, 20]. Causal knowl-
edge can be represented in many ways, but a rather convenient and straight-forward
way to represent causal knowledge is by taking logical implication as standing for
the causal relationship. Thus, rules of the form:

d1 ∧ · · · ∧ dn → f (2.5)

d1 ∧ · · · ∧ dn → d (2.6)

are obtained, where di stands for a condition concerning a defective component or
disorder; the conjunctions in (2.5) and (2.6) indicate that these conditions interact
to either cause observable finding f or another abnormal condition d as effect.
Sometimes uncertainty is added, usually represented in a non-numerical way as an
assumption α:

d1 ∧ · · · ∧ dn ∧ α f → f (2.7)

d1 ∧ · · · ∧ dn ∧ αd → d (2.8)

The literals α may be either assumed to be true or false, meaning that f and d
are a possible, but not necessary, consequences of the simultaneous occurrence of
d1, . . . , dn .

An abductive diagnosis S is now simply an abductive solution, where literals in
S are restricted to di ’s and α’s. The contextual knowledge may be extra conditions
on rules which cannot be derived, but must be assumed and may act to model con-
ditional causality. For simplicity’s sake it is assumed here that K is empty. The set
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of constraints C may for instance consist of those findings f which have not been
observed, and are assumed to be absent, i.e. ¬ f is assumed to hold.

Consider, for example, the causal model with set of defects and assumptions:

Δ = {fever, influenza, sport, α1, α2}

and observable findings

Φ = {chills, thirst, myalgia,¬chills,¬thirst,¬myalgia}

‘Myalgia’ means painful muscles. The following knowledge base KB contains med-
ical knowledge concerning influenza and sport, both ‘disorders’ with frequent oc-
currence:

fever ∧ α1 → chills

influenza → fever

fever → thirst

influenza ∧ α2 → myalgia

sport → myalgia

For example, influenza ∧ α2 → myalgia means that influenza may cause myal-
gia; influenza → fever means that influenza always causes fever. For illustrative
purposes, a causal knowledge base as given above is often depicted as a labelled,
directed graph G, which is called a causal net, as shown in Fig. 2.2. Suppose that the
abductive diagnostic problem with set of facts

F = {thirst, myalgia}

must be solved. As constraints we take C = {¬chills}. There are several solutions to
this abductive diagnostic problem (forwhich the consistency and covering conditions
are fulfilled):

Fig. 2.2 A knowledge base with causal relations.
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S1 = {influenza, α2}
S2 = {influenza, sport}
S3 = {fever, sport}
S4 = {fever, influenza, α2}
S5 = {influenza, α2, sport}
S6 = {fever, influenza, sport}
S7 = {fever, influenza, α2, sport}

Note that S = {α1, α2, fever, influenza} is incompatible with the constraints C .

2.3.1.3 Consistency-Based Diagnosis

In consistency-based diagnosis, in contrast to abductive diagnosis, the malfunction-
ing of a system is diagnosed by using mainly knowledge of the normal structure and
normal behaviour of its components [8, 11, 22]. For each component COMP j its
normal behaviour is described by logical implications of the following form:

∀x((COMP j (x) ∧ ¬Ab(x)) → Behaviour j (x))

The literal ¬Ab(x) expresses that the behaviour associated with the component only
holdswhen the assumption that the component is not abnormal, i.e.¬Ab(c), is true for
component c. Sometimes knowledge of abnormal behaviour is added to implications
of the form above, having the form:

∀x((COMP j (x) ∧ Ab(x)) → Behaviour j (x))

Thesemay result in a reduction in the number of possible diagnoses to be considered.
Logical behaviour descriptions of the form discussed above are part of a system
description. In addition to the generic descriptions of the expected behaviour of
components, a system description also includes logical specifications of how the
components are connected to each other (the structure of the system), and the names
of the components constituting the system. The system description is now taken as
the knowledge base KB of a system. Problem solving basically amounts to adopting
particular assumptions about every COMP j (c), either whether Ab(c) is true or false.
This sort of reasoning is called assumption-based or hypothetical reasoning.

