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Modeling Dynamic Processes with Memory
by Higher Order Temporal Models

Anna Łupińska-Dubicka and Marek J. Druzdzel

Abstract Most practical uses of Dynamic Bayesian Networks (DBNs) involve tem-
poral influences of the first order, i.e., influences between neighboring time steps.
This choice is a convenient approximation influenced by the existence of efficient
algorithms for first order models and limitations of available tools. In this paper,
we focus on the question whether constructing higher time-order models is worth
the effort when the underlying system’s memory goes beyond the current state. We
present the results of an experiment in which we successively introduce higher order
DBN models monitoring woman’s monthly cycle and measure the accuracy of these
models in estimating the fertile period around the day of ovulation. We show that
higher order models are more accurate than first order models. However, we have
also observed over-fitting and a resulting decrease in accuracy when the time order
chosen is too high.

14.1 Introduction

While all real world systems change over time, modeling their equilibrium states
or ignoring change altogether, when it is sufficiently slow, is sufficient for solving
a wide spectrum of practical problems. In some cases, however, it is necessary to
follow the change that the system is undergoing and introduce time as one of the
model variables.

We concentrate in this chapter on models that belong to the class of probabilistic
graphical models, with their two prominent members: Bayesian networks (BNs) [7]
and dynamic Bayesian networks (DBNs) [3]. BNs are widely used practical tools for
knowledge representation and reasoning under uncertainty in equilibrium systems.
DBNs extend them to time-dependent domains by introducing an explicit notion of
time and influences that spanover time.Most practical uses ofDBNs involve temporal
influences of the first order, i.e., influences between neighboring time steps. This
choice is a convenient approximation influenced by existence of efficient algorithms
for first order models and limitations of available tools. After all, introducing higher
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order temporal influences may be costly in terms of the resulting computational
complexity of inference, which is NP-hard even for static models. Limiting temporal
influences to influences between neighboring time periods is equivalent to assuming
that the only thing that matters in the future trajectory of the system is its current
state. Many real world systems, however, have memory that spans beyond their
current state.

The question that we pose in this chapter is whether introducing higher order
influences, i.e., influences that span over multiple steps, is worth the effort in the
sense of improving the accuracy of the model. The idea of increasing modeling
accuracy by means of increasing the time order of a dynamic model was beautifully
illustrated by Shannon. In his seminal paper [11], outlining the principles of theory
of information, he shows sentences in the English language, generated by a series of
Markov chain models of increasing time order, trained by means of the same corpus
of text. The following sentence was generated by a first order model:

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH

EEI ALHENHTTPA OOBTTVA NAH BRL.

Compare this with the following sentence generated by a sixth order model:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH

WRITER THAT THE CHARACTER OF THIS POINT IS

THEREFORE ANOTHER METHOD FOR THE LETTERS

THAT THE TIME OF WHO EVER TOLD THE PROBLEM

FOR AN UNEXPECTED.

The resemblance of the latter sentence to ordinary English text, an informal measure
of the model’s accuracy, has increased dramatically between the first and the sixth
orders. A first order model was essentially impotent in its ability to learn and model
the language.

While generation of English sentences may be too hard of a problem, the vehicle
for our experimentswith varying timeorder is the problemofmonitoring thewoman’s
monthly cycle, a problem central to human fertility. Every couple seeking help in a
fertility clinic is asked to monitor the monthly cycle before any medical intervention
is undertaken. An accurate monitoring model can be a great aid in natural family
planning, indicating optimal days for sexual intercourse. There exist methods for
fairly precise determining of the day of ovulation (e.g., blood hormone level tests or
ultrasonographic analysis of the ovaries), but they either require laboratory visits or
expensive testing kits. What is important from the perspective of the question posed
in this chapter is that woman’s monthly cycle is a system with memory going most
certainly beyond one day and probably spanning over a period of roughly a month.

We report the results of an experiment in which we successively introduce higher
order DBNs modeling the monthly cycle and measure the accuracy of these models
in estimating the fertile period around the day of ovulation. We train our models on
real time series data obtained from a longitudinal study of fecundability conducted
in several European centers [2]. We show that increasing the time order of the model
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greatly improves its accuracy but only up to a certain point. Too high order of amodel
decreases accuracy, probably though over-fitting the training data.

