
Chapter 10
Chain Graphs and Gene Networks

Dag Sonntag and Jose M. Peña

Abstract Chain graphs are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formalism to
represent probabilistic independence models, because they can model symmetric
and asymmetric relationships between random variables. This allows chain graphs
to represent a wider range of systems than Bayesian networks. This in turn allows
for a more correct representation of systems that may contain both causal and non-
causal relationships between its variables, like for example biological systems. In
this chapter we give an overview of how to use chain graphs and what research exists
on them today. We also give examples on how chain graphs can be used to model
advanced systems, that are not well understood, such as gene networks.

10.1 Introduction

In the previous chapter we saw how we could model advanced systems as Bayesian
networks (BNs) by representing the causal relations between the variables in the
system as directed edges. These models are widely used today but as noted in the
previous chapter they do have certain shortcomings. In this chapter we will discuss
one such shortcoming, namely the inability to model non-causal relations, and how
this can be solved usingmore expressive probabilistic graphicalmodel (PGM) classes
such as chain graphs (CGs).

When an expert is modelling a system it is often relatively easy to find causal
relations between the variables in the system and thereby model it as a BN. This
is especially true for well known systems where all relevant factors are included as
variables in the model. However, for more advanced systems some relations between
directly correlated variables might not have such a clear causal structure. This can be
formany reasons, such as that a hidden common cause exists between the variables or
that there exist selection bias between them. Modelling these relations with directed
edges is then incorrect from the perspective of interpretation and can cause incorrect
reasoning subsequently.
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CGs solve this problem by extending the ideas of BNs with an additional type
of edge representing non-causal relations between variables. Representing variables
as nodes, causal relations with directed edges and non-causal relations with non-
directed edges these models can therefore represent a larger set of models than BNs.
At the same time CGs keep key features of BNs such as their interpretability and
efficiency when it comes to inference and structure learning.

CGs are also interesting because they correctly can represent a much larger set
of independence models, and thereby probability distributions, than BNs, Markov
networks (MNs) or covariance graphs (covGs). BNs, MNs and covGs are the PGM
classes most commonly used today when modelling bioinformatics systems. This
means that for a probability distribution p there may be no BN G able to repre-
sent only and all independences in p when a CG F can. A BN can represent any
probability distribution, but only by including fewer independences, and thereby
additional dependences, than what actually exist in the underlying probability dis-
tribution. These spurious, additional, dependences can then later be “removed” by
the correct parametrization, but this is still problematic for several reasons. Firstly,
the advantage of using PGMs, such as the speed of inference, is larger the sparser
the graph is. By having more edges than necessary this advantage is lost. Secondly,
some of these edges might not make sense from a biological point of view. This is
problematic for practitioners trying to understand the system through its graph, since
the edges obscure the true (in)dependences between the variables.

A problem with CGs is however that there exists multiple types of non-causal
relations as described above. This means that depending on what kind of non-causal
relation we mean with the non-directed edge in our models we represent different
systems and thereby independence models. To distinguish the different meanings
of the non-directed edge we say that we have different CG interpretations, and
that the non-directed edge is interpreted differently in different CG interpreta-
tions. Today there exists mainly three CG interpretations in research. These are
the Lauritzen-Wermuth-Frydenberg (LWF) interpretation [7, 13], the Andersson-
Madigan-Perlman (AMP) interpretation [1] and the multivariate regression (MVR)
interpretation [3, 4].

One question that can be asked is how much more expressive CGs are compared
to BNs? If the advantage is small the additional complexity might not translate into
significantly bettermodels. It has however been shown that as the number of variables
increases CGs can express exponentiallymanymore independencemodels compared
to BNs. So for only 20 variables any CG interpretation can express approximate 1000
times more independence models, and thereby systems, compared to BNs [25, 26].
Hence for large domains with hundreds of variables the number of independence
models representable by BNs is incredibly small compared the number of indepen-
dencemodels representable by CGs. Therefore, CGs aremuchmore likely to provide
a realistic graph structure instead of obscuring the true relations in the system [25, 26].

In the rest of this chapter we will cover how these different CG interpretations
work and what systems they can represent. First, in the next section, we will however
describe the notationweuse. In Sect. 10.3we then describe the background andmean-
ing of the different CG interpretations, while in Sect. 10.4 we describe how such a CG
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can be learnt from a probability distribution. After a short conclusion and summary
in Sect. 10.5, we provide an alternative illustration of CGs as systems of linear equa-
tions in the Appendix. For simplicity we limit our discussion to continuous variables
but most results can also be generalised to systems with discrete or mixed variables.

10.2 Background and Notation

In this section,we review some concepts fromPGMs that are used later in this chapter.
All graphs and probability distributions are defined over a finite set of variables V
represented as nodes in the graphs.

If a graph G contains an edge between two nodes V1 and V2, we denote with
V1 → V2 a directed edge, with V1 ←→ V2 a bidirected edge (sometimes also called
a dashed edge) , and with V1 − V2 an undirected edge. With a non-directed edge
we mean either a bidirected edge or undirected edge. A set of nodes is said to be
complete if there exists edges between all pairs of nodes in the set. A complete set
of nodes is said to be a clique if there exists no superset of it that is complete.

