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Preface

Medicine and health care are currently faced with a significant rise in their complexity.
This is partly due to the progress made during the past three decades in the fundamental
biological understanding of the causes of health and disease at the molecular,
(sub)cellular, and organ level. It is also partly caused by the increased specialization of
both biomedical research and clinical practice, and greater involvement of policy
makers in health care to control costs. Promises made by biomedical researchers that
their research results will have clinical impact, e.g., that cancer can be cured by
immune therapy, have also increased expectations from society about what healthcare
is able to deliver. However, it is rarely the case that a discovery at the molecular level
has immediate consequences for the diagnosis and treatment of patients.

A major problem is that the progress made by the basic sciences increases the
quantity of information that one has to deal with when making decisions at the level
of the patient or health care in general. An additional problem is that this information
arises from research at different levels: from the molecular level, via the subcellular
level, at one end of the spectrum, to the patient and health-care level at the other end.
How to bridge these different levels is currently unclear although it has given rise to the
creation of yet another field: translational medicine.

However, although there are huge differences in the techniques and methods used by
biomedical researchers, there is now an increasing tendency to share research results in
terms of formal knowledge representation methods, such as ontologies, statistical
models, network models, and mathematical models. As there is an urgent need for
health-care professionals to make better decisions, computer-based support using this
knowledge is now becoming increasingly important. It may also be the only way to
integrate research results from the different parts of the spectrum of biomedical and
clinical research.

Exploitation of knowledge technologies in biomedicine and health care, ranging
from biological ontologies to computerized clinical practice guidelines, has been used
as a solution to the aforementioned issues. However, it has been difficult to integrate
knowledge from different levels, even when concerning a single disease.

Many different formal representations are being used at the output of biomedical
research. Probabilistic methods, such as Bayesian networks, have proved themselves
useful for problems where uncertainty is important, such as medical decision making
and prognostics, but also in biology. Logic plays a key role as a basis for medical
ontologies, but also in the formalization of important medical concepts such as diag-
nostics. Differential equations are popular for describing the dynamics of biological
processes at the molecular level. These methods can be extended with all kinds of
semantic concepts, such as space, in the biomedical domain. Space is an important
concept when developing probabilistic models of, e.g., the spread of infectious disease,
either in the hospital or in the community at large. Reasoning with time is already
provided by differential equations, but can also be done in other formalisms, such as



probability theory and logic. Temporal reasoning is important in the context of per-
sonalized health care.

The aim of the book Foundations of Biomedical Knowledge Representation is to
shed light on developments in knowledge representation at different levels of
biomedical application, ranging from human biology to clinical guidelines, and using
different techniques, from probability theory and differential equations to logic. While
there is interdisciplinary cooperation between the different fields, there is a clear need
for understanding the relationships of representation and reasoning among the different
communities.

What the book will certainly make clear is that since the end of the 1970s, when
knowledge representation and reasoning in the biomedical field became a separate area
of research, huge progress has been made in the development of methods and tools that
are finally able to have an impact on the way medicine is being practiced.

We wish to thank all the contributors to this book for their dedication in creating a
truly outstanding account of modern methods in biomedical knowledge representation
and reasoning.

October 2015 Arjen Hommersom
Peter J.F. Lucas

VI Preface
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Chapter 1
How to Read the Book “Foundations
of Biomedical Knowledge Representation”

Peter J.F. Lucas and Arjen Hommersom

1.1 On the Nature of Things

Biology and medicine are very rich knowledge domains in which already at an early
stage in their scientific development it was realised that without a proper way to
organise this knowledge they would inevitably turn into chaos. Early examples of
organisation attempts are for example “De Rerum Natura (On the Nature of Things)”
by Titus Lucretius Carus (99–55 BC), which explains the natural and physical world
as known at the time, and of course the work “Systema Naturae” by Carl Linnaeus
published in 1735. The latter book can be seen as the clear recognition of the need
of using systematic methods, here principles of taxonomic organisation, to classify
nature. As soon as one considers using systematic methods, computer-based repre-
sentations and algorithms come to mind.

Today, the size and complexity of medical-biological knowledge has risen to
such a dazzling height that one cannot even imagine not to use computer-based
methods. However, so far this has been especially the case for the representation and
storage of basic biological knowledge—not the main focus of the present book—
rather than for medical and clinical knowledge. The amount of detailed biological
knowledge available nowadays is so large that even people specialised in particular
biological areas would not be able to remember this specialised part in toto. Thus,
the application of formalisms such as description logics to represent knowledge
about genetic mechanisms and the proteins involved was in the end unavoidable.
Access to these knowledge bases, such as KEGG1 (Kyoto Encyclopedia of Genes
and Genomes), GO2 (Gene Ontology), and the RCSB PDB3 (Protein Databank) is
essential for the present-day working biologist and biochemist to make scientific
progress. These knowledge bases are standard tools and part of the computational
environment used in these research areas.

1www.genome.jp/kegg.
2geneontology.org.
3www.rcsb.org/pdb.

© Springer International Publishing Switzerland 2015
A. Hommersom and P.J.F. Lucas (eds.), Biomedical Knowledge
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The characteristics of the medical area, however, are different from those of re-
search in biology, even though the former area is firmly grounded on biological
knowledge. First, knowledge is not mainly used as part of research but primarily for
themanagement of disease, such as the establishment of the diagnosis, treatment, and
prognosis in patients. Second, medical doctors are trained to memorise quite a lot of
the knowledge involved in decision making, and this knowledge is often simplified
to make the memorisation feasible. As a consequence, the need for computer-based
methods is not felt as strongly as in biology, where there is not such a clear rationale
for simplifying knowledge.

Simplification of knowledge with the aim of keeping the complexity of the
decision-making process manageable to humans has a long tradition in medicine.
This is, for example, reflected by the frequent use of acronyms, even for proce-
dures (e.g. CABG, pronounced as ‘cabbage’, i.e. the Coronary Artery Bypass Graft
procedure). Yet, with the substantial progress made in biomedical, i.e. both human-
biological and clinical, research there are good reasons to consider the biomedical
area afresh and wonder whether there may be better, more scientific ways to man-
age disease in patients. This in itself is not a new idea, and similar ambitions were
expressed before in the 1980s by the medical decision making movement [7]. At the
same time, there was great belief in the potential of artificial intelligence in medi-
cine with programs such as MYCIN, INTERNIST-I, and CASNET [2, 4]. Reality in
biomedicine appeared to be more resistant to change than thought by many people
at the time and not much happened.

However, the current circumstances are not the same as those in the 1980s. There
is now a stronger tendency to take errors and mistakes in clinical medicine seriously
and researchers are identifying ways to prevent them [3]. One also realises that
computer-based methods may contribute to a reduction in the avoidable clinical
errors and mistakes. At the same time, developments in computing-science methods
and tools have continued, which has made it easier to cross the boundary between
informal biomedicine and computer-based formalisation.

1.2 Towards Biomedical Knowledge Representation

We have now definitely arrived in the digital age and even healthcare workers have
entered this era, mainly because they just followed the rest of society. There is some
irony in this part of the evolution in healthcare, since complex information systems
have been in use in healthcare at least since the 1970s, and so healthcare was in a
perfect position to take the lead in digitisation. Despite several attempts, this never
happened at the time, at least not on a global scale,mainly because healthcareworkers
were not convinced that it would contribute to better and more convenient patient
care. Nevertheless, the current situation of almost full digitisation has created new
opportunities for using computer-basedmethods for the representation and reasoning
with medical knowledge, and this is where this book is about.

Partly because of the growth in basic biological knowledge and partly because of
new clinical insights obtained by clinical and epidemiological research, biomedicine
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remains one of the most knowledge-intensive areas. Even though basic biological, in
particular genetic, knowledge is an important ingredient in clinical decision making
nowadays, which is likely to increase more in the near future because of the trends
towards personal medicine, there still is this typical practical tendency of medical
doctors to control the complexity of the knowledge using its clinical relevancy as the
main guiding principle. This is for example reflected in the increasing importance
of clinical guidelines and protocols in medical decision making, because clinical
guidelines are the result of a process that results in documents that only include
what is clinically relevant. Even in this area it is recognised that the impact of the
evidence-based medicine movement that is associated with clinical guidelines will
have its limitations, because many medical doctors believe that medicine cannot be
practised in a systematic way (they call it “cookbook medicine”).

The modern research in biomedical computing takes these developments into
account, and this explains for example the work on computer-based guideline repre-
sentation and execution [5]. Rather than starting with new ways to formalise medical
knowledge, researchers take existing ‘representations’, although informal, as a start-
ing point. As researchers working in the computer-based guideline area can only
acknowledge, transforming an informal clinical guideline into an executable rep-
resentation that integrates well with clinical workflow is already a sufficiently big
challenge.

There are similar developments in other areas. For example, in the clinical setting
of diagnosis most of the work is now focussing on assisting medical doctors in a
particular diagnostic task, for example to help in the interpretation of radiological
images. There are still people who pursue the old idea, initially investigated with the
development of the INTERNIST-I system, of a diagnostic computer-based system
that covers the whole area of medicine, but now they do this using modern methods
offered by Bayesian networks4.

Similar developments in techniques has made it possible to assist and give in-
sight to clinicians in treating diseases in patients and in making predictions of the
outcome of treatment. Finally, the book also covers modern developments in repre-
sentation techniques for personal medicine, recommender systems andmonitoring of
disease, where time is an important aspect of the representation formalism. Disease
monitoring is an important topic in the context of eHealth [6].

1.3 Organisation of the Book

Knowledge representation methods [1] have been used for many different types of
knowledge-intensive tasks in biomedicine. The concept of ‘task’ has been used as
a way to capture the generic aspects of particular procedures, such as diagnostic
problem solving. The same ideas can also be applied to other domains; in that sense
only part of the tasks described in this book are domain specific. Nevertheless, in

4www.symptomate.com.

www.symptomate.com
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Tasks

Analysis

Diagnosis
(Part II)

Monitoring
(Part III)

Personalisation
(Part IV)

Synthesis

Prediction
(Part V)

Treatment
(Part VI)

Recommendation
(Part VII)

Fig. 1.1 Overview of the book.

this book we distinguish particular tasks and give them the names that they have in
medicine even though there may be similar tasks in other domains. The fact that we
deal with the domain of biomedicine often has implications for the way we represent
the domain, for example, often we use causality as a way to structure the domain
knowledge; abduction, i.e. explaining observations in terms of active causes is then
one possible method to implement the task of diagnosis. Many of these issues will
hopefully have become clear after reading the introductory chapter (Chap. 2) of the
book.

We have made a distinction between tasks that can be seen as a form of analysis,
and other tasks that put more emphasis on synthesis, as summarised in Fig. 1.1. The
book consists of 7 parts, where the first part introduces the book and the various
techniques used in the book; the other 6 parts are concerned with individual tasks.
Each part is started with an introductory chapter that is followed by one or more
specialised chapters. The following parts are distinguished:

Part I Introduction. A general description of knowledge representation methods
that are relevant for the different chapters included in this book.

Part II Diagnosis of Disease includes a general overview of diagnostic methods and
a chapter that describes the use of these methods for medical image interpretation.

Part III Monitoring of Health and Disease and Conformance concerns a descrip-
tion of general characteristics of themonitoring task and applications in the context
of clinical guidelines and the individual patient.

Part IV Assessment of Health and Personalisation puts a focus on the use of
graphical knowledge-representation formalisms, such as Bayesian networks and
chain graphs, to capture the features of disease at the level of the individual.Genetic
information and themodelling of the relationship between genetic information and
disease is key here.

Part V Prediction and Prognosis of Health and Disease is concerned with state-
ments of what is going to happen in the future, and uncertainty is something one
has to take into account. This explains the use of probabilistic methods in this
context.

Part VI Treatment of Disease. Treatment is concerned with following a sequence
of actions, taking into account the uncertainty in the diagnosis and the uncertainty

http://dx.doi.org/10.1007/978-3-319-28007-3_2
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in the expected outcome of the treatment. Both general principles of knowledge
representation of the treatment task and actual applications are described in three
chapters.

Part VII Recommendation. This last part of the book deals with supporting physi-
cians through recommendations based on the best available evidence. Knowledge
representation techniques have been used to develop computer-interpretable clin-
ical guidelines that can be used for various reasoning tasks. Furthermore, this
part also presents an alternative to guidelines by aggregation of clinical evidence
through argumentation theory.

With the early work as briefly summarised at the beginning of this chapter in
mind it becomes clear that modern knowledge representation and reasoning methods
cover a much broader area of biomedicine than the earlier methods, which often
only dealt with a specific clinical diagnostic problem. The modern methods now
also have a sound mathematical foundation in terms of logic, probability theory
and decision theory. This explains the title of the present book “Foundations of
Biomedical Knowledge Representation”. As the applications described in the book
already make clear, we are now finally on the edge that principles of knowledge
representation are creating impact in the biomedical field.
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Chapter 2
An Introduction to Knowledge
Representation and Reasoning in Healthcare

Arjen Hommersom and Peter J.F. Lucas

2.1 Development of the Field

Healthcare andmedicine are, and have always been, very knowledge-intensive fields.
Healthcare professionals use knowledge of the structure (molecular biology, cell
biology, histology, gross anatomy) and functioning of the human body as well as
knowledge of methods and means, some of them described by clinical guidelines,
to diagnose and manage disorders. In addition, knowledge of how healthcare is
organised is essential for the management of a patient’s disease.

Already in the early days of research in artificial intelligence, researchers realised
that healthcare and medicine would be suitably challenging fields to drive the devel-
opment of knowledge representation and reasoning techniques. Quite a large number
of different systems were developed in those early days (cf. [23] for a description
of the most important early ideas and systems). Typically, researchers developed
their own representation methods guided by thoughts on how to handle a particu-
lar medical problem. An example of how thoughts on clinical problem solving and
computer-based knowledge representation can interact is the work by Pople [21] on
heuristic methods for medical diagnostic problem solving. The key idea here is that
one needs a kind of structure of the hypothesis space to guide the problem-solving
process. In a medical context this means that one needs taxonomic knowledge, i.e.
medical knowledge organised according to the principles of a subsumption taxon-
omy, and causal knowledge, i.e. knowledge that describes the world according to
cause-effect relationships. Pople also realised that disease manifestations and the
diseases themselves are linked to each other by a, possibly abstract, model of the
pathophysiology, and those play a different role in the problem-solving process. Even
in that early work it already clear that medicine is a semantically rich field, not only
concerned with different type of knowledge of different kind, coming from different
sources, but also used for different purposes.

The development of these early systems gave rise to the phrase knowledge-based
system, or knowledge system, which is generally employed to denote information
systems in which some symbolic representation of human knowledge of a domain
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is applied, usually in a way resembling human reasoning, to solve actual problems
in the domain. As this knowledge is often derived from experts in a particular field,
and early knowledge-based systems were actually developed in close collaboration
with experts, the term expert system was the term used in the early days to refer to
these systems. Knowledge, however, can also be extracted from literature, or from a
datasets by using machine-learning methods. At the time of writing, the terminology
of systems that employ formalised knowledge to solve problems is even less clear
than it was in the past. For this book this is of little concern, as the focus is on
knowledge representation and reasoning for different medical purposes.

Present generation knowledge-based systems are capable of dealing with signifi-
cant (medical) problem domains. Gathering, maintaining and updating the incorpo-
rated knowledge taking into account its associated context, such as working environ-
ment, organisation and field of expertise belongs to an area referred to as knowledge
management. The art of developing a knowledge-based system is called knowledge
engineering, when there is emphasis on the pragmatic engineering aspects, or knowl-
edge modelling, when development of domain models is emphasises. The latter is
strictly speaking part of the former. The process of collecting and analysing knowl-
edge in a problem domain is called knowledge acquisition, or knowledge elicitation
when the knowledge is gathered from interviews with experts, normally using inter-
view techniques as developed by psychologists.

Although the early papers on knowledge representation for biomedical problems
are still worth reading, there has been significant progress in the techniques, i.e.
languages and tools, that act as the basis for knowledge representation. In contrast
to the early work, there is now a solid understanding of the importance of logical
language to act as a basis for knowledge representation. At the same time, specialised
logical languages, such as decoration logics, havebeendeveloped to dealwith specific
knowledge representation and reasoning problems. There has also been a lot of
progress in the development of reasoning with uncertainty. Probabilistic graphical
models, and in particular Bayesian networks, have come into play since the 1990s as
a natural formalism to represent uncertain biomedical knowledge. Specific types of
non-monotonic reasoning have also emerged and proven their use in the biomedical
context. The theory of argumentation is a typical example. For specific biomedical
problems, such as problems that can be handled by clinical guidelines, there are now
languages and tools available to represent and to reason with the relevant knowledge.

In general, the significant progress in techniques for knowledge representation
and reasoning render it possible to develop knowledge systems of which the founda-
tions are well understood in such way that certainty (computational) properties are
guaranteed to be satisfied. Of course, capturing andmodelling biomedical knowledge
is still a significant challenge. However, with the techniques available nowadays, the
modelling is at least supported by sound methods and techniques.

In this chapter, we will review common knowledge representation formalisms in
artificial intelligence and link these to the healthcare field.
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2.2 Techniques for Knowledge Representation
and Reasoning

The knowledge-representation formalism and the types of reasoning supported are
of major importance for the development of knowledge-based systems. Logic, prob-
ability theory and decision theory are sufficiently general to permit describing the
nature of knowledge representation, inference and problem solving without having
to resort to special-purpose languages. In the next section, some of the general ideas
underlying knowledge representation are summarised and illustrated by means of
simple examples.

2.2.1 Horn-clause Logic

Knowledge-based systems usually offer a number of different ways to represent
knowledge in a domain, and to reason with this knowledge automatically to derive
conclusions. Although the languages offered by actual systems and tools may differ
in a number of ways, there are also many similarities. The aspects that the languages
have in common can be best understood in terms of a logical representation, as
accomplished below.

A Horn clause or rule is a logical implication of the following form

∀x1 · · · ∀xm((A1 ∧ · · · ∧ An) → B) (2.1)

where Ai , B are literals of the form P(t1, . . . , tq), i.e. without a negation sign, repre-
senting a relationship P between terms tk , whichmay involve one ormore universally
quantified variables x j , constants and terms involving function symbols. As all vari-
ables in rules are assumed to universally quantified, the universal quantifiers are often
omitted if this does not give rise to confusion. If n = 0, then the clause consists only
of a conclusion, which may be taken as a fact. If, on the other hand, the conclusion B
is empty, indicated by ⊥, the rule is also called a query. If the conditions of a query
are satisfied, this will give rise to a contradiction or inconsistency, denoted by ⊥, as
the conclusion is empty. So, an empty clause means actually inconsistency.

A popular method to reason with clauses, and Horn clauses in particular, is resolu-
tion. LetR be a set of rules not containing queries, and let Q ≡ (A1∧· · ·∧ An) → ⊥
be a query, then

R ∪ {Q} � ⊥

where � means the application of resolution, implies that the conditions

∀x1 · · · ∀xm(A1 ∧ · · · ∧ An)
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are not all satisfied. Since resolution is a sound inference rule,meaning that it respects
the logical meaning of clauses, it also holds that R ∪ {Q} � ⊥, or equivalently

R � ∃x1 · · · ∃xm(A1 ∧ · · · ∧ An)

if R only consists of Horn clauses. This last interpretation explains why deriving
inconsistency is normally not really the goal of using resolution; rather, the purpose
is to derive certain facts. Since resolution is only complete for deriving inconsistency,
called refutation completeness, it is only safe to ‘derive’ knowledge in this indirect
manner. There exist other reasoningmethods which do not have this limitation. How-
ever, resolution is a simple method that is understood in considerable depth. As a
consequence, state-of-the-art resolution-based reasoners are very efficient. Resolu-
tion can also be used with clauses in general, which are logical expressions of the
form

(A1 ∧ · · · ∧ An) → (B1 ∨ · · · ∨ Bm)

usually represented as:

¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm

Rules of the form (2.1) are particularly popular as the reasoning with proposi-
tional Horn clauses is known to be possible in linear time, whereas reasoning with
propositions or clauses in general (where the right-hand side consists of disjunctions
of literals) is known to be NP-complete, i.e. may require time exponential in the
size of the clauses. Note that allowing negative literals at the left-hand side of a rule
is equivalent to having disjunctions at the right-hand side. Using a logical language
that is more expressive than Horn-clause logic is sometimes unavoidable, and special
techniques have been introduced to deal with their additional power.

Using logic to represent (medical) knowledge gives rise to a knowledge base that
is sometimes called object knowledge.

Let KB be a knowledge base consisting of a set (conjunction) of rules, and let F
be a set of facts observed for a particular problem P , then there are generally three
ways in which a problem can be solved, yielding different types of solutions. The
formalisation of problem solving gives rise to knowledge that is sometimes called
meta knowledge. LetP be a problem, then there are different classes of solutions to
this problem:

• Deductive solution: S is a deductive solution of a problemP with associated set
of observed findings F iff

KB ∪ F � S (2.2)

and KB ∪ F � ⊥, where S is a set of solution formulae.
• Abductive/inductive solution: S is an abductive solution of a problem P with
associated set of observed findings F iff the following covering condition
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KB ∪ S ∪ K � F (2.3)

is satisfied, where K stands for contextual knowledge. In addition, it must hold that
KB ∪ S ∪ C � ⊥ (consistency condition), where C is a set of logical constraints
on solutions. For the abductive case, it is assumed that the knowledge base KB
contains a logical representation of causal knowledge and S consists of facts; for
the inductive case, KB consists of background facts and S, called an inductive
solution, consists of rules.

• Consistency-based solution: S is a consistency-based solution of a problem P
with associated set of observed findings F iff

KB ∪ S ∪ F � ⊥ (2.4)

Note that a deductive solution is a consistent conclusion that follows from a knowl-
edge base KB and a set of facts, whereas an abductive solution acts as a hypothesis
that explains observed facts in terms of causal knowledge, i.e. cause-effect relation-
ships. An inductive solution also explains observed facts, but in terms of any other
type of knowledge. A consistency-based solution is the weakest kind of solution, as
it is neither required to be concluded nor is it required to explain observed findings.

2.2.2 Objects, Attributes and Values

Even though facts or observed findings can be represented in many different ways,
in many systems facts are represented in an object-oriented fashion. This means that
facts are described as properties, or attributes, of objects in the real world. Attributes
of objects can be either multivalued, meaning that an object may have more than
one of those properties at the same time, or singlevalued, meaning that values of
attributes are mutually exclusive.

In logic, multivalued attributes are represented by predicate symbols, e.g.:

Parent(John,Ann) ∧ Parent(John,Derek)

indicates that the ‘object’ John, representedas a constant, has twoparents (the attribute
‘Parent’): Ann and Derek, both represented by constants. Furthermore, singlevalued
attributes are represented as function symbols, e.g.

gender(John) = male

Here, ‘gender’ is taken as a singlevalued attribute, ‘John’ is again a constant object,
and ‘male’ is the value, also represented as a constant.

It is, of course, also possible to state general properties of objects. For example,
the following bi-implication:
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∀x∀y∀z((Parent(x, y) ∧ Parent(y, z)) ↔ Grandparent(x, z))

defines the attribute ‘Grandparent’ in terms of the ‘Parent’ attribute.
Another typical example of reasoning about properties of objects is inheritance

[2]. Here one wishes to associate properties of objects with the classes the objects
belong to, mainly because this yields a compact representation offering in addition
insight into the general structure of a problem domain. Consider, for example, the
following knowledge base KB:

∀x(Mammal(x) → Endotherm(x))

∀x(Human(x) → Mammal(x))

∀x(Human(x) → number-of-chromosomes(x) = 46)

Clearly, it holds that

KB ∪ {Human(John)} � number-of-chromosomes(John) = 46

as the third rule expresses that as a typical property of humans. However, the knowl-
edge base also incorporates more general properties of humans, such as:

KB ∪ {Human(John)} � Mammal(John)

Now, given the fact that a human is a mammal, we can now also conclude

KB ∪ {Human(John)} � Endotherm(John)

The example knowledge base discussed above can also be represented as a graph,
called an object taxonomy, and is shown in Fig. 2.1. Here ellipses indicate either
classes of objects (Human and Mammal) or specific objects (John). Solid arcs in the
graph indicate that a class of objects is a subclass of another class of objects; a dashed
arc indicates that the parent object is an element – often the term ‘instance’ is used
instead – of the associated class of objects. The term ‘inheritance’ that is associated
with this type of logical reasoning derives from the fact that the reasoning goes from
the children to the parents in order to derive properties.

2.2.3 Description Logics

Describing the objects in a domain, usually but not always in a way resembling a
taxonomy, usuallywith the intention to obtain a formal description of the terminology
in a domain, is known as an ontology. Instead of describing these properties in
standard first-order logic, it is common nowadays to use specialised description
logics for that purpose and in particular OWL, the Web Ontology Language [13,
16], is being used for that purpose.
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Fig. 2.1 An object taxonomy.

There are two primary ways in which knowledge is being described using OWL:

1. by combining concepts using Boolean operators, such as � (conjunction), and 
(disjunction);

2. by defining relationships between concepts (whether primitive or obtained by
combining primitive concepts) using the subsumption relation � (also called
general concept inclusion – GCI).

Thus, a concept description is constructed from

• primitive concepts C , e.g., Disease, � (most general), ⊥ (empty);
• primitive roles r , e.g., hasSymptom;
• conjunctions �, e.g., Cardiac_Disease � Cerebral_Disease;
• disjunctions , e.g., Hepatitis  Cirrhosis;
• a complement ¬, e.g., ¬Hepatitis;
• a value restriction ∀r.C , e.g., ∀causes.Fever;
• an existential restriction ∃r.C , e.g., ∃likelyFatal.Metastasis.

All understood in terms of (groups of) individuals and properties of individuals.
For example, by

Hepatitis  Cirrhosis

we have combined two concepts, but we have not established how they are related
to each other. By writing:

Hepatitis � LiverDisease
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we have established a relationship between the concepts ‘Hepatitis’ and ‘LiverDis-
ease’, where the first is less or equally general than the latter. By combining two
subsumption relations, it is possible to define a new concept:

Metastatic_Cancer � Cancer � ∃hasMetastasis.Tumour_Tissue

and
Cancer � ∃hasMetastasis.Tumour_Tissue � Metastatic_Cancer

is abbreviated to

Metastatic_Cancer ≡ Cancer � ∃hasMetastasis.Tumour_Tissue

Note that an expression such as ∃hasMetastasis.Tumour_Tissue is also a concept:
the role hasMetastasis establishes a relationship between an instance of the concept
Tumour_Tissue (the tumour discovered at a distance from the original cancer) and
all concepts that participate in the role, which are then intersected with the concept
‘Cancer’, yielding a definition of ‘Metastatic_Cancer’.

General descriptions of a domain form, what is called, the TBox (Terminology
Box). In a sense, the TBox restricts the terminology we are allowed to use when
describing a domain. The actual domain is described by means of assertions, which
together form the ABox (Assertion Box).

2.2.4 Temporal Logics

As soon we wish to model the execution of actions in biomedicine, we need to
incorporate time into our knowledge-representation formalism, and thus also when
it is based on logic.

Several temporal logics have been developed, in particular tense logics since the
1960s. Differences between logics result from different models of time and expres-
siveness. In linear temporal logics (e.g., Linear Temporal Logic (LTL) [19]), models
form a linear trace, while in branching logics models typically (e.g., Computation
Tree Logic (CTL) [1, 5, 10]) form a tree.

In LTL, propositional logic is extended with several temporal operators. The
temporal operators used are X, G, F, and U. With Xϕ being true if ϕ holds in the
next state, Gϕ if ϕ holds in the current state and all future states, Fϕ if ϕ holds in
the current state or some state in the future, and ϕUψ if ϕ holds until eventually ψ

holds.
For example:

G(Human → Mammal)

expresses that it is always the case that humans aremammals. To specify themortality
of humans, one could model this with a rule such as:
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G(Human → FDeath)

Note the subtle difference with a logical rule such as the following:

Human → FDeath

which states that only the humans existing at this moment are mortal; this does not
specify that those born in the future are mortal. One could even be slightly more
precise and specify that humans remain human at least until they die:

G(HumanUDeath)

Of course, reasoning with temporal knowledge is supported as well. One can
derive for example that:

G(HumanUDeath),Human |= FDeath

In contrast to LTL, CTL provides operators for describing events along a multiple
computation paths (possible futures), and is therefore sometimes referred to as a
‘branching’ temporal logic. The path quantifiersA andE, which are always combined
with one of the LTL operators, are used to specify that all or some of the paths starting
at a specific state have some property. While LTL formulas describe all possible
futures, in CTL we may describe what happens in some or all of the possible futures.

For example, the specify that cancer may lead to metastatic cancer, but at the same
time be optimistic that there is a possibility that does not does not occur, one could
write the following rules:

AG(Cancer → EF Metastatic_Cancer)
AG(Cancer → EG ¬Metastatic_Cancer)

Automatic reasoning methods for temporal logics have been developed, although
reasoning with temporal logic is a hard problem (for example, checking satisfiability
and entailment for LTL is PSPACE-complete). One practical method is to look upon
temporal logics as first-order formula with a quantification over the temporal states,
i.e., each predicates has an additional argument that models the state (and path for
CTL) in which the predicate holds. Temporal quantification can then be mapped to
ordinary first-order quantification. For example:

Gp ≡ ∀t p(t)

Reasoning methods for first-order logic can then directly be applied to reason about
temporal logics, for example, resolution.
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2.3 Problem-Solving Methods

Using formalisations of medical knowledge to solve problems can be seen as a form
of meta-level reasoning, as discussed in Sect. 2.2.1. In the section on probabilistic
logic, we already saw a form of meta-level reasoning with uncertaint knowledge.
Just to illustrate the idea, we discuss various examples of diagnostic reasoning. In
addition, treatment planning— one of the aspects of guideline execution— is briefly
sketched.

2.3.1 Diagnostic Problem Solving

Above, the general features of knowledge representation and inferencewere sketched.
Most of the insight that has been gained in the field, however, concerns particular
methods with associated knowledge to handle classes of problems. As said above,
inference or reasoning methods can be used to implement problem-solving methods.
A typical example is the diagnosis of disorders in patients or faults in equipment by
diagnostic methods. Many different methods have been developed for that purpose.
Three well-known diagnostic methods with their associated types of knowledge will
be discussed in the following.

2.3.1.1 Deductive Diagnosis

Most of the early knowledge-based systems, including MYCIN [3], were based on
expert knowledge concerning the relationships among classes expressed by rules.
In the reasoning process these rules were subsequently used to classify cases into
categories. This problem-solvingmethod is known as heuristic classification, asmost
of the knowledge encoded in the rules is empirical or heuristic in nature rather than
based on first principles [4]. The form of the rules is:

(c1 ∧ · · · ∧ ck∧ ∼ ck+1 ∧ · · · ∧ ∼ cn) → c

where ci is either a condition on input data or on a subclass. The rules are generalised
rules, as conditions may be prefixed by a special negation sign ∼, called negation
by absence. It represents a special case of the closed-world assumption (CWA); a
condition∼ ci only succeeds if there is at least one finding concerning the associated
attribute. Formally:

∼ A(o, v) ≡ ∃x(A(o, x) ∧ x �= v)

for object o and value v, where o and v are constants. If the attribute A represents
a measurement or test, then negation by absence checks whether the test has been
carried out, yielding a result different from the one specified.
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Consider the following toy medical knowledge base KB:

∀x((Symptom(x, coughing)∧ ∼ Symptom(x, chest-pain) ∧ Sign(x, fever))

→ Disorder(x, flu))

∀x((temp(x) > 38) → Sign(x, fever))

Then it holds that:

KB∪{temp(John) = 39,Symptom(John, coughing)}�NADisorder(John, coughing)

using negation by absence (NA). Note that Sign(John, fever) is true, and may be
viewed as a classification of the finding temp(John) = 39; ∼ Symptom(John,
chest-pain) holds due to negation by absence. Both rules in the knowledge base
KB above are examples of heuristic classification rules.

2.3.1.2 Abductive Diagnosis

In abductive diagnosis, use is made of causal knowledge to diagnose a disorder in
medicine or to determine faults in amalfunctioning device [6, 18, 20]. Causal knowl-
edge can be represented in many ways, but a rather convenient and straight-forward
way to represent causal knowledge is by taking logical implication as standing for
the causal relationship. Thus, rules of the form:

d1 ∧ · · · ∧ dn → f (2.5)

d1 ∧ · · · ∧ dn → d (2.6)

are obtained, where di stands for a condition concerning a defective component or
disorder; the conjunctions in (2.5) and (2.6) indicate that these conditions interact
to either cause observable finding f or another abnormal condition d as effect.
Sometimes uncertainty is added, usually represented in a non-numerical way as an
assumption α:

d1 ∧ · · · ∧ dn ∧ α f → f (2.7)

d1 ∧ · · · ∧ dn ∧ αd → d (2.8)

The literals α may be either assumed to be true or false, meaning that f and d
are a possible, but not necessary, consequences of the simultaneous occurrence of
d1, . . . , dn .

An abductive diagnosis S is now simply an abductive solution, where literals in
S are restricted to di ’s and α’s. The contextual knowledge may be extra conditions
on rules which cannot be derived, but must be assumed and may act to model con-
ditional causality. For simplicity’s sake it is assumed here that K is empty. The set
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of constraints C may for instance consist of those findings f which have not been
observed, and are assumed to be absent, i.e. ¬ f is assumed to hold.

Consider, for example, the causal model with set of defects and assumptions:

Δ = {fever, influenza, sport, α1, α2}

and observable findings

Φ = {chills, thirst, myalgia,¬chills,¬thirst,¬myalgia}

‘Myalgia’ means painful muscles. The following knowledge base KB contains med-
ical knowledge concerning influenza and sport, both ‘disorders’ with frequent oc-
currence:

fever ∧ α1 → chills

influenza → fever

fever → thirst

influenza ∧ α2 → myalgia

sport → myalgia

For example, influenza ∧ α2 → myalgia means that influenza may cause myal-
gia; influenza → fever means that influenza always causes fever. For illustrative
purposes, a causal knowledge base as given above is often depicted as a labelled,
directed graph G, which is called a causal net, as shown in Fig. 2.2. Suppose that the
abductive diagnostic problem with set of facts

F = {thirst, myalgia}

must be solved. As constraints we take C = {¬chills}. There are several solutions to
this abductive diagnostic problem (forwhich the consistency and covering conditions
are fulfilled):

Fig. 2.2 A knowledge base with causal relations.
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S1 = {influenza, α2}
S2 = {influenza, sport}
S3 = {fever, sport}
S4 = {fever, influenza, α2}
S5 = {influenza, α2, sport}
S6 = {fever, influenza, sport}
S7 = {fever, influenza, α2, sport}

Note that S = {α1, α2, fever, influenza} is incompatible with the constraints C .

2.3.1.3 Consistency-Based Diagnosis

In consistency-based diagnosis, in contrast to abductive diagnosis, the malfunction-
ing of a system is diagnosed by using mainly knowledge of the normal structure and
normal behaviour of its components [8, 11, 22]. For each component COMP j its
normal behaviour is described by logical implications of the following form:

∀x((COMP j (x) ∧ ¬Ab(x)) → Behaviour j (x))

The literal ¬Ab(x) expresses that the behaviour associated with the component only
holdswhen the assumption that the component is not abnormal, i.e.¬Ab(c), is true for
component c. Sometimes knowledge of abnormal behaviour is added to implications
of the form above, having the form:

∀x((COMP j (x) ∧ Ab(x)) → Behaviour j (x))

Thesemay result in a reduction in the number of possible diagnoses to be considered.
Logical behaviour descriptions of the form discussed above are part of a system
description. In addition to the generic descriptions of the expected behaviour of
components, a system description also includes logical specifications of how the
components are connected to each other (the structure of the system), and the names
of the components constituting the system. The system description is now taken as
the knowledge base KB of a system. Problem solving basically amounts to adopting
particular assumptions about every COMP j (c), either whether Ab(c) is true or false.
This sort of reasoning is called assumption-based or hypothetical reasoning.

In medicine, a component may be one of the organs or structures that are part
of a physiological system. For example, for the cardiovascular system the ‘blood’
might be one of the components. As for the cardiovascular system it is the blood
volume that affects its physiology, we will take ‘blood volume’ as a component in
the medical example below. We will describe how a description of cardiovascular
physiology can be employed in diagnosis (cf. [9] for details).
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The following logical implications give the steady-state equations of the cardio-
vascular system, i.e. when the system is stable:

¬Ab(CRsys) → ΔPsys = CO · Rsys

¬Ab(CBV) → Pv = BV/VC

¬Ab(CVC) → Pv = BV/VC

¬Ab(CPv
) → ΔPv = VR · Rv

Here, the following abbreviations are used:

• Rsys: the systemic resistance of the cardiovascular system;
• ΔPsys: the difference between arterial and venous pressure;
• CO: the cardiac output (volume of blood per minute pumped out of the heart);
• Pv: the venous pressure;
• BV: blood volume;
• VC: venous compliance (the elastic force of the vessel wall against increased
internal volume);

• VR: venous return (volume of blood per minute returned to the heart); it is equal
to CO;

• Rv: venous resistance.

With CX is indicated the corresponding component X that can be malfunctioning,
Ab(CX ). Any disturbance of the steady state may violate any of the equations in the
right-hand sides of the implications above. In this case, the set of potential ‘faulty’
components is:

COMPS = {CRsys , CBV, CVC, CPv
}

The cardiovascular system is controlled in suchway that changes in its parameters
are compensated automatically by changes in other parameters, leading to homeosta-
tis. The following equation describes, for example, how the blood-pressure regulator
(baroreceptor system) reacts to a change in arterial blood pressure (Pa) by changing
the systemic resistance:

Rsys = −0.17Pa + 34 (2.9)

Now, assume that a patient gets kidney damage. This will lead to water retention, and
thus the blood volume increases. In turn increased blood volume will lead to increase
of arterial pressure Pa . The barorecepter system will through Eq. (2.9) compensate
for the increased arterial pressure through decrease in systemic resistance Rsys.

Let us assume that the following measurements are made in a patient:

F = {Pa = 160mmHg, Pv = 15mmHg,CO = 7 l/min},

thus, ΔPsys = 160 − 15 = 145mmHg. Rsys = 6.8mmHG min/l is the predicted
effect of the regulatory baroreceptor mechanism using Eq. (2.9). Clearly, the steady-
state equation for the systemic resistance is violated:
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ΔPsys = 145 �= CO · Rsys = 7 · 6.8 = 47.6

This indicates that the system is malfunctioning. This can also be verified by
noting that when assuming all components to behave normally, i.e. S = {¬Ab(c)|c ∈
COMPS}, it follows that

KB ∪ S ∪ F
is inconsistent.

Diagnosing the problem simply consists of assuming particular components to
be abnormal (Ab(c) is true for those components), and checking whether the result
is still inconsistent. If it is not, a diagnosis has been found. So, a consistency-based
diagnosis is a consistency-based solution S consisting of a conjunction of Ab literals,
one for every component.

Consider again the example above. Here,

S = {Ab(CRsys),Ab(CBV),¬Ab(CVC),¬Ab(CPv
)}

is a consistency-based diagnosis as

KB ∪ S ∪ F � ⊥

Note that Rsys and BV are, thus, possibly faulty, as assuming them to be abnormal
yield no output for this components. There are other solutions as well, such as

S′ = {Ab(CRsys),¬Ab(CBV),Ab(CVC),¬Ab(CPv
)}

2.3.2 Treatment Planning

Asmedical management is a time-oriented process, diagnostic and treatment actions
described in guidelines are performed in a temporal setting. It is assumed that two
types of knowledge are involved in detecting the violation of good medical practice:

• Knowledge concerning the (patho)physiological mechanisms underlying the dis-
ease, and theway treatment influences thesemechanisms. The knowledge involved
could be causal in nature, and is an example of object-knowledge.

• Knowledgeconcerninggoodpractice in treatmentselection; this ismeta-knowledge.

Below we present some ideas on how such knowledge may be formalised using
temporal logic (cf. [15] for early work).

We are interested in the prescription of drugs, taking into account their mode
of action. Abstracting from the dynamics of their pharmacokinetics, this can be
formalised in logic as follows:

(G d ∧ r) → G(m1 ∧ · · · ∧ mn)
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where d is the name of a drug or possibly of a group of drugs indicated by a predicate
symbol (e.g. SU(x), where x is universally quantified and ‘SU’ stands for sulfony-
lurea drugs, such as Tolbutamid, which are prescribed in diabetes mellitus type 2),
r is a (possibly negative or empty) requirement for the drug to take effect, and mk is
a mode of action, such as decrease of release of glucose from the liver, which holds
at all future times.

The modes of action mk can be combined, together with an intention n (achieving
normoglycaemia, i.e. normal blood glucose levels, for example), a particular patient
condition c, and requirements r j for the modes of action to be effective:

(Gmi1 ∧ · · · ∧ Gmim ∧ r1 ∧ · · · ∧ rp ∧ Hc) → Gn

Good practice medicine can then be formalised as follows. Let B be background
knowledge, T ⊆ {d1, . . . , dp} be a set of drugs, C a collection of patient conditions,
R a collection of requirements, and N a collection of intentions which the physician
has to achieve. A set of drugs T is a treatment according to the theory of abductive
reasoning if [20]:

(1) B ∪ GT ∪ C ∪ R � ⊥ (the drugs do not have contradictory effects), and
(2) B ∪ GT ∪ C ∪ R � N (the drugs handle all the patient problems intended to be

managed)

If in addition to (1) and (2) condition

(3) Oϕ(T ) holds,where Oϕ is ameta-predicate standing for an optimality criterion or
combinationof optimality criteriaϕ, then the treatment is said to be in accordance
with good-practice medicine.

A typical example of this is subset minimality O⊂:

O⊂(T ) ≡ ∀T ′ ⊂ T : T ′ is not a treatment according to (1) and (2)

i.e. the minimum number of effective drugs are being prescribed. For example, if
{d1, d2, d3} is a treatment that satisfies condition (3) in addition to (1) and (2), then
the subsets {d1, d2}, {d2, d3}, {d1}, and so on, do not satisfy conditions (1) and (2).
In the context of abductive reasoning, subset minimality is often used in order to
distinguish between various solutions; it is also referred to in literature as Occam’s
razor. Another definition of the meta-predicate Oϕ is in terms of minimal cost Oc:

Oc(T ) ≡ ∀T ′,with T ′ a treatment: c(T ′) ≥ c(T )

where c(T ) = ∑
d∈T cost(d); combining the two definitions also makes sense. For

example, one could come upwith a definition of O⊂,c that among two subset-minimal
treatments selects the one that is the cheapest in financial or ethical sense.
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2.4 Reasoning with Uncertainty

Uncertainty is another essential aspects of much medical knowledge and data. Here
again, there has been a lot of research in artificial intelligence.

2.4.1 Bayesian Networks

Up until now, it has been assumed that in representing and solving a problem in a
domain dealing with uncertainty is not of major importance. As this does not hold
for many problems, the possibility to represent and reason with the uncertainty asso-
ciated with a problem is clearly of significance. There have been a number of early
attempts where researchers have augmented rule-based, logical methods with uncer-
tainty methods, usually different from probability theory, although sometimes also
related. However, those methods are now outdated, and have been replaced by meth-
ods which take probability theory as a starting point. In the context of knowledge-
based systems, in particular the formalism of Bayesian (belief) networks has been
successful [7, 12, 14, 17].

ABayesian belief network B = (G,Pr), also called causal probabilistic network,
is a directed acyclic graph G = (V (G), A(G)), consisting of a set of nodes V (G) =
{V1, . . . , Vn}, called probabilistic nodes, representing discrete random variables, and
a set of arcs A(G) ⊆ V (G)×V (G), representing causal relationships or correlations
among random variables. Consider Fig. 2.3, which shows a simplified version of a
Bayesian belief network modelling some of the relevant variables in the diagnosis of
two causes of fever. The presence of an arc between two nodes denotes the existence
of a direct causal relationship or other influences; absence of an arc means that the
variables donot influence eachother directly. The followingknowledge is represented
in Fig. 2.3: variable ‘fl’ is expressed to influence ‘my’ and ‘fe’, as it is known that
flu causes myalgia (muscle pain) and fever. In turn, fever causes a change in body
temperature, represented by the random variable temp. Finally, pneumonia (pn) is
another cause of fever.

Associated with a Bayesian belief network is a joint probability distribution Pr,
defined in terms of conditional probability tables according to the structure of the
graph. For example, for Fig. 2.3, the conditional probability table

Pr(fe | fl, pn)

has been assessed with respect to all possible values of the variables fe, fl and
pn. In general, the graph associated with a Bayesian belief network mirrors the (in)
dependences that are assumed to hold among variables in a domain. For example,
given knowledge about presence or absence of fever, neither additional knowledge
of flu nor of pneumonia is able to influence the knowledge about body temperature,
since it holds that temp is conditionally independent of both pn and fl given fe.
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Fig. 2.3 Bayesian network B = (G,Pr) with associated joint probability distribution Pr (only
probabilities Pr(X = y | π(X)) are shown, as Pr(X = n | π(X)) = 1 − Pr(X = y | π(X))).

For a joint probability distribution defined in accordance with the structure of a
Bayesian network, it, therefore, holds that:

Pr(V1, . . . , Vn) =
n∏

i=1

Pr(Vi | π(Vi ))

where Vi denotes a random variable associated with an identically named node, and
π(Vi ) denotes the parents of that node. As a consequence, the amount of probabilistic
information that must be specified, exponential in the number of variables in general
when ignoring the independencies represented in the graph, is greatly reduced.

By means of special algorithms for probabilistic reasoning – well-known are the
algorithms by Pearl [17] and by Lauritzen and Spiegelhalter [14] – themarginal prob-
ability distribution Pr(Vi ) for every variable in the network can be computed; this
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is shown for the fever network in Fig. 2.4. In addition, a once constructed Bayesian
belief network can be employed to enter and process data of a specific case, i.e. spe-
cific values for certain variables, like temp, yielding an updated network. Figure2.5
shows the updated Bayesian network after entering evidence about a patient’s body
temperature into the network shown in Fig. 2.3. Entering evidence in a network is
also referred to as instantiating the network. The resulting probability distribution
of the updated network, PrE (Vi ), which is a marginal probability distribution of
the probability distribution PrE , is equal to the posterior of the original probability
distribution of the same variable, conditioned on the evidence E entered into the
network:

PrE (Vi ) = Pr(Vi | E)

Bayesian belief networks have also been related to logic by so called probabilistic
Horn clauses. This formalism offers basically nothing else then a recipe to obtain
a logical specification of a Bayesian belief network. Reasoning with probabilistic
Horn clauses is accomplished by logical abduction; the axioms of probability theory
are used to compute an updated probability distribution.

Fig. 2.4 Prior marginal probability distributions for the Bayesian belief network shown in Fig. 2.3.

Fig. 2.5 Posterior marginal probability distributions for the Bayesian belief network after entering
evidence concerning body temperature. Note the increase in probabilities of the presence of both
flu and pneumonia compared to Fig. 2.4. It is also predicted that it is likely for the patient to have
myalgia.
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2.4.2 Probabilistic Logic

There have been different recent proposals in the AI literature to combine logic
and probability theory, where usually predicate logic is combined with probabilistic
graphical models. David Poole has developed so-called independent choice logic
(which later was integrated into AIlog). It combined Prolog-like logic with Bayesian
networks. Another approach, developed by Williamson et al. makes use of credal
networks, which are similar to Bayesian networks but reason over probability inter-
vals instead of probabilities. The last few years Markov logic has had an enormous
impact on the research area. The idea is to use predicate logic to generateMarkov net-
works, i.e., joint probability distributions that have an associated undirected graph.
Formalisms such as independent choice logic andMarkov logic are examples of what
is called probabilistic logic.

Various probabilistic logics, such as the independent choice logic, are based on
logical abduction. The basic idea of these kind of logics is to define the probability of a
query in terms of the probability of its explanations (sometimes called a prediction in
theory of logical abduction) of a certain query (cf. Sect. 4.5) given a logic program.
Probability of the explanations are defined by a very simple distribution, namely
by a set of independent random variables, which makes it possible to (relatively)
efficiently compute a probability. The nice thing about this approach is that it truly
combines logical reasoning (finding the explanations) with probabilistic reasoning
(computing the probability of the set of explanations).

Defining the probability distributions over the explanations is done by associating
probabilities to hypotheses in a setΔ. In order tomake sure thatwe end upwith a valid
probability distribution, we require a partitioning of this set into subsetsΔ1, . . . , Δn ,
i.e., such that it holds that:

n⋃

i=1

Δi = Δ

and Δi ∩ Δ j = ∅ for all i �= j . Each possible grounding of Δi , i.e. Δiσ with σ a
substitution, is associated to a random variable Xi,σ , i.e., dom(Xi,σ ) = Δiσ . While
you could imagine that every random variable is different, here we will assume that
every grounding of h ∈ Δ has to have the same probability, i.e., for all substitutions
σ, σ ′:

P(Xi,σ = hσ) = P(Xi,σ ′ = hσ ′)

whereas each pair of random variables as we have just defined is assumed to be inde-
pendent, the hypotheses in the same partition are dependent. Suppose for example,
we have a random variable X with three possible hypotheses:

dom(X) = {influenza, sport, not_sport_or_influenza}

In each possible state (element of the sample space), each random variable is exactly
in one state at the time, i.e., in this case, we assume that we either have influenza,

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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or we sport, or neither, but we do not sport while we have influenza. In other words:
sport and influenza are considered to be inconsistent.

To understand the space of explanations that we may consider is by picking a
possible value for each random variable. In the language of the independent choice
logic, this is called a choice (hence, the name). In order to make this work probabilis-
tically, we need some slight restrictions on our logic program. First, it is not allowed
to have two hypotheses in Δ that unify. Further, it is not allowed that an element
from Δ unifies with a head of one of the clauses. Finally, mostly for convenience
here, we will restrict ourselves to acyclic logic programs consisting of Horn clauses
and substitutions that can be made using the constants in the program.

The probability distribution overΔ is now used to define a probability for arbitrary
atoms. As mentioned earlier, this will be defined in terms of explanations, which are
slightly different than we have seen before due to the probabilistic semantics. Given
a causal specification Σ = (Δ,Φ,R), a (probabilistic) explanation E ⊆ Δσ for
some formula F ∈ Φ is:

R ∪ E |= F
R ∪ C ∪ E �|= ⊥

where

C = {⊥ ← h1, h2 | Δi is one of the partitions of Δ, h1, h2 ∈ Δi }

and Δσ grounded. Note that the consistency condition entails that we only pick at
most one value for each random variable. The intuitive assumption that is now being
made is that an atom is true if and only if at least one of its (grounded) explanations
is true. Suppose E (F) is the set of all explanations for F , then we define:

F =
∨

Ei ∈E (F)

Ei

Notice that this definition is equivalent to assuming Clarke’s completion of the given
theory (cf. Sect. 4.3.1).

Recall that an explanation E is calledminimal if there does not exist an explanation
E ′ such that E ′ ⊂ E . It is not difficult to see that we can restrict our attention to
the set of minimal explanations Em(F): by logical reasoning it holds that, if E ′ ⊂ E
then E ′ ∨ E = E ′, so it can be shown that E (F) = Em(F). We then have:

F =
∨

Ei ∈Em (F)

Ei

Again, there is a close connection to the semantics of abduction, as
∨

Ei ∈Em (F) Ei

is sometimes referred to as the solution formula. Of course, if two things are equal,
then their probability must be equal:

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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P(F) = P(
∨

Ei ∈Em (F)

Ei )

It is now clear how we can solve the problem of computing the probability of F : first
we find the (minimal) explanations of F and then we use the probability distribution
defined over the hypotheses to compute the disjunction of the explanations.

Consider the causal specification Σ = (Δ,Φ,R), with

Δ = {influenza, sport, not_sport_or_influenza, α1, not_α1, α2, not_α2}

and
Φ = {chills, thirst, myalgia}

and the set of logical formulae R as presented in Fig. 2.2.
First we need to define a probability distribution over Δ. For example, we may

assume to have three independent random variables X , Y , Z , such that:

P(X = sport) = 0.3
P(X = influenza) = 0.1
P(X = not_sport_or_influenza) = 0.6
P(Y = α1) = 0.9
P(Y = not_α1) = 0.1
P(Z = α2) = 0.7
P(Z = not_α2) = 0.3

Note that explanations containing e.g., sport and influenza are inconsistent with this
probability distribution, as X can only take the value of one of them (they aremutually
exclusive).

Suppose we have interested in the probability of myalgia, i.e., P(myalgia). The
set of all minimal explanations for myalgia, i.e., Em(myalgia) is {E1, E2}, where:

E1 = {influenza, α2}
E2 = {sport}

Clearly, there are many more explanations, e.g.,

E3 = {influenza, sport, α2}
E4 = {influenza, α1, α2}
E5 = {influenza, not_α1, α2}

...
...

Note that for example, the set:
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E ′ = {influenza, α1, not_α1, α2}

is inconsistent, because α1 and not_α1 cannot both be true. Therefore, it is not an
explanation.

Since we assumed that a formula is true if only if at least one of its explanations
is true, the probability of myalgia is defined it terms of influenza and sport:

P(myalgia) = P((influenza ∧ α2) ∨ sport)

Since influenza∧α2 and sport are mutually exclusive, the probability of the disjunc-
tion is the sum of the disjuncts, i.e.:

P(myalgia) = P(influenza ∧ α2) + P(sport)
= P(influenza)P(α2) + P(sport)
= 0.1 · 0.7 + 0.3 = 0.37

2.5 Conclusions

In this introductory chapter we have briefly reviewed the most important languages
for knowledge representation as using in medicine. It is not possible given the scope
of this chapter to be complete, but since logic and probability theory act as the core
of the majority of the modern work on knowledge representation, this introduction
will at least pinpoint the most important ideas.
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Chapter 3
Representing Knowledge for Clinical
Diagnostic Reasoning

Peter J.F. Lucas and Felipe Orihuela-Espina

3.1 A Bit of History: From Rule-based to Model-based

The early medical diagnostic applications often had the form of rule-based expert
systems and started to appear around the mid 1970s. Soon, it became apparent that
developing reliable diagnostic systems required an understanding of the principles
underlying diagnosis, which at the time were poorly understood. Thus, during the
1980s, a research effort was made on developing the conceptual and formal aspects
of diagnosis. In the early systems, knowledge from human experts was encoded
as empirical classification rules, probably best seen as Horn clauses with limited
expressive power [16]. Later, a model-based paradigm started to gain popularity,
where the idea was to use a formal language with sufficient expressive power, such
as predicate logic and timed automata, to model the part of reality that was rele-
vant for the diagnostic problem at hand [11]. Under the new model-based paradigm,
knowledge of a system’s structure and function were captured using those formal
languages. Notwithstanding the efforts and progress, still in the late 1980s the under-
standing of the diagnostic problem principles and the characterization of diagnostic
systems remained challenging. At that time, diagnostic reasoning was increasingly
seen as a method to reduce uncertainty and probabilistic methods, such as offered by
Bayesian networks,were investigated in the hope that theywould offer amodel-based
method of sufficient strength and generality to handle most diagnostic problems [18].
Whereas probabilistic methods have left their mark on diagnostic problem solving,
at the moment there are still many different methods being used for diagnostic appli-
cations although probabilistic methods are now dominant.

3.2 Elements of Diagnostic Reasoning

Making a diagnosis is normally seen as the first step towards the clinical management
of illness in people; it is not possible to treat a person without having a sufficiently
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accurate diagnosis. Whereas the diagnosis is the outcome, the steps that are taken
in obtaining this outcome constitute what is called the diagnostic process. Thus, the
outcome of the diagnostic process is either the absence of illness or the presence of
one or more disorders at the same time. In clinical medicine, the diagnostic process
takes a particular form, consisting of taking the medical history, followed by a phys-
ical examination and supplemented by laboratory investigations (biochemistry and
radiology). Taking the medical history involves recording subjective findings, called
‘symptoms’, whereas the physical examination and lab tests will yield objective
results, called ‘signs’. The diagnostic process tries to obtain an explanation for the
symptoms and signs in terms of disease processes, and this not only involves making
observations, but also to actively collect findings, often called information gathering.
This way of looking at the diagnostic process is often called diagnostic reasoning.

The diagnostic conclusions drawn by the clinical professional are based on exper-
tise, obtained after many years of training, and clinical intuition about which diag-
nostic test should be performed and how to interpret the test results in the context of
the patient’s characteristics. From a more abstract point of view, the medical knowl-
edge involved has a particular structure and meaning. In addition, in interpreting
diagnostic test results uncertainty is explicitly taken into account. Although most
researchers will probably agree that making a diagnosis is a process that inevitably
involves uncertainty, there is no consensus about how important this uncertainty is
and about whether this uncertainty should always be made explicit.

Diagnostic reasoning always involves at least two different aspects. First, one
needs to represent in what way a conclusion is taken as being a ‘diagnosis’. This
concerns the representation of what is seen as the definition of a diagnosis. It will
become clear later in this chapter that there aremanydifferent definitions of the notion
of diagnosis possible. Second, a diagnosis is always based on the interpretation of
specific domain knowledge. Clearly, the representation of this knowledge is also an
important issue. A third aspect of diagnostic reasoning, that is not always taken into
account when describing diagnostic reasoning, is a strategy involving the dynamic
collection of information to rule-in and rule-out particular diagnoses.

This chapter provides an overview of the first two aspects to give the reader an
entrance point to this section on knowledge-based diagnosis.

3.3 Conceptual Basis of Diagnosis

Several formal theories have been proposed to capture the concept of diagnosis
more precisely. Most of these theories have been developed with fault diagnosis and
trouble shooting of technical devices, such as photo-copiers, in mind. Despite the
different nature of the objects of study, technical and medical diagnostic reasoning
have much in common, both in their terminology and diagnostic methods. This
similarity explains why we start with ideas that mostly come from the diagnosis
of technical devices. However, all of these methods have also been applied to the
clinical domain.
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Researchers have become aware that there are actually various conceptual models
of diagnosis that underly the formal theories, determined by the kind of knowledge
involved. Diagnosis always concerns the interpretation of observed findings in the
context of knowledge from a problem domain. A good starting point for describing
diagnosis at a conceptual level are the various types of knowledge that play a role in
diagnostic applications.

The knowledge embodied in a diagnostic system may be based on one or more
of the following descriptions:

(1) A description of the normal structure and behaviour.
(2) A description of abnormal behaviour of a system, possibly augmented with a

description of abnormal structure.
(3) An enumeration of disorders and collections of observable findings for every

possible disorder concerned, without the availability of explicit knowledge con-
cerning the (abnormal) functional behaviour of the system.

These types of knowledge may coexist in real-life diagnostic systems, but it is cus-
tomary to emphasise their distinction in conceptual and formal theories of diagnosis.
Similar classifications of types of knowledge appear in the literature on diagnosis,
although often no clear distinction ismade between the conceptual, formal and imple-
mentation aspects of diagnostic systems. For example, [6, 19] distinguish diagnostic
rule-based systems, by which they mean diagnostic systems based on knowledge of
the third typementioned above, from diagnostic systems incorporating knowledge of
structure and behaviour, i.e. knowledge of the first and second typementioned above.
However, rule-based systemswith a sufficiently expressive rule formalism, e.g. based
on predicate logic, can be used to implement any diagnostic system, including those
based on knowledge of structure and behaviour.

An observed finding that has been gathered in diagnosing a problem is often said
to be either a ‘normal finding’, i.e. a finding that matches the normal situation, or
an ‘abnormal finding’, i.e. a finding that does not match the normal situation. Based
on the three types of knowledge mentioned above, and the two sorts of findings,
three different conceptual models of diagnosis are usually distinguished; they will
be called:

• Deviation-from-Normal-Structure-and-Behaviour diagnosis, abbreviated toDNSB
diagnosis,

• Matching-Abnormal-Behaviour diagnosis, abbreviated to MAB diagnosis, and
• Abnormality-Classification diagnosis, abbreviated to AC diagnosis.

Below, we shall discuss the relationship between these three conceptual models of
diagnosis and the three types of knowledge mentioned above. A formal theory of
diagnosis has been proposed for each of these conceptual models of diagnosis. In
the remainder of this section, each of the three conceptual models of diagnosis will
be discussed, and the corresponding formal theory of diagnosis is mentioned.

DNSB diagnosis. For diagnosis based on knowledge concerning normal structure
and behaviour, little or no explicit knowledge is available about the relationships
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between disorders, on the one hand, and findings to be observed when certain dis-
orders are present, on the other hand. Hence, DNSB diagnosis typically employs
knowledge of the first type mentioned above. From a practical point of view, the pri-
mary motivation for investigating this approach to diagnosis is that in many domains
little knowledge concerning abnormality is available, which is certainly true for new
human-created artifacts. For example, for a new device that has just been released
from the factory, experience with respect to the faults that may occur when the device
is in operation is lacking. Thus, the only conceivableway inwhich initially such faults
can be handled is by looking at the normal structure and functional behaviour of the
device. In clinical medicine, this will normally happen when one is encountering a
new disease. Here, as with the technical disciplines, the only thing one can do is
make use of knowledge of normal physiology and compare predicted behaviours
with those observed.

For the purpose of diagnosis, the actual behaviour of an actual system, called
observed behaviour, is compared with the results of a model of normal structure and
behaviour of the system, which may be taken as predicted behaviour. Both types
of behaviour can be characterised by findings. If there is a discrepancy between
the observed and the predicted behaviour, diagnostic problem solving amounts to
isolating the parts of the system that are not properly functioning, using the model
of the normal structure and behaviour. In doing so, it is assumed that the model
of normal structure and behaviour is sufficiently accurate and correct. Figure3.1
depicts DNSB diagnosis in a schematic way. DNSB diagnosis is frequently erro-
neously called model-based diagnosis in the literature, as if it were the only instance
of model-based diagnosis. It is also called consistency-based diagnosis, but here this
term is reserved for the corresponding formal theory of diagnosis. DNSB diagno-
sis has been developed in the context of troubleshooting in electronic circuits [6].
A well-known program that supports DNSB diagnosis, and includes various strate-
gies to do so efficiently, is the General Diagnostic Engine (GDE) [7].

The formal counterpart of DNSB diagnosis, called consistency-based diagnosis,
originates from work by R. Reiter, [24]. DNSB diagnosis-like approaches have been
used in medical applications on a limited scale (cf. for example [9]); there is more
work inwhichDNSBdiagnosis has been applied to solve technical problems (cf. [2]).

Fig. 3.1 Deviation-from-normal-structure-and-behaviour (DNSB) diagnosis.
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Fig. 3.2 Matching-abnormal-behaviour (MAB) diagnosis.

MAB diagnosis. For diagnosis based on knowledge of abnormal behaviour, diagnos-
tic problem solving amounts to simulating the abnormal behaviour using an explicit
model of that behaviour. Hence, in MAB diagnosis the use of knowledge of abnor-
mal behaviour (the second type of knowledge mentioned above) is emphasised. By
assuming the presence of certain defects, some observable abnormal findings can
be predicted. It can be investigated which of these assumed defects account for the
observed findings by matching the predicted abnormal findings with those observed.
In Fig. 3.2, MAB diagnosis is depicted schematically. In most applications of MAB
diagnosis, the domain knowledge that is used for diagnosis consists of causal rela-
tionships. Two, strongly related, formal counterparts of MAB diagnosis have been
proposed in the literature. The first formal theory, referred to as the set-covering
theory of diagnosis, is based on set theory: causal knowledge is expressed as math-
ematical relations, used for diagnosis. This theory originates from work by J.A.
Reggia and others [23]. The second theory is based on logic. Early work in this area
has been done by Poole [19, 20], and Console and Torasso [5, 28]. Based on the type
of reasoning employed to formalise MAB diagnosis, i.e. reasoning from effects to
causes instead of from causes to effects, this theory of diagnosis is also referred to
as abductive diagnosis. Theorist [20] and its successor AILog [21] are two systems
supporting MAB diagnosis.

AC diagnosis. Whereas DNSB and MAB diagnosis employ a model of normal or
abnormal structure and behaviour for the purpose of diagnosis, the third conceptual
model of diagnosis uses neither. The knowledge employed in this conceptual model
of diagnosis consists of the enumeration of more or less typical evidence that can
be observed, i.e. observable findings, when a particular defect or defect category is
present (the third type of knowledge mentioned above). For example, sneezing is a
finding that may be typically observed in a disorder like common cold. This form
of knowledge has been referred to as empirical associations (the phrase ‘compiled
knowledge’ is also employed) [3].

Diagnostic problem solving amounts to establishing which of the elements in a
finite set of defects have associated findings that account for as many of the findings
observed as possible, as is shown in Fig. 3.3. The enumeration of findings for the nor-
mal situation (knowledge of the fourth typementioned above) is sometimes also used
in AC diagnosis, together with knowledge of the third type; then, observed findings
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Fig. 3.3 Abnormality-classification (AC) diagnosis.

are classified in terms of present and absent defects. The main goal of AC diagnosis,
however, remains the classification of observed findings in terms of abnormality. AC
diagnosis is often referred to in the literature as heuristic classification [4], although
this term is broader, since it also includes a reasoning strategy. AC diagnosis can be
characterised in terms of logical deduction in a straightforward way. We shall refer
to this formalisation of AC diagnosis as hypothetico-deductive diagnosis.

3.4 Formalisation and Implementation

Any formal system aiming to determine a valid (and perhaps most likely) diagnosis
establishes a projection to hidden event sources (diseases, conditions or syndromes)
and observable findings, that is symptoms and signs. However, the form of this
mapping differs depending on the formalisation theory supporting the knowledge
representation. A diagnostic system can be described as in Chap. 2 in terms of object
knowledge, the domain knowledge that is used to determine a diagnosis, and meta
knowledge, here the actual definition of what a diagnosis is.

3.4.1 Diagnostic Object Knowledge

The most common object knowledge representations in diagnostic systems are:

• A causal specification of relationships between (the interaction of) causes and
effects. Formally a causal specification can be represented by logical implications
of the form

C → E

or by means of functions or relations E = f (C), and by a family of probability
distributions P(E | C) if in addition uncertainty is represented in the specification.
Causality is as central to science as it has proved elusive to define. There is no single
nor agreed definition of causality, with many attempts demanding two critical

http://dx.doi.org/10.1007/978-3-319-28007-3_2
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elements: (i) some kind of temporal precedence or ordering, e.g. Granger’s [10]
or Lamport’s [14], and (ii) context, e.g. Pearl’s [17] or Rubin-Holland’s [25]. The
first demand maybe implicit, ergo the model still might be static. The second
demand is perhaps even more difficult to comply and thus it is too very often
neglected abusing the causal sufficiency assumption or alleviated under the close-
world assumption. Here, in the context of diagnosis it just refers to a particular
way to model the reality (without pretending it captures the physics of causality).
Consequently throughout this chapter, we will use the words cause, effects and
causalitywithout necessarily entailing formal causality.Moreover, causal relations
are not necessarily strict [22].

• A model of structure and behaviour, often referred to as functional model or first
principles, represented in logical or in algebraic form, whereas timed automata
are used when temporal behaviour is being modelled, and temporal or dynamic
Bayesian networks are used if the model includes uncertainty.

• An associational specification (non-causal) incorporating empirical relations as
logical rules determined from human expertise, or statistical intuition.

3.4.2 Diagnostic Meta Knowledge

In order to define a diagnosis for a problem, using object representations of relevant
knowledge, we need diagnostic meta knowledge, as introduced in Chap.2. Basically,
for causal knowledge the meta knowledge has the form of the covering condition,
i.e. abductive diagnosis:

KB ∪ D � F

where KB is a set of causal, local rules, F is a set of observed findings and D is the
diagnostic, abductive solution.

From the above statement it may be inferred that there is a one-to-one mapping
joining a formalization theory with a particular knowledge representation. While
this is not a universal truth, there remains a strong benefit from using a particular
type of object knowledge with a particular type of meta knowledge under a particu-
lar framework. Chapter 2 gives details about the most popular symbolic diagnostic
approaches. See [15] for a detailed analysis of the relationship between object and
meta knowledge in diagnostic systems.

3.4.3 Probabilistic Diagnosis

As mentioned at the beginning of this chapter, many people see uncertainty as an
essential ingredient of a diagnostic problem [27]. Bayesian networks are a popular
formalism to represent object knowledge, and often arcs in a Bayesian networks are
given a causal reading. As symptoms, signs and test results in Bayesian networks are
often sink nodes, i.e. have no outgoing arcs, whereas diseases act as source nodes,

http://dx.doi.org/10.1007/978-3-319-28007-3_2
http://dx.doi.org/10.1007/978-3-319-28007-3_2
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i.e. have no incoming arcs, reasoning with such a Bayesian network can be looked
upon as abductive reasoning, very similar to purely symbolic or logical forms of
diagnostic reasoning.

In probabilistic diagnostic reasoning systems the diagnostic value of specific
symptoms, signs and tests are used to rule in or rule out a diagnosis [1, 8]. Probabilis-
tic reasoning requires knowing (i) the pre-test or prior probability of the diagnosis
being considered, and (ii) the degree to which a positive or negative result from a
specific test adjusts the probability of that diagnosis. The pre-test probability of a
sease is known as the prevalence of the disease. Interpretation of the post-test or a
posteriori probability strongly depends on the prevalence (i.e. pre-test probability).
The most likely diagnosis is computed by Bayes’ rule:

P(d | t) = P(t | d)P(d)

P(t)

where P(t) = P(t | d)P(d) + P(t | d̄)P(d̄). The probability P(t | d) is the likeli-
hood that the test t is positive given that the disease d is present, i.e. the true positive
rate (also called sensitivity in the medical literature), and the probability P(t̄ | d̄) is
the likelihood that the test result is negative given that that the disease is absent. It is
also known as the true negative rate (specificity in the medical literature). Both rates
are usually in the range [0.90, 0.99].

As an example, consider the the diagnosis of flu f based on measuring the body
temperature t (equal or above 38 ◦C) and t̄ (below 38 ◦C) on two different occasions.
The first is under conditions of a severe flu epidemic and the second is in the middle
of the summer. Now, the prevalence of flu under epidemic conditions is assumed to
be P( f ) = 0.5, whereas in midsummer it is P( f ) = 0.05. Using Bayes’ rule and
assuming that P(t | f ) = P(t̄ | f̄ ) = 0.95, we compute the post-test probability for
those two possibilities:

• P( f | t) = P(t | f )P( f )/P(t) = 0.95 · 0.5/0.5 = 0.95.
• P( f | t) = P(t | f )P( f )/P(t) = 0.95 · 0.05/0.095 = 0.5

Since the true positive and negative rates do not change, the prevalences have a major
effect on how likely a diagnosis is. We also have the following observations:

• Under low prevalence: A negative test is enough to rule out a diagnosis, but a
positive test is likely to be a false positive.

• Under medium prevalence: Tests work often at their best. With a positive test it
is reasonable to assume the condition is present, and with a negative test it is
reasonable to assume this is not the case.

• Under high prevalence: A positive test is enough to confirm a diagnosis, but a
negative test is likely to be a false negative.