In medicine, a component may be one of the organs or structures that are part
of a physiological system. For example, for the cardiovascular system the ‘blood’
might be one of the components. As for the cardiovascular system it is the blood
volume that affects its physiology, we will take ‘blood volume’ as a component in
the medical example below. We will describe how a description of cardiovascular
physiology can be employed in diagnosis (cf. [9] for details).
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The following logical implications give the steady-state equations of the cardio-
vascular system, i.e. when the system is stable:

¬Ab(CRsys) → ΔPsys = CO · Rsys

¬Ab(CBV) → Pv = BV/VC

¬Ab(CVC) → Pv = BV/VC

¬Ab(CPv
) → ΔPv = VR · Rv

Here, the following abbreviations are used:

• Rsys: the systemic resistance of the cardiovascular system;
• ΔPsys: the difference between arterial and venous pressure;
• CO: the cardiac output (volume of blood per minute pumped out of the heart);
• Pv: the venous pressure;
• BV: blood volume;
• VC: venous compliance (the elastic force of the vessel wall against increased
internal volume);

• VR: venous return (volume of blood per minute returned to the heart); it is equal
to CO;

• Rv: venous resistance.

With CX is indicated the corresponding component X that can be malfunctioning,
Ab(CX ). Any disturbance of the steady state may violate any of the equations in the
right-hand sides of the implications above. In this case, the set of potential ‘faulty’
components is:

COMPS = {CRsys , CBV, CVC, CPv
}

The cardiovascular system is controlled in suchway that changes in its parameters
are compensated automatically by changes in other parameters, leading to homeosta-
tis. The following equation describes, for example, how the blood-pressure regulator
(baroreceptor system) reacts to a change in arterial blood pressure (Pa) by changing
the systemic resistance:

Rsys = −0.17Pa + 34 (2.9)

Now, assume that a patient gets kidney damage. This will lead to water retention, and
thus the blood volume increases. In turn increased blood volume will lead to increase
of arterial pressure Pa . The barorecepter system will through Eq. (2.9) compensate
for the increased arterial pressure through decrease in systemic resistance Rsys.

Let us assume that the following measurements are made in a patient:

F = {Pa = 160mmHg, Pv = 15mmHg,CO = 7 l/min},

thus, ΔPsys = 160 − 15 = 145mmHg. Rsys = 6.8mmHG min/l is the predicted
effect of the regulatory baroreceptor mechanism using Eq. (2.9). Clearly, the steady-
state equation for the systemic resistance is violated:
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ΔPsys = 145 �= CO · Rsys = 7 · 6.8 = 47.6

This indicates that the system is malfunctioning. This can also be verified by
noting that when assuming all components to behave normally, i.e. S = {¬Ab(c)|c ∈
COMPS}, it follows that

KB ∪ S ∪ F
is inconsistent.

Diagnosing the problem simply consists of assuming particular components to
be abnormal (Ab(c) is true for those components), and checking whether the result
is still inconsistent. If it is not, a diagnosis has been found. So, a consistency-based
diagnosis is a consistency-based solution S consisting of a conjunction of Ab literals,
one for every component.

Consider again the example above. Here,

S = {Ab(CRsys),Ab(CBV),¬Ab(CVC),¬Ab(CPv
)}

is a consistency-based diagnosis as

KB ∪ S ∪ F � ⊥

Note that Rsys and BV are, thus, possibly faulty, as assuming them to be abnormal
yield no output for this components. There are other solutions as well, such as

S′ = {Ab(CRsys),¬Ab(CBV),Ab(CVC),¬Ab(CPv
)}

2.3.2 Treatment Planning

Asmedical management is a time-oriented process, diagnostic and treatment actions
described in guidelines are performed in a temporal setting. It is assumed that two
types of knowledge are involved in detecting the violation of good medical practice:

• Knowledge concerning the (patho)physiological mechanisms underlying the dis-
ease, and theway treatment influences thesemechanisms. The knowledge involved
could be causal in nature, and is an example of object-knowledge.

• Knowledgeconcerninggoodpractice in treatmentselection; this ismeta-knowledge.

Below we present some ideas on how such knowledge may be formalised using
temporal logic (cf. [15] for early work).

We are interested in the prescription of drugs, taking into account their mode
of action. Abstracting from the dynamics of their pharmacokinetics, this can be
formalised in logic as follows:

(G d ∧ r) → G(m1 ∧ · · · ∧ mn)
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where d is the name of a drug or possibly of a group of drugs indicated by a predicate
symbol (e.g. SU(x), where x is universally quantified and ‘SU’ stands for sulfony-
lurea drugs, such as Tolbutamid, which are prescribed in diabetes mellitus type 2),
r is a (possibly negative or empty) requirement for the drug to take effect, and mk is
a mode of action, such as decrease of release of glucose from the liver, which holds
at all future times.