The parents of a set of nodes X of G is the set paG(X) = {V1|V1 → V2 is in G,
V1 /∈ X and V2 ∈ X}. The children of X is the set chG(X) = {V1|V2 → V1 is in
G, V1 /∈ X and V2 ∈ X}. The spouses of X is the set spG(X) = {V1|V1 ←→ V2 is
in G, V1 /∈ X and V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1|V1 − V2

is in G, V1 /∈ X and V2 ∈ X}. The boundary of X is the set bdG(X) = paG(X) ∪
nbG(X)∪ spG(X). The adjacents of X is the set adG(X) = {V1|V1 → V2,V1 ← V2,
V1 ←→ V2 or V1 − V2 is in G, V1 /∈ X and V2 ∈ X}.

To exemplify these concepts we can study the graph G with five nodes shown
in Fig. 10.1a. In the graph we can see two bidirected edges, one between B and D
and one between D and E . Hence we know the spouses of D are B and E . G also
contains two directed edges from A to B and from B to E and we can see that E is the
only child of B and B is the only child of A. Finally G also contains one undirected
edge between C and D and hence C is a neighbour of D. All and all this means that
the boundary of B is A and D while the adjacents of B also contains E in addition
to A and D.

A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn such
that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only distinct
nodes. The length of a path is the number of edges in the path. A path is called a
cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1) ∪ spG(Vi+1) ∪ nbG(Vi+1)

for all 1 ≤ i < n. The descendants of a set of nodes X of G is the set deG(X) = {Vn|
there is a descending path from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. A path is
strictly descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The strict descendants of
a set of nodes X of G is the set sdeG(X) = {Vn| there is a strictly descending path
from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. The ancestors (resp. strict ancestors)
of X is the set anG(X) = {V1|Vn ∈ deG(V1), V1 /∈ X, Vn ∈ X} (resp. sanG(X) =
{V1|Vn ∈ sdeG(V1), V1 /∈ X, Vn ∈ X}). Note that the definition for strict descendants
given here coincides to the definition of descendants given by Richardson [21].
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Fig. 10.1 Three different graphs

A cycle is called a semi-directed cycle if it is descending and Vi → Vi+1 is in G for
some 1 ≤ i < n.

To exemplify these concepts we can once again look at the graph G in Fig. 10.1a.
We can here see two paths between B and C , B ←→ D − C and B → E←→D − C ,
and that the latter of these is descending while the former is not. An example of a
route between B and C that is not a path is B ←→ D ←→ E ← B ←→ D − C .
We can see that G contains one cycle B ←→ D ←→ E ← B that is semi-directed.
Moreover we can see that E is a strict descendant of A due to the strictly descending
path A → B → E , while D is not. D is however in the descendants of A together
with B, C and E . A is therefore an ancestor of all variables except itself.

A Markov network (MN) (resp. covariance graph (covG)) contains only undi-
rected (resp. bidirected) edges while a BN only contains directed edges and no
semi-directed cycles. A CG under the Lauritzen-Wermuth-Frydenberg (LWF) inter-
pretation, denoted LWF CG, contains only directed and undirected edges but no
semi-directed cycles. Likewise a CG under the Andersson-Madigan-Perlman (AMP)
interpretation, denoted AMP CG, is a graph containing only directed and undirected
edges but no semi-directed cycles. A CG under the multivariate regression (MVR)
interpretation, denoted MVR CG, is a graph containing only directed and bidirected
edges but no semi-directed cycles. A chain component C of a LWF CG or an AMP
CG (resp. MVR CG) is a maximal set of nodes such that there exists a path between
every pair of nodes in C containing only undirected edges (resp. bidirected edges).
A subgraph of G is a subset of nodes and edges in G. A subgraph of G induced by
a set of its nodes X is the graph over X that has all and only the edges in G whose
both ends are in X .

If we go back to our example in Fig. 10.1 we can see that the graph in Fig. 10.1b
is a subgraph of G over the variables B, D and E while the graph in Fig. 10.1c
is a subgraph induced by the same variables. We can also see that G is not a CG
of any of the interpretations since it contains a semi-directed cycle. An example of
a LWF CG or an AMP CG is instead shown in Fig. 10.2a while an example of a
MVR CG is shown in Fig. 10.2b. We can here see that H contains three connectivity
components {A}, {B} and {C, D} and that F contains two connectivity components
{A} and {B, C, D}.

Let X , Y and Z denote three disjoint subsets of V . We say that X is conditionally
independent from Y given Z if the value of X does not influence the value of Y when
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Fig. 10.2 Two different CGs

the values of the variables in Z are known, i.e. p(X, Y |Z) = p(X |Z)p(Y |Z) holds
and p(Z) > 0. We denote this by X⊥pY |Z if it holds in a probability distribution p
while we with X �⊥pY |Z mean that it does not hold in p. Moreover we say that X is
separated from Y given Z in a graph G if the separation criterion of G represents that
X is conditionally independent of Y given Z . We denote the this by X⊥GY |Z and
we will discuss different separation criteria for CGs later in this chapter. Similarly
we denote with X �⊥GY |Z that the separation criterion of G does not represent the
conditional independence. A probability distribution p is said to fulfill the global
Markov property with respect to a graph G, if for any X⊥GY |Z , given the separation
criterion for the PGM class to which G belongs, X⊥pY |Z holds. The independence
model M induced by a probability distribution p (resp. a graph G), denoted as I (p)

(resp. I (G)), is the set of statements X⊥pY |Z (resp. X⊥GY |Z ) that holds in p (resp.
G). Given two independence models M and N , we say that N includes M (M ⊆ N ),
iff X⊥M Y |Z implies that X⊥N Y |Z for every X , Y and Z .

