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Abstract Computer Interpretable Guidelines (CIGs) are assuming a major role in
the medical area, in order to enhance the quality of medical assistance by providing
physicianswith evidence-based recommendations. However, the complexity of CIGs
(which may contain hundreds of related clinical activities) demands for a verification
process, aimed at assuring that a CIG satisfies several different types of properties
(e.g., verification of the CIG correctness with respect to several criteria). Verification
is a demanding task, which may be enhanced through the adoption of advanced
Artificial Intelligence techniques. In this paper, we propose a general and hybrid
approach to address such a task, suggesting that, given the heterogeneous character
of the knowledge inCIGs, different formsof verification shouldbe supported, through
the adoption of proper (and different) methodologies.

19.1 Introduction

Clinical Practice Guidelines (CPGs) can be defined as a means for specifying the
“best” clinical procedures and for standardizing them. The adoption of CPGs, by
supportingphysicians in their decisionmaking anddiagnosing activities,mayprovide
crucial advantages, both in individualized health care, and in the overall service
offered by a health care organization. In particular, it has been shown [35] that CPGs
can improve the quality of patient care, reduce variations in quality of care, and
reduce costs. These observations justify the increasing number of CPGs which have
been defined in the last decade, covering a large spectrum of diseases and medical
procedures. Given the relevance of this phenomenon, in the last two decades a lot of
efforts has been devoted in order to provided formal representations of guidelines,
that can be treated by computer systems (usually called Computer Interpretable
Guidelines CIGs for short). Many approaches have focused on the development of
guideline representation formalisms, and/or systems to acquire, store and execute
CIGs. However, the effort in defining and disseminating CIGs has not always been
coupled by a parallel effort in guaranteeing their “quality” [45]: despite the fact that
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CPGs and/or CIGs are issued by recognized experts’ committees, they might be
ambiguous or incomplete [32], or even inconsistent. The need for guideline quality
verification is thus clearly emerging. As we will show in this paper, computer-based
approaches can provide crucial advantages in this context.

In particular, in this paperwe suggest that, given the heterogeneous character of the
knowledge contained in CIGs, different forms of verifications should be supported,
demanding for an hybrid approach in which different representation formalisms are
used (to properly capture different types of knowledge) and different methodologies
are devised (to properly reason with the different formalisms). In particular, in this
paper, we focus on three different forms of verification:

1. verification that the temporal constraints in a CIG are consistent, through
constraint-based temporal reasoning techniques;

2. verification of different medical properties of a CIG (e.g., its capability of coping
with a given type of patients, or to support specific types of treatments), through
model checking;

3. verification of probabilistic properties of a CIG in the context of a probabilistic
knowledge base, through probabilistic modelling.

19.2 Representing and Reasoning with Temporal
Constraints

Representing and reasoning with temporal constraints is an essential feature for
computer-based approaches to clinical guidelines. In particular, a temporal manager
coping with time-related issues can be exploited in different ways in themanagement
of clinical guidelines. For instance, during the acquisition of a new guideline, the
consistency of the temporal constraints it contains can be automatically checked;
during the execution of a guideline on a specific patient, the temporal manager can
be used to check whether the specific actions have been executed in such a way that
the constraints in the guideline have been respected, or to determine the times when
the next actions need to be executed. However, although many domain-independent
temporalmanagers havebeendevisedwithin theArtificial Intelligence (AI) literature,
and several approaches to time-related issues have been faced within the clinical
guideline literature, several new challenges have to be addressed when dealing with
temporal representation and temporal reasoning about clinical guidelines.

19.2.1 Desiderata for a CIG Temporal Reasoner

As inmostAI approaches to the treatment of time, also in the context ofCIGswemust
take into account the fundamental trade-off between the expressiveness of temporal
formalisms and the computational complexity of the correct and complete temporal
reasoning algorithms operating on them.
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While expressiveness is an obvious desideratum, we will now briefly motivate the
second term of the above trade-off: correctness, completeness, and tractability. First,
it is important to stress that a formalism for temporal constraints is not very useful if it
is not paired with algorithms for temporal reasoning, performing temporal inferences
on a set of constraints (expressed in the given formalism) and/or checking their
consistency. Consider, for instance, a Knowledge Base KB containing the temporal
constraints (i) and (ii) among three events A, B and C.

K B = {(i) A before B; (ii) B before C}

The constraint (iii) A before C can be inferred because it is logically implied by
(i) and (ii), so that, given KB, one can correctly assert (iii), but not (iv) A after
C, which is actually inconsistent with KB. In other words, the set of constraints
K B ′ = {(i), (i i), (iv)} cannot be satisfied. Temporal reasoning is necessary in order
to support such an intended semantics. With no temporal reasoning, a CIG may
contain the above set of temporal constraints, and thus be not executable (since there
is no way of satisfying the constraints).

Of course, temporal reasoning algorithms are computationally expensive. An
important desideratum is tractability, i.e., the fact that the running time of the algo-
rithms grows as a fixed power of the number of the actions and/or constraints in the
knowledge base (i.e., in polynomial time).

However, temporal reasoning algorithms should also be correct, i.e., such that
they only infer constraints that are logically implied by the initial set of constraints
(in fact, correctness grants that no wrong inference is made). Completeness (i.e.,
the fact that all logically implied constraints are actually inferred) is a fundamental
desideratum aswell, since it is essential in order to grant that the system’s answers are
fully reliable (e.g., if (i i i) is not inferred from {(i), (i i)}, the answer to the question
“Is (iv) consistent with {(i), (i i)}?” may be yes).

In particular, as in most AI approaches, the main task of our temporal reasoning
algorithms is that of checking the consistency of temporal constraints in a guideline.
In fact, real-world guidelines usually consist of hundreds of actions, often related
by temporal constraints. This means that: (i) the fact that hundreds of constraints
are mutually consistent cannot be taken for granted and (ii) consistency checking
cannot be directly performed by physicians (and/or by a knowledge engineer), since
making explicit all the possible implications of such a large number of constraints is
an overwhelming and too complex task.

19.2.1.1 Dealing with Temporal Constraints in Clinical Guidelines:
New Challenges and Open Problems

Despite the large amount of valuable works, there still seems to be a gap between
the range of phenomena covered by current AI constraint-based approaches and
the needs arising from clinical guidelines management. In essence, while many AI
approaches to temporal constraints are focused on the treatment of a specific type of
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constraints only (e.g., qualitative temporal constraints), in the CIG context several
different issues and types of constraints need to be taken into account:

(i) qualitative (e.g., ‘at the same time’) and quantitative (e.g., at least ten days after)
constraints between actions;

(ii) repeated/periodic events (and constraints between them);
(iii) all the above types of constraints may be imprecise and/or partially defined;
(iv) temporal constraints involved by part-of relations between actions in the CIGs
(v) the distinction between (temporal constraints between) classes of actions (e.g.,

an action in a general guideline) and instances of such actions.

As regards issue (iv), notice that most CIG formalisms support multiple levels of
abstraction, through the definition of composite actions, and the specification of their
components. However, part-of decomposition involves temporal constraints, since
each composite action temporally contains its components. Finally, issue (v) points
out that actions in CIGs can be conceived as classes of actions, which admit multiple
instantiations, whereas CIGs are applied to specific patients. This involves the treat-
ment of some form of temporal constraint inheritance from classes to instances. As a
real example of the temporal complexity of the CIG domain, consider Example19.1
(which is a simplified part of a guideline about multiple myeloma).