The modes of action mk can be combined, together with an intention n (achieving
normoglycaemia, i.e. normal blood glucose levels, for example), a particular patient
condition c, and requirements r j for the modes of action to be effective:

(Gmi1 ∧ · · · ∧ Gmim ∧ r1 ∧ · · · ∧ rp ∧ Hc) → Gn

Good practice medicine can then be formalised as follows. Let B be background
knowledge, T ⊆ {d1, . . . , dp} be a set of drugs, C a collection of patient conditions,
R a collection of requirements, and N a collection of intentions which the physician
has to achieve. A set of drugs T is a treatment according to the theory of abductive
reasoning if [20]:

(1) B ∪ GT ∪ C ∪ R � ⊥ (the drugs do not have contradictory effects), and
(2) B ∪ GT ∪ C ∪ R � N (the drugs handle all the patient problems intended to be

managed)

If in addition to (1) and (2) condition

(3) Oϕ(T ) holds,where Oϕ is ameta-predicate standing for an optimality criterion or
combinationof optimality criteriaϕ, then the treatment is said to be in accordance
with good-practice medicine.

A typical example of this is subset minimality O⊂:

O⊂(T ) ≡ ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2)

i.e. the minimum number of effective drugs are being prescribed. For example, if
{d1, d2, d3} is a treatment that satisfies condition (3) in addition to (1) and (2), then
the subsets {d1, d2}, {d2, d3}, {d1}, and so on, do not satisfy conditions (1) and (2).
In the context of abductive reasoning, subset minimality is often used in order to
distinguish between various solutions; it is also referred to in literature as Occam’s
razor. Another definition of the meta-predicate Oϕ is in terms of minimal cost Oc:

Oc(T ) ≡ ∀T ′,with T ′ a treatment: c(T ′) ≥ c(T )

where c(T ) = ∑
d∈T cost(d); combining the two definitions also makes sense. For

example, one could come upwith a definition of O⊂,c that among two subset-minimal
treatments selects the one that is the cheapest in financial or ethical sense.
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2.4 Reasoning with Uncertainty

Uncertainty is another essential aspects of much medical knowledge and data. Here
again, there has been a lot of research in artificial intelligence.

2.4.1 Bayesian Networks

Up until now, it has been assumed that in representing and solving a problem in a
domain dealing with uncertainty is not of major importance. As this does not hold
for many problems, the possibility to represent and reason with the uncertainty asso-
ciated with a problem is clearly of significance. There have been a number of early
attempts where researchers have augmented rule-based, logical methods with uncer-
tainty methods, usually different from probability theory, although sometimes also
related. However, those methods are now outdated, and have been replaced by meth-
ods which take probability theory as a starting point. In the context of knowledge-
based systems, in particular the formalism of Bayesian (belief) networks has been
successful [7, 12, 14, 17].

ABayesian belief network B = (G,Pr), also called causal probabilistic network,
is a directed acyclic graph G = (V (G), A(G)), consisting of a set of nodes V (G) =
{V1, . . . , Vn}, called probabilistic nodes, representing discrete random variables, and
a set of arcs A(G) ⊆ V (G)×V (G), representing causal relationships or correlations
among random variables. Consider Fig. 2.3, which shows a simplified version of a
Bayesian belief network modelling some of the relevant variables in the diagnosis of
two causes of fever. The presence of an arc between two nodes denotes the existence
of a direct causal relationship or other influences; absence of an arc means that the
variables donot influence eachother directly. The followingknowledge is represented
in Fig. 2.3: variable ‘fl’ is expressed to influence ‘my’ and ‘fe’, as it is known that
flu causes myalgia (muscle pain) and fever. In turn, fever causes a change in body
temperature, represented by the random variable temp. Finally, pneumonia (pn) is
another cause of fever.

Associated with a Bayesian belief network is a joint probability distribution Pr,
defined in terms of conditional probability tables according to the structure of the
graph. For example, for Fig. 2.3, the conditional probability table

Pr(fe | fl, pn)

has been assessed with respect to all possible values of the variables fe, fl and
pn. In general, the graph associated with a Bayesian belief network mirrors the (in)
dependences that are assumed to hold among variables in a domain. For example,
given knowledge about presence or absence of fever, neither additional knowledge
of flu nor of pneumonia is able to influence the knowledge about body temperature,
since it holds that temp is conditionally independent of both pn and fl given fe.
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Fig. 2.3 Bayesian network B = (G,Pr) with associated joint probability distribution Pr (only
probabilities Pr(X = y | π(X)) are shown, as Pr(X = n | π(X)) = 1 − Pr(X = y | π(X))).

