
Verifiable Computation of Large Polynomials

Jiaqi Hong1,2, Haixia Xu1(B), and Peili Li1,2

1 Institute of Informassurance and Communication Security Research Center,
CAS, Beijing, China

2 Graduate University of the Chinese Academy of Sciences, Beijing, China
{hongjiaqi,xuhaixia,lipeili}@iie.ac.cn

Abstract. Due to the proliferation of powerful cloud service, verifi-
able computation, which makes a computationally weak client perform
intensive computations possible through outsourcing tasks to a powerful
server, is attracting increasing attention. The correctness of the returned
result should be verified as the server may be not trusted.
In this paper, we present a verifiable computation protocol on large poly-
nomials, which can be publicly verified by any parties in the network.
Compared with verifiable computation protocol presented by Backes
et al., which is on quadratic, multi-variable polynomials, our verifiable
computation protocol is on high degree, multi-variable polynomials and
publicly verifiable.

Keywords: Verifiable computation · Amortized · Pre-computation ·
Public verification

1 Introduction

Verifiable computation makes it possible for personal computers to perform
intensive computations through outsourcing computation tasks to a powerful
cloud. In the age of cloud, resources are becoming more centralized. Individu-
als lacking computational capacity need only to buy the corresponding service
in the cloud instead of purchasing their own expensive equipments to perform
computation tasks. In this way, not only individual performs its computations
cheap, but also resources in the cloud shared by many individuals are made full
use of. So this kind of service model is attracting increasing attention.

In this paper, we name those who want to outsource intensive tasks clients,
and those who have powerful resources servers. As the server may be not hon-
est, the returned result should be verified by client to avoid malicious behavior
from dishonest server. The cost of verification must be cheaper than the cost
of preforming the computation, otherwise this outsourcing task will make no
sense. In many instances, other parties in the network except for the client want
to use this computation result. It will be better if the returned result can be
publicly verified by all parties. For example, a doctor asks a server to perform a
computation on the data of his patient, nurses need the computation result for
better nursing. If the nurses have the ability to verify the result, they can get
access to the correct result even if the doctor is not online. Many cases like this.
c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 90–104, 2015.
DOI: 10.1007/978-3-319-27998-5 6

Verifiable Computation of Large Polynomials 91

1.1 Related Work

Verifiable computation has a large body of prior works. There are two branches,
one is on general functions, the other is on specific functions. Researches on general
functions often used the method of knowledge proofs to verify the correctness of the
returned result [10,11,17,18,25]. Until Gentry et al. constructed a fully homomor-
phic encryption over idea lattices [13], several verifiable computation protocols on
general functions using the fully homomorphic encryption appeared [1,8,16,21].
A representative is Gennaro et al.’ research work [16]. The authors combined fully
homomorphic encryption with Yao’s garbled circuit and used the range of the cir-
cuit to verify the result. Researches on specific functions utilized the special struc-
ture of the outsourcing function. So those researches often focused on polynomial
and matrix computations [2,4,12,26]. Of course, there were some other researches
on linear algebra [23] and exponential operations [19]. Our verifiable computation
protocol is on large polynomials which have a large scale of variables and are in
high degree. This kind of polynomials has an extensive use in important statistics.
We will introduce two notions most relevant with our work in the following, one is
amortized verifiable computation, the other is public verification.

Amortized Verifiable Computation. This notion was proposed by Gennaro
et al. [16], it was widely used in many of the later works about verifiable computa-
tion [2,4,7,12,26]. The client performs a pre-computation for a specific function,
then the returned result from server can be verified by client in a cheap cost.
Although the pre-computation cost may be as expensive as the cost of performing
the outsourcing function, this function can be performed several times on differ-
ent inputs by server. After several computations, this expensive pre-computation
cost can be amortized.

Benabbas et al. [4] followed this amortized notion and they proposed a novel
method on verifiable polynomial computations. They utilized pseudorandom
functions which have closed-form efficiency to generate a series of numbers as
new polynomial coefficients according to specific polynomial structure. Clients
use the reconstructed polynomial to verify the correctness of the returned result.
As the reconstructed polynomial can be efficiently computed, this protocol is effi-
cient on the amortized notion. The randomness of their pseudorandom functions
are based on decisional Diffie-Hellman assumption.