We say that a probability distribution p is faithful to a graph G when X⊥pY |Z iff
X⊥GY |Z for all X , Y and Z . We say that two graphs G and H are Markov equivalent
or that they are in the same Markov equivalence class iff I (G) = I (H). A graph
G is inclusion optimal for a probability distribution p if I (G) ⊆ I (p) and if there
exists no other graph H in the PGM class of G such that I (G) ⊂ I (H) ⊆ I (p).

To illustrate the last concepts we can look at theMVRCG J and the independence
models in Fig. 10.3. In Fig. 10.3b we can see the independences that hold in J and
hence the independence model of J . Finally we can also see another independence
model in Fig. 10.3c such that I (J ) ⊆ M and hence that M includes the independence
model represented by J .

10.3 CG Interpretations

TheresearchonCGsstarted in the late1980swith theLauritzen-Wermuth-Frydenberg
(LWF) interpretation in order to combineBNs andMNs intomore expressivemodels.
Subsequently, the Andersson-Madigan-Perlman (AMP) interpretation and the multi-
variate regression (MVR) interpretation, both in commonuse in recent literature,were
proposed.Each interpretation isbasedonadifferent separationcriterionandadifferent
interpretation of the edges. No interpretation subsumes another [5, 23], and no inter-
pretation is generally better than any other. LWF, AMP and MVR interpretations are
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Fig. 10.3 Example of independence models

just different fromeach other, similarly asBNs andMNs are different fromeach other,
and are suited to different problems. We will in this chapter present each interpreta-
tion in three different ways. First in the classical sense, i.e. in terms of their separation
criteria as inDrton [5], secondly in terms of systems of linear equations and thirdwith
someintuitivemeaningbehind theedges in theCGs.Finallywewillalsogiveexamples
of how they can be used. Moreover, in the next section we will discuss how to decide
which interpretation to use whenmodelling a systemwith CGs.

First we will however see how BNs are presented in these three ways. For BNs
the separation criterion is as follows. Given three disjoint sets of nodes X , Y and Z
in a BN G, X⊥GY |Z iff there exists no path between X and Y such that:

1. every non-collider on the path is not in Z and
2. every collider on the path is in Z or sanG(Z).

A node B is said to be a collider between two nodes A andC on a path if the following
configuration exists in the path: A → B ← C . For any other configuration the node
B is a non-collider on the path. In addition, the interpretation in terms of a system
of linear equations is as follows. The probability distribution of every node in a
BN depends only on its parents. This means that every node Xi is modelled by the
equation Xi = βi ∗ paG(Xi )+ εi in the associated system of linear equations, where
βi is a weight vector measuring the influence of the individual parents and the noise
εi ∼ N (0, σi ) is independent of any other node’s noise. The intuitive meaning is
simply that the parent nodes are the cause of the children nodes.

For CGs the different interpretations have different separation criteria. As noted
in the introduction, the feature all CGs share is that they contain subgraphs, called
chain components, that are connected to each other by directed edges. Within each
chain component the type of edges varies depending on the interpretation: LWF CGs
and AMP CGs contain undirected edges while MVR CGs contain bidirected edges.
Even though the intuitive meaning of a CG is not as simple as for a BN, there are
similarities between the two PGM classes. For example, the separation statements
encoded by a CG correspond to the non-existence of routes with certain features, as
in BNs. Moreover, in terms of linear equations each component of a CG can be seen
as a supernode, with the corresponding probability distribution determined only by
its parents. If we let Ki be the component i in a CG G, then G has an associated
system of linear equations with normally distributed errors as follows:

Ki = βi paG(Ki ) + εi where εi ∼ N (0,Λi ).
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Fig. 10.4 An example CG G and some corresponding separations according to the LWF and AMP
interpretations.

εi represents the noise, or influence, between the nodes in the same component. How
this noise and the βi -vector are modelled varies between the different interpretations,
and gives them different intuitive meanings.

10.3.1 The LWF Interpretation

The LWF interpretation was introduced by Lauritzen, Wermuth and Frydenberg in
1989 [7, 13] and is the most well researched CG interpretation. As noted above,
LWF CGs contain components that are connected to each other by directed edges.
The separation criterion is the following. Given three disjoint subsets of nodes X , Y
and Z in a LWF CG G, X⊥GY |Z iff there exists no route between X and Y such
that:

1. every node in a non-collider section on the route is not in Z and
2. some node in every collider section on the route is in Z .

A section of a route is a maximal non-empty set of nodes B1...Bn such that the route
contains the subroute B1 − B2 − . . . − Bn . It is called a collider section if B1 . . . Bn

together with the two neighbouring nodes in the route, A and C (note that A and C
might be the same node), form the subroute A → B1 − B2 − . . . − Bn ← C in the
route. For any other configuration the section is a non-collider section.

A simple example of a CG is shown in Fig. 10.4a. Here the CG has four chain
components: A, B, {C, D, E} and F . If the graph is interpreted as a LWF CG the
separations and non-separations shown in Fig. 10.4b hold. Note that these are not all
the separations that hold in G.