As patient often have two or more diseases at the same time, known as multi-
morbidity, one actually has to compute the maximum a posteriori probability (MAP)
assignment [13]

D� = argmaxD P(D | E)
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Table 3.1 Comparison conceptual and formal theories of diagnosis and their implementation.

DNSB MAB AC

Object knowledge Normal structure
and behaviour

Causal model of
(ab)normality

Empirical associations

Formalisation of diagnosis Consistency-
based

Bayesian
network
abductive and
diagnosis
set-covering
diagnosis
maximum a
postiori
probability
assignment

Hypothetico-deductive
diagnosis

Examples of software systems GDE Theorist/AILog
Bayesian
network
package

Rule-based systems

where D is a set of instantiated disease variables and E the evidence (symptoms,
signs, and lab test results). Since the computations are NP-hard, one usually resorts
to computing the marginal probability p(d | E) for individual diseases d.

3.4.4 From Conceptual to Formalisation and Implementation

A comparison of the three conceptual and formal models of diagnosis is given in
Table3.1. Obviously, the various models of diagnosis discussed above can also be
combined. To solve real-life diagnostic problems in a domain, it is likely that a
mixture of conceptual models of diagnosis as distinguished above will be required.
Since the resulting systems use various types of knowledge, e.g. both knowledge of
structure and behaviour, and empirical associations, the result is known as diagnosis
with multiple models.

Although in the literature it is emphasised that the conceptual models of diagnosis
discussed embody different forms of diagnosis, they have much in common. For
example, the type of knowledge used inDNSBdiagnosis can be viewed as an implicit,
or intensional, version of the type of knowledge used in AC diagnosis (if restricted
to normality classification), which is an explicit or extensional type of knowledge;
the associations between normal observable findings and the absence of defects are
hidden in the specified normal behaviour in DNSB diagnosis. DNSB and MAB
diagnostic problem solving are based on some kind of simulation of behaviour;
such simulation of behaviour is absent in AC diagnosis. In all cases, the diagnostic
problem is seen as an ordered pairP = (K , O), with K = (C, R, E) in turn a tuple
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of causesC , association rules R, and effects or possible observations E corresponding
to the description of the causal model, and O a set of actual findings or observations
such that O ⊆ E . The particular form, as well as the semantic, of the elements
and subelements of the diagnostic problem depends on the chosen formalisation
paradigm. For instance in consistency based diagnosis the system description is a
finite set of first-order logic formulae R implicitly encoding the projection from
system components C to observed findings E , whereas in the case of set covering
diagnoses R is explicitly a subset of the Cartesian product between disorders C and
manifestations E .

Finally, several programs have been developed that offer limited possibility to
carry out diagnostic problem solving using multiple models; examples of such pro-
grams are GDE [12]. These programs use DNSB diagnosis as their core approach.

3.5 Conclusions

This chapter introduces the book section on the use of knowledge representation to
solve the diagnostic problem. The chapter has briefly overviewed important formal-
isation theories which arise from the two reasoning frameworks dominating formal
medicine; namely deductive and probabilistic. Each of these ways to explaining
events are archetypical of two attitudes towards clinical diagnosis; deterministic and
evidence-based diagnosis [26]. Whatever the reasoning chosen to address the diag-
nosis, it seems clear that our GP has now a wealth of formal approaches at her hand
to reason the most solid diagnosis on the light of the signs. The different options
available have different expressive capabilities and their choice depends on the type
of knowledge base available to the system designer. Notwithstanding, uncertainty
andmeaning can be combined in a unified framework such as offered by probabilistic
logics, such as AILog [21].

The rest of this book section presents two specific examples of formal diagnostic
systems, each of themaddressing different clinical problems and founded on different
knowledge representation paradigms.
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Chapter 4
Automated Diagnosis of Breast Cancer
on Medical Images

Marina Velikova, Inês Dutra and Elizabeth S. Burnside

Abstract The development and use of computerized decision-support systems in
the domain of breast cancer has the potential to facilitate the early detection of dis-
ease as well as spare healthy women unnecessary interventions. Despite encouraging
trends, there is much room for improvement in the capabilities of such systems to
further alleviate the burden of breast cancer. One of the main challenges that current
systems face is integrating and translating multi-scale variables like patient risk fac-
tors and imaging features into complex management recommendations that would
supplement and/or generalize similar activities provided by subspecialty-trained clin-
icians currently. In this chapter, we discuss the main types of knowledge—object-
attribute, spatial, temporal and hierarchical—present in the domain of breast image
analysis and their formal representation using two popular techniques from artificial
intelligence—Bayesian networks and first-order logic. In particular, we demonstrate
(i) the explicit representation of uncertain relationships between low-level image fea-
tures and high-level image findings (e.g., mass, microcalcifications) by probability
distributions in Bayesian networks, and (ii) the expressive power of logic to generally
represent the dynamic number of objects in the domain. By concrete examples with
patient data we show the practical application of both formalisms and their potential
for use in decision-support systems.

4.1 Introduction

According to the American Cancer Society (ACS), breast cancer is the second lead-
ing cause of cancer death in women, exceeded only by lung cancer. The chance that
breast cancer will be responsible for a woman’s death is about 3%. Death rates from
breast cancer have been declining since about 1990, with larger decreases in women
younger than 50. These decreases are believed to be the result of earlier detection
through screening and increased awareness, aswell as improved treatment, changes in
clinical procedures, for example, genetic testing, and innovation in technologies like
digital mammography and tomosynthesis [7, 11]. The increased use of computerized
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Fig. 4.1 Knowledge representation for decision-support in breast cancer diagnosis.

decision support systems that candetect breast cancer basedonbreast images or on the
patient’s history and clinical information, has the potential to contribute to improved
outcomes [3, 5]. The severe consequences of breast cancer for many patients’ health
and life, and for their familieswell-being are still present andmuch room for improve-
ment in the management of the disease is needed.

In this respect, a number of major challenges for clinical practicioners can be
outlined, such as processing of huge amounts of data (e.g., interpretation of medical
images) in short time, uncertainty in establishing a diagnosis or a treatment due to
the variety of breast cancer pathologies. Another important problem is the lack of
standardization and organization of what information to collect, which may be con-
fusing and create delay in the diagnosis of diseases. This mostly concerns recording
results in free text dictations, use of different terms for the same concepts and use of
different metrics for the same values. Fortunately, and unique as compared to other
medical fields, breast imaging has its own lexicon created by the American College
of Radiology, the Breast Imaging Reporting and Data System (BI-RADS) [1], to
facilitate the organization and standardization of information gathered. While this
lexicon provides a good basis, it is not sufficient to support fully the management
process of breast cancer.

Computer-based systems mitigate these problems by (1) efficiently organizing
patient information, (2) preventing and eliminating errors and data inconsistencies;
(3) extracting reliable statistics and non-trivial knowledge from the data, and (4) sup-
porting clinical decision. Figure4.1 presents a general scheme for such computerized
support for the detection and diagnosis of breast cancer, where the knowledge about
the parallel interpretation of two breast image views is represented once and in a
consistent manner by means of a Bayesian network (probabilistic graphical model),
and it is embedded into a computer-aided system for multiple use by a clinician.
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In this work we assume that the data was entered correctly, is consistent, and is
stored in some structured format. Our goal is to represent the “knowledge” attached
to those data, which implies encoding not only primitive data (objects, attributes and
their values), but also their relationships (causal, uncertain) that can convey useful
information about the patient health conditions. In order to have knowledge with a
good quality it is important to choose a good representation. In this chapter we will
focus on logical and probabilistic knowledge representations.

4.2 The Domain of Breast Cancer

Breast cancer is a type of cancer originating from breast tissue, most commonly from
the inner lining of milk ducts (ductal carcinomas) or the lobules (lobular carcinomas)
that supply the ducts with milk. Any lump, abnormality, or alteration in the breast
tissue’s integrity that may represent a breast cancer can be designated as a finding.

Figure4.2 depicts the main tasks related to the identification and management of
a finding, and the common methods used to perform them. The first task is called
detection, which includes the identification of a finding as a physical object and
its characterization (e.g., size, shape, density, and location). This is mostly done by
a physical examination (e.g., palpation either by a woman herself or by a doctor)
or by means of breast cancer (usually imaging) screening. The latter is performed
regularly in asymptomatic women above certain age (usually between 40–50) to
detect cancer at early stages and it is currently basedonmammographic examinations.
Such examination involves anX-ray of each breast—amammogram—which is taken
while carefully compressing the breast. On a mammogram, small changes in the
breast tissue can be detected, which may indicate cancer that is too small to be felt.
Mammograms are usually taken in two views: (1)mediolateral oblique (MLO), taken
under 45◦ angle and showing part of the pectoral muscles, and (2) craniocaudal (CC),
taken head to toe. Two main types of mammographic findings are distinguished:
microcalcifications and masses. Microcalcifications are tiny deposits of calcium and
are associated with extra cell activity in breast tissue. Microcalcifications that are
scattered throughout the mammary gland are usually a non-cancerous sign, while
their occurence in clusters might indicate early stage breast cancer. According to
the BI-RADS definition, “a mass is a space occupying lesion seen in two different
projections.” When visible in only one projection, it is referred as a mammographic
“asymmetry”. However, asymmetry may be a mass, perhaps obscured by overlying
glandular tissue on the other view, and if it is characterised by enough suspicious
features then it may indicate breast cancer.

Based on the detection results of a finding, the physician may or may not request
additional exams, for example, fine needle aspiration (FNA) or core needle biopsy
(CNB) in order to perform the second task—diagnosis. It concerns the identification
of a finding either as benign (non-cancerous) or as malignant (cancerous). In benign
tumors, thecellswill not invadesurrounding tissuesor spread todistantorgans. Inmost
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Fig. 4.2 Tasks (T#) and common methods involved in the management of breast cancer.

cases, a benign tumor can be removed. In a malignant tumor, the cells have the poten-
tial to behave aggressively, invading adjacent tissue and spreading to distant organs.

If the diagnosis is amalignant finding, the next task is to recommend and perform a
treatment such as chemo-/radiotherapy or an excision surgery. Finally, the physician
can study the effects of the treatment, and perform a prognostic analysis for cancer
recurrence and chances for survival of the patient, by using, for example, genetic
information or the patient’s history.

Therefore, in this domain, we can count on information about the patient (demo-
graphics, personal history, family history, social information, and environmental
exposures), about mammography images and reports, descriptors of abnormalities
associated with a mamography, pathology information (details of histological analy-
sis such as kind of breast cancer or cells associated with calcifications), and details
about surgeries (kind of biopsy procedure, kind of needle, number of specimens
collected etc.).

4.3 Knowledge Representation for Breast Cancer Diagnosis

4.3.1 Motivation

The information concerning the breast cancer diagnosis can come from various
sources, e.g., image modalities, laboratory tests, and different medical experts, e.g.,
radiologists, surgeons, pathologists. As a result, we end up with heterogeneous type
of information about the same patient that need to be represented and processed in
a relational form as opposite to the traditional propositional approach that uses a
single table to collect all information about a patient. One of the forms of represent-
ing relational data is to store it in relational databases. These databases allow only
for querying the primitive (basic) data itself, and do not support queries about more
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Fig. 4.3 Human-defined knowledge and its representation by FOL and a BN.

complex relationships such as “What is the relation between a malignant diagnosis
and a combination of some patient attributes”, “What is the disease evolution along
the time andwhat is the prognosis of a given patient?”, or even “What is the pattern of
a discordant biopsy (the one that gave a result that is not agreeable by all physicians
in a medical conference)?” From a clinical point of view, giving answers to these
questions means to save patients from the inconvenience of undergoing invasive pro-
cedures and save other patients of being sent home without an adequate treatment,
while reducing costs to patients and to hospitals.

To be able to answer such questions, more advanced approaches need to be used
to represent relational knowledge. In this chapter we will focus on first order logic
and graphical probabilistic models. To illustrate the basic knowledge representation
principles of thesemethods, Fig. 4.3 presents an example in the domain of breast can-
cer. In the left-hand side, we have a first order logic (FOL) definition for an upgraded
biopsy (an upgraded biopsy is the one that gave a negative result for malignancy, but
proved to be malignant after recommended surgery). In the right-hand side we have a
graphical probabilistic representation in the form of a Bayesian network (BN). Both
representations make use of the attributes A related to an object Biopsy to build
a relation among attributes. The first-order logic relates atypical ductal hyperpla-
sia (ADH), microcalcifications (amorphous and fine-linear), and biopsy procedure
to infer cases when the biopsy is an upgrade. The same information is represented
in the Bayesian network, but in another format and uses additional probabilistic
information.

To design a knowledge representation system, we need to identify the types of
knowledge that exists in the domain of interest—the diagnosis of breast cancer. We
distinguish between two categories of knowledge: (i) knowledge about primitive data,
which are objects and attributes and (ii) knowledge about relationships between the
primitive data.
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4.3.2 Object-Attribute Knowledge

Table4.1 presents examples of physical objects O relevant for our domain of interest,
their attributes (features) A with the respective range of values dom(A).
We distinguish between two main types of attribute domains:

(i) discrete referring to a finite and countable set of values. It can be defined by
categories or integers, e.g., the domain of age can be defined as the categorical
set of “young”, “middle-aged”, “old” or as the integer set {1, . . . , 120}. Typical
examples for discrete variables within the medical domain are risk factors such
as gender ∈ {male, f emale}, history of a disease ∈ {no, yes}, and smoking
(cigarettes per day) ∈ {0, 1 − 5, 6 − 20,> 20}.

(ii) continuous referring to an infinite set of values between two points. Thus the
domain is real-valued and values follow a distribution, e.g., Gaussian or Gamma.
Typical examples of continuous attributes are the image features extracted by
a computer-aided system or the size of a finding. From a knowledge represen-
tation point of view, continuous attributes are often discretized, i.e., their range
is divided into a finite set of values that may or may not have a semantical
meaning, but allow for an easier interpretation for human experts. For exam-
ple, the size of a finding can be discretized into {<1cm, 1–3cm, >3cm} or
{small, medium, large}. A recent work on discretization of mammographic
features has shown the advantages of this data pre-processingmethod for improv-
ing the detection performance of a CAD system [8].

More than one value can be assigned to some of the variables in breast cancer.
For example, both values “fine” and “linear” can be assigned to the calcifications
variable, or more than one pathology may be associated with a tumour. In that case,
physicians may use a precedence list that indicates orders like Fine > Linear > . . .

Table 4.1 Examples of objects, attributes, and their values in the domain of breast cancer

Object O Attribute A ∈ dom(A)

Patient age ∈ {“young”, “middle-aged”, “old”}

gender ∈ {“male”,“female”}

Exam time ∈ {“prior”, “current”}

type ∈ {“physical”, “screening”}

Image quality ∈ {“low”, “medium”, “high”}

modality ∈ {“MRI”, “mammography”, “CT”}

breast-view ∈ {“MLO”, “CC”}

Finding location-in-breast (quadrant) ∈ {“upper-outer”, “upper-inner”, …}

location (side) ∈ {“left”, “right”}

Mass shape ∈ {“oval”, “round”, “irregular”}

margin ∈ {“circumscribed”, “indistinct”, “spiculated”}
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or ALH < LCIS < ADH < DCIS. This information can be used to give preferences
to certain attribute values ranking their relevance.

Coding medical object-attribute knowledge is straightforward once there is an
established convention for naming variables and terms, such as the BI-RADS lexicon
for mammographic features and findings. For example, the shape (attribute) of a
mass (object) using first-order logic (FOL) can be represented by the two-valued
predicate massShape(F, V alue), where F is a variable referring to a mass object
and V alue is a variable referring to one of the attribute values (see Table4.1). In
terms of probabilistic graphical models, such as Bayesian networks (BNs), the same
knowledge is to be represented by a node called “massShape” whose domain will
contain the three exclusive values describing shape.

Another way of coding the same attribute “massShape” is to use a boolean rep-
resentation where a new attribute is created for each possible value of the original
“massShape”. Therefore, if “massShape” could assume values “oval,” “round,” or
“irregular,” the new representation would be done through three new variables, say,
“massShapeOval,” “massShapeRound,” and “massShapeIrregular”with boolean val-
ues (for example, value 1 indicating presence and value 0 indicating absence). This
kind of representation can be very useful when one attribute can assume several
possible values or if the data is to be used for classification, as some classifiers work
better with binary feature vectors. It is also helpful to improve the quality of data
as each possible value of the variable will be properly discriminated. For example,
assume the variable we have is “massShape.” If this variable is left blank for any
reason, we can not conclude anything about “oval,” “round,” or “irregular.” On the
other hand, if we represent this same variable by three new variables, chances are
that at least one of them will not be left blank.

4.3.3 Relational Knowledge

Relational representations can be conceptualised as a binding between a relation
symbol and a set of ordered tuples of elements. For example, the relation-symbol
larger is bound to the set of ordered pairs: {(5, 2), (3, 1)...}. The symbol represents
the “intension” of a relation and specifies which relation is intended; for example,
elements are ordered by size. The ordered tuples represent the “extension” of a rela-
tion. They can include knowledge learned by experience, and can provide statistical
knowledge of the world [4].

4.3.3.1 Causality

While object-attribute relationships are relatively straightforward to represent given
a standardized naming, the relationships between the objects in the domain of inter-
est may be more complex to formally express. One type of relationship concerns
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Fig. 4.4 Example of causal dependencies

causal dependencies. A typical example of such dependencies in a medical domain,
including the breast cancer diagnosis, is presented in Fig. 4.4:

The concept on the left-hand side of each arc represents the cause whereas the
concept on the right-hand side is the effect. While these causal arcs reflect the direc-
tion of influence, they do not necessarily express a deterministic dependence. In
other words, the presence of a risk factor (elderly woman) increases the chance that
a disease (breast cancer) may occur, but it does not imply that it will occur for sure.
The same holds for the presence of a disease and its appearance on an image—
breast cancer may or may not appear as a mammographic mass, for example. Clearly
such relationships are inherent with uncertainty and they can be represented by
probabilistic approaches such as Bayesian networks, where the network structure
reflects exactly the direction of causality, and the probability distributions represent
its strength. Certain causal relationships such as “Disease” −→ “Laboratory tests”
may bemore probable and even in some cases deterministic, as in the example shown
in Fig. 4.4, which can be expressed by the FOL rules.

Another type of relational knowledge that is more challenging to represent, espe-
cially in image interpretation, concerns aggregations such as the “part-whole” rela-
tions. A common assumption in this case is that given evidence about parts, the goal
is to hypothesise and try to draw conclusions about the whole. In particular, evidence
for certain characteristics in one or more parts increases the likelihood that the same
characteristics are present in the whole. This type of relationship is illustrated in
Fig. 4.5 where various levels of object image analysis are given, namely an image is
“part-of” an exam, and the exam is “part-of” a patient case. Detecting cancer on the
image will imply that the respective exam and patient case are also assigned a label
of “cancerous”. The problem of this type of reasoning is, however, that the errors
in the low(part)-level image analysis will be propagated to the higher(whole)-level
analysis. An alternative is to represent and reason about additional knowledge such
as spatial, temporal, and hierarchical relationships to better analyse the part-whole
dependencies.

4.3.3.2 Spatial Knowledge

Another key knowledge used in breast cancer diagnosis onmedical images are spatial
relationships that indicate the context dependency to the objects locations. There are
two general forms of spatial knowledge: (i) absolute position of the objects on the
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Fig. 4.5 Various levels of object image analysis by computer-aided detection systems.

image, usually in XY-coordinate system for 2D images, and (ii) relative positions of
the objects to each other.

The first type of spatial knowledge in image interpretation for breast cancer diag-
nosis is relatively straightforward to represent. Let us consider a finding detected by
a CAD system or a human reader in the MLO view of the left breast. The location of
this finding will be represented by a node for each coordinate, e.g., “LocX-MLO” in
BNs, and by a binary predicate, e.g., locX_M L O(F, V alue) in FOL with F refer-
ring to the finding and V alue to the X-location value. Depending on the available
data, the range of values that location can take will be (i) continuous: obtained from
the automated processing of the MLO image or (ii) discrete: based on a manual
annotation (e.g., breast quadrant) or discretization of the continuous values.

The relation of objects in terms of space requires a more complex, and not nec-
essary unique, representation. In mammographic analysis, it is well-known that two
regions of interest (or findings) on MLO and CC views of the same breast that are
approximately at the same distance from the nipple and exhibit similar features (e.g.,
mass shape is the same) are very likely to refer to one finding. In FOL, this knowledge
concerning the findings F1 and F2 can be expressed as follows:
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Fig. 4.6 A BN representing
the linking between two
findings on the MLO and CC
views of the same breast.
The grey circles represent
the observed features of the
findings on both views.

same_ f inding(F1, F2) ←−M L OV iew(F1) ∧ CCV iew(F2)∧
nipple_distance(F1, D1) ∧ nipple_distance(F2, D2)∧
(
abs(D1 − D2) < ε

)∧
side(F1, le f t) ∧ side(F2, le f t)∧
quadrant (F1, upper_outer) ∧ quadrant (F2, upper_outer)∧
massShape(F1, oval) ∧ massShape(F2, oval).

The problem with the representation above is that it is deterministic and it does not
reflect a likelihood that F1 and F2 are the same finding. To do so, we can use a BN
with probabilistic information as shown in Fig. 4.6.

The lowest network level captures the observed features Oi of an image finding
on each breast view, modeled as effects of the unobserved finding features X j (white
circles). The top level node corresponds to finding F with values “no”, “benign,”
and “malignant”. The conditional probability tables P(Oi |X j ) and P(X j |F) can be
obtained based on expert knowledge or statistics derived from image data. These can
be expressed as qualitative or quantitative constraints as shown in Table4.2.

Table 4.2 Probabilistic qualitative constraints and quantities

Probabilistic qualitative constraints

P(MassShape =′ oval ′|Finding =′ benign′) >

P(MassShape =′ oval ′|Finding =′ malignant ′) >

P(MassShape =′ oval ′|Finding =′ no′)
P(nipple_distance =′ 0 − 2cm′|Finding =′ benign′) >

P(nipple_distance =′ 0 − 2cm′|Finding =′ malignant ′)
Probabilities

P(MassShape =′ oval ′|Finding =′ benign′) = 0.73

P(nipple_distance =′ 0 − 2cm′|Finding =′ malignant ′) = 0.24
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4.3.3.3 Temporal Knowledge

Temporal knowledge implies a dependence to time and may lead to different infer-
ences in different temporal contexts. In medical domain, including breast cancer
diagnosis, modelling and reasoning about such knowledge is of particular impor-
tance due to a progressive nature of a disease. In breast screening programs, for
example, it is typical that images of the same breast are taken over regular intervals
of time.Detecting interesting changes amounts to recognising corresponding objects,
if present, in these images.

We used the examples of mammographic patient data from Table4.3 to illustrate
knowledge representation principles of temporal knowledge using graphical models
and logic. Table4.3 contains observational data such as the column “Calc F/L” report-
ing if a radiologist saw fine or linear calcifications in the mammogram image, and the
column “Location” reporting the quadrant in the breast image related to the finding.

Table4.3 includes two interesting relations for patient P1, who has three mammo-
graphic exams. The first and the second exams seem to reveal the same finding, given
the common location in the breast, and observed at different periods of time (5/02 and
5/04).Thisfinding refers to a tumor that appears on themammogramas amass that has
grown in size in the second examination and as newly observedmicrocalcifications—
clearly signs formalignancy. At the same time, another tumorwas found in patient P1
during the examination made in 5/04, which appears to be benign.

In terms of probabilistic graphical models, a common representation method of
temporal knowledge are dynamic Bayesian networks—temporal models where the
same variables of interest, describing both the state of the system, observables, con-
ditions, and actions that may change the state at different points of time [6]. A usual
assumption underlying these models is that: (i) the future state is conditionally inde-
pendent of the past state given the present state (first-orderMarkov property), and (ii)
the probabilistic temporal relations between adjacent states do not change over time
(time invariance or stationarity condition). This way, a dynamic Bayesian network
becomes a compact process representation that can be employed in forecasting.

Figure4.7 presents a dynamic Bayesian network in the context of patient data
shown in Table4.3. We have two time slices representing, for example, mammo-
graphic exams taken over two years. Within each slice static causal relationships are
represented by solid arcs whereas the temporal relationship between both slices
is represented by the dashed line. The former expresses, for example, that the

Table 4.3 Examples with mammographic patient data

Patient Month/Year Finding Calc F/L Mass size Location Diagnosis

P1 5/02 1 No 0.03 RU4 Benign

P1 5/04 2 Yes 0.05 RU4 Malignant

P1 5/04 3 No 0.04 LL3 Benign

P2 6/00 4 No 0.02 RL2 Benign
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Fig. 4.7 A structure of a dynamic Bayesian network representing the relations in Table4.3. The
dashed arc represents a temporal relationship between two time slices whereas the solid arcs repre-
sent static relationships within a time slice.

presence of Finding is a causal factor for the presence of calcifications or a
mass as well as for a location characteristic. Furthermore, Mass has a probabilis-
tic influence on the distribution of the size attribute, which can be expressed, for
example, as P(Size|Mass = yes) = N (0.03, 0.001), with N denoting a normal
distribution with a respective mean and standard deviation. A temporal relation-
ship in the network expresses the fact that a finding detected in a previous time
slice t − 1 increases the probability for a finding in the current time slice t , which
is expressed by the conditional probability distribution P(Findingt |Findingt−1),
e.g., P(Findingt = benign|Findingt−1 = benign) = 0.42, and P(Findingt =
malignant |Findingt−1 = benign) = 0.25.

The relations in Table4.3 can also be easily represented in logic as shown below,
where names such as “previous_finding,” “mammo,” and “date” are regular first order
logic predicates and P , F1, F2 are logical variables.

previous_ f inding(F1, F2) ←−mammo(P, F1) ∧ mammo(P, F2)∧
date(F1, D1) ∧ date(F2, D2)∧
(D1 < D2 ∨ D2 < D1)

This rule relates two findings F1 and F2 for the same patient P , separated in
time (date of F1 is before or after the date of F2). It can be further used to simulate
temporal reasoning in the context of other rules such as:

is_malignant (A) ←−mass(A, present) ∧ previous_ f inding(A, B)∧
(
massSi ze(A) < massSi ze(B)

) ∧ calc(B, present)∧
previous_ f inding(A, C) ∧ calcFineLinear(C, yes)
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In this rule, we have explicit relations among different rows of Table4.3 with the
use of the predicate previous_finding which relates finding A with finding B, each
one having its own properties. This rule also relates finding A with a third finding C
(not shown in Table4.3), which has calcification fine-linear.

4.3.3.4 Hierarchies and Concept Aggregation

Up to now we discussed ways for representing mostly low-level image interpreta-
tion information, which concerns findings, manual annotations, and their features.
Although this forms the basic step for automated decision-support in breast cancer
diagnosis, the ultimate goal is that computerized systems should be able to analyze
data and provide feedback at a patient level. In particular, as physicians are capable of
simultaneous interpretation of various contexts (e.g., spatial and temporal), multiple
types of findings (e.g., masses, calcifications, distortions) andmodalities (e.g., X-ray,
MRI, ultrasound), the systems should represent and reason with various sources and
levels of information and knowledge. A useful representation scheme for system-
atic structuring of such variety of complex relationships and facilitating physician’s
reasoning is a concept hierarchy, where knowledge and information sources are inte-
grated both horizontally and vertically. Such a hierarchical structure in the domain
of breast cancer image diagnosis is presented in Fig. 4.8.

The horizontal integration refers to combining various sources at the same level
of processing, where each source supports part of an entire task. A typical example
in the context of breast cancer image diagnosis is a parallel interpretation of multiple
mammographic signs, such as microcalcifications MC AL and masses M ASS, to
provide a complete picturewhether or not breast cancer BC (i.e., amalignant finding)

Fig. 4.8 A hierarchical structure of concepts used in breast cancer diagnosis. The left structure
presents the semantical concepts as used by physicians whereas the right structure presents the
top-down layers in image analysis.
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Table 4.4 Aggregated concepts in establishing the risk for breast cancer with a respective example
for a representation in FOL

Concepts Example representation in FOL

Proximity high Risk(F) ←− calci f ications(F, yes) ∧ location(F, X)∧
location_calci f ications(F, Y ) ∧ distance(X, Y, E) ∧ E < Error

Quantity lowRisk(F) ←− number O f Foci(F, N ) ∧ N = 1

Similarity lowRisk(F) ←− previous_ f inding(F, B F) ∧ date(B F, D1)∧
date(F, D2) ∧ D1 < D2 ∧ pathology(B F, benign), similar(F, B F)

Timing lowRisk(F) ←− previous_ f inding(F, B F) ∧ date(B F, D1)∧
date(F, D2) ∧ D1 < D2 ∧ pathology(B F, benign)

Association high Risk(F) ∨ excise(F) ←− calci f ications(F, yes)

Priority incidental(P) ←− pathology Priori t y(P, low) ∧ pathologyT ype(P ′, ARS′)

is present. In termsof probabilistic graphicalmodels, this integration canbe expressed
in two ways depending on available knowledge and data:

• MC AL ←− BC −→ M ASS: This descriptive representation expresses the
causal knowledge that microcalcifications andmasses are signs (effects) of the dis-
ease “breast cancer” (cause) and given that the disease is present then it is expected
to appear as amammographic sign. The uncertainty in this appearance (e.g., obscu-
rity in the image due to high breast density) is provided by the conditional probabil-
ity tables of MC AL and M ASS based on domain knowledge, e.g., P(MC AL =′
malignant ′|BC =′ present ′) = 0.86 and P(M ASS =′ malignant ′|BC =
′ present ′) = 0.93. Once a sign is observed, the probability P(BC |MC AL ,

M ASS) can be computed using the Bayes theorem.
• MC AL −→ BC ←− M ACC : This discriminative representation aims at pre-
dicting the probability for breast cancer given the mammographic observations.
When sufficient data from image processing or human annotation reports are avail-
able, one can learn the conditional probabilities P(BC |MC AL , M ASS), express-
ing the combined effect of the signs in breast cancer dignosis.

The vertical integration in a hierarchy, on the other hand, is a knowledge rep-
resentation at different levels of abstraction. An example in the current context is
the parallel interpretation of multiple two-dimensional breast projections, such as
M L O and CC , to provide a complete picture whether or not a finding is present in
the breast B as a whole. Similarly to the horizontal integration, the vertical knowl-
edge representation can be expressed in various forms based on domain knowledge
or available data.

Abstract concepts can be represented to help structure the physician’s reasoning.
Table4.4 presents a number of typical concepts in establishing the risk for breast
cancer.
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4.3.4 Observations and Hypotheses

From a knowledge representation point of view, we distinguish between observations
and hypotheses. Observations are factual information obtained by means of a visual
(physical) inspection, reporting, tests, or computer processing. Typical examples
include risk factors (age, medical history), image features (location and shape of a
finding), image findings (mass,microcalcifications), symptoms (pain, palpablemass)
or laboratory results (breast biopsy).

A hypothesis is a possible explanation for the phenomenon we observe and it is
often related to a variable of interest (output). Examples include the diagnosis of a
disease (e.g., breast cancer) or determining the state of organ functioning (e.g., renal
dysfunction). In the knowledge representation process, hypotheses may be included
as separate entities that establish dependencies between the observations. In this case,
we refer to hypotheses as “hidden variables”.

Despite this hard distinction between observed and hidden variables, in practice a
variable can play the role of both, depending on available information or the problem
at hand. For example, in certain situations, an image finding of mass may be reported
by a human reader and be used as evidence for determining whether or not breast
cancer is present, whereas in another situation the goal might be to predict whether
mass is present given a number of observed image features.

4.4 Inference and Decision-Making in the Management
of Breast Cancer

4.4.1 Deductive Inference

A deductive system uses the data combined with pre-defined rules to draw conclu-
sions and to support the decision-making process. For example, after the first screen-
ing, a medical doctor can lookup the guideline on Breast Screening and Diagnosis
produced by the National Comprehensive Cancer Center (NCCN)1, to assist his/her
the decision-making. With the guideline, depending on the symptoms found during
a screening, the physician can follow different paths suggesting a possible follow-
up to a patient. A guideline implements a limited form of deduction, where, given
some knowledge about a patient, the physician infers a decision based on the paths
followed in that guideline. This inference of deduction can be done automatically if
we use formal languages such asmathematical logic that, for example, uses complete
and sound proof procedures such as resolution [9]. In fact, there are several works
in the literature that represent guidelines (or parts of) by means of logics [10, 13].
The knowledge represented in Sect. 4.3, using the logic formalism, can be used to
automatically answer questions such as “what are the findings that are malignant?”

1 http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf, available after registration.

http://www.nccn.org/professionals/physician_gls/pdf/breast.pdf
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(in logic: ∃ Fmalignant (F)) or “Is there a benign findingwith a highmass density?”
(in logic: ∃ F pathologyT ype(F, benign) ∧ mass Densi ty(F, high)), using reso-
lution.

4.4.2 Inductive Inference

Inductive systems, on the other hand, support the decision-making by automating
the process of creating models based on available data or expert knowledge. Systems
that fall in this category are usually called machine learning systems. In the case of
creating rules, a machine learning algorithm can automatically produce a guideline
as defined byNCCN or the rule presented in Fig. 4.9, or even complement a guideline
with a newly created rule.

The example rule shown in Fig. 4.9, written with the Prolog syntax, was auto-
matically extracted from a database containing more than 65,000 patients. This rule
suggests that a set of patients may have had a delayed treatment, because they had
obtained a BI-RADS category of 3 (low-risk benign, b3) in past exams, which later
became 5 (high-risk malignant, b5) [2]. In fact, this rule was validated against the
dataset, and this condition held true for seven positive patients and for none of the
negative ones with benign findings.

Inductive learning with logic is very useful to extract readable and interpretable
models from the data. Rather than producing a black-box classifier, logical rules
can explain the classifier itself to the physician. This can further contribute to the
refinement of the expert knowledge in a way that the inductive system learns rules,
the physician can modify or refine them, then the system learns new rules from the
refinements and the process continues.

One good side-effect of inductive learning is that the rules found during this
interactive process can shed some light on the most relevant primitive features that

Fig. 4.9 An example of knowledge representation using a Prolog rule.
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can suggest a diagnosis. For example, some of the features may consistently appear
in every learning step. The health professionals can then concentrate on studying
these features and even improving the quality of the data values entered for these
features by enforcing better data collection.

4.4.3 Application

In this sectionwedemonstrate the application of knowledge representation formalism
for mammographic diagnosis. We show two different formalisms. One is based on
a probabilistic graphical model and the second one is based on first order logic.
In the first one, features are automatically extracted from image processing. In the
second one, features come from multiple tables generated by annotations performed
by doctors when preparing medical reports about mammography, pathology analysis
and biopsy procedures.

Fig. 4.10 A Bayesian network for interpretation of mammographic signs
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4.4.3.1 Probabilistic Graphical Model

Figure4.10 presents a Bayesian network model whose structure was manually built
using domain knowledge and its parameters were learnt from real-world mammo-
graphic data. The model aims at detecting a malignant finding on a mammogram
based on image features automatically extracted from a CAD system and follow-
ing the two-view image interpretation as done by radiologists. For a more detailed
description of the model, the reader is referred to [8, 12].

Table4.5 presents the data for three real-world cases obtained from the Dutch
mammographic screening program, which contains a number of automatically
extracted regions of interest and their respective features on a breast view (image).
The ground-truth of each region is provided by pathology reports. The last row in

Table 4.5 A sample of three real-world cases with mammographic regions of interest (ROI) and
respective features extracted from a CAD system. Variable Finding is the ground-truth.

Cases (C#) C1 (right breast) C2 (left breast) C3 (right breast)

ROI# ROI1 ROI2 ROI1 ROI2 ROI1 ROI2

Finding FALSE TRUE FALSE TRUE FALSE TRUE

MLO-FPlevel very high low very high high very high low

CC-FPlevel very high very low very high very low very high very low

MLO-Dlik very low high very low very low very low low

CC-Dlik very low low very low high very low medium

MLO-Spic present present present present absent absent

CC-Spic absent present present present absent absent

MLO-FM present absent present present present present

CC-FM present absent present present present present

MLO-Size very small very small medium medium very small very small

CC-Size small small small medium small small

MLO-Contrast low low low low low low

CC-Contrast very low very low very low high very low very low

MLO-LinText low low low low low low

CC-LinText low low low low low low

MLO-D2Skin far medium close medium medium medium

CC-D2Skin close close close close close close

MLO-LocX region1 region1 region1 region1 region1 region1

CC-LocX region2 region1 region1 region1 region1 region1

MLO-LocY region3 region3 region4 region3 region1 region3

CC-LocY region1 region1 region1 region1 region1 region1

P(Finding = T ) 0.07 0.89 0.11 0.77 0.11 0.62
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Table4.5 shows the Bayesian network (shown in Fig. 4.10) computed probability that
a malignant finding is present, given the features in each view.

4.4.3.2 First Order Logic (FOL)

Another example using a logic representation is shown in Fig. 4.11, where each of
the rules, automatically learned from data, is true for 30 out of 79 benign findings
(with 40% Recall) while not missing any malignant finding out of 17 (with 100%
precision). In other words, when these rules are used to classify new cases, a true
malignant case is never missed and mistakenly sent home. On the other hand, some
benign cases will may be misclassified, but not all. The dataset used to train the rules
consists of non-definitive biopsies collected from the Medical School of the Univer-
sity of Wisconsin-Madison, USA. The relevance of this result is that the classifier is

Fig. 4.11 FOL rules

Fig. 4.12 Instances represented in FOL
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capable of sparing somewomen from excision while not missing anymalignant find-
ing. Currently, when biopsies are inconclusive (non-definitive), the common practice
is to excise all women in this situation.

In order for that to work, data instances need also to be represented in FOL. Two
examples are shown in Fig. 4.12. These instances are coded from medical mam-
mography reports, and include extra information about the biopsy procedures and
about the patient data. They also use the BI-RADS encoding. Applying the rules
from Fig. 4.11 to the two instances, classifies correctly the left instance as malignant
and the right instance as benign. We only show partial data for the instances, since
the rules only describe mass margins (mammographic finding), biopsy features and
patient data.

4.5 Discussion and Conclusion

We outlined various types of knowledge available in the domain of image interpre-
tation of breast cancer diagnosis and their representation using two main formalisms
from the field of artificial intelligence—Bayesian networks (BNs) and first-order
logic (FOL). While both formalisms are capable of explicitly expressing domain
knowledge, for example, in terms of causal, spatial and temporal relations, they
differ in the form of this expression.

The power of Bayesian networks lies in their capabilities to deal in a probabilistic
manner with uncertainty, which is often encountered in medical image intepretation
due to, for example, image quality or resemblance in the image appearance between
abnormalities and normal body structures. In the current context, we demonstrated
how Bayesian networks can be used to model multi-view image interpretation by
using a hierachical representation following the human expert’s working principles.

As a propositional method, however, Bayesian networks are restricted in the rep-
resentation of a dynamic number of objects and relationships, which is naturally
done by FOL. In the context of breast cancer diagnosis based on medical images, we
showed how the latter can be applied in formalizing expert knowledge in a compact
manner.

Recent advances in medical imaging have led to a variety of modalities such as
MRI, tomosynthesis, and ultrasound, to augment the current tools (primarily mam-
mography) for breast cancer screening. The integrated interpretation of these modal-
ities at a patient level imposes even more challenges for human readers and new
modelling techniques are needed to handle both uncertainty and dynamics in find-
ings. Probabilistic logics—themerge of probability theory and logic—is a promising
direction for future research in this application domain.
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Chapter 5
Monitoring in the Healthcare Setting

Federico Chesani, Catherine G. Enright, Marco Montali,
and Michael G. Madden

5.1 Introduction

Monitoring is an activity in which a running system is observed, so as to become
aware of its state. The fact that the system is observed makesmonitoring complemen-
tary to approaches like formal verification and validation, which are tailored to assess
the quality and trustworthiness of the system before the execution. While verifica-
tion/validation works on a model of the system, as discussed in Chap. 19 monitoring
observes real system executions. The fact that the system is typically observed while
running makes monitoring complementary to approaches like data/process mining,
which are applied post-mortem, i.e., on historical, logged information.

Typically, monitoring does not only work solely on a stream of data representing
the evolving trace of an actual system behavior, but also considers a model capturing
the expected systembehavior. In this light,monitoring is concernedwith continuously
contrasting the actual and expected behavior, so as to correspondingly provide a
meaningful feedback to the actors responsible for the system execution, not only to
make them aware of its current state and of deviations with the expected state, but
also to make them able to promptly react to exceptional situations. This is why it
is considered to be one of the main pillars of what is termed operational decision
support [1, 2].

5.2 Monitoring Tasks

Figure5.1 depicts a generic monitoring framework, and the typical tasks involved.
We briefly describe them.

Calibration involves adapting systemparameters so that themodel of expected behav-
iour is attuned to the individual patient being monitored, as opposed to an ideal-
ized patient. This is a key component of personalized medicine.

© Springer International Publishing Switzerland 2015
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(Actual Behavior)
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Fig. 5.1 A generic monitoring framework (inspired by [2])

Exploration deals with the proper reconstruction of the current system state (and
possibly of the history) by using the events collected so far, and the model of the
system. This typically includes a range of visualization techniques, tailored to
provide an intuitive, end-user oriented representation of the system current state
(and history).

Detection ismeant to check the alignment between the actual behavior (reconstructed
from the stream of events), and the expected behavior (obtained from the model).
When the two behaviors are indeed aligned, we say that the actual behavior is
conformant or compliant with the expected one.1 If instead a deviation is detected,
a warning is issued by the monitor, so as to make the responsible actors aware of
the misalignment.

Prediction exploits the model, and typically also historical data about past executions
of the system, so as to determine the likely future evolution(s) of the currently
monitored behavior.When the resulting predicted behavior has undesired aspects,
proper countermeasures can be taken in advance so as to properly redirect the
system.

Recommendation refines prediction by automatically providing suggestions on what
to do next. Obviously, the generated recommendations have to be continuously
reconsidered in the light of new, incoming events.

1The latter acception is typically employed when the model of the system carries a normative
meaning.
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5.3 Monitoring Issues and Knowledge Representation

From Fig. 5.1, the main issues involved in a generic monitoring framework can be
inferred. We briefly review such issues, highlighting in particular how they relate
with Knowledge Representation. This is by no means an exhaustive discussion, and
the literature lacks a proper systematization of the field (for a recent attempt along
this direction, the reader can refer to [22]).

Fetching the events is the conditio sine qua non for monitoring. To make monitoring
applicable, the information system onwhich themonitoring framework is applied
must be able to collect (and log) the relevant events occurring in the system, so
as to construct a representation of the actual system execution that is as accurate
as possible. This is typically difficult for those settings, like healthcare, in which
part of the work is carried out by human actors in the physical world, without a
direct computerized support.While thismeans, in general, that the logged trace of
the system is only an incomplete representation of the real one, the presence of a
model of the system makes it possible to exploit automated reasoning techniques
so as to (partially) reconstruct the missing information. An example of the usage
of KR techniques in this respect is [5].

Represent and process the events: Orthogonally to how the events are collected by
the information system, there is the issue of how these events are represented. In
fact, real-worlds events are typically heterogeneous both for what concerns their
attached data, and their level of abstraction. As a simple example, consider the
problem of monitoring the everyday life of a patient. In this setting, an event type
may refer to the measurement of a (continuous) patient’s vital parameter (such as
the blood pressure), whereas another event type could denote that the patient took
some medicine at a given time. This heterogeneity is depicted in Fig. 5.2. How
signals/sub-symbolic events, as well as abstract/high-level symbolic events, are
represented and related to each other is a central, longstanding problemofKR. It is
worth noting that these two types of events could be reduced to each other before
being processed by the monitoring system. On the one hand, symbolic events
may be reduced to signals (e.g., through serialization into a binary stream). On
the other hand, sub-symbolic events may be analyzed by an activity recognition
module, so as to extract symbolic events by suitably correlating subsymbolic
information.

Construct and represent themodel:Similar to theproblemof representingandprocess-
ing the events is the representation and exploitation of the system model. This
requires identifying the relevant aspects of the system to bemodeled, trying to bal-
ance between expressiveness and tractability (which, as KR suggests, cannot be
separated from “how” thismodel is used for reasoning). Sincemonitoring focuses
on the system dynamics, a central aspect is obviously constituted by time. This
motivated the extensive research on monitoring and runtime verification using
variants of temporal logics (see, e.g., theRuntime Verification conference series2).

2http://runtime-verification.org/.

http://runtime-verification.org/
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Howevents aremodeled (e.g., atomicvsnon-atomicevents),whether timemustbe
considered inaqualitativeorquantitative fashion,whichkindofdatamustbemod-
eled, how to represent provenance information and event originators, are impor-
tant questions for theKRcommunity. Finally, besidehow to represent themodel, it
is central to understand how suchmodel is constructed. In particular, in addition to
standard, top-down modeling, data/process/specification mining techniques can
be exploited to semi-automatically extract model-level information from histori-
cal data about the system. An alternative approach is to transform existingmodels
of a different type into a form amenable for use in monitoring [13, 14].

Perform online reasoning: While it is obvious that the reasoning techniques embed-
ded by the monitoring framework depend on how events/models are represented,
and on which task(s) are of interest (cf. Sect. 5.2), there are some specific key
requirements thatmonitoring poses, nomatter the application domain. First of all,
since monitoring is an online, continuous activity, efficiency and reactivity are a
must: themonitoring feedbacksmust be produced in a timely fashion, and contin-
uously revised taking into account newly incoming events. This calls, in turn, for
incremental reasoning techniques, which exploit the previously computed results
instead of recalculating everything from scratch [17]. A second specific aspect
of monitoring is that it must provide continuous support, In particular, since the
monitored system is in general not under the control of the monitor, the moni-
tor must be able to follow the system evolution also in exceptional, unforeseen
situations.

Calibrate the feedback: A final important aspect is how the monitoring outcome
is represented, communicated to the actors responsible for the system execu-
tion, and possibly automatically exploited. This ranges from the extreme case in
which the monitor is only able to observe the system and provide “symbolic”
feedbacks to humans, to the one in which the monitor can (automatically or
semi-automatically) supervise and adapt the real system depending on the moni-
toring outcome. An example of a system that automatically adapts to the patient
is described in Chap.7.

Symbolic
events

Monitor

Feedback

Model

Signals

Activity Recognition

Symbolic Monitor

Hybrid Monitor

Subsymbolic Monitor

Reduction

Fig. 5.2 Monitoring heterogeneous events
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5.4 Monitoring in Healthcare

5.4.1 Where Monitoring Can Be Applied in Healthcare

The generic monitoring framework described in the previous section can be applied
to a wide range on tasks in the healthcare setting.

• Monitoring patient signals
• Monitoring therapeutic interventions
• Monitoring disease progression
• Monitoring recovery
• Monitoring the execution of guidelines
• Monitoring alarms
• Combinations of the above

Traditionally,monitoring in the healthcare settingwas carried out locally, butwith the
advent of telemedicine, remote patient monitoring is growing in popularity, mainly
due to its convenience and effectiveness for both patients and clinicians.

It is important to emphasize that monitoring involves the observation of a system
over time and reasoning with these observations. Much previous work on predic-
tion and decision support in the healthcare sector was concerned with reasoning a
particular point in time with a particular set of inputs. Examples include predicting
morbidity, mortality and length of stay on admission [4, 8, 25]. The advantage of a
continuous monitoring system is the monitor can learn about the individual patient
and adapt to them in real-time.

5.4.2 Artificial Intelligence Techniques for Healthcare
Monitoring

Artificial Intelligence techniques have been applied in the medical settings for many
years. The ICU is particularly suited to the use of AI tools due to the wealth of
available data and the opportunities for increased efficiencies [18]. The purpose of
this section is not to present a complete history or ontology of AI applications in the
ICU setting but rather to give a flavour of the variety of applications that have been
proposed. The 2001 review by Hanson et al. [18] of artificial intelligence tools in
the ICU provides a good overview. They conclude that neural networks and fuzzy
systems are particularly useful for waveform analysis; fuzzy controllers can be inte-
grated into bedside devices such as fluid andmedication infusion devices,mechanical
ventilators, and dialysis machines; Bayesian networks and neural networks can be
used in the development of smart alarms; case-based reasoning, machine learning
algorithms, and visualization tools can be used to analyse information from data
warehouses describing the characteristic of an individual ICU.
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Tools for predicting morbidity, mortality and length of stay have also been pro-
posed. Barbini et al. [4] and Cevenini et al. [8] compared different models for pre-
dicting ICU morbidity following cardiac surgery. They found Bayesian classifiers
and logistic regression models to be superior to an artificial neural network and the
k-nearest neighbour classifier in terms of generalisation and calibration for this par-
ticular task. Ramon et al. [25] consider four different data mining algorithms for
predicting 14 different tasks including probability of survival, length of stay in the
ICU, probability of developing inflammation and the probability of developing kid-
ney dysfunction. Their results for predicting probability of survival were better than
the results obtained using the standard APACHE II score method [19] used by most
ICUs. Using the APACHE II score the area under the ROC-curve (AUC) was 75%.
The best results were obtained using a Naive Bayes Classifier (AUC = 88%). The
AUC for Tree-Augmented Nave Bayesian networks was 86% and for First Order
Random Forests was 82%. (First Order Random Forests are Random Forests in
which the tests are first order logic queries [28].) Decision Trees provided the least
promising results with AUC = 79%. It is interesting to note that no one technique
proved superior for all 14 tasks.

Other research includes Cismondi et al.’s fuzzy system for predicting the outcome
of lab results [12], and the INTCARE system [23, 27] which combines data mining
techniques and decision support systems to predict organ failure and suggest thera-
peutic treatment. The INTCARE research also addresses the need to distribute the
application so it is available to doctors via mobile devices as well as in the ICU.

MIMIC II is a project undertaken by MIT, Philips Medical Systems and the Beth
Israel DeaconessMedical Centre to develop and evaluate advanced ICU patient mon-
itoring systems that will improve the efficiency, accuracy and timeliness of clinical
decision making in intensive care. They aim to develop a research database from
more than 30000 ICU patients. Their research includes estimating blood pressure
and heart rate derived from the ABP waveform [20], using a Bayesian Network to
estimate fluid requirements in the ICU [7], eliminating false alarms using classifica-
tion trees and neural networks [29] and a decision tree to predict hypoglycaemia in
intensive care patients [30].

A 2012 review byBright et al. [6] shows thewidespread interest across all medical
fields in clinical decision-support systems. They examined 128 trials. From these
they conclude that clinical decision support had a favourable effect on prescribing
treatments, facilitating preventive care services, and ordering clinical studies across
diverse venues and systems. They also stress the importance of delivering the right
information to the right person in a timely manner.

5.4.3 Challenges in Healthcare Monitoring

Monitoring the physiological responses of a patient during recovery or in response
to therapeutic interventions presents challenges. Substantial variability exists in the
responses of different patients to medical interventions. This can be due to a variety
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of reasons including genetics, severity of illness and comorbidities. In addition an
individual’s response to events and interventions can fluctuate as their condition
changes. These changes can be sudden or take place over a long time period. For a
monitoring system to be truly useful it must be calibrated to the individual patient in
real-time and adjust in real-time as the patient condition changes.

As mentioned in Sect. 5.4 human actors carry out events and/or manually record
data in the Healthcare environment. These events may not be carried out at precisely
the prescribed time, they may not be recorded in a timely manner nor with the preci-
sion that a monitoring systemmay require. Even automatically recorded information
can be subject to measurement error. The monitoring system must be designed to
deal with these uncertainties.

Healthcare is also an environment where disparate data may need to be integrated
to provide the most complete picture. This is one area where monitoring systems can
add huge value. A computational model can incorporate a much larger number of
variables into its decision support process than a human can when making decisions
unaided by a computer-based decision support system.

5.4.4 Probabilistic Monitoring Methods for Healthcare
Monitoring

These challenges make healthcare monitoring particularly amenable to probabilistic
approaches. Bayesian Networks (BNs) and Dynamic Bayesian Networks (DBNs)
are used in the medical setting and here we note a few examples. An excellent
introduction to the field is provided by Lucas et al. [21].

Aleks et al. [3] describe an application of DBNs to analysing ICU data. They
demonstrated accurate detection and removal of artefacts in the arterial-line blood
pressure sensor data. Charitos et al. [9] developed a DBN to successfully diag-
nose ventilator-associated pneumonia in ICU Patients. Research from the MIMIC
II project mentioned in Sect. 5.4.2 includes applying a Kalman Filter to estimate
blood pressure and heart rate derived from the ABP waveform in the presence of
high levels of persistent noise and artefact [20], using a Bayesian Network to esti-
mate fluid requirements in the ICU [7] and using a Bayesian network to model the
cardiovascular system [26].

Techniques have been developed to learn both BN andDBN structure and parame-
ters from data. More recently techniques for combining expert knowledge and auto-
mated learning for buildingBNstructure [15, 24] have been published.Howevermost
models, including the ones noted here, are manually constructed using knowledge
elicited from domain experts [11, 21]. This is a time consuming task
[15, 21]. Knowledge elicitation therefore remains a bottleneck; this is clear in the
paper of van Gerven et al. [16], for example, which provides an excellent demonstra-
tion of the steps required to build a DBNmodel for prognosis of carcinoid patients. In
order to bypass this bottleneck,Enright et al. [13, 14] propose amethodology for auto-
matically constructing DBNs frommathematical models since mathematical models
can be considered to embody existing expert knowledge.
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5.4.5 Characteristics of an Effective Monitoring System

In order for a monitoring system to be accepted and used in a healthcare setting it
must be easily understood. A system that is understood by clinicians is more likely to
be gain traction. This applies both to the internal workings of the monitoring system
as well as the feedback provided to clinicians and patients. Feedback should be clear,
concise and easily interpreted.

The monitoring system must be fully validated on realistic data. As mentioned
in Sect. 5.4.3, data in healthcare is noisy. The monitoring system must therefore be
designed to reason with incomplete and inaccurate data in a principled manner. It
must also be thoroughly validated with this data.

The monitoring system must be suited to the task in hand. If monitoring a patient
it must be individualised to that patient. That individualisation should be a continual
process to adapt to ever changing patient conditions. If monitoring a process the
system must be flexible to adapt to the variety of paths and outcomes.

Monitoring systems are of most value when they run in real-time. In order to
achieve practical run-time speeds models must often be simplified. However a deli-
cate balance is needed to avoid over-simplification and to preserve a practical model
of the underlying system.

This trade-off between complexity and practicality also emerges when deciding
what model parameters should be allowed vary. Models with a minimal number of
parameters to be individualised work better when dealing with noisy-data [10].

5.5 Conclusion

We have reviewed the role of monitoring in the healthcare setting, delineating the
main forms of operational support that monitoring can provide to healthcare profes-
sionals, and the main corresponding challenges from the point of view of knowledge
representation.

The following two chapters in this book provide two notable, and quite diverse,
examples of effective monitoring systems for healthcare, built by taking into consid-
eration all the key characteristics enunciated in Sect. 5.4.5.

Chapter 7 describes a Probabilistic Real-time IntelligentMonitor (PRIM) that can
be used for Exploration, Detection, Prediction and Recommendation. The chapter
describes amethodology for constructing and representing themonitoringmodel and
an efficient algorithm for online reasoning. The framework is designed specifically
to address the challenges of the healthcare environment i.e. inaccurate and incom-
plete data, inter-patient variability and patient instability. The issues described in
Sect. 5.3 in relation to a generic monitoring framework are addressed in a principled
manner. The probabilistic approach adopted enables a reasoned method to handle
incomplete data and represent events. The proposed approach for model construc-
tion involves exploiting existing models thus expediting and simplifying the model

http://dx.doi.org/10.1007/978-3-319-28007-3_7
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construction phase. The Adaptive Time Particle Filtering algorithm presented is an
efficient mechanism for online Reasoning which in the context of this probabilistic
monitoring systemmeets the requirements for incremental reasoning and continuous
support in exceptional and unforeseen circumstances.

Chapter 5 describes a very different application of monitoring in a clinical envi-
ronment. The chapter deals with monitoring conformance to clinical guidelines. The
challenge explored is how to build a generic framework to Detect deviations. In this
case knowledge representation is a huge challenge because, as will be explained,
clinical guidelines encompass many different types of knowledge. Human actors
execute clinical guidelines and it is this behaviour that is monitored. In this chapter
we again see how this leads to inaccurate and incomplete data.
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Chapter 6
Conformance Verification of Clinical
Guidelines in Presence of Computerized
and Human-Enhanced Processes

Stefano Bragaglia, Federico Chesani, Paola Mello and Marco Montali

Abstract Clinical Guidelines (CGs) capture medical evidence and describe
standardized high quality health processes. Their adoption increases the quality of
the service offered by health departments, with direct advantage for treated patients.
However, their application in real cases is often tempered by a number of factors like
the context, the specific case itself, administrative processes, and the involved person-
nel. In this chapter we analyse the issues related to the problem of representing CGs
in a formal way, and to reason about the differences between what is prescribed by
CGs, and what is observed during their application/execution. Our approach is based
on a general, abstract framework that should beflexible enough to copewith the raised
issues. Possible technical solutions are also presented and their limits discussed.

6.1 Introduction

Clinical Practice Guidelines (or simply Clinical Guidelines, CGs), in their original
definition, are “systematically developed statements to assist practitioner and patient
decisions about appropriate health care for specific clinical circumstances” [14].
Nowadays, the focus of CGs has been broader to any aspect related to the health care
processes, from disease diagnosis, to treatment and intervention, up to administrative
issues for health-related services.

Basedonmedical evidence,CGsprovide (1) definitions and terminology, (2)work-
flows, (3) rules, and (4) temporal constraints. They aim to capture evidence-based new
findings and to bring advances into daily medical practice. Their adoption ensures an
increase of services quality, and promote the standardization of the health processes
across different organizations (at the local, regional, or national level). CGs are
also closely related to Clinical Pathways (CPs), that differ from CGs “as they are
utilised by amultidisciplinary team and have a focus on the quality and co-ordination
of care”1.

1See http://www.openclinical.org/clinicalpathways.html.
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Thanks to the pervasive diffusion of IT systems both the CGs, as well as the log of
their application to each specific patient, have become available in an electronic form,
thus prospecting the possibility of automatically confront the CGs models with what
happened in real cases. Hence, the evaluation of how “things have gone” w.r.t. “how
things should have gone”, named as conformance, has become a required analysis
step to revise, update and adapt the CGs.

Evaluating the conformance of a CG execution against the CG model however
raises a number of technical problems, ranging from the formal representation of
CGs and execution logs, up to the reasoning techniques used to establish if and when
a CG has not been respected. The aim of this chapter is to analyse all these issues, and
to discuss an abstract framework powerful enough to cover many aspects. We do not
provide any technical, complete solution: the “final word” on the CGs conformance
is far from being achieved. However, we briefly point out how some techniques that
can be successfully exploited to overcome many of the current issues.

6.1.1 What Is “Conformance”, and Why?

In the context of business processes conformance is a property of an observed exe-
cution of a process (i.e., an instance or a case of the process), when confronted
with a certain process model. Conformance indicates if and how much an instance
adheres to a process model, where such model (explicitly or implicitly) brings
some prescriptive information about allowed and forbidden characteristics of process
instances.

Thus, a proper definition of conformance depends on three notions: the instance
of a process, the model of a process, and a matching function that computes how
much an instance matches the model. Definitions of these concepts can vary greatly,
depending on the domain and the context. E.g., in a specific hospital department an
instance might be the set of actions and events related to a specific patient within
a hospitalization; the process model might be a CG that should be applied to that
patient; finally, the evaluation function might be a measure of which activities where
envisaged by the CG, that were not applied to the patient. The conformance verifi-
cation task, also named as conformance checking, amounts to apply the evaluation
function to a given instance and to a given model. Usually, it is applied to a number
of instances w.r.t. the same model.

Conformance verification is a fundamental and required step whenever a proper
analysis of a process is conducted. Indeed, for a variety of reasons, process executions
often deviate from the expected model. The conformance verification task answers
to the questions: “Does a case deviate? Where?”. Notice that from the process
management viewpoint some deviations are indeed desirable, while others are to be
avoided: the concept of deviation itself does not have a negative meaning, neither a
positive one. For example in [13] the authors introduce the distinction of deviations
as (acceptable) exceptions, versus (undesirable) anomalies. Deciding if a deviation
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is acceptable or not is up to the process manager, that can decide for example to
extend the process model to allow/forbid new (previously unforeseen) cases.

6.1.2 Why Executions of Clinical Guidelines Deviate
from the CG Model?

CGs capture medical evidence on the basis of statistical data, thus making (at least)
three strong implicit assumptions [6]:

(i) ideal patients, i.e., patients that have “just the single” disease considered in
the CG (thus excluding the concurrent application of more than one CG), and
are “statistically relevant” (they model the typical patient affected by the given
disease), not presenting rare peculiarities/side-effects;

(i i) ideal physicians executing the CG, i.e., physicians whose basic medical knowl-
edge always allows them to properly apply the CGs to specific patients;

(i i i) ideal context of execution, so that all necessary resources are available.

Moreover, when adopted within local organizations, CGs are typically subject to an
adaptation process, which customizes the CG w.r.t. the peculiarities of the specific
organization.

Hence, when concretely applying the CGs, three types of issues might arise:

(a) the implicit assumptions (i) − (i i i)might not hold, for various practical reasons;
(b) depending on specific contexts, peculiar additional rules and workflows might

need to be enacted together with the CGs recommendations (e.g., a cer-
tain health department might have its own administrative workflows); conse-
quently, the patient could be subjected to practices not envisaged in the original
guideline;

(c) when applying aCG to a specific case at hand, the physician (and the other health-
related professionals) exploits also her/his general knowledge (Basic Medical
Knowledge, BMK from now on). The interplay between these two types of
knowledge can be very complex: e.g., actions recommended by a CG could be
prohibited by the BMK, or a CG could force some actions despite the BMK
discouraging them.

Note that independently of the type ((a), (b) or (c)) of the arising issue, it is always
the physician (and other humans actors) that addresses the problems, and has the
responsibility of taking decisions. Thus, healthcare processes can be considered
an example of a socio-technical system [20], where humans interact with devices,
manual and automated activities coexist, and human players ultimately need to
cope with an unpredictable, highly dynamic environment that requires continuous
adaptation.

Summing up,CGs propose a model, but when dealing with its effective implemen-
tation, many factors might deviate the execution course from the model. In this light,
it becomes extremely important to assess what is effectively going on, and relate
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actual executions with the “ideal” model. Although each case can be considered
in its uniqueness, the focus of the conformance task is upon the totality of the CG
implementations versus the CG model.

Conformance checking in CG has another important characteristic: it is not
an evaluation of the behaviour of the involved personnel. Indeed, the variety
and dynamism of the situations does not allow to automatically (algorithmically)
evaluate the personnel’s course of actions and taken decisions. However when
applying the CG to a patient, the conformance checking might be of interest
for the physicians himself, as a sort of decision support. E.g., each deviation
captures an aspect of the current state of affairs that differ from the expected
model, and can consequently be analysed by domain experts to formulate a cor-
responding explanation (e.g., by relying on the conformance framework described
in [23]).

6.1.3 Organization of This Chapter

In Sect. 6.2 we briefly introduce Clinical Guidelines, in particular by highlighting the
type of information (or, better say, the type of knowledge) that CGs usually contain. In
Sect. 6.3 we present an abstract framework, where conformance is expressed in terms
of expectations of what should happen, and matching functions between observed
(logged) events and expectations. Section6.4 is devoted to discuss in deep detail how
to conjugate two different aspects usually found in CGs, i.e. the interplay between
procedural and declarative CG prescriptions. Section6.5 presents some technical
solutions, while finally in Sect. 6.7 we discuss the limits of our current approach, and
future works.

6.2 Clinical Guidelines

Clinical Guidelines usually come as documents addressing many different aspects
related to the health-care processes. In particular, they address a specific disease or
pathology, suggesting the best practices that should be followed/enacted by health
practitioners. The principal aim is to provide the patient with the best treatment
possible, and guaranteeing quality standards at the same time. The majority of clin-
ical guidelines are provided by national and international public health institutions,
although it is frequent to have guideline specifications provided at local levels such
as hospitals or departments.

When approaching the conformance task some common CGs features can have a
huge impact on the understanding of the conformance issue itself:
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Different knowledge types within a CG.
CGs often comprise many type of knowledge. In particular, it is quite usual to
encounter:

• Definitions and terminology: each CG provides definitions for the terms adopted
within the CG, so as to limit misunderstandings. Moreover, each CG usually spec-
ifies the disease and the type of patient for which the CG is applicable: in other
words, it defines the criteria for applying the CG to a certain patient with a certain
disease.

• Workflows: a CG can define the set of actions, and their correct execution order,
in terms of workflows. Indeed, a plethora of languages and projects has been
developed to create domain-independent computer-assisted tools for managing,
acquiring, representing and executing CGs [12, 29], paying particular attention to
the procedural and control-flow dimension.

• Rules: particular cases and exceptions are often tackled by CG by means of rules.
Sometimes these rules can be applied onlywhen inside a specific execution context
of the CG implementation; sometimes the rules must be considered valid for the
whole duration of the CG.

• Linguistic labels: conditions, (patient) features, and criteria are often measured
by means of linguistic labels such as, for example, “low”, “medium” and “high”.
While linguistic labels fit perfectlywith the involved human actors, their translation
into algorithms for the conformance task might be not straightforward.

• Temporal constraints: usually a workflow already provides (implicitly or explic-
itly) a set of temporal constraints, in the sense that a workflow clearly establishes
a specific order for the actions execution. Moreover, it is quite common to find
explicit constraints related to temporal aspects, such as “a certain B action must be
executed within X time unit from action A” (relative-time constraints), or “every
day at time Y a certain action must be executed” (absolute-time constraints).

Interplay between CGs and BMK.
CGs must not be intended as mandatory: they are “Not prescriptive: don’t override
clinical judgement”2. Indeed, it happens that a CG execution trace could seem con-
formant to the CG and not conformant to the BMK, or vice-versa. Actually, both
the CG knowledge and the BMK can be defeated, while it is the physician’s own
responsibility to prefer a certain course of actions.

Interplay between workflows and rules.
Both CGs and the BMK contain a mix of procedural (workflows) and declarative
knowledge (rules). Procedural knowledge comes into playwhen there is a set of well-
accepted, predefined sequences of operations that must be followed by the involved
stakeholders. Contrariwise, declarative knowledge typically captures constraints and
properties that must be satisfied during the execution, without explicitly fixing how
the stakeholders must behave in order to satisfy them. Themajority of the approaches
available in the literature have focused either on CGs or BMK in isolation, without

2http://www.openclinical.org/clinicalpathways.html.

http://www.openclinical.org/clinicalpathways.html
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taking into account how they mutually affect each other. Few works have attempted
to consider both these aspects at the same time [6, 10].

Human actors are involved.
Indeed, CGs are mostly implemented by human players. This in turn affects the
notion of conformance, thatmust be adapted to the peculiarities of human players. Let
us consider, for example, a rulewith a temporal deadline such as “every day the patient
temperaturemust be recorded at 3 p.m.”. What happens if the temperature is recorded
5min later? Should we consider it as conformant with the rule, or not? Although only
a physician can answer our question, it seems clear that any conformance approach
should allow some flexibility: for example, we might expect that if the temperature
is taken with a delay of 5min, then we could consider it as conformant with a score
of 0.99, while if the delay is above the hour we could lower the score to 0.40. This
example points out to the notion of a grade of conformance, against the simpler idea
of conformance yes/no.

6.2.1 A CG Example

Let us consider a real CG, taken from the on-line repository provided by the “National
Institute for Health and Clinical Excellence”3, a public UK organization sponsored
by theUK ’sDepartment ofHealth. In particular, let us consider the “QuickReference
Guide” of the Clinical Guideline 56.4 The guideline address the emergency treatment
for head injuries, as well as subject admission to specific care units.

After few generalities about the document itself, the first section of the guideline
quick reference is devoted to provide definitions of the terms. E.g., exact definitions
of concepts like “infants”, “children”, and “adults”, are given on the basis of the
subject’s age. Another example is the explanation of the “Glasgow Coma Scale”,
referred as GCS: no exact definition is given this time, possibly because GCS is
assumed as being part of the staff’s Basic Medical Knowledge.

The document then provides amix of algorithms and rules for dealingwith specific
tasks; in Fig. 6.1 we show a simple excerpt from the “Assessment in the emergency
department” section. There is a procedural part, that is guided by the evaluation
of the GCS score: depending on the value assumed at the start of the assessment,
different actions should be followed. In this particular case all the paths lead to
assess “the need for CT imaging of head and/or cervical spine”: such assessment
is defined later in the guideline quick reference as another workflow. Moreover, the
small CG excerpt in Fig. 6.1 shows at least two rules: the first one is a general rule
about stabilizing airway, breathing and circulation (ABC). Another rule instead is a
recommendation about “excluding significant brain injury before ascribing depressed
conscious level to intoxication”, hence suggesting that prior to formulate intoxication,
involved personnel should exclude the hypothesis of brain injury.

3NICE, http://www.nice.org.uk.
4CG56: http://www.nice.org.uk/nicemedia/live/11836/36257/36257.pdf.

http://www.nice.org.uk
http://www.nice.org.uk/nicemedia/live/11836/36257/36257.pdf
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Fig. 6.1 An example of a part of a CG taken from UK NICE CG56.

The workflow specifies only few actions. However, interestingly, specific dead-
lines are provided depending on the different path: in one case, for example, assess-
ment of brain injury must be performed immediately, while in another case it can be
performed within 15min.

Finally, notice that although it is not explicitly specified, the workflow assumes
the existence and availability of a “anaesthetist or critical care physician”: i.e., the
CG envisages certain roles, and assumes that qualified personnel is available for
playing the roles.

6.3 A Generic Conformance Framework

In this section, we outline the main components and features of a generic framework
for evaluating conformance, following the abstract schema of Fig. 6.2.

6.3.1 Types of Processes and Their Impact on Conformance

In Sect. 6.1.1, we discussed that conformance is about three elements: a process
model, a process instance, and amatching function. In particular, there existmany dif-
ferent types of processes. However, from the conformance viewpoint, some process
types have a huge impact on the notion of conformance itself.

Open versus Closed processes.
Closed, structured processes are based on the assumption that themodel is completely
defined, i.e. it explicitly captures all the possible situations. Therefore, any course
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of action that is not mentioned in the model is forbidden. Any slightly difference
observed within the execution must be intended as a deviation (non conformance)
w.r.t. the model. An example of such type of processes is given by bank transactions,
where the only and exactly allowed actions are those envisaged by the model.

On the opposite, open processes explicitly define what is allowed, and what is
prohibited. Courses of actions for which no information is given are allowed and not
required. Open approaches usually adopt a constraint based solution, where a trace
is considered conformant if it satisfies all the imposed constraints. Open process
are typical of many human interactions, where the involved players can enact many
actions not necessarily envisaged by the model.