Backes et al. [2] proposed another brand new method on verifiable quadratic
polynomial computations. They combined homomorphic MAC with verifiable
computation and this is also a representative of amortized verifiable computa-
tion. Clients preform a pre-computation on the multi-variable, quadratic polyno-
mial first, then the returned result from the server can be verified by computing
a quadratic polynomials on two variables. The verification is pretty efficient.
Though their protocol is on quadratic polynomials, their work is irradiative.
The security of their homomorphic MAC is based on decision linear assumption.

Public Verification. Recently, two works on verifiable computation can be pub-
licly verified. Parno et al. [24] used the primitive of attribute-based encryption.

92 J. Hong et al.

As we know, the ciphertext of an attribute-based encryption can be decrypted
only if the attribute makes a function true. They used the result of an attribute
under a one way function as public verification key. Any verifier performs this
one-way function on the returned result to check the equality with the public
verification key to verify the result. Their protocol was suitable for functions
that can be expressed as poly-size Boolean Formulas. Another work is by Fiore
et al. [12]. They followed the work of Benabbas et al. [4] and made the result pub-
licly verifiable by combining it with a bilinear map. They used a pseudorandom
function proposed by Lewko and Waters [22], and reduced the security of their
verifiable computation protocol on co-computational Diffie-Hellman assumption.

In publicly verifiable computation protocols, the client performs an off-line
pre-computation according to the function only, and then performs on-line pre-
computations under inputs. The result of the on-line pre-computation should be
public to allow a public verification. Expensive off-line pre-computation cost will
be amortized to each on-line pre-computation if this function will be outsourced
many time to server under different inputs.

1.2 Our Contribution

In this paper, we present a verifiable computation protocol on large polynomials.
We call polynomials of a large scale of variables and in high degree large polyno-
mials. This kind of polynomials has a significant use in statistics. We follow the
idea of Backes et al. [2] and extend their protocol to a more generally applicable
case. Their protocol is about verifiable computation on quadratic polynomials,
while our protocol is on high degree polynomials and the result can be publicly
verified. One challenge is that their protocol restricted in quadratic polynomial
because their basic tool, homomorphic MAC, was constructed over a bilinear
map. In a bilinear map setting, multiplication of exponents can be performed
at most once. If we want to construct a verifiable computation protocol on high
degree polynomials, the multilinear map is intuitive. Fortunately, Garg et al.
[14] made a plausible lattices-based construction of multilinear map. Though
this multilinear map is not efficient enough now, this cannot stop people from
using it for new constructions [6,15,20,26]. This multilinear map makes sense
in our verifiable computation protocol as the pre-computation is performed on
integers first, and then encodes the result to a group element in multilinear
map. Another challenge is that the randomness of their pseudorandom function
used for constructing homomorphic MAC is based on decision linear assumption
which will no longer hold in a multilinear map setting. So we construct a new
pseudorandom function based on subgroup decisional assumption to build our
verifiable computation protocol. What’s more, this pseudorandom function has
a better performance in reducing the pre-computation cost than the pseudo-
random function used by Backes et al.. The last challenge is to realize public
verification. We follow the idea of Fiore et al. [12] to make a publicly verifiable
computation protocol. The security is based on co-computational Diffie-Hellman
assumption.

Verifiable Computation of Large Polynomials 93

Assume the outsourcing polynomial is of m variables and degree at most d
in each monomial. The main features of our protocol are as follows:

– Our protocol is a publicly verifiable computation protocol on large polynomi-
als.

– We follow the idea of amortized verifiable computation. The off-line pre-
computation cost is O((m + 1)d), same as the cost of performing the out-
sourcing polynomial computation. The on-line pre-computation cost is O(d)
in addition with a multilinear map operation. After several computations on
different inputs, off-line pre-computation cost can be amortized.

2 Preliminaries

Notation. If S is a set, x
U←− S denotes uniformly choosing an element x from S.

If A is an algorithm, x ← A(·) denotes the process of running A on some appropri-
ate input and assigning its output to x. Let n ∈ N be the security parameter, lastly
we abbreviate param for public parameter, PPT for probabilistic polynomial time
and PRF for pseudorandom function.

2.1 Multilinear Maps

One of our basic tool is the multilinear map. Garg et al. [14] made a plausible
lattices based construction, then Coron et al. [9] made another construction
over integers. Their multilinear map is a graded encoding system in fact, here
we review an intuitive definition of it. The groups in this paper are all cyclic
groups with order N = pq, where p, q are both n-bit primes.