When reasoning in terms of linear equations, the parents of a component can be
interpreted as the causes of the nodes in that component, and directed edges have
the same meaning as in a BN. So the linear equation of a node X j in a LWF CG is
X j = β j paG(Ki ) + ε j where Ki is the component to which X j . As shown in the
Appendix, the k-th element of β j can be interpreted as the sum of the weights of
all the paths in G between the parent Xk of Ki and the node X j of Ki such that the
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nodes in these paths are all in Xk ∪ Ki , and where the path weight itself is the product
of the weight of its edges. The noise ε j is then determined by the associated inverse
covariance matrix of that component. Furthermore, the corresponding entry in the
inverse covariance matrix for two nodes X j and Xm can be non-zero iff there exists
an undirected edge X j − Xm in G (see the Appendix for details). For example, we
can see from Fig. 10.4a that the influence from node B onto node D is direct since
there only exists one path between them. However, the influence from node A onto
node E is determined by the path A → C − E as well as A → D − C − E (see the
Appendix for details).

This characterisation of the influence of a parent of Ki means that parents influence
all the nodes in Ki , as influence propagates to all of Ki through its undirected edges.
We can see, for example, that in the second example above the influence from A onto
E is the same as A onto C except for the last path between C and E . This makes
LWF CGs similar to module networks, another PGM class that has shown promising
results for gene networks [22]. In module networks every node in a module, which
is similar to a component, has the same parents and parameters. In a LWF CG, every
node in the same component have the same parents when the LWF CG is seen as a
system of linear equations. However, the influence of the parents on a node depends
on the paths between them and, thus, it may be different for different nodes in the
component.

An example of a situation when LWF CGs are useful is when we want to model a
systemwith knowledge obtained from several experts, eachwith his or her own exclu-
sive field of competence. Each expert then gives information about the structural rela-
tionships between the variables within his or her domain given outside factors that
affect the variables in his or her domain of expertise. The expert does this by provid-
ing a MN over the variables in the domain and their outside factors. Moreover, since
the expert only knows about his or her domain and not how the outside factors are
related, he or she must assume that all outside factors are adjacent when creating the
MN. The subgraph of theMN induced by the variables in the experts domain can then
be seen as a component in a resulting LWF CG while the outside factors are added
as parents to their previous neighbours in the component. The internal structure of the
outside factorswill be defined by someother expert, who is expert over that domain. If
a strict causal ordering is kept between the variables, putting the different chain com-
ponents together into a single graph then results in LWFCG [28]. An example of this
inmedicine can be ifwehave three experts, one expertmodelling the probability that a
person have certain gene-expressions in his or herDNA, one thatmodels the probabil-
ity of different protein signalling data occurring in blood samples given these gene-
expressions and one that models the occurrence of different traits, such as diseases,
given the gene-expressions.

Other settings in which LWFCGs are appropriate is for modelling the equilibrium
state of a system containing feedback loops [12] or when variables of a system only
can bemeasured in an aggregated state [6]. It can also be noted that if a LWFCG only
contains directed edges it can be read as a BN while if it only contains undirected
edges it can be read as a MN.
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10.3.2 The AMP Interpretation

The AMP CG interpretation was introduced by Andersson, Madigan and Perlman
[1] as an alternative to the LWF interpretation because it preserves the recursive
characteristics of BNs. Similarly to LWF CGs, AMP CGs also contain components
connected to each other by directed edges, whereas each component internally only
contains undirected edges. As a result, an AMP CG containing only directed edges
can be read as a BN and an AMPCG containing only undirected edges can be read as
aMN similarly as a LWFCG.However, the separation criterion is different compared
to LWF CGs. Given three disjoint subsets of nodes X , Y and Z in an AMP CG G,
X⊥GY |Z iff there exists no route between X and Y such that:

1. every non-collider on the route is not in Z and
2. every collider on the route is in Z or sanG(Z).

A node B is said to be a collider in an AMP CG G between two nodes A and C on a
route if one of the following configurations exists in G: A → B ← C , A → B − C
or A − B ← C . For any other configuration the node B is a non-collider. In the case
of the CG shown in Fig. 10.4a, we can see that the separations and non-separations
in Fig. 10.4c hold if we interpret it as an AMP CG. Note that these are not all the
separations and non-separations that hold in G.

The modelling of the noise also differs from LWF CGs. In the Appendix it is
shown that the associated linear equation of a node X j in an AMP CG G is X j =
β j paG(X j ) + ε j . The node depends only on its parents and not on the parents of the
whole component, as it does in the case of LWF CGs. The noise ε j is then controlled
by the inverse covariance matrix of that component. Furthermore, the corresponding
entry in the inverse covariance matrix for two nodes X j and Xk can be non-zero iff
there exists an undirected edge X j − Xk in G (see the Appendix for details). Intu-
itively, a small set of nodes works as an interface between other nodes in the com-
ponent and its parents. For example, we can see that C and D in Fig. 10.4a block the
influence from the parents A and B onto E if the graph is interpreted as an AMP CG.