Summing up, closed approaches require only to specify the desired/allowed
actions or events, while open solutions require (at least) two distinct concepts: one
for desired actions and one for prohibited actions.

Open- versus Closed-time-view processes.
In principle, the conformance task can be applied “post-mortem”, i.e. to already
completed executions of the CG, or at run-time, when the execution is still running.
This dichotomyneeds to be reflected in the adopted conformance checking technique.
In thefirst case, the course of events characterizing the execution is “closed”, expected
events can be missing either because they did not happen at all, or because they did
happen but they were not properly recorded in the underlying information system. In
the open-time-view case instead the course of events is “open”, since further events
can still occur in the future. In principle, this could make some deviations to be only
temporary deviations, i.e., apparent deviations thatwill be fixed thanks to the suitable,
future occurrence of new events. The ability of dealing with this open-time-view is
typical of runtime verification and monitoring facilities.

With respect to this dimension, a careful consideration must be taken about the
real implementations of CGs. In the majority of the cases it happens that health

Fig. 6.2 An abstract architecture for conformance
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practitioners apply a CG (by executing the foreseen actions), and only at a later
moment they record the actions course. This means that two different time instants
can be observed: the time instant when an action is executed, and the time instant
when the execution of an action is recorded. Such instants are typically referred as
valid time vs. transaction time. If the difference between these two time instants is
relevant, it does not make sense at all to speak about run-time conformance: only
a-posteriori, post-mortem analysis can be performed.

6.3.2 An Abstract Architecture for Conformance

Let us first consider a generic matching function as a black-box. It takes as input:

1. a formal model of the clinical guideline, covering the aforementioned different
types of knowledge;

2. a set of correlated events describing a single (partial or complete) execution trace
of the clinical guideline;

and it computes all the deviations between the actual behaviour and the ideal behav-
iour captured by the guideline model. As for conformance, the CG model can be
conceived as constituted by two aspects: one providing the event semantics, and the
other specifying a set of constraints that should be respected by the actual behav-
iours. Statements about the semantics of an event help in understanding how the
occurrences of such an event modify the state of affairs, e.g., by introducing or mod-
ifying information about the patient (“measure glucose level has the effect of updating
the glucose level of the patient”), or by affecting the state of durative activities (“a
complete event marks the termination of an active execution of the corresponding
activity”).

The term “constraints” is here used as an umbrella term for all those parts of the
CGmodel that specify the intended behaviour foreseen by the evidence-based studies
and/or the BMK. Here we find the workflow dimension of the guideline, as well as
rules dealing with exceptions or representing a portion of the medical knowledge.
The combination of constraints with observed events and state of affairs determines
which are the events/actions that are expected to be observed (in the future, as well
in the past).

6.3.3 Conformance Based on “Expectations”

Our approach to conformance is inspired by the three elements previously introduced,
i.e. the process case, the process model, and the matching function. The first concept
we introduce is the happened event. Events represent theminimal possible observable
information. They are the tiniest bit of information that can be recorded within the
system. They are made of a description of what happened, together with information
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about when they happened. In our perspective happened events are characterized
by having a single time-point duration. Durative actions are given in terms of start
events and end events. Obviously, for each durative action with start time ts and end
time te, it must hold ts ≤ te.

Happened Event
.= 〈Event Description, When〉

Dependingon the typeof event, the descriptionof the observed eventmight contain
different, structured data fields: in case of the execution of actions, the description
might contain the name and the role of the action originator, as well as the name and
role of the action destination; in case of observed facts, the description might contain
some data that have been observed.

Given the simple notion of event, we introduce in a straightforward manner the
notion of a process instance, intended as a set of (not necessarily ordered) process
events:

Process Case
.= {evi |i ∈ 1 . . . n}

where n is the number of events belonging to that instance. Although it is possible to
have process cases of infinite length, quite often real cases resort to a finite number
of events. The choice of closed- vs. open-time-view processes affects the intended
meaning of the process trace: respectively, it contains all the happened events, or
rather only a subset of a larger process case.

The second fundamental concept is the expectation. The desired behaviour, i.e.
the ideal model specified by the CGs, can be expressed by means of expectations,
that again are made of what is expected, and when it is expected. With the term
“expectations”wewant to capture the notion that depending on the current (dynamic)
state of the observed CG execution, the CG model indicates what has to be done and
possibly observed. The what can be only partly specified, thus allowing to capture
larger sets of possible future outcomes. E.g., we might want to expect that a patient
is served with food, but we might not want to explicitly specify who is going to
serve him, since anyone is fine provided the patient is fed. The when instead can
be an exact time value, or rather as a time interval when any event happening at
a time instant belonging to the interval is fine. E.g., we might expect that patient
temperature is taken exactly one hour after the last measurement, or we might expect
that the temperature is taken within three hours since the last visit.

Expected Event
.= 〈What,When〉

Depending on the adopted processmodel (open or close), expectations can be only
positive (i.e., about the happening of something), or they can be also negative (about
the non-happening of something, or simply prohibition). Moreover, expectations
can be about the happening of events, or rather about properties. In the latter case,
expectations can be about achievement properties, i.e. about a property being true in a
certain time instant; or they can be aboutmaintenance properties, i.e. about a property
being maintained “true” along a temporal interval. Note that negative expectations
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implicitly introduce universal quantification over time intervals. Indeed, expecting
that a certain event (or property) does not happen within a time interval means that
for all the time instants within the interval, the event does not happen.

Given the concept of expectations, a process model can be thought as a speci-
fication of what is expected for any possible process case. The expressivity of the
language used for defining such specifications defines the complexity of the processes
that can be modelled.

Finally, the third fundamental concept is the matching function that is used to
determine if an event or a property matches an expectation. The matching function
provides the reasoning capabilities needed to fully support the different knowledge
types that are found in a CG, as explained in Sect. 6.2. If we want to support defini-
tions and terminology, we might expect the matching function to support ontological
reasoning. If we need to support linguistic labels and grades of conformance, then
the matching function should support fuzzy reasoning as well as uncertainty. Mini-
mum capabilities of temporal reasoning are required to establish if an event indeed
happened within the expected time interval or not. Finally, a sort of a fuzzy temporal
reasoning is required to cope with deviations typically introduced when a process (a
CG) is enacted by human players.

Roughly speaking, given events and expectations, conformance can be established
by simply looking which expectations are “satisfied”, and which not. To this end,
a positive expectation is satisfied if there is an event (a property) that matches the
expectation, while it is violated if there is not such event. On the contrary, a neg-
ative expectation is satisfied if there is no event (property) matching the expected
what/when, while it is violated if a matching one is found.

Given the concepts of events, expectations and matching functions, only one
important question is still open: how a CG (plus a BMK and other rules, standards
etc.) can be represented so as to support these concepts? Our current answer is given
by tackling in the next Sections three different sub-problems, that we believe as
the being the principal issues when dealing with CG: (a) the integration between
procedural and declarative knowledges; (b) representing and reasoning on the state of
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Fig. 6.3 A simple activity life-cycle, and an extension towards exception management



92 S. Bragaglia et al.

execution of aCG, and how the happening of events affects such states and properties;
and (c) how to represent declarative knowledge in terms of rules.

6.4 The Interplay Between Procedural and Declarative
Knowledge

Clinical Guidelines typically embrace both a procedural, workflow-like dimension,
and a more declarative, rule-based component. The first aspect deals with structured,
prescriptive and well-established fragments of the guideline, such as for example
administrative processes or laboratory procedures. The second instead focuses on the
management of less structured fragments of the guideline, as well as with general
rules (such as the ones coming from the BMK) that should be always respected
during the CG execution. In this section, we discuss the conformance problem by
first considering the procedural knowledge, then the declarative knowledge, and
finally their combination.

6.4.1 Conformance with Procedural Knowledge

The procedural knowledge defined within a CG takes often the form of a struc-
tured workflow, with simple blocks representing the actions to be executed, and
control-blocks such as parallel execution, and/or splits, etc. Several workflow-like
CG specification languages have been proposed in the literature, such as Asbru [4],
GLARE [30], and PROForma [28]. Independently of the specific features of the
language, as for conformance all such approaches comprise intra- and inter-activity
dynamic constraints.

6.4.1.1 Activity Lifecycle

Intra-activity constraints aim to capture the so-called activity life-cycle, which con-
sists of the acceptable orderings among the constitutive events marking the progres-
sion of an instance of the activity, and of the corresponding states. Hence, the activity
life-cycle is typically represented by a finite state machine, where nodes represent
states of the activity, and edges are labelled with events.

A simple life-cycle is shown in Fig. 6.3 (left), using the GLARE language as a
basis (but notice that the concept of life-cycle is orthogonal to the specific language
at hand). In this example, the life-cycle just specifies that activities are non-atomic,
i.e., each activity execution spans over a time window. More specifically, whenever
an activity is candidate for execution, a start event might be observed, marking
the initiation of an activity instance. The instance is then put in the active state,
to explicitly testify that it is currently in execution. To mark the completion of the
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instance, a corresponding end event is used. We observe that start and end are two
atomic events, whereas candidate, active and completed are properties representing
the activity instance states. The current state of each activity instance constitutes part
of the global state of affairs.

The activity life-cycle requires the description of each event to contain at least
two pieces of information: the event type, and the activity it is associated to. Notice
also that, in principle, multiple instances of the same activity can be generated, each
being associated to a specific instantiation of the corresponding life-cycle. In this
work, we make the following assumption:

For each activity, at a given moment in time at most one instance of that activity can be
active.

This assumption is motivated by the fact that most activities in the CG refer to the
patient, and it is unlikely that the patient is subject to two distinct instances of the
same activity at the same time.Obviously, due to the presence of loops and repetitions
in typical guidelines, multiple instances of the same activity could occur within a
single instance. However, they will be associated to non-overlapping time windows.
A further discussion on this assumption is provided below.

Checking conformance with the activity life-cycle when an event is processed
breaks down to the following steps:

1. Correlate the happened event and the corresponding life-cycle instance (this com-
prises the creation of a new instance if a certain event occurs).

2. Check fulfilment of the “next transition” expectation: an event is accepted by the
correlated life-cycle instance if it is associated to one of the outgoing transitions
from the current instance state.

Table 6.1 Basic workflow patterns in GLARE, and their corresponding enabling conditions

PATTERN REPRESENTATION ENABLING CONDITIONS

Sequence
A B

When A is completed, B becomes candidate

Exclusive choice
A

B

C

cond

else

When A is completed and cond holds, B becomes candidate
When A is completed and cond does not hold, C becomes
candidate

Simple merge B

C

D

When B is completed, D becomes candidate
When C is completed, D becomes candidate

Parallel split

A B

C When A is completed, B and C become candidate

Synchronization

DB

C When B and C are completed, D becomes candidate
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3. “Advance” the life-cycle instance, moving it from the current state to the next
state, following the transition that corresponds to the processed event; this is
executed only if the event fulfils the “next transition” expectation.

6.4.1.2 Workflow Constraints and Candidate Activities

The activities of the CG model are usually related to each other by means of inter-
activity dynamic constraints, separating the allowed orderings of execution from
the forbidden ones. With a procedural flavour, these constraints take the form of
a workflow-like structure, which interconnects the activities by means of control-
flow patterns [2] such as sequence, choice points, and parallel sections. The richness
of such primitives depend on the chosen CG modelling language. A comparative
evaluation of some CG modelling languages w.r.t. workflow-patterns support can be
found here [22].

In general, as an execution of the CG evolves over time, the workflow determines
which are the currently enabled activities, i.e., the candidate activities that can/must
be executed next. Table6.1 depicts the five basic control-flow patterns, their rep-
resentation in GLARE, and their semantics in terms of enabling conditions, i.e.,
conditions that determine how the corresponding pattern enables some activity when
some other activity is completed. As shown in Fig. 6.3 (left), a sequence flow depart-
ing from an activity is implicitly connected to its completed state, while a sequence
edge pointing to an activity is implicitly connected to its candidate state. The intuitive
semantics sketched in Table6.1 works thanks to the assumption, stated above, that
two instances of the same activity do not overlap. The presence of multiple paral-
lel instances of the same activity would require complex correlation mechanisms to
properly apply the control-flow patterns. These mechanisms are typically enforced
by the process enactment engine. They rely on internal information that is not rele-
vant for the domain per sé, and that is consequently not guaranteed to be traced and
exploitable for conformance checking.

In this setting, conformance checking of control-flow constraints amounts to:

1. Properly handle the computation of candidate activities, applying the control-
flow patterns semantics to the current state of affairs (which includes information
about the currently completed activities).

2. Impose and verify the negative expectation about non-candidate activities: only
candidate activities can be activated by means of a start event.

3. Ensure the proper termination of the CG execution when the trace of events is fin-
ished; the proper termination is in turn formalized by the following expectations:

a. every active activity instance is expected to be completed before the termina-
tion;

b. when the execution terminates, no activity can be candidate for execution.

We observe that, considering the conformance characterization provided so far,
the CG procedural knowledge gives raise to a “closed” notion of conformance, where
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every event that is not explicitly expected is considered as forbidden, and no unfore-
seen activity can be executed. To partially open the workflow specification, more
sophisticated forms of activity life-cycle can be introduced. For example, Fig. 6.3
(right) presents an improved version of the basic life-cycle. The new version con-
tains an additional state and transition, to explicitly account for exceptional situations
that require the prompt interruption of the running activity instance. This exceptional
transition is associated to a failure event that leads the instance to an aborted terminal
state. In this way, it is possible to “cancel” the execution of an activity instance under
critical and exceptional circumstances, still conforming to the CGmodel. Notice that,
in principle, the aborted terminal state can be associated to a different sequence flow
than the one used for the completed state. This feature can be exploited to attach a
compensation (sub)process meant to manage the exception. When no compensation
process is specified, we make the assumption that the sequence flow departing from
the aborted state is implicitly the same as the one departing from the completed state.
The rationale behind this “robustness” principle is grounded on a practical observa-
tion about how the health operators apply the workflow part of a CG. It can happen
that some actions are interrupted (aborted) for many possible reasons, and yet the
execution of the CG is brought forward.

6.4.2 Integration with Declarative Knowledge

Wefurther complicate the life-cyclemodel so as to enable the possibility ofmodelling
declarative rules and constraints related to the CG, and to combine them with the
procedural part. The resulting life-cycle has been first proposed in [5, 6], as a result
of a close interaction with doctors and healthcare professionals.

Declarative constraints can be exploited to model underspecified portions of the
CG, or to complement the CGwith general, background medical knowledge (BMK),
typically implicitly used by healthcare professionals to adapt the CG on a per-patient
basis. For example, the BMK is employed by a physician when an alternative medi-
cinemust be found because the patient is allergic to the onementioned in the guideline
specification, or when a critical situation, threatening the life of the patient, suddenly
arises. The combination of these two kinds of knowledge is a challenging task,
which cannot be solved by simply isolating portions of the CG model that can be
captured with a procedural flavour, and those that are better modelled with a declar-
ative approach5. On the other hand, such a combination is required in order to better
characterize conformance, and in particular to accept justified deviations instead of
reporting them to the medical staff.

In order to showhowprocedural and declarative knowledge can interact in the case
of BMK, we summarize in Table6.2 some of the real-world examples put forward

5This is the typical approach followed in BPM, where the process is split into procedural and
declarative fragments, or (macro)activities can be expanded by following a declarative or procedural
approach (see for example the ad-hoc subprocess construct in BPMN).
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in [5, 6]. These examples attest that the activities enabled by the CG procedural
model could be prohibited by declarative rules, or conversely that the procedural
part could enforce certain behaviours event if they are discouraged by the BMK.
More specifically, three interaction modalities arise from the examples:

1. The CG supports the possibility of choosing among two different treatments, and
the BMK acts as a business selection rule that helps in determining the route to
be taken.

2. The BMK emends the CG, suggesting a suitable way for (temporarily) replacing
the workflow prescriptions when they are deemed to be not applicable.

3. The CG defeats the BMK, imposing the prompt execution of an action even if,
according to the BMK, it is in general be dangerous for the patient.

This integration gives therefore raise to a hybrid semi-open knowledge, where the
procedural CG model must partially support the execution of unpredicted activities,
as well as some deviations from its prescriptions, while the BMKmust acknowledge
the possibility of being defeated, honoring the motto: “domain experts always get
the last word”.

A deep understanding concerning the nature of this hybrid knowledge, and how
its building components actually interact, is still far to be reached. Nevertheless, a
first necessary step towards a proper characterization of conformance in this setting
requires to revise the activity lifecycle, so as to reflect this interplay.

The revised lifecycle is shown in Fig. 6.4 (left). It is enrichedwith additional states
and transitions, which are not only associated to events, but also to conditions that

Table 6.2 Examples of clinical behaviors induced by the interplay between procedural recommen-
dations coming from a CG and declarative rules expressing part of the BMK, taken from [5, 6]

CG BMK CG+BMK

a Patients suffering from
bacterial pneumonia must
be treated with penicillin or
macrolid

Do not administer drugs to
which a patient is allergic

Administer macrolid to
a patient with
bacterial pneumonia
if she is allergic to
penicillin

b Patients with post-hemorrhagic
shock require blood
transfusion

Do not apply therapies that
are not accepted by
patients. Plasma expander
is a valid alternative to
blood transfusion,
provided that …(omitted)

If the patient refuses
blood transfusion, in
case of
post-hemorrhagic
shock treat her with
plasma expander

c In patients affected by unstable
angina, coronary
angiography is mandatory

A patient affected by
advanced predialytic renal
failure should not be
subject to coronary
angiography, because the
contrast media may cause
a further deterioration of
the renal functions

Even in case of a
predialytic renal
failure, perform
coronary
angiography if the
patient is affected by
unstable angina
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ready
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else

start
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failure
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candidate

active  
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start end

failure
   abort
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Fig. 6.4 A sophisticated activity lifecycle supporting abnormal situations and exceptions; the left
diagram shows the intended lifecycle, and the right one its pure event-based version, which can be
reconstructed from the analyzed trace

are checked against the current state of affairs (e.g., to verify whether the patients’
data are within certain ranges). When an activity instance is candidate, it is not still
ready to be executed. To make it ready for the execution, some additional conditions
must be satisfied. More specifically, to be executed a candidate action must satisfy its
preconditions, which are a part of the description of the activity. Preconditions specify
whether the activity is applicable in the current state of affairs, and are evaluated on
the basis of the currently available patients data and execution context. Even though
preconditions are satisfied, the action cannot be executed if the current situation is
“abnormal”. This is captured bymeans of abnormality conditions, which are satisfied
whenever the assumptions made in the CGmodel (e.g., ideal patient and context), do
not hold. If the situation is not abnormal and preconditions hold, the action is ready to
be executed. Otherwise, it is discarded. A ready activity instance can be made active
by triggering the start event. Two cases are possible then: either an end event occurs
marking that the activity instance is completed or an abnormality/failure shows up
during execution, so that the action is aborted. As described before failure events
mark exceptional situations that require the immediate interruption of the activity
instance. The additional abnormality test is instead used to capture those situations
in which the activity is started in a “normal” situation, which however becomes
abnormal during the execution of the activity.

We observe that the preconditions are specified in the (augmented) procedural
CG model, the failure situations depend on a specific execution, while abnormal-
ity circumstances are typically identified and handled by means of BMK rules. In
addition, further constraints can be imposed by the BMK depending on the current
context and patient’s status; from the conformance point of view, this means that
activity executions unforeseen by the procedural knowledge should be accepted if
they are made candidate by the BMK.

As for conformance with this revised lifecycle, it is worth noting that its aim is
not to enforce a discard/abortion of the activity instance when the corresponding
state-related conditions prescribe to do so, but to check whether the actual behaviour
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is aligned with the ideal one. During the effective execution, healthcare professionals
will decide whether the activity instancemust be aborted or not, and the conformance
checker will evaluate whether this course of execution deviates from the intended
transitions or not. To track the actual transitions inside the activity instance lifecycle,
we should then ideally replace the pre- and abnormality conditions with a corre-
sponding abort event, triggered by the healthcare professionals when they consider
the activity to be discarded before its execution, or aborted during its execution. This
purely event-based variant is shown in Fig. 6.4 (right). The conformance problem
ultimately amounts to detect and report all those instances for which the expected
lifecycle transition is deviates from the actual performed transition.

Finally, notice that the discarded terminal state induces a third “exit point” from
the activity. As for the aborted state, this exit point can be explicitly handled by
means of additional CG/BMK rules, or be connected by default to the same outgoing
sequence flow used for the completed state (thus ensuring robustness).

6.5 Representation of Clinical Guidelines

In Sect. 6.3 we introduced the concept of expectation: a CG could be thought of a
set of rules and constraints that points out what is expected to happen next. However
from the discussion in Sect. 6.4 it appears that expectations alone are not sufficient.
Indeed, there is the need to reason upon the “state of affairs” when executing a CG.
Such state of affairs is independent of what is expected next, and on the contrary the
generation of expectations starts always from the current state. Hence, any CG in our
model can be thought of as two distinct yet related descriptions: rules that specify
how the happening of events affects the current state of affairs, and rules that forecast
what is expected then on the basis of the current state and happened events.

Our current approach exploits two existing solutions: representation and reasoning
upon the “state of affairs” is done by means of the Event Calculus [19], while expec-
tations are represented, generated and verified by means of the Event-Condition-
Expectation (ECE-) rules [7]. These two approaches can be easily integrated together,
since the ECE-rules natively exploit the notion of fluent, core concept of the Event
Calculus. From the technical viewpoint, the integration can be achieved since there
exists implementations of ECE-rules and EC based on the Drools Framework.

6.5.1 Representing the Guideline Evolution with Event
Calculus

In 1986, Kowalski and Sergot proposed the Event Calculus (EC, [19]) as a general
framework to reason about time, events and change, overcoming the inadequacy of
time representation in classical logic. It adopts an explicit representation of time,
accommodating both qualitative and quantitative time constraints. Furthermore, it is
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based on (a fragment of) first-order logic, thus providing great expressiveness (such
as variables and unification). Shanahan [25] intuitively characterizes the EC as “a
logical mechanism that infers what is true when, given what happens when and what
actions do”.

The three fundamental concepts are that of event, happening at a point in time and
representing the execution of some action, and of properties whose validity varies as
time flows and events occur; such properties are called fluents. An EC specification
is composed of two theories, each containing a set of axioms:

• a general (domain-independent) theory axiomatizing themeaning of the predicates
supported by the calculus, i.e., the so called EC ontology shown in Table6.3;

• a domain theory that exploits the predicates of the EC ontology to formalize the
specific system under study in terms of events and their effects upon fluents. Our
domain theory is focused on the formalization of intra- and inter-activity con-
straints, together with the corresponding expectations and deviations.

The domain knowledge about actions and their effects corresponds to “What
actions do”. The capability of an event to make a fluent true (false respectively) at
some time is formalized by stating that the event initiates (terminates) the fluent.
More specifically, when an event e occurs at time t , so that ini tiates(e, f , t) and f
does not already hold at time t , then e causes f to hold. In this case, we say that f
is declipped at time t . There is also the possibility to express that some fluent holds
in the initial state, using the ini tially predicate. Conversely, if terminates(e, f, t)
and f holds at time t , then e causes f to not hold any more, i.e., f is clipped at time t .

“What happens when” is the execution trace characterizing a (possibly partial)
instance of the system under study. An execution trace is composed of a set of
occurred events. The basic forms of EC assume that events are atomic, i.e., bound
to a single time point. In particular, an execution trace is composed of a set of
happens binary predicates, listing the occurrences of events and their corresponding
timestamps.

The combination of the domain knowledge and a concrete execution trace leads
to infer “what is true when”, i.e., the intervals during which fluents hold. The
holds_at (f , t) predicate of the EC ontology is specifically used to test whether
f holds at time t .

Table 6.3 The basic Event Calculus ontology

Predicate Meaning

ini tially(F) Fluent F holds in the initial state of affairs

ini tiates(Ev, F, T ) Event Ev initiates fluent F at time T

terminates(Ev, F, T ) Event Ev terminates fluent F at time T

happens(Ev, T ) Event Ev occurs at time T

holds_at (F, T ) Fluent F holds at time T

holds_ f rom(F, T, Ts) Fluent F holds at time T since time Ts
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In [6] we introduced for the first time a model of the execution of a single action,
hence opening up the possibility to integrate it with the declarative knowledge. We
will not report here the technicalities presented in [6]; however, we might point out
that few basic fluents such as status (indicating possible status of an activity, such
as “candidate”, “active”, “completed”, etc.), together with events of “start”, “end”,
“discard” and “abort” have been sufficient to fully represent the activity lifecycle
discussed in Sect. 6.4.1.

6.5.2 Generating and Matching Expectations with ECE Rules

In several previous works we have explored the notion of expectations, and we
have defined several different languages for defining rules that support the defini-
tion of expectation. In particular, in [7] we have introduced the Event-Condition-
Expectations (ECE-) rules. Based on the rule framework Drools6, ECE-Rules allow
to link current system status (properties, and also Event Calculus fluents) and the
dynamic happening of events to the generation of expectations.

An example of a rule is shown in Fig. 6.5. When a patient $pat is evaluated to
be at risk of a disease $disease, with a factor judged as to be “high” and with a
confidence equal or greater to the “medium” grade, then it is expected that a proper
treatment is initiated within one hour from the evaluation.

This simple rule already shows the power of the ECE-Rules: the rule triggers
when the evaluation of the disease risk is inserted as a event and conditions are
met. As a consequence, dynamically an expectation is generated. The expectation
then can be satisfied by an event representing the start of proper treatment. Note
that the formalism allows to define also proper actions in case of satisfaction of the
expectations (rewards) and in case of violations (possibly expected countermeasures).

Fig. 6.5 An example of ECE-Rule [7].

6http://www.jboss.org/drools/.

http://www.jboss.org/drools/
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The choice of Drools as supporting framework for the ECE-rules is based on
the Drools Chance extension, and in particular on the possibility of support various
type of imperfect reasoning [26]. Indeed, the possibility of support at least fuzzy
logic-based reasoning is fundamental to support the human-related nature of CGs:
for example, a number of linguistic qualifiers like “high”, “low” or “medium” are
usually involved in guidelines specification.Moreover, imperfect reasoning is needed
to cope with deadlines, specifically if humans are involved.

6.6 Related Work

There is a flourishing literature focused on conformance issues in the healthcare
setting, mainly due to the impact that the execution of CGs has in terms of qual-
ity, cost savings, and effectiveness. We review some of the relevant approaches,
starting with two observations. First, often the term conformance is replaced by
compliance, so as to emphasize normative and legal aspects, or by critiquing, stress-
ing the fact that the actual courses of execution are critically analysed. Second, an
impressive series of works aims at providing specific, vertical solutions tailored to
a single guideline or disease, and by no means we can cover this extensive litera-
ture here.

In [18], an empirical, interview-based assessment is carried out so as to under-
stand how healthcare professionals perceive the adoption of CGs, and their usage to
monitor conformance. Interestingly, the assessment of conformance with the recom-
mendations included in the CGs is perceived by clinicians as an importat problem,
with which however they do not have enough familiarity. As a recommendation for
future research, they also mention the problem of putting the patient into the loop,
understanding to what extent patient concordance with the CG recommendations has
to be considered when assessing conformance.

The vast majority of approaches focused on conformance in the clinical setting
only considers the contribution of the CGs, without dealing with how they interact
with the BMK. In this respect, checking conformance is tightly related to operational
decision support and conformance verification in the field of process mining [1],
which is being increasingly applied to the healthcare setting [21]. Notable examples
of such a cross-fertilization are [15, 16]. In [16], a graphical language for specify-
ing declarative processes is used to capture clinical recommendations, expressing
constraints about the relative occurrence of activities, as well as the data they carry.
At the same time, a procedural model of a CG is simulated so as to extract possible
execution scenarios. The simulated traces are then checked against the formalized
recommendations so as to ascertain whether they agree or not. The approach is then
extended in [15], where ontologies are exploited so as to reuse the same formaliza-
tion of clinical recommendations for checking conformance of different CG models
belonging to the same Open Clinical repository.

Notice that the notion of conformance used in [15, 16] is radically different from
ours, because it uses as input data those extracted through simulation from the ideal
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CG model, not real executions. In fact, [15, 16] can be considered as examples of
techniques that show how conformance checking as intended in this paper can be
complemented with techniques and tools that ascertain conformance/compliance via
model checking7. On the one hand, formal verification applied a-priori on the CG
models, before their actual executions, can help in preventing the presence of errors
at runtime, and in improving the quality of models. On the other hand, they are not
exhaustive, due to the fact that they do not consider specific unforeseen situations that
may arise at runtime, they do not work on real patient data and contexts, and they do
not consider how the BMK could be employed to dynamicall adapt the CG models
on a per-patient basis. We therefore believe that both approaches are needed, so as
to provide support to the healthcare professionals during the entire CG lifecycle. For
more details about formal verification and model checking of CGs, the interested
reader can refer to the chapter on verification in this book.

Notably, model checking techniques can be suitably employed not only for the
a-priori verification of CGs, but also to tackle conformance in the way intended in
this chapter. This is the case of [17], where model checking techniques are used
to compare ideal actions prescribed by a CG with actual actions extracted from
healthcare records that log real executions of the CG. The focus is mainly on the
control-flow/temporal dimension, without taking into account resources and event
data.Of particular interest is the elicitation of two lists of reasons for non-compliance,
singled out by respectively considering the adherence of the actual with the expected
behavior, and whether the actual behavior is supported by the patient findings. Since
this second class of reasons implicitly depends on the BMK (which is used to indicate
and explain why a certain action is (un)likely to be executed given certain patient
findings), it would be interesting to encode the different reasons for non-compliance
in our approach. This would allow us to not only report deviations back to the
healthcare professionals, but also in automatically provide hints about the reasons
for such deviations.

Another approach that aims at going beyond the detection of deviations is that
of [3]. The authors employ Asbru to model che CG, and describe a technique to
check the adherence of an observed execution to the intended model. However, they
also consider preferences and policies of the institution in which the guideline is
executed, and whenever a deviation is detected, they check whether the deviation
can be explained by applying such additional knowledge. In this respect, policies
and preferences of the institution can be considered as part of the BMK, paving the
way towards the extension of our framework with preference-based reasoning.

The notion of clinical guideline conformance based on a formally defined match-
ing between the actual and the expected behavior started in [8, 11], where the SCIFF
framework, based on abductive logic programming with hypothesis confirmation, is
applied to clinical guideline conformance,with application to cancer screening proto-
cols. The possibility of exploiting the framework starting from typical procedural CG

7Notice that, even though the techniques in [15, 16] are presented as “a-posteriori” techniques, they
could be considered as “a-priori” technique, because they work on the CG model, not on its real
enactments.
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models is tackled in [9], which presents a translationmechanism that analyzes the CG
model and produces corresponding SCIFF rules. Differently from the approach here
presented, the SCIFF framework tailors non-conformance to logical inconsistency,
and it is therefore only able to determine whether a (partial or complete) execution
trace complies with the intended model or not, without continuing with the analysis
when a deviation is detected.

The general conformance framework here presented generalizes that of [5, 6]
along two directions: on the one hand, we provide here a thorough analysis of the
main features a generic conformance framework must provide, and on the other hand
we describe a more comprehensive activity lifecycle. Interestingly, an alternative
approach to our Event Calculus-based one is presented in [27], where Answer Set
Programming is used to encode a preliminary version of the activity lifecycle is
presented, enumerating with specific rules all the possible types of deviations that
may be encountered.

Finally, we would like to point the interested reader to [24], which provides a
broad analysis of the role of compliance in the healthcare setting, and its impact on
the development of computerized decision-support systems for CGs.

6.7 Discussion

The adoption of Clinical Guidelines is continuously increasing, towards high quality
standards in health processes. At the same time, though, healthcare professionals
might run into several issues when operating in agreement with CGs, due to unfore-
seen situations, contextual factors, specific peculiarities of patients, administrative
problems, and human decisions. When executing CGs, deviations from the expected
behavior are often observed. This by nomeans imply a negative impact on the patient,
but simply attests a discrepancy between the expected and actual execution. Detect-
ing the presence of such deviations is nevertheless of key importance towards CG
improvement on the one hand, and awareness of the patient state on the other hand.

Understanding if a CG execution deviates means to evaluate its conformance
w.r.t to the CG model. However, the nature of CGs makes it a difficult task. One
reason resides on the type of knowledge encoded in CGs: definitions, structured
workflows, rules, linguistic qualifiers and temporal constraints are usually part of any
CG specification. Moreover, such knowledge is expressed using both a procedural
approach (e.g., the workflows), and in a declarative way (as it happens with the
many rules). A second reason lies on the fact that CG are not prescriptive models:
during their execution physicians and personnel continuously integrate CG with
Basic Medical Knowledge, hence adding/changing/avoiding actions. A third reason
is related to the socio-technical nature of CGs: e.g., deadlines for human beingsmight
have a different semantics from deadlines in fully automated processes.

In this chapter we outlined an abstract framework for dealing with conformance,
based on the notion of expectations and ofmatching function. Themore sophisticated
the matching function, more complex the type of conformance that can be verified.
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However, the double-nature of CGs as being partly procedural and partly based on
rules requires a deeper analysis of how these two components can inter-relate. Our
proposed approach is based on an extended version of the activity life-cycle, where
exceptions can occur and interrupt the execution of a single activity. We have not
discussed technical solutions, but we pointed out that existing solutions might cope
with the highlighted complexity.

In this chapter we have completely ignored few important dimensions, that indeed
in the Business Process field are subject of an intense research activity. First of all,
knowing that a deviation happened might not be sufficient: a further question is “why
the deviation happened”. Strictly related to this point there is the identification of the
culprit for the deviation. Answer such question would require to specify in the CG
specification also concepts like responsibility, duties, permissions, and other deontic
concepts. Another question is about evaluating numerically how much the overall
process executions deviated from the CG model. A measure of deviation would help
to identify the most problematic processes, and to establish if and when corrective
measures are needed. Given the specific health domain, it is reasonable to expect
that any measurement function must take into account the domain semantics of the
actions and of the deviations. Notice that since deviations might have also a positive
impact, any measure of deviation should take into account also the produced effects.

Our current work is focused on building a unified framework where the con-
formance task can be accomplished. However, the nature of the hybrid reasoning
techniques required by conformance is proving to be a challenging task: in particular
the need of models and algorithms for perfect and imperfect reasoning at the same
time is an open problem.
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Chapter 7
Modelling and Monitoring the Individual
Patient in Real Time

Catherine G. Enright and Michael G. Madden

Abstract This paper presents a framework for representing background knowledge
and new data, and reasoning efficiently with this powerful combination of both
knowledge and data. Domain knowledge is needed to positively bias the operation
of data mining algorithms. Knowledge in the form of mathematical models can be
considered sufficient statistics of all prior experimentation in the domain, embodying
generic or abstract knowledge of it.We present a framework for using this knowledge
in a probabilistic framework for data mining, inference, and decision making under
uncertainty. Real-time data-streams, which typically contain uncertainty, are then
exploited in a principled manner to individualise patient care. By combining the
knowledge available in existing data streams with the expert knowledge available
and an efficient inference method, we provide a powerful foundation for reasoning
with uncertain and sparse data in the medical domain.

7.1 Introduction

This chapter discusses medical knowledge representation in the context of represent-
ing background knowledge, representing new data, and reasoning with both back-
ground knowledge and new data. In particular, we focus on the task of modelling
patients’ dynamic responses to therapies in the intensive care unit and updating those
models continuously so as to enable real-time inference and decision making.

Clinicians are often inundated with data, including continuous physiological time
series data, laboratory results, and patient historical records. Different clinicians put
differing emphases on different parts of the information set, but it is not known how
patient factors, such as their major illness and co-morbidities, affect the weight that
should be put on different aspects of this data.

Early approaches to computer-based medical decision support, such as MYCIN
in the 1970s [14], were based on hand-crafted expert systems, which suffered greatly
from their inability to scale to large systems and the practical impossibility of being
able to fully codify all aspects of human physiology. More recently, data-driven
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methods (initially techniques such as neural networks and more recently Support
Vector Machines, e.g., [5, 17, 23, 39, 71, 73]) have had some success. However,
they have two key limitations in how they are currently used: firstly, they do not
generally facilitate the inclusion of domain expertise, but depend on the data for
all of their information; and secondly, their reasoning is not always transparent to
the medical practitioners, which is recognised to be a large barrier to their adoption
[40]. Recent advances, such as the methodology described in this chapter, seek to
overcome those limitations.

It is well understood that at least some domain knowledge is needed to positively
bias the operation of data mining algorithms; domain knowledge also informs the
essential work of data preparation and pre-processing. However, most data mining
algorithms are data-driven. In 2007, Domingos [27] argued that data mining as prac-
ticed today ismostly knowledge-poor; current tools do not facilitate the incorporation
and reuse of knowledge, and this is perhaps the single greatest barrier to progress.

Much of what is known about human physiology is formalised in mathematical
models. Systems of ordinary differential equations (ODEs) play a prominent role in
medical settings, for example inmodelling physiological systems and drug dynamics.
The vast majority of models found in standard textbooks, e.g. [9, 13, 59], are based
on ODEs. We contend that knowledge in such a form can be considered sufficient
statistics of all prior experimentation in the domain, embodying generic or abstract
knowledge of it.We believe thatwhen used in a probabilistic framework, suchmodels
provide a sound foundation for data mining, inference, and decision making under
uncertainty.

ODE models typically describe general population-level behaviours. However,
an individual patient’s behaviour can vary considerably from the general behaviour.
Patients are admitted to hospital for a large variety of reasons, they all have different
pre-existing conditions and age profiles; we can therefore expect a large variability in
their individual responses to treatments. To be of use formonitoring a specific patient,
the mathematical model’s parameters must be individualised. In the hospital setting,
real-time observations of the patient can be used to do just that. In the modern Inten-
sive Care Unit (ICU), patients are continuously monitored with array of equipment at
bedsides, allowing hospitals to monitor many variables continuously and collect sub-
stantial amounts of data in Clinical Information Systems (CISs). At present, however,
CISs are primarily used for record-keeping rather than decision support.

We seek to exploit this data, using systems designed for individual patient moni-
toring and re-purposing them to yield future improvements in clinical outcomes by
individualising patient care. A key issue to deal with is that ICU data generally con-
tains uncertainty: it may be noisy as it can be subject to measurement error and/or
simple transcription errors, and data may be missing. In addition, the frequency of
the data may be sparse relative to the dynamics of the underlying system thus making
it difficult to individualise the parameters.

In order to reason with uncertain data streams on a highly variable patient cohort,
we have developed a probabilistic framework [30–32] that will be summarised in
this chapter. Our methodology, PRIM (Probabilistic Real-time Intelligent Moni-
tor), makes use of existing knowledge in the form of mathematical equations and
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Fig. 7.1 PRIM (Probabilistic Real-Time Intelligent Monitor) is a framework that encodes domain
knowledge in the form of ODEs as probabilistic graphical models that are adapted based on
observed data.

encapsulates it in a dynamic Bayesian network (DBN) setting which can exploit the
real-time data streams to individualise model parameters to the patient. Figure7.1
provides a graphical representation of our framework. PRIM can handle both data
and model uncertainty in a principled manner, can be used for temporal data min-
ing with noisy and missing data, and can be used to re-estimate model parameters
automatically using data streams.

In this chapter, we first present a brief background on DBNs and particle filter-
ing, as they form the basis of our PRIM framework. Then in Sect. 7.3, we look at
recent approaches to probabilisticmedical knowledge representation. In Sect. 7.4, we
explain our methodology for building a PRIM framework from a set of ODEs and
in Sect. 7.5, we present our Adaptive-Time Particle Filtering algorithm. This algo-
rithm is more efficient than standard fixed-time step particle filtering. In Sect. 7.6, we
discuss the challenges of monitoring and controlling blood glucose in ICU patients
and in Sect. 7.7 we apply our PRIM framework to this task. We show that PRIM
out-performs a previous approach and demonstrate that the method is effective at re-
estimatingmodel parameters and reasoningwith the sparse and potentially unreliable
data available at the bed-side.

7.2 Background and Notation

7.2.1 Bayesian Networks

Bayesian Networks are directed acyclic graphs where each variable to be considered
is represented by a node. Bayesian Networks can be considered to be a representation
of independence relationships between the nodes. If an arc exists fromnodeX to node
Y, X is said to be a parent of Y. The absence of an arc between two nodes indicates
they do not influence each other directly and are conditionally independent. In a
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Bayesian Network, each node is conditionally independent of its non-descendants in
the graph given the values of all its parents.

ManyBN structures can represent the same independence relationships. However,
it is recommended [50, 65] that the structure reflects causal order so that causes are
parents of effects. Non-causal ordering can require more arcs and result in a less
compact topology [50, 65].

Each node X j has an associated conditional probability distribution
P(X j |Parents(X j )) to quantify the effect of the parents on the node. These dis-
tributions are referred to as the conditional probability tables (CPTs). The network
structure and the conditional probability tables can be viewed as a representation of
the full joint probability distribution for each variable. Each entry in the joint distri-
bution is represented by the product of the appropriate elements of the conditional
probability tables. The joint probability of a set of variables can be determined by

P(x1, . . . , xn) =
n∏

j=1

P(x j |parents(X j )) (7.1)

where x1 denotes a particular assignment to the variable X j and parents(X j ) denotes
the specific values of the variables in Parents(X j ).

Nodes in a Bayesian Network may be continuous or discrete. Nodes can be either
observed or hidden. One purpose of a BN can be to infer probable values for the
hidden nodes. Observed nodes are nodes for which we have an observation of its
true state, e.g. a measurement for a patients glucose level at a particular time. Hidden
nodes cannot be directly observed, e.g. the patients sensitivity to insulin. We can,
however, infer a probable value for the patients insulin sensitivity using the measured
glucose levels.

The graphical representation used in this chapter is shown in Fig. 7.2. In this
representation observed nodes are shaded black and hidden nodes are shaded grey.

7.2.2 Dynamic Bayesian Networks

DBNs, which are used in our probabilistic framework, are Bayesian Networks that
represent temporal systems, i.e. where the past state influences the current state.

DBNs were originally introduced by Dean and Kanazawa [24]. The purpose of a
DBN is to infer probable values for the hidden variables as they evolve over time.
DBNs discretise time and we denote each time step with the index i . If we un-roll
the DBN it yields a BN structure repeated over time, the joint distribution therefore
follows from Eq. (7.1) and over T time-slices can be given by:

P(Z0:T ) =
T∏

i=1

N∏

j=1

P(Z j
i |parents(Z j

i )) (7.2)
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Fig. 7.2 Basic concepts and representation of a Bayesian Network. Hidden nodes are shown here
in grey. Observed nodes are shown in black.

Wepartition the nodes into input nodes (denoted by Ii ), hidden nodes (denoted by Xi ),
and observation nodes (denoted by Yi ). Input nodes are observed and are typically
parents of the hidden Xi nodes. The hidden nodes are in turn parents of the observed
Yi nodes. In specifying a DBN three sets of probability distributions are required:

1. The initial state distribution P(X0),
2. The sensor/observation models P(Xi |Ii ) and P(Yi Xi ),
3. The transition model P(Xi+1|Xi ).

DBNs are first-order Markov in the sense that the state at time step i + 1 is assumed
to depend only on the state at time step i . DBNs are generally assumed to have a fixed
time step. The modeller chooses a natural fixed time step size in order to specify the
model structure and the transitional probability tables.

Here, DBNs are assumed to be time invariant, i.e., their structure does not change
over time, as opposed to non-stationary DBNs proposed by Robinson and Hartemink
[63]. Detailed discussions on DBNs can be found in [50, 57, 65].

7.2.2.1 Graphical Representation

We represent DBNs using a compact format shown on the left in Fig. 7.3. Hidden
nodes are shown in grey here; different shading for different node types is used later.
Observed nodes are shown in black. Dependencies within a time-slice are indicated
with a solid arc. Inter-slice dependencies are indicated by a dotted line. On the right-
hand side the un-rolled DBN is presented. From this version, it is clear that a DBN
is a Bayesian Network with a repeating structure for each time slice, with arcs from
one time slice to the next.

7.2.2.2 DBN Creation

Both DBN structure and parameters can be learned from data [36, 50, 65]. How-
ever most DBNs are constructed by hand, using knowledge elicited from domain
experts [22]. This knowledge elicitation process is difficult and time consuming
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Fig. 7.3 Twodifferent representations of a simpleDBN.The compact representationon the left hand
side is used in the remainder of this chapter.Hidden nodes are shownhere in grey.Observed nodes are
shown in black.Dependencieswithin a time-slice are indicatedwith a solid arc. Inter-slice dependen-
cies are indicated by a dotted line. The un-rolled representation on the right is also commonly used.

[37, 55]. In the PRIM framework, this knowledge elicitation bottleneck is bypassed
by using existing summarised domain knowledge in the form of ordinary differential
equations.

7.2.2.3 Inference

There are four basic inference tasks that can be solved in a DBN [65]:

• Filtering: Keeping track of the current state. This is the task of computing the
posterior distribution given all the evidence to date, i.e. P(Xi |y1:i ).

• Prediction:Computing theposterior distributionover future states, i.e. P(Xi+k |y1:i )
for some k > 0.

• Smoothing: Computing the posterior distribution over past states, i.e. P(Xk |y1:i ).
for some k > 0 such that 0 <= k < i . The smoothed estimate will be more accu-
rate as it incorporates more evidence.

• Most Likely Explanation: Determining the most likely sequence of states to have
generated a sequence of observations, i.e. argmaxx1:i P(x1:i |y1:i ).

For our purposes we are interested in 1 and 2 above, Filtering and Prediction. Exact
inference is only possible in simple DBNs. For more complex DBNs approximate
filtering and prediction can be performed using a fixed time step particle filtering
algorithm, as explained next.

7.2.3 Particle Filtering

Particle Filtering is the sequential Monte Carlo method by which we infer the most
probable states of the DBN nodes. In this work, a standard particle filtering algorithm
developed for control theory by Gordon et al. [38] is used.
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A particle contains a value for every node in the network in both the current
and previous time slice. Thus, each particle has values instantiating all nodes in the
network, where each node is consistent with all other nodes and with the evidence
(nodes for which actual values are observed). Taken together, the particles can be
used to assess most likely values of nodes and their distributions.

Where an observation exists at the current time slice, its value is used, otherwise
a random value is chosen from the nodes distribution. Each particle is weighted to
determine the probability of this set of node values given the observations. For each
time slice the particles are summarized to return the weighted mean and weighted
standard deviation for each node. Prior to processing the next time slice, the set of
particles are re-sampled, i.e. individual particles are either multiplied or suppressed.
The probability that a sample is selected is proportional to its weight. Higher-weight
samples will spawn multiple copies, whereas lower-weight samples will die-off. The
purpose of the re-sampling step is to focus the set of samples on the high-probability
regions of the state space. The standard algorithm uses fixed time steps. As will be
shown later, this can sometimes be inefficient. In Sect. 7.5, we present an alternative,
that adapts the time step automatically as required.

7.3 Recent Approaches to Probabilistic Medical Knowledge
Representation

BNs and DBNs have previously been used in the medical setting. An excellent
introduction to the field is provided by Lucas et al. [55]. Aleks et al. [2] describe an
application of DBNs to analysing ICU data. They demonstrated accurate detection
and removal of artefacts in the arterial-line blood pressure sensor data. Charitos et al.
[18] developed a DBN to successfully diagnose ventilator-associated pneumonia
in ICU Patients. Research from the MIMIC II project includes applying a Kalman
Filter to estimate blood pressure and heart rate derived from the ABP waveform in
the presence of high levels of persistent noise and artefact [53], using a Bayesian
Network to estimate fluid requirements in the ICU [16] and using a Bayesian network
to model the cardiovascular system [62]. These BNs and DBNs have mostly only
used discrete variables; our work contains both discrete and continuous variables.

Techniques have been developed to learn both BN and DBN structure and para-
meters from data. More recently techniques for combining expert knowledge and
automated learning for building BN structure [35, 61] have been published. How-
ever most models, including the ones noted here, are manually constructed using
knowledge elicited from domain experts [22, 55]. This is a time consuming task
[35, 55]. Knowledge elicitation therefore remains a bottleneck; this is clear in the
paper of van Gerven et al. [37], for example, which provides an excellent demonstra-
tion of the steps required to build a DBN model for prognosis of carcinoid patients.
In order to bypass this bottleneck, our PRIM methodology automatically constructs
DBNs from mathematical models, since mathematical models can be considered to
embody existing expert knowledge. Chase et al. provide a strong argument for using
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physiological mathematical models in the critical care environment [21] and give
examples where physiological models already form the basis of applications to man-
age sedation [64], cardiovascular diagnosis and therapy [66], mechanical ventilation
[67], and the diagnosis of sepsis [12]. They argue that mathematical models offer
significant physiological insight into patient status and behaviour.

Work has previously been carried out usingmathematicalmodels in bothBayesian
Networks and DBNs. Bellazzi et al. [7] provide a good comparison of some of these
methods.While some focus onpredicting individualmodel parameterswhich are then
used off-line [6] others discretise the state-space [42] and so do not explicitly incorpo-
rate the model equations in their original form. Voortman et al. [72] propose building
causal graphs from time-series data and exploiting the ODEs to impose constraints
on the model structure. In the separate, but related, topic of simulating human phys-
iology, Abkai and Hesser [1] recognised the benefits of using both deterministic and
probabilistic models. However unlike our approach which is explained in Sect. 7.4,
they separate the ordinary differential equation solvers and the DBN models.

Evers and Lucas [33] recently proposed constructing DBNs for Linear Dynamic
Systems. They too recognise that using existing models can significantly reduce
the knowledge engineering effort required when building DBNs. Linear Dynamic
Systems are amenable to efficient simulation, since the exact solution is available in
a closed form. In contrast, the PRIM framework deals with non-linear systems which
typically cannot be solved exactly, and so must be treated using numerical solvers
as will be explained in Sect. 7.4.

Anderson and Højbjerre [4] have shown the use of SDEs (Stochastic Differen-
tial Equations) in combination with graphical models. They reworked the Minimal
Model of Bergman et al. [11] into a DBN model. They transformed the Bergman
model into SDEs and in a similar manner to this work, they then used a graphical
model to estimate the model parameters and handle measurement uncertainty. In the
SDE formulation, noise appears explicitly as a term in the equation. The solution is
understood to be itself a stochastic process. To simulate such solutions numerically,
one may use methods such as the Euler-Maruyama approach (see, e.g., [49]) to gen-
erate approximate solutions for a given set of random walks representing the Wiener
processes. The approach used in PRIM is more direct; the model is given in the form
of deterministic ODEs and mapped directly to the DBN which then incorporates
the effects of noise, and generates solutions using a numerical technique such as the
(standard) Euler approach. The PRIMapproach does not require a transformation of a
systemofODEs to SDEs prior to constructing theDBN.This is important because the
vastmajority of themathematicalmodels available are structured asODEs, not SDEs.

7.4 Building a Probabilistic Framework with Mathematical
Models

Typically mathematical models, in the form of ordinary differential equations,
describe general population-level behaviours. In order to describe individuals, model
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parameters must be re-calibrated using observations of the individual. However, in
most real-life situations, these observations contain uncertainty. They can be subject
to measurement error or simple transcription errors. Data may be missing. Relevant
quantities may not be measured or recorded. Observations may be sparse relative to
the dynamics of the underlying system thus making it difficult to individualise the
parameters.

Our probabilistic approach, using DBNs, offers an efficient framework for re-
estimatingmodel parameters dynamically over time, based on accumulated evidence.
The knowledge elicitation bottleneck associated with manual DBN construction is
bypassed by basing the DBN on readily available ODE models.

Next we show our methodology for automatically constructing a DBN framework
from a given ODE model.

7.4.1 Methodology for Constructing DBNs from ODEs

When using ODEs to model any non trivial real-world situation, it is usually the
case that the systems are so complex that the solution is not available in a closed
form. Instead, numerical methods that estimate the solution at discrete points in time
are employed. The simplest technique for initial value problems (IVPs) is Euler’s
method, see for example, [45].

Consider the following IVP: find N (t) such that N (t0) is given, and

d N

dt
= f (N , t) = f (N , t; A, P1, P2, . . . , Pm), for all t > t0,

where N may be scalar-valued (for a single equation) or vector-valued (for a coupled
system). Other terms in f are a time-varying coefficient A and model parameters
P1, . . . , Pm .

We will find approximations to N at times t1, t2, t3, . . . . Let us denote by Ni the
approximate for N (ti ). Setting hi = ti+1 − ti , Euler’s method is

Ni+1 = Ni + hi f (Ni , ti ) for i = 0, 1, . . . . (7.3)

Thus the rate of change of N at step i is

f (Ni , ti ) = Ni+1 − Ni

hi
=: ΔNi , (7.4)

and we can rewrite (7.3) as

Ni+1 = Ni + hiΔNi for i = 0, 1, . . . . (7.5)

This approximation is first-order accurate in the sense that error, |N (ti ) − Ni |, is
proportional to max |hi |.
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Fig. 7.4 Nodes N and ΔN
are deterministic nodes
implementing Eqs. (7.4) and
(7.5) respectively. Solid
arrows connect nodes within
a time slice; dashed arrows
connect nodes between time
slices.

Whenwemap theODEs to aDBN,we set theDBN’s discrete time steps to be dura-
tion hi also. We encapsulate an Euler approximation by mapping Eqs. (7.4) and (7.5)
directly to two deterministic nodes, ΔN and N in the DBN, as illustrated in Fig. 7.4.

As the figure shows, Node ΔN is a deterministic node, and its parent nodes are
set to be all the terms needed to solve f (Ni , ti ), in the same time slice of the DBN.

Node N is also a deterministic node. In each time slice, it evaluates the current
value of Ni+1 using Eq. (7.5), hence its parents are set to be itself and node ΔN from
the previous time slice. (Note that inter-time slice arcs are shown in dashed arrows
in Fig. 7.4.)

In the DBN, the model parameters, P1, . . . , Pm , are represented as continuous
nodes. This procedure may be applied to a system of ODEs, by creating a sub-net for
each equation and adding dependencies between them, as dictated by terms appearing
in the equations.

7.4.2 Expanding the DBN to Represent Measurement
Uncertainty

The DBN provides a natural framework to reason with noisy data. The observed
value of the variable to be approximated is assumed to contain a certain amount
of measurement error. As can be seen in Fig. 7.5, each observed measurement (for

Fig. 7.5 Extra evidence
nodes (black) are added to
model the relationship
between observed and true
values.
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example Observed N ) is modelled as a continuous distribution whose mean is its
parent node (N ), the true variable value and whose standard deviation represents the
measurement uncertainty. Similarly, each actual input (A) to a system differs from
the intended input (I ntended A), which is observed, and so a clear distinction is
created in the DBN. The true value (A) is represented as a conditional distribution
whose mean is the intended value.

7.4.3 Expanding the DBN to Re-Estimate Parameters

Model parameters P1, . . . , Pm , are allowed to vary over time. In Fig. 7.6, they are rep-
resented as continuous nodes.Distributions on the initial statemodel can be viewed as
the distribution of the population values. These population values can be learned from
the data or obtained from the published literature. All model parameters are allowed
to vary in each time step by including a conditional dependency on its value in the pre-
vious time, as shown in Fig. 7.6; they can therefore converge to values appropriate to
the individual case over time, based on evidence from the temporal data stream.

7.4.4 Selection of DBN Parameters

As noted in Sect. 7.4.3 above, model parameters are represented as continuous nodes
and the initial state model distribution can be viewed as the distribution of the pop-
ulation values. These population values are often published along with the ODE
models and can therefore be taken from the literature. In the case where there are
no published values, the parameters can be learned from the data. Using data from a
large number of subjects, both the sensor model and the transition model parameters
can be learned using an Expectation Maximization (EM) algorithm [25].

Fig. 7.6 Extra inter-slice arcs on nodes P1, . . . , Pm to allow parameters to be tuned to the evidence
over time.
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7.4.5 Handling Numerical Errors

In previous work we evaluated the approach on abstract models where the true solu-
tion is known [29, 30]. We found that in the cases where data error dominates over
numerical error, the most accurate results are obtained using a minimal number of
time steps. The time step length should be chosen small enough to ensure stability
of the underlying ODE model, but as large as possible to ensure a minimal number
of steps in between observations.

The Euler method presented above is first-order accurate in the sense that the
numerical error is proportional to hi = ti+1 − ti . Therefore, decreasing hi reduces
the numerical error, but of course leads to increased run times. A standard technique
for obtaining a more accurate solution while using the same step size is to use a
higher order method. We have looked at how a higher order solver, a Runge-Kutta
solver, can be incorporated in our DBN framework in previous work; for details,
please refer to [29, 30]. We found that incorporating an RK2 or higher order solver
can increase the numerical accuracy, that is, it can reduce the error that is introduced
into the simulation because we are using an approximate solution to the differential
equation rather than the true solution.

In stiff examples, significant efficiency benefits are gained using the higher-order
RK2 solver because larger step sizes can be used. For systems that are not stiff, there
are no benefits to be gained by using higher-order schemes. In the next section, we
present an approach that leads to efficiency improvements in both stiff and non-stiff
problems.

7.5 Adaptive-Time Particle Filtering

Inference in DBNs is often carried out using a standard fixed-time step particle
filtering algorithm [38]. Careful consideration must be given to step-size selection.
The step size must be chosen to be sufficiently small so that numerical error is
not significant. However, reducing step sizes results in increased computation, so a
balance must be struck between a practical run-time and numerical accuracy. As has
been noted earlier, for non-stiff systems this is not necessarily a concern; however, for
stiff problems very small step sizes may be required and inference quickly becomes
inefficient. An alternative approach, that involves adapting the step size according to
the dynamics at each step, is therefore proposed.

We have proposed an algorithm for particle filtering that allows for non-fixed step
sizes [30]. We call this algorithmAdaptive-Time Particle Filtering. It is comprised of
two parts, as described in the sub-sections to follow. First, an approach where each
particle is allowed adapt the step size independently according to its own dynamics is
presented. Once we have a scheme that allows for variable time steps, we implement
a mechanism for automatically choosing those time steps.
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7.5.1 Adapting the Time Step

In the standard fixed-time step DBN, when filtering and prediction are carried out,
the results are reported at each step. With our Adaptive-Time Particle Filtering,
the user can specify the intervals at which the results should be reported. In certain
situations, the adaptive algorithmmay choose very small step sizes to capture rapidly
changing dynamics, for example 0.01min, but the user may only be interested in the
predicted values at a larger time interval, for example, every 10min. The user can
specify this summary interval or a set of summary times. Each particle is propagated
independently to the next summary time, allowing each particle adapt the step size
for the dynamics that result from its particular set of values. In fixed-time step particle
filtering, if the granularity of the evidence time stamp does not match the fixed-time
step, it must be approximated to the nearest step. One advantage of our adaptive
approach is that exact time stamps can be used.

For our algorithm, evidence is divided into two types; continuous and instanta-
neous. Continuous evidence is defined as evidence that remains constant until a new
value is reported. On the other hand, instantaneous evidence is defined as evidence
with a value at a particular moment in time. Where new instantaneous evidence or
changes in continuous evidence occur, a summary step is invoked. At each sum-
mary step, the particles are weighted based on the evidence, and re-sampling ensures
that the samples with the higher weights are more likely to be propagated to the
next step.

A formal description of the inference algorithm is shown in Algorithm 1. In the
algorithm, S denotes the set of particles. The times at which summaries are reported
are denoted {R0, . . . , RK }. Between summaries, the time steps are {t0, t1, . . . };; note
that these may be different for different particles.

7.5.2 Choosing the Step Size

The step size control mechanism used is shown in Algorithm 2. It is based on a
procedure outlined by Butcher [15, §202] and demonstrated by Nhan [58], that aims

Fig. 7.7 Illustration of time-stepping in fixed step particle filtering and Adaptive-Time Particle
Filtering. Traditionally, inference is performed at fixed intervals. With Adaptive-Time Particle Fil-
tering, summary steps (gray) can be specified at any fixed interval and are used to report the values
of hidden variables at regular intervals. In between summary steps, the particle filtering algorithm
adjusts to use step sizes appropriate to the dynamics at each step.
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Algorithm 1. Adaptive-Time Particle Filtering returns Q, a vector of summarised
particles for each summary step

Inputs:
F : finish time
N : number of particles
{R0, . . . , RK } summary times
Local Variables:
S : a vector of particles of size N
W : a vector of weights of size N
Q : a vector of summarised particles
h̄ : proposed step size; h̄ ← R1 − R0
t0 = 0; i ← 0; k ← 0

while Rk+1 < F do
for p = 1 → |S| do

i ← 0
ti = Rk
while ti ≤ Rk+1 do

repeat
Sp ← sample from P(xt |xt−1) {Scaled according to the step size}
(tol O K , h̄) ← Check Tolerance(h̄) {See Algorithm 2}
if tol O K then

ti+1 ← ti + h̄ {Set proposed step size for the next step}
else

ti ← ti−1 + h̄ {Try again with a smaller step}
end if

until tol O K
i ← i + 1

end while
end for
W ← P(yi+1|xi+1) {Weight particles based on evidence}
Q ← summarise S based on W{Store weighted mean and standard deviation of all particles}
S ← re-sample S based on W {Select most likely particles for next iteration}
k ← k + 1

end while
return Q

to control the truncation error introduced at each time step. To do this, we must
estimate the local error. The error is estimated using the delta nodes described in
Sect. 7.4. This estimated error is compared to a prescribed tolerance. If the tolerance
is met, the current step is accepted and a new step size is proposed for the next step,
which may be bigger. If the tolerance is exceeded, the current step is rejected and a
reduced step size proposed.

In order to control the numeric error introduced at each time step,wemust estimate
the local error. Butcher [15] shows that a good estimate of the local error is

h2
i

2
E , where E = |( f (Ni+1, ti+1) − f (Ni , ti ))|

hi
.
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In the notation of Sect. 7.4:

E = |ΔNi+1 − ΔNi |
hi

.

Note, however, that for a coupled system, N is a vector valued quantity. Since we
wish to control the largest error in any component in the system, we set

E = max |ΔNi+1 − ΔNi |
hi

.

We aim to keep the estimated error below a prescribed tolerance, τ. If the tolerance
is met, the current step is accepted and a new step size is proposed for the next step,
which may be bigger or smaller.

The term
√
2 τ /E is an estimate of the maximum step size that would ensure

the tolerance is met: any step size less than or equal to this is likely to yield a
numerical approximation with the desired accuracy. So that the choice is unlikely
to overestimate the step size and hence trigger an unnecessary extra step, we set the
new step size to be q

√
2 τ /E where q ∈ (0, 1) is a user-chosen parameter. Values in

the range 0.6–0.9 work well. In our examples in this paper we set q = 0.9.
When the solution switches from a region in which its derivative changes rapidly

to a region in which its derivative changes slowly, the algorithmwill increase the step
size in order to maintain efficiency. However, as noted by Butcher [15], if the step
size changes rapidly then the error will be adversely affected. Therefore, we control
the rate at which the step size increases with the parameter M1 > 1, the maximum
factor by which the current step size will be increased. The proposed step size is the
smaller of the estimated step size based on achieving the desired error i.e., q

√
2 τ /E ,

and hi M1. In this paper we set M1 = 1.5.
If the tolerance is exceeded, the current step is rejected and a reduced step size

proposed. Once again the proposed step size is estimated as q
√
2 τ /E . To ensure

a reduced step size is always recommended we introduce M2 and set M2 < 1. The
algorithm recommends the smaller of the estimated step size q

√
2 τ /E , and a factor

of the current step size hi M2. In our examples in this paper we set M2 = 0.9.
In [30], we present the results of sensitivity tests on q, M1 and M2, in summary,

they show that the algorithm is reliable for any set of values satisfying 0.6 ≤ q ≤ 0.9,
M1 > 1, and M2 < 1.

Previously, we evaluated this approach on a test model where the true solution
was known and showed that it is both efficient and easier to use than the fixed time
step approaches [29, 30]. In the next section we apply this framework to monitor
blood glucose levels in ICU patients.
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Algorithm 2. Check Tolerance(hi ) returns Boolean to indicate if tolerance check
passes and a proposed step size h̄

Inputs:
hi : previous step size
τ : Prescribed tolerance
ΔNi+1,ΔNi : Vectors of delta nodes
Local Variables:
M1 : Maximum factor by which step size is increased
M2 : Factor by which step size will decrease if tolerance is not met.
q : Safety factor so the step size is just less than the maximum recommended

E ← max |ΔNi+1 − ΔNi |/hi
if

(
h2

i E /2
)

< τ then
h̄ ← min

(
q
√
2 τ /E , hi M1

)
{Tolerance met; suggest step size for next step}

tol O K = true
else

h̄ ← min
(
q
√
2 τ /E , hi M2

)
{Tolerance not met; suggest smaller step size}

tol O K = f alse
end if
return (tol O K , h̄)

7.6 Application to Monitoring Blood Glucose

7.6.1 Hyperglycaemia in the ICU

In an ICU, patients often experience stress-induced hyperglycaemia [56]. Kavanagh
and McCowen [48] provide an excellent summary of the clinical problem. Stress-
induced hyperglycaemia in ICU patients is caused by increased concentrations of
stress hormones (adrenaline, growth hormone, glucocorticoid and glucagon), the
use of medications such as exogenous glucocorticoids and catecholamines and the
administration of intravenous dextrose, in parenteral nutrition and antibiotic solutions
[56]. The consequences of elevated glucose levelsmay bemanifested at themolecular
or cellular level, combining to cause tissue abnormalities that include sepsis, impaired
wound healing, and neuromyopathy (disease of both muscles and nerves) [48]. It has
been shown that hyperglycaemia is associatedwith increasedmortality and increased
morbidity in critically ill patients [10].

To prevent hyperglycaemia in the ICU, exogenous insulin is administered. Due
to its quick action and short half-life, intravenous (IV) insulin is the preferred choice
for rapid correction of hyperglycaemia [3]. Determining the optimal target range
for blood glucose and the optimal approach to controlling blood glucose levels in
critically ill patients is however still a matter for debate.

Tight control of plasmaglucose levels (80–110mg/dl) has previously been demon-
strated to improve outcome in a predominantly surgical population of critically ill
patients [10]. In contrast, the more recent NICE-SUGAR study found a blood glu-
cose target of less than 180mg/dl resulted in lower mortality than did a tight target
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of 81–108mg/dl [44]. Kansagara et al. [47] recently conducted a review of 21 trials,
including the two mentioned above, to evaluate the benefits and harms of inten-
sive insulin therapy (IIT) in hospitalized patients. They conclude “No consistent
evidence demonstrates that IIT targeted to strict glycaemic control compared with
less strict glycaemic control improves health outcomes in hospitalized patients. Fur-
thermore, IIT is associated with an increased risk for severe hypoglycaemia”. Even
one episode of hypoglycaemia has been shown to increase mortality in critically ill
patients [51]. Therefore, despite several trials, considerable uncertainty still exists
regarding the optimal glucose range and how best to achieve it. Even when a target
range is selected, achieving this target range, while preventing both hypoglycaemia
and hyperglycaemia, is difficult.

7.6.1.1 Targeting a Glucose Range

As mentioned, exogenous insulin is administered intravenously to critically ill
patients to regulate blood glucose levels. This insulin dosage must be balanced with
the glucose that is administered both enterally (i.e. via the gastrointestinal tract) and
parenterally (i.e. intravenously) as part of nutritional feeds. Blood glucose levels
are measured regularly and depending on the measured glucose levels the insulin
dosages are adjusted.

Typically, in a busy ICU, there are a number of ways in which glucose is mea-
sured. Most require a sample of blood to be drawn from the patient which can be
uncomfortable for the patient and is labour intensive for the nursing staff. The most
accurate glucose measurements are obtained by sending arterial blood samples to
the laboratory for testing [19]. However there can be a time delay of many hours in
getting the results. A patients condition can change dramatically in this time period.
Point of Care (POC) methods are more common. Very accurate results are obtained
using Arterial Blood Gas Analysers (ABG) located in the ICU [8] when the sample
is analysed within 10min of the blood draw. In some ICUs finger-stick glucose mea-
surements are used, despite the fact that they have been shown to be inaccurate for
critically ill patients [46]. Not only is the technique prone to large measurement error
but poor peripheral perfusion (e.g., circulatory shock) can result in a lower glucose
value in capillary than venous blood [60].We use both lab glucosemeasurements and
ABG glucose measurements for our analysis. The glucose level reported by the lab
techniques and the ABG machines is plasma glucose. Plasma glucose is measured
in mg/dl or mmol/l.

The frequency at which plasma glucose is measured is a key factor in regulating
glucose [19]. Frequent, accurate, and timely glucose measurements are required for
appropriate infusion dosing [19, 34]. An unstable patient may be monitored hourly,
but a stable patient’s glucose may only be measured every 4h. Insulin is a very fast-
acting hormone; its half-life in the blood stream is only a few minutes. Even hourly
measurements could be considered infrequent when compared with the dynamics of
insulin and glucose. However, the need for regular measurements must be balanced
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with the patients comfort and the work-load of the staff. Although continuous blood
monitors are available they are expensive and not as accurate as ABG or Lab results.
They are not widely used in the ICU setting [19].

7.6.1.2 Considerations When Modelling Glycaemia

Because of the importance of avoiding hyperglycaemia and hypoglycaemia and the
difficulty in getting frequent accurate glucose measurements, a model that tracks
and predicts a patients glucose levels in real-time is needed. There are a number of
factors that must be considered in designing such a model, as described next.

Inter-Patient Variability: Substantial variability has been noted in the responses
of different patients to insulin and glucose infusions [20, 43]. This is due to a vari-
ety of reasons. These include the reason for which the patient was admitted to the
ICU; for example, a patient with sepsis is more likely to have hyperglycaemia than
a patient who was admitted following cardiac surgery [19]. Severity of illness is
known to affect glucose metabolism [54]. There may also be interactions with other
medications being taken by the individual; for example, steroids can sometimes
reduce insulin sensitivity [19]. Pre-existing conditions such as diabetes also affect
the patients response to insulin and glucose. For such reasons, substantial variabil-
ity is seen in the responses of different patients to insulin infusions. It is therefore
necessary to develop a model that can be calibrated to a wide variety of patients.

Intra-Patient Instability: Patients in an ICU tend to be unstable: their individual
insulin sensitivity can fluctuate as their condition changes. In fact, glucose variability
has been shown to be a significant independent predictor of ICU and hospital mortal-
ity [28]. Patient parameters must therefore be continually re-estimated in real-time
to account for both sudden and slow changes.

Inaccurate and Incomplete Data:Asmentioned, plasma glucosemeasurements are
subject to instrumentation error [46, 60].Theremayalsobe inaccuracies in the record-
ing of data. Typically results are manually entered into clinical databases. Times and
quantities may be approximated or misreported. Data may be missing, e.g., glucose
frommedications administered in a glucose solution may not be recorded.