Example 19.1. The therapy for multiple myeloma is made by six cycles of 5-day
treatment, each one followed by a delay of 23days (for a total time of 24weeks).
Within each cycle of 5days, 2 inner cycles can be distinguished: the melphalan
treatment, to be provided twice a day, for each of the 5days, and the prednisone
treatment, to be provided once a day, for each of the 5days. These two treatments
must be performed in parallel.

Temporal constraints such as the ones in Example19.1 are challenging for the
constraint-based formalisms developed within the AI literature.

Obviously, the interplay between issues (i)–(v) needs to be dealt with, too. For
example, the interaction between composite and periodic events might be complex
to represent and manage. In fact, in the case of a composite periodic event, the tem-
poral pattern regards the components, which may, recursively, be composite and/or
periodic events. For instance, consider Example19.1. The instances of the melpha-
lan treatment must respect the temporal pattern “twice a day, for 5days”, but such
a pattern must be repeated for six cycles, each one followed by a delay of 23days,
since the melphalan treatment is part of the general therapy for multiple myeloma.

While someof the above issues have been treated in an ad-hocway in the literature,
in our approach we aim at devising a general module coping in an integrated way
with all of them. The temporal knowledge server will act as an independent module
and the temporal problems in different clinical guidelines will be delegated to such a
server. The strategy we chose to adopt in order to achieve our goal is that of devising
a two-layer approach:

1. the high-level layer provides a high-level language to represent the above-
mentioned temporal phenomena and to offer several temporal reasoning facilities;
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2. the low-level layer consists of an internal representation of the temporal con-
straints, on which temporal constraint propagation algorithms operate.

We designed our high-level language with specific attention to modelling repeated
actions, and in such a way that tractable temporal reasoning can be supported. At
the low-level layer, we chose to exploit as much as possible STP (Simple Temporal
Problem), a standard AI temporal reasoning framework [9]. In a certain sense, our
approach uses STP as an “assembly language” and builds an expressive “high-level
temporal reasoning framework” on top of it. Obviously, the gap between our high-
level language and STP is very large. Filling such a gap is the main contribution of
our approach, and has involved the design of suitable temporal reasoning algorithms
to cope with issues (i)-(v) above, as well as an extension of the STP framework itself
(to consider labelled trees of STPs).

19.2.2 High-Level Formalism for CIG Temporal Constraints

Our high-level language allows one to express temporal constraints of the different
types discussed above.

Dates can be expressed by the predicate date(A, L1, U1, L2, U2), stating that
the action A must start between dates L1 and U1 and end between dates L2 and U2.
Precise dates can be expressed imposing L1=U1 or L2=U2. Please note that also
unknown dates are allowed by imposing that the extremes assume value−∞ or+∞.
Other constructs include the predicate duration(A, L, U), stating that the duration
of action A must be included between L and U, delay(P1, P2, L, U), stating that the
delay between P1 and P2 must be between L and U, where P1 and P2 are time points
(i.e., starting or ending points of actions). Also qualitative temporal constraints such
as “before”, “after”, “during” are supported by our language: in fact all and only
the qualitative constraints that can be mapped to conjunctions of STP constraints are
supported.

For representing composite actions we support the predicate partOf(A’, A), sta-
ting that the action A’ is part of the composite action A. Please note that the partOf
relation induces a temporal constraint between the actions: i.e., action A’ must be
during action A. The predicates described above can be also used for representing
temporal constraints between instances of actions.

In order to describe the relation between instances and classes, we need to intro-
duce a further predicate, instanceOf(I, A, p) to represent the fact that the instance
of action I is an instance of the class of actions A. If A is a repeated action, then p
represents the fact that I is an instance of the pth repetition of A (if A is not a repeated
action, p = 0).

Regarding repetition of actions, we provide the predicate repetition(A, RSpec),
to state that the (possibly composite) class of action A is repeated according to the
specification RSpec. RSpec is a recursive structure of arbitrary depth of the form

RSpec = 〈R1, . . . , Rn〉,
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where each level Ri states that the actions described in the next level (i.e., Ri+1, or
by convention the action A, if i = n) must be repeated a certain number of times in a
certain time span. To be more specific, any basic element Ri consists of a quadruple

Ri = 〈n Repeti tionsi , I -T imei , repConstraintsi , conditionsi 〉,

where the first term represents the number of times that Ri+1 must be repeated, the
second one represents the time span in which the repetitions must be included, the
third onemay impose a pattern that the repetitionsmust follow, and the last one allows
to express conditions that must hold so that the repetition can take place. Informally,
we can roughly describe the semantics of a quadruple Ri as the natural language
sentence repeat Ri+1 n Repeti tionsi times in exactly I -T imei , if conditionsi hold.

Adetailed treatment of such a specification is outside the goals of the current paper.
Indeed, in [4] the expressiveness of the language for repetitions has been studied, on
the basis of both the classification criteria provided by Egidi and Terenziani [11, 12]
and by Bettini [6].

Additionally, in [4] the semantics of such specifications has been formally studied.
For example, the melphalan treatment in Example19.1 can be represented as

Repeti tion(melphalan, 〈R0 = 〈5, 5d, , 〉, R1 = 〈2, 1d, , 〉〉),meaning that the treat-
ment is composed by two levels: R0 states that R1 must be repeated five times in five
days and R1 states that melphalan must be administered twice a day.

19.2.3 Reasoning with Temporal Constraints in CIGs

Regarding the instances of actions,we designed the high-level language in such away
that all constraints can be mapped onto bounds on differences and, thus, internally
represented as a “standard” STP framework [9].

However, regarding the classes of events, while dates, delays, durations and qual-
itative temporal constraints might be represented with an STP about classes, it is
not possible to represent in such a basic way also the temporal constraints about
repeated/periodic and/or composite actions. We thus introduce STP-trees, as a suit-
able low-level representation of temporal constraints, on which temporal reasoning
algorithms can operate.

19.2.3.1 STP-Tree

In our approach, the overall set of constraints between actions in the CIG is rep-
resented by a tree of STPs (STP-tree henceforth). The root of the tree is the STP
which represents the constraints between all the actions in the guideline, except the
components of repeated actions.

The STP-tree corresponding to a guideline can be automatically constructed on
the basis of the temporal constraints in the guideline (expressed using the high-level
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Fig. 19.1 STP-tree for the multiple mieloma chemotherapy guideline in Example19.1. Thin lines
and arcs between nodes in a STP represent bound on differences constraints. Arcs from a pair of
nodes to a child STP represent repetitions. Arcs between any two nodes X and Y in a STP of the
STP-tree are labeled by a pair [n,m] representing the minimum and maximum distance between X
and Y. Sch, Ech, Smc, Emc, Spc, Epc, Sm, Em, Sp and Ep stand for the starting (S) and ending (E)
points of chemotherapy, melphalan cycle, prednisone cycle, melphalan treatment and prednisone
treatment, respectively.

language in Subsect. 19.2.2) by executing an algorithm which operates recursively,
from the root to the leaves, by putting in each STP-node all the actions except the
components of repeated actions, which are represented in separate STP-nodes. On
the other hand, the partOf relations not involving repeated actions are represented in
the same STP as the composite action by adding to such an STP-node the constraints
that all the components are contained into the corresponding composite action.

To summarize, in the STP-tree there are as many STP-nodes as the number of
repeated actions, and in each STP-node there are as many actions as the number
of actions in the guideline that are parts of the repeated action that the STP-node
represents. Specifically, each action is represented in the STP-node as a pair of
time points, while constraints between (not repeated) actions are represented by arcs
connecting them.