AMP CGs are useful when we have a set of variables for which the internal
relations has no causal ordering, so the relations should be modelled as a MN, but
also a second set of variables which can be seen as causes for some of these variables
in the first set. The internal structure of the first set of variables can then be modelled
as a MN, creating a chain component in an AMP CG, and the causes as parents of
some of the variables in the chain component. Note that for AMP CGs the parents
only affects the direct children in the chain component, not all the nodes in the chain
component such as in the case of LWF CGs. An example in medicine when such a
modelmight be appropriate iswhenwe aremodelling pain levels on different areas on
the body of a patient. The pain levels can then be seen as correlated “geographically”
over the body, and hence be modelled as a MN. Certain other factors do however
exist that alters the pain levels locally at some of these areas, such as the type of body
part the area is located on or if local anaesthetic has been administered in that area
and so on. These outside factors can then be modelled as parents affecting the pain
levels locally.
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While both LWF CGs and AMP CGs consist of MNs as chain components they
differ in the way the parents of the component affect the variables in the component.
In a LWF CG each parent affects all the variables in the component, i.e. the informa-
tion travels through the children, while in an AMP CG the parents only affects the
actual children, i.e. the information does not travel to the other variables in the chain
component. Hence when we have a system for which some parts best are modelled
as MNs and some parts as BNs we can use either a LWF CG or AMP CG, depending
on which type fits the independence model of the system best.

10.3.3 The MVR Interpretation

MVR CGs were originally introduced by Cox and Wermuth [3, 4], and are equiva-
lent to the acyclic directed mixed graphs without semi-directed cycles presented by
Richardson [21]. Cox and Wermuth represented these graphs using directed edges
and dashed edges, but we followRichardson [21] as we feel that the notation is closer
to that of BNs when it comes to the separation criterion.

The most important difference between the MVR CGs compared to AMP CGs
and LWFCGs is thatMVRCG components contains bidirected instead of undirected
edges. As a result, MVR CGs is a superclass of BNs and covGs instead of BNs and
MNs as in the case of AMP and LWF CGs [4]. MVR CGs also have the following
separation criterion: Given three disjoint subsets of nodes X , Y and Z in a MVR CG
G, X⊥GY |Z iff there exists no path between X and Y such that:

1. every non-collider on the path is not in Z and
2. every collider on the path is in Z or sanG(Z).

A node B is said to be a collider in a MVR CG G between two nodes A and C
on a path iff one of the following configurations exists in the path: A → B ← C ,
A → B ←→ C , A ←→ B ← C or A ←→ B ←→ C . For any other configuration the
node B is said to be a non-collider. An example of aMVRCG is shown in Fig. 10.5c,
with some of the corresponding separations and non-separations in Fig. 10.5b.

The associated system of linear equations is similar to that of the AMP CGs: each
node depends only on its parents and not on the parents of the whole component.

Fig. 10.5 A MVR CG and
some corresponding
separations.
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Fig. 10.6 A gene and disease example with MVR CG representation, BN representation and MN
representation

The associated linear equation for a node X j can therefore be written as X j =
β j pa(X j ) + ε j , where ε j is dependent on the other nodes in the same component.
Unlike AMP CGs, MVR CGs can contain non-zero values in the corresponding
covariance matrix (not the inverse covariance matrix as for AMP CGs) only for
nodes that are spouses (see the Appendix for details). The intuitive meaning behind
the MVR CGs is therefore very close to that of AMP CGs, differing only in the noise
modelling.

A typical situation that gives rise to a MVR CG is in the presence of hidden
variables, i.e. unobserved variables that are parents of at least two observed variables
in the data. An example of a situation for which a MVR CG is useful is if we have
a system containing two genes and two diseases caused by these such that Gene1
is the cause of Disease1 and Gene2 is the cause of Disease2 but where we also can
see that the diseases are correlated. In this case we might suspect the presence of an
unknown factor inducing the correlation between Disease1 and Disease2, such as
being exposed to a stressful environment. Having such a hidden variable results in the
independencemodel described in the information above.We can nowchoosewhether
we would like to model this hidden variable in our model, but due to difficulties of
measurement let us assume we do not. The MVR CG representing the information
above is shown in Fig. 10.6a while the inclusion optimal BNs and MN are shown in
Fig. 10.6b and 10.6c, respectively. We can now see that it is only the MVR CG that
describes the relations in the system correctly.

10.4 CG Learning

As is the case with BNs, the graph structure of a CG can be learnt either from expert
knowledge on the system or from data. The process of creating a CG from expert
knowledge is very similar to that of a BN but where the non-directed edges can
be used to model the variable correlations described in the previous section. An
example of this process is given in Subsect. 10.4.1. In Subsects. 10.4.2 and 10.4.3 we
then cover the structure learning algorithms that exist today that allow a CG to be
learnt from a probability distribution p. First in the special case where we assume p
is faithful to some CG and then the more general case where we do not. Finally, in
Subsect. 10.4.4, we also discuss the current research on how CGs can be factorized
and how the parameters can be learnt.
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10.4.1 Learning CGs by Expert Knowledge

The process of creating a CG from expert knowledge of a domain is very similar
to that of creating a BN from expert knowledge. Some important parts do however
differ, such as choosing which CG interpretation to use. In this subsection we will
therefore give an example of how this process can be performed.