Definition 1 (Multilinear Map). Let
−→
G = (G1, . . . ,Gk) be a sequence of

cyclic groups each of order N , and gi be a canonical generator of Gi. There exist
a set of bilinear maps {ei,j : Gi ×Gj → Gi+j |i, j ≥ 1 ∧ i + j ≤ k}, which satisfy
the following operations:

ei,j(ga
i , gb

j) = gab
i+j : ∀a, b ∈ ZN .

when the context is obvious, we drop the subscripts i and j, such as, e(ga
i , gb

j) =
gab

i+j.

Let G(1n, k) denote a multilinear map generator with a security parameter n
and a positive integer k which indicates the required encoding level as its inputs.
The output of G(1n, k) is a multilinear map Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) as
described before. In a multilinear map setting, multiplication of the exponents
in high degree is possible without restriction of degree 2 as in a bilinear map
setting.

94 J. Hong et al.

2.2 Pseudorandom Function

Here, we review a definition of PRF. A PRF consists of two algorithm, KeyGen
and FK(·). Assume that the domain of the PRF is X and the range is Y, KeyGen
produces a secret key K while FK(·) produces y ∈ Y according to K and an
input x ∈ X . A definition of PRF is as follows:

Definition 2 (PRF). F is a pseudorandom function if for every PPT adversary
A, there exists a negligible function neg(·) such that for all n:

|Pr[AFK(·)(1n, param) = 1] − Pr[AR(·)(1n, param) = 1]| ≤ neg(n)

where R : X → Y is a random function.

2.3 Computational Assumptions

Let Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ← G(1n, k) be a k-linear map. We review
the (k, l)-Multilinear Diffie-Hellman Inversion assumption suggested by Sahai
et al. [20]:

Definition 3 ((k, l)-MDHI). Given Γk and g1, g
a
1 , . . . , gal

1 ∈ G1, where a
U←−

ZN , the advantage of an adversary A in finding out gakl+1

k is

Advmdhi
A = |Pr[A(Γk, ga

1 , . . . , gal

1) = gakl+1

k]|.
For any PPT adversary A, there exists a negligible function neg(·) such that

for all n, Advmdhi
A (n) ≤ neg(n).

The subgroup decisional assumption was first suggested by Boneh et al. [3].
Given Gi with order N = pq and u

U←− Gi, it is hard to determine whether u
belongs to subgroup G

q
i or not.

Definition 4 (SDAi). Given Gi and u
U←− Gi, the advantage of an adversary

A in determining whether u belongs to subgroup G
q
i or not is

Advsdai

A = |Pr[A(Gi, u) = 1] − Pr[A(Gi, u
p) = 1]|.

For any PPT adversary A, there exists a negligible function neg(·) such that
for all n, Advsdai

A (n) ≤ neg(n).

Zhang et al. [26] proved that subgroup decisional assumption holds for Γk if
SDAi holds for every Gi, i = 1, . . . , k.

The last one is the co-computational Diffie-Hellman assumption suggested
by Boneh et al. [5].

Definition 5 (co-CDH Assumption). Given Γk and ga
1 , gb

2, where a, b
U←−

ZN , the advantage of an adversary A in finding out gab
1 is

Advcdh
A = Pr[A(Γk, ga

1 , gb
2) = gab

1].

For any PPT adversary A, there exists a negligible function neg(·) such that
for all n, Advcdh

A (n) ≤ neg(n).

Verifiable Computation of Large Polynomials 95

2.4 Basic Model

Now we review a basic publicly verifiable computation model. The client per-
forms an off-line pre-computation according to the outsourcing function only
through the following KeyGen algorithm, and then performs an on-line pre-
computation on specific inputs through the following ProbGen algorithm. The
result of the on-line pre-computation should be public to allow a public verifi-
cation. The server runs the Compute algorithm and returns a σy. Any third
party can verify the returned computation result and output a value y or an
error ⊥.

Let F be a family of functions. A publicly verifiable computation protocol
VC for F is as follows:

– KeyGen(1n, f) → (SK,PK,EK). With a security parameter n and f ∈
F , key generation algorithm produces secret key SK, public key PK, and
evaluation key EK. Send EK to server. This is the off-line pre-computation
on f .