For instance, in Fig. 19.1, we show the STP-tree representing (at the low-level)
the temporal constraints in Example19.1.

Additionally, an independent STP must be used in order to represent the temporal
constraints about the specific instances of the actions of the guidelines, as emerging
from executions of the guidelines on specific patients.

19.2.3.2 Checking the Consistency of a Guideline

Given an STP-tree, it is possible to check its consistency in an intensional way, i.e.,
without generating every repetition of repeated actions. However, it is not sufficient
to check the consistency of each STP contained in the STP-nodes separately. In such
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a case, in fact, we would neglect the repetition/periodicity information. Temporal
consistency checking, thus, proceeds in a top-down fashion, starting from the root of
the STP-tree towards its leaves. Basically, the root contains a “standard” STP, so that
the Floyd-Warshall’s algorithm can be applied to check its consistency. Thereafter,
for each node X in the STP-tree (except the root), we proceed as shown in the
algorithm STP_tree_consistency (see Algorithm 5).

Algorithm 5. Algorithm for checking the consistency of a guideline (represented as
an STP-tree).
function ST P_tree_consistency(X : ST P Node,
RSpec = (R1 = 〈n Repeti tions1, I -T ime1, repConstraints1, conditions1〉, . . . ,
Rn = 〈n Repeti tionsn, I -T imen, repConstraintsn, conditionsn〉)) : ST P
1: check that the repetition/periodicity constraint is well-formed (i.e., that repetitions nest properly)
2: compute Max , i.e. the maximum duration of a single repetition of X according to RSpec
3: impose in X that the maximum distance between each pair of points is less or equals Max
4: X ← FloydWarshall(X)

5: if X = INCONSISTENT return INCONSISTENT else return X

STP_tree_consistency takes in input the STP-node that must be checked (i.e. X)
and the repetition/periodicity constraint (i.e., the repetition specification in the arc
of the STP-tree entering node X), and gives as an output an inconsistency or, in the
case of consistency, the local minimal network of the constraints in X considering
also the repetition/periodicity constraints. In step 1 it checks whether the repeti-
tion/periodicity constraint is well-formed, i.e. if it is consistent when it is taken in
isolation (e.g., I -T ime2 must be contained into I -T ime1). In step 2 it computes the
maximum duration of a single repetition. This is obtained by considering the time
that allows to perform a repetition assuming that all the other repetitions have the
minimum possible duration. In step 3 it adds to the STP X the constraints stating that
the maximum duration of X must be the computed maximum duration of a single
repetition of X. Finally, in step 5 it checks the consistency of the augmented STP X
via the Floyd-Warshall’s algorithm.

Property. STP_tree_consistency is correct and complete (see [4]). Considering
that the number of nesting levels, in the worst case, is less than the number of classes,
the algorithm is dominated by step 4, that is O(C3), whereC is the number of actions
in the guideline.

19.2.3.3 Reasoning with the Executions of the Guideline

We have also devised an algorithm for checking the consistency of the execution
of a guideline instance with respect to its related guideline. In our work, as in
most approaches to clinical guidelines, we suppose that one has full observabil-
ity of instances (i.e., all the instances of actions which have been executed have
been observed and inserted into the knowledge base), and that, for each instance,
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one knows the corresponding class of actions and/or repetition in the guidelines.
The procedure integratedConsistency accepts three parameters: T (the STP-tree that
describes the constraints about classes of actions in the guideline), E (the STP that
describes the temporal constraints between the instances of actions – i.e., the actions
that have been executed on specific patients), and NOW, that corresponds to the time
of the present. The basic idea is to:

(a) check that in the executionSTP there are all and only the instances that the STP-
tree predicts to be. Possible missing instances are hypothesized because they
may happen in the future;

(b) inherit the repetition/periodicity constraints and the temporal (non-periodic) con-
straints from the classes to the instances;

(c) propagate the temporal constraints on the executionSTP, thus obtaining the min-
imal network [9];

(d) check whether the hypothesized instances expected in the future may actually
start in the future (i.e., after NOW).

Property. Let us denote with C the number of classes in the STP-tree, with I the
numberof instances.Wehave that thecomplexityof theprocedure isO(max{I 3, C3}).
Also, integratedConsistency is correct and complete as regards consistency checking
of the constraints among the instances and among the classes in the STP-tree [4].

19.3 Clinical Guideline Verification

The verification capabilities concerning the general properties of CIGs and their exe-
cution available in the conventional CIG management systems in the literature are
usually rather limited. In many cases, such systems do associate only very specific
and ad-hoc inferential mechanisms to the knowledge represented in the guideline. To
overcome such limitations, the adoption of theorem proving techniques has been pro-
posed within the Protocure European project starting in 2003 [30, 45]. As an alterna-
tive of the theorem-provingmethodology, the adoption ofmodel-checking techniques
has been independently proposed a few years later in the Protocure project [5] and in
our project GLARE [17, 18, 47], mainly motivated by the simplicity and efficiency
of model-checking techniques with respect to the theorem proving approach [20].

Specifically, in our approach we propose a modular solution in which a CIG
management system is loosely coupled with a model checker via a translator, which
maps any guideline expressed in the formalism of the CIG management system into
the formalism of the model-checker. In such a way, the advantages of adopting a
CPG management system from one side, and a general-purpose model-checker on
the other side are retained and combined. In particular, once the mapping has been
defined, any class of properties that can be formalized in the logic of the model
checker can be easily verified, without requiring the definition of a new verification
software module from scratch. This obviously facilitates a real interaction between
the physician examining the CIG and the system itself. Thanks to its modularity, such
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an approach can be easily implemented, since it does not require any modification
to either the CIG management system or the model-checker.

Although our proposal is mostly application-independent, as a proof of concept,
we have integrated within the system GLARE [46] a verification tool which mod-
els a CIG in Promela, the specification language of the model checker SPIN [21],
and verifies the CIG properties to be checked by formalizing them as Linear time
Temporal Logic (LTL) formulas.

19.3.1 Integrating GLARE with SPIN

We have applied the general methodology introduced above in order to couple
GLARE with the model checker SPIN. We have implemented a translator which
takes in input a GLARE CIG, expressed in the XML format, and transforms it into
the corresponding CIG in the Promela language. Analogously, the patient data (in
XML) are also translated into the Promela language.

Promela allows a high level model of a distributed system to be defined by mod-
eling each process in an extended pseudo C code, including synchronization primi-
tives and message exchange primitives. Promela provides the usual if-then-else and
iteration constructs of imperative languages, but it also allows for goto statement
(allowing jumps to labels), for the non-deterministic choice construct, as well as for
the parallel execution of processes. Processes may share global variables and they
also may exchange messages through asynchronous communication channels.

In the following, we briefly describe the general principles we adopt to convert a
GLARE CIG into the corresponding agent-based program in the Promela language.
First, we describe how aCIG ismapped to a set of interacting processes (called agents
henceforth), i.e. to a set of Promela processes and to a set of proper synchronization
primitives andmessage exchange primitives. Then, we shortly describe our translator
module.

19.3.1.1 Guidelines as Agents

Obviously, the basic object we need to represent in Promela for the purpose of
verification is the CIG itself. A CIG can be seen as a set of actions, to be executed in
the order specified by a set of control flow primitives.We havemapped each construct
(action or control flow primitive) in the CIG to a Promela statement or to a Promela
piece of code.