7.7 Probabilistic Framework to Monitor Blood Glucose

Toapply thePRIMframework to the task ofmonitoring bloodglucose,wefirst take an
existing ODEmodel from the literature, incorporate it in a DBN and then reason with
the data available at the bed-side. In this case, we use blood glucose measurements,
administered insulin and administered glucose. The resulting methodology in shown
in Fig. 7.8.
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Fig. 7.8 The PRIM framework as applied to monitoring blood glucose levels

7.7.1 The System of ODEs

The starting point for constructing the DBN is the ICU-Minimal Model (ICU-MM)
of VanHerpe et al. [69]. It is a model for predicting plasma glucose levels in critically
ill patients who are in receipt of a glucose and insulin infusion. It is described by a
system of four differential equations:

dG

dt
(t) = (

P1 − X (t)
)
G(t) − P1Gb + FG

VG
, (7.6a)

d X

dt
(t) = P2X (t) + P3

(
I1(t) − Ib

)
, (7.6b)

d I1
dt

(t) = αmax
(
0, I2(t)) − n(I1(t) − Ib

) + FI

VI
, (7.6c)

d I2
dt

(t) = βγ
(
G(t) − h

) − nI2(t). (7.6d)

Here, G is the plasma glucose level, X is the effect insulin has on the plasma
glucose, I1 is the plasma insulin level and I2 the endogenous insulin produced by
the pancreas. A detailed description of the model terms can be found in Van Herpe
et al. [69].

7.7.2 The DBN Derived from the ODEs

Using our procedure, that was described in Sect. 7.4, the DBN structure is derived
from the ICU-MM. Each equation is mapped to a subnet in the DBN. The DBN
contains both hidden and observed nodes. Hidden (continuous or discrete) random
nodes are dark grey, observed nodes are black and deterministic nodes are light grey.
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Fig. 7.9 Subnet of DBN for Eq. (7.6a) of ICU-MM

Fig. 7.10 The ICU-MM system of differential equations mapped to a DBN.

Delta nodes capture changes in quantities over time. These changes are calculated
using the differential equations of the ICU-MM (7.6). Each delta node has, as parent
nodes, the various terms needed to solve the appropriate differential equation.

To illustrate this, Fig. 7.9 shows the section of the DBN that is related to Eq. (7.6a)
of the ICU-MM. Here, the ΔG node determines the per time step change in plasma
glucose levels. The current plasma glucose level is determined based on the glucose
level andΔG calculated in the previous time slice. Each of the terms in the differential
equation for G is represented as a parent node of ΔG.

The DBN is expanded as described in Sect. 7.4. Model parameters are allowed
to vary over time. Their initial mean values are based on the literature [41, 68–70].
Each model parameter is allowed to vary in each time step by including a conditional
dependency on its value in the previous time. In this way, they can converge to
values appropriate to the individual case over time, based on the evidence. The
model parameter means are shown, along with the standard deviations for the initial
state and transition models, in Table7.1.

Model parameters are represented as truncated Gaussian nodes, in order to con-
strain the DBN to postulate values that are not unrealistic for nodes. For example,
the true value for P1 cannot be a negative value, only positive values are possible.

Limits were also placed on some deterministic nodes using min/max functions.
For example, it is not possible to have a negative quantity of glucose in plasma, so a
limit is placed on node G to reflect this.

The observed value for plasma glucose (Observed G in the DBN) is assumed
to contain a certain amount of measurement error. It is therefore modelled with a
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Table 7.1 Conditional probability tables for the model parameters of the ICU-MM.

Node Mean Standard deviation Range

Initial state model Transition model

Gb G0 40 0.05 0+

Ib −13 + 0.22 × I BWR (seea) 5 0.005 0+

P1 -0.0131 per min 0.013 0.005 -1:0

P2 -0.0135 per min 0.013 0.002 -1:0

P3 2.9E-6 ml/(min2U) 2.0E-6 1.0E-6 0:1

h 136mg/dl 30 0.1 0:360

n 0.013 per min 0.1 0.001 0:1

α 3.11 0.5 0.01 0+

γ 0.00536 per min 1.0E-5 1.0E-5 0:1

W eight Observed W eight0 1 0.1 0+
a I BWR as defined in [68] refers to the body weight relative to the ideal body weight (defined in
the Metropolitan Life Insurance Tables) expressed as a percentage

Gaussian distribution whose mean is its parent node, the actual plasma glucose level,
G. Likewise, the data from the ICU reflects the prescribed intravenous infusion rates
for insulin and glucose; the actual administered rates may be different. Therefore, the
actual rates aremodelled with Gaussian distributions whosemeans are the prescribed
rates. I.V. status nodes are introduced to indicate if the patient is in receipt of an
infusion. When the I.V status is on, the actual rates are modelled with Gaussian
distributions whose means are the prescribed rates. In this way, data uncertainty is
handled. When the I.V status is off, the actual rates are zero; they do not differ from
the prescribed rates. Note that while we use Gaussian distributions in this model,
other distributions could be used where suitable.

In a similar manner, a subnet for each of the other Eqs. (7.6b–7.6d) is added to
the DBN. The full DBN is shown in Fig. 7.10.

The nodes Vg and Vi are modelled as deterministic nodes. Their values are calcu-
lated as 1.6 × weight and 120 × weight respectively.

7.7.3 Evaluation

7.7.3.1 Description of the Data

For comparative evaluation of the methods, data was used from patients in the ICU
of University Hospital Galway (UHG). Two distinct datasets were used. Firstly data
from historical patient records were used. The dataset was previously described in
[32]. The patients were not on specific insulin therapy trials, so the dataset only con-
tains routine measurements. Accordingly, plasma glucose measurements are infre-
quent and sporadic. At times, changes in the plasma glucose cannot be explained
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with the data available; this may be because either information is incomplete (e.g.,
if the patient was administered glucose that was not recorded) or measurements
are inaccurate (e.g., due to data-entry errors or measurement assay). However, this
dataset provides a realistic sample of the routine data available in a busy ICU where
a system, such as the one described here, could eventually be deployed for patient
monitoring and simulations of the effects of therapies. Data from patients with the
following characteristics was selected:

• Sepsis as a primary diagnosis
• Non-diabetic
• Not in receipt of steroids
• No major organ failure
• Only in receipt of parenteral nutrition.

The second dataset, a subset of which was first used in [31], was actively gathered
rather than being drawn from historical patient records. Once again the patients were
not on specific insulin therapy trials. Glucose measurements were taken hourly for a
12h period for 9 patients. Carewas taken to ensure the correct time stampwas entered
on all relevant data records. As the medical student taking the extra measurements
was only available for a short period of time, the patient selection criteria were
relaxed. The patient characteristics for this group were:

• Sepsis as a primary diagnosis
• Non-diabetic
• No major organ failure

Permission for extracting and gathering this data was given by the Galway
Research Ethics Committee, UHG. All records were anonymised and stored on
encrypted drives.

7.7.3.2 Results from Monitoring for an Individual Patient

For the purposes of this discussion, a reasonably stable patient (Patient 30) from the
first dataset is selected. Inference is performed using adaptive-time particle filtering.

As can be seen in Fig. 7.11, the observations for plasma glucose are intermittent;
the DBN therefore makes internal predictions of plasma glucose levels in between
observations. The accuracy of the predictions can be evaluated by comparing the
predicted value at the time of a measurement to the actual value, prior to the DBN
incorporating the actual value as evidence. It should be noted that the measurement
may not be perfectly accurate. For example, at approximately 34h the glucose mea-
surement jumps to over 200mg/dl despite the fact that there is no change in the
infusions. It is likely that this, and the drop to 130mg/dl at approximately 43h, are
both incorrect measurements.

In Fig. 7.11, the dark lines are the mean values inferred by the DBN at each
minute, and the lighter shaded areas show one standard deviation, to give a sense
of the uncertainty associated with each prediction. One can observe that the mean
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value often jumps when a new observation becomes available. There are factors
that are not captured in the model that influence plasma glucose levels. Because
of these, mean values predicted by the model can drift from reality in between
observations. When a new observation is available, the model tends to realign with
it. It is informative to consider how the standard deviations vary over time. Because
the DBN always assumes variability of values over time, and because observations
of plasma glucose levels are available only intermittently, as the time since the last
observation increases, the range of possible values increases, so the uncertainty of the
predictions also increases. Whenever an observation is provided, the DBN’s plasma
glucose prediction realigns to a value close to this, and its uncertainty collapses.

7.7.3.3 Comparison to ODEs with Parameter Re-Estimation

Van Herpe et al. re-estimate the model parameters by using an unconstrained non-
linear optimisation algorithm [52]. Attempts to apply that specific approach on our
dataset, which has less frequent evidence, were unsuccessful; the optimisation algo-
rithm frequently failed to converge. Therefore, a variant on the method is used [26]

Fig. 7.11 The top graph shows the prescribed insulin and glucose infusion rates. The lower graph
shows the measured glucose levels as boxes and the predicted mean plasma glucose level in blue
along with a shaded area showing the predicted standard deviation.
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Fig. 7.12 The glucose predictions from the DBN compared to an Euler approximation with an
optimisation algorithm for parameter re-estimation shown as dashed green line.

which allows bounds to be placed on the parameters to be re-estimated. As our glu-
cose measurements are less frequent, all measurements within the previous 24h are
used each time parameters are re-estimated. The dashed line in Fig. 7.12 shows the
trajectory for the ODEs with re-estimation.

It can be observed in Fig. 7.12 that the Euler approximation with the optimisation
algorithm performs rather poorly for patient 30. The set of parameters selected by the
algorithm do not allow the model to respond to the changes in the infusions. At 68h,
it predicts a glucose level of zero which is not realistic.

7.7.3.4 DBN Results for Twelve Patients

Figure7.13 and Table7.2 show a comparison of the average root mean squared error,
calculated using the difference between the actual glucosemeasurements and glucose
predictions, for twelve ICUpatients, chosen at random. In 10 out of 12 cases ourDBN
method out-performs the other method, very substantially so in some cases, such as
Patient 101, where the ODE solution gives an error of 48.57% but our DBN method
produces a much lower error of 12.28%. In the case of Patient 60, the optimisation
algorithm could not find appropriate parameters, whereas the DBN framework was
able to make predictions, albeit with a high RMSE of 37.05%. Hence the ODE result
for P60 is not plotted in Fig. 7.13.

It should be noted that while we are comparing the RMSE of predictions relative
to measured values, the measured values are not always perfectly accurate.

These results highlight the advantages of incorporating the ODE system in a
DBN framework. The DBN framework adjusts parameters as soon as it receives
the first piece of evidence, in contrast to methodologies that require a calibration
window containing a number of observations. The DBN reacts to both gradual and
sudden changes in model parameters as it tracks a range of possible trajectories.
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Table 7.2 Average RMSE
for 12 patients, comparing
results using a DBN with
adaptive-time steps and the
results from the Euler
approximation with
parameter re-estimation.

Patient RMSE

ICU-MM DBN ODE with Re-estimation

P23 11.42% 16.17%

P91 20.28% 41.18%

P30 17.00% 33.33%

P40 32.83% 45.49%

P61 15.03% 19.90%

P24 16.45% 29.60%

P64 7.43% 17.81%

P09 17.39% 20.40%

P01 24.54% 21.41%

P102 12.58% 19.19%

P101 12.28% 48.57%

P60 37.05% NaN

Average 18.69%

The framework accounts for data uncertainty and model uncertainty in a principled
manner.

By performing inference with the Adaptive-Time Particle Filter introduced in
Sect. 7.5, these benefits are gained much more efficiently.

While 60 1-minute time steps are required per patient per hour using the standard
fixed time steps approach, an average of 12 adaptive time steps per patient per hour
are executed by the adaptive algorithm. The average number of steps executed per

Fig. 7.13 Average RMSE for 12 patients, comparing results using a DBNwith adaptive-time steps
and the results from the Euler approximation with parameter re-estimation.
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Table 7.3 Average number of adaptive steps per hour for each patient compared to 60 fixed 1-
minute step: this shows that the new adaptive time step algorithm yields significant time savings.

Fixed steps P23 P91 P30 P40 P61 P09 P01 P64 P24 P101 P102 P60

60 12 14 11 12 13 13 11 17 10 9 12 14

patient per hour is shown in Table7.3. The fixed time step approach requires 5 times
the number of adaptive time steps. Using the adaptive time approach inference is per-
formedmuchmore efficiently without compromising the accuracy of the predictions.
In general, analysing data from sensor streams in real time imposes computational
constraints because data must be processed as they arrive, so time savings like this
can be important.

7.8 Conclusions

This chapter has discussed recent advances in representing background knowledge,
representing new data, and reasoning with both background knowledge and new
data, in order to enable real-time inference and decision making.

Much knowledge of human physiology is formalised as systems of differential
equations. In this chapter we have described recent work for making use of this
knowledge in a probabilistic framework (PRIM) that can be used to monitor patients
in real-time.

The PRIMmethodology is applied tomonitor critically ill patients plasma glucose
levels in response to insulin and glucose infusions. With the data available, which
is sporadic and may be inaccurate and incomplete, the framework out-performs a
previous approach demonstrating that the method is effective at re-estimating model
parameters and reasoning with sparse and potentially unreliable data.

PRIM adjusts parameters as soon as it receives the first piece of evidence, in
contrast to methodologies that require a calibration window containing a number of
observations. It reacts to both gradual and sudden changes in model parameters as
it tracks a range of possible trajectories. It accounts for data uncertainty and model
uncertainty in a principled manner.

The PRIM framework also includes a new particle filtering algorithm that uses
time steps that adapt according to the dynamics at each time step. In fact, each particle
follows its own adaptive-time scheme, leading to advantages in both efficiency and
accuracy. In fast-slow systems, there are periods where very small steps must be
used to capture rapidly changing dynamics, but large steps are more suitable during
periods of slow change.No one step size is optimal. In exampleswhere the underlying
ODE system is stiff and fixed step sizes are being used, they must be very small.
This quickly becomes very inefficient even when using solvers of orders higher than
one. Our adaptive-time particle filtering algorithm addresses these inefficiencies by
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allowing the time step size to adapt automatically. Another advantage in the adaptive
approach is that time steps are automatically aligned with the exact time stamp of the
evidence. In traditional fixed time step approaches, evidence must be approximated
to the nearest fixed step, introducing further uncertainty.

By combining the knowledge available in existing data streams with the expert
knowledge available in the form of differential equations and an efficient inference
method, we believe that this can provide a powerful foundation for reasoning with
uncertain and sparse data in the medical domain.
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Chapter 8
Personalised Medicine: Taking a New Look
at the Patient

Marco Scutari

Personalisedmedicine strives to identify the right treatment for the right patient at the
right time, integrating different types of biological and environmental information.
Such information come from a variety of sources: omics data (genomic, proteomic,
metabolomic, etc.), live molecular diagnostics, and other established diagnostics
routinely used bymedical doctors [6]. Integrating these different kinds of data, which
are all high-dimensional, presents significant challenges in knowledge representation
and subsequent reasoning [4, 18]. The ultimate goal of such a modelling effort is
to elucidate the flow of information that links genes, protein signalling and other
physiological responses to external stimuli such as environmental conditions or the
progress of a disease.

Omics data, which include single-nucleotide polymorphisms (SNPs), protein and
gene regulatory networks, are investigated using high-throughput platforms such as
the ones developed for the Human Genome project [2, 14]. Systems biology studies
the relationships among the elements in omics data as they change in the presence of
genetic and environmental perturbations, extending techniques that were previously
used on a smaller scale [13]. Such knowledge can improve our ability to understand
and predict the behaviour of complex biological systems, but requires careful han-
dling in integrating different sources. On its own, each type of data often contains too
much noise for single biological signals to be identifiable, much less their interplay.
Pooling the information available across omics data (e.g. sequencing and expres-
sion information about relevant genes, possibly under different treatment regimens)
provides an option to increase statistical power and produce reliable knowledge
representation models [10].

The role of live molecular diagnostics, and to some extent of traditional diagnos-
tics, is to complement omics data with longitudinal measures of the patient’s con-
dition that are easier and cheaper to collect. Several examples of the modelling and
implementation techniques involved are covered in the previous sections. Integrating
such diagnostics is essential because genetic information correlate only imperfectly
with protein levels [8], which in turn are very noisy predictors of most pathologies.

Applications of personalised medicine fall roughly in three groups. Firstly, drug
discovery and development can be made more efficient and effective [6]. On the
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one hand, omics data can provide feedback at early stages of drug discovery by
replacing the traditional trial-and-error approach with a hypothesis-driven one based
on a formal knowledge representation model. On the other hand, omics data can also
be used to improve clinical trial design by guiding patients selection and stratification
based on predicted drug toxicity and non-responders profiles. This is likely to prove
more effective than defining populations in terms of race or ethnicity, since only
5–10% of the total human genetic variance occurs between different ethnic groups
[1] and boundaries between different populations are often not clear.

Secondly, several aspects of the diagnostic process can be improved. For example,
the normal behaviour of a biological system can be better defined at the molecular
level than using non-specific clinical signs. As a result, pathologies can be classi-
fied with greater precision based on a molecular taxonomy [6]; previously unknown
differences have been highlighted in breast cancer [7] and leukaemia [17] in this
way. Furthermore, genetic tests need to be improved in their sensitivity and speci-
ficity; they are challenging to perform reliably and interpret correctly, and they focus
predominantly on rare diseases [9].

Thirdly, personalised medicine allows treatment for many diseases to be tailored
to each patient to an unprecedented degree. For example, adverse reactions to spe-
cific compounds can be predicted with greater accuracy, and non-responders can be
identified without actually starting a therapy that may or may not be effective.

To investigate and implement personalised medicine in practice, many challenges
need to be overcome at the modelling level; some of them will be covered in the
following chapter. First and foremost, a working knowledge representation model
must be established to facilitate reasoning on high-dimensional, heterogeneous data.
Currently, probabilistic graphical models (Bayesian networks in particular) seem
to be a popular approach [3, 5, 12]. Their ability to provide at the same time an
intuitive understanding of the data to biologists and medical doctors (through the
graph structure) and a rigorous probabilistic framework to statisticians and computer
scientists makes them an ideal tool for this task.

Moreover, specific distributional assumptions are required to accurately describe
both omics and diagnostics data effectively.Gaussian and discreteBayesian networks
from classic literature [16] present important limitations in modelling omics data,
as do more general models such as chain graphs. For instance, assuming normality
for gene expressions will almost certainly result in a biased model, because expres-
sion levels are usually highly skewed. Likewise, ignoring the ordering of the alleles
in SNP data disregards information which is known to be fundamental in quantita-
tive genetics. Ideally, probabilistic assumptions should also support the inclusion of
available prior information from different sources, as in Schadt et al. [15].

A related issue is the computational complexity of both model estimation and
subsequent inference, which poses severe limits to the use of flexible distributional
assumptions in Bayesian networks and to the scope of the questions these networks
can answer. The use of prior information can speed up model estimation by reducing
the set of themodels under consideration, even though it may introduce bias as well if
the phenomenon we are modelling is not well understood. Another possible solution
is to perform feature selection as a pre-processing step, thus speeding up inference
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as well. In the context of Bayesian networks, Markov blankets provide a natural way
to do so while retaining as much information as possible [11]. However, given the
complexity of the data used in personalised medicine, the cost of feature selection is
often as high as that of model estimation.

In conclusion, while there are many open problems to address, an effective use of
knowledge representation is crucial in implementing reliable personalised medicine
protocols. Omics and other established diagnostics provide a wealth of data, which
calls for appropriatemodelling spanning techniques from statistics, computer science
and quantitative biology.
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Chapter 9
Graphical Modelling in Genetics
and Systems Biology

Marco Scutari

Abstract Graphical modelling in its modern form was pioneered by Lauritzen and
Wermuth [43] and Pearl [56] in the 1980s, and has since found applications in fields
as diverse as bioinformatics [28], customer satisfaction surveys [37] and weather
forecasts [1]. Genetics and systems biology are unique among these fields in the
dimension of the data sets they study, which often contain several thousand variables
and only a few tens or hundreds of observations. This raises problems in both com-
putational complexity and the statistical significance of the resulting networks, col-
lectively known as the “curse of dimensionality”. Furthermore, the data themselves
are difficult to model correctly due to the limited understanding of the underlying
phenomena. In the following, we will illustrate how such challenges affect practical
graphical modelling and some possible solutions.

9.1 Background and Notation

Graphical models [39, 56] are a class of statistical models composed by a set X =
{X1, X2, . . . , X p} of random variables describing the quantities of interest and a
graph G = (V, E) in which each node or vertex v ∈ V is associated with one of
the random variables in X. The edges e ∈ E are used to express direct dependence
relationships among the variables inX. The set of these relationships is often referred
to as the dependence structure of the graph. Different classes of graphs express these
relationships with different semantics, which have in common the principle that
graphical separation of two vertices implies the conditional independence of the
corresponding random variables [56]. Examples most commonly found in literature
areMarkov networks [21, 72],which use undirected graphs; chain graphs [17],which
use partially directed graphs; and Bayesian networks [41, 53], which use directed
acyclic graphs.

In principle, there aremanypossible choices for the joint distribution ofX, depend-
ing on the nature of the data and the aims of the analysis. However, literature has
focused mostly on two cases: the discrete case [33, 72], in which both X and the
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Xi are multinomial random variables, and the continuous case [31, 72], in which
X is multivariate normal and the Xi are univariate normal random variables. In the
former, the parameters of interest are the conditional probabilities associated with
each variable, usually represented as conditional probability tables; in the latter, the
parameters of interest are the partial correlation coefficients between each variable
and its neighbours in G .

The estimation of the structure of G is called structure learning [21, 39], and
consists in finding the graph that encodes the conditional independencies present in
the data. Ideally it should coincide with the dependence structure of X, or it should
at least identify a distribution as close as possible to the correct one in the probability
space. Several algorithms have been presented in literature for this problem. Despite
differences in theoretical backgrounds and terminology, they can all be traced to three
approaches: constraint-based (which are based on conditional independence tests),
score-based (which are based on goodness-of-fit scores) and hybrid (which combine
the previous two approaches). For some examples, see Castelo and Roverato [11],
Friedman et al. [29], Larrañaga et al. [42] and Tsamardinos et al. [71]. All these
structure learning algorithms operate under a set of common assumptions:

• there must be a one-to-one correspondence between the nodes in the graph and
the random variables in X; this means in particular that there must not be multiple
nodes which are deterministic functions of a single variable;

• observations must be independent. If some form of temporal or spatial dependence
is present, it must be specifically accounted for in the definition of the network, as
in dynamic Bayesian networks [39];

• every combination of the possible values of the variables in X must represent a
valid, observable (even if really unlikely) event.

On the other hand, the structure of the network can also be specified from prior
knowledge of the phenomenon underlying the data; in this case the graphical model
implements an expert system [12, 16]. This is rarely done in practice, especially in
genetics and systems biology, because available information are typically scarce or
unreliable. It is far more common to use such information to inform the choices made
by a structure learning algorithm, thus making the best use of the data [51].

The structure of a graphical model has two important properties. The first is that it
defines the decomposition the probability distribution of X, called the global distri-
bution, into a set of local distributions. For practical reasons, each local distribution
should involve only a small number of variables when applying graphical modelling
to high dimensional problems. For Bayesian networks it is related to the chain rule
of probability [41]; it takes the form

P(X) =
p∏

i=1

P(Xi | �Xi ) (9.1)

so that each local distribution is associated with a single node Xi and depends only on
the joint distribution of its parents �Xi . This decomposition holds for any Bayesian
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network, regardless of its graph structure. InMarkov networks local distributions are
associated with the cliques C1, C2, . . ., Ck , the maximal subsets of nodes in which
each element is adjacent to all the others:

P(X) =
k∏

i=1

ψi (Ci ). (9.2)

The functions ψ1, ψ2, . . . , ψk are called Gibbs’ potentials [56], factor potentials
[12] or simply potentials, and are non-negative functions representing the relative
mass of probability of each clique. They are proper probability or density functions
only when the graph is decomposable or triangulated, that is, when it contains no
induced cycles other than triangles. In this case the global distribution factorises
again according to the chain rule and can be written as

P(X) =
∏k

i=1 P(Ci )
∏k

i=1 P(Si )
(9.3)

where Si are the nodes of Ci which are also part of any other clique up to Ci−1 [56].
The second important property is that the Markov blanket of each node can be

easily identified from the structure of the graph. For instance, in Bayesian networks
theMarkov blanket of a node Xi is the set consisting of the parents of Xi , the children
of Xi and all the other nodes sharing a child with Xi [56]. Since the Markov blanket
is defined as the set of nodes that makes the target node (i.e. Xi ) independent from
all the other nodes in X, it provides a theoretically-sound solution to the feature
selection problem [40].

9.2 Data and Models in Statistical Genetics and Systems
Biology

In genetics and systems biology, graphical models are employed to describe and
identify interdependencies among genes and gene products, with the eventual aim
to better understand the molecular mechanisms linking them. Data made commonly
available for this task by current technologies fall into three groups:

1. gene expression data [28, 65], which measure the intensity of the activity of
a particular gene through the presence of messenger RNA (mRNA, for protein-
coding genes) or other kinds of non-coding RNA (ncRNA, for non-coding genes);

2. protein signalling data [58], which measure the proteins produced as a result of
each gene’s activity;

3. sequence data [50], which provide the nucleotide sequence of each gene. For both
biological and computational reasons, such data contain mostly single-nucleotide
polymorphisms (SNPs) – genes which vary in only one nucleotide between indi-
viduals – having only two possible alleles, called biallelic SNPs.
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In the case of gene expression and protein signalling data (Sects. 9.2.1 and 9.2.2),
we are interested in grouping them into tempporal sequences determining somemole-
cular process (the functional pathways). Bayesian networks are naturally suited to
this task. If we assign each gene to one node in the network, edges represent the inter-
play between different genes. They can describe either direct interactions or indirect
influences that are mediated by unobserved genes. This is a crucial property because
it is impossible in practice to completely observe a complexmolecular process: either
we do not know all the genes involved or we may be unable to obtain reliable mea-
surements of all their expression levels. Furthermore, under appropriate conditions
[39, 55] edge directions may be indicative of the causal relationships in the underly-
ing pathways. In that case, the Bayesian network reflects the ordering of connections
between pathway components and the actual flow of the molecular process.

Similar considerations can be made when protein signalling data are used just
to identify protein-protein interactions, limiting ourselves to the study of the cell’s
physiology.

On the other hand, in sequence data analysis (Sect. 9.2.3) we are interested in
modelling the behaviour of one or more phenotypic traits (e.g. the presence of a
disease in humans, yield in plants, milk production in cows, etc.) by capturing direct
and indirect causal genetic effects. Unless some prior knowledge on the genetic
architecture of a trait is available, a large set of genes spread over the whole genome
is required for such effects to be detectable. If the focus is on identifying the genes that
are strongly associated with a trait, the analysis is called a genome-wide association
study (GWAS).

Applications of Bayesian networks to sequence data are more problematic than in
the previous cases; some care must be taken in their interpretation as causal models.
Edges linking genes to a trait can be considered direct associations. As was the case
for gene expression data, under appropriate conditions such associationsmay actually
be indicative of real causal effects. On the other hand, edges linking genes to other
genes arise from the genetic structure of the individuals in the sample. It is expected,
for example, that genes that are located near each other on a chromosome are more
likely to be inherited together during meiosis, and are therefore said to be genetically
linked [22]. Furthermore, even genes that are far apart in the genome can be in linkage
disequilibrium (LD) if some of their configurations occur more often or less often
than it would be expected from their marginal frequencies. Both these phenomena
induce associations between the genes, but not cause-effects relationships. From a
strictly causal point of view, a chain graph in which genes are linked by undirected
edges and the only directed edges are the ones incident on the traits provides a better
visual representation of the network structure.

9.2.1 Gene Expression Data

Gene expression data are typically composed of a set of intensities measuring the
abundance of several RNA patterns, each meant to probe a particular gene. These
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intensities are measured either radioactively or fluorescently, using labels that mark
the desired RNA patterns [20, 46, 48].

The measured abundances present several limitations. First of all, microarrays
measure abundances only in terms of relative probe intensities, not on an absolute
scale. As a result, comparing different studies or including them in a meta-analysis
is difficult in practice without the use of rank-based methods [8]. Furthermore, even
within a single study abundance measurements are systematically biased by batch
effects introduced by the instruments and the chemical reactions used in collecting
the data [61].

By their nature, gene expression data are modelled as continuous random vari-
ables and are investigated using Pearson’s correlation, either assuming a Gaussian
distribution or applying results from robust statistics [34, 69]. The simplest graphi-
cal models used for gene expression data are relevance networks [9], also known in
statistics as correlation graphs. Relevance networks are constructed by estimating
the correlation matrix of the genes and thresholding its elements, so that weak cor-
relations are set to zero. Finally, a graph is drawn in order to depict the remaining
strong correlations.

Covariance selection models [19], also known as concentration graphs or graph-
ical Gaussian models [72], consider conditional rather than marginal dependencies;
the presence of an edge is determined by the value of the corresponding partial cor-
relation. In the context of systems biology, the resulting graphs are often called gene
association networks, and are not trivial to estimate from high-dimensional genomic

Fig. 9.1 ABayesian network learned fromgene expression data andused as an example inFriedman
[24]. Grey nodes correspond to the regulators of the network, the genes controlling the expression
of the other (target) genes involved in a molecular process.



148 M. Scutari

data. Several solutions have been proposed in literature, based either on James-Stein
regularisation [59, 60] or on different penalised maximum likelihood approaches
[5, 23, 47].

Both gene relevance and gene association networks are undirected graphs. The
application of Bayesian networks to learn large-scale directed graphs from microar-
ray data was pioneered by Friedman et al. [30], and has also been reviewed more
recently in Friedman [24] (see Fig. 9.1). The high dimensionality of the model, com-
bined with low sample sizes, means that inference procedures are usually unable
to identify a single best Bayesian network, settling instead on a set of equally well
behavedmodels. For this reason, it is important to incorporate prior biological knowl-
edge into the network through the use of informative priors [51] and to produce
confidence scores in its graphical features [26, 35].

9.2.2 Protein Signalling Data

Protein signalling data are similar to gene expression data in many respects, and
in fact are often used to indirectly investigate the expression of a set of genes. In
general, the relationships between proteins are indicative of their physical location
within the cell and of the development over time of the molecular processes they are
involved in.

Akt

Erk

Mek

P38 PIP2

PIP3

pjnk

PKA

PKC plcg

Raf

Fig. 9.2 The Bayesian network learned from the protein-signalling data in Sachs et al. [58] using
model averaging and data from several experiments performed under different stimulatory and
inhibitory cues.



9 Graphical Modelling in Genetics and Systems Biology 149

From a modelling perspective, all the approaches covered in Sect. 9.2.1 can be
applied to protein signalling data with little or no change. However, it is important to
note that protein signalling data sometimes have sample sizes that are much larger
than either gene expression or sequence data; an example is the study from Sachs
et al. [58] on how to derive a causal Bayesian network from multi-parameter single-
cell data (Fig. 9.2).

9.2.3 Sequence Data

Sequence data are fundamentally different from both gene expression and protein
signalling data, for several reasons. First, sequence data provide direct access to the
genome’s information, without relying on indirect measurements. As a result, they
provide a closer view of the genetic layout of an organism than other approaches.
Second, sequence information is intrinsic to each individual, and does not vary over
time; therefore, the inability of static Bayesian networks to model feedback loops is
not a limitation in this case.

Furthermore, sequence data is naturally defined on a discrete rather than con-
tinuous domain. Each gene has a finite number of possible states, determined by
the number of combinations of nucleotides differing between the individuals in the
sample. In the case of biallelic SNPs, each SNP Xi differs at a single base-pair loca-
tion and has only three possible variants. They are determined by the (unordered)
combinations of the two nucleotides observed at that location, called the alleles, and
are often denoted as “AA”, “Aa”, “aa”. The “A” and “a” labels can be assigned to
the nucleotides in several ways; for instance, “A” can be chosen as either the most
common in the sample (which makes models easier to interpret) or by following
the alphabetical order of the nucleotides (which makes the labelling independent
from the sample). “AA” and “aa” individuals are said to be homozygotes, because
both nucleotides in the pair have the same allele; “Aa” individuals are said to be
heterozygotes.

From a graphical modelling perspective, modelling each SNP as a discrete vari-
able is the most convenient option; multinomial models have received much more
attention in literature than Gaussian or mixed ones. On the other hand, the standard
approach in genetics is to recode the alleles as numeric variables, e.g.

Xi =

⎧
⎪⎨

⎪⎩

1 if the SNP is “AA”

0 if the SNP is “Aa”

−1 if the SNP is “aa”

or Xi =

⎧
⎪⎨

⎪⎩

2 if the SNP is “AA”

1 if the SNP is “Aa”

0 if the SNP is “aa”

. (9.4)

In both cases, the recoded variables are typicallymodelled using an additiveBayesian
linear regression model of the form
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y = μ +
n∑

i=1

Xi gi + ε, gi ∼ πgi , ε ∼ N (0, �) (9.5)

where gi denotes the effect of gene Xi , y is the trait under study and μ is the pop-
ulation mean. The matrix � models the relatedness of the subjects, which is called
kinship in genetics, and populations structure [4]. In human genetics, it is often
assumed to be the identity matrix, which implies the assumptions that individuals
are unrelated. Several implementations of Eq.9.5 based on linear mixed models and
penalised regressions have been proposed, mostly within the framework of Bayesian
statistics. Some examples are the Genomic BLUP (GBLUP), BayesA and BayesB
from Meuwissen et al. [49], the Bayesian LASSO from Park and Casella [54] and
the BayesCπ from Habier et al. [18].

Graphical models, and Bayesian networks in particular, provide a systematic way
to categorise and extend such models. Consider the four different models shown in
Fig. 9.3. The classic additive model from Equation 9.5 is shown in the top-left panel;
SNPs are independent from each other and all contribute in explaining the behaviour
of the phenotypic trait. This is the case for BayesA and GBLUP. In the top-right
panel, some SNPs are identified as non-significant and excluded from the additive
model. Models of this kind include BayesB, BayesCπ and the Bayesian LASSO,
which perform feature selection in the context of model estimation.

Fig. 9.3 Different approaches to GWAS. On the top, classic additive Bayesian linear regression
models with and without feature selection. On the bottom, more complexmodels based on Bayesian
networks.
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A natural way to extend these models is to include interactions between the SNPs,
as shown in the two bottom panels. A recent study by Morota et al. [50] has shown
that assuming additive effects can only be justified on the grounds of computational
efficiency, because interactions between the SNPs are so complex that even pairwise
dependence measures are not able to capture them completely. On the other hand,
Bayesian networks provide a more accurate picture of these dependencies and are
more effective at capturing and displaying them. If the trait is discrete, Bayesian
network classifiers [25] such as the Tree-Augmented Naïve Bayes (TAN) can also
be used to implement GWAS models.

9.3 Challenges in Bayesian Network Modelling

Gene expression, protein signalling and sequence data are difficult to analyse in a
rigorous and effective way regardless of the model used, as they present significant
computational and statistical challenges. We review some of them in the follow-
ing, concentrating on those that affect the earliest stages of model specification.
Obviously, the quality of the models estimated from the data rests crucially on their
structure and estimation; and the accuracy of subsequent inference may vary sub-
stantially depending on how model specification relates to the phenomena under
investigation.

The combination of small sample sizes and large numbers of variables (n � p),
often called the “curse of dimensionality”, is perhaps the most evident problem
in model specification and algorithm implementation. This is especially true for
Bayesian networks, because both learning and inference are NP-hard [14, 15]. This
may rise some concerns about the amount of information present in the data and in
the computational complexity of model estimation (Sect. 9.3.1). The former can be
tackled by effective distributional assumptions (Sect. 9.3.2), and the latter by the use
of feature selection to reduce the dimensionality of the problem (Sect. 9.3.3).

9.3.1 Limits of the “n � P” Data Sets

The disparity between the available sample sizes and the number of genes or pro-
teins under investigation is probably the most important limiting factor in genetics
and systems biology. In a few cases, the underlying phenomenon is known to the
extent that only the relevant variables are included in the model (Sachs et al. [58]
is one such study). However, in general molecular processes are so complex that
statistical modelling is used more as a tool for exploratory analysis than to pro-
vide mechanistic explanations. In the former case, we have that n � p, and we
can use results from large-sample theory [44] and computationally-intensive tech-
niques [6, 10] in selecting and estimating our models. In the latter, the limits of the
model depend heavily on what knowledge is available on the phenomenon and on
our ability to incorporate it in the prior.
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Consider, following Bayes’ theorem, the posterior distribution of the parameters
in the model (say θ ) given the data

p(θ | X) ∝ p(X | θ) · p(θ) = L(θ; X) · p(θ) (9.6)

or, equivalently,

log p(θ | X) = c + log L(θ; X) + log p(θ). (9.7)

The log-likelihood, log L(θ; X), is a function of the data and therefore scales with
the sample size, while the prior density does not. For small sample sizes, there may
not be enough data available to disprove the assumptions encoded in the prior. As
a result, conclusions arising from model estimation and inference reflect our beliefs
on the phenomenon (as encoded in the prior) more than the reality of the observed
molecular processes. In this context, even the use of non-informative priors may
result in posteriors with undesirable properties [7].

In that regard, Bayesian networks present considerable advantages. First, they are
very flexible in specifying variable selection rates and interactions. In other words,
the prior makes fewer assumptions on the probabilistic structure of the data and is
therefore less likely to completely dominate the likelihood. Second, the effects of
the values assigned to the parameters of a non-informative prior are well understood
for both small and large samples [66, 67], and corrected posterior density functions
are available in closed form.

Another important consideration is the ease of estimating the model. Models
used in genetics and systems biology often require expensive Markov Chain Monte
Carlo simulations; two such examples are BayesA and BayesB. On the other hand,
many closed form results are available for both discrete and Gaussian Bayesian
networks. For networks up to 100 variables, exact structure learning algorithms
are available [38] and exact inference algorithms such as Variable Elimination and
Clique Trees [39] are feasible to use. For larger networks, efficient structure learning
heuristics such as the Semi-Interleaved Hiton-PC from Aliferis et al. [2, 3] and
approximate inference algorithms such as the Adaptive Importance Sampling for
BayesianNetworks (AIS-BN) fromCheng andDruzdel [13] are feasible up to several
thousand variables.

9.3.2 Discrete or Continuous Variables?

All the data types covered in Sect. 9.2 are often modelled using Gaussian Bayesian
networks, which represent the natural evolution of the linear regression models used
in literature. In the case of gene expression and protein signalling data, sometimes
[32, 58] the data are discretised into intervals and a discrete Bayesian network is used
instead. As for gene expression data, both Gaussian and discrete Bayesian networks
can be used depending on whether we use the numeric coding in Eq.9.4 or not.
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Clearly, both distributional assumptions present important limitations. Gaussian
Bayesian networks assume that the global distribution is multivariate normal. This
is unreasonable in the case of sequence data, which can only assume a finite, dis-
crete set of values. Gene expression and protein signalling data, while continuous,
are in general significantly skewed unless preprocessed with a Box-Cox transforma-
tion [73]. Furthermore, Gaussian Bayesian networks are only able to capture linear
dependencies, and have a low power in detecting non-linear ones. On the other hand,
using discrete Bayesian networks and assuming amultinomial distribution disregards
useful information present in the data and may result in models with a very large
number of parameters. If the ordering of the intervals (in discretised gene expres-
sion and protein signalling data) or of the alleles (in sequence data) is ignored, both
learning and subsequent inference are not aware that dependencies are likely to take
the form of stochastic trends. This is true, in particular, for sequence data, as the
effect of the heterozygous allele is necessarily comprised between the effect of the
two heterozygous alleles.

An approach that has the potential to outperform both discrete and Gaussian
assumptions has been recently proposed by Musella [52] with Bayesian networks
learned from ordinal data. Structure learning is performed with a constraint-based
approach (in particular, the PC algorithm from Sprites et al. [64]) using the
Jonckheere-Terpstra test for trend among ordered alternatives [36, 68]. Consider
a conditional independence test for X1 ⊥⊥ X3 | X2, where X1, X2 and X3 have T , L
and C levels respectively. The test statistic is defined as

J T =
L∑

k=1

T∑

i=2

i−1∑

j=1

[
C∑

s=1

wi jsknisk − ni+k(ni+k + 1)

2

]

(9.8)

where the wi jsk are Wilcoxon scores, defined as

wi jsk =
s−1∑

t=1

[

nitk + n jtk + nisk + n jsk + 1

2

]

, (9.9)

and has an asymptotic normal distribution with mean and variance defined in
Lehmann [45] and Pirie [57]. The null hypothesis is that of homogeneity; if we
denote with Fi,k(x3) the distribution function of X3 | X1 = i, X2 = k,

H0 : F1,k(x3) = F2,k(x3) = . . . = FT,k(x3) for ∀x3 and ∀k.

The alternative hypothesis H1 = H1,1 ∪ H1,2 is that of stochastic ordering, either
increasing

H1,1 : Fi,k(x3) � Fj,k(x3) with i < j for ∀x3 and ∀k

or decreasing
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Fig. 9.4 Three patterns of SNP effects on a phenotypic trait: linear association (left), a dominant
SNP (centre), a recessive SNP (right).

H1,2 : Fi,k(x3) � Fj,k(x3) with i < j for ∀x3 and ∀k.

The advantages of the Jonckheere-Terpstra test compared to linear association
can be illustrated, for example, by considering the different patterns of dominance
of a single SNP shown in Fig. 9.4. Due to the way SNPs are recoded as numeric
variables, assuming that dependence relationships are linear (left panel) forces the
effect of heterozygotes to be the mean of the effects of the respective homozygotes.
This is not always the case, as SNPs can be dominant (centre) or recessive (right) for a
trait, either singly or in groups [22]. Tests for linear association have very low power
against such nonlinear alternative hypotheses. On the other hand, the alternative
hypothesis of the Jonckheere-Terpstra test characterises correctly both dominant
and recessive SNPs. Furthermore, the Jonckheere-Terpstra test exhibits more power
than the independence tests used in discrete Bayesian networks because of the more
specific alternative hypothesis (e.g. stochastic ordering is just one particular case of
stochastic dependence).

9.3.3 Feature Selection as a Data Pre-Processing Step

It is not possible, nor expected, for all genes in modern, genome-wide data sets to be
relevant for the trait or themolecular process under study. In part, this is because of the
curse of dimensionality, but it is also because different genes may provide essentially
the same information due to linkage disequilibrium. Furthermore, the effects of some
genes on a trait may be mediated by other genes, thus making them redundant. For
this reason, in practice statistical models in systems biology and genetics require a
feature selection to be performed, either during the learning process or as a separate
data pre-processing step.

In the context of GWAS models, we aim to find the subset of genes S ⊂ X such
that

P(y | X) = P(y | S, X \ S) ≈ P(y | S), (9.10)
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that is, the subset of genes (S) that makes all other markers (X \ S) redundant as far
as the trait y we are studying is concerned. Markov blankets identify such a subset
in the framework of graphical models; several algorithms have been proposed in
literature for their learning [2, 70]. After the set S has been identified, we can either
fit one of the Bayesian linear regression models from Sect. 9.2.3 or learn a Bayesian
network from y and S. In both cases, the smaller number of variables included in the
model reduces the effects of the curse of dimensionality [63]. On the other hand, the
conditional independence tests used by Markov blanket learning algorithms do not
take kinship into account. Therefore, interpreting edges from S to y as direct causal
influences may lead to spurious results, even when the model shows good predictive
power [2].

As far as gene expression and protein signalling data are concerned, the problemof
feature selection is more complicated. In many cases, we are interested in a complex
molecular process, as opposed to a single trait. If we don’t know a priori at least
some of the genes involved in the molecular process, performing feature selection
as a data pre-processing step is impossible; we have to identify the pathways we are
interested in from the structure of the Bayesian network learned from X. At most
we can enforce sparsity in the network by using shrinkage tests [62] or non-uniform
structural priors [27].

Even if we know which genes are involved, using Markov blankets for feature
selection presents significant drawbacks. The Markov blanket of each gene must be
learned separately because almost all algorithms in literature accept only one target
node. If no information is shared between different runs of the learning algorithm, this
task is embarrassingly parallel but still computationally intensive. If, on the other
hand, we use backtracking and other optimisations to share information between
different runs, significant speed-ups are possible at the cost of an increased error rate
(i.e. false positives and false negatives among the nodes included in each Markov
blanket). In both cases, merging the Markov blankets of each gene into a single set
requires the use of symmetry corrections [2, 71] that violate the proofs of correctness
of the learning algorithms.

9.4 Conclusions

Data sets in genetics and systems biology often contain several thousand variables
and only a few tens or hundreds of observations. This raises problems in both compu-
tational complexity and the statistical significance of the resulting networks, which
are collectively known as the “curse of dimensionality”. Furthermore, the data them-
selves are difficult to model correctly due to the limited understanding of the under-
lying molecular mechanisms. Bayesian networks provide a very flexible framework
to model such data, extending, complementing or replacing classic models present
in literature. Their flexibility in incorporating prior knowledge, different parametric
assumptions and different dependence structures makes them a suitable choice for
the analysis of gene expression, protein signalling and sequence data.
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Chapter 10
Chain Graphs and Gene Networks

Dag Sonntag and Jose M. Peña

Abstract Chain graphs are graphs with possibly directed and undirected edges,
and no semidirected cycle. They have been extensively studied as a formalism to
represent probabilistic independence models, because they can model symmetric
and asymmetric relationships between random variables. This allows chain graphs
to represent a wider range of systems than Bayesian networks. This in turn allows
for a more correct representation of systems that may contain both causal and non-
causal relationships between its variables, like for example biological systems. In
this chapter we give an overview of how to use chain graphs and what research exists
on them today. We also give examples on how chain graphs can be used to model
advanced systems, that are not well understood, such as gene networks.

10.1 Introduction

In the previous chapter we saw how we could model advanced systems as Bayesian
networks (BNs) by representing the causal relations between the variables in the
system as directed edges. These models are widely used today but as noted in the
previous chapter they do have certain shortcomings. In this chapter we will discuss
one such shortcoming, namely the inability to model non-causal relations, and how
this can be solved usingmore expressive probabilistic graphicalmodel (PGM) classes
such as chain graphs (CGs).

When an expert is modelling a system it is often relatively easy to find causal
relations between the variables in the system and thereby model it as a BN. This
is especially true for well known systems where all relevant factors are included as
variables in the model. However, for more advanced systems some relations between
directly correlated variables might not have such a clear causal structure. This can be
formany reasons, such as that a hidden common cause exists between the variables or
that there exist selection bias between them. Modelling these relations with directed
edges is then incorrect from the perspective of interpretation and can cause incorrect
reasoning subsequently.
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CGs solve this problem by extending the ideas of BNs with an additional type
of edge representing non-causal relations between variables. Representing variables
as nodes, causal relations with directed edges and non-causal relations with non-
directed edges these models can therefore represent a larger set of models than BNs.
At the same time CGs keep key features of BNs such as their interpretability and
efficiency when it comes to inference and structure learning.

CGs are also interesting because they correctly can represent a much larger set
of independence models, and thereby probability distributions, than BNs, Markov
networks (MNs) or covariance graphs (covGs). BNs, MNs and covGs are the PGM
classes most commonly used today when modelling bioinformatics systems. This
means that for a probability distribution p there may be no BN G able to repre-
sent only and all independences in p when a CG F can. A BN can represent any
probability distribution, but only by including fewer independences, and thereby
additional dependences, than what actually exist in the underlying probability dis-
tribution. These spurious, additional, dependences can then later be “removed” by
the correct parametrization, but this is still problematic for several reasons. Firstly,
the advantage of using PGMs, such as the speed of inference, is larger the sparser
the graph is. By having more edges than necessary this advantage is lost. Secondly,
some of these edges might not make sense from a biological point of view. This is
problematic for practitioners trying to understand the system through its graph, since
the edges obscure the true (in)dependences between the variables.

A problem with CGs is however that there exists multiple types of non-causal
relations as described above. This means that depending on what kind of non-causal
relation we mean with the non-directed edge in our models we represent different
systems and thereby independence models. To distinguish the different meanings
of the non-directed edge we say that we have different CG interpretations, and
that the non-directed edge is interpreted differently in different CG interpreta-
tions. Today there exists mainly three CG interpretations in research. These are
the Lauritzen-Wermuth-Frydenberg (LWF) interpretation [7, 13], the Andersson-
Madigan-Perlman (AMP) interpretation [1] and the multivariate regression (MVR)
interpretation [3, 4].

One question that can be asked is how much more expressive CGs are compared
to BNs? If the advantage is small the additional complexity might not translate into
significantly bettermodels. It has however been shown that as the number of variables
increases CGs can express exponentiallymanymore independencemodels compared
to BNs. So for only 20 variables any CG interpretation can express approximate 1000
times more independence models, and thereby systems, compared to BNs [25, 26].
Hence for large domains with hundreds of variables the number of independence
models representable by BNs is incredibly small compared the number of indepen-
dencemodels representable by CGs. Therefore, CGs aremuchmore likely to provide
a realistic graph structure instead of obscuring the true relations in the system [25, 26].

In the rest of this chapter we will cover how these different CG interpretations
work and what systems they can represent. First, in the next section, we will however
describe the notationweuse. In Sect. 10.3we then describe the background andmean-
ing of the different CG interpretations, while in Sect. 10.4 we describe how such a CG
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can be learnt from a probability distribution. After a short conclusion and summary
in Sect. 10.5, we provide an alternative illustration of CGs as systems of linear equa-
tions in the Appendix. For simplicity we limit our discussion to continuous variables
but most results can also be generalised to systems with discrete or mixed variables.

10.2 Background and Notation

In this section,we review some concepts fromPGMs that are used later in this chapter.
All graphs and probability distributions are defined over a finite set of variables V
represented as nodes in the graphs.

If a graph G contains an edge between two nodes V1 and V2, we denote with
V1 → V2 a directed edge, with V1 ←→ V2 a bidirected edge (sometimes also called
a dashed edge) , and with V1 − V2 an undirected edge. With a non-directed edge
we mean either a bidirected edge or undirected edge. A set of nodes is said to be
complete if there exists edges between all pairs of nodes in the set. A complete set
of nodes is said to be a clique if there exists no superset of it that is complete.

The parents of a set of nodes X of G is the set paG(X) = {V1|V1 → V2 is in G,
V1 /∈ X and V2 ∈ X}. The children of X is the set chG(X) = {V1|V2 → V1 is in
G, V1 /∈ X and V2 ∈ X}. The spouses of X is the set spG(X) = {V1|V1 ←→ V2 is
in G, V1 /∈ X and V2 ∈ X}. The neighbours of X is the set nbG(X) = {V1|V1 − V2

is in G, V1 /∈ X and V2 ∈ X}. The boundary of X is the set bdG(X) = paG(X) ∪
nbG(X)∪ spG(X). The adjacents of X is the set adG(X) = {V1|V1 → V2,V1 ← V2,
V1 ←→ V2 or V1 − V2 is in G, V1 /∈ X and V2 ∈ X}.

To exemplify these concepts we can study the graph G with five nodes shown
in Fig. 10.1a. In the graph we can see two bidirected edges, one between B and D
and one between D and E . Hence we know the spouses of D are B and E . G also
contains two directed edges from A to B and from B to E and we can see that E is the
only child of B and B is the only child of A. Finally G also contains one undirected
edge between C and D and hence C is a neighbour of D. All and all this means that
the boundary of B is A and D while the adjacents of B also contains E in addition
to A and D.

A route from a node V1 to a node Vn in G is a sequence of nodes V1, . . . , Vn such
that Vi ∈ adG(Vi+1) for all 1 ≤ i < n. A path is a route containing only distinct
nodes. The length of a path is the number of edges in the path. A path is called a
cycle if Vn = V1. A path is descending if Vi ∈ paG(Vi+1) ∪ spG(Vi+1) ∪ nbG(Vi+1)

for all 1 ≤ i < n. The descendants of a set of nodes X of G is the set deG(X) = {Vn|
there is a descending path from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. A path is
strictly descending if Vi ∈ paG(Vi+1) for all 1 ≤ i < n. The strict descendants of
a set of nodes X of G is the set sdeG(X) = {Vn| there is a strictly descending path
from V1 to Vn in G, V1 ∈ X and Vn /∈ X}. The ancestors (resp. strict ancestors)
of X is the set anG(X) = {V1|Vn ∈ deG(V1), V1 /∈ X, Vn ∈ X} (resp. sanG(X) =
{V1|Vn ∈ sdeG(V1), V1 /∈ X, Vn ∈ X}). Note that the definition for strict descendants
given here coincides to the definition of descendants given by Richardson [21].
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Fig. 10.1 Three different graphs

A cycle is called a semi-directed cycle if it is descending and Vi → Vi+1 is in G for
some 1 ≤ i < n.

To exemplify these concepts we can once again look at the graph G in Fig. 10.1a.
We can here see two paths between B and C , B ←→ D − C and B → E←→D − C ,
and that the latter of these is descending while the former is not. An example of a
route between B and C that is not a path is B ←→ D ←→ E ← B ←→ D − C .
We can see that G contains one cycle B ←→ D ←→ E ← B that is semi-directed.
Moreover we can see that E is a strict descendant of A due to the strictly descending
path A → B → E , while D is not. D is however in the descendants of A together
with B, C and E . A is therefore an ancestor of all variables except itself.

A Markov network (MN) (resp. covariance graph (covG)) contains only undi-
rected (resp. bidirected) edges while a BN only contains directed edges and no
semi-directed cycles. A CG under the Lauritzen-Wermuth-Frydenberg (LWF) inter-
pretation, denoted LWF CG, contains only directed and undirected edges but no
semi-directed cycles. Likewise a CG under the Andersson-Madigan-Perlman (AMP)
interpretation, denoted AMP CG, is a graph containing only directed and undirected
edges but no semi-directed cycles. A CG under the multivariate regression (MVR)
interpretation, denoted MVR CG, is a graph containing only directed and bidirected
edges but no semi-directed cycles. A chain component C of a LWF CG or an AMP
CG (resp. MVR CG) is a maximal set of nodes such that there exists a path between
every pair of nodes in C containing only undirected edges (resp. bidirected edges).
A subgraph of G is a subset of nodes and edges in G. A subgraph of G induced by
a set of its nodes X is the graph over X that has all and only the edges in G whose
both ends are in X .

If we go back to our example in Fig. 10.1 we can see that the graph in Fig. 10.1b
is a subgraph of G over the variables B, D and E while the graph in Fig. 10.1c
is a subgraph induced by the same variables. We can also see that G is not a CG
of any of the interpretations since it contains a semi-directed cycle. An example of
a LWF CG or an AMP CG is instead shown in Fig. 10.2a while an example of a
MVR CG is shown in Fig. 10.2b. We can here see that H contains three connectivity
components {A}, {B} and {C, D} and that F contains two connectivity components
{A} and {B, C, D}.

Let X , Y and Z denote three disjoint subsets of V . We say that X is conditionally
independent from Y given Z if the value of X does not influence the value of Y when
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Fig. 10.2 Two different CGs

the values of the variables in Z are known, i.e. p(X, Y |Z) = p(X |Z)p(Y |Z) holds
and p(Z) > 0. We denote this by X⊥pY |Z if it holds in a probability distribution p
while we with X �⊥pY |Z mean that it does not hold in p. Moreover we say that X is
separated from Y given Z in a graph G if the separation criterion of G represents that
X is conditionally independent of Y given Z . We denote the this by X⊥GY |Z and
we will discuss different separation criteria for CGs later in this chapter. Similarly
we denote with X �⊥GY |Z that the separation criterion of G does not represent the
conditional independence. A probability distribution p is said to fulfill the global
Markov property with respect to a graph G, if for any X⊥GY |Z , given the separation
criterion for the PGM class to which G belongs, X⊥pY |Z holds. The independence
model M induced by a probability distribution p (resp. a graph G), denoted as I (p)

(resp. I (G)), is the set of statements X⊥pY |Z (resp. X⊥GY |Z ) that holds in p (resp.
G). Given two independence models M and N , we say that N includes M (M ⊆ N ),
iff X⊥M Y |Z implies that X⊥N Y |Z for every X , Y and Z .

We say that a probability distribution p is faithful to a graph G when X⊥pY |Z iff
X⊥GY |Z for all X , Y and Z . We say that two graphs G and H are Markov equivalent
or that they are in the same Markov equivalence class iff I (G) = I (H). A graph
G is inclusion optimal for a probability distribution p if I (G) ⊆ I (p) and if there
exists no other graph H in the PGM class of G such that I (G) ⊂ I (H) ⊆ I (p).

To illustrate the last concepts we can look at theMVRCG J and the independence
models in Fig. 10.3. In Fig. 10.3b we can see the independences that hold in J and
hence the independence model of J . Finally we can also see another independence
model in Fig. 10.3c such that I (J ) ⊆ M and hence that M includes the independence
model represented by J .

10.3 CG Interpretations

TheresearchonCGsstarted in the late1980swith theLauritzen-Wermuth-Frydenberg
(LWF) interpretation in order to combineBNs andMNs intomore expressivemodels.
Subsequently, the Andersson-Madigan-Perlman (AMP) interpretation and the multi-
variate regression (MVR) interpretation, both in commonuse in recent literature,were
proposed.Each interpretation isbasedonadifferent separationcriterionandadifferent
interpretation of the edges. No interpretation subsumes another [5, 23], and no inter-
pretation is generally better than any other. LWF, AMP and MVR interpretations are
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Fig. 10.3 Example of independence models

just different fromeach other, similarly asBNs andMNs are different fromeach other,
and are suited to different problems. We will in this chapter present each interpreta-
tion in three different ways. First in the classical sense, i.e. in terms of their separation
criteria as inDrton [5], secondly in terms of systems of linear equations and thirdwith
someintuitivemeaningbehind theedges in theCGs.Finallywewillalsogiveexamples
of how they can be used. Moreover, in the next section we will discuss how to decide
which interpretation to use whenmodelling a systemwith CGs.

First we will however see how BNs are presented in these three ways. For BNs
the separation criterion is as follows. Given three disjoint sets of nodes X , Y and Z
in a BN G, X⊥GY |Z iff there exists no path between X and Y such that:

1. every non-collider on the path is not in Z and
2. every collider on the path is in Z or sanG(Z).

A node B is said to be a collider between two nodes A andC on a path if the following
configuration exists in the path: A → B ← C . For any other configuration the node
B is a non-collider on the path. In addition, the interpretation in terms of a system
of linear equations is as follows. The probability distribution of every node in a
BN depends only on its parents. This means that every node Xi is modelled by the
equation Xi = βi ∗ paG(Xi )+ εi in the associated system of linear equations, where
βi is a weight vector measuring the influence of the individual parents and the noise
εi ∼ N (0, σi ) is independent of any other node’s noise. The intuitive meaning is
simply that the parent nodes are the cause of the children nodes.

For CGs the different interpretations have different separation criteria. As noted
in the introduction, the feature all CGs share is that they contain subgraphs, called
chain components, that are connected to each other by directed edges. Within each
chain component the type of edges varies depending on the interpretation: LWF CGs
and AMP CGs contain undirected edges while MVR CGs contain bidirected edges.
Even though the intuitive meaning of a CG is not as simple as for a BN, there are
similarities between the two PGM classes. For example, the separation statements
encoded by a CG correspond to the non-existence of routes with certain features, as
in BNs. Moreover, in terms of linear equations each component of a CG can be seen
as a supernode, with the corresponding probability distribution determined only by
its parents. If we let Ki be the component i in a CG G, then G has an associated
system of linear equations with normally distributed errors as follows:

Ki = βi paG(Ki ) + εi where εi ∼ N (0,Λi ).
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Fig. 10.4 An example CG G and some corresponding separations according to the LWF and AMP
interpretations.

εi represents the noise, or influence, between the nodes in the same component. How
this noise and the βi -vector are modelled varies between the different interpretations,
and gives them different intuitive meanings.

10.3.1 The LWF Interpretation

The LWF interpretation was introduced by Lauritzen, Wermuth and Frydenberg in
1989 [7, 13] and is the most well researched CG interpretation. As noted above,
LWF CGs contain components that are connected to each other by directed edges.
The separation criterion is the following. Given three disjoint subsets of nodes X , Y
and Z in a LWF CG G, X⊥GY |Z iff there exists no route between X and Y such
that:

1. every node in a non-collider section on the route is not in Z and
2. some node in every collider section on the route is in Z .

A section of a route is a maximal non-empty set of nodes B1...Bn such that the route
contains the subroute B1 − B2 − . . . − Bn . It is called a collider section if B1 . . . Bn

together with the two neighbouring nodes in the route, A and C (note that A and C
might be the same node), form the subroute A → B1 − B2 − . . . − Bn ← C in the
route. For any other configuration the section is a non-collider section.

A simple example of a CG is shown in Fig. 10.4a. Here the CG has four chain
components: A, B, {C, D, E} and F . If the graph is interpreted as a LWF CG the
separations and non-separations shown in Fig. 10.4b hold. Note that these are not all
the separations that hold in G.

When reasoning in terms of linear equations, the parents of a component can be
interpreted as the causes of the nodes in that component, and directed edges have
the same meaning as in a BN. So the linear equation of a node X j in a LWF CG is
X j = β j paG(Ki ) + ε j where Ki is the component to which X j . As shown in the
Appendix, the k-th element of β j can be interpreted as the sum of the weights of
all the paths in G between the parent Xk of Ki and the node X j of Ki such that the
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nodes in these paths are all in Xk ∪ Ki , and where the path weight itself is the product
of the weight of its edges. The noise ε j is then determined by the associated inverse
covariance matrix of that component. Furthermore, the corresponding entry in the
inverse covariance matrix for two nodes X j and Xm can be non-zero iff there exists
an undirected edge X j − Xm in G (see the Appendix for details). For example, we
can see from Fig. 10.4a that the influence from node B onto node D is direct since
there only exists one path between them. However, the influence from node A onto
node E is determined by the path A → C − E as well as A → D − C − E (see the
Appendix for details).

This characterisation of the influence of a parent of Ki means that parents influence
all the nodes in Ki , as influence propagates to all of Ki through its undirected edges.
We can see, for example, that in the second example above the influence from A onto
E is the same as A onto C except for the last path between C and E . This makes
LWF CGs similar to module networks, another PGM class that has shown promising
results for gene networks [22]. In module networks every node in a module, which
is similar to a component, has the same parents and parameters. In a LWF CG, every
node in the same component have the same parents when the LWF CG is seen as a
system of linear equations. However, the influence of the parents on a node depends
on the paths between them and, thus, it may be different for different nodes in the
component.

An example of a situation when LWF CGs are useful is when we want to model a
systemwith knowledge obtained from several experts, eachwith his or her own exclu-
sive field of competence. Each expert then gives information about the structural rela-
tionships between the variables within his or her domain given outside factors that
affect the variables in his or her domain of expertise. The expert does this by provid-
ing a MN over the variables in the domain and their outside factors. Moreover, since
the expert only knows about his or her domain and not how the outside factors are
related, he or she must assume that all outside factors are adjacent when creating the
MN. The subgraph of theMN induced by the variables in the experts domain can then
be seen as a component in a resulting LWF CG while the outside factors are added
as parents to their previous neighbours in the component. The internal structure of the
outside factorswill be defined by someother expert, who is expert over that domain. If
a strict causal ordering is kept between the variables, putting the different chain com-
ponents together into a single graph then results in LWFCG [28]. An example of this
inmedicine can be ifwehave three experts, one expertmodelling the probability that a
person have certain gene-expressions in his or herDNA, one thatmodels the probabil-
ity of different protein signalling data occurring in blood samples given these gene-
expressions and one that models the occurrence of different traits, such as diseases,
given the gene-expressions.

Other settings in which LWFCGs are appropriate is for modelling the equilibrium
state of a system containing feedback loops [12] or when variables of a system only
can bemeasured in an aggregated state [6]. It can also be noted that if a LWFCG only
contains directed edges it can be read as a BN while if it only contains undirected
edges it can be read as a MN.
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10.3.2 The AMP Interpretation

The AMP CG interpretation was introduced by Andersson, Madigan and Perlman
[1] as an alternative to the LWF interpretation because it preserves the recursive
characteristics of BNs. Similarly to LWF CGs, AMP CGs also contain components
connected to each other by directed edges, whereas each component internally only
contains undirected edges. As a result, an AMP CG containing only directed edges
can be read as a BN and an AMPCG containing only undirected edges can be read as
aMN similarly as a LWFCG.However, the separation criterion is different compared
to LWF CGs. Given three disjoint subsets of nodes X , Y and Z in an AMP CG G,
X⊥GY |Z iff there exists no route between X and Y such that:

1. every non-collider on the route is not in Z and
2. every collider on the route is in Z or sanG(Z).

A node B is said to be a collider in an AMP CG G between two nodes A and C on a
route if one of the following configurations exists in G: A → B ← C , A → B − C
or A − B ← C . For any other configuration the node B is a non-collider. In the case
of the CG shown in Fig. 10.4a, we can see that the separations and non-separations
in Fig. 10.4c hold if we interpret it as an AMP CG. Note that these are not all the
separations and non-separations that hold in G.

The modelling of the noise also differs from LWF CGs. In the Appendix it is
shown that the associated linear equation of a node X j in an AMP CG G is X j =
β j paG(X j ) + ε j . The node depends only on its parents and not on the parents of the
whole component, as it does in the case of LWF CGs. The noise ε j is then controlled
by the inverse covariance matrix of that component. Furthermore, the corresponding
entry in the inverse covariance matrix for two nodes X j and Xk can be non-zero iff
there exists an undirected edge X j − Xk in G (see the Appendix for details). Intu-
itively, a small set of nodes works as an interface between other nodes in the com-
ponent and its parents. For example, we can see that C and D in Fig. 10.4a block the
influence from the parents A and B onto E if the graph is interpreted as an AMP CG.

AMP CGs are useful when we have a set of variables for which the internal
relations has no causal ordering, so the relations should be modelled as a MN, but
also a second set of variables which can be seen as causes for some of these variables
in the first set. The internal structure of the first set of variables can then be modelled
as a MN, creating a chain component in an AMP CG, and the causes as parents of
some of the variables in the chain component. Note that for AMP CGs the parents
only affects the direct children in the chain component, not all the nodes in the chain
component such as in the case of LWF CGs. An example in medicine when such a
modelmight be appropriate iswhenwe aremodelling pain levels on different areas on
the body of a patient. The pain levels can then be seen as correlated “geographically”
over the body, and hence be modelled as a MN. Certain other factors do however
exist that alters the pain levels locally at some of these areas, such as the type of body
part the area is located on or if local anaesthetic has been administered in that area
and so on. These outside factors can then be modelled as parents affecting the pain
levels locally.
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While both LWF CGs and AMP CGs consist of MNs as chain components they
differ in the way the parents of the component affect the variables in the component.
In a LWF CG each parent affects all the variables in the component, i.e. the informa-
tion travels through the children, while in an AMP CG the parents only affects the
actual children, i.e. the information does not travel to the other variables in the chain
component. Hence when we have a system for which some parts best are modelled
as MNs and some parts as BNs we can use either a LWF CG or AMP CG, depending
on which type fits the independence model of the system best.

10.3.3 The MVR Interpretation

MVR CGs were originally introduced by Cox and Wermuth [3, 4], and are equiva-
lent to the acyclic directed mixed graphs without semi-directed cycles presented by
Richardson [21]. Cox and Wermuth represented these graphs using directed edges
and dashed edges, but we followRichardson [21] as we feel that the notation is closer
to that of BNs when it comes to the separation criterion.

The most important difference between the MVR CGs compared to AMP CGs
and LWFCGs is thatMVRCG components contains bidirected instead of undirected
edges. As a result, MVR CGs is a superclass of BNs and covGs instead of BNs and
MNs as in the case of AMP and LWF CGs [4]. MVR CGs also have the following
separation criterion: Given three disjoint subsets of nodes X , Y and Z in a MVR CG
G, X⊥GY |Z iff there exists no path between X and Y such that:

1. every non-collider on the path is not in Z and
2. every collider on the path is in Z or sanG(Z).

A node B is said to be a collider in a MVR CG G between two nodes A and C
on a path iff one of the following configurations exists in the path: A → B ← C ,
A → B ←→ C , A ←→ B ← C or A ←→ B ←→ C . For any other configuration the
node B is said to be a non-collider. An example of aMVRCG is shown in Fig. 10.5c,
with some of the corresponding separations and non-separations in Fig. 10.5b.

The associated system of linear equations is similar to that of the AMP CGs: each
node depends only on its parents and not on the parents of the whole component.

Fig. 10.5 A MVR CG and
some corresponding
separations.
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Fig. 10.6 A gene and disease example with MVR CG representation, BN representation and MN
representation

The associated linear equation for a node X j can therefore be written as X j =
β j pa(X j ) + ε j , where ε j is dependent on the other nodes in the same component.
Unlike AMP CGs, MVR CGs can contain non-zero values in the corresponding
covariance matrix (not the inverse covariance matrix as for AMP CGs) only for
nodes that are spouses (see the Appendix for details). The intuitive meaning behind
the MVR CGs is therefore very close to that of AMP CGs, differing only in the noise
modelling.

A typical situation that gives rise to a MVR CG is in the presence of hidden
variables, i.e. unobserved variables that are parents of at least two observed variables
in the data. An example of a situation for which a MVR CG is useful is if we have
a system containing two genes and two diseases caused by these such that Gene1
is the cause of Disease1 and Gene2 is the cause of Disease2 but where we also can
see that the diseases are correlated. In this case we might suspect the presence of an
unknown factor inducing the correlation between Disease1 and Disease2, such as
being exposed to a stressful environment. Having such a hidden variable results in the
independencemodel described in the information above.We can nowchoosewhether
we would like to model this hidden variable in our model, but due to difficulties of
measurement let us assume we do not. The MVR CG representing the information
above is shown in Fig. 10.6a while the inclusion optimal BNs and MN are shown in
Fig. 10.6b and 10.6c, respectively. We can now see that it is only the MVR CG that
describes the relations in the system correctly.

10.4 CG Learning

As is the case with BNs, the graph structure of a CG can be learnt either from expert
knowledge on the system or from data. The process of creating a CG from expert
knowledge is very similar to that of a BN but where the non-directed edges can
be used to model the variable correlations described in the previous section. An
example of this process is given in Subsect. 10.4.1. In Subsects. 10.4.2 and 10.4.3 we
then cover the structure learning algorithms that exist today that allow a CG to be
learnt from a probability distribution p. First in the special case where we assume p
is faithful to some CG and then the more general case where we do not. Finally, in
Subsect. 10.4.4, we also discuss the current research on how CGs can be factorized
and how the parameters can be learnt.
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10.4.1 Learning CGs by Expert Knowledge

The process of creating a CG from expert knowledge of a domain is very similar
to that of creating a BN from expert knowledge. Some important parts do however
differ, such as choosing which CG interpretation to use. In this subsection we will
therefore give an example of how this process can be performed.