For a joint probability distribution defined in accordance with the structure of a
Bayesian network, it, therefore, holds that:

Pr(V1, . . . , Vn) =
n∏

i=1

Pr(Vi | π(Vi ))

where Vi denotes a random variable associated with an identically named node, and
π(Vi ) denotes the parents of that node. As a consequence, the amount of probabilistic
information that must be specified, exponential in the number of variables in general
when ignoring the independencies represented in the graph, is greatly reduced.

By means of special algorithms for probabilistic reasoning – well-known are the
algorithms by Pearl [17] and by Lauritzen and Spiegelhalter [14] – themarginal prob-
ability distribution Pr(Vi ) for every variable in the network can be computed; this
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is shown for the fever network in Fig. 2.4. In addition, a once constructed Bayesian
belief network can be employed to enter and process data of a specific case, i.e. spe-
cific values for certain variables, like temp, yielding an updated network. Figure2.5
shows the updated Bayesian network after entering evidence about a patient’s body
temperature into the network shown in Fig. 2.3. Entering evidence in a network is
also referred to as instantiating the network. The resulting probability distribution
of the updated network, PrE (Vi ), which is a marginal probability distribution of
the probability distribution PrE , is equal to the posterior of the original probability
distribution of the same variable, conditioned on the evidence E entered into the
network:

PrE (Vi ) = Pr(Vi | E)

Bayesian belief networks have also been related to logic by so called probabilistic
Horn clauses. This formalism offers basically nothing else then a recipe to obtain
a logical specification of a Bayesian belief network. Reasoning with probabilistic
Horn clauses is accomplished by logical abduction; the axioms of probability theory
are used to compute an updated probability distribution.

Fig. 2.4 Prior marginal probability distributions for the Bayesian belief network shown in Fig. 2.3.

Fig. 2.5 Posterior marginal probability distributions for the Bayesian belief network after entering
evidence concerning body temperature. Note the increase in probabilities of the presence of both
flu and pneumonia compared to Fig. 2.4. It is also predicted that it is likely for the patient to have
myalgia.
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2.4.2 Probabilistic Logic

There have been different recent proposals in the AI literature to combine logic
and probability theory, where usually predicate logic is combined with probabilistic
graphical models. David Poole has developed so-called independent choice logic
(which later was integrated into AIlog). It combined Prolog-like logic with Bayesian
networks. Another approach, developed by Williamson et al. makes use of credal
networks, which are similar to Bayesian networks but reason over probability inter-
vals instead of probabilities. The last few years Markov logic has had an enormous
impact on the research area. The idea is to use predicate logic to generateMarkov net-
works, i.e., joint probability distributions that have an associated undirected graph.
Formalisms such as independent choice logic andMarkov logic are examples of what
is called probabilistic logic.

Various probabilistic logics, such as the independent choice logic, are based on
logical abduction. The basic idea of these kind of logics is to define the probability of a
query in terms of the probability of its explanations (sometimes called a prediction in
theory of logical abduction) of a certain query (cf. Sect. 4.5) given a logic program.
Probability of the explanations are defined by a very simple distribution, namely
by a set of independent random variables, which makes it possible to (relatively)
efficiently compute a probability. The nice thing about this approach is that it truly
combines logical reasoning (finding the explanations) with probabilistic reasoning
(computing the probability of the set of explanations).

Defining the probability distributions over the explanations is done by associating
probabilities to hypotheses in a setΔ. In order tomake sure thatwe end upwith a valid
probability distribution, we require a partitioning of this set into subsetsΔ1, . . . , Δn ,
i.e., such that it holds that:

n⋃

i=1

Δi = Δ

and Δi ∩ Δ j = ∅ for all i �= j . Each possible grounding of Δi , i.e. Δiσ with σ a
substitution, is associated to a random variable Xi,σ , i.e., dom(Xi,σ ) = Δiσ . While
you could imagine that every random variable is different, here we will assume that
every grounding of h ∈ Δ has to have the same probability, i.e., for all substitutions
σ, σ ′:

P(Xi,σ = hσ) = P(Xi,σ ′ = hσ ′)

whereas each pair of random variables as we have just defined is assumed to be inde-
pendent, the hypotheses in the same partition are dependent. Suppose for example,
we have a random variable X with three possible hypotheses:

dom(X) = {influenza, sport, not_sport_or_influenza}

In each possible state (element of the sample space), each random variable is exactly
in one state at the time, i.e., in this case, we assume that we either have influenza,

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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or we sport, or neither, but we do not sport while we have influenza. In other words:
sport and influenza are considered to be inconsistent.