– ProbGen(PK,SK, x) → (σx, V Kx). With an input x in the domain of f , the
problem generation algorithm allows the client to produce an input encoding
σx and a public verification key V Kx. This is the on-line pre-computation on
specific input x.

– Compute(PK,EK, f, σx) → σy. With PK, EK, f and σx, this algorithm
allows server to perform a computation on f and return a σy to the verifier.

– Verify(PK, V Kx, σy) → y/⊥. With PK, V Kx, and σy, this algorithm allows
any party to verify the result and return a value y or an error ⊥.

A verifiable computation protocol is secure if it holds the following properties:
correctness and soundness. Simply, correctness is the value output by an honest
server can be verified correctly.

Definition 6 (Correctness). For any f ∈ F , any (SK,PK,EK) ←
KeyGen(1n, f), any x ∈ Dom(f), if (σx, V Kx) ← ProbGen(PK,SK, x) and
σy ← Compute(PK,EK, f, σx), then the output of Verify(PK, V Kx, σy) is
f(x) with all but negligible probability.

Soundness is any PPT adversary A cannot persuade a verifier to accept an
incorrect computation result. Define the following experiment:

ExpPubVer
A [VC, f, l, n] :

(SK,PK,EK) ← KeyGen(1n, f),
For i = 1 to l:

xi ← A(PK,EK, σx,1, V Kx,1, . . . , σx,i−1, V Kx,i−1),
(σx,i, V Kx,i) ← ProbGen(PK,SK, xi);

x∗ ← A(PK,EK, σx,1, V Kx,1, . . . , σx,l, V Kx,l),
(σx∗ , V Kx∗) ← ProbGen(PK,SK, x∗),
σ̂y ← A(PK,EK, σx,1, V Kx,1, . . . , σx,l, V Kx,l, σx∗ , V Kx∗),
ŷ ← Verify(PK, V Kx∗ , σ̂y),
If ŷ
=⊥ and ŷ
= f(x∗), output 1, else output 0.

96 J. Hong et al.

For any n ∈ N, any function f ∈ F , the advantage of an adversary A making
at most l = poly(n) queries in the above experiment against VC is

AdvPubVer
A (VC, f, l, n) = Pr[ExpPubVer

A [VC, f, l, n] = 1]

Definition 7 (Soundness). A verifiable computation protocol VC is sound for
F , if for any f ∈ F and any PPT adversary A there exists a negligible function
neg(·) such that for all n, AdvPubVer

A (VC, f, l, n) ≤ neg(n).

3 Multi-labeled Program

The idea of our work is inspired by Backes et al.’ multi-labeled verifiable com-
putation protocol [2]. Briefly describing the conception of multi-labeled program
and its corresponding verifiable computation protocol will help readers appreci-
ate our work more easily.

In a multi-labeled program, a pair of labels L = (Δ, τ) is used to identify
a set of input message, where Δ is data set identifier and τ is input identifier.
For an instance, if we want to record the weather condition per hour in a day,
then we should keep track of temperature, humidity, sunlight and so on hourly.
τ = (τ1, τ2, · · ·) labels temperature, humidity, sunlight etc. respectively, while
Δ labels time. Regard the recordings in each hour as one data set. Different Δi

labels different data sets, then τ can be reused to label inputs in different data
sets. A pair L = (Δ, τ) can uniquely identify a set of inputs while any single Δ
or τ can not. Please refer to [2] for details.

The authors proposed a verifiable computation protocol on quadratic poly-
nomials of m variables using multi-label. The verification cost is the cost of
performing a quadratic polynomial on two variables. This verifiable computa-
tion protocol is efficient if m is large enough. We briefly review their protocols
in the following:

Assume that the outsourcing function f is a quadratic polynomial of m vari-
ables. For every input xi, i = 1, . . . ,m, client generates two pairs of pseudoran-
dom values according to their labels such as: (ui, vi) ← FK1(τi), (a, b) ← FK2(Δ),
where F is a PRF and K1,K2 are secret keys of F . Client chooses α

U←− ZN

as its secret key and sets y
(i)
0 = xi, Y

(i)
1 = (guia+vib−xi)

1
α , Y

(i)
2 = 1 ∈ G1 for

i = 1, . . . , m, sends m tuples (y0, Y1, Y2) to server. Server computes σy according
to the arithmetic circuit of f gate by gate:

– Addition. If the gate is an addition gate, assume values on two input wires
are respectively y

(1)
0 and y

(2)
0 . Compute (y0, Y1, Y2) as follows:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 ,

Y2 = Y
(1)
2 · Y

(2)
2 .