The example we will be using was introduced by Lappenschaar et al. [10] and
concerns the interaction between two diseases, diabetes mellitus and lipid disorder,
along with typical blood measurements, two risk factors and a possible treatment.
The blood measurements we are considering are elevated blood cholesterol levels
and elevated blood glucose levels while the risk factors are familial hypercholes-
terolaemia and obesity and the possible treatment antidiabetic therapy. In this case
we know that familial hypercholesterolaemia increases the chance for lipid disorder
and that lipid disorder in turn causes the blood cholesterol levels to be elevated.
Similarly we know that antidiabetic therapy decreases the chance of having diabetes
mellitus while having diabetes mellitus increases the blood glucose levels. Obesity
is also known to cause both lipid disorder and diabetes mellitus. These are all causal
relations and hence can be represented as directed edges in our CG. Finally we also
know that there exists a correlation between diabetes mellitus and lipid disorder that
cannot be explained only by the common parent obesity. I.e. if a person has diabetes
mellitus he or she is more likely to also have lipid disorder than another person that
does not have diabetes mellitus, even if they have the same level obesity. This corre-
lation is not causal since it would be wrong to say that diabetes mellitus causes lipid
disorder or vice versa and hence we represent the correlation with a non-directed
edge. The resulting CG can be seen in Fig. 10.7.

As noted above the process so far corresponds well to that of BNs. The difficulty
now is to choose which interpretation to use and thereafter to check that the CG can
represent the dependences that exist in the system according to our expert knowledge.
In some cases this might be easy and we might identify the non-causal correlation
as a relation typically represented by a certain CG interpretation. This can for exam-
ple be if we know that there exists some hidden common cause between variables
that has non-directed edges between them (MVR CG) or if these relations are better
described as feedback relations (LWF CG). In many cases we might however not
have this information and we are then left to study the represented independence
model. The first thing one can consider is whether or not information should “flow”
through from parents of a component to all nodes in the component. In our case this
would for example be whether familial hypercholesterolaemia increases the proba-
bility of having diabetes mellitus, given that no other information is known. If this is
the case, then we know that the LWF CG interpretation is the only CG interpretation
representing this dependency. If it is not the case, then we will have to consider
both AMP and MVR CGs. To see the difference between these interpretations we
need three nodes X, Y and Z in the same component such that X is adjacent of Y
and Y is adjacent of Z while X and Z are non-adjacent. Then, if X⊥Z |pa(X), we
know that the relation is best represented by a MVR CG, while if X �⊥Z |pa(X), it
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Fig. 10.7 TheCGcorresponding to the lipid disorder-diabetesmellitus examplewith a non-directed
edge between lipid disorder and diabetes mellitus

is best represented by an AMP CG. Finding the best interpretation becomes even
more problematic if multiple types of non-causal relations have been included in the
model, corresponding to different CG interpretations. In such a case one either has
to choose the interpretation that fits most of the relations or choose an even more
general PGM class than CGs. In our example we can note that familial hypercholes-
terolaemia does in fact increase the probability of having diabetes mellitus, given no
other information, and hence we want to use the LWF CG interpretation. This also
corresponds well with the authors choice, even though their choice is based on that
lipid disorder and diabetes mellitus have a feedback relation between them and that
the diseases almost always are in some kind of equilibrium [10].

Once a CG interpretation have been chosen it is also important to make sure
that the model can represent all desired (conditional) dependences. If a (conditional)
dependency is not represented an extra edge will have to be added. This is of course
undesirable since it obscures the “true” relations in the system but as always in
PGM modelling we want a model accurately representing all dependences in the
underlying system while still representing as many independences as possible. This
last step is especially important if the non-causal relationmodelled does not perfectly
correspond to a CG interpretation or if multiple types of non-causal relations exist
in the modelled system.

10.4.2 Learning CGs Under the Faithfulness Assumption

All structure learning algorithms that exist for CGs today are constraint based and
assume that the data comes in the form of a probability distribution p. Such a dis-
tribution can for example be found through a set of samples of the system. In this
subsectionwewill cover the casewherewe assume that p is faithful to someCGwhile
we in the next subsection relax that assumption.We say that a probability distribution
p is faithful to some CG G iff G have the same separations and non-separations as
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independences and dependences in p, i.e. that G can perfectly represent the inde-
pendence model of p. This means that a probability distribution p that is faithful to
some LWF CG G not necessarily is faithful to some AMP CG H , and hence that
faithfulness is dependent on the PGM class we have in mind [23].

It is important to stress that this is a strong assumption. However, faithfulness
allows for very fast and efficient algorithms since the reasoning in the algorithms
can be made in the space of all CG models, instead of in the much larger space of all
independence models. Today there exist structure learning algorithms for all three
interpretations under the faithfulness assumption. Three of these are based on the PC
algorithm [15, 27] used for BNs and contain three phases. In the first phase they learn
the adjacencies of the CG; in the second they orient some of the edges according to
simple rules; and in the third the remaining edges are oriented to avoid semi-directed
cycles. This allows for an efficient way of learning the structure where no step has
to be backtracked. For a comprehensive treatment of these algorithms we refer the
reader to Studený’s work [29] for LWF CGs, Peña’s work for AMP CGs [19] and
Sonntag and Peña’s work [24] for MVR CGs. Finally there also exists a second,
decomposition-based algorithm for learning LWF CGs developed by Ma et al. that
has been shown to be of lower complexity than thePCvariant algorithm [14]. It should
be noted that since all structure learning algorithms are constraint based they will
only find a CGwith the correct independence model. Finding the CGwith the correct
causal explanation requires additional expert knowledge or experiments. However,
having a CG with the correct independence model allows us find all possible causal
explanations and their corresponding CGs.