To understand the space of explanations that we may consider is by picking a
possible value for each random variable. In the language of the independent choice
logic, this is called a choice (hence, the name). In order to make this work probabilis-
tically, we need some slight restrictions on our logic program. First, it is not allowed
to have two hypotheses in Δ that unify. Further, it is not allowed that an element
from Δ unifies with a head of one of the clauses. Finally, mostly for convenience
here, we will restrict ourselves to acyclic logic programs consisting of Horn clauses
and substitutions that can be made using the constants in the program.

The probability distribution overΔ is now used to define a probability for arbitrary
atoms. As mentioned earlier, this will be defined in terms of explanations, which are
slightly different than we have seen before due to the probabilistic semantics. Given
a causal specification Σ = (Δ,Φ,R), a (probabilistic) explanation E ⊆ Δσ for
some formula F ∈ Φ is:

R ∪ E |= F
R ∪ C ∪ E �|= ⊥

where

C = {⊥ ← h1, h2 | Δi is one of the partitions of Δ, h1, h2 ∈ Δi }

and Δσ grounded. Note that the consistency condition entails that we only pick at
most one value for each random variable. The intuitive assumption that is now being
made is that an atom is true if and only if at least one of its (grounded) explanations
is true. Suppose E (F) is the set of all explanations for F , then we define:

F =
∨

Ei ∈E (F)

Ei

Notice that this definition is equivalent to assuming Clarke’s completion of the given
theory (cf. Sect. 4.3.1).

Recall that an explanation E is calledminimal if there does not exist an explanation
E ′ such that E ′ ⊂ E . It is not difficult to see that we can restrict our attention to
the set of minimal explanations Em(F): by logical reasoning it holds that, if E ′ ⊂ E
then E ′ ∨ E = E ′, so it can be shown that E (F) = Em(F). We then have:

F =
∨

Ei ∈Em (F)

Ei

Again, there is a close connection to the semantics of abduction, as
∨

Ei ∈Em (F) Ei

is sometimes referred to as the solution formula. Of course, if two things are equal,
then their probability must be equal:

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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P(F) = P(
∨

Ei ∈Em (F)

Ei )

It is now clear how we can solve the problem of computing the probability of F : first
we find the (minimal) explanations of F and then we use the probability distribution
defined over the hypotheses to compute the disjunction of the explanations.

Consider the causal specification Σ = (Δ,Φ,R), with

Δ = {influenza, sport, not_sport_or_influenza, α1, not_α1, α2, not_α2}

and
Φ = {chills, thirst, myalgia}

and the set of logical formulae R as presented in Fig. 2.2.
First we need to define a probability distribution over Δ. For example, we may

assume to have three independent random variables X , Y , Z , such that:

P(X = sport) = 0.3
P(X = influenza) = 0.1
P(X = not_sport_or_influenza) = 0.6
P(Y = α1) = 0.9
P(Y = not_α1) = 0.1
P(Z = α2) = 0.7
P(Z = not_α2) = 0.3

Note that explanations containing e.g., sport and influenza are inconsistent with this
probability distribution, as X can only take the value of one of them (they aremutually
exclusive).

Suppose we have interested in the probability of myalgia, i.e., P(myalgia). The
set of all minimal explanations for myalgia, i.e., Em(myalgia) is {E1, E2}, where:

E1 = {influenza, α2}
E2 = {sport}

Clearly, there are many more explanations, e.g.,

E3 = {influenza, sport, α2}
E4 = {influenza, α1, α2}
E5 = {influenza, not_α1, α2}

...
...

Note that for example, the set:
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E ′ = {influenza, α1, not_α1, α2}

is inconsistent, because α1 and not_α1 cannot both be true. Therefore, it is not an
explanation.

Since we assumed that a formula is true if only if at least one of its explanations
is true, the probability of myalgia is defined it terms of influenza and sport:

P(myalgia) = P((influenza ∧ α2) ∨ sport)

Since influenza∧α2 and sport are mutually exclusive, the probability of the disjunc-
tion is the sum of the disjuncts, i.e.:

P(myalgia) = P(influenza ∧ α2) + P(sport)
= P(influenza)P(α2) + P(sport)
= 0.1 · 0.7 + 0.3 = 0.37

2.5 Conclusions

In this introductory chapter we have briefly reviewed the most important languages
for knowledge representation as using in medicine. It is not possible given the scope
of this chapter to be complete, but since logic and probability theory act as the core
of the majority of the modern work on knowledge representation, this introduction
will at least pinpoint the most important ideas.
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