The example we will be using was introduced by Lappenschaar et al. [10] and
concerns the interaction between two diseases, diabetes mellitus and lipid disorder,
along with typical blood measurements, two risk factors and a possible treatment.
The blood measurements we are considering are elevated blood cholesterol levels
and elevated blood glucose levels while the risk factors are familial hypercholes-
terolaemia and obesity and the possible treatment antidiabetic therapy. In this case
we know that familial hypercholesterolaemia increases the chance for lipid disorder
and that lipid disorder in turn causes the blood cholesterol levels to be elevated.
Similarly we know that antidiabetic therapy decreases the chance of having diabetes
mellitus while having diabetes mellitus increases the blood glucose levels. Obesity
is also known to cause both lipid disorder and diabetes mellitus. These are all causal
relations and hence can be represented as directed edges in our CG. Finally we also
know that there exists a correlation between diabetes mellitus and lipid disorder that
cannot be explained only by the common parent obesity. I.e. if a person has diabetes
mellitus he or she is more likely to also have lipid disorder than another person that
does not have diabetes mellitus, even if they have the same level obesity. This corre-
lation is not causal since it would be wrong to say that diabetes mellitus causes lipid
disorder or vice versa and hence we represent the correlation with a non-directed
edge. The resulting CG can be seen in Fig. 10.7.

As noted above the process so far corresponds well to that of BNs. The difficulty
now is to choose which interpretation to use and thereafter to check that the CG can
represent the dependences that exist in the system according to our expert knowledge.
In some cases this might be easy and we might identify the non-causal correlation
as a relation typically represented by a certain CG interpretation. This can for exam-
ple be if we know that there exists some hidden common cause between variables
that has non-directed edges between them (MVR CG) or if these relations are better
described as feedback relations (LWF CG). In many cases we might however not
have this information and we are then left to study the represented independence
model. The first thing one can consider is whether or not information should “flow”
through from parents of a component to all nodes in the component. In our case this
would for example be whether familial hypercholesterolaemia increases the proba-
bility of having diabetes mellitus, given that no other information is known. If this is
the case, then we know that the LWF CG interpretation is the only CG interpretation
representing this dependency. If it is not the case, then we will have to consider
both AMP and MVR CGs. To see the difference between these interpretations we
need three nodes X, Y and Z in the same component such that X is adjacent of Y
and Y is adjacent of Z while X and Z are non-adjacent. Then, if X⊥Z |pa(X), we
know that the relation is best represented by a MVR CG, while if X �⊥Z |pa(X), it
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Fig. 10.7 TheCGcorresponding to the lipid disorder-diabetesmellitus examplewith a non-directed
edge between lipid disorder and diabetes mellitus

is best represented by an AMP CG. Finding the best interpretation becomes even
more problematic if multiple types of non-causal relations have been included in the
model, corresponding to different CG interpretations. In such a case one either has
to choose the interpretation that fits most of the relations or choose an even more
general PGM class than CGs. In our example we can note that familial hypercholes-
terolaemia does in fact increase the probability of having diabetes mellitus, given no
other information, and hence we want to use the LWF CG interpretation. This also
corresponds well with the authors choice, even though their choice is based on that
lipid disorder and diabetes mellitus have a feedback relation between them and that
the diseases almost always are in some kind of equilibrium [10].

Once a CG interpretation have been chosen it is also important to make sure
that the model can represent all desired (conditional) dependences. If a (conditional)
dependency is not represented an extra edge will have to be added. This is of course
undesirable since it obscures the “true” relations in the system but as always in
PGM modelling we want a model accurately representing all dependences in the
underlying system while still representing as many independences as possible. This
last step is especially important if the non-causal relationmodelled does not perfectly
correspond to a CG interpretation or if multiple types of non-causal relations exist
in the modelled system.

10.4.2 Learning CGs Under the Faithfulness Assumption

All structure learning algorithms that exist for CGs today are constraint based and
assume that the data comes in the form of a probability distribution p. Such a dis-
tribution can for example be found through a set of samples of the system. In this
subsectionwewill cover the casewherewe assume that p is faithful to someCGwhile
we in the next subsection relax that assumption.We say that a probability distribution
p is faithful to some CG G iff G have the same separations and non-separations as
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independences and dependences in p, i.e. that G can perfectly represent the inde-
pendence model of p. This means that a probability distribution p that is faithful to
some LWF CG G not necessarily is faithful to some AMP CG H , and hence that
faithfulness is dependent on the PGM class we have in mind [23].

It is important to stress that this is a strong assumption. However, faithfulness
allows for very fast and efficient algorithms since the reasoning in the algorithms
can be made in the space of all CG models, instead of in the much larger space of all
independence models. Today there exist structure learning algorithms for all three
interpretations under the faithfulness assumption. Three of these are based on the PC
algorithm [15, 27] used for BNs and contain three phases. In the first phase they learn
the adjacencies of the CG; in the second they orient some of the edges according to
simple rules; and in the third the remaining edges are oriented to avoid semi-directed
cycles. This allows for an efficient way of learning the structure where no step has
to be backtracked. For a comprehensive treatment of these algorithms we refer the
reader to Studený’s work [29] for LWF CGs, Peña’s work for AMP CGs [19] and
Sonntag and Peña’s work [24] for MVR CGs. Finally there also exists a second,
decomposition-based algorithm for learning LWF CGs developed by Ma et al. that
has been shown to be of lower complexity than thePCvariant algorithm [14]. It should
be noted that since all structure learning algorithms are constraint based they will
only find a CGwith the correct independence model. Finding the CGwith the correct
causal explanation requires additional expert knowledge or experiments. However,
having a CG with the correct independence model allows us find all possible causal
explanations and their corresponding CGs.

10.4.3 Weakening the Faithfulness Assumption

It has been argued that it is unlikely that a randomly generated probability distribution
that factorizes according to a BN is unfaithful to the BN [16]. While this is true if
every parameter in a BN is generated randomly, the argument may not hold if the
parameters have been hand picked (e.g. by a designer or by nature through evolution).
Needless to say these are the systems we are mostly interested in modelling.

If onewould apply the learning algorithms described in the previous subsection on
a probability distribution that is not faithful to a CG of the appropriate interpretation
it can no longer be guaranteed that the learnt CG can factorize the probability distri-
bution properly. This means that the learnt CG might represent independences that
do not exist in the underlying system which the probability distribution represents.
Hence there might exist relations between variables in the underlying system that are
not represented in the CG model. Moreover this means that no matter how the CG
is parametrized it can never represent the original probability distribution perfectly.
This is of course a problem since we would like to learn an inclusion optimal CG, i.e.
a CG that can factorize the probability distribution, but contains as many separations
as possible [20].
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Unfortunately, learning a CG without assuming faithfulness is very complex and
computationally demanding. The only algorithm for this task in the current literature
is the CKES algorithm for LWF CGs presented by Peña et al. [20], which is based
on a similar algorithm for BNs called KES [17]. The algorithm works by iteratively
adding (resp. removing) separations between variables in theCG that are independent
(resp. dependent) in the probability distribution given their boundary in the CG of
that iteration. This is performed by removing (resp. adding) the appropriate edges
in the CG. Moreover, to ensure that an inclusion optimal CG is reached at the end
of the algorithm all CGs in the Markov equivalence class of the CG in any iteration
may have to be searched for improvements. Like all efficient learning algorithms
certain assumptions do however have to be made about the probability distribution.
These are that the independence model induced by it fulfills the graphoid properties
as well as the composition property [20]. The graphoid properties are satisfied for all
strictly positive probability distributions, while the composition property is satisfied
for every Gaussian probability distribution.

10.4.4 Factorisation and Parameter Learning

Hitherto very little research has been done on CG parameter learning and hence it
is one of the weak points of CGs. Although parametrizations exist for all three CG
interpretations for continuous variables [1, 3, 18, 31] it exists no efficient way of
learning these parameters from a probability distribution. Instead iterative algorithms
have to be used similarly as for MNs. We will here show an example of how this is
done for LWF CGs.

The factorisation of a probability distribution p with variables X1, . . . , Xn accord-
ing to a LWF CG G with components K1, . . . , Km is

p(X1, ..., Xn) =
m∏

i=1

p(Ki |paG(Ki )). (10.1)

Each component Ki can then be factorized clique-wise as follows

p(Ki |paG(Ki )) = 1

Zi

∏

M∈MC

φM , (10.2)

where MC are the complete subsets in the closure graph of Ki , i.e. the induced
subgraph G Ki ∪paG (Ki ) where each directed edge is replaced by an undirected edge
and each pair of vertices in paG(Ki ) also are connected by an undirected edge. Each
φM is then a potential over the variables in M and Zi is a normalization constant. In
other words, the probability distribution of the closure graph of each component can
be seen as a MN. To parametrize these products and potentials we can then simply
parametrize the system of linear equations since there exists a one to one relation
between it and the probability distribution.
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Another way to parametrize LWF CGs have been introduced by Lappenschaar
et al. [10]. They proposed a qualitative approach to LWF CGs in which it is only
calculated whether two variables adjacent in the graph have positive, negative or
ambiguous influence on each other, and not the actual parameter value. In the article
Lappenschaar et al. describes how these parameters can be learnt from data and uses
the approach for modelling the interaction between diabetes and lipid disorder given
the relevant factors. Their results show that one of the advantages of using qualitative
LWF CGs compared to qualitative BNs is the ability to capture equilibrium models.

10.5 Summary

In this chapter we have shown how CGs can be used to model complex system such
as gene networks. We have also shown some advantages of using CGs compared to
usingBNs,MNs or covGs,which aremore commonly used in real-world applications
today. Themain advantage is that CGs aremore flexible since they can represent both
causal and non-causal relations and thereby represent a larger set of independence
models compared to BNs, MNs or covGs. This means that CGs can express a model
that is closer, or at least as close, to the real system as any BN, MN or covG. At
the same time, they are still easy to interpret and one can relate their structure to the
underlying molecular processes.

We have also discussed structure learning algorithms for all of the CG interpre-
tations. Using these algorithms on samples from an advanced system like a gene
network will result in a CG which may give good insight into how the variables in
the system interact, even if it contains non-causal relations between its variables.

10.6 Appendix, System of Linear Equations for CGs

In this appendix we derive and present how the separation criteria of the different
interpretations translate into systems of linear equations.

10.6.1 LWF CGs

Let G be a LWF CG with connectivity components K1, . . . , Kn . Let N (G) denote
the set of regular Gaussian distributions that factorize with respect to G, which
coincide with the set of distributions that satisfy the LWF global Markov property
with respect to G [11, Theorems3.34 and 3.36]. Let p ∈ N (G). Assume without
loss of generality that p has mean 0. Let Ω i

Ki ,Ki
and Ω i

Ki ,paG (Ki )
denote submatrices

of the precision matrix Ω i of p(Ki , paG(Ki )). Then, as shown in [2, Sect. 2.3.1],
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Ki |paG(Ki ) ∼ N (β i paG(Ki ),Λ
i ) (10.3)

where
β i = −(Ω i

Ki ,Ki
)−1Ω i

Ki ,paG (Ki )
(10.4)

and
(Λi )−1 = Ω i

Ki ,Ki
. (10.5)

Then, as shown in [18, Sect. 3], G has associated a system of linear equations
with normally distributed errors as follows. For every Ki ,

Ki = β i paG(Ki ) + εi (10.6)

where
εi ∼ N (0,Λi ) (10.7)

and
(Ω i

Ki ,Ki
) j,k = 0 for all j, k ∈ Ki such that j − k is not in G (10.8)

and

(Ω i
Ki ,paG (Ki )

) j,k = 0 for all j ∈ Ki and k ∈ paG(Ki ) such that j ← k is not in G.

(10.9)
It is worth mentioning that the mapping above between the probability distri-

butions in N (G) and the systems of linear equations is bijective [18, Lemma1].
Moreover, an alternative (but equivalent) parameterization of the probability distri-
butions in N (G) is presented in [30].

Then, G has associated a system of linear equations with correlated errors as
follows. For every X j ∈ Ki ,

X j = β j paG(Ki ) + ε j (10.10)

where
β j is the j − th row of β i (10.11)

and
Cov(ε j , εk) = (Λi ) j,k . (10.12)

Note that X j is a linear combination of paG(Ki ) and not of paG(X j ). Note also
that, as shown in [32, Propositon 5.7.3],

(Ω i
Ki ,Ki

)−1 = ΣKi ·paG (Ki ) (10.13)

where ΣKi ·paG (Ki ) represents the partial covariance matrix of Ki given paG(Ki ).
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Then, as shown in [8, Theorem1], the element (A, B) of (Ω i
Ki ,Ki

)−1 can bewritten
as a sum of path weights over all the paths in G between A and B through nodes in
Ki . Specifically,

((Ω i
Ki ,Ki

)−1)A,B = (ΣKi ·paG (Ki ))A,B =
∑

ρ∈ρA,B

(−1)|ρ|+1
|(Ω i

Ki ,Ki
)\ρ |

|Ω i
Ki ,Ki

|
|ρ|−1∏

l=1

(Ω i
Ki ,Ki

)ρl ,ρl+1

(10.14)
where ρA,B denotes the set of paths in G between A and B through nodes in Ki , |ρ|
denotes the number of nodes in a path ρ, ρl denotes the l-th node in ρ, and (Ω i

Ki ,Ki
)\ρ

is the matrix with the rows and columns corresponding to the nodes in ρ omitted.
Moreover, the determinant of a zero-dimensional matrix is taken to be 1. This leads
to the following interpretation of β j : By Eqs. 10.4, 10.11 and 10.14, the k-th element
of β j can be written as sum of path weights over all the paths in G between Xk and
X j trough nodes in Ki .

10.6.2 AMP CGs

Let G be an AMP CG with connectivity components K1, . . . , Kn . LetN (G) denote
the set of regular Gaussian distributions that satisfy the AMP globalMarkov property
with respect to G. Let p ∈ N (G). Assumewithout loss of generality that p has mean
0. Then, as shown above, Ki |paG(Ki ) ∼ N (β i paG(Ki ),Λ

i ). Then, as shown in [1,
Sect. 5], G has associated a system of linear equations with normally distributed
errors as follows. For every Ki ,

Ki = β i paG(Ki ) + εi (10.15)

where
εi ∼ N (0,Λi ) (10.16)

and
((Λi )−1) j,k = 0 for all j, k ∈ Ki such that j − k is not in G (10.17)

and

(β i ) j,k = 0 for all j ∈ Ki and k ∈ paG(Ki ) such that j ← k is not in G. (10.18)

It is worth mentioning that the mapping above between the probability distribu-
tions inN (G) and the systems of linear equations is bijective [1, Sect. 5]. Moreover,
the first constraint here coincides with the first constraint in the previous section.

Then, G has associated a system of linear equations with correlated errors as
follows. For every X j ∈ Ki ,
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X j = β j paG(X j ) + ε j (10.19)

where
β j contains the nonzero elements of (β i ) j · (10.20)

and
Cov(ε j , εk) = (Λi ) j,k . (10.21)

Note that, unlike in the previous section, X j is here a linear combination of
paG(X j ) and not of paG(Ki ).

10.6.3 MVR CGs

Let G be a MVR CG with connectivity components K1, . . . , Kn . Then, G has asso-
ciated a system of linear equations with normally distributed errors as shown in the
previous section except for two differences. First,N (G) now denotes the set of regu-
lar Gaussian distributions that satisfy the MVR global Markov property with respect
to G. Second, we now replace Eq.10.17 with

(Λi ) j,k = 0 for all j, k ∈ Ki such that j ←→ k is not in G. (10.22)

See also [9].
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Chapter 11
Prediction and Prognosis of Health
and Disease

Agnieszka Onisko, Allan Tucker and Marek J. Druzdzel

11.1 Introduction

Medical prognosis is defined as the prediction of the probable course and outcome
of a disease. This prediction should facilitate understanding patterns of disease pro-
gression as well as its management. Medical prognosis is closely related to other
medical tasks, such as diagnosis, treatment, and therapy planning [15, 23].

Various methodologies have been applied to medical prognosis [1, 4, 19]. These
methodologies can be divided into three classes: (1) statistical predictive models,
such as logistic regression, Cox regression models, state-space models, or Box-
Jenkins method, (2) data mining approaches, such as decision tree classifiers, genetic
algorithms, or artificial neural networks, and (3) mixed approaches, such as those
based on probabilistic graphical models. Two review papers, by Augusto [3] and
Adlassnig et al. [2] discuss various applications of temporal models in medicine, in
which prognosis takes a prominent place.

Some of these approaches do not model time explicitly, others include time as
one of the model variables. Cross-sectional studies record attributes (such as clinical
test results and demographics) across a sample of the population, thus providing a
snapshot of a particular process but without any measurement of progression of the
process over time [6]. An advantage of cross sectional studies is that they capture
the diversity of a sample of the population and, therefore, the degree of variation in
the symptoms. They are also relatively cheap compared to longitudinal studies that
involve extensive followup (see below). Themain disadvantage of such studies is that
the progression of many biological and medical processes, such as the development
of a disease, are inherently temporal in nature and the time dimension is not captured.

Longitudinal studies [7] measure clinical variables from a number of people over
time. Often, the results of multiple tests are recorded, generating multivariate time-
series data. This is common for patients who have high risk indicators of disease and
who are monitored regularly prior to diagnosis. The main advantage of longitudinal
data is that they capture the temporal details of the disease progression. However, the
data are often limited in terms of the cohort size due to the expensive nature of the
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studies. Panel analysis [16] involves trying to build models along both the temporal
dimension and the population dimension, though similar issues with longitudinal
studies arise (such as biased samples and lack of diversity in the sample). For both
longitudinal and panel analysis, the patients are usually already identified as being
at risk and, therefore, controls are usually not available. As a result, the early stages
of the disease may be missed.

11.2 Temporal Models of Disease Progression

Degenerative diseases such as Parkinson’s disease, glaucoma, or cancer are charac-
terised by a continuing deterioration to organs or tissues over time. This monotonic
increase in severity of symptoms is not always straightforward, however. The rate
can vary within patients during the course of their disease so that sometimes rapid
deterioration is observed and other times the symptoms of the disease may stabilise
(or even improve—for example,whenmedication is used). Figure11.1 shows several
plots of visual field sensitivity data over a number of visits to clinic at approximately
6month intervals for five patients who suffer from high Intra Ocular Pressure (IOP),
a risk factor in the development of glaucoma. Please note the variation in both degree
and rate between the individual cases. Interventions, such as medication or surgery,
can make a huge difference to the quality of life and slow the process of disease pro-
gression and, sometimes, change the long term prognosis. In degenerative diseases,
a prognostic model shows a general transition from healthy to early onset and to
advanced stages.

When time stamps (discrete or continuous) are available, such as is the case
with longitudinal data, we can build temporal models. These models can be used
to try and predict future values of the data or the disease outcome. In the rest of
this section we will list briefly several approaches that belong to one of the three

Fig. 11.1 Examples of the visual field sensitivity of five glaucoma sufferers, highlighting the
variation in rates of progression
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groups: (1) statistical predictive models, (2) data mining approaches, and (3) mixed
approaches. In our description we will elaborate on mixed approaches which include
probabilistic graphical models. Our focus on probabilistic graphical models refers to
three applications of dynamic Bayesian networks that we explore later in this chapter.

11.2.1 Statistical Predictive Models

There are a number of popular statistical approaches to modelling time-series. For
example, regression techniques that fit a model (linear or polynomial) through the
data where time is used to predict the rate of change in some set of clinical variables
[26]. However, care must be taken as each observation may not be independent of
other observations (e.g., symptoms at time t are typically dependent on the symptoms
at t − 1). As a result, standard residual error analysis cannot be carried out in this
context.

Another very common time-series modelling approach is the Box-Jenkins
method [5]. It is also known as the Autoregressive Integrated Moving Average
(ARIMA) as it combines the autoregressive and moving average processes to model
current and past observations and errors. It handles trends and cycles through dif-
ferencing the data. Fitting an ARIMA involves identifying an initial model (which
includes determining seasonality and stationarity), estimating the parameters, and
verifying the assumptions of the model through residual analysis. The approach is
attractive due to its ability to capture a diverse set of time-series behaviours. However,
as a result of its flexibility, it risks overfitting data.

State space models [9] are powerful techniques in that they capture uncertainty in
the development of underlying processes by using a transition equation, and uncer-
tainty in the observation of a system through the use of a measurement equation.

11.2.2 Data Mining Approaches

When no time stamps are available, as is the case with cross sectional data, we can
attempt to reconstruct sequences. This involves trying to find the best order for a
particular set of data. The principal curve algorithm [17] essentially tries to fit curves
through (potentially cross-sectional) data points in order to build a model of some
temporal process. More recently the use of PQ-Trees has been explored to encode
partial orderings in order to account for uncertainty in the data due to elements such
as noise [20]. A PQ-Tree can be converted into a single ordering, using a hill-climb
method to further minimise the distance within the PQ-Tree constraints. In [25],
the algorithm was extended to also constrain the search to find paths with a fixed,
user-defined start and end point representing the most extreme healthy and diseased
cases in cross-sectional data.
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11.2.3 Mixed Approaches

Statistical approaches can be data intensive and rely on good quality data with
relatively large samples. Probabilistic graphical models, however, allow for com-
bining data with expert knowledge or, in case there are no data, drawing entirely
on expert knowledge. This makes probabilistic graphical models, such as Markov
chains, hidden Markov models (HMMs) [21], Markov decision processes (MDPs
and POMDPs), and dynamic Bayesian networks particularly attractive and popular
in practice.

Dynamic Bayesian networks (DBNs) offer a framework for explicit modelling
of temporal relationships and are useful as both prognostic and diagnostic tools.
DBNs are more general than Hidden Markov Models, which assume a single dis-
crete variable representing a hidden state and possiblymultiple observation variables.
Figure11.21 captures an example of a dynamic Bayesian network model, modelling
the effect of three risk factors on breast cancer. Each arc in this graph represents
a probabilistic relationship (strictly speaking, lack of arcs between nodes repre-
sents conditional independence assumptions), which is usually, although not always,
thought of as a causal relationship, and it is quantified by a conditional probability
distribution. Some of the arcs, marked by a square with a single digit number, repre-
sent temporal influences between variables. The number denotes the temporal delay
of influence. Arcs without a mark denote instantaneous influence. An arc labelled as
1 between the variables Lesion (L) and Breast Cancer (BC), for example, denotes an
influence that takes one time step, while an arc labelled as 2 originating and terminat-
ing at Breast Cancer (BC) denotes an influence that takes two time steps. Effectively,
themodel encodes the following conditional probability distribution over the variable
Breast Cancer (BC):

P(BCt |At , F H, Lt−1, BCt−2).

In other words, the conditional probability distribution over the variable Breast Can-
cer (BC) depends on the patient Age (A) and Family History (FH). Furthermore, it
depends on Lesion (L) result in previous time step, and also on Breast Cancer result
two time steps ago. The duration of the time step is a design choice and could be, for
example, a second, a day, a month, or a year.

There are three different conditional probability tables that quantify the variable
Breast Cancer. Equations11.1, 11.2, and 11.3 below correspond respectively to these
three conditional probability tables, i.e., regular arcs: (t = 0), temporal arcs labelled
as 1: (t = 1), and temporal arcs labelled as 2: (t = 2):

P(BCt=0|At , F H) (11.1)

P(BCt=1|At , Lt=0) (11.2)

P(BCt=2|At , Lt=1, BCt=0) (11.3)

1This and other images are created by means of GeNIe software [8] developed at the University of
Pittsburgh and available at http://genie.sis.pitt.edu/.

http://genie.sis.pitt.edu/
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Fig. 11.2 Example of a DBN model

Fig. 11.3 Fragment of a conditional probability table for the variable Breast Cancer

The parameters encoded in the tables can be learned from the time series data. Typ-
ically, the parameters are learned from data by maximizing the posterior probability
of the parameters given the data [14]. When the structure is fixed and the prior prob-
ability distribution over the parameters is uniform, this corresponds to maximizing
the likelihood function.

Figure11.3 shows a fragment of the conditional probability table for the variable
Breast Cancer for the time step t ≥ 2 (see also Eq.11.3). In this case, the conditional
probability distribution forBreast Cancer depends on the variablesAge and Lesion in
the previous time step (t − 1). Furthermore, this conditional probability distribution
depends on the variable Breast Cancer at time step t − 2 (denoted as (Self)[t-2] in
Fig. 11.3). One way of interpreting a DBN is through the process of “unrolling” it.

Fig. 11.4 Unrolled DBN model for the first 3 time steps
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Fig. 11.5 Risk of a breast
cancer over time

Figure11.4 captures three time steps of the unrolled DBN model of Fig. 11.2. Five
out of six variables (Age, Lesion, Breast Cancer, and Mammography) are repeated at
each time step. The variable Family History is not repeated, because it was modelled
only as an initial condition and it is not changing over time. Evidence in a DBN
can be observed for any time step for which the model is defined. Given observed
dynamic evidence, the model can derive the probability distribution over a variable
under investigation (in this case, the variable Breast Cancer) as a function of time.
For example, the model may be used to calculate the following probability:

P(BC(present)|E) ,

where
E = At=2(55), Lt=0(present), Mt=2(abnormal) .

In this case, the model calculates the probability of breast cancer over 10 time steps
for a 55 old woman with an abnormal mammography result at time (t = 2) that had
a lesion at (t = 0). This result can be used to estimate the optimal time for follow-up
medical tests and procedures. DBN algorithms are more general than algorithms for
HMMs. The prominent representative of the latter, the forward algorithm, allows for
estimation of the probability of the hidden state from the previous and current values
of measured variables. This process is known as filtering and can be used to estimate
future probabilities of disease states from historical longitudinal data.

Although DBNs can capture the time-dependent nature of interactions among
variables, they are models for stationary processes meaning that parameters and
relations between variables cannot change over time. In many medical contexts,
however, dependency relations between variables can change over time. For example
in glaucoma, theOpticNerveHead (ONH),which carries the visual functional signal,
changes during the progression of the disease, resulting in non-stationary series [28].
To overcome the non-stationarity in time series modelling with graphical models,
non-stationary DBNs, introduced recently [12, 22, 24], attempt to learn when the
changes in structure occur.
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11.3 Summary

The above review is meant to provide a general introduction to the set of problems
related to modelling dynamic systems by means of dynamic Bayesian networks. We
introducedDBNs, learning ofDBNparameters fromdata, the interpretation ofDBNs,
evidence and inference in DBNs, and hinted problems related to non-stationarity of
the underlying model.

Several applications of DBNs have been proposed inmedicine. Leong, Harmanec,
Xiang, and colleagues [13, 18, 27], use a combination of graphical models with
Markov chains to address different medical problems, including colorectal cancer
management, neurosurgery ICU monitoring, and cleft lip and palate management.
Galan et al. [10] describe NasoNet, a system for diagnosis and prognosis of nasopha-
ryngeal cancer. van Gerven et al. [11] describe a DBN for management of patients
suffering from a carcinoid tumour.

This chapter explores three applications of dynamicBayesian networks to building
models of health or disease progression from medical time series data. The focus is
upon examples from visual field test non-stationary time series data, cervical cancer
screening data spanning over up to eight years, and monitoring woman’s monthly
cycle. Thesemodels aim to predict the health of a patient or the onset and progression
of a disease, although the difficulties encountered and the methodologies used are
applicable in other settings.
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Chapter 12
Trajectories Through the Disease Process:
Cross Sectional and Longitudinal Studies

Allan Tucker, Yuanxi Li, Stefano Ceccon and Stephen Swift

Abstract This paper explores the use of twodifferent techniques for buildingmodels
of disease progression from clinical data. Firstly, it explores the use of non-stationary
dynamic Bayesian networks to model disease progression where the underlying
model changes over time (as is common with many diseases where some tissue or
organ becomes damaged throughout the duration of disease progression. Secondly,
the fitting of trajectories through cross-sectional data in order to build models of
progression from larger cohorts but without any stamps. The methods are applied
to simulated data and real clinical data based on visual field tests from sufferers of
glaucoma, the second largest cause of blindness in theworld. Results demonstrate the
importance of integrating cross-sectional and longitudinal data, both of which offer
different advantages to understanding disease progression, and the use of models
that account for changing underlying structures.

12.1 Introduction

This paper explores the use of two different techniques for buildingmodels of disease
progression fromdifferent types of clinical data, longitudinal and cross-sectional. The
focus is upon examples from glaucoma and visual field test data to predict the onset
and progression of the disease, though the issues dealt with are far from unique to
this disease. Glaucoma is a neuropathic disease of the eye and is the second largest
cause of blindness in the world. In 2002, there were 4.5 million sufferers worldwide,
and according to [23] and the WHO Vision 2020 [21], there will be about 80 million
people with glaucoma by 2020, given the ageing of the World’s population. While
there is no definitive cure for glaucoma, clinical practice has shown that, like many
diseases, earlymedication can slow its progression [14, 15].However, early diagnosis
is a very challenging task, because of the variability of the pathology and its overlap
with the physiology of the subject. The Visual Field (VF) test assesses the sensitivity
of the retina to light. It is typically measured by automated perimetry, a technique in
which the subject views a dim background as brighter spots of light are shone onto

© Springer International Publishing Switzerland 2015
A. Hommersom and P.J.F. Lucas (eds.), Biomedical Knowledge
Representation, LNAI 9521, DOI 10.1007/978-3-319-28007-3_12
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Fig. 12.1 A typical VF test
from a glaucomatous eye
showing loss of visual
sensitivity as dark patches

the background at various locations in a regular grid pattern. The brightness at which
the subject sees the spots of light is related to the retinal sensitivity. See Fig. 12.1 for
an example of a VF test from a patient suffering from glaucoma.

Interventions such as medication or surgery can make a huge difference to quality
of life and slow the process of disease progression but they rarely change the long
term prognosis. The characteristics ofmany degenerative diseases, such as glaucoma,
is therefore a general transition from healthy to early onset to advanced stages. If we
look at some quantifiable set of symptoms (say the outcome of a set of clinical tests)
and plot them in two dimensions (using dimensionality reduction techniques) we can
see the general ‘direction’ of the disease process as a trend from an area of apparent
‘healthy’ individuals through to individuals with ‘mild’ symptoms and resulting in
an area representing advanced symptoms. Figure12.2 shows two examples of this
‘trend’. One is taken from breast cancer data that contains tumour descriptors and is
available from the UCI repository [8], and the other is from glaucoma patient data as
documented in [31]. Both are plotted using classical multidimensional scaling with
Euclidean distance [27].

Clearly these trends will depend upon a number of factors such as which clinical
variables are selected, how much data there is available in the sample, and whether
the disease process is generally monotonic. In order to infer the process of disease
progression, wemust make an appropriate use of the available clinical data and in the
next section some different types of survey are discussed with their implications for
modelling. In the next Section we will explore some typical approaches to modelling
time-series from longitudinal studies before focussing in Sect. 12.2 on an approach to
model non-stationary time-series which is typical in clinical data such as the visual
field test data. Finally, in Sect. 12.3, we explore an approach at sequence recon-
struction from cross-sectional data in order to build pseudo time-series of disease
progression, before concluding in Sect. 12.4.
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Fig. 12.2 Trends in
progression of degenerative
diseases. An example from
glaucoma (top) and breast
cancer (bottom) where dots
represent healthy individuals
and crosses represent
patients diagnosed with the
respective disease. For many
datasets there is generally a
smooth transition as people
move from healthy to early
onset and then advanced
disease.

12.2 Fitting Trajectories Through Time-Stamped Data

When time stamps (discrete or continuous) are available, such as is the case with
longitudinal data, we can build time-series models. These models can be used to try
to predict future values of the data or the disease outcome.

12.2.1 Statistical and Machine Learning Models

There are a number of popular approaches to modelling time-series. For example,
regression techniques that fit a model (linear or polynomial) through the data where
time is used to predict the rate of change in some set of clinical variables [33].
However, care must be taken as each observation is not independent of one another
(symptoms at time t are typically dependent on the symptoms at t − 1). As a result,
standard residual error analysis cannot be carried out. Another very common time-
series modelling approach is the Box-Jenkins method [3]. It is also known as the
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Fig. 12.3 Architectures of
(a) A hidden Markov model
with a hidden node H , and
N observed variables Xi ,
and (b) A dynamic Bayesian
network with N nodes
including various links
within the same time slice
and from nodes at t − 1 to
nodes at t .

Autoregressive Integrated Moving Average (ARIMA) as it combines the autoregres-
sive and moving average processes to model past observations and errors. It handles
trends and cycles through differencing the data. Fitting an ARIMA involves iden-
tifying an initial model (which includes determining seasonality and stationarity),
estimating the parameters, and verification through residual analysis. The approach is
attractive due to its ability to capture a diverse set of time-series behaviour. However,
as a result of its flexibility it can risk overfitting data.

A popular model for modelling sequential and time-series data is known as the
Hidden Markov Model (HMM) [24], which assumes a single discrete hidden state,
H and a continuous observed process, X . See Fig. 12.3 for the general architecture
where directed links determine conditional probability distributions. The transition
equation is modelled using a discrete distribution of the state H at time t , H t con-
ditioned upon the state at t − 1. This is written as p(H t |H t−1) (and gives rise to the
link H t−1 → H t in Fig. 12.3). The measurement equation is captured using a distri-
bution of each variable at time t conditioned upon the hidden state at time t , written
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as p(Xt |H t ) (giving rise to the links, H t → Xt
1, H t → Xt

2, ..., H t → Xt
N ). The for-

ward algorithm allows the probability of the hidden state at time, H t to be estimated
from the previous and current values of measured variables, X1...t . In other words, to
predict p(H t |X1...t ), where H t represents the hidden state at time t and Xt represents
the variables in the time series. This process is known as filtering and can be used to
estimate future probabilities of disease states from historical longitudinal data.

Linear Dynamic Systems (LDS) are a variant of the HMM that assume a linear
normal Gaussian for the underlying process. The Kalman Filter [1] offers a way
to perform filtering on this class of model. More recently, Dynamic Bayesian Net-
works (DBNs) [9, 10] have become popular for modelling disease [32] because they
explicitly model temporal and non-temporal relationships and are flexible enough to
model latent variables similar to the hidden process in HMMs. A simple example of
a HMM and a DBN is shown in Fig. 12.3.

To build a DBN, the structure of the network and the parameters - the conditional
probability distributions (CPDs) of all the variables must be obtained. Typically, the
CPDs are learned fromdata bymaximizing the posterior probability of the parameters
given the data [13]. When the structure is fixed and the prior distribution of the
parameters is uniform, this corresponds to maximizing the likelihood function.

12.2.2 Non Stationary Dynamic Bayesian Networks
for Modelling Glaucoma

Although DBNs can capture the time-dependent nature of the relations in the data,
they are models for stationary processes meaning that parameters and relations
between variables cannot change over time. Once a set of time slices are created, the
model is replicated over time. In many medical contexts, however, dependency rela-
tions between variables can change over time. For example in glaucoma, the Optic
Nerve Head (ONH), which carries the visual functional signal, structurally changes
during the progression of the disease, resulting in non-stationary series [35].

To overcome the stationarity in time series modelling with graphical models,
Non-stationary DBNs have been recently introduced. In the learning process, both
a model parameterisation and a segmentation process are performed. However, the
search space is usually limited by constraining one or more degrees of freedom,
i.e. the segmentation points of the time series, the parameters of the variables, the
dependencies between the variables and the number of segments for the model.
Among the most recent and complete work, Talin and Hengartner (2005) used a
Monte Carlo Markov Chain approach to estimate the variance structure of the data,
but the search space was limited to a fixed number of segments and for learning
undirected edges only [29]. Xuan andMuphy (2007) proposed an approach to model
changing dependency structures from multivariate time series, but also in this case
the search was limited to undirected edges [34]. Robinson and Hartemink (2010)
formalized the concept and proposed a solution that tackles all the degrees of freedom
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described except for the parameters [25]. Grzegorczyk and Husmeier (2009) instead
retained the stationarity of the structure in favour of the parameters flexibility, arguing
that structure changes lead almost certainly to over-flexibility of the model with short
time-series [11]. While the first approach may only capture parameters changes that
are strong enough to give rise to a structural change, the lattermay notmodel correctly
underlying conditional dependencies over the stages. The ability to both assess weak
and strong changes in variable distributions and explicitly model the evolution of
their relationships would be extremely useful from the informative point of view,
especially in unknown processes such as glaucoma.

The issues involved with differing rates of progression that were highlighted
earlier (in the introduction to this chapter) can be addressed to some degree by
exploiting non-stationary DBNs. In [5] a form of DBN that clusters sections of time
series whilst simultaneously learning DBN structure and parameters was used to
model glaucoma patients. The Bayesian Information Criterion (BIC) [26] was used
in conjunction with Simulated Annealing (SA) [17] for learning both the BNs and
the clusters. BIC incorporates a penalizing factor that is proportional to the number
of parameters in the model and the number of cases in the data, and helps to prevent
overfitting.

The proposed algorithm in [5] is a 2-step SA technique that switches between
‘warping’ operations on the data and ‘structural’ operations on the model. The warp-
ing operation is carried out with probability p and performs the segmentation of
the time series into the model stages. With probability 1 − p � 1, a stage may also
be added to or removed from the model. When no better solution is found for L1
search iterations, structural operations are carried out. This corresponds to adding or
removing conditional dependencies from the model. When structural changes don’t
improve the model score for L2 iterations, the segmentation search is again per-
formed. New solutions are accepted according to the current temperature t and the
score improvement of the last operation. The function regulating the solution accep-
tance is an exponential function commonly used in SA-based algorithms. When a
solution is accepted, the structure and the parameters of the model are updated and
the old segmentation is replaced. The search stops when no better solutions are found
for L total iterations. Intuitively, since the parameters depend on the segmentation
of the data and the score of a new segmentation depends on the current parameters
and the structure of the model, the algorithm tends to converge by grouping together
similar data. Given that data is not forced to pass through all the stages, if clusters
of data are present they will tend to aggregate into separate set of stages, forming
clusters of temporal processes. The algorithm is described in detail in [5].

Figure12.4 demonstrates the result of applying this model fitting process on sim-
ulated data with three different DBN structures at different points in the time-series.
The original structures are shown in the top panel, labeled as TRUE. From each of
these structures a set of data points was sampled and three time series were built by
concatenating the data as showed in the lower section of the figure. Each of the time
series corresponds to a temporal Cluster, being sampled only on two of the three
original structures. Below each of the TRUE structures, the correspondent learnt
structures are reported. The learnt number of stages was correct and all the relations
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Fig. 12.4 Non stationary dynamicBayesian network learnt using the non-stationaryDBNapproach
from [5] on simulated data. TRUEnetworks represent the original networks used to generate the data
and LEARNED networks represent those learnt from the data. The weight of the arrows represent
the confidence in the links. The time-series plots illustrate which sections of time-series data are
constructed using the three different underlying networks.

were captured by the algorithm, though there were numerous spurious relations also
included. In the lower section of the figure, the TRUE and discovered distribution
of data points is shown throughout each time-series. Essentially, this demonstrates
that the three time-series were correctly clustered in the three groups, and data was
segmented very closely to the original and in the correct sequence for all the clusters.

Figure12.5 demonstrates the result of applying the model fitting on longitudinal
data from two glaucoma sufferers. The plots are of visual sensitivity for differing
sectors of the visual field. The dark lines represent the positions where changes
in stages have been discovered. Below each plot, a simulation of the visual field
sensitivity map was obtained from the learnt model. A bar chart of the number
of visits for each stage is also reported. The first patient presents a general stable
condition and a sudden drop in sensitivity, which was well captured as a switch from
stage A (early stage) to F (final severe stage). The second patient presents slightly
less clear disease progression, with higher fluctuation and brief improvement of
conditions, captured by stage C. By breaking up the time-series for patients into
these key stages not only improves predictive performance but also helps to explain
the different phases of disease progression.
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Fig. 12.5 Non stationary
dynamic Bayesian network
learnt using the
non-stationary DBN
approach from [31] on
longitudinal Glaucoma data
from 2 patients. The plots
show sensitivity over
different sectors of the visual
field (t - temporal, n - nasal, s
- superior, i - inferior).
Vertical bars show the
discovered changes in DBN
structure (Labelled A - F).
Also included are expected
VF plots generated from the
model and shown as
greyscale images where
Darker regions represent
lower sensitivity.
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12.3 Fitting Trajectories Through Cross Sectional Data:
Sequence Reconstruction

When no time stamps are available as is the case with cross sectional data, we can
attempt to reconstruct sequences. This involves trying to find the best order for a
particular set of data. Methods include the travelling salesman problem approach
which aims minimise the distance between datapoints [28] and the calculation of the
Minimum Spanning Tree (MST) [22] which efficiently identifies the shortest path
through data coordinates. The principal curve algorithm [16] essentially tries to fit
curves through (potentially cross-sectional) data points in order to build a model
of some temporal process. More recently the use of PQ-Trees has been explored
to encode partial orderings in order to account for uncertainty in the data due to
elements such as noise [20].

PQ-Trees are a graph-structure device that can represent an ordering of points,
and indicate which parts of the ordering are well-supported (Q-nodes) and which
parts contain more uncertainty (P-nodes). Whilst the children of a P-node can be put
into any order, children of a Q-node may be reversed in order but may not otherwise
be reordered. A minimum spanning tree is generated from the distance matrix and
the diameter path of this is used as the main Q-node of the PQ tree - the backbone
of the reconstructed ordering. Branches of the diameter path are added as P and Q
nodes to the main Q node. Therefore, the constructed PQ-tree represents a partial
ordering of the data samples. Figure12.6 illustrates an example minimum spanning
tree and the subsequent PQ-Tree. A PQ-Tree can be converted into a single ordering,
O using a hill-climb method to further minimise the distance within the PQ-Tree
constraints. In [31], the algorithm was extended to also constrain the search to find
paths with a fixed, user-defined, start and end point representing the most extreme
healthy and diseased cases in cross-sectional data.

12.3.1 Pseudo Time-Series

A resampling approach known as the Pseudo Temporal Bootstrap (TBS) [31] aims
to build multiple trajectories through cross sectional data in order to approximate
genuine longitudinal data. These Pseudo Time-Series (PTS) can then be used to
build approximate temporal models for prediction.

Definition: Let a dataset D be defined as a real valued matrix where m (rows) is
the number of samples - here patients - and n (columns) is the number of variables
- clinical test data. We define D(i) as the i th row of matrix D. The vector C =
[c1, c2, ..., cm] represents defined classes, where each ciε{0,1} corresponds to the
sample i , ci = 0 represents that sample i is a healthy case, and ci = 1 represents that
sample i is a diseased case. These classifications are based upon the diagnoses made
by experts.
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Fig. 12.6 (a) shows an
example minimum spanning
tree and (b) shows the
PQ-Tree generated from it

We define a time-series as a real valued T (row) by n (column) matrix where each
row corresponds to an observation measured over T time points. We say that if T (i)
was observed before T ( j) then i < j .

We define a set of pseudo time-series indices as P = {p1, p2, . . . pk} where each
pi is a T length vector where T > 0. We define pi j as the j th element of pi and each
pi jε{1, . . . , m}. We define the function F(pi ) = [pi1, . . . , piT ] as creating a T by n
matrix where each row of F(pi ) = D(pi j ). A pseudo time-series can be constructed
from each pi using this operator. For example, if a pseudo time-series index vector
p1 = [3, 7, 2] then F(p1) is a matrix where the first row is D(3), the second row
is D(7) and the third row is D(2). The corresponding class vector of each pseudo
time-series generated by F(pi ) is given by G(pi ) = [C(pi1), . . . , C(PiT )].

12.3.2 The Pseudo Temporal Bootstrap

The elements of pi are determined based upon a uniform random sampling proce-
dure with replacement. The ordering of the elements in pi is based upon randomly
selecting a start and end in the pi such that the associated classifications are cstart = 0
and cend = 1. This means that the time-series will progress from a healthy state to a
disease state. The ordering is then determined by the shortest path, calculated based
upon the Floyd Warshall algorithm [7] applied to the Euclidean distance matrix
between samples in F(pi ). See [31] for the full algorithm.
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Fig. 12.7 Scatterplot of the first two components using multidimensional scaling on simulated
data (generated from an ARHMM with 3 states, one representing healthy control patients, and two
representing different disease symptoms). Two of the original MTS are plotted along with the full
cross section (one sampled from each MTS).

As an example we can explore how well multivariate time-series models can be
reverse-engineered from cross section data by simulating the cross sectional study
process. Figure12.7 shows the result of simulating a differing number of time-series
from an AutoRegressive HMM (ARHMM)with two disease states and one healthy
state. The data shown is a result of sampling a single point from each series randomly
(essentially generating a cross section of the population of time-series). We can then
use the temporal bootstrap to learn pseudo time-series prior to building a pseudo
temporal model. The error rates (Table12.1) and classification accuracy (Table12.2)
resulting from the pseudo time-series models are labelled (TBS) compared to the
statistics generated from a model learnt from the original time-series (Full MTS).

Notice that theTBSresults actually appear tobebetter than themodel inferred from
the full MTS. This is because the resampling process in the TBS procedure smooths
the data and so also shown are the results of the full MTS after smoothing which are
the most accurate (as would be expected - it is highly unlikely that the pseudo time-
series will generatemore accuratemodels). However as the sample size increases and
approaches 500, the statistics appear to almost converge (results taken from [31]).



200 A. Tucker et al.

Table 12.1 Mean forecast sum squared error and 95% confidence for model learnt using the
temporal bootstrap on cross-section data shown in Fig. 12.7 (TBS), the original time-series with
smoothing (MTS smoothed) and without (MTS)

L Full MTS TBS MTS smoothed

50 0.129 ± 0.039 0.251 ± 0.228 0.095 ± 0.055

100 0.125 ± 0.023 0.158 ± 0.121 0.086 ± 0.012

250 0.126 ± 0.013 0.079 ± 0.034 0.083 ± 0.012

500 0.125 ± 0.015 0.067 ± 0.023 0.084 ± 0.014

Table 12.2 Mean classification forecast accuracy and 95% confidence for model learnt using the
temporal bootstrap on cross-section data shown in Fig. 12.7 (TBS), the original time-series with
smoothing (MTS smoothed) and without (MTS)

L Full MTS TBS MTS smoothed

50 0.907 ± 0.047 0.897 ± 0.092 0.903 ± 0.055

100 0.905 ± 0.045 0.912 ± 0.044 0.905 ± 0.048

250 0.905 ± 0.046 0.910 ± 0.046 0.905 ± 0.048

500 0.905 ± 0.046 0.912 ± 0.044 0.904 ± 0.049

Testing this approach on real VF cross sectional data, where we can validate
using available longitudinal data, reveals similar results. Figure12.8 illustrates some
sample pseudo time-series generated from the cross sectional VF data and Fig. 12.9
shows the results of one step ahead forecasting using the TBS model and the model
learnt from the longitudinal data. Also included are the Sum Squared Errors (SSE)
scored using the previous sensitivity value as the forecast, PrevDatum, in order to
provide a baseline - this is used as clinicians generally consider there to be slow
progression between tests. The mean SSE over all patients is 0.4806 for the Full
MTS data (longitudinal), 0.5392 for the TBS model (learnt from the sampled cross
section), and 0.5701 for the PrevDatum approach. It appears that the TBS model
captures some of the dynamics of the disease process in that it improves the accuracy
of forecasts of the longitudinal data comparedwith the baselinePrevDatum. The TBS
model seems to perform significantly better on some patients. This could be due to
the TBS capturing two apparent distinct trajectories where the end states seem to sit
in different regions of Fig. 12.8. Figure12.9 shows the scatterplots of each predicted
sensitivity for 6 sectors of the visual field against the actual measurement including
individual SSE values. Firstly, this shows that some sectors are more easily predicted
than others, possibly due to varying noise. It also seems that the accuracy is better
for higher values of sensitivity which makes sense because as sensitivity decreases
there is known to be increased noise within the visual field.
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Fig. 12.8 Sample pseudo time-series generated using the temporal bootstrap on glaucoma cross-
section data.

12.3.3 Identifying Key Areas in Trajectories Using EM

Assuming that a good approximation of a time-series model can be learnt from
cross-sectional data by exploring sequence reconstruction approaches such as those
presented in the previous section, methods can be explored to identify important
stages in the trajectories using unsupervised methods on time-series models. For
example, the Expectation Maximisation algorithm [2] can be used to cluster a
sequence of data into different sections. By applying this approach different key
stages can be identified in a disease process [19]. What is more, the ordering of
the discovered sequences (i.e. the pseudo time-series) can lead to more informative
clusters and transitions than simply clustering the unordered cross-sectional data
(for example using standard clustering such as K-means [12]).

Figure12.10 shows the results of clustering pseudo time-series generated from
the glaucoma cross-sectional study using the EM algorithm. Panel A shows the
mean values for a clinical test for glaucoma based upon retinal images of the rim
area (Diff_rim) whilst Panel B shows the mean values of VF sensitivity for the pre-
classified glaucomatous (marked with circles) and control patients (marked with
crosses) for 6 different sectors of the eye. Notice that healthy people generally have
high sensitivity values and low Diff_rim values, whereas the reverse is true for glau-
comatous. Panel C shows the results of clustering using the EM algorithm on HMMs
learnt from the pseudo time-series. The values represent the expected values of sen-
sitivity and Diff_Rim for four different discovered clusters (or states). Notice that
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Fig. 12.9 1 step ahead
forecast scatterplots for each
NFB - predicted with TBS vs
actual. Individual SSE values
are also shown.

there are clearly two clusters that represent the healthy and glaucomatous (marked up
with crosses and circles, respectively) but that there are also two other intermediate
states. We can also explore the transition diagram for the states generated by the
HMM to given an indication of where the states lie on the trajectory. This diagram
(Panel E) supports the idea that two states are indeed intermediate states where glau-
coma symptoms are either evident in the sensitivity values but not the Diff_Rim or
vice versa (the states have been labelled accordingly). Simply using standard cluster-
ing of the cross-sectional data without exploiting the discovered trajectories shows
less meaningful clusters are generated (Panel D).

12.4 Conclusions

In this paper, two different approaches to modelling trajectories through clinical data
areexplored.Firstly, somemethods to infer time-seriesmodels fromlongitudinal stud-
ies are discussed. This includes statistical models such as Box-Jenkins and methods
that can deal with uncertainty such as hidden Markov models and dynamic Bayesian
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Fig. 12.10 Mean visual sensitivity (B) and other clinical test values (A) for different sectors of
the eye. Also, included are the expected values for states discovered using EM temporal models
trained on pseudo time-series (C) as compared to the profiles of clusters (using standard K-means)
discovered from cross sectional data that does not exploit any trajectory information (D). The state
transition diagram for the discovered states in (C) are shown in (E)

networks. Some of the ways to overcome the limitations of these techniques such
as the non-stationarity of disease progression are explored in more detail with some
examples. Secondly, some new techniques for building trajectories through cross-
sectional data are explored with a focus on sequence reconstruction. Techniques for
both types of data are demonstratedwith examples fromboth simulated data and glau-
comastudies. It is clear thatmanyof the longstandingapproaches tomodellingdisease
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progressionareproving inadequate todealingwith issuesofuncertainty in thedynamic
and measurement processes, issues of non-stationarity in the dynamic processes, and
the ability to integrate cross-sectional studies (which offer the advantages of diversity
in the population and the inclusion of fully healthy controls) with longitudinal studies
(which offer the ability to learn genuinely temporal models).

In economics pooling techniques attempt to combine longitudinal studies in order
to create a greater cross section of individuals. There has been some exploration of
integrating data by determining parameters from cross-sectional data and then using
these to update the parameters of a time-series model [18]. Different variations on
this general idea were developed including the balanced utilisation of pooled data,
which assigns equal importance to both the cross-sectional and the longitudinal study
by applying generalised least squares methods to both [30]. For a review of pooling
see [6]. In fact, some of the methods described in this document can be extended to
integrate the data. By adopting a Bayesian approach to integration, cross-sectional
studies can be used to learn prior models [4]. This can be performed either directly
from the data, resulting in static Bayesian networks, or via the pseudo time-series
approach described in this document to give dynamic Bayesian network models.
These priors can then be updated using longitudinal studies in order to ‘calibrate’ the
temporal models. This overcomes some of the issues with the models generated from
the sequence reconstructionmodels such as the lack of genuine temporal information.
By integrating both types of data should offer the advantage of modelling a diverse
population incorporating samples of all stages of disease whilst also encoding the
genuine temporal characteristics of disease processes.
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Chapter 13
Dynamic Bayesian Network for Cervical
Cancer Screening

Agnieszka Onisko and R. Marshall Austin

Abstract In this chapter we will present the application of dynamic Bayesian net-
works to cervical cancer screening. The main goal of this project was to create a
multivariate model that would incorporate several variables in one framework and
predict the risk of developing cervical precancer and invasive cervical cancer. We
were interested in identifying those women that are at higher risk of developing cer-
vical cancer and that should be screened differently than indicated in the guidelines.

13.1 Introduction

Cervical cancer is the fourth most deadly cancer in women worldwide.1 The in-
troduction of the Papanicolaou test (also known as a Pap smear or a Pap test) for
cervical cancer screening has dramatically reduced the incidence and mortality of
cervical cancer. According to Ries et al. [15], screening for cervical cancer with
the Pap test led to a 70% drop in incidence of cervical cancers between 1950 and
1970 and a 40% drop between 1970 and 1999 in the USA. Despite this fact, cervical
cancer has not been eradicated, even in countries where the programs for cervical
cancer screening exist. Prophylaxis has reduced the incidence and mortality of cer-
vical cancer, although there is still need for improving the management of cervical
cancer screening, for example, by means of identifying groups of women that are
at higher risk of developing cervical cancer and that should be screened differently
than indicated in the guidelines.

There are several studies that addressed themanagement of cervical cancer. Cantor
et al. [7] presented several decision-analytic and cost-effectiveness models that could
be applied to guide cervical cancer screening, diagnosis, and treatment decisions.One
of the decision-analytic models was a Markov model for the natural history of high-
risk strain of human papillomavirus (hrHPV) infection and cervical carcinogenesis
[14]. The model assesses life-time risk of cervical cancer as well as approximates the

1World Health Organization (http://globocan.iarc.fr/), accessed on July, 2014.
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age-specific incidence of cervical cancer. A similar model was built for the German
population [18]. The model was a Markov model for evaluating a life-time risk and
life-time mortality of cervical cancer. Another group of tools for cervical cancer
screening are cost-effectiveness models. Most of these cost-effectiveness models
refer to investigation of an optimal scenario for cervical cancer screening based on
two tests: Pap test and testing for the presence of hrHPV, e.g., [5, 10, 13].

There are many published studies that report risk assessments for cervical cancer,
e.g., [8, 11, 12]. All these approaches have a major weakness, i.e., to our knowledge,
most of these studies assess the risk based on the current results of patient screening
tests and usually do not include any patient history record such as previous results
of screening and diagnostic tests, or other clinical findings. In our project we were
interested in building a multivariate model that would incorporate several variables
in one framework and that would predict the risk of developing cervical precancer
and invasive cervical cancer over time. One of the approaches that can address these
challenges are dynamic Bayesian networks that were described in the introduction
of this part of the book.

13.2 Medical Domain

In this section we will present a few important facts about cervical cancer, its risk
factors, symptoms, and causes. We will also discuss screening for cervical cancer
and describe screening data that we have used to build a dynamic Bayesian network
model for cervical cancer risk assessment.

13.2.1 Cervical Cancer

Cervical cancer is one of the few cancers for which we know the cause. The most im-
portant risk factor in thedevelopment of cervical cancer is an infectionwith ahigh-risk
strain of DNA human papillomavirus. In fact, the HPV infection by itself is the most
frequent sexually transmitteddisease in theworld and inmost cases this infectiondoes
not cause any clinical symptoms. The hrHPV infection is responsible for all cervical
cancer cases, however, the relationship between the hrHPV infection and a develop-
ment of cervical cancer is not deterministic, and only a small percentage of women
that are infected with hrHPV will develop a cervical cancer. Furthermore, most cer-
vical cancers are caused by a persistent hrHPV infection. There is still unknown why
some women are good hosts to the hrHPV virus and why the infection leads in their
case to a development of cervical cancer. Other risks of developing cervical cancer
include smoking, oral contraceptives, or chlamydia infection. Cervical cancer rarely
causes any clinical symptoms until it reaches a late stage. One of the few late stage
cervical cancer symptoms is a vaginal bleeding.

There are two types of cervical cancer [1]. The first type of cervical cancer involves
these cases that develop over years and progress to larger precancerous lesions. This
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type of cancer is usually preventable by screening. By cervical precancer we mean
an abnormal tissue on the cervical surface or in endocervical canal. These lesions can
progress to invasive cervical cancer, therefore, if a lesion is detected during screening,
it is usually removed by one of the surgical procedures that prevents the lesion from
becoming cancerous and from a spread to other body organs. Unfortunately, the
screening is less effective for the cancer type 2 and to be detected usually requires
more frequent screening. The cancer type 2 includes rapidly progressing cancers,
cervical cancers in younger and elderly women, and the cases of glandular cervical
cancer that usually arise in endocervical canal.

13.2.2 Screening for Cervical Cancer

An important part of cervical cancermanagement is its screening.Most of the cervical
cancers develop over years, therefore, screening can be effective even if the screening
tests are not 100%sensitive or specific. There are twomajor cervical cancer screening
tests: (1) the Pap test and (2) the hrHPV test. A primary screening test in the USA is
the Pap test. The Pap test is based on the analysis of cells sampled from the surface of
the cervix, thus, in some countries it is simply known as a cytology test.Abnormal Pap
test result suggests the presence of potentially premalignant or malignant changes in
the cervix. Therefore, a woman with an abnormal Pap test result usually is directed to
a further examination and to a possible preventive treatment. Recommendations for
how often a Pap test should be performed vary, depending on a screening program,
between once a year and once every five years. The second screening test is the
hrHPV testing and it is often used as a complementary to Pap testing. While the Pap
test shows possible changes in the cervix, the hrHPV test shows whether there is an
infection present. Unfortunately, the hrHPV test result by itself does not tell anything
about any previous infections.

In the last few years theHPVvaccinewas introduced to the public. Up to date there
are two vaccines available and they cover two strains of the hrHPV viruses (HPV16
and HPV18) that can lead to the development of cervical cancer. It is important to
notice that the current vaccine does not provide a complete prevention for a cervical
cancer. There are around 15 strains of the hrHPV virus that can lead to cervical
cancer. Also, the vaccine is not effective if it is used in women infected already with
the hrHPV virus [6].

13.2.3 Screening Data

The cervical cancer screening data available to us were collected during 8 years
(2005–2012) at Magee-Womens Hospital, University of Pittsburgh Medical Cen-
ter, USA. The data contained 791,092 Pap test results while 24.7% of these results
were accompanied by hrHPV test results. Our data contained mainly the results
of screening tests. Thus, diagnostic tests were recorded only for around 10% of
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Fig. 13.1 The percentage of follow-up cases (Pap test results) available for each year in theMagee-
Womens Hospital population.

screening tests, i.e., around 10%of Pap test results were followed by a histopatholog-
ical examination. The data were collected bymeans of advanced technologies such as
liquid-based cytology (a new Pap test with a higher sensitivity than the conventional
Pap smear test) and testing for the presence of the hrHPV virus. Furthermore, Pap
test interpretations were assisted with a computer-based system that identifies abnor-
mal cells [20]. The data contained also some clinical information such as the history
of infections, cancers, or use of contraceptives. Our database registered also HPV
vaccine status, although there were only 2,040 patient cases with HPV vaccine status
recorded. Furthermore, histopathological examination results in our database were
in a free text format. Therefore, these data entries required additional pre-processing,
i.e., we had to convert these findings into dictionary entries.

While building any model based on time series data, the follow-up becomes a
crucial issue. Our model focuses on assessing the prediction for cervical precancer
and cervical invasive cancer, therefore, in our analysis we excluded vaginal Pap test
results. The reason for this was that majority of women with vaginal Pap test results
are those who had hysterectomy procedure performed in the past and had their cervix
removed. We also excluded these patients that have only one Pap test performed and
did not have any follow-up data recorded. This led us to the analysis of 575,936
cytology test results belonging to 170,560 patients. Figure13.1 captures additional
information on the follow-up data. Year 0 in the figure indicates the year when a
patient for the first time showed up for a screening test. Of all patients who appear in
year 0, 69.6% appeared for follow-up screening in year 1, while 53.0% appeared in
year 2, etc. Only 2.5% of all patients appeared in year 7 (this corresponds to 4,285
patients).
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13.3 Pittsburgh Cervical Cancer Screening Model

We have built the Pittsburgh Cervical Cancer Screening Model (PCCSM) [2, 4].
The main goal of this project was to create a model that would incorporate several
variables in one framework and predict the risk of cervical precancer and invasive
cervical cancer. We were interested in identifying those women that are at higher
risk of developing cervical cancer and that need more frequent screening or a ref-
erence to a diagnostic procedure such as a colposcopy. The PCCSM model is a
dynamic Bayesian network, its structure was built based on textbooks and the expert
knowledge2 and then parameterized by means of the cervical cancer screening data
collected at Magee-Womens Hospital.

13.3.1 Graphical Structure

The current version of the PCCSM model consists of 15 nodes that belong to four
groups: (1) screening tests: Pap test and hrHPV test; (2) diagnostic or therapeutic
procedures such as biopsy, cone biopsy, leep procedure, endocervical curettage, or
hysterectomy; (3) patient history findings: menstrual history, cancer history, a use
of contraception, HPV vaccine status; and (4) demographic variables: age and race.
These variables has been chosen by the expert, although a procedure of selecting
the model’s variables was mainly driven by a set of medical finding recorded in the
Magee-Womens Hospital electronic record system.

All variables were categorical, thus, we represented them in the model as the
nodes with discrete values. The variable Age was discretized into three intervals:
below 30, between 30 and 50, and 50 and up. This discretization was suggested by
our expert and it corresponds to three different cervical cancer risk groups. While
modeling the node representing the Pap test we have distinguished 9 states. Our data
on Pap test interpretations follow the Bethesda classification3 and, in fact, the num-
ber of possible interpretations for the Pap test is even higher than modelled in the
PCCSM.However, we grouped andmerged some of the interpretations. For example,
Suspicious Malignant Cells, Positive Malignant Cells, Squamous Cell Carcinoma,
and Adenocarcinoma were merged into one state SUSP/POS Malignant Cells. This
merge was performed mainly because of the lack of sufficient data for these cate-
gories. Similarly, we merged several interpretations of histopathologically verified
diagnoses of cervix, for example, different types of cervical cancers: Squamous Car-
cinoma, Adenocarcinoma, or Adenosquamous Carcinoma were represented as one
state and named as Cervical Cancer.

2The second author of this article is the expert of the PCCSM model.
3The Bethesda classification is a system for reporting Pap test interpretations. It was developed
during the American Society for Colposcopy and Cervical Pathology Consensus Conference that
took place inBethesda,MD,USA [19]. Themain goal of thismeetingwas to establish a standardized
terminology in cytology diagnostic reports.
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Table 13.1 Selected nodes of the PCCSM model along with their states

Node States

Pap test Negative, ASCUS, LSIL, AGC, ASC-H, HSIL,

SUSP/POSMalignantCells, NoPrimary Interpretation, NA

hrHPV test Negative, Positive, NA

Cervix Benign, CIN1, CIN2, CIN3/AIS, Cervical Cancer,

MetastaticCancer inCervix, NA

HPV vaccine status Complete, Incomplete, NA

Table13.1 presents a list of possible results for two screening tests (Pap and
hrHPV), a cervix status represented by the node Cervix, and a clinical finding de-
scribing HPV vaccine status. For example, the Pap test is described by 9 possible
states: one state indicating a negative result, 6 states representing abnormal results,
one state modeling the unsatisfactory result (No Primary Interpretation), and one
state describing the result that is not available (NA).

A dynamic Bayesian network approach allows us to model a medical knowledge
in the framework of a directed graph. While modelling the knowledge of cervical
cancer screening we distinguished two types of relationships:

riskfactor → disease → screeningtest

riskfactor → disease → diagnostictest

cervixt → cervixt+1

cervixt → cervixt+2

While the first type of a relationship captures a static knowledge, the second type
of a relationship shows a temporal knowledge. Figure13.2 presents the graphical
structure of the current version of the PCCSM model. The graphical structure of the
model consists of two types of arcs: (1) regular arcs that model a static knowledge by
means of probabilistic relationships between the variables in the same time step and
(2) temporal arcs that model the relationships between the variables in different time
steps. For example, the relationships between Age, Cervix, and Pap test capture a
static knowledge and take place in the same time step. While a temporal relationship
is represented by an arc with a label. For example, a label 2 in the node Cervix
indicates a delay of an influence that takes two time steps.

Nine nodes out of 15 are temporal variables, i.e., they are repeated for each time
step. In the GeNIe interface,4 such nodes are placed within so called Temporal Plate
(see Fig. 13.2). Five nodes were modeled as initial conditions and they represent
patient clinical history record such as History of contraception, History of Cancer,

4The introduction to this part of the book contains a brief description of dynamic Bayesian networks
with the examples presented in the GeNIe software.
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Fig. 13.2 Pittsburgh Cervical Cancer Screening Model

Menstrual History, the HPV Vaccine Status, and Other History (see the panel Init
Conditions in Fig. 13.2). Another variable that does not change over time is Race.
These static nodes are indicated in Fig. 13.2 by a bold border.

Most of the relationships modeled in the PCCSM model are causal, however,
we also learned some of the relations from the data. For example, the relationship
between History of contraception and Age was learned from the data. The average
number of parents per node is 1.1, while the average number of states per node is
5.9. The node with the highest number of states is the one representing the Pap test
and it consists of 9 states.

Figure13.3 shows a version of the PCCSM model that is unfold for three time
steps. To demonstrate the relationships between the variables in different time steps,
we limited the model to four temporal nodes and five static nodes.

13.3.2 Time Granularity

The time step that we had chosen in the PCCSM model was one year. This is a con-
sequence of cervical cancer screening guidelines in USA, recommending a woman
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Fig. 13.3 Unfold version of the PCCSM model; a simplified version limited to 9 out of 15 nodes

to come for her Pap test examination once a year. In fact, these recommendations
were recently changed to less frequent screening [17].

For each patient in the data set we defined the initial time as t = 0. Initial time
indicates the year when the woman got registered in our database, i.e., usually when
she showed up for the Pap test for the first time. While preparing the screening data
for learning the parameters of the model, for each woman and for a particular model
variable, we have chosen only one result per time step. For example, if a woman had
more than one Pap test performed during a period of one year, we have chosen the
most abnormal interpretation of this test.

13.3.3 Numerical Parameters

One of the feature of real world data is their incompleteness. Especially, in medical
data collected over time we can expect missing entries. This is also a characteristic
of our data. Figure13.1 confirms that we do not have a complete follow-up data. In
the PCCSM, we treated a missing value as an additional state and we modeled it
explicitly as a possible state of a node. For example, if there was no Pap test result,
we have modelled it as the state not available (NA). Please, note that each of the
three nodes listed in Table13.1 has the state NA. Similarly, if there was no diagnostic
test result associated with a particular screening test result, we associated it with the
value not available. Our data are screening data and 82% of all screening test results
are negative, i.e., they usually correspond to healthy women.

Another characteristic of our data is that they do not containmany cases of invasive
cervical cancer. The reason for this is that if a woman is screened frequently enough,
usually she will not develop an invasive cervical cancer due to treatment procedures
that would be conducted if the presence of any precancerous cells will be detected on
screening test results. Around 50% of all womenwith cervical cancer in our database
were not screened and did not have any previously recorded data.
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We have learned the numerical parameters of the PCCSMmodel from the cervical
cancer screening data collected at Magee-Womens Hospital. To learn the numerical
parameters of the model we have applied the EM algorithm implemented in the
SMILE library [9]. The resultingmodel has 2,414 independent numerical parameters.

13.4 Application of PCCSM

In this sectionwewill present two applications of the PCCSMmodel: (1) the PCCSM
as cervical cancer risk assessment tool and (2) the PCCSM as personalized aid for
follow-up decision making.

13.4.1 Cervical Precancer and Invasive Cervical Cancer
Predictions

The main outcome measure of the PCCSM model is the risk of developing cer-
vical precancer or invasive cervical cancer. This risk is expressed by a posteriori
probability calculated by the PCCSM model. The important advantage of dynamic
Bayesian network approach is that it allows for looking at risk predictions for cer-
vical precancer and invasive cervical cancer from different perspectives. Figure13.4
presents the impact of patient history record on the cervical cancer risk assessments.

Fig. 13.4 ThePCCSMrisk assessments for cervical precancer and invasive cervical cancer (CIN3+)
given history record
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Fig. 13.5 A web-based interface of the PCCSM model: Risk assessments for cervical precancer
(CIN2, CIN3/AIS) and invasive cervical cancer (carcinoma) over time

The figure captures quantitative risk predictions of precancer and invasive cervical
cancer (CIN3+)5 over the time period of five years for patients that in year 0 had
an abnormal Pap test result (ASCUS)6 and a negative hrHPV test result. The five
curves represent five groups of women with different history record. The PCCSM
model allowed for identifying those risk categories that are crucial for follow-up
planning, e.g., patients that are at higher risk of developing cervical cancer should be
screened more often than patients that are at lower risk. For example, women with
two negative Pap test results in the past (represented by a bottom curve in Fig. 13.4)
are in a different risk category than women that had suspicious or positive malignant
cells in the past (represented by a top curve in Fig. 13.4) even if they have the same
screening test results in year 0 (i.e., the ASCUS result for a Pap test and negative
hrHPV test result).

13.4.2 Personalized Aid in Clinical Management
and Follow-Up Decision Making

The PCCSMmodel allows for individualized management of patients and computes
patient-specific risk based on the patients characteristics such as history data, de-
mographics, and current screening test results. We have built a prototype web-based

5CIN3+ stands for Cervical Intraepithelial Neoplasia grade 3 and indicates a severe dysplasia and
worse including invasive cervical cancer.
6ASCUS stands for Atypical Squamous Cells of Undetermined Significance and indicates mild
cellular abnormality in the cervix.
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interface that helps to interact with the model [16]. This interface allows for entering
patient data and saving them in patient data repository. The user of this tool can
upload patient data and assess the risk prediction for cervical precancer and invasive
cervical cancer. Figure13.5 depicts one of the screen shots of this interface. The
figure presents cumulative values of risk of developing cervical precancers (CIN27,
CIN3/AIS) and invasive cervical cancer (carcinoma) over time. These results were
calculated for a specific patient: a woman that at the beginning of the follow-up was
29, there were two years of follow-up data available: double ASCUS results for Pap
test and double positive results for the hrHPV test. The PCCSM model shows that
this woman will have a 20% risk of developing CIN2 within four years.

13.5 Conclusions

In this chapter we have introduced the PCCSMmodel for cervical cancer screening.
The PCCSM model allows for calculating the predictions of cervical precancer and
invasive cervical cancer. It incorporates various variables in one framework and
allows for looking at these predictions from different perspectives, including the
perspective of patient history record. The model is capable of identifying groups of
patients that are at higher risk of developing a disease. These quantitative predictions
can be helpful in establishing the optimal timing of a follow-up screening.