However, CIG execution is a complex phenomenon that cannot be modeled just
by representing the CIG per se.

In the following, we propose a possible, more realistic way of capturing the
dynamics of the CIG and of its execution environment, based on the idea of modeling
a set of processes, whose interaction models the CIG execution itself.
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One of the required processes, which we will call agents, is of course the CIG
itself. The other agents represent the (human or not) components interacting with the
CIG at execution time.

In particular, the Database agent has to be represented. Actually, patient’s char-
acteristics need to be specified, and, rather naturally, we characterize a patient by
relying on her data, which are typically maintained in the clinical database. The
Database agent thus provides data on demand, and is able to store new data values.

Updated data values are sometimes obtained fromadditional sources (e.g. from the
hospital laboratory service). We have generically modeled such sources and services
by means of a further agent, called Outside world.

Last but not least, CIG execution is performed by a physician; therefore, the
physician’s behavior needs to be modeled as an agent as well. In particular, we have
identified twomain tasks that the Physician agent is expected to cover when applying
a CIG to a specific patient. Obviously, it is required to make decisions, i.e. it has to
select exactly one diagnosis or therapy, among a set of alternative ones. Moreover,
it has to evaluate data recency and reliability: if a data value, extracted from the
database, is judged as unreliable or not up-to-date (i.e. too old), the Physician agent
has to rise the problem, thus triggering the generation of a newer data value from the
outside world.

In summary, the model of the distributed system we propose to simulate CIG
execution can be described by the interaction among the following agents, interpreted
as Promela processes:

1. the Guideline agent, which models the overall behavior of the CIG;
2. the Database agent, which models the behavior of the patient database, allowing

for data insertion and retrieval;
3. the Outside agent, which represents the outside world and provides up to date

values for patient data (together with the time of their measurement) when they
are not already available in the database or are evaluated as being not reliable by
the physician. It also stores data in the database, and simulates the execution of
actions by reporting their success or failure;

4. the Physician agent, which interacts with the CIG by evaluating the patient data,
choosing among the different alternative feasible paths as a physician would do,
and judging data reliability. Observe that we model the Physician agent as a non-
deterministic process, since it is not possible to know a-priori all the possible
choices of physicians in all the possible situations. We therefore model the uncer-
tainty about the choice of physicians using non-determinism: from the point of
view of the simulation, choices are taken randomly by the Physician agent.

19.3.1.2 The Translator

As explained above, we have defined a translator which takes a set of XML doc-
uments representing any GLARE CIG and automatically transforms them into the
corresponding CIG in the language Promela.
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A CIG in GLARE is a hierarchical graph, in which it is possible to have composite
actions (i.e. plans), which can be defined in terms of their components via the has-part
relation. In the XML document such a structure is maintained. Thus, the translator
works as a top-down parser.

In particular, the translator takes in input a graph defined as a couple 〈N , E〉
(where N is the set of nodes and E is the set of edges), which is the XML document
representing the CIG, and a vocabulary V , which contains the medical data informa-
tion. To make the translation, the parser visits the graph twice. The first time it makes
a preprocessing in order to obtain the data concerning the requests of information.

In the second step, the parser visits the graph for the second time, in order to build
the agents which model the CIG behavior.

19.3.2 CIG Verification in SPIN

After the translation, SPIN can be used in order to “reason” about the guidelines. In
particular, verification can be managed by expressing properties in LTL, and giving
them in input to SPIN, together with the representation of a guideline obtained
through the translation process. SPIN translates each Promela process into a finite
automaton, and the global behaviour of the system is obtained by computing an
asynchronous interleaving product of automata. The resulting automaton represents
the global state space of the system (the model containing all the possible executions
- runs - of the CIG) and can be built on-the-fly during the verification process. The
correctness claims, that have to be checked on the model of the system, are then
specified as temporal logic formulas in LTL. Given a property (specification) as an
LTL formula, SPIN verifies if the property is true on all the executions of the system.
Namely, each run of the system is regarded as a linear temporal model, on which the
truth of the property is verified from the initial state.

As a matter of fact, temporal logics such as LTL allow one to express a wide range
of formulas. Such an expressiveness and generality motivates a deeper analysis of
what kinds of properties, expressible in LTL, are useful in the CIG context. We show
some examples, dividing the properties on the basis of the CIG life-cycle phases.
Specifically, we single out three main phases (namely, (1) design and acquisition,
(2) contextualization, and (3) execution), and we highlight how verification can be
fruitfully exploited in each phase.

For the sake of exposition, we describe the properties to be verified by distin-
guishing two components: (1) a quantifier on “runs”: ∀, stating that we verify if the
property holds on all the runs, and ∃, stating that we look for one run satisfying the
property; (2) an LTL formula. In the following we assume that the variable “done”
in each state is set to the action performed in that state.

19.3.2.1 Design and Acquisition

CIGs are usually defined by a national or international committee of specialists, and
can be acquired into a computer-based system, usually through a cooperation between
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some specialists and some knowledge engineers. In such a phase, verification through
model checking is useful in order to take into account at least two different classes of
properties, namely structural properties andmedical validity properties. In particular:

(i)Structural properties concern the existence of the appropriate clinical require-
ments. These properties regard the actions, conditions and paths of actions in the CIG
considered “per se”, without any reference to the specific context of execution and
to the specific patients on which the CIG will be applied, and are relevant in order
to ensure the appropriate management of any patients.

Example: verify that any run contains antibiotic treatment (community acquired
pneumonia guideline)

< ∀run,	(done = antibiotic_treatment) >

Comment: The property evaluates to true if all possible runs contain a state in which
an antibiotic treatment is administered.
Relevance: The antibiotic treatment is mandatory in the case of community acquired
pneumonia.

(ii) Medical validity properties concern both the exclusion of dangerous treat-
ments and the inclusion of the most appropriate treatments for the considered class
of patients. These properties are relevant in order to ensure best practice.

Example: verify that whenever hepatic encephalopathy is present, diuretics are
not administered (ascites guideline)

< ∀run, liver_state = encephalopathy → �(done �= diuretics_administration) >

Comment: Diuretics are contraindicated in hepatic encephalopathy.
Relevance: Diuretics can worsen the liver perfusion and precipitate the encephalopa-
thy or worsen its severity.

Both structural and medical validity properties are verified during the acquisition
phase, in which both medical experts and knowledge engineers are usually involved.
Specifically, medical experts can identify the structural and validity properties that
are relevant for the CIG under consideration, and knowledge engineers can formulate
and run the corresponding verifications, reporting the results to the experts. In case
the checks show that a desired property does not hold, the domain experts should
identify the appropriate corrections to the CIG, which will be modified accordingly,
in cooperation with the knowledge engineers.

19.3.2.2 Contextualization

Once a CIG has been defined and acquired (e.g., by a national or international com-
mittee), it has to be applied to several different local structures (e.g., hospitals).
Unfortunately, in several cases, the original CIG is too “general” to be applied on any
specific environment. For instance, depending on the local availability of resources,
certain actions of a general CIG cannot be executed in specific contexts (e.g., small
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hospitals). A phase of contextualization is thus usually needed: when a new CIG
is introduced in a hospital, the medical personnel can use verification (possibly in
cooperation with knowledge engineers) in order to identify which resources the CIG
(or specific paths of the CIG itself) requires. Specifically:

(iii) Contextualization properties concern the resources needed for the CIG
execution and can be checked to adapt the CIG to locally available resources.