Verifiable Computation of Large Polynomials 97

– Multiplication. If the gate is a multiplication gate, assume values on two
input wires are respectively y

(1)
0 and y

(2)
0 . Compute (y0, Y1, Y2) as follows:

y0 = y
(1)
0 · y

(2)
0 , Y1 = (Y (1)

1)y
(2)
0 · (Y (2)

1)y
(1)
0 ,

Y2 = e(Y (1)
1 , Y

(2)
1).

– Mulplication with constant. If the gate is a multiplication gate, the value
of one input wire is a constant c, the value of another input wire is y

(1)
0 .

Compute (y0, Y1, Y2) as follows:

y0 = c · y
(1)
0 , Y1 = (Y (1)

1)c,

Y2 = (Y (1)
2)c.

After finishing the computation, server sets σy = (y0, Y1, Y2) and returns it to
client. The verification equation is:

W = e(g, g)y0 · e(Y1, g)α · Y α2

2 , (1)

where W is computed by client in two steps. Firstly, the client performs a pre-
computation on the outsourcing quadratic polynomial f to obtain a quadratic
polynomial on two variables:

ρ(z1, z2) = f(ρ1(z1, z2), . . . , ρm(z1, z2))

where ρi(z1, z2) = uiz1+viz2, (ui, vi) ← FK1(τi). Then, when the client wants to
outsource this polynomial computation on specific inputs, it generates (a, b) ←
FK2(Δ) according to data set label Δ and computes W = ρ(a, b). If Eq. (1) holds,
the returned σy is honestly computed and y0 is the correct computation result.
Otherwise, client outputs ⊥. This polynomial f can be outsourcing many times
on different inputs and the verification cost is the cost of performing a quadratic
polynomial computation on two variables. The correctness and soundness of this
protocol have been proved by Backes et al. [2].

This verifiable computation protocol can deal with polynomials in degree
at most 2 as it is in the setting of bilinear map. If we just extend it to high
degree polynomial using multilinear map, the verification cost will be a two
variables polynomial of the same high degree. Unfortunately, the decision linear
assumption which the protocol reduces the randomness of its PRF on no longer
holds in a multilinear map setting. We construct a variant of the PRF which
has a better performance in reducing the on-line pre-computation cost while
realizing public verification.

4 Our Protocol

In this section, we present a publicly verifiable computation protocol on large
polynomials. Assume that the outsourcing polynomial f is of m variables and
degree at most d. We follow the idea of multi-labeled program and use a pair of
labels L = (Δ, τi) to identify input xi, for all i = 1, . . . ,m. In the following, we
will introduce our PRF first, then give a detailed verifiable computation protocol
built on our PRF.

98 J. Hong et al.

4.1 PRF with Amortized Closed-Form Efficiency

The randomness of our PRF is based on the subgroup decisional assumption.

PRF:

– KeyGen(1n): Let Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ← G(1n, k). Choose two
secret keys k1, k2 for PRFs F ′

k1,2
: {0, 1}n → ZN . Output K = {p, q, k1, k2}

and public parameter param = Γk.
– FK(x): On input x, generate a pair of values (a, b) according to its label

L = (Δ, τ) such as: a ← F ′
k1

(τ), and b ← F ′
k2

(Δ), where Δ ∈ {0, 1}n and
τ ∈ {0, 1}n. Output FK(x) = gpab

1 .

Theorem 1. If F′ is a pseudorandom function and the SDA assumption holds
for Γk, then PRF is a pseudorandom function.

Proof. The proof follows by a standard hybrid argument.

Game 0: this is the real game described above for PRF.
Game 1: this is Game 0 except that F ′

k1
(τ) is replaced by a random function

Φ1 : {0, 1}n → ZN . It is easy to argue that Game 1 is indistinguishable with
Game 0.

Game 2: this is Game 1 except that F ′
k2

(Δ) is replaced by a random function
Φ2 : {0, 1}n → ZN . Similarly to the previous case, one can easily argue that
Game 2 is indistinguishable with Game 1.