The remainder of the chapter is structured as follows. Section14.3 reviews what
we know about woman’s monthly cycle. Section14.5 describes the data that we used
in training our models. Section14.4 describes our DBN models, Sect. 14.6 describes
our experiments, and Sect. 14.7 summarizes the results of our experiments with the
models. Finally, Sect. 14.8 offers some advice to knowledge engineers building DBN
models in practice.

14.2 Bayesian Networks

Bayesian networks (BNs) are probabilistic graphical models that offer a compact
representation of the joint probability distribution over a set of random variables
X = x1, . . . , xn . Formally, a Bayesian network is a pair (G, Θ), where G is a acyclic
directed graph (ADG) in which nodes represent random variables x1, i . . . , xn and
edges represent direct dependencies between pairs of variables. The second compo-
nent of a Bayesian network, Θ , represents the set of parameters that describes a con-
ditional distribution for each node xi in G, given its parents in G, i.e., P(xi |Pa(xi )).
Very often, the structure of the graph is given a causal interpretation, convenient from
the point of view of knowledge engineering and user interfaces. Bayesian networks
allow for computing probability distributions over subsets of their variables condi-
tional on other subsets of observed variables. This can be given the interpretation
of computing the probability of a hypothesis in light of evidence. BNs are widely
applied in decision support systems, where they typically form the central inferential
engine.

Consider the simple Bayesian network shown in Fig. 14.1. This is a simplified
example, illustrating various causes of allergy in children. The tendency to develop
allergies is often hereditary. Allergic parents are more likely to have allergic chil-

Fig. 14.1 A simple Bayesian network illustrating selected causes and effects of allergy in children.
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dren, and their allergies are likely to be more severe than those from non-allergic
parents. Exposure to allergens, especially in early life, is also an important risk factor
for allergy. When an allergen enters the body of an allergic child, the child can cough
or develop a rash. Figure14.1 shows the dependency structure among the variables
and the conditional probability distributions for each of the variables. All variables in
this example are Boolean. At the roots, we have the prior probabilities (e.g., that one
or both of the parents suffer from allergies or a child had a contact with allergen in
early life). The conditional probabilities for the non-root nodes give the probability
distributions over the nodes conditional on various outcomes of the direct predeces-
sors in the graph (e.g., probability distribution over the variable coughing given that
a child has allergy).

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks for
modeling dynamic systems. In a DBN, the state of a system at time t is represented
by a set of random variables Xt = (X1,t , . . . , Xn,t ). The state at time t generally
dependents on the states at previous time steps. Typically, we assume that each
state only depends on the immediately preceding state (i.e., the system is first-order
Markov), and thus we represent the transition distribution P(Xt |Xt−1). This can
be done using a two-slice Bayesian network fragment (2TBN) Bt , which contains
variables from Xt whose parents are variables from Xt−1 and/or Xt , and variables
from Xt−1 without their parents. The term dynamic means that we model the state
of a system over time, not that the model structure and its parameters change over
time (even though the latter is theoretically possible). A DBN is typically defined as
a pair of Bayesian networks (B0, B→), where B0 represents the initial distribution
P(X0, and B→ is a two time slice Bayesian netwok, which defines the transition
distribution P(Xt |Xt − 1) as follows [3]:

P(Xt |Xt−1) =
N∏

i=1

P(Xi,t |Pa(Xi,t ))

Consider a two years old childwhose parents suffer from allergy andwho has been
exposed to some allergens. We know that this child has not developed any symptoms
of allergy in the previous year. Suppose that we want to know the probability that
allergy appears in the third year. If we use the BN pictured in Fig. 14.1, we omit all
historical information except for the previous year. Figure14.2 (a) shows a DBN of
first temporal order, which means that we take into consideration not only present
observations but also these from the previous year.

As we mentioned above, one often assumes in practice that each state depends
only on the immediately preceding state. In most cases, taking into consideration
only the first-order dependence is probably sufficient. However, in general, we can
specify layers from t − n to n. There is a possibility that some phenomena could be
modeled with higher efficiency if they also take account of the influence of states
earlier than immediately preceding the current state of the model. To our knowledge,
the question whether such simplification of dynamic models leads to incomplete and
even erroneous results has never been studied systematically.
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Fig. 14.2 Dynamic Bayesian networks modeling causes and effects an allegry in children: (a) first
order DBN, (b) second order DBN. Number of slices is the number of steps for which we perform
the inference. In this example, one step means one year. Temporal plate is the part of dynamic
network that contains the temporal nodes. Hereditary Factor is time independent; the values of
remaining the nodes can change over time.