10.4.3 Weakening the Faithfulness Assumption

It has been argued that it is unlikely that a randomly generated probability distribution
that factorizes according to a BN is unfaithful to the BN [16]. While this is true if
every parameter in a BN is generated randomly, the argument may not hold if the
parameters have been hand picked (e.g. by a designer or by nature through evolution).
Needless to say these are the systems we are mostly interested in modelling.

If onewould apply the learning algorithms described in the previous subsection on
a probability distribution that is not faithful to a CG of the appropriate interpretation
it can no longer be guaranteed that the learnt CG can factorize the probability distri-
bution properly. This means that the learnt CG might represent independences that
do not exist in the underlying system which the probability distribution represents.
Hence there might exist relations between variables in the underlying system that are
not represented in the CG model. Moreover this means that no matter how the CG
is parametrized it can never represent the original probability distribution perfectly.
This is of course a problem since we would like to learn an inclusion optimal CG, i.e.
a CG that can factorize the probability distribution, but contains as many separations
as possible [20].
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Unfortunately, learning a CG without assuming faithfulness is very complex and
computationally demanding. The only algorithm for this task in the current literature
is the CKES algorithm for LWF CGs presented by Peña et al. [20], which is based
on a similar algorithm for BNs called KES [17]. The algorithm works by iteratively
adding (resp. removing) separations between variables in theCG that are independent
(resp. dependent) in the probability distribution given their boundary in the CG of
that iteration. This is performed by removing (resp. adding) the appropriate edges
in the CG. Moreover, to ensure that an inclusion optimal CG is reached at the end
of the algorithm all CGs in the Markov equivalence class of the CG in any iteration
may have to be searched for improvements. Like all efficient learning algorithms
certain assumptions do however have to be made about the probability distribution.
These are that the independence model induced by it fulfills the graphoid properties
as well as the composition property [20]. The graphoid properties are satisfied for all
strictly positive probability distributions, while the composition property is satisfied
for every Gaussian probability distribution.

10.4.4 Factorisation and Parameter Learning

Hitherto very little research has been done on CG parameter learning and hence it
is one of the weak points of CGs. Although parametrizations exist for all three CG
interpretations for continuous variables [1, 3, 18, 31] it exists no efficient way of
learning these parameters from a probability distribution. Instead iterative algorithms
have to be used similarly as for MNs. We will here show an example of how this is
done for LWF CGs.

The factorisation of a probability distribution p with variables X1, . . . , Xn accord-
ing to a LWF CG G with components K1, . . . , Km is

p(X1, ..., Xn) =
m∏

i=1

p(Ki |paG(Ki )). (10.1)

Each component Ki can then be factorized clique-wise as follows

p(Ki |paG(Ki )) = 1

Zi

∏

M∈MC

φM , (10.2)

where MC are the complete subsets in the closure graph of Ki , i.e. the induced
subgraph G Ki ∪paG (Ki ) where each directed edge is replaced by an undirected edge
and each pair of vertices in paG(Ki ) also are connected by an undirected edge. Each
φM is then a potential over the variables in M and Zi is a normalization constant. In
other words, the probability distribution of the closure graph of each component can
be seen as a MN. To parametrize these products and potentials we can then simply
parametrize the system of linear equations since there exists a one to one relation
between it and the probability distribution.
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Another way to parametrize LWF CGs have been introduced by Lappenschaar
et al. [10]. They proposed a qualitative approach to LWF CGs in which it is only
calculated whether two variables adjacent in the graph have positive, negative or
ambiguous influence on each other, and not the actual parameter value. In the article
Lappenschaar et al. describes how these parameters can be learnt from data and uses
the approach for modelling the interaction between diabetes and lipid disorder given
the relevant factors. Their results show that one of the advantages of using qualitative
LWF CGs compared to qualitative BNs is the ability to capture equilibrium models.

10.5 Summary

In this chapter we have shown how CGs can be used to model complex system such
as gene networks. We have also shown some advantages of using CGs compared to
usingBNs,MNs or covGs,which aremore commonly used in real-world applications
today. Themain advantage is that CGs aremore flexible since they can represent both
causal and non-causal relations and thereby represent a larger set of independence
models compared to BNs, MNs or covGs. This means that CGs can express a model
that is closer, or at least as close, to the real system as any BN, MN or covG. At
the same time, they are still easy to interpret and one can relate their structure to the
underlying molecular processes.

We have also discussed structure learning algorithms for all of the CG interpre-
tations. Using these algorithms on samples from an advanced system like a gene
network will result in a CG which may give good insight into how the variables in
the system interact, even if it contains non-causal relations between its variables.

10.6 Appendix, System of Linear Equations for CGs

In this appendix we derive and present how the separation criteria of the different
interpretations translate into systems of linear equations.