Example: verify that there is a run in which the CT scanner is not used (ischemic
stroke guideline)

< ∃run,�done �= T C >

Comment: If this condition holds, the GL (or, at least a part of it) can be applied also
in hospitals where the case the CT scanner is not available.
Relevance:TheCTscanner is very important in somecases, but not always accessible.

The results of such verifications can be used for modifying the original CIG,
or for improving the hospital resources, in order to conform the hospital to the
CIG requirements (to grant the best practice). In the last case, the intervention of
administrator personnel is also necessary.

19.3.2.3 Execution

Finally, the acquired and contextualised CIGs are used in clinical practice. In such a
case, a specific user-physician selects and applies a specific CIG to a specific patient.
Verification is a crucial support also in such a phase:

(iv) Properties concerning the application of a CIG to a specific patient allow
to check which are the best actions (as indicated in the CIG) to be executed on the
patient at hand, on the basis of the patient’s status and symptoms; they also allow
to check whether the CIG (or some specific path of it) contains the specific actions
which the user-physician expects to be necessary for the patient at hand.

Example: verify that there is a treatment in which growth factors are administered,
when leukopenia appears (lymphoma treatment guideline)

< ∃run,�(leukopenia_value = present →
	 (done = growth_ f actors_administration)) >

Comment: The growth factors administration can positively reduce the duration of
the leukopenia and the risk of infections.
Relevance: If leukopenia is not severe, there are also alternative treatments to the
administration of growth factors (e.g., expectant treatment and monitoring). That is
why we check the existence of one run in which (in a given status) growth factors
are administered, without forcing that they are administered in all runs (in contrast
with the verification above).
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19.4 Probabilistic Verification

While many of the logical verification methods that have been proposed can be used
to verify existing guidelines, a possible shortcoming of the logical methods is that
they cannot deal with uncertainty stemming from the use of scientific evidence. On
the other hand, many probabilistic methods do not have the representational benefits
of logic for modelling temporal constraints between tasks.

In the last few years, there has been a surge of interest in the field of statistical
relational learning [16]. In this endeavour, many probabilistic logics have been devel-
oped. We believe that these kind advances provide the right ingredients to represent
and reason with such heterogeneous medical knowledge.

We think this type of probabilistic verification could particularly be important
during the development of a CIG. In this section, we will first introduce a language
that can be used to represent guidelines and a probabilistic knowledge base. After
this, we show that such a language may be used to represent a guideline. Finally, we
illustrate the approach by means of an example in the development of a hypothetical
guideline for diabetes mellitus type 2.

19.4.1 Causal Probabilistic Decision Logic

WeuseCP-logic as a starting point,whichwewill briefly introduce. CP-logic theories
consist of a multi-set of causal probabilistic laws (CP-laws), which are statements
of the form:

∀x : (h1 : α1) ∨ · · · ∨ (hn : αn) ← b1, . . . , bm (19.1)

where the α1 : [0, 1] are probabilities with
∑

αi ≤ 1, n ≥ 1, and m ≥ 0. In this
formula, hi and b j are atoms, that is, expressions of the form p(t1, ..., tm) in which
p/m is the name of a predicate of arity m and ti are terms, i.e., constants or variables.
We call the set of all (hi : αi ) the head of the law, and the conjunction of literals bi

the body of the law. We also refer to all hi as consequences, and to bi as conditions.
If the head contains only one atom h : 1, we may write it as h. Informally, the law
states that in case the body is true, then at most one of the consequents becomes true,
i.e., a consequent is caused by the body. The probabilities in the consequents reflect
the probability that the body causes the consequent to become true.

The semantics of CP-logic relies on the notion of a Herbrand interpretation. This
is essentially a set of ground atoms that can be constructed using the constant and
predicate symbols occurring in the theory. We shall denote Herbrand interpretations
by M and we shall write M |= ϕ if the logical formula ϕ satisfies the interpretation
M . Moreover, for simplicity of presentation, we assume a finite set of constants and
also that all laws are grounded, i.e., each law is replaced by the set of laws where the
variables are replaced by constants. For more details on notions of first-order logic
and logic programming, we refer to [28].
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CP-logic was designed as a probabilistic logic for modelling causal processes.
Actions, too, can be incorporated into these processes, in which case CP-logic
requires that the actions that agents take when the body holds is modelled using
probabilities. In some cases, one wants to abstract from such actions, for example,
to abstract from scheduling decisions when reasoning about concurrent systems. In
other situations, there is no probabilistic information about the behaviour of agents,
e.g., the course of action of physicians. To be able to model this, we introduce non-
determinism into the CP-logic models by adding causal decision laws (CD-laws)
to CP-logic. The resulting language is called Causal Probabilistic Decision Logic
(CPDL).

Causal decision laws (CD-laws) are of the form:

∀x : h1 ∨ · · · ∨ hn ← b1, . . . , bm (19.2)

with n ≥ 1 and m ≥ 0, which can be seen as CP-laws without any probabilities
attached to the elements in the head of the clause. The intuitive reading is also
similar to CP-laws, i.e., b1, . . . , bm causes one of the heads, but in this case non-
deterministically. That is, again exactly one of the heads is caused by the body, but
we do not know which one and also do not know the probabilities.

To obtain a probability distribution for CPDL, the nondeterminism has to be
resolved. For this we introduce a policy, which is a function π which maps each
ground CD-law to one of its heads. For this function it holds that if π(R) = hi , then
R is a CD-law of the form:

h1 ∨ · · · ∨ hn ← b1, . . . , bm .

and 1 ≤ i ≤ n. The intended semantics is that if (b1, . . . , bn) holds, and π(R) = hi ,
then hi becomes true. Therefore different groundings will produce different choices
(as in CP-logic).

In [50], the semantics of this CP-logic is presented by relating the set of laws to
a possible probabilistic causal process. We briefly introduce the semantics of CPDL
in the spirit of CP-logic. Consider a CPDL theory T , a policy π , a Herbrand inter-
pretation M , and a grounded law Rk where Rk = head ← body. If Rk is a CP-law
and M |= body, then the law can be applied for hi : αi ∈ head, which we denote by
M −→αi M ∪ {hi }. A CD-law can be applied if also π(Rk) = hi holds, which is
denoted by M −→ M ∪ {hi }. We then write M −→∗

p M ′ if there exists a chain of
applications of laws from M to M ′ such that each ground law has been applied at
most once, no other laws can be applied, and p = ∏

i αi where αi are all the prob-
abilities of the applied CP-laws. CPDL defines a joint probability distribution over
Herbrand interpretations given a interpretation M by Pπ (M ′) = ∑

M−→∗
p M ′ p. Note

that a uniform probability distribution over heads in a CP-law is quite different from
a CD-law. If a theory consists of CP-laws, then this models a unique probability dis-
tribution. For theories that contain CD-laws, each policy defines a possibly different
probability distribution over the Herbrand interpretations.
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As a first-order language, CPDL is of course sufficiently rich to model discrete-
time models. For representation, we propose a small syntactical extension to the
language, which we call CPDTL (Causal Probabilistic Decision Time Logic). We

introduce a predicate−→· which denotes a transition, i.e.,
−−→
a(v) denotes that a(v) holds

after a transition. A CPDTL theory contains a set of CPDL laws which may contain−→· , and also a set of initial laws of the following form:

(ai (vi1)) : αi1 ∨ · · · ∨ (ai (vin)) : αin ← M

where M is called the starting state. A CPDTL theory can be mapped to CPDL
by replacing all predicates a/m by a/m + 1 and indexing the predicates by time.
Predicates in the initial law get indexed by time 0, i.e., ai (vi ) becomes ai (vi , 0); the

atoms
−−→
a(v) are replaced by a(v, t + 1); all other atoms a(v) are replaced by a(v, t).