Figure14.2(b) shows a second order dynamic network, i.e., in which there are two
temporal arcs from node Allergy, the first order takes the information from one step
before, the second from two steps before. Typically, the older the child the lower
the probability of allergy appearing. And, generally, the child that has not developed
allergy two years in a row, has a lower chance of developing allergy in the third year.

14.3 Woman’s Monthly Cycle

Woman’s monthly cycle is driven by a highly complex interaction among hormones
produced by three organs of the body: the hypothalamus, the pituitary gland, and
the ovaries. There are five main hormones involved in the menstrual cycle process:
estrogen, progesterone, gonadotropin releasing hormone (GnRH), follicle stimulat-
ing hormone (FSH), and luteinizing hormone (LH).

Estrogen refers to a group of hormones that stimulate growth and strengthen
tissues. It is needed to build up the lining of the uterus so that it may nourish and
sustain a fertilized egg. Progesterone is produced by the follicle from which the
mature egg has been released (the follicle that has released an egg is called corpus
luteum). Progesterone helps make the endometrial lining ready for implantation if an
egg is fertilized during the cycle. It also prevents the egg follicles from developing
any further. GnRH, produced by the hypothalamus in the brain, is responsible for the
production and levels of estrogen in the body. FSH is secreted by the pituitary gland,
which is stimulated by the hypothalamus’ production of GnRH. Increased levels of
FSH help to stimulate egg follicles. LH, produced by the pituitary gland, is needed
to trigger the ovulation.

The woman’s monthly cycle consists of four phases (Fig. 14.3 shows these four
phases along with the associated hormone levels): (1) menstruation, (2) the follicular
phase, (3) ovulation, and (4) the luteal phase. Counting from the first day of the
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Fig. 14.3 Levels of hormones during the phases of the woman’s monthly cycle [13]

menstrual flow, the length of each phase may vary from woman to woman and from
cycle to cycle, although the entire cycle takes typically between 24 and 32days.

Menstruation begins with the first day of bleeding. Contraction of the muscle
layer occurs, expelling blood and endometrial cells through the vagina. During the
follicular phase (or the proliferative phase), the follicles in the ovary mature. The
main hormone controlling this stage is estrogen. Just before the ovulation, the level
of estrogen is high enough to cause an increased release of luteinizing hormone and,
as a result, the egg is released from the ovary. The luteal (or the secretory) phase is
the latter phase of the menstrual cycle. The main hormone associated with this stage
is progesterone, which occurs at significantly higher levels during the luteal phase
than during the other phases of the cycle.

In addition to measurable blood hormone levels, there are several readily acces-
sible indicators of the phase of the cycle, two of which we will use in our models.
The basal body temperature (BBT) is defined as the body temperature measured
immediately after awakening and before any physical activity has been undertaken.
It should bemeasured every day at the same time. Before ovulation, BBT is relatively
low. Following the ovulation, as a result of an increased level of progesterone in the
body, women typically experience an increase in the basal body temperature (BBT)
of at least 0.2 ◦C. This shift indicates that ovulation has occurred. The BBT charting
may provide valuable information about woman’s monthly cycle, such as duration
of the cycle, length of the follicular and luteal phases, and the pattern of the timing of
ovulation. Sometimes BBT can rise due to causes other than ovulation. This atypical
rise is treated as disturbance and can be caused by a change in conditions around the
measurement, such as later measurement time, lack of sleep, different thermometer,
high stress, travel, or illness. As the cycle progresses, due to hormonal fluctuations,
the cervical mucus increases in volume and changes texture. When there is no mucus
or the mucus discharge is small, the day is considered infertile. There can be also
a feeling of dryness around the vulva. Around the ovulation, mucus is the thinnest,
clearest, and most abundant, resembling egg white. In the luteal phase, it returns to
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the sticky stage. During the monthly cycle, the cervix changes its position, firmness,
and openness, in response to the same hormones that cause cervical mucus to be
produced and to dry up. At the beginning of the cycle, cervix is located low in the
vaginal canal and the os (the orifice of the uterus) is relatively small or closed. As
ovulation approaches, cervix moves up the vaginal canal and becomes softer, with
the os opening up. After ovulation cervix moves down and closes.

The menstrual cycle is a fairly noisy temporal process with memory spanning
over the entire cycle. This means that the current state is not only influenced by the
previous state but also by prior days, going back even to the beginning of the phase.