We plan to use the PCCSM model in a routine medical practice as a quality
control tool in high risk case selection for rescreening [3]. This can have a noticeable
effect on the quality of medical care in our laboratory. Under the Clinical Laboratory
Improvement Amendments of 1988 (CLIA 88), laboratories in USA are required to
rescreen negative Pap test results. The challenge here is how to select negative Pap test
slides for targeted high risk quality control rescreening. The process of high risk case
selection at Magee-Womens Hospital is currently based on a simple identification
of cases with an abnormal prior history, e.g., if a woman had a positive hrHPV test
result or abnormal tissue result in the past, she is considered to be a high risk case and
is selected for rescreening. We believe, that this process could be further improved
by the PCCSM model.
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Bayesian network models were created and tested using SMILE, an inference engine, and Ge-
NIe, a development environment for reasoning in graphical probabilistic models, both developed at
the Decision Systems Laboratory and available at https://dslpitt.org/genie/.

7CIN2 stands for Cervical Intraepithelial Neoplasia grade 2 and indicates moderate dysplasia that
usually regresses.
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Chapter 14
Modeling Dynamic Processes with Memory
by Higher Order Temporal Models

Anna Łupińska-Dubicka and Marek J. Druzdzel

Abstract Most practical uses of Dynamic Bayesian Networks (DBNs) involve tem-
poral influences of the first order, i.e., influences between neighboring time steps.
This choice is a convenient approximation influenced by the existence of efficient
algorithms for first order models and limitations of available tools. In this paper,
we focus on the question whether constructing higher time-order models is worth
the effort when the underlying system’s memory goes beyond the current state. We
present the results of an experiment in which we successively introduce higher order
DBN models monitoring woman’s monthly cycle and measure the accuracy of these
models in estimating the fertile period around the day of ovulation. We show that
higher order models are more accurate than first order models. However, we have
also observed over-fitting and a resulting decrease in accuracy when the time order
chosen is too high.

14.1 Introduction

While all real world systems change over time, modeling their equilibrium states
or ignoring change altogether, when it is sufficiently slow, is sufficient for solving
a wide spectrum of practical problems. In some cases, however, it is necessary to
follow the change that the system is undergoing and introduce time as one of the
model variables.

We concentrate in this chapter on models that belong to the class of probabilistic
graphical models, with their two prominent members: Bayesian networks (BNs) [7]
and dynamic Bayesian networks (DBNs) [3]. BNs are widely used practical tools for
knowledge representation and reasoning under uncertainty in equilibrium systems.
DBNs extend them to time-dependent domains by introducing an explicit notion of
time and influences that spanover time.Most practical uses ofDBNs involve temporal
influences of the first order, i.e., influences between neighboring time steps. This
choice is a convenient approximation influenced by existence of efficient algorithms
for first order models and limitations of available tools. After all, introducing higher
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order temporal influences may be costly in terms of the resulting computational
complexity of inference, which is NP-hard even for static models. Limiting temporal
influences to influences between neighboring time periods is equivalent to assuming
that the only thing that matters in the future trajectory of the system is its current
state. Many real world systems, however, have memory that spans beyond their
current state.

The question that we pose in this chapter is whether introducing higher order
influences, i.e., influences that span over multiple steps, is worth the effort in the
sense of improving the accuracy of the model. The idea of increasing modeling
accuracy by means of increasing the time order of a dynamic model was beautifully
illustrated by Shannon. In his seminal paper [11], outlining the principles of theory
of information, he shows sentences in the English language, generated by a series of
Markov chain models of increasing time order, trained by means of the same corpus
of text. The following sentence was generated by a first order model:

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH

EEI ALHENHTTPA OOBTTVA NAH BRL.

Compare this with the following sentence generated by a sixth order model:

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH

WRITER THAT THE CHARACTER OF THIS POINT IS

THEREFORE ANOTHER METHOD FOR THE LETTERS

THAT THE TIME OF WHO EVER TOLD THE PROBLEM

FOR AN UNEXPECTED.

The resemblance of the latter sentence to ordinary English text, an informal measure
of the model’s accuracy, has increased dramatically between the first and the sixth
orders. A first order model was essentially impotent in its ability to learn and model
the language.

While generation of English sentences may be too hard of a problem, the vehicle
for our experimentswith varying timeorder is the problemofmonitoring thewoman’s
monthly cycle, a problem central to human fertility. Every couple seeking help in a
fertility clinic is asked to monitor the monthly cycle before any medical intervention
is undertaken. An accurate monitoring model can be a great aid in natural family
planning, indicating optimal days for sexual intercourse. There exist methods for
fairly precise determining of the day of ovulation (e.g., blood hormone level tests or
ultrasonographic analysis of the ovaries), but they either require laboratory visits or
expensive testing kits. What is important from the perspective of the question posed
in this chapter is that woman’s monthly cycle is a system with memory going most
certainly beyond one day and probably spanning over a period of roughly a month.

We report the results of an experiment in which we successively introduce higher
order DBNs modeling the monthly cycle and measure the accuracy of these models
in estimating the fertile period around the day of ovulation. We train our models on
real time series data obtained from a longitudinal study of fecundability conducted
in several European centers [2]. We show that increasing the time order of the model
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greatly improves its accuracy but only up to a certain point. Too high order of amodel
decreases accuracy, probably though over-fitting the training data.

The remainder of the chapter is structured as follows. Section14.3 reviews what
we know about woman’s monthly cycle. Section14.5 describes the data that we used
in training our models. Section14.4 describes our DBN models, Sect. 14.6 describes
our experiments, and Sect. 14.7 summarizes the results of our experiments with the
models. Finally, Sect. 14.8 offers some advice to knowledge engineers building DBN
models in practice.

14.2 Bayesian Networks

Bayesian networks (BNs) are probabilistic graphical models that offer a compact
representation of the joint probability distribution over a set of random variables
X = x1, . . . , xn . Formally, a Bayesian network is a pair (G, Θ), where G is a acyclic
directed graph (ADG) in which nodes represent random variables x1, i . . . , xn and
edges represent direct dependencies between pairs of variables. The second compo-
nent of a Bayesian network, Θ , represents the set of parameters that describes a con-
ditional distribution for each node xi in G, given its parents in G, i.e., P(xi |Pa(xi )).
Very often, the structure of the graph is given a causal interpretation, convenient from
the point of view of knowledge engineering and user interfaces. Bayesian networks
allow for computing probability distributions over subsets of their variables condi-
tional on other subsets of observed variables. This can be given the interpretation
of computing the probability of a hypothesis in light of evidence. BNs are widely
applied in decision support systems, where they typically form the central inferential
engine.

Consider the simple Bayesian network shown in Fig. 14.1. This is a simplified
example, illustrating various causes of allergy in children. The tendency to develop
allergies is often hereditary. Allergic parents are more likely to have allergic chil-

Fig. 14.1 A simple Bayesian network illustrating selected causes and effects of allergy in children.
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dren, and their allergies are likely to be more severe than those from non-allergic
parents. Exposure to allergens, especially in early life, is also an important risk factor
for allergy. When an allergen enters the body of an allergic child, the child can cough
or develop a rash. Figure14.1 shows the dependency structure among the variables
and the conditional probability distributions for each of the variables. All variables in
this example are Boolean. At the roots, we have the prior probabilities (e.g., that one
or both of the parents suffer from allergies or a child had a contact with allergen in
early life). The conditional probabilities for the non-root nodes give the probability
distributions over the nodes conditional on various outcomes of the direct predeces-
sors in the graph (e.g., probability distribution over the variable coughing given that
a child has allergy).

Dynamic Bayesian networks (DBNs) are an extension of Bayesian networks for
modeling dynamic systems. In a DBN, the state of a system at time t is represented
by a set of random variables Xt = (X1,t , . . . , Xn,t ). The state at time t generally
dependents on the states at previous time steps. Typically, we assume that each
state only depends on the immediately preceding state (i.e., the system is first-order
Markov), and thus we represent the transition distribution P(Xt |Xt−1). This can
be done using a two-slice Bayesian network fragment (2TBN) Bt , which contains
variables from Xt whose parents are variables from Xt−1 and/or Xt , and variables
from Xt−1 without their parents. The term dynamic means that we model the state
of a system over time, not that the model structure and its parameters change over
time (even though the latter is theoretically possible). A DBN is typically defined as
a pair of Bayesian networks (B0, B→), where B0 represents the initial distribution
P(X0, and B→ is a two time slice Bayesian netwok, which defines the transition
distribution P(Xt |Xt − 1) as follows [3]:

P(Xt |Xt−1) =
N∏

i=1

P(Xi,t |Pa(Xi,t ))

Consider a two years old childwhose parents suffer from allergy andwho has been
exposed to some allergens. We know that this child has not developed any symptoms
of allergy in the previous year. Suppose that we want to know the probability that
allergy appears in the third year. If we use the BN pictured in Fig. 14.1, we omit all
historical information except for the previous year. Figure14.2 (a) shows a DBN of
first temporal order, which means that we take into consideration not only present
observations but also these from the previous year.

As we mentioned above, one often assumes in practice that each state depends
only on the immediately preceding state. In most cases, taking into consideration
only the first-order dependence is probably sufficient. However, in general, we can
specify layers from t − n to n. There is a possibility that some phenomena could be
modeled with higher efficiency if they also take account of the influence of states
earlier than immediately preceding the current state of the model. To our knowledge,
the question whether such simplification of dynamic models leads to incomplete and
even erroneous results has never been studied systematically.
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Fig. 14.2 Dynamic Bayesian networks modeling causes and effects an allegry in children: (a) first
order DBN, (b) second order DBN. Number of slices is the number of steps for which we perform
the inference. In this example, one step means one year. Temporal plate is the part of dynamic
network that contains the temporal nodes. Hereditary Factor is time independent; the values of
remaining the nodes can change over time.

Figure14.2(b) shows a second order dynamic network, i.e., in which there are two
temporal arcs from node Allergy, the first order takes the information from one step
before, the second from two steps before. Typically, the older the child the lower
the probability of allergy appearing. And, generally, the child that has not developed
allergy two years in a row, has a lower chance of developing allergy in the third year.

14.3 Woman’s Monthly Cycle

Woman’s monthly cycle is driven by a highly complex interaction among hormones
produced by three organs of the body: the hypothalamus, the pituitary gland, and
the ovaries. There are five main hormones involved in the menstrual cycle process:
estrogen, progesterone, gonadotropin releasing hormone (GnRH), follicle stimulat-
ing hormone (FSH), and luteinizing hormone (LH).

Estrogen refers to a group of hormones that stimulate growth and strengthen
tissues. It is needed to build up the lining of the uterus so that it may nourish and
sustain a fertilized egg. Progesterone is produced by the follicle from which the
mature egg has been released (the follicle that has released an egg is called corpus
luteum). Progesterone helps make the endometrial lining ready for implantation if an
egg is fertilized during the cycle. It also prevents the egg follicles from developing
any further. GnRH, produced by the hypothalamus in the brain, is responsible for the
production and levels of estrogen in the body. FSH is secreted by the pituitary gland,
which is stimulated by the hypothalamus’ production of GnRH. Increased levels of
FSH help to stimulate egg follicles. LH, produced by the pituitary gland, is needed
to trigger the ovulation.

The woman’s monthly cycle consists of four phases (Fig. 14.3 shows these four
phases along with the associated hormone levels): (1) menstruation, (2) the follicular
phase, (3) ovulation, and (4) the luteal phase. Counting from the first day of the
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Fig. 14.3 Levels of hormones during the phases of the woman’s monthly cycle [13]

menstrual flow, the length of each phase may vary from woman to woman and from
cycle to cycle, although the entire cycle takes typically between 24 and 32days.

Menstruation begins with the first day of bleeding. Contraction of the muscle
layer occurs, expelling blood and endometrial cells through the vagina. During the
follicular phase (or the proliferative phase), the follicles in the ovary mature. The
main hormone controlling this stage is estrogen. Just before the ovulation, the level
of estrogen is high enough to cause an increased release of luteinizing hormone and,
as a result, the egg is released from the ovary. The luteal (or the secretory) phase is
the latter phase of the menstrual cycle. The main hormone associated with this stage
is progesterone, which occurs at significantly higher levels during the luteal phase
than during the other phases of the cycle.

In addition to measurable blood hormone levels, there are several readily acces-
sible indicators of the phase of the cycle, two of which we will use in our models.
The basal body temperature (BBT) is defined as the body temperature measured
immediately after awakening and before any physical activity has been undertaken.
It should bemeasured every day at the same time. Before ovulation, BBT is relatively
low. Following the ovulation, as a result of an increased level of progesterone in the
body, women typically experience an increase in the basal body temperature (BBT)
of at least 0.2 ◦C. This shift indicates that ovulation has occurred. The BBT charting
may provide valuable information about woman’s monthly cycle, such as duration
of the cycle, length of the follicular and luteal phases, and the pattern of the timing of
ovulation. Sometimes BBT can rise due to causes other than ovulation. This atypical
rise is treated as disturbance and can be caused by a change in conditions around the
measurement, such as later measurement time, lack of sleep, different thermometer,
high stress, travel, or illness. As the cycle progresses, due to hormonal fluctuations,
the cervical mucus increases in volume and changes texture. When there is no mucus
or the mucus discharge is small, the day is considered infertile. There can be also
a feeling of dryness around the vulva. Around the ovulation, mucus is the thinnest,
clearest, and most abundant, resembling egg white. In the luteal phase, it returns to
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the sticky stage. During the monthly cycle, the cervix changes its position, firmness,
and openness, in response to the same hormones that cause cervical mucus to be
produced and to dry up. At the beginning of the cycle, cervix is located low in the
vaginal canal and the os (the orifice of the uterus) is relatively small or closed. As
ovulation approaches, cervix moves up the vaginal canal and becomes softer, with
the os opening up. After ovulation cervix moves down and closes.

The menstrual cycle is a fairly noisy temporal process with memory spanning
over the entire cycle. This means that the current state is not only influenced by the
previous state but also by prior days, going back even to the beginning of the phase.

14.4 The Model

Accurate prediction of the fertile phase of the menstrual cycle is crucial for couples
whowant to conceive or coupleswhowant to avoid pregnancy using naturalmethods.
The fertile phase of themenstrual cycle is defined as the timewhen an intercourse has
a non–zero probability of resulting in conception. Because the fertile period starts
roughly five days before ovulation (this is essentially due to the fact that sperm can
live up to five and fertilize the egg when ovulation happens, prediction has to be
made in advance and, hence, asks for models that include an explicit notion of time.

Our model (Fig. 14.4), combines information retrieved from BBT charting with
observations of the cervical mucus secretions. It contains a variable Phase with four
states: menstruation, follicular, ovulation, and luteal. We included three observa-
tion variables: Basal Body Temperature (BBT), Bleeding and Mucus observation.
All variables are discrete. BBT has two possible values: lower range and higher
range, representing temperature before and after the BBT shift respectively. Bleed-
ing describes whether on a particular day the woman had menses or not. Mucus
observation can be in one of four states (s1 through s4), described in detail in [4].
We modeled time explicitly as n time steps, where n is the number of days of the
longest monthly cycle of the modeled woman. The model is of k-order, i.e., it con-
tains temporal influences between 1 and k. Figure14.4 shows an example DBN of
3rd order. Furthermore, while any DBN model should contain at least one first order
influence, amodel of order k does not need to include influences of all orders between
1 and k − 1.

To train a complex model we need a large number of observations. Learning mod-
els from data is based on strong theoretical foundations. Having sufficient amount
of data, we can reliably learn numerical parameters of the model. In practice, how-
ever, the number of data records is often limited and generally making it challenging
to learn reliable estimates of the parameters. Collecting data in case of a woman’s
monthly cycle problem will never result in sufficiently large data sets. Assuming that
a woman is fertile during 40years of her life, with roughly 13 cycles each year, she
can collect at most 520 records. When these 520 records have been accrued, they are
useless, as the woman is no longer fertile. In practice a woman will have not more
than a couple of years worth of reliable data, i.e., roughly twenty-something records.
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Fig. 14.4 A 3rd order DBNmodel of woman’s monthly cycle. The plots inside the rectangles show
the marginal probability distributions over the variables that they represent.

Typically, a model that aids in conception or in avoiding pregnancy, needs to rest on
a handful of records.

Learning conditional probability distribution tables amounts essentially to count-
ing data records for different conditions encoded in the network. The number of
parameters required to specify a CPT for a node grows exponentially in the number
of its parents, and thus the higher the order the more complex its structure and the
more data are needed to learn parameters. In case of a fifth order DBN network of
woman’s monthly cycle for the node Phase, we need to estimate 1, 024 parameters.
Even if we take into consideration that due to the specifics of the domain many
columns of the CPTs represent unlikely cases, we are still dealing with a problem of
insufficient amount of data. Please note, that most practical fertility awareness meth-
ods advise to consider charting at least six cycles to become familiar with a method.
This means two problems: (1) Constant struggle against over-fitting the model to the
data, and (2) Necessity to use prior knowledge, as a handful of records will never be
enough to learn a complex probabilistic model.

When we learn the network parameters from such a small amount of data, some
of the CPT entries might be learned from an insufficient number of records or there
might even be no data records to learn distributions for some combination of the
outcomes of the parents in a node. In order to provide more meaningful results
and to compensate for the small amount data, we have based the initial structure of a
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model and its parameters on the domain knowledge. This procedure can be described
as follows. We randomly divided all women into five equal subsets. For each woman
the training data set was the sum of four subsets, excluding this which the woman
belonged to. We learned the initial model parameters based on the population of
women. Then we applied these population–based model as the a priori parameters
in all woman–specific models. And as our intention was to simulate usage of a model
by woman who wants to become pregnant or wants to avoid pregnancy, we adjusted
the initial model to each woman using data for her first six cycles.

14.5 The Training Data

Our training data are drawn from an Italian study of daily fecundability [2], which
enrolled women from seven European centers (Milan, Verona, Lugano, Düsseldorf,
Paris, London and Brussels) and from Auckland, New Zealand. To our knowledge,
this is one of the most comprehensive data sets describing woman’s monthly cycle.
Between the years 1992 and 1996, 881women recorded a total of over seven thousand
monthly cycles. Women participating in the study satisfied the following five entry
criteria: (1) experienced in use of a Natural Family Planning method, (2) married
or in a stable relationship, (3) between 18th and 40th birthday at admission, (4) had
at least one menses after cessation of breastfeeding or after delivery, (5) not taking
hormonal medication or drugs affecting fertility. In addition, neither partner could
be permanently infertile and both had to be free from any illness that could affect
fertility.

In each menstrual cycle, the woman was asked to record the days of her period,
her basal body temperature, and any disturbances such as illness, disruption of sleep,
or travel. She was also asked to observe and chart her cervical mucus symptoms daily
during the cycle and to record every episode of coitus, with specification whether
the couple used contraceptives or not.

A menstrual cycle was defined as the interval in days between the first day of
menstrual bleeding in two neighboring cycles, where day 1 was the first day of fresh
red bleeding, excluding any preceding days with spotting. The day of ovulation was
identified in each cycle from records of basal body temperature andmucus symptoms.
The daily mucus observations were classified into four classes; ranging from a score
of 1 (no discharge and dry) to 4 (transparent, stretchy, slippery) [4]. The cervical
mucus peak daywas defined as the last daywith best qualitymucus, in a specific cycle
of the woman. If there were different mucus observations on one day, the most fertile
characteristic of the mucus observed determined the classification. To determine the
BBT shift, the ”three over six” rule (popular among fertility awareness methods
or FAMs) was used: The first time in the menstrual cycle when three consecutive
temperatures were registered, all of which were above the average temperature of
the last six proceeding days.

In our analysis, we included only 3, 432 (of 7, 017) cycles from 236 (of 881)
women. We excluded all women who collected fewer than seven cycles, because a
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woman needs at least six cycles to become familiar with a chosen fertility awareness
method.We also excluded cycles with no uniquely identified mucus peak or the BBT
shift days, because our model uses these values to determine the beginning of the
post–ovulatory infertility. We also excluded women with very long cycles (longer
than 40days).

14.6 Experiments

For each woman, we created seven DBNs of temporal orders ranging from 1 to 7.
Additionally, for each woman we created a model, with a structure that can change
after each cycle. We changed the structure of that model by adding or removing tem-
poral arcs, bearing inmind that first order arc is necessary and cannot be removed. For
the last 12 cycles, we calculated the minimal and most frequent day of the ovulation.
Dividing these values by twowe received the order of temporal arcs that should appear
in the model. Typically these orders were between six and nine. We determined the
initial parameters of all models based on domain knowledge. We personalized each
model using data for the first six cycles. After each cycle we re-evaluated the model’s
parameters based on previous cycles of thewoman. Because awoman’s body can also
change over time and with it the characteristics of the cycle, we updated the structure
and parameters using not more than the last 12 monthly cycles.

In case of monitoring a woman’s monthly cycle, the main goal is to predict the day
of ovulation and based on it to determine the fertile window. The number of fertile
days during a menstrual cycle is difficult to specify, as it depends on the life span of
the ovum and sperm, which varies from person to person and from cycle to cycle.
Most menstrual cycles start with infertile days (pre–ovulatory infertility), a period
of fertility and then several infertile days until the next menstruation (post–ovulatory
infertility). It is generally believed that an ovum can be fertilized only within the first
24h after ovulation [10]. Many authors agree that the start of the fertile interval is
strictly connected with changes in vaginal discharge and, in particular, estrogenic–
type cervical mucus secretions. However, they differ in their estimates of the length
of the fertile window. Potter [8] calculated that there are only two days during the
menstrual cyclewhen awoman can becomepregnant.Wilcox et al. [14] found that the
maximum sperm life span equals approximately five days (in presence of sufficient
level of estrogenic–type mucus), which comes down to a fertile period of six days,
including the day of the ovulation. The results of a multi–center study conducted by
theWorld Health Organization [6] estimate the fertile period to be asmany as 10days
before ovulation. Some of the fertility awareness methods assume this interval to be
as long as 13days or even longer [1, 5, 9, 12].

Our intention was to simulate the usage of DBN model by women who want to
become pregnant or want to avoid pregnancy. At every time step (i.e., every day of
the cycle), our model computed the most probable day of ovulation. If a time interval
between the current day and the day with the highest probability of the ovulation was
shorter than seven days, we marked the current day as fertile. To find the beginning
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Fig. 14.5 Probabilities of each phase during the monthly cycle: (a) order 1, and (b) order 7 DBNs

of the post–ovulatory phase, our model used the BBT shift: We considered the third
day after the BBT shift as infertile.

Just to give an idea of the capability of such models to reproduce the monthly
cycle, we present the probabilities of the four phases of the monthly cycle as a
function of time in Fig. 14.5. These probabilities were generated by DBNs models of
(a) first and (b) seventh order DBNs, trained on monthly charts of one of the women
in the data set. We entered no observation into the models, except for anchoring the
first time step to the first day of menses, i.e., first day of the monthly cycle. Please
note the increased similarity of the shape of the curves to that of the hormone levels
in Fig. 14.3, which are direct indications of phases of the monthly cycle.

To compare the accuracy of different models, we used two measures: (1) the
percentage length of the infertile period (the union of the pre–ovulatory and the post–
ovulatory phase), and (2) the percentage length of the fertile window.We determined
the number of fertile and infertile days in all cycles and divided this number by the
total length of the cycle for each woman and for each cycle. Effectively, we obtained
the percentage of all days that were classified as infertile and percentage of all days
that were classified as fertile. In our opinion, these two numbers (they add up to
100%) are a good indication of the precision of each model.

From the practical perspective, for a model of a monthly cycle to be useful, it
has to predict the day of ovulation and, ultimately, to determine the fertile window.
Days inside the fertile window that were classified as infertile are false negatives.
Please note that because of a possible application of a model like this in natural
family planning, false negatives may be much more serious than false positives, so
the model should minimize its false negative rate to zero. This is essentially the
case with all fertility awareness methods. Days that were marked as fertile and were
outside the fertile window are false positives. The smaller the false positive rate,
the closer the predicted day of ovulation is to the real day of ovulation, which can
be helpful for couples seeking pregnancy. In our experiment, as the gold standard,
we followed Wilcox et al. [14], who define the fertile window as the period between
day of ovulation minus five days and day of ovulation plus one day.
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14.7 Results

Table14.1 and Fig. 14.6 show the average percentage of fertile and infertile days
during a woman’s monthly cycle sorted in the descending order (i.e., the longest to
the shortest infertile period). The number of days in which a woman should abstain
from intercourse to prevent unplanned pregnancy is larger for lower order models.
The smaller the false positive rate, the closer the predicted day of ovulation is to
the real day of ovulation, which can be helpful for couples seeking pregnancy. The
higher the order of the model, the lower the percentage of the false positives. The
7–th order DBN model was most precise and indicated the longest infertile periods
and the shortest fertile periods.

False negatives (Table14.1 and Fig. 14.7) are an important measure of accuracy
of a FAM, because on one hand they may lead to unplanned pregnancy and on the
other hand to less likely conception in case of couples seeking pregnancy.

Table 14.1 Average percentage of fertile and infertile days and false negatives/false positives
during the monthly cycle for each of the compared DBN models.

Method % infertile days % fertile days % false negatives % false positives

SEL orders 0.52% 0.48% 0.0000% 22.84%

1st order 0.53% 0.47% 0.0000% 22.39%

2nd order 0.53% 0.47% 0.0000% 21.71%

3rd order 0.54% 0.46% 0.0000% 20.68%

4th order 0.56% 0.44% 0.0008% 19.42%

5th order 0.57% 0.43% 0.0008% 18.13%

6th order 0.59% 0.41% 0.0008% 16.00%

7th order 0.61% 0.39% 0.0008% 14.54%

Fig. 14.6 Average percentage of fertile and infertile days during the monthly cycle for each of the
compared DBN models.
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Fig. 14.7 False negatives and false positives duringmonthly cycle for each of the comparedmodels.

Our results show that higher order models (4th through 7th) show non-zero false
negative rate. We investigated this further and found that in each case there was an
anomalous cycle, not recognized by the model. It seems that higher order models
have the tendency to over-fit the data and be unable to deal with monthly cycles that
deviate from typical cycles.

14.8 Conclusion

We have presented the results of an experiment with a series of DBN models mon-
itoring woman’s monthly cycle. We have shown that higher order models are more
accurate than first order models, as summarized in Fig. 14.6. The lengths of the fertile
period for higher order models were shorter, which indicates a better ability of the
model to predict ovulation. The percentage of false negatives for all models was zero
or very close to zero (0.0008%). Higher order models tend to over-fit the data and
have difficulty with anomalous cycles. While we advise to use higher order temporal
models for systems with memory, we caution against too high order models when the
system exhibit significant noise, as such models may over-fit the data and perform
poorly when the course of events departs from typical.
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Chapter 15
Treatment of Disease: The Role of Knowledge
Representation for Treatment Selection

Jesse Davis, Luis Enrique Sucar and Felipe Orihuela-Espina

15.1 Treatment Selection

Treatment is the care and management of a patient to combat, ameliorate, or prevent
a disease, disorder, or injury.1 It may be active if directed to the cure of the disease,
causal if directed against the cause of the disease, palliative if only aimed to relieve
pain or distress with no attempt to cure, preventive if aimed to prevent the occurrence
of a disease, etc. The goal of treatment selection is to help practicing clinicians gain
and apply knowledge and standards in order to select the best possible treatment
for a patient [3]. Managing a patient’s care involves alternating between diagnosis
(assessment) and treatment over a period of time [13]. The treatment portion involves
a series of decisions, where each one requires selecting among several alternative
courses of action [7].

Research on medical judgment has raised deep questions about how clinicians
make decisions and plan treatment, particularly when they are faced with uncertainty
and information overload. This has lead to the proposal of artificial intelligencemeth-
ods that support decision making for treatment selection [7]. Knowledge about the
effectiveness of treatments must be based on empirical evidence which is, for the
most part, produced by scientific research and published in scientific literature. How-
ever, extracting this knowledge from research outcomes is not trivial. Indeed, even for
someone who is deeply imbued in statistical procedures and nuances, it is very diffi-
cult to know what research findings really mean at the level of clinical practice [4].
One of the most significant obstacles in the practice of personalized medicine is the
translation of scientific discoveries into better therapeutic outcomes [29].

For most diseases, selecting a treatment is complex because every patient is
unique, and many symptoms and diagnoses are imprecise in their definition [30].
For instance, in the case of infectious diseases, the complexity of the problem is
so large that it is highly unlikely that clinicians will be capable of delivering opti-
mal treatment to all patients [16]. Therefore, some clinicians believe that providing

1Mosby’s Medical Dictionary, 8th edition in theFreeDictionary.com.
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decision support tools may improve the quality of care a patient receives through
providing better treatment choices [24].

Helping the clinician select a certain treatment is a multi-objective decision prob-
lem that must address different questions [6], such as:

• What would be the most cost-effective treatment?
• How may we plan a treatment regime to cover for possible contingencies?

Knowledge-based systems (KBS) can help practitioners by evaluating the potential
outcomes for multiple courses of action. For instance, decision-theoretic KBS can
compare alternative treatment policies by combiningmeasures of outcome likelihood
with estimates of utility [6].

The next section provides an overview of the main knowledge representation
techniques that can be applied for treatment selection. This is followed by a section
that presents some representative examples of applications of these techniques. The
chapter concludes by introducing the two systems that will described in the following
two chapters. The first proposes combining a logical and probabilistic approach
for predicting adverse drug reactions from electronic medical records. The second
considers a decision-theoretic model for patient-tailored virtual rehabilitation.

15.2 Knowledge Representation Techniques

The following list presents some of themainKR techniques appropriate for treatment
selection. The list is not intended to be exhaustive but only to give a broad overview
of the possibilities.

• Rule-based systems: Rule-based systems are perhaps one the most simple, yet
powerful KR methods. Knowledge is encoded in the form of IF-THEN-ELSE
rules, and the set of all rules form the rule base or knowledge base. Finally, the
inference engine answers questions given to the system by applying the rules to the
data in the working memory. An example is Lee et al.’s [14] system for monitoring
diabetes that combines rule-based knowledge with a k-nearest neighbour classifier
to recommend a treatment.

• Logic of argumentation: The logic of argumentation is a variant of standard
first-order logic where an argument has the form of a proof but does not prove
its conclusion [7]. In contrast to classical logic, in argumentation p and ¬p can
both be inferred from the same knowledge database. This can occur because the
KB is split into subsets, called theories, that are internally but not necessarily
mutually consistent. The decision making process in argumentation ranks possible
solutions in terms of the supporting arguments formed by claims, grounds and
confidence. Toxicology and risk assessment in genetics are among the examples
where argumentation has been useful [7].

• Fuzzy set theory and fuzzy logic: The adjective fuzzy encompasses the notion of
a degree of membership. In this sense, a fuzzy set is a set where a bounded function
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of membership is defined over its members. Translated to logic, this means that
inferences are not restricted to being either true or false, but that they can capture
different shades of belief. A number of treatment selection systems use fuzzy set
theory and fuzzy logic including the fuzzy-ARDS for the intensive care data of
patients with acute respiratory distress syndrome (ARDS) [1] and Ying et al.’s
[30] system for determining optimal HIV/AIDS treatment regimens.

• Bayesian decision-theoretic systems: In general, Bayesian models are based
on probabilities which are updated as new evidence becomes available. Bayes’
theorem, which is central to these systems, facilitates inference from existing
knowledge. Probabilistic graphical models, which combine an intuitive visual rep-
resentation with rigourousness of statistics, express (statistical) conditional inde-
pendencies, which are often admitted as proxies for causality. Perhaps the best
known Bayesian decision-theoretic framework is Bayesian networks whose via-
bility for treatment selection is illustrated by a simple pathophysiological model
of infection to choose antibiotic treatment [2]. Of course, more advanced mod-
els, such as influence diagrams, Markov decision processes (MDPs), and partially
observable MDPs (POMDPs) among others, are also appropriate for treatment
selection.

In general, a knowledge representation framework optimized for one task, such
as diagnosis, might perform poorly in another task, such as treatment selection [20].
Recently, machine learning techniques have been incorporated into the library of
plausible tools to build or improve recommendation systems based on different rep-
resentation techniques. This is illustrated in the two examples that are described at
the end of this chapter. One uses data from medical records to build a rule-based
system for predicting adverse drug reactions. The other uses reinforcement learning
to improve a model for adapting a virtual rehabilitation environment to the patient
progress.

15.3 Medical Applications

Existing expert and decision support systems tend to focus on diagnosis, and only
a few systems deal with treatment selection [23]. Nevertheless, decision-support
systems for treatment selection have made an impact in several different medical
domains. This section provides some representative examples of treatment selection
for a couple of domains.

Treatment selection for infectious diseases is an area that has received attention
since the early days of artificial intelligence. The MYCIN system was one of the first
rule-based expert systems to attempt to determine anti-infective treatment for septi-
caemia and meningitis [6]. Since then a number of decision support models focused
on treatment selection for infectious diseases have been developed based on dif-
ferent computational techniques including logistic regression, Bayesian approaches,
and neural networks [2, 24]. Nosocomial infections are sub-domain of infectious
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disease that have received particular attention [16, 24], and a canonical system for
this task is the Health Evaluation by Logical Processing (HELP) system [17].

The worldwide prevalence of diabetes is overwhelming as currently about 2.2%
of the world population suffers from it. This percentage is estimated to rise to 4.4%
by 2030, which translates tomore than 300million people [28]. Therefore, it is unsur-
prising that a number of decision-support systems for treatment selection in diabetes
havebeendeveloped. Someare integrated into the hospital environment, like theDIA-
CONS system [23], while others are developed for ubiquitous healthcare [14].

An exhaustive list of domains is beyond the scope of this section, but it is easy
to find examples of knowledge representation-based treatment selection systems
in HIV/AIDS [30], breast cancer [13], anemia [22], dyspnoea and bronchospasm
[6], glaucoma e.g. CASNET [27], acute respiratory distress syndrome (ARDS) [1],
rehabilitation [10] and psychotherapy [3] among others.

Somedecision-support systemsdonot focus on specific diseases but instead intend
to be a more comprehensive tool. One example that supports treatment selection is
the Oxford System of Medicine [8, 20], which is a project aimed at developing a
comprehensive information management and decision support system for general
practitioners (GPs).

Next, we briefly introduce the two treatment selection systems presented in the
following chapters.

15.4 Personalized Medicine: Predicting Adverse Drug
Reactions

One issue that a doctor faces when treating a patient is selecting a medication to
prescribe. This task has received increased attention because there have been sev-
eral dramatic examples of patient variation in response to drugs such as Rofecoxib
(Vioxx™) andCoumadin™[11, 18]. These extremevariations in response are known
as Adverse Drug Reactions (ADRs) [9, 12, 19], and they are the fourth-leading cause
of death in the United States and represent a major risk to health, quality-of-life and
the economy [21]. For example, the pain reliever Vioxx™ alone was earning US$2.5
billion per year before it was found to significantly raise the risk of heart attack and
was pulled from the market while other similar drugs remain on the market [11, 18].

These cases have highlighted the need for tools that can help a doctor more
accurately determine which drug and dosage to prescribe to a patient. This may be
possible now due to the shift in healthcare practice towards the wide spread use of
electronic medical records (EMRs), which are databases that store a patient’s clinical
history. Thus, the relevant data reside on disk as opposed to paper charts. Therefore,
machine learning anddatamining techniques could be applied toEMRdata in order to
build decision-support models to help doctors decide which medication to prescribe
to which patient.
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When EMRs are based on relational databases (a common choice), their relational
schemas (i.e., the database contains separate relational tables for diagnoses, prescrip-
tions, labs, etc.) pose challenges from a knowledge representation perspective.When
analyzing such data it is important to capture important relationships (e.g., time of
diagnosis may be relevant) as well as to model the uncertain, non-deterministic rela-
tionships between patients’ clinical histories and current and future predictions about
their health status. Yet traditional learning and mining paradigms have almost exclu-
sively focused on handling propositional data. That is, data residing in a single table,
where each row represents a data point and the rows in the table are assumed to be
independent. It is non-trivial to convert an EMR into a single-table because different
patients may have dramatically different numbers of entries in any given table, such
as diagnoses or vitals. Chapter 16 will discuss three different strategies that address
this problem such that statistical models can be learned from relational EMR data.
We will present an evaluation of the different methodologies on three real-world
ADR tasks.

15.5 Patient-Tailored Rehabilitation: Automatic
Adaptation to the Patient

The consequences of strokes worldwide are devastating. They are the first-leading
cause of disability, the second-leading cause of dementia, and the third-leading cause
of death (more than five million deaths a year). Furthermore, they are a major cause
of epilepsy, falls and depression and their prevalence exceeds 30 million people
worldwide [5]. In the US alone, the estimated cost of strokes in 2007 surpassed $40
billion USD. Long-term care for stroke rehabilitation will benefit from strengthening
health systems, and developing innovative therapies. A rising star among these new
generation of therapies is virtual rehabilitation [15], which is a therapy paradigm that
exploits the power of computers to provide a training environment with unmatched
capabilities for tailoring the treatment to a specific patient.

Since the mid nineties, a number of virtual rehabilitation platforms have been
developed with different salient features [26]. Gesture Therapy (GT) [25] is an upper
limb virtual reality-based motor rehabilitation platform whose major strength is the
extensive use of advanced decision theoretic models in order to support adaptation
of the therapy to the changing needs of the patient. GT is an example of intelligent
rehabilitation, a modality which exploits knowledge representation and reasoning to
create assistive technology capable of generating actions, that is, decisions, emulating
those of an expert.

Chapter 17 of this book details the probabilistic decision model underlying the
critical feature of GT: adaptation. Adaptation is the pillar of intelligent rehabilitation
because it is the central feature that allows an otherwise static virtual environment to
change its behaviour to fit a patient’s overall progress in a manner that imitates the
decisions a therapist would make as he observes the advance of the patient.

http://dx.doi.org/10.1007/978-3-319-28007-3_16
http://dx.doi.org/10.1007/978-3-319-28007-3_17


240 J. Davis et al.

The decision model of GT is designed to optimize the task challenge expressed by
the virtual environment with regards to patient exhibited performance. The knowl-
edge representation formalism is a Markov decision process (MDP) enriched with
a reinforcement learning strategy that upgrades the static MDP to a dynamic deci-
sion model that keeps the decision policy, i.e., the reasoning, updated throughout the
therapy.

Chapter 17 opens with a discussion on the need and importance of adaptation.
Then, it proceeds to overview possible alternatives for implementing this feature
that capitalize on knowledge representation. Finally, it presents an experimental
evaluation of the adaptation model of the GT platform evidencing the general trend
of the model decisions to learn and mimic the human therapist’s decisions.
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Chapter 16
Predicting Adverse Drug Events
from Electronic Medical Records

Jesse Davis, Vítor Santos Costa, Peggy Peissig, Michael Caldwell,
and David Page

Abstract Learning from electronic medical records (EMR) poses many challenges
from a knowledge representation point of view. This chapter focuses on how to cope
with two specific challenges: the relational nature of EMRs and the uncertain depen-
dence between a patient’s past and future health status. We discuss three different
approachesforallowingstandardpropositional learners to incorporaterelational infor-
mation.Weevaluate theseapproacheson three real-world taskswhere thegoal is touse
EMRs to predict whether a patient will have an adverse reaction to a medication.

16.1 Introduction

Personalized medicine represents a significant application for the health informatics
community [13]. Its objective can be defined as follows:

Given: A patient’s clinical history,
Do: Create an individual treatment plan.

Personalized medicine is possible due to the fundamental shift in health care practice
caused by the advent and widespread use of electronic medical records (EMR). An
EMR is a relational database that stores a patient’s clinical history: disease diagnoses,
procedures, prescriptions, lab results, and more. Figure16.1 shows one very simpli-
fied EMR with two patients that includes phenotypic data, lab tests, diagnoses, and
drug prescriptions. With EMR’s relevant data residing on disk as opposed to paper
charts, it is possible to apply machine learning and data mining techniques to these
data to address important medical problems such as predicting which patients are
most at risk for having an adverse reaction to a certain drug.

However, working with EMR data is challenging. EMR data violate some of
the underlying assumptions made by classical statistical machine learning tech-
niques, such as decision trees [19], support vector machines [22], and Bayesian
networks [15]. These techniques are designed to work on propositional (tabulated)
data. That is, they operate on data that resides in a single table, where each row rep-
resents a data point and the rows in the table are assumed to be independent. Namely,
the obstacles of working with EMR data include:
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Fig. 16.1 A simplified electronic health record. Table A contains information about each patient.
Table B contains lab test results. Table C lists disease diagnoses. Table D has information about
prescribed medications.

Multiple relations: Each type of data (e.g., drug prescription information, lab test
results) is stored in a different table of a database. Traditionally, machine learning
algorithms assume that data are stored in a single table. For example, see the tables
in Fig. 16.1.

Uncertainty: The data are inherently noisy. For example, a diagnosis code of 410 for
myocardial infarction (heart attack, or MI) may be entered to explain billing for
tests to confirm or rule out anMI, rather than to indicate that the patient definitely
had an MI on this date. It might even be entered to indicate that an earlier MI is
relevant to today’s visit.

Non-deterministic relationships: It is important to model the uncertain, non-
deterministic relationships between patients’ clinical histories and current and
future predictions about their health status.

Differing quantities of information: Different patients may have dramatically dif-
ferent numbers of entries in any given EMR table, such as diagnoses or vitals.

Missing and/or incomplete data: Patients switch doctors and clinics over time, so a
patient’s entire clinical history is unlikely to reside in one database. Furthermore,
information, such as the use of over-the-counter drugs, may not appear in the
clinical history. In addition, patients rarely return to report when a given condition
or symptom ceased, so this information is almost always missing.

Schema not designed to empower learning: Clinical databases are designed to
optimize ease of data access and billing rather than learning and modeling.

Large amounts of data: As more clinics switch to electronic medical records, the
amount of data available for analysiswill exceed the capability of currentmachine
learning techniques.

Longitudinal data: Working with data that contains time dependencies introduces
several problems. The central problemwehad to address in ourworkwas deciding
which data to include in our analysis.

These points raise interesting questions for knowledge representation, especially
as they have an effect on the applicability of machine learning and data mining
techniques. This chapter will focus on the first two challenges: how to effectively
represent uncertainty given the multi-relational nature of the data.
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We will discuss three different strategies for learning statistical models from rela-
tional data. Thefirst approach, known as propositionalization, is to simply handcraft a
set of features which are used to represent the multi-relational EMR as a single table.
Then it becomes possible to apply traditional techniques from statistical machine
learning to the modified data. The second approach builds on the first by employing
a pipeline that automatically generates a set of features, uses these features to propo-
sitionalize the data, and then performs learning on the transformed data. The third
approach is more advanced in that it integrates feature construction, feature selection
and model learning into a single process.

To illustrate and evaluate the different approaches, we focus on the important task
of predicting adverse drug reactions (ADRs) from EMR data. ADRs are the fourth-
leading cause of death in the United States and represent a major risk to health,
quality-of-life and the economy [16]. The pain reliever Vioxx™ alone was earning
US$2.5 billion per year before it was found to double the risk of a heart attack
and was pulled from the market while other similar drugs remain on the market [7].
Additionally, accurate predictivemodels for ADRs are actionable. If amodel is found
to be accurate in a prospective trial, it could be used to avoid giving a drug to those at
highest risk of an ADR. Using three real-world ADR tasks, we find that the dynamic
approach results in the best performance on two of the three data sets and that the
handcrafted approach works reasonably well.

16.2 Background

We briefly review Bayesian networks, which are a well-known technique for repre-
senting and reasoning about uncertainty in data. We then discuss Datalog and how
it can be used to represent relational data. The rest of the chapter will make use of
both of these techniques to tackle the knowledge representation problems posed by
EMRs.

16.2.1 Bayesian Networks

Bayesian networks [15] are probabilistic graphical models that encode a joint proba-
bility distribution over a set of random variables, where each random variable corre-
sponds to an attribute. ABayesian network compactly represents the joint probability
distribution over a set of random variables by exploiting conditional independencies
between randomvariables.Wewill use uppercase letters (e.g., X ) to refer to a random
variable and lower case letters (e.g., x) to refer to a specific value for that random
variable. Given a set of random variables X = {X1, . . . , Xn}, a Bayesian network
B = 〈G,Θ〉 is defined as follows. G is a directed, acyclic graph that contains a
node for each variable Xi ∈ X . For each variable (node) in the graph, the Bayesian
network has a conditional probability table θXi |Parents(Xi ) giving the probability
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distribution over the values that variable can take for each possible setting of its
parents, andΘ = {θX1 , . . . , θXn }. ABayesian network B encodes the following prob-
ability distribution:

PB(X1, . . . Xn) =
i=n∏

i=1

P(Xi |Parents(Xi )). (16.1)

The Bayesian network learning task can be formalized as follows:

Given: Data set D that contains variables Xi , . . . , Xn .
Learn: Network structure G, that is, which arcs appear in the network, and θXi |Parents

(Xi ) for each node in the network.

One well-known Bayesian network classification model is called tree-augmented
naïve Bayes (TAN) [6]. A TAN model has an outgoing arc from the class variable to
each other attribute. It also allows each non-class variable to have at most one other
parent in order to capture a limited set of dependencies between attributes. To decide
which arcs to include in the augmented network, the algorithm does the following:

1. Construct a complete graph G A, between all non-class attributes Ai . Weight each
edge between i and j with the conditional mutual information, C I (Ai , A j |C).

2. Find a maximum weight spanning tree T over G A. Convert T into a directed
graph B. This is done by picking a node and making all edges outgoing from it.

3. Add an arc in B connecting C to each attribute Ai .

In step 1, C I represents the conditional mutual information, which is given by
the following equation:

C I (Ai ; A j |C) =
Ai∑

ai

A j∑

a j

C∑

c

P(ai , a j , c)log
P(ai , a j |c)

P(ai |c)P(a j |c) . (16.2)

This algorithm for constructing a TAN model has two nice theoretical proper-
ties [6]. First, it finds the TANmodel thatmaximizes the log likelihood of the network
structure given the data. Second, it finds this model in polynomial time.

16.2.2 Datalog

Datalog is a subset of first-order logic whose alphabet consists of three types
of symbols: constants, variables, and predicates. Constants (e.g., the drug name
propranolol), which start with a lowercase letter, denote specific objects in the
domain. Variable symbols (e.g., Disease), which start with an uppercase letter,
range over objects in the domain. Predicate symbols P/n, where n refers to the
arity of the predicate and n ≥ 0, represent relations among objects. An atom is
P(t1, . . . , tn) where each ti is a constant or variable. A ground atom is an atom
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where each ti is a constant. A literal is an atom or its negation. A clause is a dis-
junction over a finite set of literals. A definite clause is a clause that contains exactly
one positive literal. Definite clauses are often written as an implication B =⇒ H ,
where B is a conjunction of literals called the body and H is a single literal called
the head. The following is an example of a definite clause:

Drug(Pid,Date1,terconazole) ∧ Weight(Pid,Date1,W)

∧ W < 120 ⇒ ADR(Pid).

All variables in a definite clause are assumed to be universally quantified.
Non-recursive1 Datalog, in combinationwith a closed-world assumption, is equiv-

alent to relational algebra/calculus. Therefore, it is natural and easy to represent rela-
tional databases, such as EMRs, in Datalog. The most straightforward way to do this
is to create one ground atom for each row of each table in the EMR. Consider Tables
C and D in Fig. 16.1, where the data would result in the following ground atoms:

Diagnosis(p1,02/01/01,flu)

Diagnosis(p1,05/02/03,bleeding)

Diagnosis(p2,04/21/05,high cholestrol)

...

Drug(p1,05/01/02,warfarin,10mg)

Drug(p1,02/02/03,terconazole,10mg)

Drug(p2,04/21/05,zocor,20mg)

...

16.3 Approaches

In this section we describe three different strategies for coping with the multi-
relational nature of EMRs.

16.3.1 Handcrafting Features

The act of converting a relational database, such as an EMR, into a single table is
knownaspropositionalization [8].One simple strategy is to handcraft a set of features.
While this process usually results in a loss of information, it makes it possible to

1ADatalog clause is non-recursive by definition if the predicate appearing in its head does not appear
in its body. A Datalog program, or theory, is non-recursive if all its clauses are non-recursive.
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apply standard machine learning techniques, such as Bayesian network learning, to
the transformed data.

The most obvious and straightforward way to do this is to construct a set of binary
features for each relevant relation in the domain. For example, consider the diagnosis
relation in Fig. 16.1. In this case, one feature for each possible diagnosis code would
be constructed that is true of a patient if it appears in the patient’s EMR at any point
in the past. In effect, this conversion makes the assumption that the only thing that
matters about a patient’s future health status is if they have ever been diagnosed with
a specific disease in the past. When in the past the diagnosis was made is irrelevant.
The same strategy would then be applied to the other relevant relations in the domain.
In the example, this would yield one set of features about lab tests and another set
of features about medications.

It is also possible to design more complicated features. One idea would be to
incorporate time constraints into the features. For example, one feature could be
defined that is true of a patient if he has been diagnosed with a specific disease within
the past year. Another idea is to look at pairs of diseases or pairs of medications.
One example is a feature that is true of a patient if he was prescribed two specific
medicines at any point in the past, regardless of the prescription date (i.e., they do
not need to be co-prescribed). Features could be defined that combine both time and
diagnoses (or medications) in order to capture co-occurrence. For example, a feature
could be proposed that is true of any patient that was prescribed two medications
within three months of each other.

While simple, this approach has several potential limitations. Namely, there is
a huge space of possible features to consider, and it is challenging to do this in a
sensible and systematic way by hand. Furthermore, taking a more directed approach,
especially when handcrafting complex features, requires significant domain exper-
tise. Finally, even employing the simplest strategy can result in a very large number
of features. For example, creating one binary feature for each diagnosis code that is
true of a patient if (s)he has ever been diagnosed with that particular disease would
lead to over 5,000 features alone!

16.3.2 Automatically Generating Features: A Multi-Step
Approach

Oneway to alleviate the feature construction burden that the previous approach places
on a modeler is to use an automated approach to generate the features. Note that it is
possible to represent each of the features mentioned in the previous subsection as a
query in Datalog. For example, the query Diagnosis(Pid, _,flu) would return
the set of all patients that have ever been diagnosed with the flu. Essentially, this
corresponds to using the body of a definite clause, whose head is the target concept,
to define a feature. This insight suggests that one possibility is to employ techniques
from the field of inductive logic programming (ILP) [11]. The goal of ILP is to learn
hypotheses expressed as definite clauses in first-order logic. ILP is appropriate for
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learning in multi-relational domains because the learned rules are not restricted to
contain fields or attributes from a single table in a database. Commonly-used ILP
systems include FOIL [20], Progol [14] and Aleph [21].

The ILP learning problem can be formulated as follows:

Given:Background knowledge B, a set of positive examples E+, and a set of negative
examples E− all expressed in first-order definite clause logic.

Learn: A hypothesis H , which consists of definite clauses in first-order logic, such
that B ∧ H |= E+ and B ∧ H �|= E−.

In practice, it is often not possible to find either a pure rule or rule set. Thus, ILP
systems relax the conditions that B ∧ H |= E+ and B ∧ H �|= E−. Typically, this
is done by allowing H to cover a small number of negative examples. That is,
B ∧ H |= E ′−, where E ′− ⊂ E− and the goal is to make |E ′−| as small as possible.

ILP systems learn rules for a fixed target concept, such as ADR(Pid), by itera-
tively learning rules one at a time. Thus, the central procedure is learning a single
definite clause. This is usually posed as the problem of searching through the space
of possible clause bodies. We briefly describe the general-to-specific, breadth-first
search through the space of candidate clauses used by the Progol algorithm [14]. First,
a random positive example is selected to serve as the seed example. To guide the
search process, it constructs the bottom clause by finding all facts that are relevant to
the seed example. Second, a rule is constructed that contains just the target attribute,
such as ADR(Pid), on the right-hand side of the implication. This means that the fea-
ture matches all examples. Third, candidate clause bodies are constructed by adding
literals that appear in the bottom clause to the left-hand side of the rule, which makes
the feature more specific (i.e., it matches fewer examples). Restricting the candidate
literals to those that appear in the bottom clause helps limit the search space while
guaranteeing that each generated refinement matches at least one example.

Employing ILP to learn the feature definitions gives rise to the following proce-
dure. In the first step, ILP is employed to learn a large set of rules. In the second step,
each learned rule is used to define a binary feature. The feature receives a value of one
for an example if the data about the example satisfies (i.e., proves) the clause and it
receives a value of zero otherwise. This results in a single table, with one row for each
example. In the third step, a classifier is learned from the newly constructed table.

16.3.3 VISTA: An Integrated Approach

Next, we describe VISTA [4], an alternative approach that is based on the idea of con-
structing the classifier as we learn the rules. VISTA integrates feature construction,
feature selection, and model construction into one, dynamic process. Consequently,
this approach scores rules by howmuch they improve the classifier, providing a tight
coupling between rule generation and rule usage.

Like the multi-step approach described in the previous subsection, VISTA uses
definite clauses to define features for the statistical model. VISTA starts by learning
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a model M over an empty feature set F S. This corresponds to a model that predicts
the prior probability of the target predicate. Then it repeatedly searches for new
features for a fixed number of iterations. VISTA employs the Progol algorithm that
is described in the previous section to generate candidate features.

VISTA converts each candidate clause into a feature, f , and evaluates f by learn-
ing a new model (e.g., the structure of a Bayesian network) that incorporates f .
In principle, any structure learner could be used, but VISTA typically uses a tree-
augmented naïve Bayes model [6]. VISTA evaluates each f by comparing the gen-
eralization ability of the current model F S versus a model learned over a feature set
extended with f . VISTA does this by calculating the area under the precision-recall
curve (AUC-PR) on a tuning set. AUC-PR is used because relational domains typi-
cally have many more negative examples than positive examples, and the AUC-PR
ignores the potentially large number of true negative examples.2 In each iteration,
VISTA adds the feature f

′
to F S that results in the largest improvement in the score

of themodel. In order to be included in themodel, f
′
must improve the score by a cer-

tain percentage-based threshold. This helps control overfitting by pruning relatively
weak features that only improve the model score slightly. If no feature improves the
model’s score, then it simply proceeds to the next iteration. Algorithm 3 provides
pseudocode for VISTA.

Algorithm 3. VISTA (Training Set T , Validation Set V , Maximum Iteration i ter )
F S = {∅}
M =BuildTANModel(T, F S)

score =AUCPR(M, V )

repeat
best Score = score
fbest = ∅
/*Generate Candidate Features*/
Cand = GenCandidates()
for all ( f ∈ Cand) do

M
′ =BuildTANModel(T, F S ∪ f )

score′ =AUCPR(M ′, V )

if (score
′
> best Score) then

fbest = f
best Score = score′

end if
end for
if ( fbest �= ∅) then

F S = F S ∪ fbest
M =BuildTANModel(T, F S)

score =AUCPR(M, V )

end if
until Reaching iteration i ter
return: F S

2In principle, VISTA can use any evaluation metric to evaluate the quality of the model such as
(conditional) likelihood, accuracy, or ROC analysis.
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16.4 Empirical Evaluation

In this section, we evaluate the three approaches outlined in Sect. 16.3 on three real-
world data sets. In all tasks, we are given patients that take a certain medication,
and the goal is to model the patients that have a related ADR. We first describe the
data sets we use and our metholodgy. Then we present and discuss our experimental
results.

16.4.1 Task Descriptions

Our data comes from a large multi-specialty clinic that has been using electronic
medical records since 1985 and has electronic data back to the early 1960s. We
have received institutional review board (IRB) approval to undertake these studies.
For all tasks, we have access to information about observations (e.g., vital signs,
family history, etc.), lab test results, disease diagnoses, and medications. We only
use patient data up to one week before that patient’s first prescription of the drug
under consideration. This ensures that we are building predictive models only from
data generated before a patient is prescribed that drug.

The characteristics of the data for each task can be found in Table16.1. On each
task we consider only patients who took a medication, and the goal is to distinguish
between patientswhowent on to experience an adverse event (i.e., positive examples)
and those who did not (i.e., negative examples). We now briefly describe each task.

Selective Cox-2 inhibitors (e.g., Vioxx™) are a class of pain relief drugs that
were found to increase a patient’s risk of having a myocardial infarction (MI) (i.e., a
heart attack). For the Cox-2 data set, positive examples consist of patients who had
a MI after taking a selective Cox-2 inhibitor. To create a set of negative examples,
we took patients that were prescribed a selective Cox-2 inhibitor and did not have
an MI. Furthermore, we matched the negative examples to have the same age and
gender distribution as the positive examples to control for those risk factors.

Angiotensin-converting enzyme inhibitors (ACEi) are a class of drugs commonly
prescribed to treat high blood pressure and congestive heart failure. It is known that

Table 16.1 Data set characteristics.

Selective Cox-2 Warfarin ACEi

Pos. examples 160 144 102

Neg. examples 2,134 1,440 1,020

Unique drugs 2,590 2,316 2,044

Unique diagnoses 7,912 8,389 7,286

Drug facts 3,518,467 603,503 335,065

Diagnoses facts 3,653,487 691,591 436,934
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in some people, ACEi may result in angioedema (a swelling beneath the skin). To
create the ACEi data set, we selected all patients with at least one prescription of
an ACEi drug in their electronic health record. Within this population, we defined
positive examples to be those patients who have a diagnosis of angioedema at any
point after their first ACEi prescription.

Warfarin is a commonly prescribed blood thinner that is known to increase the
risk of internal bleeding for some individuals. To create the Warfarin data set, we
selected all patients who have at least one prescription of Warfarin in their electronic
health record. We defined positive examples to be those patients with a bleeding
event (any of 219 distinct diagnoses in the ICD9 hierarchy representing bleeding
events) at any point after their first Warfarin prescription.

16.4.2 Methodology

We perform stratified, ten-fold cross-validation for each task and compare the fol-
lowing algorithms.

Handcrafted. In this model, we construct a set of handcrafted features to propo-
sitionalize the EMR. We create one binary feature for each possible diagnosis
code, medication, and lab test. The feature is true of a patient if the appropriate
diagnose, medication, or lab test appears in the portion of the patient’s EMR
used for training. For each test fold, we use information gain on the training set
to select the 50 most informative features. A TAN classifier is trained that uses
these 50 attributes.

Multi Step. First, we use ILP to learn a set of rules on the training data. We use the
Aleph ILP system [21],which is a re-implementation of theProgol algorithm [14],
to learn rules. The background knowledge used to construct the rules includes
diagnosis codes, medications, and lab tests as before, but also allows temporal
relations between events and comparing the results of observations against a
learned threshold. We run Aleph under the induce_max command in order to
fully exploit all the training examples. Second, we create a data set by converting
each rule learned by Aleph into a binary attribute, which is true of an example
if the rule covers the example. Third, we train a TAN classifier over the newly
transformed data set.

VISTA.We follow a greedy algorithm. Starting from a network that contains the class
node only, we search for clauses that when added to a classifier will improve its
performance.We define a network to be an improvement over a previous classifier
if it increases the area under the precision-recall curve (AUC-PR) by at least 2%.
First, we sub-divide the nine folds in the training data into five training and four
tuning folds. The training folds are used to generate the candidate classifiers. We
first use these folds to discover the clauses and then to train the TAN classifiers.
The tuning folds are kept separate. They are used to compute the AUC-PR for
the new TAN classifier and decide whether a feature should be included in the
model or not. As a stop criteria, we use an arbitrary time limit of three hours for
learning each model.
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All three approaches make use of a TAN classifier learning algorithm where we
compute maximum likelihood parameters of the model and use Laplace smoothing
to prevent zero probabilities.

When reporting results, we focus on precision-recall analysis. In precision-recall
space, recall is plotted on the x-axis and precision on the y-axis. Recall (also called
the true positive rate) is defined as the proportion of positive examples that are
correctly classified as positive. Precision reports the fraction of examples classified
as positive that are truly positive. Often times, precision-recall analysis is preferred
to ROC analysis in domains, such as ours, that have a large class skew [5]. Note that
in ROC analysis, a very small false positive rate can correspond to a large number
of false positives, if there are a large number of negative examples. In contrast,
precision-recall analysis ignores the potentially large number of true negatives. We
also report the results for random guessing, which corresponds to an AUC-PR equal
to the proportion of positive examples in the test set [2].

16.4.3 Results and Discussion

Table16.2 shows the average AUC-PR for each of the tasks. First, regardless of the
task, each approach also does significantly better than random guessing. Thus, each
approach is picking up signal in the data. VISTA results in the best performance on
two of the three tasks. This indicates that there is some benefit to using the dynamic,
automated approach. The handcrafted approach also exhibits good performance, and
has the best performance on the Warfarin task. Interestingly, this approach yields
better results than themulti-step approach. One possible explanation is that ILP tends
to be biased towards constructing a smaller set of strong, complex features whereas
on this task it may be beneficial to have a larger set of weak, simple features. In the
future, it is worth exploring a model that uses a combination of simple and complex
features. Additionally, ILP systems generate rules that predict the positive examples.
In contrast, the other two approaches are able to select features that are predictive of
either the positive or negative class, which may yield a benefit.

Figures16.2, 16.3, and 16.4 show the precision-recall curves for each task. Note
that on this task, for drugs on the market it is probably more meaningful to focus on
the high precision, low recall (i.e., recall ≤ 0.3) parts of the plots. This is because if
we act only based on this portion of the curve then we would only change current
clinical practice by denying the drug to patients who will almost all suffer the ADE if

Table 16.2 Average AUC-PR and its standard deviation for each approach. The best result for each
task is shown in bold.

Selective Cox-2 Warfarin ACEi

VISTA 0.614 ± 0.11 0.171 ± 0.06 0.328 ± 0.06

Multi Step 0.557 ± 0.14 0.188 ± 0.09 0.261 ± 0.09

Hand Crafted 0.553 ± 0.15 0.252 ± 0.07 0.274 ± 0.10

Random Guessing 0.070 ± 0.00 0.091 ± 0.00 0.091 ± 0.00
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Fig. 16.2 Precision-recall curves for the Selective Cox-2 task.

Fig. 16.3 Precision-recall curves for the Warfarin task.

they take the drug, without denying the drug unnecessarily to most individuals who
need it. Exceptions to this preference to operate at the left of the PR curve would be if
(1) the ADR is severe compared with the benefit of the drug, (2) there is an alternative
treatment available, or (3) this is a new drug being added to the market, and we want
to add it as safely as possible. Focusing on this region of PR space shows a similar
picture as looking at average AUC-PR. Again, VISTA has the best performance on
two tasks and the handcrafted approach does the best on the third task.

16.5 Related Work

There has been much previous work on using ILP for feature construction. Such
work treats ILP-constructed rules as Boolean features, re-represents each example
as a feature vector, and then uses a feature-vector learner to produce a final classifier.
The first work on propositionalization is the LINUS system [12]. LINUS transforms
the examples from deductive database format into attribute-value tuples and pairs
these tuples to a propositional learner. LINUSprimarily uses propositional algorithms



16 Predicting Adverse Drug Events from Electronic Medical Records 255

Fig. 16.4 Precision-recall curves for the ACEi task.

that generate if-then rules. LINUS then converts the propositional rules back into
the deductive database format.

Previous work has also used ILP-learned rules as features in a propositional clas-
sifier. For example, [17] do this using a naïve Bayes classifier. Some other work,
especially on propositionalization of first-order logic [1], has been developed that
converts the training set to propositions and then applies feature vector techniques to
the converted data. This is similar to what we do, however we first perform learning
in the first-order setting to determine which features to construct. This results in
significantly shorter feature vectors than in other work.

The most closely related work to VISTA includes the nFOIL [9] and kFOIL sys-
tems [10]. These systems differ in that they use different statistical learners, naïve
Bayes for nFOIL and a kernel in kFOIL, and use FOIL instead of the Progol algorithm
for proposing the features. Furthermore, VISTA works with AUC-PR which allows
it to tackle problems that have significant class skew, which is common in medical
domains. The work on structural logistic regression [18] also integrates feature gen-
eration andmodel selection. Thiswork defines features usingSQLqueries and the sta-
tistical learner is logistic regression, but these are not especially important differences.
The drawback to this approach is that it is extremely computationally expensive. In
fact, they report only searching over queries that contain at most two relations. In ILP,
this would be equivalent to only evaluating clauses that contain at most two literals.

In a different context, the issue of converting multiple tables into a single table is
also addressed by data warehouses [3]. Typically, data warehouses often use either
a star or snowflake schema. These schemas are centered on a single so-called “fact
table,”which is thenconnected to several different,multi-dimensional attributes.Each
attribute value is often organized according to a hierarchy. For example, a place hier-
archymay be city, county, state, and so forth. Traditionally, data warehouses focus on
supporting ad-hoc user queries that produce a single table by rolling-up or drilling-
downalongoneof theattributedimensions.This is inconstrast toour focusonbuilding
predictive models from data. Additionally, wemake no assumption about the schema
of data and the work presented in this chapter automatically constructs a single table.
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16.6 Conclusions

This chapter addressed the challenges associated with learning statistical models
from multi-relational electronic medical record (EMR) data. Specifically, we dis-
cussed how to construct features from the multi-relational EMR that can be used
by a standard statistical machine learning algorithm such as Bayesian networks. We
presented three different approaches: handcrafting a set of features, amulti-step algo-
rithm that automatically learns features, and an integrated algorithm that combines
feature construction with model learning. Empirically, we report results on predict-
ing three ADRs from real-world EMR data. We found that the dynamic approach
performed the best on two of the three tasks and that handcrafting the features also
yielded good results.
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Chapter 17
User Modelling for Patient Tailored Virtual
Rehabilitation

Luis Enrique Sucar, Shender Maria Ávila-Sansores
and Felipe Orihuela-Espina

Santiago suffered a stroke 5 years ago, and although he survived, the conse-
quences were devastating suffering severe paresis of his left side. However, by
looking at him today, you won’t notice that for a second; Santiago is playing
football with the same skills that he used to before the event. It has taken him
long to get here, but his determination and the intelligent rehabilitation program
that he underwent have made the miracle. In the old days, rehabilitation pro-
grams were tedious, and most times with limited success; motor recovery was
modest, and neurorehabilitation programs were just compensatory in nature.
Today, the better understanding of the brain plastic behaviour following stroke,
accompanied by the state of the art artificial intelligence incorporated to afford-
able robotic devices and virtual training environments have offered Santiago a
brand new opportunity to live life to the full.

Abstract Intelligent rehabilitation is a novel paradigm in motor rehabilitation
empowering assistive technology with artificial intelligence (AI). Central to this par-
adigm is adaptation, the capacity of the assistive technology to dynamically accom-
modate to the therapy evolving demands. This chapter overviews several existing
AI solutions to implement a decision making model to provide rehabilitation tools
with adaptation capabilities, and provides details of a powerful approach capable of
exploiting prior knowledge for a quick start and posterior knowledge to guarantee
up-to-dated informed decisions. In this solution, a Markov decision process formu-
lates an initial policy optimal within prior knowledge; a policy which is later on allow
to evolve on incoming evidence to fit new requirements. This solution ensures short
training periods and exhibits convergence with therapists’ criteria. In consequence,
intelligent adaptation to dynamic circumstances of the patient and therapy plan is
demonstrated a feasible endeavour within a real practical timeline. This might endow
assistive technology with the necessary competence to be taken home and/or reduce
expert surpervision.

© Springer International Publishing Switzerland 2015
A. Hommersom and P.J.F. Lucas (eds.), Biomedical Knowledge
Representation, LNAI 9521, DOI 10.1007/978-3-319-28007-3_17
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17.1 Introduction

Of course, the opening futuristic scenario is not yet a reality, and our current rehabil-
itation technology is merely the one branded above as the “old days”. Nevertheless,
the progress towards making this a reality that has been in the cook in the last decade
has been astonishing. We are still far from a satisfactory recovery of people who
have suffered brain lesions, but the foundations of the intelligent rehabilitation are
already in the making.

Assistive technology is any product or service designed to enable independence
for disabled and older people [19]. Assistive technologies can be realized undermany
skins; mechanical, robotic, and perhaps ultimately virtual. Regardless of the delivery
technology, the core of this intelligent rehabilitation is the extensive use of Artificial
Intelligence (AI) providing the assistive technology with human-expert like decision
capacities, but enriched with augmented sensing abilities to support neurorehabili-
tation [55]. This AI capitalizes on knowledge representation to encode information
about the patient profile, his progress through the therapy and the prognosis, but as
well about the medical condition itself. Then, based on this knowledge it reasons
the optimal decision that can be taken assuming certain therapy goals. Depending on
these therapeutic goals, different AI systems will make use of all or only part of this
knowledge. The ultimate goal of the AI itself is to adapt the behaviour of the assistive
technology to the patient progress, yet conciliating the patient necessities with the
therapist’s long term plan, and achieve this adaptation whilst always acting within
the grounds established by neurorehabilitation principles. This chapter overviews
some of the technologies underpinning these AI systems and provides examples that
have been implemented in the field of virtual rehabilitation.

17.2 Virtual Rehabilitation

Virtual rehabilitation [34] encompasses the use of virtual reality scenarios to afford
training environments with an enormous and versatile capacity for feedback and
customization. A virtual environment is a simulation of the real world that is gener-
ated through computer software and it is experienced by the user through a human-
machine interface [22]. The virtual rehabilitation environment can be manipulated
at will to offer a more exhaustive and comprehensive learning experience. Within
the virtual environment, real world tasks can be replicated with in-depth fidelity to
the actual task, or on the contrary, critical elements of the task can be abstracted to
eliminate sources of distraction. The virtual environment can offer truly immersive
andmultisensorial experience, and/or can favour psychological sense of being within
the virtual world, a feature known as presence [49, 57].

Several features distinguish virtual environments from other forms of visual imag-
ing such as video and television e.g., different viewpoints, multisensorial input, etc.
But arguably the most salient feature is interaction [54]. In virtual rehabilitation, the
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environments are created to allow the user to interact with the objects represented in
the environment and the environment itself. Virtual rehabilitation is mostly admin-
istered in the form of serious games [3, 4, 12, 32, 38]; those designed for a serious
purpose other than leisure and pure entertainment [38]. A serious game for rehabil-
itation is presented in a virtual environment and the goal of the game conceals the
rehabilitatory task.

The advantages and limitations of virtual rehabilitation in general have been
reviewed somewhere else [2, 21, 52, 54], but importantly of course the capacity
for adaptation of the virtual environments has not go unnoticed [12, 52].

17.3 Adaptation

As the therapist is helping and guiding the patient over a physical or occupational
therapy session, s/he continually monitors with an expert’s eye the progress of the
patient; demanding more when feeling the patient can do better but also, decelerat-
ing the activities program and moderating the requested effort when noticing hints
of pain or stress on the patient. The therapist has a long term plan, but continually
makes local corrections and adjustments to this plan on the basis of the patient overall
progress and dynamic changing necessities. The therapist is adapting the therapy to
the patient needs. Adaptation is arguably a central concept in intelligent rehabilita-
tion [52]. It undertakes the responsibility of ensuring that the best possible clinical
decision at every moment regarding the therapy delivery and administration. This
ultimate goal of adaptation is far from a reality at present, and current solutions,
such as the one presented in this chapter, only provide limited decisions commensu-
rate with the knowledge base underpinning the computational model. This decision
making process is made autonomously from human experts, but critically learned
from prior feedback made by human experts. Adaptation is a necessary element
for guaranteeing that the intelligent rehabilitation maximizes fostering of appropri-
ate functional cortical reorganization strategies and stimulates experience dependent
plastic changes in the brain motor networks, both critical for the neurorehabilitation
process [13, 28, 42].