Game(3, j): let QΔ be the upper bound on the number of distinct Δ queried
by adversary A. If S = {Δ1, . . . ,ΔQΔ

} is the ordered set of Δ queried
by A, then, for 0 ≤ j ≤ QΔ, we define the following partial sets of S:
S≤j = {Δi ∈ S : i ≤ j} and S>j = {Δi ∈ S : i > j}. Then we define
Game (3, j) same as Game 2 except that queries (Δ, τ) where Δ ∈ S≤j are
answered with a random value R chosen uniformly in G1, whereas queries
(Δ, τ) where Δ ∈ S>j are answered with R = gpab where a ← Φ1(τ) and
b ← Φ2(Δ).

As one can notice, Game (3, 0) is the same as Game 2, while Game (3, QΔ) is
the game where all queries are answered with freshly random values in G1, just
like A is getting access to a truly random oracle from X to G1. If for every
1 ≤ j ≤ QΔ, Game (3, j − 1) is computationally indistinguishable from Game
(3, j) under the subgroup decisional assumption holds for Γk, the proof can be
done. So we prove the following lemma:

Lemma 1. If subgroup decisional assumption holds for Γk, then |Pr[G3,j−1] −
Pr[G3,j]| is negligible for 1 ≤ j ≤ QΔ.

The key tool of our proof is the following lemma which shows the function
fb(U) = Upb is a weak PRF under the subgroup decisional assumption.

Lemma 2. If the subgroup decisional assumption holds for Γk then function
fb(U) = Upb, where b

U←− ZN , is a weak PRF.

Verifiable Computation of Large Polynomials 99

Proof. For a tuple (g1, ga
1 , gpab

1), we rename ga
1 as U and gpab

1 as V . Given such
(U, V), challenger can create polynomially-many binary pairs (Ui, Vi) which have
the same form, all Vi are random values in subgroup G

q
1. If there exist a PPT

adversary who can distinguish fb(Ui) with a random function, whose output is
a random value in G1, in a non-negligible probability, then the challenger can
solve subgroup decisional problem with the same probability.

Proof (Lemma 1). Now we show that any PPT adversary A who has non-
negligible probability in distinguish Game (3, j −1) with Game (3, j) can build a
PPT challenger C who distinguishes the weak PRF fb(U) = Upb with a random
function in the same probability.

C receives as input param = Γk and gets access to an oracle which outputs a
binary pair (U, V) on each query. Recall that if O = Of , then V = Upb where b
is the secret key of the weak PRF f . Otherwise, if O = OR, then V is randomly
chosen in G1. In both case, U is randomly chosen at every new query.

C runs the simulation for A as follows.
Assume that Qτ is the upper bound on the number of distinct τ queried by A.

Let (Δ, τ) be query from A, and assume that (Δ, τ) = (Δk, τi) for 1 ≤ k ≤ QΔ

and 1 ≤ i ≤ Qτ . C answers (Δk, τi) as follows.

– If k ≤ j − 1, then C chooses R
U←− G1 uniformly and returns R.

– If k > j, then C chooses bk
U←− ZN and queries the oracle Of . Return R =

fbk
(Ui).

– If k = j, then C returns R = Vi

Basically, the simulator is implicitly setting bj = b where b is the secret key
of the weak PRF f . Let G3,j be the event that Game (3, j) outputs 1 which is
run by adversary A. Finally, C outputs the same bit b as A outputs b.

When C gets access to the weak PRF, where Vi = fb(Ui), then C is simulating
Game (3, j − 1). On the other hand, when C gets access to a random function,
where Vi is random and independent of Ui, then C simulates the view of Game
(3, j). That are Pr[COf = 1] = Pr[G3,j−1] and Pr[COR = 1] = Pr[G3,j]. We
have:

|Pr[COf = 1] − Pr[COR = 1]| = |Pr[G3,j−1] − Pr[G3,j]|
The simulation is perfect, and Lemma 1 has been proved.

The PRF helps to amortize the pre-computation cost. For a specific poly-
nomial f , which is of m variables and in degree d, the client performs the pre-
computation in two steps. In Step 1, the client transforms this polynomial to a
one variable, degree d polynomial ρ in a cost O((m+1)d), the same as the cost of
performing the computation on f . In Step 2, the client performs a computation
on ρ with cost O(d). Details as follows:

Step 1.
This is off-line pre-computation. Generate ai ← F ′

k1
(τi) according to input

identifier τi for i = 1, . . . ,m, where F ′
k1

(·) is the pseudorandom function to
produce an exponent a. Set ρi(z) = pai · z for i = 1, . . . , m. Obviously, all ρi(z)

100 J. Hong et al.

are degree-1 polynomial on variable z with no constant. Perform the computation
of f on ρ1(z), . . . , ρm(z) to get a new one variable, degree d polynomial ρ(z):

ρ(z) = f(ρ1(z), . . . , ρm(z)).