14.4 The Model

Accurate prediction of the fertile phase of the menstrual cycle is crucial for couples
whowant to conceive or coupleswhowant to avoid pregnancy using naturalmethods.
The fertile phase of themenstrual cycle is defined as the timewhen an intercourse has
a non–zero probability of resulting in conception. Because the fertile period starts
roughly five days before ovulation (this is essentially due to the fact that sperm can
live up to five and fertilize the egg when ovulation happens, prediction has to be
made in advance and, hence, asks for models that include an explicit notion of time.

Our model (Fig. 14.4), combines information retrieved from BBT charting with
observations of the cervical mucus secretions. It contains a variable Phase with four
states: menstruation, follicular, ovulation, and luteal. We included three observa-
tion variables: Basal Body Temperature (BBT), Bleeding and Mucus observation.
All variables are discrete. BBT has two possible values: lower range and higher
range, representing temperature before and after the BBT shift respectively. Bleed-
ing describes whether on a particular day the woman had menses or not. Mucus
observation can be in one of four states (s1 through s4), described in detail in [4].
We modeled time explicitly as n time steps, where n is the number of days of the
longest monthly cycle of the modeled woman. The model is of k-order, i.e., it con-
tains temporal influences between 1 and k. Figure14.4 shows an example DBN of
3rd order. Furthermore, while any DBN model should contain at least one first order
influence, amodel of order k does not need to include influences of all orders between
1 and k − 1.

To train a complex model we need a large number of observations. Learning mod-
els from data is based on strong theoretical foundations. Having sufficient amount
of data, we can reliably learn numerical parameters of the model. In practice, how-
ever, the number of data records is often limited and generally making it challenging
to learn reliable estimates of the parameters. Collecting data in case of a woman’s
monthly cycle problem will never result in sufficiently large data sets. Assuming that
a woman is fertile during 40years of her life, with roughly 13 cycles each year, she
can collect at most 520 records. When these 520 records have been accrued, they are
useless, as the woman is no longer fertile. In practice a woman will have not more
than a couple of years worth of reliable data, i.e., roughly twenty-something records.
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Fig. 14.4 A 3rd order DBNmodel of woman’s monthly cycle. The plots inside the rectangles show
the marginal probability distributions over the variables that they represent.

Typically, a model that aids in conception or in avoiding pregnancy, needs to rest on
a handful of records.

Learning conditional probability distribution tables amounts essentially to count-
ing data records for different conditions encoded in the network. The number of
parameters required to specify a CPT for a node grows exponentially in the number
of its parents, and thus the higher the order the more complex its structure and the
more data are needed to learn parameters. In case of a fifth order DBN network of
woman’s monthly cycle for the node Phase, we need to estimate 1, 024 parameters.
Even if we take into consideration that due to the specifics of the domain many
columns of the CPTs represent unlikely cases, we are still dealing with a problem of
insufficient amount of data. Please note, that most practical fertility awareness meth-
ods advise to consider charting at least six cycles to become familiar with a method.
This means two problems: (1) Constant struggle against over-fitting the model to the
data, and (2) Necessity to use prior knowledge, as a handful of records will never be
enough to learn a complex probabilistic model.

When we learn the network parameters from such a small amount of data, some
of the CPT entries might be learned from an insufficient number of records or there
might even be no data records to learn distributions for some combination of the
outcomes of the parents in a node. In order to provide more meaningful results
and to compensate for the small amount data, we have based the initial structure of a
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model and its parameters on the domain knowledge. This procedure can be described
as follows. We randomly divided all women into five equal subsets. For each woman
the training data set was the sum of four subsets, excluding this which the woman
belonged to. We learned the initial model parameters based on the population of
women. Then we applied these population–based model as the a priori parameters
in all woman–specific models. And as our intention was to simulate usage of a model
by woman who wants to become pregnant or wants to avoid pregnancy, we adjusted
the initial model to each woman using data for her first six cycles.

14.5 The Training Data

Our training data are drawn from an Italian study of daily fecundability [2], which
enrolled women from seven European centers (Milan, Verona, Lugano, Düsseldorf,
Paris, London and Brussels) and from Auckland, New Zealand. To our knowledge,
this is one of the most comprehensive data sets describing woman’s monthly cycle.
Between the years 1992 and 1996, 881women recorded a total of over seven thousand
monthly cycles. Women participating in the study satisfied the following five entry
criteria: (1) experienced in use of a Natural Family Planning method, (2) married
or in a stable relationship, (3) between 18th and 40th birthday at admission, (4) had
at least one menses after cessation of breastfeeding or after delivery, (5) not taking
hormonal medication or drugs affecting fertility. In addition, neither partner could
be permanently infertile and both had to be free from any illness that could affect
fertility.