Consider the following example to illustrate this language.

Example 19.2. Each year, you can decide whether or not to get a flu shot, which
affects the chance of becoming infected with influenza (with probability 0.01 when
vaccinated, 0.1 when not vaccinated). Influenza might cause other disorders, such as
angina (with probability 0.2) and pneumonia (with probability 0.1). Angina causes
pneumonia (with probability 0.1), and vice versa (with probability 0.8). Pneumonia
might be lethal (with probability 0.01), although there is also a chance of dying of
other causes (with probability 0.001). This medical knowledge of influenza can be
represented in CPDTL as follows.

state(alive) ← M
vaccine(true) ∨ vaccine(false) ← state(alive)
disorder(influenza) : 0.1 ← vaccine(false)
disorder(influenza) : 0.01 ← vaccine(true)
disorder(angina) : 0.2 ∨ disorder(pneumonia) : 0.1

← disorder(influenza)
disorder(pneumonia) : 0.1 ← disorder(angina)
disorder(angina) : 0.8 ← disorder(pneumonia)

−−−−−−→
state(dead) : 0.01 ∨ −−−−−−→

state(alive) : 0.99
← disorder(pneumonia)−−−−−−→

state(dead) : 0.001 ∨ −−−−−−→
state(alive) : 0.999

← state(alive)

Note that the choice for vaccination has been represented by a CD-law, whereas the
rest of the knowledge is represented by a set of CP-laws.

While it is already obvious in this specification that vaccination increases chances
of survival, medical researchers are often more interested in relative measures
such as the relative risks and the number needed to treat (NNT), i.e., the num-
ber of patients who need to be treated to prevent one additional bad outcome. For
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example, if vaccination decreases the chance on flu from 0.1 to 0.01, then the NNT
is 1/(pmax − pmin) = 1/(0.1 − 0.01) ≈ 11, which means that if 11 people are vacci-
nated, 10 people are not expected to benefit. The NNT for preventing death, however,
is not so clear given the interactions between variables. If, however, we would have
the minimal and maximal probability of death, then such measure can be easily
computed (similar for other relevant measures). If there is one binary decision vari-
able, then this can be solved by computing the outcome of both decisions, but more
generally this approach is not feasible.

19.4.2 Application to Guideline Verification

The idea of probabilistic verification is now as follows. CPDTL is expressive enough
to formalize a non-deterministic automaton using CD-laws. Hence, in principle, a
SPINmodel derived from a GLARECIG as described in Sect. 4.2 can be represented
inCPDTL. Furthermore, probabilistic informationmay be combinedwith thismodel.
The resulting model can be mapped to a probabilistic automaton that can be used to
reason with.

19.4.2.1 Probabilistic Automata

Probabilistic automata model discrete-time stochastic systems consisting of a (finite)
set of states S, an initial state s0 ∈ S, a (finite) set of actions A and transition proba-
bilities P : A × S × S → [0, 1] such that for all a and s, P(a, s, s ′) is a probability
distribution over s ′. Furthermore, we assume a labelling function L : S → 2AP that
labels each state with a set of atomic propositions that are true in that state.

A policy π̂ : S → A is used to decide which action is taken in a state. Given
this, a PA can be interpreted as a joint probability distribution over states and actions
indexed by time. It is clear that P(S0 = s0) = 1. Furthermore, the transition probabil-
ities define the conditional probability P(St+1 = s ′ | St = s, At = a) = P(a, s, s ′).
Finally, we can interpret policies as a deterministic probability distribution P(At =
a | St = s) = 1 if π̂(s) = a.

Given the assumptions above in addition to aMarkov assumption, the joint proba-
bility of a path, given a policy π̂ , is the product of all transitions that occur in the path,
i.e., P(M, s0, . . . , sn) = ∏n

t=1 P(π̂(st−1), st−1, st ). In the formal methods commu-
nity, standard solvers exist to compute lower and upper bounds on probabilities. For
this paper, we use the most well-known probabilistic model checker prism [27].

19.4.2.2 Translation

To model a CPDTL theory as a PA, we require that we have a set of attributes Attr,
with a known domain dom(a) for a ∈ Attr, corresponding to a set of predicates in

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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the theory for modelling a state. It should hold that these attributes in the theory are
both mutually exclusive and complete. States can be defined as the set of attributes
with particular values. As in many other probabilistic logics, this property is not
being checked by the system, but should be ensured by the modeller. However, if
this holds, then consider a CPDTL theory T with dynamic attributes Attr for which
we define a PA M = 〈S, s0, A, L , P〉 such that:
• s ∈ S iff s = M or for all a ∈ Attr there exists a unique v ∈ dom(a) such that

a(v) ∈ s
• A = {π | π a CPDL policy for T }
• s0 = M
• L(s) = s
• For all states si , sk ∈ S and policies π ∈ A:

P(π, si , sk) =
{

Pπ (
−→sk | si ) if si �= sk

1 − ∑
j �=i Pπ (

−→s j | si ) if si = sk

Note that in this definition, the probability of not transitioning to a new state means
that you will end up in the same state, which can be seen as a frame axiom. This is
a small semantic difference with the original semantics. However, when the transi-
tions are fully specified, i.e., for all π and si holds

∑
k Pπ (

−→sk | si ) = 1, such as in
Example19.2, then the models will be equivalent in the following sense.

Proposition 19.1 (Fundamental Connection PA and CPDTL). Given a CPDTL
theory with state variable s made from the dynamic attributes such that the transitions
are fully specified. Let PCPDTL be the corresponding probability distribution and PPA

the probability distribution of the corresponding PA. Then

PPA(M, S0 = s0, . . . , St = s) = PCPDTL(s(t))

Note that for representation, it can be quite useful to have the frame axiom.

Example 19.3. The knowledge base presented in Example19.2 can be graphically
represented as a probabilistic automaton as follows:

{state(alive)}

M

{state(dead)}

1 0.0011[vaccine(false)]

0.9989[vaccine(false)]

0.0010[vaccine(true)]

0.9990[vaccine(true)]

1

The state of the PA is defined by the predicate ‘state’ and knowledge that models
transitions have been abstracted into a single number for each possible policy choice.
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19.4.3 Case Study

Using the machinery that has been introduced so far, we investigate a problem of
deciding an appropriate treatment for diabetes mellitus type 2. This model is signifi-
cantlymore complex than the influenza example as diabetes is a complicated disease:
various metabolic control mechanisms are deranged and many different organ sys-
tems may be affected by the disorder. For the individual patient, there is a lot of
uncertainty to which extent physiological phenomena occur, which has an impact
on the effectiveness of a treatment. We will focus here on a well-known drug called
metformin, which is commonly prescribed as the primary oral anti-diabetic, of which
the efficacy is known [15]. Moreover, we consider a genetic variation in the encoding
of a protein called organic cation transporter 1 (OCT1) which affects the response to
metformin [44]. Such knowledge was used to build a set of logical sentences that can
be used to explore a simple model of a guideline that recommends treating diabetes
with metformin. We answer a number of relevant questions that may come up during
the design of such a diabetes guideline. In total, the knowledge base consists of about
50 rules and 10 facts, of which most rules are CD-laws (describing the guideline)
and about 10 rules describing background knowledge based on medical literature.
For example, it is stated as two CP-laws that there is a 20% chance of carrying the
genetic OCT1 variation:

oct_variant (true) : 0.2 ∨ oct_variant ( f alse) : 0.8 ← M−−−−−−−−−−−→
oct_variant (X) ← oct_variant (X)

From a practical modelling point of view, variables are not restricted to a finite
domain using this logic. For example, in this application, it is convenient to count the
number of days that metformin has been given to a patient. This is easily modelled
using a counting variables applied defined by:

−−−−−−−−→
applied(T+1) ← state(activated), applied(T)

which says that, whenever metformin is given to the patient (state(activated)), then
the counter applied is incremented. While this results in an infinite number of states,
queries are always related to a time-point. Hence, we can dynamically restrict the
domain of T to an appropriate upperbound.