Adaptation permits controlling the delivery of stimuli in terms of modality (e.g.,
auditory, haptic, and/or visual), and modulating the parameters of the modality, such
as colour, direction, strength/level, speed, duration, and amount of stimulus and, in
general, of any property or attribute that may characterise the stimuli. It further can
regulate the level and mode of feedback provided to the user. It also has to decide
about the chronological succession of rehabilitatory tasks, and the time and intensity
with which these should be carried out. It governs the pace of the training.

Adaptation is a more elaborate concept than goal attainment-based challenge
adjustment or therapy progress. In the latter, challenge adjustment is unidirectional,
it increases as new goals are achieved but it is never revisited downwards. Adapta-
tion, on the other hand, is a patient centered decision making process in which task
challenge adjustment and therapy programme scheduling are dynamically fitted to
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the patient physical and cognitive status. Contrary to systems where game challenge
is adapted following a structured approach, e.g., game level increases by achieving
a certain goal or target whether explicit or implicit; dynamic adaptation of game dif-
ficulty implies monitoring user’s in-game performance and ability and using those
to maintain an appropriate level of difficulty [12].

Adaptation is also different from customization which is concerned with accom-
modating the environment to the therapy requirements, for instance, for different
pathophysiologies and/or different target groups, perhaps even individuals. Instead,
adaptation regulates the dose, frequency, task challenge and variability [52]. Despite
both concepts -customization and adaptation- being concernedwith tailoring the ther-
apy to the patient, customization is static in nature, whereas adaptation is inherently
dynamic and non-linear. Nevertheless, these two concepts are often used interchange-
ably in the virtual rehabilitation literature.

17.3.1 The Levels of Adaptation

In general, there can be two levels of adaptation in virtual rehabilitation: (i) within-
game or game-level adaptation and (ii) inter-game or therapy-level adaptation. The
former refers to the level of difficulty in a particular game or task to maintain chal-
lenge, whilst the latter refer to therapy task scheduling and is concerned with making
the most out of the therapy time. Within-game adaptation can be further performed
online as the interaction with the environment occurs, or off-line by which chal-
lenge adjustment is guaranteed across tasks performed in sequence. Note a clear
difference between ensuring the right level of challenge across subsequent games,
i.e., off-line within-game adaptation, and optimizing that sequence of games, i.e.,
rehabilitatory tasks, as the therapy advances which is controlled by the inter-game
adaptation. Both levels can be modelled with decision algorithms and complemented
with knowledge-transfer approaches.

17.4 Intelligence and Knowledge Representation Behind
the Virtual Environments

The manifestation of the (artificial) intelligence supporting the assistive technology
is mainly its adaptation capacity. When the therapist makes a decision over the next
action in the therapy, s/he takes into consideration everything that s/he knows about
the patient and the medical condition. The therapist exploits his/her knowledge by
reasoningover it to comeupwith subsequent conduct. Similarly, in developing theAI,
these two elements characterise the model underpinning the intelligent rehabilitation
technology.
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• Knowledge. From a rather naive but practical definitions of “useful information”
[17] or “understanding of a subject area” (Durkin 1994 in [18]), defining knowl-
edge is a difficult endeavour [5, 29].Without aiming to settle the argument, knowl-
edge is the repository of information about a certain domain acquired through
learning/experience (sensing), discovering (reasoning), or studying (education)
and may include facts, concepts, beliefs, skills, as well as relations among these
knowledge atoms. Knowledge is more than simply information, it includes con-
text and semantics so that its relevancy to a problem can be determined [5]. To
make knowledge available to a certain assistive technology it has to be encoded
under certain representation [14]. Familiar basic knowledge representation tools
or technologies include logic, rules, frames, semantic nets, graphical models, etc.

• Reasoning. Is a process of using known facts and/or assumptions in order to derive
a conclusion or make an inference [18]. Reasoning is the engine that allows the AI
system to mine the knowledge (i) to make explicit (potentially useful) new knowl-
edge that was already implicit in the repository, but more interesting for guiding
the intelligent therapy, also (ii) to make an optimal decision about the next action
or actions to be carried out in the therapy. There are, of course, pragmatic concerns
about the relationship between knowledge and making decisions [16]. Reasoning
can be achieved in several fashions; classical logical (inc. inductive, abductive,
deductive, syllogistic, modal, etc.), set-based whereby an evidence function maps
observed findings to solutions [36, 37], probabilistic whereby new knowledge is
derived through probabilistic expressions [33, 43], or semantical where inference
rules are specified by means of an ontology language [18].

17.4.1 Knowledge: The State Through Observable
and Non-observable Variables

Any intelligent assistive technology possesses some sensing capabilities to expe-
rience the environment over which it has to act. Often in artificial intelligence, the
actual knowledge about the status of the environment is referred to as state. Note that
this state can cover self-awareness information aswell as information about the target
world, and importantly it is not necessarily factual. The state iswhat ultimately guides
the decision making process. The same action might yield very different outcomes
when executed under different states.

The sensing abilities will give the system access to some new knowledge about the
state which the system will integrate to its knowledge repository. As new knowledge
becomes available (feedback to the system), the intelligent system updates its belief
over the state of the environment and triggers a new decision making process to
confirm or alter accordingly the schedule of actions. Critically, the knowledge of the
state by the intelligent system may not necessarily be complete. Thus, a decision
evaluated as optimal by the an intelligent system, may actually be suboptimal in real
terms. Yet it has to be emphasized that it is still the best decision that can be made
with the knowledge at hand.
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Regardless of the representation chosen, a factored state can be thought of as vari-
ables. In the domain at hand, these variables may encapsulate pieces of information
such as the patient performance on a task, the cognitive and psychological state of the
patient, the stage on the rehabilitation process, etc. These variables can be directly
accessible from the sensing abilities of the intelligent system or on the contrary,
have to be inferred from the experienced information. The first type of informa-
tion is known as observable variables, the latter as non-observable variables. This
distinction should not be overlook when developing decision making processes.

Uncertainty can be present in both, observable and non-observable information,
but more often than not, uncertainty in the observable knowledge if considered by the
artificial intelligence, it is dealt with before its input to the decisionmaking algorithm.
At the time the possibility of executing a particular decision is being evaluated by
the system, the observable variables are virtually always considered factual.

17.5 State of the Art

In the field of virtual rehabilitation, early systems that appeared back in the 1990s
through to the early 2000s lack any form of adaptation e.g., [11, 15, 23, 30, 31,
40, 46, 47]. Even in more recent works, adaptation to the patient is still a luxury
feature with many examples still missing it e.g., [4, 6, 24, 48]. Notwithstanding, in
the last decade several studies have addressed the task of enriching the system with
adaptation, or at least customization capabilities. Representative examples for upper
limb virtual rehabilitation platforms are summarized in Table17.1. They differ both
in the chosen knowledge representation as well as in the reasoning modality.

As it emerges from Table17.1, probabilistic reasoning appears to be the most
favoured reasoning modality, perhaps due to the uncertainty inherent to the problem
for which probabilistic reasoning excels. Most of these adaptive solutions are based
on the observable performance, with only a couple of exceptions [10, 26] attempting
to capture the patient’s non observable cognitive state.

17.6 Probabilistic Models of Adaptation

A natural and powerful formalism to achieve automatic adaptation are decision-
theoretic models, in particular Markov decision processes (MDPs) and partially
observable MDPs (POMDPs).

A Markov Decision Process [45] models a sequential decision problem, in
which a system evolves in time and is controlled by an agent. An MDP is a tuple
{S ,A ,Pr, R}, where S is a finite set of states and A is a finite set of actions.
Actions induce stochastic state transitions, with Pr(s, a, t) denoting the probabil-
ity with which state t is reached when action a is executed at state s. R(s, a) is a
real-valued reward function, associating with each state s and action a its immediate
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utility R(s, a). A policy for an MDP is a mapping π : S → A that selects an action
for each state. A solution to an MDP is a policy that maximizes its expected value.
The expected value is a certain value function; this could be the average reward over
certain time horizon, or the expected accumulated reward in the future. Two popular
methods for finding an optimal policy for an MDP are the value iteration and the
policy iteration algorithms [45].

MDPs assume that the state of the system is known with certainty, that is that
the state is observable. In many domains such as virtual rehabilitation, it is not
always possible to observe the complete state, e.g., the cognitive and psychologi-
cal state of the patient is not directly observable. In this case, an extension of the
MDP model, known as partially observable Markov decision processes (POMDPs)
becomes handy. In addition to the elements of an MDP, a POMDP has the following
elements: a set of observations O , the conditional probability of observing o while
in state s, denoted by Ω(s, o), and finally, the initial state probability distribution
Π(s). A solution for a POMDP is a mapping from belief states to actions, which is a
more complex problem than theMDP counterpart as in principle the number of belief
states is infinite. POMDPs have been so far a popular solution to support adaptation
in virtual rehabilitation systems [10, 20, 26]. However, exact solutions are feasible
only for very small problems, and in general approximate solution techniques are
used [44]. Moreover, using a POMDP to model the adaptation process of a virtual
rehabilitation system in isolation assumes that the same policy that was learn over
a priori static knowledge would remain valid longitudinally across the therapy and
cross-sectionally for different patients. None of these premises hold in a real therapy
and consequently a smarter artificial intelligence must be sought.

Ideally, the adaptation model of the virtual rehabilitation system must be able to
deliver actions based on a policy that remains optimal regardless of the dynamically
changing knowledge. Recently, we have proposed an intelligent adaptation system
[9] for our virtual rehabilitation platform, Gesture Therapy [52] (see Sect. 17.6.4),
that aims to address this necessity. This adaptation model is based on MDPs, ergo
assuming, for now, that we can observe the patient’s state. However, the initial policy
rather than being left immutable is allowed to accommodate new knowledge as it
becomes available. This up-to-date knowledge comes from sensing the performance
of the user but also from educative rewards from the therapist. From the seed policy
returned by the MDP over a priori knowledge, the new dynamic policy thus built
by means of reinforcement learning may vary from patient to patient, as well as
for the same patient as the therapy progresses. In other words, an initial, general
model to the patient is iteratively refined ensuring the policy remains optimal to
fit the actual circumstances, and in turn the actions chosen by the dynamic policy
permit adaptation of the virtual environment. In the following sections we describe
this model and its adaptation using reinforcement learning algorithms.
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17.6.1 A Model for Adaptive Rehabilitation

In a nutshell, the model deals with within-game adaptation; after each game is played
for a certain amount of time, the speed and control exhibited by the patient during the
game are evaluated. Depending on the evaluation the decision-theoretical adaptation
system proposes a new level of challenge for the next game to match the patient’s
progress thorugh the therapy. Although different strategies can be designed regarding
performance response, we have chosen one that favours levelled improvement in
speed and control.

More formally, the model has two major elements. First, an MDP, defined based
on expert knowledge, is solved to obtain an initial, general policy. This is in a sense
a general model not specific to any patient. As we have shown in [9], this a priori
optimized seeding reduces the time needed to dynamically evolve an adapted patient-
specific model with respect to random or null initialization. Second, a reinforcement
learning algorithm progressively tailors this initial model to keep the policy optimal
to the patient’s needs throughout the therapy.

17.6.2 The General Default Policy

The initial general model is anMDP in which the system set of states, S, is described
by a discretized bivariate performance space relying on the subject speed and control.
Speed is measured from task onset until task completion. It is calculated as the on-
screen avatar trace pathlength over the time needed to fulfill the task, and expressed
relatively against empirically found values normal for a healthy subject, with three
possible intervals: low, medium and high; determined by preset hard thresholds.
Control is calculated as the deviation in pixels from a straight path in the screen going
from the user avatar location at task onset to the location of the task target. Control
is also expressed relatively against empirically found ranges considered normal for
a healthy subject, with three possible intervals: poor, fair and good; again separated
by hard thresholds. Although this adaptation model is grounded on anMDP since the
performancemetrics monitored in this case are observable, it is possible to extend the
present solution to a POMDP for a more educated model that perhaps incorporates
psychological and cognitive variables.

The actions considered by the MDP are either to increase, maintain or decrease
the challenge level of the task. The practical realization of this in the virtual rehabilita-
tion platform Gesture Therapy (see Sect. 17.6.4) enforces lower and upper boundary
limits to the challenge levels, in other words, increments or decrements of challenge
are limited by each game capacity. As aforementioned, the transition and reward
functions implemented have been designed to favour a match between speed and
control encouraging a balanced progression in both performance metrics. The full
details can be found in [8].
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The optimal policy of the MDP is found with a value iteration algorithm [44].
The policy is the result of optimizing the expected accumulated rewards. This initial
policy provides a reasonable default response, and it is optimal for the given a priori
knowledge. However, it is not optimal for all patients and all conditions. Thus, in a
second stage, this inceptive policy is allowed to evolve using reinforcement learning
techniques to meet arriving evidence, whether sensed e.g., patient’s performance, or
taught e.g., therapist’s feedback.

17.6.3 Improving the Policy by Reinforcement Learning

Reinforcement learning [25] is amachine learning paradigm inspired byhowahuman
learns. A child attempts some act and his progenitor either praises (positive reward)
or disapproves (negative reward) his actions. With time, as the child seeks to maxi-
mize praise and minimize disapproval, he learns the behaviour that his progenitor is
predicating. Analogously, an agent or process evolves to maximize expected rewards
as it receives feedback from the environment [53]. Different reinforcement learning
algorithms are available in literature but they can coarsely be classified as off-policy
or on-policy. In off-policy algorithms, the policy is learned greedily ignoring of the
actions that the agent performs.The policy value is updated using hypothetical actions
separating exploration from control. Consequently, the optimal policy is learnt even
when a non-optimal policy is being followed. In contrast, on-policy algorithms are
unable to distinguish exploration from control and the policy value is updated imply-
ing the results of the executed actions. In otherwords, the optimal policy is learnt only
by using the systematic departures from the true optimal. Archetypical examples of
off-policy and on-policy algorithms areQ-Learning [56] and Sarsa [53], respectively.

Q-Learning, stated in Algorithm 1, is an off-policy learning algorithm because
the policy being learned may be different from the policy being executed. The
quality function Q(s; a) specifies the value (expected accumulated reward) of

Algorithm 1. Q-Learning
Input: < S, A, R >

Output: The table Q

1 Initialize the table entry Q(st , at ) arbitrarily
2 for (each episode) do
3 Initialize st
4 repeat
5 Choose at and st using the policy derived from Q(e.g., ε − greedy)

6 Take action at , observe the reward rt+1 and the next state st+1
7 Update the table entry for Q(st , at ) as follows:
8 Q(st , at ) ← Q(st , at ) + α[rt+1 + γ maxat+1 Q(st+1, at+1) − Q(st , at )]
9 st ← st+1

10 until (st is a terminal state)
11 end
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executing action a whilst in state s. Often, the states and actions are discrete, and
thus Q(s; a) can be specified by a matrix. This quality function Q(st , at ) evaluates
the rewards obtained through the course of actions. In Q-Learning, the value of the
quality function Q(st , at ) (line 8) is updated considering the action that maximizes
the expected utility i.e. maxat+1(Q(st+1, at+1)). The goal of the learning agent is
consequently to maximize its accumulated reward and it does so by learning which
action is optimal for each state. Often, the initial policy quality table QS×A is ini-
tialized to some random value e.g. zero, minimal rewards, etc., and the value of Q
is updated as the learning progresses.

In contrast, the Sarsa (state-action-reward-state-action) algorithm stated in Algo-
rithm 2 behaves on-policy. Line 9 is the on-policy equivalent for updating the quality
function Q(st , at ). However, in contrast to Q-Learning, in this case it strictly updates
the value on the basis of the experience gained through the implementation of the pol-
icy. The substantial difference between the two algorithms is the fact that Q-Learning
is a greedy agent that always takes the action with the best Q-values and then backs
up the best Q-value from the state reached; while Sarsa waits until an action is taken
and then backs up the Q-value from that action.

Algorithm 2. Sarsa
Input: < S, A, R >

Output: The table Q

12 Initialize the table entry Q(st , at ) arbitrarily for (each episode) do
13 Initialize st Choose at and st using the policy derived from Q(e.g., ε − greedy) repeat
14 Take action at and observe rt+1, st+1 Choose at+1 from st+1 using the policy derived

from Q(e.g., ε − greedy) Update the Q(st , at )as follows: Q(st , at ) ← Q(st , at ) +
α[rt+1 + Q(st+1, at+1) − Q(st , at )] st ← st+1 at ← at+1

15 until (st is a terminal state)
16 end

In both cases, the learning rate α determines to what extent the newly acquired
information will override the old information. A factor of 0 will make the agent not
learn anything,while a factor of 1wouldmake the agent consider only themost recent
information. A second parameter, the discount factor γ regulates the relevance given
to short or long term rewards. A value γ = 0 considers only the most immediate
future reward, whereas as γ approximates 1, progressively more weight is given to
long-term rewards. The policy derived from Q was considered ε − greedy, that is,
this strategy assumes the probability (1-ε) to choose the action with the highest value
and probability estimate of ε to choose randomly among all actions. The value of ε

emphasizes the balance (or unbalance) between exploration and exploitation.
The original versions of the Q-Learning and Sarsa algorithms were formulated to

consider only a single source of rewards i.e. those given by the environment. In virtual
rehabilitation this is clearly insufficient as the adaptation must abide both patient’s
status and therapist’s dictations, in other words, we have two sources of incoming
educational knowledge. In addition, the domain at hand, i.e., virtual rehabilitation
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Fig. 17.1 Gesture Therapy, a virtual rehabilitation platform for the upper limb. The picture presents
one of the serious games of the platform to camouflage the abduction/adduction movement. On the
right of the photograph, the user is holding the gripper for controlling the games.

demands that actions issued have to be acceptable fromonset, forbidding any chances
to thoroughly explore the policy space before a confident action can be issued. To
overcome these two issues, we capitalize on reward shaping [41].

Given any definition of optimality, there are infinitely many reward functions that
are consistentwith it [39]. The choice of the reward functionhas a strong effect onhow
long it takes to learn an optimal policy. Reward shaping [41] can accelerate learning
by providing localized useful advice. The heuristic supporting reward shaping is to
focus learning on the most promising areas of the search space whereby a second
shaping reward funds efforts towards the goal.

In order to incorporate reward shaping ideas into the Q-Learning and Sarsa’s
algorithms, these have to be modified to accept this additional shaping reward f
which further complements the regular reward r received by the original algorithms.
To distinguish these reward shaping-based versions from the original algorithms we
refer to them as Q+ and S+, respectively. The full description of these versions of
the algorithms can be found in [8]. The Q+ algorithm is essentially the same as Q
learning, except for the reward considered when the Q values are updated, that in
the Q+ version is the sum of the environment reward, r , and the shaping reward, f .
S+ is derived analogously from Sarsa. Although shaping can be accomplished under
many forms here we opted for a sum, likely the most popular implementation. In the
case of virtual rehabilitation, the shaping reward is provided by the therapist. The
reward shaping alteration is (i) convenient to accommodate more than one reward
source, and (ii) critical to achieve good adjustment of the dynamic policy within the
timeframe imposed by the rehabilitation schedule.
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17.6.4 Gesture Therapy: A Virtual Rehabilitation Platform

In order to test the proposed adaptation algorithm it has been implemented in an
existing virtual rehabilitation platform. Gesture Therapy [50–52], developed at our
laboratory, is a virtual platform for the rehabilitation of the upper limb, from shoulder
to hand. Figure17.1 shows the external appearance of the platform and Fig. 17.2 illus-
trates the internal architecture of the platform. Central to this work, is the adaptation
module which communicates with the game set, overseeing user’s performance and
adjusting the challenge in return. Prior to this work, the Gesture Therapy platform
had an adaptation module based on POMDP [10] which for the reasons explained
above was upgraded to this new model of adaptation.

17.6.5 Integration of the Dynamic Adaptation Model
to Gesture Therapy

The adaptation model based on MDPs and reinforcement learning has been inte-
grated to the Gesture Therapy rehabilitation system to govern the setting of the task

Fig. 17.2 Schematic representation of the Gesture Therapy architecture. The adaptation module
interacts with the game set to regulate the challenge.
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challenge level within games based on both the patient’s performance and the
therapist’s didactics.

As aforementioned, the system state is characterized by the patient’s observable
performance in terms of the exhibited control and speed. The user proceeds with
the task for a given time (usually 3 to 5min), and after this period, the system
evaluates the demonstrated performance. Based on its current policy, the adaptation
model issues an action, i.e., a decision setting the difficulty level of the task for
the next game. The reward function yields an environmental reward rt+1 appraising
the patient’s interaction with the system in terms of the current state. In addition,
the shaping reward is obtained from the therapist by informing the expert about the
decision taken and the conditions leading to that decision, and asking whether s/he
agrees with that decision. The clinician binary response (agree or disagree with the
decision) is mapped to the shaping reward ft+1. This reward feeds from the clinician
experience and the in-situ assessment that the clinician makes of the patient’s status.
The decision made by the current policy will be carried out whether right or wrong
in the eyes of the therapist, but the reward associated to the clinician’s statement is
not ignored and will still shape future decisions. In other words, it is used to update
the policy.

This policy dynamic optimization process continues iteratively until the decision
policy is tuned to the therapy contemporary needs. For convenience, learning can
be switched on or off. While off is chosen, the ongoing policy continues to rule
the challenge adaptation decisions and remains unchanged until a new adjustment
is required when the learning process is switched back on. The requirement for the
presence of the clinician is therefore reduced only to the policy updating periods.
This permits that the system can be taken to the patient’s home with guarantees that
the system carries the most up-to-date optimal policy.

17.7 Preliminary Evaluation

If the virtual therapy is to be deployed to the patient’s homewithout continuous expert
supervision, it is critical that the adaptationmodel makes the system to behave intelli-
gently to replicate what the expert would recommend at any given time. Thus, a high
level of congruence between themodel and expert recommended actions is desirable.
Ideally, any policy updating period should not last more than 2–3 therapeutics ses-
sions. Considering a common rehabilitation session of about 45min, and assuming
that during each session the patient performs in average 10 to 15 tasks (games) of
about 3min per game; the policy shall be adjustedwithin 30 to 45 feedback iterations.

We have conducted an initial experimental evaluation of the adaptation system
through a small feasibility study in laboratory controlled conditions. This experiment
considered human interactions leading to both reward types. A few subjects played
the role of patients and two experts, representing therapists, assessed the model
decisions. For this study, since interaction with the virtual platform and underlying
decision taking mechanisms are independent of the user’s level of impairment, yet
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healthy users facilitate reproducible and controlled conditions, healthy subjects were
preferred over real patients. The tests were carried out using Gesture Therapy [51,
52] as the virtual rehabilitation platform.

Importantly, the experiment although carried out in controlled laboratory condi-
tions, it was still susceptible to noise in data acquisition, thus permitting assessing the
learning performance under realistic conditions. Moreover, it allows us to elaborate
on the congruency between the decisions taken by the adaptation model and the cor-
responding dis/agreement statement made by the expert. This is critical if the system
is to be taken home with limited clinical supervision for certain therapy periods.

17.7.1 Experimental Set-up

The experiment has been described elsewhere [8, 9] and it is briefly summarized
here. Four subjects participated in the study (age mean 28; range 23–30). All the par-
ticipants had previous experience in using computers. No training or familiarization
with the platform or the games were allowed, however, one participant being internal
to the developing team had gaming experience with Gesture Therapy. A physician
and an experienced researcher played the roles of the therapists. The experiment
was carried out in a single session, where all participants were in the laboratory
concurrently. Each expert was in charge of monitoring two of the participants.

Each participant played 25 blocks of 2 tasks (50 learning policy updates episodes)
selected among a set of the five rehabilitation games available. Each block lasted for
two minutes in average. At each feedback episode, the adaptation model took a
decision about next game challenge level, and subsequently gathered appropriate
double rewards.

The adaptation model used the MDP solution as the initial policy and the Q+
was used as the reward shaping mechanism. Model parameterization was as fol-
lows: α = 0.5, ε = 0.2 and γ = 0.95. The learning algorithm and parameters used
during the experiment were chosen based upon previous simulations carried out on
synthetic data [8]. These previous simulations permitted studying model theoretical
response and convergence under different (i) reward shaping algorithm, (ii) com-
promises between exploration and exploitation, (iii) user behaviours and (iv) policy
initialization.

17.7.2 Results

Table17.2 summarizes the congruence between the model and the expert expressed
as a percentage of agreements over the total decisions. Congruence levels surpassed
90% for 3 of the subjects. Congruence in the remaining subject was lower follow-
ing some initial disagreements at the beginning of the session, strongly influencing
subsequent decisions as further discussed below.
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Table 17.2 Agreement of the expertwith the decisions taken by the adaptationmodel (in percentage
over the total feedback episodes) per participant.

Subject 1 2 3 4

Congruence 56% 92% 96% 100%

Fig. 17.3 A graph per subject is depicted showing temporal evolution of the congruence between
the expert and the recommendations of the adaptation module (solid line) during the experiment.
The overall learning progress can be characterized by the slope of the linear regression (dashed
line). Positive slopes indicate a growing congruence between model and expert as times progress.
Negative slopes (none occurred) indicate a departure in congruence.

The overall agreement is a good indicator of the model performance but is insuffi-
cient to show that the learning process has occurred. For this, the temporal evolution
of the congruence was analyzed, affording further insight about the dynamics of how
the congruence with the therapist was achieved.

The most recent dis/agreement statements were aggregated along a 5 episodes
wide a sliding window. A value 0 represents total “recent” disagreement between the
model recommended actions and the expert feedback, whereas a value 5 represent
full “recent” agreement of the expert with the actions recommended by the system.
Figure17.3 shows the progress of the congruence over the experiment. The posi-
tive slopes suggest that the agreement between the model decisions and the expert
increases over time. Figure17.3 suggests that the bad decisions taken by the model
at the beginning clearly hindered the progress for the subject 1. Notwithstanding,
the model eventually managed to recover from this initial missteps and succeeded to
learn the therapist’s doctrine. This highlights two important issues. First, the early
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decisions have an important weight over the learning curve, which further stresses the
importance of a good initialization, i.e., theMDP seeding. Second, theMDP solution
built over a priori solution, despite being optimal for that knowledge is insufficient
to characterize all participants, thus critically confirming our driving motivation that
the decision making policy has to be adjusted and not left immutable.

17.8 Conclusions

Itwill still be a fewyears before our knowledge of neuro-rehabilitation is solid enough
as to permit a motor recovery as the one envisaged in the futuristic scenario opening
the chapter. It is likely that when the time comes, assistive technologies will be part
of the rehabilitation therapy, and with them their companion artificial intelligence
granting these technologies the capacity to optimally adapt the administration of the
therapy. Adaptation is a central issue in this intelligent decision processes and can be
achieved by a number of techniques. Probabilistic reasoning is emerging as the most
favoured approach to support the modelling of adaptation according to the current
trend in literature, perhaps because of its inherent capacity to deal with uncertainty.

Taking virtual rehabilitation as the paradigm of intelligent rehabilitation, this
chapter has discussed different possible probabilistic solutions to model adaptation
and has highlighted the need to accommodate new knowledge as it becomes available
and further permitting this new knowledge to influence the future decision making
events. A solution addressing this necessity that is further capable of affording deci-
sions with high agreement with human experts within a feasible timeframe has been
discussed in deeper detail.

Adequate exploitation of neuro-rehabilitation knowledge, and reasoning over this
knowledge, are the fundamental elements over which newborn intelligent rehabili-
tation shall be grounded.
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Chapter 18
Supporting Physicians and Patients Through
Recommendation: Guidelines and Beyond

Luca Anselma, Alessio Bottrighi, Arjen Hommersom, Paolo Terenziani
and Anthony Hunter

18.1 Clinical Practice Guidelines

The recommendation task, intended as the task of supporting physicians in their
activity (and, in particular, in decision making) by providing them indications of the
most appropriateway of treating patients, has a long story inMedical Informatics that
dates back, for instance, to the first medical expert systems (MYCIN [19]). Many
different tools and techniques have been devised, within the Medical Informatics
area, in order to provide physicians with recommendations about the most appropri-
ate treatment of patients. Recently, Clinical Practice Guidelines (CPG) have gained
a major role in this context. CPGs are, in the definition of the USA Institute of Medi-
cine, ‘systematically developed statements to assist practitioner and patient decisions
about appropriate health care in specific clinical circumstances’ (Institute of Medi-
cine, 2001, p. 151). They are conceived as away of putting Evidence-BasedMedicine
into practice, as well as a mean to grant both the quality and the standardization of
healthcare services, and the minimization of costs. Thousands of CPGs have been
devised in the last years. For instance, the Guideline International Network (http://
www.g-i-n.net) groups 77 organizations of 4 continents, and provides a library of
more than 5000 CPGs. CPGs aim to reduce errors, unjustified practice variation and
wasteful commitment of resources, and encourage best practices and accountability
in medicine. Clinical guidelines are typically created by medical experts or panels
convened by specialty organizations, who review the relevant studies, perform meta-
analysis by contrasting and combining results from different studies and, using a
consensus-based process, compile a set of evidence-based recommendations. Their
focus may be on screening, diagnosis, management, treatment, or referral of patients
with specific clinical conditions. The recommendations are typically written as nar-
rative text and tables, which point back to backgroundmaterial and evidence, ranking
the strength of clinical validity, and the strength with which recommendations should
be followed according to the guideline authors.

The adoption of computerized approaches to acquire, represent, execute and rea-
sonwith CPGs can further increase the advantages of CPGs, providing crucial advan-
tages to:
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• patients, granting them that they will receive the best quality medical treatments
(since CPGs are actually a way of putting EBM into practice);

• physicians, providing them with a standard reference which they may consult,
with a way of certifying the quality of their activity (e.g., for insurance or legal
purposes), as well as with advanced support to their decision-making activity;

• hospitals and healthcare centers, providing themwith tools to grant the quality and
the standardization of their services, as well as with a means to evaluate quality,
and to optimize costs and resources.

However, the main purpose of CPGs is to support physicians in their everyday
knowledge-based decision making when treating patients, providing them evidence-
based recommendations at the point of care.

Unfortunately, there are several obstacles for a full exploitation of CPGs in the
clinical practice. For instance, since CPGs are usually written as standard text in
natural language, they tend to be quite long, so that it is difficult for the physician at
the point of care to find out the specific part of the guideline that is relevant for the
specific patient at hand. Additionally, natural language is inherently ambiguous, so
that textually written CPGs are usually not “rigorous” and “formal” enough, possibly
leading to incorrect interpretations of physicians using them. Last, but not least, one
of the main goals of CPGs is to capture medical evidence. However, from one side,
evidence is essentially a form of statistical knowledge, capturing the generalities of
classes of patients, rather than the peculiarities of a specific patient. From the other
side, demanding to expert committees to characterize all possible executions of aCPG
on any possible specific patient in any possible clinical condition is an unfeasible
task. Thus, CPGs assume to deal with ideal patients, i.e., patients that have just the
single disease considered in the CPG (thus excluding the concurrent application of
more than one CPG), and are “statistically relevant” (they model the typical patient
affected by the given disease), not presenting rare peculiarities/side-effects. Also,
CPGs assume to operate in ideal context of execution, so that all necessary resources
are available. Unfortunately, however, not all patients and execution contexts are
“ideal” (in the above sense). As a consequence, there is always a gap between the
generality of CPGs and the specificities of their execution on a specific patient in
a specific context. Fulfilling such a gap is a difficult and challenging task, which is
usually completely demanded to user physicians.

18.2 Computer Interpretable Guidelines

In the last two decades, Computer Interpretable Guidelines (CIGs) have been intro-
duced in order to overcome some the above problems, and different formalisms and
software systems have been developed to support them. CIG formalisms are usually
based on a Task-NetworkModel (TNM): a (hierarchical) model of the guideline con-
trol flow as a network of specific tasks. Such formalisms are “formal” and allow one
to unambiguously represent guideline procedures and recommendations. Besides
supporting formal languages to acquire and represent CPGs, CIG systems usually
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also provide execution engines that allow user physicians to “instantiate” general
guidelines on specific patients: by accessing the patient clinical data, the execution
engine shows to the user physicians only those paths of actions that are applicable to
the patient at hand. In such a way, they provide patient-oriented recommendations to
physicians, allowing them to fulfill the gap between the generality of the CPG and
the specificity of the patient at hand. Given such advantages, many CIG formalisms
and systems have been designed/built in the last two decades. Some of them (the list
is in alphabetic order, and is far from being exhaustive) are: Asbru [15], EON [9],
GEM [18], GLARE [22], GLIF [12], GUIDE [13], PRODIGY [6], PROforma [2],
SAGE [23].

A survey and/or a comparative analysis of these systems is outside the goals of this
chapter. A comparison of Asbru, EON, GLIF, Guide, PROforma, PRODIGY can be
found in [10]. The recent book byTenTeije et al. [21] represents a consensus of a large
part of the computer-oriented CPG community. It presents an assessment of the state
of the art, aswell as a collection of several recent approaches. Comprehensive surveys
of the state of the art in CIGs have been already published [1, 3–5, 7, 24].

These surveys show that a relative consensus has been achieved concerning the
representation formalisms. Although there are notable differences among the various
approaches, partly due to the different goals they pursue, some important commonal-
ities have been reached. For example, most approaches model guidelines in terms of
a Task-Network Model (TNM): a (hierarchical) model of the guideline control flow
as a network of specific tasks. Although the terminology may differ, all approaches
support a basic set of core guideline tasks, such as decisions, actions and entry cri-
teria. Decisions for example are represented by means of logic slots in the Arden
Syntax,Decision steps inGLIF,Decision tasks in PROforma andGLARE, conditions
in Asbru, and Decisions in EON. The TNMs of most approaches define a fixed set
of guideline tasks (one remarkable exception is EON, in which new types of tasks
may be introduced). Most approaches also provide explicit support for controlled
nesting of guidelines in order to model complex guidelines in terms of subguidelines
(e.g., GLIF and EON) or subplans (e.g., PROforma, Asbru, GLARE). GLIF also
supports the representation of common guideline structures through Macros, which
facilitates the reuse of guidelines that are employed often (e.g., ‘if-then’ rules). EON,
PROforma and Asbru also support the use of goals and intentions to formally specify
a guideline on a higher level of abstraction.

From the architectural point of view, most CIG approaches provide specific sup-
port for at least two subtasks: (i) CPG acquisition and representation and (ii) CPG
execution. Concerning acquisition, different issues have been addressed, ranging
from the definition of suitable graphical interfaces to enhance the physician-system
interaction, to the definition of set of tools supporting the progressive transformation
from a textual CPG to its formal representation [8, 11, 14, 16, 17, 20].

With respect to execution,most approaches have developed execution engines that
support the execution of an acquired CPG on a specific patient. Execution engines
access the patient clinical data and use them to discriminate between alternative
diagnostic/therapeutic paths, providing user physicians with recommendations about
the next actions to be executed on the specific patient at hand.
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18.3 Verification of Computer Interpretable Guidelines

While the representation and the execution of CIGs seem nowadays to be at least
partly consolidated, a very important open issue regards reasoning on CPGs. Indeed,
CPGs are, first of all, knowledge sources and, as such, the Artificial Intelligence tra-
dition demonstrates that they may be object of different forms of reasoning. Indeed,
Artificial Intelligence widely demonstrates that representation and reasoning are
strictly related tasks complementing each other. In many Artificial Intelligence con-
texts, knowledge representation is useless without proper reasoning mechanisms
operating on it. Indeed, reasoning mechanisms are the tool to “qualify” the repre-
sented knowledge, determining its implicit implications and, at the very end, showing
its intrinsic underlying semantics.

In the last years, some reasoning tasks concerning CIGs have started to attract
increasing attention. CIG verification and conformance are two of them. Roughly
speaking, conformance analysis concerns the execution of aCIGon a specific patient,
and is used in order to check whether the CIG recommendations have been followed
in the treatment of the patient. A technical description and an advanced investigation
of conformance are proposed in Chap.5 of this book. On the other hand, in Chap.19
we focus on CIG verification.

As regards verification, it is worth remembering that, in general, CPGs are a very
extensive body of knowledge, which, as long as no formal language is used to repre-
sent it, is expressed in an “imprecise” (or partially ambiguous) way. The acquisition
and formal representation of a CPG is thus a complex process, so that there is no
guarantee that the final formal representation exactly achieves all the desired objec-
tives in terms of correctness and completeness of the specified therapeutic and/or
diagnostic treatments. Indeed, there are at least two potential sources of errors. On
the one hand, given the large amount of knowledge it contains, there is no guarantee
that even the original (textual) guideline correctly covers all the desired cases. On
the other hand, the formalization of original (textual) guidelines into some CIG for-
malism is a complex process that may introduce errors. As a consequence of these
problems (and, in general, of the complexity of CPGs), automatic or semi-automatic
supports to verification are important to check, e.g., whether an acquired CIG allows
to cope in the desired way with its eligible patients. Only after the check that a CIG
verifies the desired properties, physicians can fully trust it and the recommendation
it provides. However, CIG verification is a complex task, also in consideration of
the fact that CPGs contain heterogeneous forms of knowledge. As a consequence,
the adoption of different methodologies (each one appropriate for a specific type
of knowledge/verification) seems to be the best option. In particular, the GLARE
system emerges in the literature for the attention devoted to different forms of veri-
fication, through the adoption of different Artificial Intelligence formal techniques.
In particular, Chap. 19 considers three different forms of verification:

1. verification that the temporal constraints in a CIG are consistent, through
constraint-based temporal reasoning techniques;

http://dx.doi.org/10.1007/978-3-319-28007-3_5
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2. verification of different medical properties of a CIG (e.g., its capability of coping
with a given type of patients, or to support specific types of treatments), through
model checking;

3. verification of probabilistic properties of a CIG in the context of a probabilistic
knowledge base, through probabilistic modelling.

18.4 Aggregation of Evidence Using Argumentation

Whilst guidelines are important vehicles for the systematic use of evidence in health-
care, and thereby support evidence-based decision making, they do have some short-
comings. Producing a guideline requires substantial resources and time to acquire
and process the evidence in order to produce robust recommendations, and yet they
can rapidly become out-of-date when new evidence is published. They are written
for general populations and so do not consider specific circumstances of individual
patients, and they often do not consider co-morbidities. Also they do not take into
account the preferences of the individual patient or clinician with regard to possi-
ble options. Finally, it is important to note that aggregations of evidence such as in
systematic reviews and guidelines can interpret and aggregate the evidence in a par-
ticular way, but often there are multiple ways that the evidence can interpreted and
aggregated leading to alternative recommendations being derived from the evidence.

Recent research in knowledge representation and reasoning is offering a new
method to derive recommendations from evidence. This addresses the above short-
comings by automatically generating recommendations from a database of evidence
taking into account the quality of the evidence according to specified criteria as well
as contextual information concerning the patient. This allows for different evidence
quality criteria and different patient criteria to be considered so that their effect on
the recommendations can be explored. Furthermore, the criteria considered for the
recommendations can be published with the recommendations to make the process
systematic, transparent, and reproducible. In Chap. 20, this knowledge representation
methodology based on argumentation is presented as a tutorial.
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Chapter 19
A Hybrid Approach to the Verification
of Computer Interpretable Guidelines

Luca Anselma, Alessio Bottrighi, Laura Giordano, Arjen Hommersom,
Gianpaolo Molino, Stefania Montani, Paolo Terenziani and Mauro Torchio

Abstract Computer Interpretable Guidelines (CIGs) are assuming a major role in
the medical area, in order to enhance the quality of medical assistance by providing
physicianswith evidence-based recommendations. However, the complexity of CIGs
(which may contain hundreds of related clinical activities) demands for a verification
process, aimed at assuring that a CIG satisfies several different types of properties
(e.g., verification of the CIG correctness with respect to several criteria). Verification
is a demanding task, which may be enhanced through the adoption of advanced
Artificial Intelligence techniques. In this paper, we propose a general and hybrid
approach to address such a task, suggesting that, given the heterogeneous character
of the knowledge inCIGs, different formsof verification shouldbe supported, through
the adoption of proper (and different) methodologies.

19.1 Introduction

Clinical Practice Guidelines (CPGs) can be defined as a means for specifying the
“best” clinical procedures and for standardizing them. The adoption of CPGs, by
supportingphysicians in their decisionmaking anddiagnosing activities,mayprovide
crucial advantages, both in individualized health care, and in the overall service
offered by a health care organization. In particular, it has been shown [35] that CPGs
can improve the quality of patient care, reduce variations in quality of care, and
reduce costs. These observations justify the increasing number of CPGs which have
been defined in the last decade, covering a large spectrum of diseases and medical
procedures. Given the relevance of this phenomenon, in the last two decades a lot of
efforts has been devoted in order to provided formal representations of guidelines,
that can be treated by computer systems (usually called Computer Interpretable
Guidelines CIGs for short). Many approaches have focused on the development of
guideline representation formalisms, and/or systems to acquire, store and execute
CIGs. However, the effort in defining and disseminating CIGs has not always been
coupled by a parallel effort in guaranteeing their “quality” [45]: despite the fact that
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CPGs and/or CIGs are issued by recognized experts’ committees, they might be
ambiguous or incomplete [32], or even inconsistent. The need for guideline quality
verification is thus clearly emerging. As we will show in this paper, computer-based
approaches can provide crucial advantages in this context.

In particular, in this paperwe suggest that, given the heterogeneous character of the
knowledge contained in CIGs, different forms of verifications should be supported,
demanding for an hybrid approach in which different representation formalisms are
used (to properly capture different types of knowledge) and different methodologies
are devised (to properly reason with the different formalisms). In particular, in this
paper, we focus on three different forms of verification:

1. verification that the temporal constraints in a CIG are consistent, through
constraint-based temporal reasoning techniques;

2. verification of different medical properties of a CIG (e.g., its capability of coping
with a given type of patients, or to support specific types of treatments), through
model checking;

3. verification of probabilistic properties of a CIG in the context of a probabilistic
knowledge base, through probabilistic modelling.

19.2 Representing and Reasoning with Temporal
Constraints

Representing and reasoning with temporal constraints is an essential feature for
computer-based approaches to clinical guidelines. In particular, a temporal manager
coping with time-related issues can be exploited in different ways in themanagement
of clinical guidelines. For instance, during the acquisition of a new guideline, the
consistency of the temporal constraints it contains can be automatically checked;
during the execution of a guideline on a specific patient, the temporal manager can
be used to check whether the specific actions have been executed in such a way that
the constraints in the guideline have been respected, or to determine the times when
the next actions need to be executed. However, although many domain-independent
temporalmanagers havebeendevisedwithin theArtificial Intelligence (AI) literature,
and several approaches to time-related issues have been faced within the clinical
guideline literature, several new challenges have to be addressed when dealing with
temporal representation and temporal reasoning about clinical guidelines.

19.2.1 Desiderata for a CIG Temporal Reasoner

As inmostAI approaches to the treatment of time, also in the context ofCIGswemust
take into account the fundamental trade-off between the expressiveness of temporal
formalisms and the computational complexity of the correct and complete temporal
reasoning algorithms operating on them.
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While expressiveness is an obvious desideratum, we will now briefly motivate the
second term of the above trade-off: correctness, completeness, and tractability. First,
it is important to stress that a formalism for temporal constraints is not very useful if it
is not paired with algorithms for temporal reasoning, performing temporal inferences
on a set of constraints (expressed in the given formalism) and/or checking their
consistency. Consider, for instance, a Knowledge Base KB containing the temporal
constraints (i) and (ii) among three events A, B and C.

K B = {(i) A before B; (ii) B before C}

The constraint (iii) A before C can be inferred because it is logically implied by
(i) and (ii), so that, given KB, one can correctly assert (iii), but not (iv) A after
C, which is actually inconsistent with KB. In other words, the set of constraints
K B ′ = {(i), (i i), (iv)} cannot be satisfied. Temporal reasoning is necessary in order
to support such an intended semantics. With no temporal reasoning, a CIG may
contain the above set of temporal constraints, and thus be not executable (since there
is no way of satisfying the constraints).

Of course, temporal reasoning algorithms are computationally expensive. An
important desideratum is tractability, i.e., the fact that the running time of the algo-
rithms grows as a fixed power of the number of the actions and/or constraints in the
knowledge base (i.e., in polynomial time).

However, temporal reasoning algorithms should also be correct, i.e., such that
they only infer constraints that are logically implied by the initial set of constraints
(in fact, correctness grants that no wrong inference is made). Completeness (i.e.,
the fact that all logically implied constraints are actually inferred) is a fundamental
desideratum aswell, since it is essential in order to grant that the system’s answers are
fully reliable (e.g., if (i i i) is not inferred from {(i), (i i)}, the answer to the question
“Is (iv) consistent with {(i), (i i)}?” may be yes).

In particular, as in most AI approaches, the main task of our temporal reasoning
algorithms is that of checking the consistency of temporal constraints in a guideline.
In fact, real-world guidelines usually consist of hundreds of actions, often related
by temporal constraints. This means that: (i) the fact that hundreds of constraints
are mutually consistent cannot be taken for granted and (ii) consistency checking
cannot be directly performed by physicians (and/or by a knowledge engineer), since
making explicit all the possible implications of such a large number of constraints is
an overwhelming and too complex task.

19.2.1.1 Dealing with Temporal Constraints in Clinical Guidelines:
New Challenges and Open Problems

Despite the large amount of valuable works, there still seems to be a gap between
the range of phenomena covered by current AI constraint-based approaches and
the needs arising from clinical guidelines management. In essence, while many AI
approaches to temporal constraints are focused on the treatment of a specific type of
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constraints only (e.g., qualitative temporal constraints), in the CIG context several
different issues and types of constraints need to be taken into account:

(i) qualitative (e.g., ‘at the same time’) and quantitative (e.g., at least ten days after)
constraints between actions;

(ii) repeated/periodic events (and constraints between them);
(iii) all the above types of constraints may be imprecise and/or partially defined;
(iv) temporal constraints involved by part-of relations between actions in the CIGs
(v) the distinction between (temporal constraints between) classes of actions (e.g.,

an action in a general guideline) and instances of such actions.

As regards issue (iv), notice that most CIG formalisms support multiple levels of
abstraction, through the definition of composite actions, and the specification of their
components. However, part-of decomposition involves temporal constraints, since
each composite action temporally contains its components. Finally, issue (v) points
out that actions in CIGs can be conceived as classes of actions, which admit multiple
instantiations, whereas CIGs are applied to specific patients. This involves the treat-
ment of some form of temporal constraint inheritance from classes to instances. As a
real example of the temporal complexity of the CIG domain, consider Example19.1
(which is a simplified part of a guideline about multiple myeloma).

Example 19.1. The therapy for multiple myeloma is made by six cycles of 5-day
treatment, each one followed by a delay of 23days (for a total time of 24weeks).
Within each cycle of 5days, 2 inner cycles can be distinguished: the melphalan
treatment, to be provided twice a day, for each of the 5days, and the prednisone
treatment, to be provided once a day, for each of the 5days. These two treatments
must be performed in parallel.

Temporal constraints such as the ones in Example19.1 are challenging for the
constraint-based formalisms developed within the AI literature.

Obviously, the interplay between issues (i)–(v) needs to be dealt with, too. For
example, the interaction between composite and periodic events might be complex
to represent and manage. In fact, in the case of a composite periodic event, the tem-
poral pattern regards the components, which may, recursively, be composite and/or
periodic events. For instance, consider Example19.1. The instances of the melpha-
lan treatment must respect the temporal pattern “twice a day, for 5days”, but such
a pattern must be repeated for six cycles, each one followed by a delay of 23days,
since the melphalan treatment is part of the general therapy for multiple myeloma.

While someof the above issues have been treated in an ad-hocway in the literature,
in our approach we aim at devising a general module coping in an integrated way
with all of them. The temporal knowledge server will act as an independent module
and the temporal problems in different clinical guidelines will be delegated to such a
server. The strategy we chose to adopt in order to achieve our goal is that of devising
a two-layer approach:

1. the high-level layer provides a high-level language to represent the above-
mentioned temporal phenomena and to offer several temporal reasoning facilities;
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2. the low-level layer consists of an internal representation of the temporal con-
straints, on which temporal constraint propagation algorithms operate.

We designed our high-level language with specific attention to modelling repeated
actions, and in such a way that tractable temporal reasoning can be supported. At
the low-level layer, we chose to exploit as much as possible STP (Simple Temporal
Problem), a standard AI temporal reasoning framework [9]. In a certain sense, our
approach uses STP as an “assembly language” and builds an expressive “high-level
temporal reasoning framework” on top of it. Obviously, the gap between our high-
level language and STP is very large. Filling such a gap is the main contribution of
our approach, and has involved the design of suitable temporal reasoning algorithms
to cope with issues (i)-(v) above, as well as an extension of the STP framework itself
(to consider labelled trees of STPs).

19.2.2 High-Level Formalism for CIG Temporal Constraints

Our high-level language allows one to express temporal constraints of the different
types discussed above.

Dates can be expressed by the predicate date(A, L1, U1, L2, U2), stating that
the action A must start between dates L1 and U1 and end between dates L2 and U2.
Precise dates can be expressed imposing L1=U1 or L2=U2. Please note that also
unknown dates are allowed by imposing that the extremes assume value−∞ or+∞.
Other constructs include the predicate duration(A, L, U), stating that the duration
of action A must be included between L and U, delay(P1, P2, L, U), stating that the
delay between P1 and P2 must be between L and U, where P1 and P2 are time points
(i.e., starting or ending points of actions). Also qualitative temporal constraints such
as “before”, “after”, “during” are supported by our language: in fact all and only
the qualitative constraints that can be mapped to conjunctions of STP constraints are
supported.

For representing composite actions we support the predicate partOf(A’, A), sta-
ting that the action A’ is part of the composite action A. Please note that the partOf
relation induces a temporal constraint between the actions: i.e., action A’ must be
during action A. The predicates described above can be also used for representing
temporal constraints between instances of actions.

In order to describe the relation between instances and classes, we need to intro-
duce a further predicate, instanceOf(I, A, p) to represent the fact that the instance
of action I is an instance of the class of actions A. If A is a repeated action, then p
represents the fact that I is an instance of the pth repetition of A (if A is not a repeated
action, p = 0).

Regarding repetition of actions, we provide the predicate repetition(A, RSpec),
to state that the (possibly composite) class of action A is repeated according to the
specification RSpec. RSpec is a recursive structure of arbitrary depth of the form

RSpec = 〈R1, . . . , Rn〉,
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where each level Ri states that the actions described in the next level (i.e., Ri+1, or
by convention the action A, if i = n) must be repeated a certain number of times in a
certain time span. To be more specific, any basic element Ri consists of a quadruple

Ri = 〈n Repeti tionsi , I -T imei , repConstraintsi , conditionsi 〉,

where the first term represents the number of times that Ri+1 must be repeated, the
second one represents the time span in which the repetitions must be included, the
third onemay impose a pattern that the repetitionsmust follow, and the last one allows
to express conditions that must hold so that the repetition can take place. Informally,
we can roughly describe the semantics of a quadruple Ri as the natural language
sentence repeat Ri+1 n Repeti tionsi times in exactly I -T imei , if conditionsi hold.

Adetailed treatment of such a specification is outside the goals of the current paper.
Indeed, in [4] the expressiveness of the language for repetitions has been studied, on
the basis of both the classification criteria provided by Egidi and Terenziani [11, 12]
and by Bettini [6].

Additionally, in [4] the semantics of such specifications has been formally studied.
For example, the melphalan treatment in Example19.1 can be represented as

Repeti tion(melphalan, 〈R0 = 〈5, 5d, , 〉, R1 = 〈2, 1d, , 〉〉),meaning that the treat-
ment is composed by two levels: R0 states that R1 must be repeated five times in five
days and R1 states that melphalan must be administered twice a day.

19.2.3 Reasoning with Temporal Constraints in CIGs

Regarding the instances of actions,we designed the high-level language in such away
that all constraints can be mapped onto bounds on differences and, thus, internally
represented as a “standard” STP framework [9].

However, regarding the classes of events, while dates, delays, durations and qual-
itative temporal constraints might be represented with an STP about classes, it is
not possible to represent in such a basic way also the temporal constraints about
repeated/periodic and/or composite actions. We thus introduce STP-trees, as a suit-
able low-level representation of temporal constraints, on which temporal reasoning
algorithms can operate.

19.2.3.1 STP-Tree

In our approach, the overall set of constraints between actions in the CIG is rep-
resented by a tree of STPs (STP-tree henceforth). The root of the tree is the STP
which represents the constraints between all the actions in the guideline, except the
components of repeated actions.

The STP-tree corresponding to a guideline can be automatically constructed on
the basis of the temporal constraints in the guideline (expressed using the high-level
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Fig. 19.1 STP-tree for the multiple mieloma chemotherapy guideline in Example19.1. Thin lines
and arcs between nodes in a STP represent bound on differences constraints. Arcs from a pair of
nodes to a child STP represent repetitions. Arcs between any two nodes X and Y in a STP of the
STP-tree are labeled by a pair [n,m] representing the minimum and maximum distance between X
and Y. Sch, Ech, Smc, Emc, Spc, Epc, Sm, Em, Sp and Ep stand for the starting (S) and ending (E)
points of chemotherapy, melphalan cycle, prednisone cycle, melphalan treatment and prednisone
treatment, respectively.

language in Subsect. 19.2.2) by executing an algorithm which operates recursively,
from the root to the leaves, by putting in each STP-node all the actions except the
components of repeated actions, which are represented in separate STP-nodes. On
the other hand, the partOf relations not involving repeated actions are represented in
the same STP as the composite action by adding to such an STP-node the constraints
that all the components are contained into the corresponding composite action.

To summarize, in the STP-tree there are as many STP-nodes as the number of
repeated actions, and in each STP-node there are as many actions as the number
of actions in the guideline that are parts of the repeated action that the STP-node
represents. Specifically, each action is represented in the STP-node as a pair of
time points, while constraints between (not repeated) actions are represented by arcs
connecting them.

For instance, in Fig. 19.1, we show the STP-tree representing (at the low-level)
the temporal constraints in Example19.1.

Additionally, an independent STP must be used in order to represent the temporal
constraints about the specific instances of the actions of the guidelines, as emerging
from executions of the guidelines on specific patients.

19.2.3.2 Checking the Consistency of a Guideline

Given an STP-tree, it is possible to check its consistency in an intensional way, i.e.,
without generating every repetition of repeated actions. However, it is not sufficient
to check the consistency of each STP contained in the STP-nodes separately. In such
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a case, in fact, we would neglect the repetition/periodicity information. Temporal
consistency checking, thus, proceeds in a top-down fashion, starting from the root of
the STP-tree towards its leaves. Basically, the root contains a “standard” STP, so that
the Floyd-Warshall’s algorithm can be applied to check its consistency. Thereafter,
for each node X in the STP-tree (except the root), we proceed as shown in the
algorithm STP_tree_consistency (see Algorithm 5).

Algorithm 5. Algorithm for checking the consistency of a guideline (represented as
an STP-tree).
function ST P_tree_consistency(X : ST P Node,
RSpec = (R1 = 〈n Repeti tions1, I -T ime1, repConstraints1, conditions1〉, . . . ,
Rn = 〈n Repeti tionsn, I -T imen, repConstraintsn, conditionsn〉)) : ST P
1: check that the repetition/periodicity constraint is well-formed (i.e., that repetitions nest properly)
2: compute Max , i.e. the maximum duration of a single repetition of X according to RSpec
3: impose in X that the maximum distance between each pair of points is less or equals Max
4: X ← FloydWarshall(X)

5: if X = INCONSISTENT return INCONSISTENT else return X

STP_tree_consistency takes in input the STP-node that must be checked (i.e. X)
and the repetition/periodicity constraint (i.e., the repetition specification in the arc
of the STP-tree entering node X), and gives as an output an inconsistency or, in the
case of consistency, the local minimal network of the constraints in X considering
also the repetition/periodicity constraints. In step 1 it checks whether the repeti-
tion/periodicity constraint is well-formed, i.e. if it is consistent when it is taken in
isolation (e.g., I -T ime2 must be contained into I -T ime1). In step 2 it computes the
maximum duration of a single repetition. This is obtained by considering the time
that allows to perform a repetition assuming that all the other repetitions have the
minimum possible duration. In step 3 it adds to the STP X the constraints stating that
the maximum duration of X must be the computed maximum duration of a single
repetition of X. Finally, in step 5 it checks the consistency of the augmented STP X
via the Floyd-Warshall’s algorithm.

Property. STP_tree_consistency is correct and complete (see [4]). Considering
that the number of nesting levels, in the worst case, is less than the number of classes,
the algorithm is dominated by step 4, that is O(C3), whereC is the number of actions
in the guideline.

19.2.3.3 Reasoning with the Executions of the Guideline

We have also devised an algorithm for checking the consistency of the execution
of a guideline instance with respect to its related guideline. In our work, as in
most approaches to clinical guidelines, we suppose that one has full observabil-
ity of instances (i.e., all the instances of actions which have been executed have
been observed and inserted into the knowledge base), and that, for each instance,
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one knows the corresponding class of actions and/or repetition in the guidelines.
The procedure integratedConsistency accepts three parameters: T (the STP-tree that
describes the constraints about classes of actions in the guideline), E (the STP that
describes the temporal constraints between the instances of actions – i.e., the actions
that have been executed on specific patients), and NOW, that corresponds to the time
of the present. The basic idea is to:

(a) check that in the executionSTP there are all and only the instances that the STP-
tree predicts to be. Possible missing instances are hypothesized because they
may happen in the future;

(b) inherit the repetition/periodicity constraints and the temporal (non-periodic) con-
straints from the classes to the instances;

(c) propagate the temporal constraints on the executionSTP, thus obtaining the min-
imal network [9];

(d) check whether the hypothesized instances expected in the future may actually
start in the future (i.e., after NOW).

Property. Let us denote with C the number of classes in the STP-tree, with I the
numberof instances.Wehave that thecomplexityof theprocedure isO(max{I 3, C3}).
Also, integratedConsistency is correct and complete as regards consistency checking
of the constraints among the instances and among the classes in the STP-tree [4].

19.3 Clinical Guideline Verification

The verification capabilities concerning the general properties of CIGs and their exe-
cution available in the conventional CIG management systems in the literature are
usually rather limited. In many cases, such systems do associate only very specific
and ad-hoc inferential mechanisms to the knowledge represented in the guideline. To
overcome such limitations, the adoption of theorem proving techniques has been pro-
posed within the Protocure European project starting in 2003 [30, 45]. As an alterna-
tive of the theorem-provingmethodology, the adoption ofmodel-checking techniques
has been independently proposed a few years later in the Protocure project [5] and in
our project GLARE [17, 18, 47], mainly motivated by the simplicity and efficiency
of model-checking techniques with respect to the theorem proving approach [20].

Specifically, in our approach we propose a modular solution in which a CIG
management system is loosely coupled with a model checker via a translator, which
maps any guideline expressed in the formalism of the CIG management system into
the formalism of the model-checker. In such a way, the advantages of adopting a
CPG management system from one side, and a general-purpose model-checker on
the other side are retained and combined. In particular, once the mapping has been
defined, any class of properties that can be formalized in the logic of the model
checker can be easily verified, without requiring the definition of a new verification
software module from scratch. This obviously facilitates a real interaction between
the physician examining the CIG and the system itself. Thanks to its modularity, such
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an approach can be easily implemented, since it does not require any modification
to either the CIG management system or the model-checker.

Although our proposal is mostly application-independent, as a proof of concept,
we have integrated within the system GLARE [46] a verification tool which mod-
els a CIG in Promela, the specification language of the model checker SPIN [21],
and verifies the CIG properties to be checked by formalizing them as Linear time
Temporal Logic (LTL) formulas.

19.3.1 Integrating GLARE with SPIN

We have applied the general methodology introduced above in order to couple
GLARE with the model checker SPIN. We have implemented a translator which
takes in input a GLARE CIG, expressed in the XML format, and transforms it into
the corresponding CIG in the Promela language. Analogously, the patient data (in
XML) are also translated into the Promela language.

Promela allows a high level model of a distributed system to be defined by mod-
eling each process in an extended pseudo C code, including synchronization primi-
tives and message exchange primitives. Promela provides the usual if-then-else and
iteration constructs of imperative languages, but it also allows for goto statement
(allowing jumps to labels), for the non-deterministic choice construct, as well as for
the parallel execution of processes. Processes may share global variables and they
also may exchange messages through asynchronous communication channels.

In the following, we briefly describe the general principles we adopt to convert a
GLARE CIG into the corresponding agent-based program in the Promela language.
First, we describe how aCIG ismapped to a set of interacting processes (called agents
henceforth), i.e. to a set of Promela processes and to a set of proper synchronization
primitives andmessage exchange primitives. Then, we shortly describe our translator
module.

19.3.1.1 Guidelines as Agents

Obviously, the basic object we need to represent in Promela for the purpose of
verification is the CIG itself. A CIG can be seen as a set of actions, to be executed in
the order specified by a set of control flow primitives.We havemapped each construct
(action or control flow primitive) in the CIG to a Promela statement or to a Promela
piece of code.

However, CIG execution is a complex phenomenon that cannot be modeled just
by representing the CIG per se.

In the following, we propose a possible, more realistic way of capturing the
dynamics of the CIG and of its execution environment, based on the idea of modeling
a set of processes, whose interaction models the CIG execution itself.
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One of the required processes, which we will call agents, is of course the CIG
itself. The other agents represent the (human or not) components interacting with the
CIG at execution time.

In particular, the Database agent has to be represented. Actually, patient’s char-
acteristics need to be specified, and, rather naturally, we characterize a patient by
relying on her data, which are typically maintained in the clinical database. The
Database agent thus provides data on demand, and is able to store new data values.

Updated data values are sometimes obtained fromadditional sources (e.g. from the
hospital laboratory service). We have generically modeled such sources and services
by means of a further agent, called Outside world.

Last but not least, CIG execution is performed by a physician; therefore, the
physician’s behavior needs to be modeled as an agent as well. In particular, we have
identified twomain tasks that the Physician agent is expected to cover when applying
a CIG to a specific patient. Obviously, it is required to make decisions, i.e. it has to
select exactly one diagnosis or therapy, among a set of alternative ones. Moreover,
it has to evaluate data recency and reliability: if a data value, extracted from the
database, is judged as unreliable or not up-to-date (i.e. too old), the Physician agent
has to rise the problem, thus triggering the generation of a newer data value from the
outside world.

In summary, the model of the distributed system we propose to simulate CIG
execution can be described by the interaction among the following agents, interpreted
as Promela processes:

1. the Guideline agent, which models the overall behavior of the CIG;
2. the Database agent, which models the behavior of the patient database, allowing

for data insertion and retrieval;
3. the Outside agent, which represents the outside world and provides up to date

values for patient data (together with the time of their measurement) when they
are not already available in the database or are evaluated as being not reliable by
the physician. It also stores data in the database, and simulates the execution of
actions by reporting their success or failure;

4. the Physician agent, which interacts with the CIG by evaluating the patient data,
choosing among the different alternative feasible paths as a physician would do,
and judging data reliability. Observe that we model the Physician agent as a non-
deterministic process, since it is not possible to know a-priori all the possible
choices of physicians in all the possible situations. We therefore model the uncer-
tainty about the choice of physicians using non-determinism: from the point of
view of the simulation, choices are taken randomly by the Physician agent.

19.3.1.2 The Translator

As explained above, we have defined a translator which takes a set of XML doc-
uments representing any GLARE CIG and automatically transforms them into the
corresponding CIG in the language Promela.
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A CIG in GLARE is a hierarchical graph, in which it is possible to have composite
actions (i.e. plans), which can be defined in terms of their components via the has-part
relation. In the XML document such a structure is maintained. Thus, the translator
works as a top-down parser.

In particular, the translator takes in input a graph defined as a couple 〈N , E〉
(where N is the set of nodes and E is the set of edges), which is the XML document
representing the CIG, and a vocabulary V , which contains the medical data informa-
tion. To make the translation, the parser visits the graph twice. The first time it makes
a preprocessing in order to obtain the data concerning the requests of information.

In the second step, the parser visits the graph for the second time, in order to build
the agents which model the CIG behavior.

19.3.2 CIG Verification in SPIN

After the translation, SPIN can be used in order to “reason” about the guidelines. In
particular, verification can be managed by expressing properties in LTL, and giving
them in input to SPIN, together with the representation of a guideline obtained
through the translation process. SPIN translates each Promela process into a finite
automaton, and the global behaviour of the system is obtained by computing an
asynchronous interleaving product of automata. The resulting automaton represents
the global state space of the system (the model containing all the possible executions
- runs - of the CIG) and can be built on-the-fly during the verification process. The
correctness claims, that have to be checked on the model of the system, are then
specified as temporal logic formulas in LTL. Given a property (specification) as an
LTL formula, SPIN verifies if the property is true on all the executions of the system.
Namely, each run of the system is regarded as a linear temporal model, on which the
truth of the property is verified from the initial state.

As a matter of fact, temporal logics such as LTL allow one to express a wide range
of formulas. Such an expressiveness and generality motivates a deeper analysis of
what kinds of properties, expressible in LTL, are useful in the CIG context. We show
some examples, dividing the properties on the basis of the CIG life-cycle phases.
Specifically, we single out three main phases (namely, (1) design and acquisition,
(2) contextualization, and (3) execution), and we highlight how verification can be
fruitfully exploited in each phase.

For the sake of exposition, we describe the properties to be verified by distin-
guishing two components: (1) a quantifier on “runs”: ∀, stating that we verify if the
property holds on all the runs, and ∃, stating that we look for one run satisfying the
property; (2) an LTL formula. In the following we assume that the variable “done”
in each state is set to the action performed in that state.

19.3.2.1 Design and Acquisition

CIGs are usually defined by a national or international committee of specialists, and
can be acquired into a computer-based system, usually through a cooperation between
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some specialists and some knowledge engineers. In such a phase, verification through
model checking is useful in order to take into account at least two different classes of
properties, namely structural properties andmedical validity properties. In particular:

(i)Structural properties concern the existence of the appropriate clinical require-
ments. These properties regard the actions, conditions and paths of actions in the CIG
considered “per se”, without any reference to the specific context of execution and
to the specific patients on which the CIG will be applied, and are relevant in order
to ensure the appropriate management of any patients.

Example: verify that any run contains antibiotic treatment (community acquired
pneumonia guideline)

< ∀run,	(done = antibiotic_treatment) >

Comment: The property evaluates to true if all possible runs contain a state in which
an antibiotic treatment is administered.
Relevance: The antibiotic treatment is mandatory in the case of community acquired
pneumonia.

(ii) Medical validity properties concern both the exclusion of dangerous treat-
ments and the inclusion of the most appropriate treatments for the considered class
of patients. These properties are relevant in order to ensure best practice.

Example: verify that whenever hepatic encephalopathy is present, diuretics are
not administered (ascites guideline)

< ∀run, liver_state = encephalopathy → �(done �= diuretics_administration) >

Comment: Diuretics are contraindicated in hepatic encephalopathy.
Relevance: Diuretics can worsen the liver perfusion and precipitate the encephalopa-
thy or worsen its severity.

Both structural and medical validity properties are verified during the acquisition
phase, in which both medical experts and knowledge engineers are usually involved.
Specifically, medical experts can identify the structural and validity properties that
are relevant for the CIG under consideration, and knowledge engineers can formulate
and run the corresponding verifications, reporting the results to the experts. In case
the checks show that a desired property does not hold, the domain experts should
identify the appropriate corrections to the CIG, which will be modified accordingly,
in cooperation with the knowledge engineers.

19.3.2.2 Contextualization

Once a CIG has been defined and acquired (e.g., by a national or international com-
mittee), it has to be applied to several different local structures (e.g., hospitals).
Unfortunately, in several cases, the original CIG is too “general” to be applied on any
specific environment. For instance, depending on the local availability of resources,
certain actions of a general CIG cannot be executed in specific contexts (e.g., small
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hospitals). A phase of contextualization is thus usually needed: when a new CIG
is introduced in a hospital, the medical personnel can use verification (possibly in
cooperation with knowledge engineers) in order to identify which resources the CIG
(or specific paths of the CIG itself) requires. Specifically:

(iii) Contextualization properties concern the resources needed for the CIG
execution and can be checked to adapt the CIG to locally available resources.

Example: verify that there is a run in which the CT scanner is not used (ischemic
stroke guideline)

< ∃run,�done �= T C >

Comment: If this condition holds, the GL (or, at least a part of it) can be applied also
in hospitals where the case the CT scanner is not available.
Relevance:TheCTscanner is very important in somecases, but not always accessible.

The results of such verifications can be used for modifying the original CIG,
or for improving the hospital resources, in order to conform the hospital to the
CIG requirements (to grant the best practice). In the last case, the intervention of
administrator personnel is also necessary.

19.3.2.3 Execution

Finally, the acquired and contextualised CIGs are used in clinical practice. In such a
case, a specific user-physician selects and applies a specific CIG to a specific patient.
Verification is a crucial support also in such a phase:

(iv) Properties concerning the application of a CIG to a specific patient allow
to check which are the best actions (as indicated in the CIG) to be executed on the
patient at hand, on the basis of the patient’s status and symptoms; they also allow
to check whether the CIG (or some specific path of it) contains the specific actions
which the user-physician expects to be necessary for the patient at hand.

Example: verify that there is a treatment in which growth factors are administered,
when leukopenia appears (lymphoma treatment guideline)

< ∃run,�(leukopenia_value = present →
	 (done = growth_ f actors_administration)) >

Comment: The growth factors administration can positively reduce the duration of
the leukopenia and the risk of infections.
Relevance: If leukopenia is not severe, there are also alternative treatments to the
administration of growth factors (e.g., expectant treatment and monitoring). That is
why we check the existence of one run in which (in a given status) growth factors
are administered, without forcing that they are administered in all runs (in contrast
with the verification above).
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19.4 Probabilistic Verification

While many of the logical verification methods that have been proposed can be used
to verify existing guidelines, a possible shortcoming of the logical methods is that
they cannot deal with uncertainty stemming from the use of scientific evidence. On
the other hand, many probabilistic methods do not have the representational benefits
of logic for modelling temporal constraints between tasks.

In the last few years, there has been a surge of interest in the field of statistical
relational learning [16]. In this endeavour, many probabilistic logics have been devel-
oped. We believe that these kind advances provide the right ingredients to represent
and reason with such heterogeneous medical knowledge.

We think this type of probabilistic verification could particularly be important
during the development of a CIG. In this section, we will first introduce a language
that can be used to represent guidelines and a probabilistic knowledge base. After
this, we show that such a language may be used to represent a guideline. Finally, we
illustrate the approach by means of an example in the development of a hypothetical
guideline for diabetes mellitus type 2.