In each menstrual cycle, the woman was asked to record the days of her period,
her basal body temperature, and any disturbances such as illness, disruption of sleep,
or travel. She was also asked to observe and chart her cervical mucus symptoms daily
during the cycle and to record every episode of coitus, with specification whether
the couple used contraceptives or not.

A menstrual cycle was defined as the interval in days between the first day of
menstrual bleeding in two neighboring cycles, where day 1 was the first day of fresh
red bleeding, excluding any preceding days with spotting. The day of ovulation was
identified in each cycle from records of basal body temperature andmucus symptoms.
The daily mucus observations were classified into four classes; ranging from a score
of 1 (no discharge and dry) to 4 (transparent, stretchy, slippery) [4]. The cervical
mucus peak daywas defined as the last daywith best qualitymucus, in a specific cycle
of the woman. If there were different mucus observations on one day, the most fertile
characteristic of the mucus observed determined the classification. To determine the
BBT shift, the ”three over six” rule (popular among fertility awareness methods
or FAMs) was used: The first time in the menstrual cycle when three consecutive
temperatures were registered, all of which were above the average temperature of
the last six proceeding days.

In our analysis, we included only 3, 432 (of 7, 017) cycles from 236 (of 881)
women. We excluded all women who collected fewer than seven cycles, because a
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woman needs at least six cycles to become familiar with a chosen fertility awareness
method.We also excluded cycles with no uniquely identified mucus peak or the BBT
shift days, because our model uses these values to determine the beginning of the
post–ovulatory infertility. We also excluded women with very long cycles (longer
than 40days).

14.6 Experiments

For each woman, we created seven DBNs of temporal orders ranging from 1 to 7.
Additionally, for each woman we created a model, with a structure that can change
after each cycle. We changed the structure of that model by adding or removing tem-
poral arcs, bearing inmind that first order arc is necessary and cannot be removed. For
the last 12 cycles, we calculated the minimal and most frequent day of the ovulation.
Dividing these values by twowe received the order of temporal arcs that should appear
in the model. Typically these orders were between six and nine. We determined the
initial parameters of all models based on domain knowledge. We personalized each
model using data for the first six cycles. After each cycle we re-evaluated the model’s
parameters based on previous cycles of thewoman. Because awoman’s body can also
change over time and with it the characteristics of the cycle, we updated the structure
and parameters using not more than the last 12 monthly cycles.

In case of monitoring a woman’s monthly cycle, the main goal is to predict the day
of ovulation and based on it to determine the fertile window. The number of fertile
days during a menstrual cycle is difficult to specify, as it depends on the life span of
the ovum and sperm, which varies from person to person and from cycle to cycle.
Most menstrual cycles start with infertile days (pre–ovulatory infertility), a period
of fertility and then several infertile days until the next menstruation (post–ovulatory
infertility). It is generally believed that an ovum can be fertilized only within the first
24h after ovulation [10]. Many authors agree that the start of the fertile interval is
strictly connected with changes in vaginal discharge and, in particular, estrogenic–
type cervical mucus secretions. However, they differ in their estimates of the length
of the fertile window. Potter [8] calculated that there are only two days during the
menstrual cyclewhen awoman can becomepregnant.Wilcox et al. [14] found that the
maximum sperm life span equals approximately five days (in presence of sufficient
level of estrogenic–type mucus), which comes down to a fertile period of six days,
including the day of the ovulation. The results of a multi–center study conducted by
theWorld Health Organization [6] estimate the fertile period to be asmany as 10days
before ovulation. Some of the fertility awareness methods assume this interval to be
as long as 13days or even longer [1, 5, 9, 12].

Our intention was to simulate the usage of DBN model by women who want to
become pregnant or want to avoid pregnancy. At every time step (i.e., every day of
the cycle), our model computed the most probable day of ovulation. If a time interval
between the current day and the day with the highest probability of the ovulation was
shorter than seven days, we marked the current day as fertile. To find the beginning
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Fig. 14.5 Probabilities of each phase during the monthly cycle: (a) order 1, and (b) order 7 DBNs

of the post–ovulatory phase, our model used the BBT shift: We considered the third
day after the BBT shift as infertile.