Given such amodel, we show a number of queries that explores relevant questions
for the practical treatment of diabetes mellitus type 2 patients with metformin.

Question 1: How long should metformin be applied before it can be decided to stop
the treatment?

There is a trade-off for deciding to stop a treatment: if the treatment with oral anti-
diabetics is stopped too early then patients may be injecting themselves with insulin
for no good reason; if the treatment is stopped too late, then patients who need
treatment with insulin are not treated appropriately. In Fig. 19.2, we plot minimal
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Fig. 19.2 Probabilistic simulation of metformin application with minimal (min) and maximal
(max) probabilities. Furthermore, we consider a model where the physician acts with a probability
p = 0.5.

Fig. 19.3 Probabilistic simulation of metformin application to patients with different fasting blood
glucose (FPG) at baseline. Time of metformin application is varied as well.

and maximal probabilities over time. In this case, minimal probabilities are zero,
because the guideline did not force the physician to start treatment within a certain
time bound, which can be considered a shortcoming of the guideline. We therefore
consider another choice where physicians start treatment every day with a certain
probability, which in this case is set to a probability 0.5. Furthermore, in Fig. 19.3, we
plot a number of dose-response curves for different patients (also with a physician
that acts with probability 0.5). For people with an initial low fasting plasma glucose
(FPG), the effect of treatment is relatively quick, whereas people with an initial high
fasting plasma glucose, the effect is much slower and might not be effective at all
even after prolonged treatment. Hence, a recommendation of metformin should take
the differences with respect to the baseline fasting plasma glucose into account.

Question 2: What improvement could we gain using genetic information?

As the OCT1 protein affects the efficacy of metformin, it might be useful to test
whether a patient has a variation in this gene before treatment. In Fig. 19.4, patients
are plottedwith the same FPG at baseline, but given different evidencewith respect to
having a variation in the OCT1 protein. On average, patients in this population have
a good chance that metformin is effective. However, for the patients with the OCT1-
variant, the chance that metformin is effective is rather small and it might be better
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Fig. 19.4 Probabilistic simulation of metformin application to patients with or without a variation
in the OCT1 protein.

to prescribe an alternative drug, whereas for patients with a normal OCT1 protein,
metformin seems like a good choice. This illustrates that such pharmacogenetics
could thus be used for the personalisation of treatments if tests for variations in the
OCT1 protein become available.

19.5 Related Works

19.5.1 Reasoning About Temporal Constraints

Many AI approaches focused their attention to the definition of suitable formalisms
to represent time-related phenomena and to reason with them. Besides “logical”
approaches (e.g., temporal or non-monotonic logics), starting from the early 80’s,
many constraint-based approaches have been developed in AI [22]. Such approaches
are mostly concerned to define domain-independent knowledge servers which tem-
poral reasoning, in the form of propagation of temporal constraints, can be delegated
to, and which can be coupled with other modules (e.g., a planner, or a system which
manages guidelines) to solve complex problems.

The aim towards specialization led these approaches to focus on specific classes of
constraints (e.g., qualitative constraints such as “A before B”, quantitative constraints
such as dates, delays and durations) [22], or to devote great attention to granularities
and/or periodic/repeated constraints [23–25]) or to the integration of different sorts
of constraints (e.g., qualitative and quantitative constraints [26]).

In the area of clinical guidelines several interesting approaches have been devised
to represent temporal constraints. For instance, GLIF [37] deals both with tempo-
ral constraints on patient data elements and with duration constraints on actions
and decisions. In PROforma [14], guidelines are modelled as plans, and each plan
may define constraints on the accomplishment of tasks, as well as task duration and
delays between tasks. Moreover, temporal constructs can also be used in order to
specify the preconditions of actions. DILEMMA and PRESTIGE [32] model tem-
poral constraints within conditions. EON [33] uses temporal expressions to allow the
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scheduling of guideline steps, and deals with duration constraints about activities.
Moreover, by incorporating the RESUME system, it provides a powerful approach to
cope with temporal abstraction. In EON, the Arden Syntax allows the representation
of delays between the triggering event and the activation of a Medical Logic Module
(MDL), and between MDLs [43].

A rich ontology to deal with temporal information in clinical trial protocols has
been proposed in [53], considering also relative and indeterminate temporal infor-
mation and cyclical event patterns.

Despite the large amount of work devoted to the representation of temporal con-
straints, and the very rich and expressive formalisms being identified, little attention
has been paid to temporal reasoning. Notable exceptions are represented by the
approaches by Shahar [42] and by Duftschmid et al. [10].

In Shahar’s approach, the goal of temporal reasoning is not to deal with tem-
poral constraints (e.g., to check their consistency), but to find out proper temporal
abstractions to data and properties. Therefore, temporal reasoning is not based on
constraint propagation techniques, in fact, e.g., interpolation-based techniques and
knowledge-based reasoning are used.

Miksch et al. have proposed a comprehensive approach based on the notion of
temporal constraint propagation [10, 42]. In particular, in Miksch et al.’s approach,
different types of temporal constraints deriving from the scheduling constraints in
the guideline, from the hierarchical decomposition of actions into their components
and from the control-flow of actions in the guideline are mapped onto an STP frame-
work [9]. Temporal constraint propagation is used in order to (1) detect inconsis-
tencies, and to (2) provide the minimal constraints between actions. In [10], there
is also the claim that (3) such a method can be used by the guideline interpreter in
order to assemble feasible time intervals for the execution of each guideline activity.
Moreover, advanced visualization techniques are used in order to show users the
results of temporal reasoning [26].

19.5.2 Verification

Our work about model-checking verification has started in the context of the Italian
(two-years) project MIUR-PRIN 2003 “Logic-based development and verification
of multi-agent systems” whose main objective was the development of logical and
computational formalisms for the specification and verification of agents and their
interactions. Our approach to LTL verification of clinical guidelines in SPIN has
been described in detail in [7].

Automatic verification of clinical guidelines has first been explored in [30], where
a theorem proving approach is proposed to deal with the problem of protocol ver-
ification. This activity has been developed within the European projects Protocure
and Protocure II. Here, a medical protocol is modelled in the Asbru language as a
hierarchical plan and then it is mapped to a specification in KIV, an interactive the-
orem prover for higher order logic. Properties are expressed in a variant of Interval
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Temporal Logic. [45] has provided an evaluation of the feasibility of this approach
based on the formalization and verification of the “jaundice” protocol and the “dia-
betes mellitus” protocol.