10.6.1 LWF CGs

Let G be a LWF CG with connectivity components K1, . . . , Kn . Let N (G) denote
the set of regular Gaussian distributions that factorize with respect to G, which
coincide with the set of distributions that satisfy the LWF global Markov property
with respect to G [11, Theorems3.34 and 3.36]. Let p ∈ N (G). Assume without
loss of generality that p has mean 0. Let Ω i

Ki ,Ki
and Ω i

Ki ,paG (Ki )
denote submatrices

of the precision matrix Ω i of p(Ki , paG(Ki )). Then, as shown in [2, Sect. 2.3.1],
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Ki |paG(Ki ) ∼ N (β i paG(Ki ),Λ
i ) (10.3)

where
β i = −(Ω i

Ki ,Ki
)−1Ω i

Ki ,paG (Ki )
(10.4)

and
(Λi )−1 = Ω i

Ki ,Ki
. (10.5)

Then, as shown in [18, Sect. 3], G has associated a system of linear equations
with normally distributed errors as follows. For every Ki ,

Ki = β i paG(Ki ) + εi (10.6)

where
εi ∼ N (0,Λi ) (10.7)

and
(Ω i

Ki ,Ki
) j,k = 0 for all j, k ∈ Ki such that j − k is not in G (10.8)

and

(Ω i
Ki ,paG (Ki )

) j,k = 0 for all j ∈ Ki and k ∈ paG(Ki ) such that j ← k is not in G.

(10.9)
It is worth mentioning that the mapping above between the probability distri-

butions in N (G) and the systems of linear equations is bijective [18, Lemma1].
Moreover, an alternative (but equivalent) parameterization of the probability distri-
butions in N (G) is presented in [30].

Then, G has associated a system of linear equations with correlated errors as
follows. For every X j ∈ Ki ,

X j = β j paG(Ki ) + ε j (10.10)

where
β j is the j − th row of β i (10.11)

and
Cov(ε j , εk) = (Λi ) j,k . (10.12)

Note that X j is a linear combination of paG(Ki ) and not of paG(X j ). Note also
that, as shown in [32, Propositon 5.7.3],

(Ω i
Ki ,Ki

)−1 = ΣKi ·paG (Ki ) (10.13)

where ΣKi ·paG (Ki ) represents the partial covariance matrix of Ki given paG(Ki ).
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Then, as shown in [8, Theorem1], the element (A, B) of (Ω i
Ki ,Ki

)−1 can bewritten
as a sum of path weights over all the paths in G between A and B through nodes in
Ki . Specifically,

((Ω i
Ki ,Ki

)−1)A,B = (ΣKi ·paG (Ki ))A,B =
∑

ρ∈ρA,B

(−1)|ρ|+1
|(Ω i

Ki ,Ki
)\ρ |

|Ω i
Ki ,Ki

|
|ρ|−1∏

l=1

(Ω i
Ki ,Ki

)ρl ,ρl+1

(10.14)
where ρA,B denotes the set of paths in G between A and B through nodes in Ki , |ρ|
denotes the number of nodes in a path ρ, ρl denotes the l-th node in ρ, and (Ω i

Ki ,Ki
)\ρ

is the matrix with the rows and columns corresponding to the nodes in ρ omitted.
Moreover, the determinant of a zero-dimensional matrix is taken to be 1. This leads
to the following interpretation of β j : By Eqs. 10.4, 10.11 and 10.14, the k-th element
of β j can be written as sum of path weights over all the paths in G between Xk and
X j trough nodes in Ki .

10.6.2 AMP CGs

Let G be an AMP CG with connectivity components K1, . . . , Kn . LetN (G) denote
the set of regular Gaussian distributions that satisfy the AMP globalMarkov property
with respect to G. Let p ∈ N (G). Assumewithout loss of generality that p has mean
0. Then, as shown above, Ki |paG(Ki ) ∼ N (β i paG(Ki ),Λ

i ). Then, as shown in [1,
Sect. 5], G has associated a system of linear equations with normally distributed
errors as follows. For every Ki ,

Ki = β i paG(Ki ) + εi (10.15)

where
εi ∼ N (0,Λi ) (10.16)

and
((Λi )−1) j,k = 0 for all j, k ∈ Ki such that j − k is not in G (10.17)

and

(β i ) j,k = 0 for all j ∈ Ki and k ∈ paG(Ki ) such that j ← k is not in G. (10.18)

It is worth mentioning that the mapping above between the probability distribu-
tions inN (G) and the systems of linear equations is bijective [1, Sect. 5]. Moreover,
the first constraint here coincides with the first constraint in the previous section.

Then, G has associated a system of linear equations with correlated errors as
follows. For every X j ∈ Ki ,
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X j = β j paG(X j ) + ε j (10.19)

where
β j contains the nonzero elements of (β i ) j · (10.20)

and
Cov(ε j , εk) = (Λi ) j,k . (10.21)

Note that, unlike in the previous section, X j is here a linear combination of
paG(X j ) and not of paG(Ki ).

10.6.3 MVR CGs

Let G be a MVR CG with connectivity components K1, . . . , Kn . Then, G has asso-
ciated a system of linear equations with normally distributed errors as shown in the
previous section except for two differences. First,N (G) now denotes the set of regu-
lar Gaussian distributions that satisfy the MVR global Markov property with respect
to G. Second, we now replace Eq.10.17 with

(Λi ) j,k = 0 for all j, k ∈ Ki such that j ←→ k is not in G. (10.22)

See also [9].
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