Just to give an idea of the capability of such models to reproduce the monthly
cycle, we present the probabilities of the four phases of the monthly cycle as a
function of time in Fig. 14.5. These probabilities were generated by DBNs models of
(a) first and (b) seventh order DBNs, trained on monthly charts of one of the women
in the data set. We entered no observation into the models, except for anchoring the
first time step to the first day of menses, i.e., first day of the monthly cycle. Please
note the increased similarity of the shape of the curves to that of the hormone levels
in Fig. 14.3, which are direct indications of phases of the monthly cycle.

To compare the accuracy of different models, we used two measures: (1) the
percentage length of the infertile period (the union of the pre–ovulatory and the post–
ovulatory phase), and (2) the percentage length of the fertile window.We determined
the number of fertile and infertile days in all cycles and divided this number by the
total length of the cycle for each woman and for each cycle. Effectively, we obtained
the percentage of all days that were classified as infertile and percentage of all days
that were classified as fertile. In our opinion, these two numbers (they add up to
100%) are a good indication of the precision of each model.

From the practical perspective, for a model of a monthly cycle to be useful, it
has to predict the day of ovulation and, ultimately, to determine the fertile window.
Days inside the fertile window that were classified as infertile are false negatives.
Please note that because of a possible application of a model like this in natural
family planning, false negatives may be much more serious than false positives, so
the model should minimize its false negative rate to zero. This is essentially the
case with all fertility awareness methods. Days that were marked as fertile and were
outside the fertile window are false positives. The smaller the false positive rate,
the closer the predicted day of ovulation is to the real day of ovulation, which can
be helpful for couples seeking pregnancy. In our experiment, as the gold standard,
we followed Wilcox et al. [14], who define the fertile window as the period between
day of ovulation minus five days and day of ovulation plus one day.
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14.7 Results

Table14.1 and Fig. 14.6 show the average percentage of fertile and infertile days
during a woman’s monthly cycle sorted in the descending order (i.e., the longest to
the shortest infertile period). The number of days in which a woman should abstain
from intercourse to prevent unplanned pregnancy is larger for lower order models.
The smaller the false positive rate, the closer the predicted day of ovulation is to
the real day of ovulation, which can be helpful for couples seeking pregnancy. The
higher the order of the model, the lower the percentage of the false positives. The
7–th order DBN model was most precise and indicated the longest infertile periods
and the shortest fertile periods.

False negatives (Table14.1 and Fig. 14.7) are an important measure of accuracy
of a FAM, because on one hand they may lead to unplanned pregnancy and on the
other hand to less likely conception in case of couples seeking pregnancy.

Table 14.1 Average percentage of fertile and infertile days and false negatives/false positives
during the monthly cycle for each of the compared DBN models.

Method % infertile days % fertile days % false negatives % false positives

SEL orders 0.52% 0.48% 0.0000% 22.84%

1st order 0.53% 0.47% 0.0000% 22.39%

2nd order 0.53% 0.47% 0.0000% 21.71%

3rd order 0.54% 0.46% 0.0000% 20.68%

4th order 0.56% 0.44% 0.0008% 19.42%

5th order 0.57% 0.43% 0.0008% 18.13%

6th order 0.59% 0.41% 0.0008% 16.00%

7th order 0.61% 0.39% 0.0008% 14.54%

Fig. 14.6 Average percentage of fertile and infertile days during the monthly cycle for each of the
compared DBN models.
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Fig. 14.7 False negatives and false positives duringmonthly cycle for each of the comparedmodels.

Our results show that higher order models (4th through 7th) show non-zero false
negative rate. We investigated this further and found that in each case there was an
anomalous cycle, not recognized by the model. It seems that higher order models
have the tendency to over-fit the data and be unable to deal with monthly cycles that
deviate from typical cycles.

14.8 Conclusion

We have presented the results of an experiment with a series of DBN models mon-
itoring woman’s monthly cycle. We have shown that higher order models are more
accurate than first order models, as summarized in Fig. 14.6. The lengths of the fertile
period for higher order models were shorter, which indicates a better ability of the
model to predict ovulation. The percentage of false negatives for all models was zero
or very close to zero (0.0008%). Higher order models tend to over-fit the data and
have difficulty with anomalous cycles. While we advise to use higher order temporal
models for systems with memory, we caution against too high order models when the
system exhibit significant noise, as such models may over-fit the data and perform
poorly when the course of events departs from typical.
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