In the Protocure II project, model checking techniques for the verification of
clinical guidelines have also been explored [5]. In contrast to interactive verifica-
tion, model checking is fully automatic. In particular, Protocure II exploits CTL
model checking and the tool SMV [31]. The Asbru model is translated into the input
language of SMVmodel checker bymaking use of a suitable abstraction which elim-
inates time. The compiler takes the algebraic specification of Asbrumodels in KIV as
input and generates an SMV document. CTL model checking is used in the verifica-
tion of a wide range of properties of guidelines modelled in Asbru, namely structural
and medical properties. In particular, in [5] properties of the jaundice protocol are
formalized as ACTL formulas (that is, CTL formulas only allowing universal path
quantifiers) [8].

The main difference between our approach and Protocure’s one is that our
approach is based on LTL temporal logic while Protocure’s one is based on CTL
temporal logic. The adoption of CTL (and ACTL) or LTL model checking allows
for the verification of different temporal properties, as CTL and LTL are expres-
sively incomparable (as well as ACTL and LTL). A further difference between our
approach and Protocure one is due to the availability in SPIN of a higher-level input
language, as compared with the input language of SMV. The fact that Promela is
well suited for modelling guidelines as processes interacting with their environment
by exchanging messages over channels, substantially simplifies the task of providing
a translation of guidelines into Promela code (which does not require intermediate
levels of representation), as well as that of interpreting the results of Concerning the
type of the properties to be verified, as observed in [5] the model checking approach
is well suited for the verification of structural and simple medical properties of the
guideline, that normally do not require an incremental verification strategy.

19.5.3 Probabilistic Verification

Since the last two decades, probabilistic graphical models, PGMs for short, have
become the state of the art for knowledge representation involvinguncertainty. PGMs,
and in particular Bayesian and Markov networks, have been successfully applied to
various problem areas, including medicine. There is a considerable body of work
(e.g. [3, 29, 36, 49, 54]) indicating that Bayesian networks offer a natural and
intuitive formalism for constructing clinically relevant models. Unfortunately, PGMs
are unsuitable for capturing knowledge that goes beyond statistical dependence and
independence information, like clinical guidelines. In contrast, it has been shown
that CP-logic that the probabilistic verification introduced in this chapter is based
upon, can also represent various PGMs [22, 50].

With the recent introduction of probabilistic logics more powerful, relational lan-
guages for the representation of uncertain knowledge have become available, which
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are more suitable for dealing with combinations of logical and probabilistic knowl-
edge. For example, there now exist logical versions of Markov networks, called
Markov logic networks [40], and of Bayesian networks, called Bayesian logic pro-
grams [24]. Influential is also Poole’s independent choice logic [38, 39], in addition
to ProbLog [25] and CP-Logic [50]. These probabilistic logics offer a very natural
and flexible choice for modelling complex domains involving uncertainty. On the
other, all these languages are general probabilistic logics and do not deal with the
particular requirements for representing CIGs, in particular temporal information.
A notable exception is CPT-L [48], where CP-logic is used for modelling Markov
models. The difference to our approach in the fact that in CPT-L each rule deter-
mines a transition. In the logic proposed in this chapter, each derivation determines
a transition, which allows for richer modelling of the transitions.

The CPDTL logic proposed here can also been as a hierarchical models, with
on the top-level a Markov model and in each state transition a CP-logic program.
In this sense, logical hierarchical HMM (LoHiHMM) [34] can be seen as a related
approach. The difference with this approach is two-fold. In the probabilistic sense,
the LoHiHMM is more expressive, as it is a hidden Markov model rather than a
Markov chain. On the other hand, the logical representation is weaker. LoHiHMMs
are called logical, because each state is abstracted using predicate logic, rather than a
propositional state. However, logic is not used to model the transitions, which makes
it unsuitable to model the dynamic behaviour using a symbolic language.

19.6 Conclusions

CIGs are assuming an important role in the standardization and optimization of
healthcare. In particular, CIG systems can be used by physicians as recommendation
tools, to provide high-qualitymedical treatments to patients, on the basis of evidence-
based medicine.

However, given the dimensions of CIGs (which may consist of hundreds of inter-
related actions), and the large amount of knowledge they contain, verification is
important to guarantee the quality of the provided recommendations. As described
in this chapter, verification is important at different stages in theCIG life-cycle: during
design and acquisition, to check structural and medical validity properties, during
contextualization, to support the adoption of general CIGs in specific application
contexts, and during execution, to look for themost appropriate treatments of specific
patients, possibly considering probabilistic information on treatments outcomes and
patient evolutions.

In this chapter, we investigate such issues, proposing a range of methodologies
covering the different aspects of verification. The core idea of this chapter is that,
given the heterogeneous character of the knowledge contained in CIGs, different
forms of verifications should be supported, demanding for an hybrid approach in
which different representation formalisms are used (to properly capture different
types of knowledge) and different methodologies are devised (to properly reason
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with the different formalisms). In particular, we focused on three different issues,
and methodologies.

Considering the temporal constraints in CIGs, we propose to adopt the ‘classi-
cal’ AI approach to devise a specialized constraint-propagation-based temporal rea-
soner [2, 51]. Such approaches focus on temporal constraints only, so that specific
representation formalisms can be devised, in such a way that correct and complete
temporal reasoning can be performed efficiently (in cubic time, in our approach).
While such approaches are advantageous when considering temporal constraints
only, they are not general enough to deal with more general forms of knowledge, and
of verification.

We then considered the verification of variousmedical properties of CIGs, with an
emphasis on the temporal evolution of CIGs actions. In that case, we considered two
kinds of properties: logical properties, which can be used to investigate whether the
guideline adheres to hard outcomes, e.g., whether an action will be done or not, and
probabilistic properties, which considers soft outcomes, for example, the effect of
particular actions on the survival rate. During design time, probabilistic verification
could be used to analyse the available evidence, and to potentially derive appropriate
treatment. Given this knowledge, whether derived by probabilistic methods or tra-
ditional analysis techniques in evidence-based medicine, logical verification can be
used to check whether or not the CIG adheres to such a medical validity properties.
At this stage, it is sensible to verify hard outcomes only, as clinical guidelines should
codify the most appropriate for a given disease [13].

A more direct application of probabilistic verification is in the execution of a
CIG when treating a particular patient. Again, in some cases, we may have hard
constraints, as illustrated in the example in Sect. 19.3.2. However, deviation of a
guideline does not imply by itself malpractice. For example, the guideline may pre-
scribe penicillin as the drug of choice for certain infections, but may allow other
antibiotics for patients who are allergic to penicillin. Another example are patients
with comorbidities, which is very common in the elderly (e.g. [1] for the Dutch
population), to which standard treatments in the guideline very often do not apply
[19, 23]. Yet another example is the growing trend to involve the patient in the deci-
sion making process [41, 52], where preferences about treatment alternatives could
be taken into account to select the most appropriate treatment for that particular
patient. In such cases, a probabilistic approach may be appropriate.

In summary, we have proposed a mixture of verifying both logical and proba-
bilistic outcomes. To enable logical verification, we have proposed the adoption of
constraint-propagation based verification and model-based verification techniques
based on temporal logics (LTL), which proved to be well-suited for many medical
verification tasks. Similarly, to enable probabilistic verification, we have proposed
to adopt a probabilistic logic, which can be mapped to probabilistic automata. Using
probabilistic model checking, properties can be checked using probabilistic tempo-
ral logics (see e.g. [27]). While logical approaches already had significant success
for the verification of CIGs, further experimentation with probabilistic verification
is necessary. It is expected that this approach is especially when considering the
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application of CIGs to specific patients, to identify those treatment which, proba-
bilistically speaking, are the best option for them.
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