19.4.1 Causal Probabilistic Decision Logic

WeuseCP-logic as a starting point,whichwewill briefly introduce. CP-logic theories
consist of a multi-set of causal probabilistic laws (CP-laws), which are statements
of the form:

∀x : (h1 : α1) ∨ · · · ∨ (hn : αn) ← b1, . . . , bm (19.1)

where the α1 : [0, 1] are probabilities with
∑

αi ≤ 1, n ≥ 1, and m ≥ 0. In this
formula, hi and b j are atoms, that is, expressions of the form p(t1, ..., tm) in which
p/m is the name of a predicate of arity m and ti are terms, i.e., constants or variables.
We call the set of all (hi : αi ) the head of the law, and the conjunction of literals bi

the body of the law. We also refer to all hi as consequences, and to bi as conditions.
If the head contains only one atom h : 1, we may write it as h. Informally, the law
states that in case the body is true, then at most one of the consequents becomes true,
i.e., a consequent is caused by the body. The probabilities in the consequents reflect
the probability that the body causes the consequent to become true.

The semantics of CP-logic relies on the notion of a Herbrand interpretation. This
is essentially a set of ground atoms that can be constructed using the constant and
predicate symbols occurring in the theory. We shall denote Herbrand interpretations
by M and we shall write M |= ϕ if the logical formula ϕ satisfies the interpretation
M . Moreover, for simplicity of presentation, we assume a finite set of constants and
also that all laws are grounded, i.e., each law is replaced by the set of laws where the
variables are replaced by constants. For more details on notions of first-order logic
and logic programming, we refer to [28].
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CP-logic was designed as a probabilistic logic for modelling causal processes.
Actions, too, can be incorporated into these processes, in which case CP-logic
requires that the actions that agents take when the body holds is modelled using
probabilities. In some cases, one wants to abstract from such actions, for example,
to abstract from scheduling decisions when reasoning about concurrent systems. In
other situations, there is no probabilistic information about the behaviour of agents,
e.g., the course of action of physicians. To be able to model this, we introduce non-
determinism into the CP-logic models by adding causal decision laws (CD-laws)
to CP-logic. The resulting language is called Causal Probabilistic Decision Logic
(CPDL).

Causal decision laws (CD-laws) are of the form:

∀x : h1 ∨ · · · ∨ hn ← b1, . . . , bm (19.2)

with n ≥ 1 and m ≥ 0, which can be seen as CP-laws without any probabilities
attached to the elements in the head of the clause. The intuitive reading is also
similar to CP-laws, i.e., b1, . . . , bm causes one of the heads, but in this case non-
deterministically. That is, again exactly one of the heads is caused by the body, but
we do not know which one and also do not know the probabilities.

To obtain a probability distribution for CPDL, the nondeterminism has to be
resolved. For this we introduce a policy, which is a function π which maps each
ground CD-law to one of its heads. For this function it holds that if π(R) = hi , then
R is a CD-law of the form:

h1 ∨ · · · ∨ hn ← b1, . . . , bm .

and 1 ≤ i ≤ n. The intended semantics is that if (b1, . . . , bn) holds, and π(R) = hi ,
then hi becomes true. Therefore different groundings will produce different choices
(as in CP-logic).

In [50], the semantics of this CP-logic is presented by relating the set of laws to
a possible probabilistic causal process. We briefly introduce the semantics of CPDL
in the spirit of CP-logic. Consider a CPDL theory T , a policy π , a Herbrand inter-
pretation M , and a grounded law Rk where Rk = head ← body. If Rk is a CP-law
and M |= body, then the law can be applied for hi : αi ∈ head, which we denote by
M −→αi M ∪ {hi }. A CD-law can be applied if also π(Rk) = hi holds, which is
denoted by M −→ M ∪ {hi }. We then write M −→∗

p M ′ if there exists a chain of
applications of laws from M to M ′ such that each ground law has been applied at
most once, no other laws can be applied, and p = ∏

i αi where αi are all the prob-
abilities of the applied CP-laws. CPDL defines a joint probability distribution over
Herbrand interpretations given a interpretation M by Pπ (M ′) = ∑

M−→∗
p M ′ p. Note

that a uniform probability distribution over heads in a CP-law is quite different from
a CD-law. If a theory consists of CP-laws, then this models a unique probability dis-
tribution. For theories that contain CD-laws, each policy defines a possibly different
probability distribution over the Herbrand interpretations.
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As a first-order language, CPDL is of course sufficiently rich to model discrete-
time models. For representation, we propose a small syntactical extension to the
language, which we call CPDTL (Causal Probabilistic Decision Time Logic). We

introduce a predicate−→· which denotes a transition, i.e.,
−−→
a(v) denotes that a(v) holds

after a transition. A CPDTL theory contains a set of CPDL laws which may contain−→· , and also a set of initial laws of the following form:

(ai (vi1)) : αi1 ∨ · · · ∨ (ai (vin)) : αin ← M

where M is called the starting state. A CPDTL theory can be mapped to CPDL
by replacing all predicates a/m by a/m + 1 and indexing the predicates by time.
Predicates in the initial law get indexed by time 0, i.e., ai (vi ) becomes ai (vi , 0); the

atoms
−−→
a(v) are replaced by a(v, t + 1); all other atoms a(v) are replaced by a(v, t).

Consider the following example to illustrate this language.

Example 19.2. Each year, you can decide whether or not to get a flu shot, which
affects the chance of becoming infected with influenza (with probability 0.01 when
vaccinated, 0.1 when not vaccinated). Influenza might cause other disorders, such as
angina (with probability 0.2) and pneumonia (with probability 0.1). Angina causes
pneumonia (with probability 0.1), and vice versa (with probability 0.8). Pneumonia
might be lethal (with probability 0.01), although there is also a chance of dying of
other causes (with probability 0.001). This medical knowledge of influenza can be
represented in CPDTL as follows.

state(alive) ← M
vaccine(true) ∨ vaccine(false) ← state(alive)
disorder(influenza) : 0.1 ← vaccine(false)
disorder(influenza) : 0.01 ← vaccine(true)
disorder(angina) : 0.2 ∨ disorder(pneumonia) : 0.1

← disorder(influenza)
disorder(pneumonia) : 0.1 ← disorder(angina)
disorder(angina) : 0.8 ← disorder(pneumonia)

−−−−−−→
state(dead) : 0.01 ∨ −−−−−−→

state(alive) : 0.99
← disorder(pneumonia)−−−−−−→

state(dead) : 0.001 ∨ −−−−−−→
state(alive) : 0.999

← state(alive)

Note that the choice for vaccination has been represented by a CD-law, whereas the
rest of the knowledge is represented by a set of CP-laws.

While it is already obvious in this specification that vaccination increases chances
of survival, medical researchers are often more interested in relative measures
such as the relative risks and the number needed to treat (NNT), i.e., the num-
ber of patients who need to be treated to prevent one additional bad outcome. For
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example, if vaccination decreases the chance on flu from 0.1 to 0.01, then the NNT
is 1/(pmax − pmin) = 1/(0.1 − 0.01) ≈ 11, which means that if 11 people are vacci-
nated, 10 people are not expected to benefit. The NNT for preventing death, however,
is not so clear given the interactions between variables. If, however, we would have
the minimal and maximal probability of death, then such measure can be easily
computed (similar for other relevant measures). If there is one binary decision vari-
able, then this can be solved by computing the outcome of both decisions, but more
generally this approach is not feasible.

19.4.2 Application to Guideline Verification

The idea of probabilistic verification is now as follows. CPDTL is expressive enough
to formalize a non-deterministic automaton using CD-laws. Hence, in principle, a
SPINmodel derived from a GLARECIG as described in Sect. 4.2 can be represented
inCPDTL. Furthermore, probabilistic informationmay be combinedwith thismodel.
The resulting model can be mapped to a probabilistic automaton that can be used to
reason with.

19.4.2.1 Probabilistic Automata

Probabilistic automata model discrete-time stochastic systems consisting of a (finite)
set of states S, an initial state s0 ∈ S, a (finite) set of actions A and transition proba-
bilities P : A × S × S → [0, 1] such that for all a and s, P(a, s, s ′) is a probability
distribution over s ′. Furthermore, we assume a labelling function L : S → 2AP that
labels each state with a set of atomic propositions that are true in that state.

A policy π̂ : S → A is used to decide which action is taken in a state. Given
this, a PA can be interpreted as a joint probability distribution over states and actions
indexed by time. It is clear that P(S0 = s0) = 1. Furthermore, the transition probabil-
ities define the conditional probability P(St+1 = s ′ | St = s, At = a) = P(a, s, s ′).
Finally, we can interpret policies as a deterministic probability distribution P(At =
a | St = s) = 1 if π̂(s) = a.

Given the assumptions above in addition to aMarkov assumption, the joint proba-
bility of a path, given a policy π̂ , is the product of all transitions that occur in the path,
i.e., P(M, s0, . . . , sn) = ∏n

t=1 P(π̂(st−1), st−1, st ). In the formal methods commu-
nity, standard solvers exist to compute lower and upper bounds on probabilities. For
this paper, we use the most well-known probabilistic model checker prism [27].

19.4.2.2 Translation

To model a CPDTL theory as a PA, we require that we have a set of attributes Attr,
with a known domain dom(a) for a ∈ Attr, corresponding to a set of predicates in

http://dx.doi.org/10.1007/978-3-319-28007-3_4
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the theory for modelling a state. It should hold that these attributes in the theory are
both mutually exclusive and complete. States can be defined as the set of attributes
with particular values. As in many other probabilistic logics, this property is not
being checked by the system, but should be ensured by the modeller. However, if
this holds, then consider a CPDTL theory T with dynamic attributes Attr for which
we define a PA M = 〈S, s0, A, L , P〉 such that:
• s ∈ S iff s = M or for all a ∈ Attr there exists a unique v ∈ dom(a) such that

a(v) ∈ s
• A = {π | π a CPDL policy for T }
• s0 = M
• L(s) = s
• For all states si , sk ∈ S and policies π ∈ A:

P(π, si , sk) =
{

Pπ (
−→sk | si ) if si �= sk

1 − ∑
j �=i Pπ (

−→s j | si ) if si = sk

Note that in this definition, the probability of not transitioning to a new state means
that you will end up in the same state, which can be seen as a frame axiom. This is
a small semantic difference with the original semantics. However, when the transi-
tions are fully specified, i.e., for all π and si holds

∑
k Pπ (

−→sk | si ) = 1, such as in
Example19.2, then the models will be equivalent in the following sense.

Proposition 19.1 (Fundamental Connection PA and CPDTL). Given a CPDTL
theory with state variable s made from the dynamic attributes such that the transitions
are fully specified. Let PCPDTL be the corresponding probability distribution and PPA

the probability distribution of the corresponding PA. Then

PPA(M, S0 = s0, . . . , St = s) = PCPDTL(s(t))

Note that for representation, it can be quite useful to have the frame axiom.

Example 19.3. The knowledge base presented in Example19.2 can be graphically
represented as a probabilistic automaton as follows:

{state(alive)}

M

{state(dead)}

1 0.0011[vaccine(false)]

0.9989[vaccine(false)]

0.0010[vaccine(true)]

0.9990[vaccine(true)]

1

The state of the PA is defined by the predicate ‘state’ and knowledge that models
transitions have been abstracted into a single number for each possible policy choice.
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19.4.3 Case Study

Using the machinery that has been introduced so far, we investigate a problem of
deciding an appropriate treatment for diabetes mellitus type 2. This model is signifi-
cantlymore complex than the influenza example as diabetes is a complicated disease:
various metabolic control mechanisms are deranged and many different organ sys-
tems may be affected by the disorder. For the individual patient, there is a lot of
uncertainty to which extent physiological phenomena occur, which has an impact
on the effectiveness of a treatment. We will focus here on a well-known drug called
metformin, which is commonly prescribed as the primary oral anti-diabetic, of which
the efficacy is known [15]. Moreover, we consider a genetic variation in the encoding
of a protein called organic cation transporter 1 (OCT1) which affects the response to
metformin [44]. Such knowledge was used to build a set of logical sentences that can
be used to explore a simple model of a guideline that recommends treating diabetes
with metformin. We answer a number of relevant questions that may come up during
the design of such a diabetes guideline. In total, the knowledge base consists of about
50 rules and 10 facts, of which most rules are CD-laws (describing the guideline)
and about 10 rules describing background knowledge based on medical literature.
For example, it is stated as two CP-laws that there is a 20% chance of carrying the
genetic OCT1 variation:

oct_variant (true) : 0.2 ∨ oct_variant ( f alse) : 0.8 ← M−−−−−−−−−−−→
oct_variant (X) ← oct_variant (X)

From a practical modelling point of view, variables are not restricted to a finite
domain using this logic. For example, in this application, it is convenient to count the
number of days that metformin has been given to a patient. This is easily modelled
using a counting variables applied defined by:

−−−−−−−−→
applied(T+1) ← state(activated), applied(T)

which says that, whenever metformin is given to the patient (state(activated)), then
the counter applied is incremented. While this results in an infinite number of states,
queries are always related to a time-point. Hence, we can dynamically restrict the
domain of T to an appropriate upperbound.

Given such amodel, we show a number of queries that explores relevant questions
for the practical treatment of diabetes mellitus type 2 patients with metformin.

Question 1: How long should metformin be applied before it can be decided to stop
the treatment?

There is a trade-off for deciding to stop a treatment: if the treatment with oral anti-
diabetics is stopped too early then patients may be injecting themselves with insulin
for no good reason; if the treatment is stopped too late, then patients who need
treatment with insulin are not treated appropriately. In Fig. 19.2, we plot minimal
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Fig. 19.2 Probabilistic simulation of metformin application with minimal (min) and maximal
(max) probabilities. Furthermore, we consider a model where the physician acts with a probability
p = 0.5.

Fig. 19.3 Probabilistic simulation of metformin application to patients with different fasting blood
glucose (FPG) at baseline. Time of metformin application is varied as well.

and maximal probabilities over time. In this case, minimal probabilities are zero,
because the guideline did not force the physician to start treatment within a certain
time bound, which can be considered a shortcoming of the guideline. We therefore
consider another choice where physicians start treatment every day with a certain
probability, which in this case is set to a probability 0.5. Furthermore, in Fig. 19.3, we
plot a number of dose-response curves for different patients (also with a physician
that acts with probability 0.5). For people with an initial low fasting plasma glucose
(FPG), the effect of treatment is relatively quick, whereas people with an initial high
fasting plasma glucose, the effect is much slower and might not be effective at all
even after prolonged treatment. Hence, a recommendation of metformin should take
the differences with respect to the baseline fasting plasma glucose into account.

Question 2: What improvement could we gain using genetic information?

As the OCT1 protein affects the efficacy of metformin, it might be useful to test
whether a patient has a variation in this gene before treatment. In Fig. 19.4, patients
are plottedwith the same FPG at baseline, but given different evidencewith respect to
having a variation in the OCT1 protein. On average, patients in this population have
a good chance that metformin is effective. However, for the patients with the OCT1-
variant, the chance that metformin is effective is rather small and it might be better
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Fig. 19.4 Probabilistic simulation of metformin application to patients with or without a variation
in the OCT1 protein.

to prescribe an alternative drug, whereas for patients with a normal OCT1 protein,
metformin seems like a good choice. This illustrates that such pharmacogenetics
could thus be used for the personalisation of treatments if tests for variations in the
OCT1 protein become available.

19.5 Related Works

19.5.1 Reasoning About Temporal Constraints

Many AI approaches focused their attention to the definition of suitable formalisms
to represent time-related phenomena and to reason with them. Besides “logical”
approaches (e.g., temporal or non-monotonic logics), starting from the early 80’s,
many constraint-based approaches have been developed in AI [22]. Such approaches
are mostly concerned to define domain-independent knowledge servers which tem-
poral reasoning, in the form of propagation of temporal constraints, can be delegated
to, and which can be coupled with other modules (e.g., a planner, or a system which
manages guidelines) to solve complex problems.

The aim towards specialization led these approaches to focus on specific classes of
constraints (e.g., qualitative constraints such as “A before B”, quantitative constraints
such as dates, delays and durations) [22], or to devote great attention to granularities
and/or periodic/repeated constraints [23–25]) or to the integration of different sorts
of constraints (e.g., qualitative and quantitative constraints [26]).

In the area of clinical guidelines several interesting approaches have been devised
to represent temporal constraints. For instance, GLIF [37] deals both with tempo-
ral constraints on patient data elements and with duration constraints on actions
and decisions. In PROforma [14], guidelines are modelled as plans, and each plan
may define constraints on the accomplishment of tasks, as well as task duration and
delays between tasks. Moreover, temporal constructs can also be used in order to
specify the preconditions of actions. DILEMMA and PRESTIGE [32] model tem-
poral constraints within conditions. EON [33] uses temporal expressions to allow the
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scheduling of guideline steps, and deals with duration constraints about activities.
Moreover, by incorporating the RESUME system, it provides a powerful approach to
cope with temporal abstraction. In EON, the Arden Syntax allows the representation
of delays between the triggering event and the activation of a Medical Logic Module
(MDL), and between MDLs [43].

A rich ontology to deal with temporal information in clinical trial protocols has
been proposed in [53], considering also relative and indeterminate temporal infor-
mation and cyclical event patterns.

Despite the large amount of work devoted to the representation of temporal con-
straints, and the very rich and expressive formalisms being identified, little attention
has been paid to temporal reasoning. Notable exceptions are represented by the
approaches by Shahar [42] and by Duftschmid et al. [10].

In Shahar’s approach, the goal of temporal reasoning is not to deal with tem-
poral constraints (e.g., to check their consistency), but to find out proper temporal
abstractions to data and properties. Therefore, temporal reasoning is not based on
constraint propagation techniques, in fact, e.g., interpolation-based techniques and
knowledge-based reasoning are used.

Miksch et al. have proposed a comprehensive approach based on the notion of
temporal constraint propagation [10, 42]. In particular, in Miksch et al.’s approach,
different types of temporal constraints deriving from the scheduling constraints in
the guideline, from the hierarchical decomposition of actions into their components
and from the control-flow of actions in the guideline are mapped onto an STP frame-
work [9]. Temporal constraint propagation is used in order to (1) detect inconsis-
tencies, and to (2) provide the minimal constraints between actions. In [10], there
is also the claim that (3) such a method can be used by the guideline interpreter in
order to assemble feasible time intervals for the execution of each guideline activity.
Moreover, advanced visualization techniques are used in order to show users the
results of temporal reasoning [26].

19.5.2 Verification

Our work about model-checking verification has started in the context of the Italian
(two-years) project MIUR-PRIN 2003 “Logic-based development and verification
of multi-agent systems” whose main objective was the development of logical and
computational formalisms for the specification and verification of agents and their
interactions. Our approach to LTL verification of clinical guidelines in SPIN has
been described in detail in [7].

Automatic verification of clinical guidelines has first been explored in [30], where
a theorem proving approach is proposed to deal with the problem of protocol ver-
ification. This activity has been developed within the European projects Protocure
and Protocure II. Here, a medical protocol is modelled in the Asbru language as a
hierarchical plan and then it is mapped to a specification in KIV, an interactive the-
orem prover for higher order logic. Properties are expressed in a variant of Interval
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Temporal Logic. [45] has provided an evaluation of the feasibility of this approach
based on the formalization and verification of the “jaundice” protocol and the “dia-
betes mellitus” protocol.

In the Protocure II project, model checking techniques for the verification of
clinical guidelines have also been explored [5]. In contrast to interactive verifica-
tion, model checking is fully automatic. In particular, Protocure II exploits CTL
model checking and the tool SMV [31]. The Asbru model is translated into the input
language of SMVmodel checker bymaking use of a suitable abstraction which elim-
inates time. The compiler takes the algebraic specification of Asbrumodels in KIV as
input and generates an SMV document. CTL model checking is used in the verifica-
tion of a wide range of properties of guidelines modelled in Asbru, namely structural
and medical properties. In particular, in [5] properties of the jaundice protocol are
formalized as ACTL formulas (that is, CTL formulas only allowing universal path
quantifiers) [8].

The main difference between our approach and Protocure’s one is that our
approach is based on LTL temporal logic while Protocure’s one is based on CTL
temporal logic. The adoption of CTL (and ACTL) or LTL model checking allows
for the verification of different temporal properties, as CTL and LTL are expres-
sively incomparable (as well as ACTL and LTL). A further difference between our
approach and Protocure one is due to the availability in SPIN of a higher-level input
language, as compared with the input language of SMV. The fact that Promela is
well suited for modelling guidelines as processes interacting with their environment
by exchanging messages over channels, substantially simplifies the task of providing
a translation of guidelines into Promela code (which does not require intermediate
levels of representation), as well as that of interpreting the results of Concerning the
type of the properties to be verified, as observed in [5] the model checking approach
is well suited for the verification of structural and simple medical properties of the
guideline, that normally do not require an incremental verification strategy.

19.5.3 Probabilistic Verification

Since the last two decades, probabilistic graphical models, PGMs for short, have
become the state of the art for knowledge representation involvinguncertainty. PGMs,
and in particular Bayesian and Markov networks, have been successfully applied to
various problem areas, including medicine. There is a considerable body of work
(e.g. [3, 29, 36, 49, 54]) indicating that Bayesian networks offer a natural and
intuitive formalism for constructing clinically relevant models. Unfortunately, PGMs
are unsuitable for capturing knowledge that goes beyond statistical dependence and
independence information, like clinical guidelines. In contrast, it has been shown
that CP-logic that the probabilistic verification introduced in this chapter is based
upon, can also represent various PGMs [22, 50].

With the recent introduction of probabilistic logics more powerful, relational lan-
guages for the representation of uncertain knowledge have become available, which
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are more suitable for dealing with combinations of logical and probabilistic knowl-
edge. For example, there now exist logical versions of Markov networks, called
Markov logic networks [40], and of Bayesian networks, called Bayesian logic pro-
grams [24]. Influential is also Poole’s independent choice logic [38, 39], in addition
to ProbLog [25] and CP-Logic [50]. These probabilistic logics offer a very natural
and flexible choice for modelling complex domains involving uncertainty. On the
other, all these languages are general probabilistic logics and do not deal with the
particular requirements for representing CIGs, in particular temporal information.
A notable exception is CPT-L [48], where CP-logic is used for modelling Markov
models. The difference to our approach in the fact that in CPT-L each rule deter-
mines a transition. In the logic proposed in this chapter, each derivation determines
a transition, which allows for richer modelling of the transitions.

The CPDTL logic proposed here can also been as a hierarchical models, with
on the top-level a Markov model and in each state transition a CP-logic program.
In this sense, logical hierarchical HMM (LoHiHMM) [34] can be seen as a related
approach. The difference with this approach is two-fold. In the probabilistic sense,
the LoHiHMM is more expressive, as it is a hidden Markov model rather than a
Markov chain. On the other hand, the logical representation is weaker. LoHiHMMs
are called logical, because each state is abstracted using predicate logic, rather than a
propositional state. However, logic is not used to model the transitions, which makes
it unsuitable to model the dynamic behaviour using a symbolic language.

19.6 Conclusions

CIGs are assuming an important role in the standardization and optimization of
healthcare. In particular, CIG systems can be used by physicians as recommendation
tools, to provide high-qualitymedical treatments to patients, on the basis of evidence-
based medicine.

However, given the dimensions of CIGs (which may consist of hundreds of inter-
related actions), and the large amount of knowledge they contain, verification is
important to guarantee the quality of the provided recommendations. As described
in this chapter, verification is important at different stages in theCIG life-cycle: during
design and acquisition, to check structural and medical validity properties, during
contextualization, to support the adoption of general CIGs in specific application
contexts, and during execution, to look for themost appropriate treatments of specific
patients, possibly considering probabilistic information on treatments outcomes and
patient evolutions.

In this chapter, we investigate such issues, proposing a range of methodologies
covering the different aspects of verification. The core idea of this chapter is that,
given the heterogeneous character of the knowledge contained in CIGs, different
forms of verifications should be supported, demanding for an hybrid approach in
which different representation formalisms are used (to properly capture different
types of knowledge) and different methodologies are devised (to properly reason



312 L. Anselma et al.

with the different formalisms). In particular, we focused on three different issues,
and methodologies.

Considering the temporal constraints in CIGs, we propose to adopt the ‘classi-
cal’ AI approach to devise a specialized constraint-propagation-based temporal rea-
soner [2, 51]. Such approaches focus on temporal constraints only, so that specific
representation formalisms can be devised, in such a way that correct and complete
temporal reasoning can be performed efficiently (in cubic time, in our approach).
While such approaches are advantageous when considering temporal constraints
only, they are not general enough to deal with more general forms of knowledge, and
of verification.

We then considered the verification of variousmedical properties of CIGs, with an
emphasis on the temporal evolution of CIGs actions. In that case, we considered two
kinds of properties: logical properties, which can be used to investigate whether the
guideline adheres to hard outcomes, e.g., whether an action will be done or not, and
probabilistic properties, which considers soft outcomes, for example, the effect of
particular actions on the survival rate. During design time, probabilistic verification
could be used to analyse the available evidence, and to potentially derive appropriate
treatment. Given this knowledge, whether derived by probabilistic methods or tra-
ditional analysis techniques in evidence-based medicine, logical verification can be
used to check whether or not the CIG adheres to such a medical validity properties.
At this stage, it is sensible to verify hard outcomes only, as clinical guidelines should
codify the most appropriate for a given disease [13].

A more direct application of probabilistic verification is in the execution of a
CIG when treating a particular patient. Again, in some cases, we may have hard
constraints, as illustrated in the example in Sect. 19.3.2. However, deviation of a
guideline does not imply by itself malpractice. For example, the guideline may pre-
scribe penicillin as the drug of choice for certain infections, but may allow other
antibiotics for patients who are allergic to penicillin. Another example are patients
with comorbidities, which is very common in the elderly (e.g. [1] for the Dutch
population), to which standard treatments in the guideline very often do not apply
[19, 23]. Yet another example is the growing trend to involve the patient in the deci-
sion making process [41, 52], where preferences about treatment alternatives could
be taken into account to select the most appropriate treatment for that particular
patient. In such cases, a probabilistic approach may be appropriate.

In summary, we have proposed a mixture of verifying both logical and proba-
bilistic outcomes. To enable logical verification, we have proposed the adoption of
constraint-propagation based verification and model-based verification techniques
based on temporal logics (LTL), which proved to be well-suited for many medical
verification tasks. Similarly, to enable probabilistic verification, we have proposed
to adopt a probabilistic logic, which can be mapped to probabilistic automata. Using
probabilistic model checking, properties can be checked using probabilistic tempo-
ral logics (see e.g. [27]). While logical approaches already had significant success
for the verification of CIGs, further experimentation with probabilistic verification
is necessary. It is expected that this approach is especially when considering the
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application of CIGs to specific patients, to identify those treatment which, proba-
bilistically speaking, are the best option for them.
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PKDD 2009, Part I. LNCS (LNAI), vol. 5781, pp. 548–563. Springer, Heidelberg (2009)

23. Huges, L.D., McMurdo, M.E.T., Guthrie, B.: Guidelines for people not for diseases: the chal-
lenges of applying UK clinical guidelines to people with multimorbidity. Age Ageing 42(1),
62–69 (2013)

24. Kersting, K., De Raedt, L.: Towards combining inductive logic programming with Bayesian
networks. In: Rouveirol, C., Sebag,M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 118–131.
Springer, Heidelberg (2001)

25. Kimmig, A., et al.: On the implementation of the probabilistic logic programming language
problog. Theory Pract. Logic Program. (2010)

26. Kosara, R., Miksch, S.: Visualization methods for data analysis and planning in medical appli-
cations. Int. J. Med. Inform. 68(1), 141–153 (2002)

27. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In:
Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp.
200–204. Springer, Heidelberg (2002)

28. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
29. Lucas, P.J.F., et al.: A probabilistic and decision-theoretic approach to the management of

infectious disease at the ICU. Artif. Intell. Med. 19(3), 251–279 (2000)
30. Marcos, M., Balser, M., ten Teije, A., van Harmelen, F., Duelli, C.: Experiences in the formali-

sation and verification of medical protocols. In: Dojat, M., Keravnou, E.T., Barahona, P. (eds.)
AIME 2003. LNCS (LNAI), vol. 2780, pp. 132–141. Springer, Heidelberg (2003)

31. McMillan, K.L.: Symbolic Model Checking. Springer, Heidelberg (1993)
32. Musen, M.A., et al.: Knowledge engineering for a clinical trial advice system: uncovering

errors in protocol specification. Bull. du Cancer 74(291), 296 (1987)
33. Musen, M.A., et al.: EON: a component-based approach to automation of protocol-directed

therapy. J. Am. Med. Inform. Assoc. 3(6), 367–388 (1996)
34. Natarajan, S., Bui, H.H., Tadepalli, P., Kersting, K., Wong, W.-K.: Logical hierarchical hidden

markov models for modeling user activities. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS
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Chapter 20
Aggregation of Clinical Evidence Using
Argumentation: A Tutorial Introduction

Anthony Hunter and Matthew Williams

Abstract In this tutorial, we describe a new framework for representing and syn-
thesizing knowledge from clinical trials involving multiple outcome indicators. The
framework offers a formal approach to aggregating clinical evidence. Based on the
available evidence, arguments are generated for claiming that one treatment is su-
perior, or equivalent, to another. Evidence comes from randomized clinical trials,
systematic reviews, meta-analyses, network analyses, etc. Preference criteria over
arguments are used that are based on the outcome indicators, and the magnitude
of those outcome indicators, in the evidence. Meta-arguments attack (i.e. they are
counterarguments to) arguments that are based on weaker evidence. An evaluation
criterion is used to determine which are the winning arguments, and thereby the
recommendations for which treatments are superior. Our approach has an advantage
over meta analyses and network analyses in that they aggregate evidence according
to a single outcome indicator, whereas our approach combines evidence according
to multiple outcome indicators.

20.1 Introduction

Evidence-based decision making is well established in medicine. However, the scale
and pace of new evidence makes it difficult for clinicians and researchers to acquire
and assimilate that evidence. As a consequence, understanding and reviewing the
literature is difficult and time-consuming. This problem is exacerbated by the fact
that the evidence is uncertain, incomplete and inconsistent. In this tutorial, we de-
scribe a new framework for aggregating evidence from clinical trials. This provides
a systematic, transparent, and robust process that operates over multiple outcome
indicators. The formal presentation of our framework has been presented in [8], but
given the novelty of our approach can seem forbidding for a non-technical audience.
So with this tutorial, we provide a more accessible introduction for clinical and sci-
entific readers interested in reasoning with clinical evidence. We assume the reader
has some basic familiarity with clinical trials, in particular randomised clinical trials.
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20.2 Motivation

To cope with the problems of volume, complexity, inconsistency and incomplete-
ness of evidence, organizations supporting decision makers, such as the UK National
Institute for Clinical Excellence, (NICE, www.nice.org.uk), compile and aggregate
evidence into evidence-based guidelines for decision makers. Such guidelines sys-
tematically appraise available evidence so as to encode best-practice recommenda-
tions. These typically specify what tests should be done, and what treatments should
be considered, for particular classes of patient. The advice is supported by reference
to the primary literature (such as published randomized clinical trials, cohort studies,
etc.), together with available systematic reviews of evidence, such as by the Cochrane
Collaboration (www.cochranecollaboration.org).

As valuable as guidelines are for drawing the best available evidence into decision
making in healthcare, there are also some important limitations.

1. Constructing guidelines can involve assimilating massive amounts of evidence.
For instance, medical guidelines are based on a rapidly growing body of bio-
medical evidence, such as clinical trials and other scientific studies (for example,
PubMed, the online repository of biomedical abstracts run by the US National
Institute of Health has over 20 million articles). Production of evidence-based
guidelines therefore requires considerable human effort and expenditure since
the evidence needs to be systematically reviewed and aggregated.

2. Guidelines can become out-of-date quite quickly. For example, in medicine,
even when major trials are published on topics, it may take years before the
guidelines are rewritten to take account of the large amounts of newly available
evidence (for example, PubMed is growing at the rate of 2 articles per minute).
Decision makers are thus faced with the problem of assimilating and processing
guidelines in combination with large amounts of newly available evidence which
may warrant recommendations that conflict with, and so suggest revisions to,
those recommendations provided by the guidelines.

3. Often there are overlapping guidelines to consider (from different agencies or
bodies, and international, national, and local sources), and when there are multiple
problems to be resolved (e.g. a patient with both cancer and liver problems). Thus,
different guidelines may offer conflicting guidance.

4. Guideline recommendations are often written keeping in mind a general popu-
lation so they need to be interpreted for individual cases with specific features.
For example, given a patient with some particular symptoms and test results, the
clinician needs to decide if the patient falls into any of the classes of patients for
which the guideline offers guidance (e.g. if the patient is from a particular ethnic
group, or if they are very young, or if their symptoms do not exactly correspond).
If the clinician has doubts, then turning to the primary literature for fuller descrip-
tions of the relevant clinical trials may be useful. However, the clinician may then
need to assimilate and aggregate the results from a number of articles which can
be challenging. So after what may be an incomplete study of the evidence, the

www.nice.org.uk
www.cochranecollaboration.org
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clinician decides whether or not to accept the recommendation from the guideline
for the specific case.

5. Guidelines are not sensitive to local needs or circumstances. This may also result
in non-compliance by the decision maker in using a guideline. For example, an
international guideline may recommend a particular kind of scan for patients
with a particular combination of symptoms, but a particular hospital using the
guideline might not be able to provide such a scan, and would deviate from the
recommendations by the guideline.

6. Use of guidelines can decouple a decision maker from the evidence which can
be problematical since the decision maker may have valuable knowledge and
experience for use in interpreting the evidence.

These shortcomings suggest that there is a need for knowledge aggregation tech-
nologies for making evidence-based recommendations based on large repositories
of complex, rapidly expanding, incomplete and inconsistent evidence. These tech-
nologies should aim to overcome the limitations of guidelines listed above, and offer
tools for users who need to make evidence-based decisions, as well as users who
need to draft systematic reviews and guidelines, and users who need to undertake
research in order to fill gaps or resolve conflicts in the available evidence.

20.3 Argument-Based Evidence Aggregation

In this section, we provide some background to our approach. We consider the kind
of input we assume, and we briefly discuss what we mean by argumentation.

20.3.1 Input to Our Aggregation Process

We concentrate on clinical trials that compare two different treatments (i.e. “two-
armed” trials”), but where different trials may measure and report different outcome
indicators.

Consider two treatments τ1 and τ2 for some heart condition. These may be com-
pared on their efficacy in treating the condition, and on their side-effects. For example,
we may have evidence from a trial that compares treatment τ1 with τ2 on the relative
risk of mortality within 5 years is 0.95 (i.e. the risk of mortality with τ1 is 0.95 of
that with τ2), and we may have evidence from a trial that compares treatment τ2

with τ1 on the relative risk of causing drowsiness is 0.5 (i.e. the risk of drowsiness
with τ2 is 0.5 of that with τ1). Our framework takes this evidence as input, and de-
termines which treatment is superior. In order to do this, we need to also take into
account preferences (of clinicians or patients) over the outcome indicators and their
magnitude.
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• (Option 1) The relative risk of mortality within 5 years is 0.95 (if taking τ1 instead
of τ2)

• (Option 2) The relative risk of causing drowsiness is 0.5 (if taking τ2 instead of
τ1)

These preferences may vary from person to person. For some people, even a
modest reduction in the risk of mortality is preferred to a reduced risk of drowsiness,
and therefore they would prefer option 1, whereas for other people (e.g. HGV drivers),
the risk of drowsiness would be problematical, and they would therefore prefer option
2. Whilst such preferences are subjective, once we have captured them we can use
them systematically when aggregating evidence with multiple outcome indicators.

So to summarize, the input to our aggregation process is the evidence concerning
pairwise comparisons of treatments, and the preferences over outcome indicators (and
their magnitude) that appear in the evidence. Note, in Sect. 20.4, we consider how to
consider different choices of preference when we do not have a specific preference.

20.3.2 Our Aggregation Process Is Based on Argumentation

Argumentation is an important cognitive activity for handling incomplete and in-
consistent information. It involves identifying individual arguments and counterar-
guments, and it may involve identifying winning arguments. For example, diagnosis
involves argumentation. There may be competing diagnoses for a patient. For each
diagnosis, there may be one or more arguments that support it. Furthermore, there
may counterarguments to some of these arguments (perhaps based on conflicting re-
sults from tests, or other reasons to doubt individual diagnoses). Deciding on which
is the diagnosis for the patient can be regarded as a process of deciding on which
arguments win.

In recent years, there has been substantial interest in developing theoretical and
computational models of argument that can be used in diverse applications (for a
review, see [3]). In theoretical models of argument, each argument has a formally
specified claim, and some specified premises from which the claim can be derived
using some formal reasoning process. For example, consider the following premises

The shape is square
If the shape is square, then the shape has four sides

From these premises, we have the claim “The shape has four sides” by
logical reasoning (syllogism). Hence, we can construct an argument with these
premises and claim.

A counterargument is an argument that contradicts the premises or claim of an
argument. So a counterargument is an argument that “attacks” another argument.
For example, from the premise that “The shape is triangular”, we could
construct a counterargument to the above argument.
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The shape is triangular
If the shape is triangular, then the shape
does not have four sides

So that claim of the second argument contradicts the claim of the first argument,
and so the second argument is a counterargument to the first argument. Furthermore,
the claim of the first argument contradicts the claim of the second argument, and so
the first argument is a counterargument to the second argument. So each argument
attacks the other in this example.

Argumentation is useful when there is uncertainty in the information available.
Here for instance, it may be that there is uncertainty about the shape of the observed
object. One source believes it is square and the other source believes it is triangular.

Different formalisms for argumentation provide different ways of formalizing
arguments and counterarguments, and for deciding on which arguments win. We
do not provide a review of the field in this tutorial. Rather, we just outline (in the
next section) the notions we require for our framework. However, what is common
amongst these formalisms is that they provide an explicit representation of the con-
flicts arising in the available information, and that they provide principled ways of
deciding what are winning arguments.

20.4 Step-by-Step Tutorial on Our Approach

In this section, we provide an introduction to our process for aggregating evidence.
We do this in seven steps starting with the representation of the set of evidence as
input (at Step 1) and a decision on which treatment is superior as output at (Step 7).

20.4.1 Tabulating the Evidence (Step 1)

We start with a set of 2-arm superiority trials, i.e., clinical trials whose purpose is to
determine whether, given two treatments, one is superior to the other. Each trial will
typically report more than one outcome (perhaps a measure of effectiveness, and a
measure of a side-effect). We collect these as an evidence table. Each row represents
data about the trial and a single outcome; thus each trial may generate more than
one row. The columns of the table depend on the particular trial, but we assume the
following columns as a minimum for an evidence table. We give an example of an
evidence table in Example 20.1.

• The left and right attributes signify the treatments compared in each item of
evidence (i.e. the left and right arms of the trial for each item of evidence).
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• The outcome indicator attribute is the specification of the particular outcome that
is being considered when comparing the two treatments. For example, it could be
the relative risk of mortality.

• The outcome value attribute is the value obtained for the outcome indicator for
the left arm compared to the right arm. For example, if the outcome indicator
is relative risk of mortality, then it would be the value obtained for the left arm
compared to the right arm.

• The net outcome attribute is a binary relation over the two treatments that is de-
termined from the value of the outcome and an evaluation of whether the outcome
indicator is desirable or undesirable for the patient class. In this tutorial, we con-
sider outcome indicators that are evaluated in terms of relative risk. In this case,
there are four possibilities for this.

1. If the outcome indicator is something that we want to decrease, and the outcome
value is less than 1, then the left arm is superior is to the right arm, and so the net
outcome is “superior”.

2. If the outcome indicator is something that we want to decrease, and the outcome
value is greater than 1, then the left arm is inferior is to the right arm, and so the
net outcome is “inferior”.

3. If the outcome indicator is something that we want to increase, and the outcome
value is less than 1, then the left arm is inferior is to the right arm, and so the net
outcome is “inferior”.

4. If the outcome indicator is something that we want to increase, and the outcome
value is greater than 1, then the left arm is superior is to the right arm, and so the
net outcome is “superior”.

For example, if the outcome indicator is relative risk of mortality, and the value is
below 1, then the net outcome is desirable, and so the left arm is superior to the
right arm. Whereas, if the outcome indicator is relative risk of mortality, and the
value is above 1, then the net outcome is undesirable, and so the left arm is inferior
to the right arm.

The set of attributes we have discussed here is the minimum that we require. There
are numerous other optional attributes that are useful for assessing and aggregating
evidence, such as the following, and so each such attribute could be captured as a
further column in the evidence table (depending on the kind of evidence available
and how it might be regarded).

• the p-value for the study
• the number of patients involved in each trial
• the geographical location for each trial
• the drop-out rate for the trial
• the methods of randomization
• the evidence type (meta-analysis, cohort study, network analysis, etc.)

For a general introduction to the nature of clinical trials, and a discussion of a wider
range of attributes, see [7].
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Example 20.1. For our running example, we will use the following evidence table.
There are four items of evidence e1 to e4. For each item of evidence, the left arm
is CP (standing for contraceptive pill) and the right arm is NT (standing for no
treatment). For e1, the outcome indicator is relative risk of pregnancy, for e2, the
outcome indicator is relative risk of ovarian cancer, for e3, the outcome indicator is
relative risk of breast cancer, and for e4, the outcome indicator is relative risk of deep
vein thrombosis (DVT). There is one optional column in this evidence table which
is the p value for the RCT in each item of evidence.

ID Left Right Outcome indicator Outcome value Net outcome p
e1 CP NT pregnancy 0.05 superior 0.01
e2 CP NT ovarian cancer 0.99 superior 0.07
e3 CP NT breast cancer 1.04 inferior 0.01
e4 CP NT DVT 1.02 inferior 0.05

20.4.2 Generation of Structured Arguments (Step 2)

From the input evidence, a particular kind of argument that we call an structured
argument is generated. Each structured argument is a pair 〈X , ε〉 where X is a subset
of the evidence concerning two treatments τ1 and τ2. If all the evidence in X indicates
that τ1 is better in some respects than τ2 (i.e. for the evidence in X , the net outcome is
superior), then the claim ε is that τ1 is superior to τ2. Whereas if all the evidence in X
indicates that τ2 better in some respects to τ1, then the claim ε is that τ1 is inferior to
τ2 (i.e. for the evidence in X , the net outcome is inferior). And if all the evidence in X
indicates that τ2 equal in some respects to τ1, then the claim ε is that τ1 is equal to τ2

(i.e. for the evidence in X , the net outcome is equal). Note, we assume the evidence in
an argument is homogeneous in the sense that X only contains evidence that indicates
τ1 better in some respects to τ2, or X only contains evidence that indicates τ1 equal
in some respects to τ2, or X only contains evidence that indicates τ2 better in some
respects to τ1

Example 20.2. Continuing Example 20.1, we have six structured arguments. Given
two items of evidence that support the claim CP > NT, we get three arguments with
the claim CP > NT. Similarly given two items of evidence that support the claim CP
< NT, we get three arguments with the claim CP < NT

〈{e1},CP > NT 〉 〈{e3},CP < NT 〉
〈{e2},CP > NT 〉 〈{e4},CP < NT 〉

〈{e1, e2},CP > NT 〉 〈{e3, e4},CP < NT 〉

Each of the arguments on the left provides the case for the claim that τ1 is superior
to τ2, and each of the arguments on the right provides the case for the claim that τ2 is
superior to τ1 (or equivalently .τ1 is inferior to τ2). Informally, we want to have each
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of the possible subsets of the evidence that supports a claim as an argument because
we want to consider all possible ways that the evidence could be used as a winning
argument. We will explain this in the rest of this section.

Looking at Example 20.2, we see intuitively that the arguments with differing
claims conflict. Obviously it cannot be the case that both of the claims are true. So in
this sense these arguments attack, or rebut, each other. We can represent the arguments
and the attacks between them by a network (technically, a directed graph): Each node
is an argument, and each arc (i.e. arrow) denotes one argument attacking another.

Example 20.3. Continuing Example 20.2, we can see that each argument with claim
CP >NT attacks each argument with claim CP < NT and vice versa. In other words,
each argument with claim CP > NT is a counterargument to each argument with
claim CP < NT and vice versa. This is represented by the following directed graph.

〈{e1},CP> NT 〉

〈{e2},CP> NT 〉

〈{e1,e2},CP> NT 〉

〈{e3},CP< NT 〉

〈{e4},CP< NT 〉

〈{e3,e4},CP< NT 〉

20.4.3 Identification of Preferences over Structured
Arguments (Step 3)

Not all structured arguments are of the same weight. They vary in terms of the benefits
that they offer, so for instance one argument may have the claim that τ1 is superior τ2

because of a substantial improvement in life expectancy, and another argument may
have the claim that τ2 is superior to τ1 because the former has no side-effects, and
the latter has some minor side-effects. To capture this, we use a preference relation
over structured arguments that takes into account the nature and magnitude of the
outcomes presented in the evidence (as we suggested in the introduction). This allows
for a simple and intuitive approach to capturing subjective criteria.

Example 20.4. Continuing Example 20.1, given the outcome indicators presented in
the evidence table, a clinician or patient may express the following preferences over
them as following.

• (Preference 1) Substantial reduction in pregnancy is more preferred to modest
reduction in risk of either breast cancer or DVT.

• (Preference 2) Modest reduction in risk of ovarian cancer is equally preferred to
modest reduction in risk of either breast cancer or DVT.

• (Preference 3) Modest reduction in risk of ovarian cancer is less preferred to
modest reduction inower risk in both DVT and breast cancer.
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In our framework, preferences over outcomes are used to refine the symmetrical
(bidirectional) attacks between structured arguments. For each pair of structured
arguments A and B, if the outcome indicators and their magnitude in the evidence in
A are preferred to the outcome indicators and their magnitude in the evidence in B,
then A attacks B and B does not attack A.

Example 20.5. The preferences in Example 20.4 can be used to refine the directed
graph in Example 20.3 to give the following directed graph.

• Preference 1 is used to prefer arguments involving evidence e1 over arguments
involving evidence e3 or e4, and so the top and bottom arguments on the left attack
each of the arguments on the right (but not vice versa).

• Preference 2 is used to identify that an argument involving just evidence e2 is
equally preferred to an argument involving just evidence e3 and that an argu-
ment involving just evidence e2 is equally preferred to an argument involving just
evidence e4, and so the middle argument on the left attacks the top and middle
arguments on the right, and top and middle arguments on the right each attack the
middle argument on the left.

• Preference 3 is used to prefer an argument involving both evidence e3 and e4 over
an argument involving just evidence e2, and so the bottom argument on the right
attacks the middle argument on the left (but not vice versa).

〈{e1},CP> NT 〉

〈{e2},CP> NT 〉

〈{e1,e2},CP> NT 〉

〈{e3},CP< NT 〉

〈{e4},CP< NT 〉

〈{e3,e4},CP< NT 〉

20.4.4 Generation of Meta-arguments (Step 4)

Structured arguments may vary also in terms of the quality of the evidence. For
instance, one argument may be based on one small randomized clinical trial, and
another may be based on a number of large randomized clinical trials. To address
this, we use meta-arguments.

Each meta-argument is a counterargument to an structured argument that is gen-
erated because there is a weakness in the evidence of the structured argument. For
example, if an structured argument is based entirely on evidence that is not statisti-
cally significant, then a meta-argument could be a counterargument to it.

Example 20.6. Continuing Example 20.1, we may choose the meta-argument M =
“Not statistically significant” to attack each structured argument that has evidence
that has a p value above 0.05. So M attacks each of the following arguments.
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〈{e2},CP > NT 〉
〈{e1, e2},CP > NT 〉

There is a wide range of possible meta-arguments that can be used, and more than
one meta-argument can be used at any one time. Each meta-argument attacks the
evidence in a structured argument, and examples include

• The evidence contains flawed RCTs.
• The evidence contains results that are not statistically significant.
• The evidence is from trials that are for a very narrow patient class.
• The evidence has outcomes that are not consistent.

There are various ways we can formalize each of these as criteria as meta-argument
(e.g. the meta-argument “Not statistically significant” could be defined as p < 0.1,
or p < 0.05, or p < 0.01, or indeed any appropriate value for p).

Furthermore, various refinements of a meta-argument can be considered. For ex-
ample, we could have a meta-argument “Not statistically significant for the intended
outcome”. So for instance, this would attack an structured argument that contained
evidence that was not statistically significant for the outcome indicator that we want
to treat, but it would not attack an structured argument only because it contained
evidence that was not statistically significant for a side-effect. The rationale behind
such a refinement would be that the majority of trials are set up to determine the
efficacy of treatments, rather than for side-effects, and so it is normal for outcomes
concerning side-effects to not be statistically significant and yet they are important
in aggregating evidence about a treatment.

Obviously, using meta-arguments can have various kinds of ramification in the
aggregation process, but the aim is to reflect the choices that clinicians and researchers
have for attacking evidence, and moreover make this an explicit and auditable process.
So if an aggregation of the evidence involves specific meta-arguments, then these
are documented precisely and clearly with the outcome of the aggregation so that we
have a reproducible and transparent process.

20.4.5 Generation of Evidential Argument Graph (Step 5)

An argument graph is a directed graph where each node denotes an argument, and
each arc denotes an attack by one argument on another. So when one argument is
a counterargument to another argument, this is represented by an arc. For each pair
of treatments of interest, we construct an argument graph containing the structured
arguments concerning these treatments, together with the meta-arguments that raise
concerns with regard to the quality of the evidence in those structured arguments. In
other words, this is the graph generated in Step 3 augmented with the meta-arguments
generated in Step 4. We call this an evidential argument graph.
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Example 20.7. Continuing Example 20.1, we have the following evidential argu-
ment graph. The structured arguments and the attacks between then come from
Example 20.5, and the meta-argument and the attacks by the meta-argument come
from Example 20.6.

〈{e1},CP> NT 〉

〈{e2},CP> NT 〉

〈{e1,e2},CP> NT 〉

〈{e3},CP< NT 〉

〈{e4},CP< NT 〉

〈{e3,e4},CP< NT 〉
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An evidential argument graph provides a clear and useful summary of the evidence
in terms of the claims that can be made, the preferences over the outcomes suggested
by the evidence, and the weaknesses in the evidence.

20.4.6 Evaluating the Argument Graph (Step 6)

We then evaluate the evidential argument graph to determine which arguments are
warranted (i.e. which arguments “win” in the argumentation) and which arguments
are unwarranted (i.e. which arguments “loose” in the argumentation). Given the
graph, any argument (structured or meta) that is unattacked is warranted. For each
of the remaining arguments,

• if it is attacked by a warranted argument, then it is unwarranted
• if all the arguments that attack it are unwarranted, then it is warranted
• if it is attacked by an argument that is neither warranted nor unwarranted, then it

is undecided

Using this argumentation process, an argument is undecided unless there are assign-
ments to its attacking arguments to make it either warranted or unwarranted.

Example 20.8. Continuing Example 20.7, the meta-argument is unattacked, and the
structured argument 〈{e1},CP > NT 〉 is unattacked, and so both are warranted. Each
of 〈{e2},CP > NT 〉 and 〈{e1, e2},CP > NT 〉 are attacked by the meta-argument,
and so both are unwarranted. Finally, all the arguments on the right are attacked by
〈{e1},CP > NT 〉, and so they are unwarranted.
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Example 20.9. Returning to Example 20.3, suppose we have no preferences over
the arguments, and we have no meta-arguments, then the evidential argument graph
would be the graph given in Example 20.3. So every argument is unattacked, and so we
cannot identify any warranted arguments or any unwarranted arguments. Therefore,
all the arguments are undecided.

Note, our framework is defined so that it is not possible to have an evidential
argument graph with a warranted argument with claim τ1 > τ2 and a warranted
argument with claim τ1 < τ2. It is a property of our framework that we have warranted
arguments with one of the claims, or we have all the structured arguments being either
unwarranted or undecided.

20.4.7 Generation of Superiority Graph (Step 7)

So far, we have only considered pairs of treatments, and for each pair of treatments τ1

and τ2 we have an argument graph. We summarise the result of the argument graph
as a superiority graph. If the winning arguments have the claim that τ1 is superior to
τ2, then this is represented in the superiority graph by an arc from τ1 to τ2. For each
arc in the superiority there is an associated argument graph which has been used to
determine the direction of the arc. This argument graph is available to the user as an
explanation for the direction of the arc.

Example 20.10. Continuing Example 20.8, there is an argument with the claimCP >
NT that is warranted, and all the arguments with the claimCP < NT are unwarranted.
So from the evidence table given in Example 20.1, we obtain the following superiority
graph.

Contraceptive pill (CP)

No treatment (NT)

If an evidence table considers more than two treatments, as for example in
Table 20.1, then an evidential argument graph needs to be generated for each pairs
of treatments. So for the glaucoma evidence table, six evidential argument graphs
were constructed, and the outcome from each of these gives one of the arcs in the
superiority graph in Fig. 20.1.

20.4.8 Summary of Our Approach

Our framework allows for the construction of arguments on the basis of evidence
as well as their syntheses. The evidence available is then presented and organized
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Fig. 20.1 Example of a superiority graph. This concerns treatments for glaucoma and it has been
generated by our approach using the evidence table given in Table 20.1. There is an arc for each pair
of treatments that we compared in one or more trials. If a pair of treatments were not compared in
any trial, then there is no arc between them. When there is an arrow from treatment τ1 to τ2, then
it means that our study found τ1 to be superior to τ2.

according to the agreement and conflict inherent. In addition, users can encode pref-
erences for automatically ruling in favour of the preferred arguments in a conflict.

The input to our framework is a table of evidence comparing pairs of treatments.
Each row in the table concerns a specific item of evidence such as a randomized clin-
ical trial, and it gives the pair of treatments, the outcome indicator (e.g. disease-free
survival, or overall survival), the outcome value, and optionally further details such
as the kind of comparison (e.g. randomized clinical trial, meta-analysis, or network
analysis), the statistical significance, etc. For any treatments τ1 and τ2 occurring in
the evidence table, our framework would attempt to determine whether τ1 is superior
to τ2, or τ1 is equivalent to τ2, or τ1 is inferior to τ2. This assessment would be
justified by the arguments and counterarguments used to reach this conclusion.

The output from our framework is a superiority graph which is a directed
graph where each node denotes a treatment (appearing in the input evidence table),
each unidirectional arc from τ1 to τ2 denotes that τ1 is superior to τ2, and each
bidirectional arc between τ1 and τ2 denotes that τ1 is equivalent to τ2.

So by determining in general whether one treatment is superior to another based
on comparisons involving specific outcome indicators, we are using the items of evi-
dence (concerning comparisons involving specific outcome indicators) as proxies for
the general statement that in clinical and statistical terms one treatment is superior (or
equivalent) to another. Furthermore, the items of evidence are normally incomplete
and also disagree with each other as to which treatment is superior (for instance a
treatment τ1 may be superior to another τ2 in suppressing the risk of mortality due to
a particular disease, but τ1 may be inferior to τ2 because τ1 has a substantial risk of
a fatal side-effect and τ2 has no risk of this side-effect). So to deal with the incom-
plete and inconsistent nature of the evidence, we have developed an approach that is
based on a computational model of argumentation that takes into account the logical
structure of individual arguments, and the dialectical structure of sets of arguments.
We summarize our approach in Fig. 20.2.



330 A. Hunter and M. Williams

Fig. 20.2 Summary of our framework for evidence aggregation. The input is the evidence table and
the output is the superiority graph. For each pair of treatments in the evidence table where there is a
least one item of evidence comparing them, an evidential argument graph is produced. The evidential
argument graph contains the structured arguments each of which takes a subset of the evidence to
claim that one treatment is better (or equivalent) and meta-arguments that are counterarguments
to structured arguments. One structured argument attacks another if their claims conflict, and the
benefits of the first argument are preferred to the second. Each meta-argument attacks an structured
argument when there is a weakness in the quality of the evidence used in the structured argument.
If “winners” of the evidential argument graph, are all arguments for one treatment being superior
to another, then this is reflected in the superiority graph.

20.5 Managing Subjectivity in Aggregation Criteria

So far in this paper we have explained how the evidence table is the input to the
system, each pair of treatments is evaluated using an argument graph, and then a
summary is produced in the form of a superiority graph. For this, we have assumed a
single preference relation over the arguments (obtained from the preference relation),
and a specific set of meta-arguments.

However, in practice it is normally not obvious that there is a single preference
relation or a single set of meta-arguments. This is because, in general, the selection
of a preference relation, and the selection of meta-arguments, are subjective criteria.
Different clinicians, or their patients, may have different preference relations. This
is an intrinsic and unavoidable feature of dealing with preferences over outcome
indicators and their magnitude. Specification of the meta-arguments is also subjective
because different experts judge evidence differently.

So irrespective of whether our proposal is used, aggregating clinical evidence
involves subjective information. But the following are two key advantages of our
approach for dealing with this subjective information:
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Reproducibility. The preference relation and the set of meta-arguments are presented
explicitly with the superiority graph. This means that any aggregation of the
evidence is reproducible. The evidence, the preference relation, and the meta-
arguments, can all be made available so that anyone can check exactly how the
argument graphs and the superiority graph has been produced. This means the
process is transparent and auditable.

Sensitivity analysis. Since there is not a preference relation or a set of meta-arguments
that is always the right choice, different combinations of preference relation
and/or meta-arguments can be used. In this way, a form of sensitivity analysis
can be undertaken and so a treatment can be identified as superior for a range of
preference relations and/or sets of meta-arguments. Furthermore, if the superi-
ority graph changes little over a wide range of sensible preference relation and
meta-arguments, then the superiority graph could be regarded as robust. Such
sensitivity analyses may allow researchers and clinicians to categorize their find-
ings according to robustness, and it may allow them to focus their discussions on
evidence that is sensitive to the choice of preference relation or meta-arguments.

In general, we believe that a preference relation and a set of meta-arguments
should be justifiable in some sense. Therefore there should be some clinical or eth-
ical reason for adopting a particular preference relation, and there should be some
methodological or clinical reason for adopting a particular set of meta-arguments.

But it may also be worthwhile to go backwards from a particular superiority
graph to identify a preference relation and a set of meta-arguments that would give
that superiority graph. For instance, suppose we have some evidence concerning
treatments τ1 and τ2, and we consider τ1 superior to τ2. Suppose we cannot find any
combination of preference relation and set of meta-arguments that is justifiable, then
we have a stronger case for saying that τ1 is not superior to τ2.

In conclusion, using our framework, we can investigate the sensitivity of aggrega-
tions of evidence according to different subjective choices concerning the evidence
table (i.e. when deciding whether two trials concern the same treatment or the same
patient class is a subjective decision), and in the aggregation process (i.e. when de-
ciding which preference relation and which meta-arguments to use). This leads to
investigation of the sensitivity of a superiority graph to these subjective choices, and
the identification of treatments are superior for a wide range of subjective choices
(for the evidence table and the aggregation process).

20.6 Managing Subjectivity in Representing Evidence

Another kind of subjectivity in the aggregation process, concerns the way in which
we group evidence. In many domains, the precise specification of the patient groups
and treatments may vary across different trials. However, in order to make sense of the
evidence, we accept that some treatments or patients can be grouped. This approach
is common in existing systematic reviews, and also applies to our framework.
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Patient class. When aggregating a set of trial results, we need to assume that the
patient group is the same, and that the same treatments are being used. Normally,
this is not the case. There may be small differences in the inclusion and exclusion
criteria, and therefore the specification of the patient class needs to be relaxed to
allow the trials to be regarded as concerning the same patient class. For example,
if trial A considers male patients over 21 and trial B considers male patients over
23, then it would be reasonable to relax the patient class to being male adults and
so both trials concern the same patient class.

Treatments. Similarly, the exact drug, the dosage, and the frequency of treatment
might be slightly different, but for aggregation, they can be regarded as the
same (e.g. for a particular drug 10 % and 15 % concentration may be regarded as
the same treatment). Again this involves relaxation. As another example, many
drugs for cancer are given in a cocktail (i.e. a mixture of therapies), and it is often
difficult to find exactly the same cocktail used in more than a small number of
trials. So again, the specification of the cocktail needs to be relaxed in order to
aggregate the results.

Grouping of patients and treatments (relaxation) offers a valuable tool for analyz-
ing clinical evidence in order to make more insightful and robust recommendations.
To address this, we can couple the construction of arguments with an computer-
readable model of the world, which contains accepted groupings of patients and
treatments (an ontology), in order to automate the grouping of evidence according to
patient class and/or treatment. By using the ontology to determine that two or more
trials concern the same patient class and treatment, means that we have more evi-
dence to consider for our arguments to any particular argument graph. We illustrate
this idea in the next example.

Example 20.11. Suppose we have the following evidence table that is the same as
the evidence table given in Example 20.1 except we have specific brands CP1 or
CP2 instead of CP, where CP1 and CP2 are similar second generation low dose
contraceptive pills.

ID Left Right Outcome indicator Outcome value Net outcome p
e1 CP1 NT pregnancy 0.05 superior 0.01
e2 CP2 NT ovarian cancer 0.99 superior 0.07
e3 CP1 NT breast cancer 1.04 inferior 0.01
e4 CP2 NT DVT 1.02 inferior 0.05

By using the ontological knowledge that CP1 and CP2 are similar, the above evidence
table can be relaxed to the evidence table given in Example 20.1. In other words, by
using this ontological knowledge, we can automatically replace CP1 and CP2 by CP
in each entry in the Left column.

We have undertaken a theoretical analysis of how this may be done [4], and we can
harness this for developing our sensitivity analysis of superiority graphs (whether by
hand or by automated computer-readable ontologies).
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20.7 Relationship of Our Approach with GRADE

One of the key questions when aggregating evidence is to what extent we can trust the
evidence we have. There have been several approaches to considering the quality of
evidence, including SIGN [18], and MERGE [12]. See [15] for a discussion. However,
more recent work has aimed to achieve consensus via the GRADE guidelines [5].

We see our approach as being consistent with the GRADE approach. GRADE
is a paper-based approach for making clinical recommendations based on evidence.
It is an important tool for guideline development organizations such as NICE. In
the approach, assignment of strength is made to each recommendation. Strong rec-
ommendations are made when the desirable effects of an intervention outweigh the
undesirable effects, and weak recommendations are made when the trade-offs are less
certain. Outcomes are graded according to their importance using a scale from 1 to 9.
For instance, in considering phosphate lowering drugs in patients with renal failure,
flatulence has grade 2, pain due to soft tissue calcification has grade 6, fractures has
grade 7, myocardial infarction has grade 8, and mortality has grade 9 [6]. Allowing
desirable and undesirable outcomes to be weighed. Furthermore, recommendations
can be downgraded when the evidence is not of a sufficiently high quality. Items of
evidence that are based on randomized clinical trials are a priori regarded as high
quality evidence. But this assignment may be decreased for various reasons such as
study limitations, inconsistency of results, indirectness of evidence, imprecisions,
reporting bias, etc.

We can capture the GRADE approach in our framework using the preference
relations, and the meta-arguments, in the argumentation. This means GRADE can
benefit from a number of substantial advantages that come with our approach:

1. The way that the evidence is being aggregated is made explicit, with the preference
relation and meta-arguments being made explicit, meaning that it is easier for third
parties to inspect how the aggregation has been derived;

2. The same criteria (i.e. the same preference relations and meta-arguments) can be
used systematically with new evidence tables, and so the aggregation process is
consistent;

3. Different criteria (i.e. different combination of preference relation and meta-
arguments) can be used in order to determine the sensitivity of ranking of treat-
ments in a superiority graph;

4. Different strength of recommendation can be made by different choices of pref-
erence relation and meta-argument;

5. The process of generating superiority graphs can be automated.

Whilst, we have not considered diagnostic tests and strategies in our framework
yet, we believe we can also capture the GRADE approach for diagnostic tests and
strategies in our approach [17].
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20.8 Discussion

For evidence-based decision making in healthcare, there is a need to abstract away
from the details of individual items of evidence, and to aggregate the evidence in
a way that reduces the volume, complexity, inconsistency and incompleteness of
the information. Moreover, it would be helpful to have a method for automatically
analyzing and presenting the clinical trial results and the possible ways to aggregate
them in an intuitive form, highlighting agreement and conflict present within the
literature.

We believe that our framework for aggregation of clinical evidence using argu-
mentation addresses these needs. The output from our framework is a superiority
graph. This is a useful summary of the aggregation of evidence for researchers and
clinicians who need to aggregate evidence. Each arc connecting a pair of treatments
in the graph is generated by an argumentation process that involves constructing an
argument graph using the evidence concerning those two treatments, and this argu-
ment graph is available to the users of the superiority graph. They can look at the
argument graph to inspect what arguments were considered and what preference cri-
teria and meta-arguments were used. This means that it is explicit how the superiority
graph was obtained, and thereby provides an audit trail of the aggregation process.
Furthermore, different combinations of preference criteria and meta-arguments can
be used to investigate the robustness of any superiority graphs produced.

We have already shown how clinicians use preferences in evaluating evidence [9],
and it is straightforward to use our framework to represent these preferences. The
advantage of allowing the user to define their own preference relations and their own
meta-arguments is that they can systematically use the evidence in the context of
their working environment.

We have evaluated our framework with three case studies involving 56 items of
evidence, and 16 treatment options. The items of evidence come from three NICE
Guidelines, and we have compared the results of our aggregation process with the
recommendations made by NICE. In Table 20.1, we give one of the evidence tables
used and in Fig. 20.1, we give the resulting superiority graph. The results using our
framework are consistent with the NICE recommendations, though in some cases, it
is apparent that they bring extra knowledge (beyond the evidence) into the process
such as health economics modelling, or experiential knowledge, and so in some
cases their recommendations are more refined than ours. We made simple choices
for the preference relations over sets of benefits, and we believe that they are robust
in the sense that they could be changed quite considerably and still we would get the
same results from our aggregation process. For more details on this evaluation of our
approach, please see [8].

In another case study, on lung cancer chemo-radiotherapy, we have investigated
a number of different benefits preference relation and kinds of meta-argument. For
this, we constructed an evidence table with 283 items of evidence (where each item of
evidence concerns a pairwise comparison according to a single outcome indicator).
The primary evidence on which the evidence table was based was a superset for that
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Table 20.1 An evidence table concerning treatments for glaucoma. Each row is a meta-analysis
from the NICE Glaucoma Guideline [14] (Appendix pages 213–223) for the class of patients
who have raised intraocular pressure (i.e. raised pressure in the eye) and are therefore at risk of
glaucoma with resulting irreversible damage to the optic nerve and retina. Each item is a meta-
analysis (MA) generated by the guideline authors as presented in the appendix of the guideline. The
medications considered are no treatment (NT), beta-blocker (BB), prostaglandin analogue (PG),
sympathomimetic (SY), and carbonic anhydrase inhibitor (CA). The Net outcome column gives an
interpretation of the value with respect to the type of outcome indicator: For the outcome indicator
“change in IOP”, if the value is negative, the left arm is superior, otherwise it is inferior. For the
outcome indicator “acceptable IOP”, which is a desirable outcome for the patient, if the value is
greater than 1, the left arm is superior, otherwise it is inferior. For each of the remaining outcome
indicators (i.e. for “respiratory problems”, “cardiovascular problems”, “allergy problems”, “hyper-
aemia”, “convert to COAG”, “visual field progression”, “IOP > 35mmHg”, and “drowsiness”),
which are undesirable for the patient, if the value is less than 1, then the left arm is superior, other-
wise it is inferior. Note, “hyperaemia” means redness of eyes, “convert to COAG” means the patient
develops chronic open angle glaucoma, “visual field progression” means that there is damage to
the retina and/or optic nerve resulting in loss of the visual field and “IOP > 35mmHg” means that
the intraocular pressure is above 35mmHg (which is very high).

ID Left Right Outcome indicator Outcome value Net outcome Sig Type

e01 BB NT visual field prog 0.77 superior no MA

e02 BB NT change in IOP -2.88 superior yes MA

e03 BB NT respiratory prob 3.06 inferior no MA

e04 BB NT cardio prob 9.17 inferior no MA

e05 PG BB change in IOP -1.32 superior yes MA

e06 PG BB acceptable IOP 1.54 superior yes MA

e07 PG BB respiratory prob 0.59 superior yes MA

e08 PG BB cardio prob 0.87 superior no MA

e09 PG BB allergy prob 1.25 inferior no MA

e10 PG BB hyperaemia 3.59 inferior yes MA

e11 PG SY change in IOP -2.21 superior yes MA

e12 PG SY allergic prob 0.03 superior yes MA

e13 PG SY hyperaemia 1.01 inferior no MA

e14 CA NT convert to COAG 0.77 superior no MA

e15 CA NT visual field prog 0.69 superior no MA

e16 CA NT IOP > 35mmHg 0.08 superior yes MA

e17 CA BB hyperaemia 6.42 inferior no MA

e18 SY BB visual field prog 0.92 superior no MA

e19 SY BB change in IOP -0.25 superior no MA

e20 SY BB allergic prob 41.00 inferior yes MA

e21 SY BB drowsiness 1.21 inferior no MA

used in a Cochrane Review on this topic [16]. For the systematic review that has
resulted from our case study, the different ways of aggregating the evidence gave
various insights into the evidence, such as the identification of weaknesses in the
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evidence base, and suggestions being made for future clinical trials to better determine
which of the available treatments is superior. By exploring various relaxations of the
evidence, we were able to make more refined recommendations than obtained with
the original Cochrane review.

As we explained in Sect. 20.7, our approach is consistent with GRADE, and the
GRADE approach for interventions can be formalized and automated in our approach
giving a number of benefits. By using GRADE in our approach, any assumptions are
made explicit, and the aggregation process is reproducible.

Our approach is also consistent with standard techniques such as meta-analyses.
If there are multiple trials with the same outcome indicator, then standard techniques
such as taking the weighted average offer substantial advantages. However, standard
meta-analysis techniques do not handle multiple outcome indicators [7, 10]. So if
there are multiple trials with the same outcome indicator, then standard techniques can
be applied, and the result of the standard techniques used as the input to our approach.
In other words, for the evidence table, a row can be based on a meta-analysis. So
our approach can harness the output of standard meta-analysis techniques, but our
approach can address problems that cannot be addressed by standard meta-analysis
techniques

Network analysis is an increasingly popular method for systematic reviews with
over 30 published in 2011, and an estimate of over 50 in 2012 [1]. In network analysis,
the pairwise superiority of interventions is considered transitively. For example, if
τ1 is superior to τ2 and τ2 is superior to τ3, then by transitivity τ1 is superior to τ3.
In general, such an inference can be error-prone (for a discussion of this, see [2]).
But with further information about the trials (such as details about the populations,
results, etc.), then there are network analysis techniques that can qualify the transitive
inference [13]. Also, see [11] for a discussion of network analysis. However, as with
meta-analysis techniques, network analysis techniques assume a common outcome
indicator. So again, we believe that our approach is consistent with network analysis
techniques. Our approach can harness the output of network analysis techniques, but
our approach can address problems that cannot be addressed by network analysis
techniques.

Acknowledgements The authors would like to thank Jiri Chard and Cristina Visintin for valuable
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