It is worth noting that the above computation can be done off-line by client as
it is only related to function. The input identifier can be reused many times for
a specific polynomial f as long as data set identifier is different. The cost of this
step is O((m + 1)d).

Step 2.
This is on-line pre-computation. Generate b ← F ′

k2
(Δ) according to data set

identifier, where F ′
k2

(·) is the pseudorandom function to produce an exponent b.
Perform the computation of ρ(z) on b, the result is ρ(b) and computation cost
is O(d).

When performing Step 2, the input of polynomial f has been identified.
Step 2 can be performed many times on different inputs for a specific polynomial
f , the cost of off-line pre-computation can be amortized if this polynomial f will
be performed many times on different inputs. So, the cost of pre-computation
will be low on average.

4.2 Construction

Our verifiable computation protocol on large polynomials utilizes the PRF above.
Let f be the outsourcing polynomial, assume it is a polynomial of m variables
and in degree d. Details as follows:

– KeyGen(1n, k, f) → (SK,PK,EK). This is key generation algorithm run
by client. Generate a k-linear map, Γk = (N,G1, . . . ,Gk, g1, . . . , gk, e) ←
G(1n, k), where k = d + 2. Choose α

U←− ZN uniformly. Choose secret keys
of PRF as described before, K = (k1, k2). Run Step 1 to generate a one
variable, degree d polynomial ρ(z). Set ek = (ek0, ek1, . . . , eki, . . . , ekd) where
eki = gαi

d−i+1.
The secret key SK = (k1, k2, p, q, α), the public key PK = Γk. The evaluation
key EK = ek, send it to server.

– ProbGen(SK,PK, x) → (σx, V Kx). This is problem generation algorithm
run by client. Run Step 2 to get the result ρ(b) and set the public verifica-
tion key as V Kx = g

ρ(b)
d+2.

Run PRF to get Ri = gpaib
1 for each input xi, i = 1, . . . ,m. Set σi =

(y(i)
0 , Y

(i)
1 , Y

(i)
2), where y

(i)
0 = xi ∈ ZN , Y

(i)
1 = (Ri · g−xi

1)
1
α ∈ G1, Y

(i)
2 =

1 ∈ G1. Set σx = (σ1, . . . , σm), send it to server.
– Compute(PK,EK, f, σx) → σy. Given the evaluation key EK, σx, PK and

the outsourcing polynomial f , server computes a σy as follows. For our con-
venience to describe, we interpret f(x) as f(x) =

∑s
i=1 fipi(x), where for

each monomial fipi(x) we interpret it further as fipi(x) = fi

∏d
j=1 xij

, where
0 ≤ i1, . . . , id ≤ m, x0 denotes constant 1, while x1, . . . , xm denote the m

Verifiable Computation of Large Polynomials 101

variables. Server computes σy = (y0, Y1, Y2) according to each monomial first
and then adds the s triples (y0, Y1, Y2) together, details as follows:
Initiate y0 = 0, Y1 = 1 ∈ Gd+1, Y2 = 1 ∈ Gd+1.

For i = 1, . . . , s:

If i1 = . . . = id = 0, then:

y0i = fi, Y1i = ek0, Y2i = ek0;

Else, let j be such that ij ≥ 1 and ij+1 = · · · = id = 0:

Y2i = e(Y
(i1)
1 , Y

(i2)
1 , . . . , Y

(ij)

1 , ekj),

Y1i =e(Y
(i1)
1 , . . . , Y

(ij−1)

1 , ekj−1)
y
(ij)
0 · e(Y (i1)

1 , . . . , Y
(ij−2)

1 , Y
(ij)

1 , ekj−1)
y
(ij−1)
0

· · · e(Y (i1)
1 , Y

(i3)
1 . . . , Y

(ij)

1 , ekj−1)
y
(i2)
0 · e(Y (i2)

1 , . . . , Y
(ij)

1 , ekj−1)
y
(i1)
0

· e(Y (i1)
1 , . . . , Y

(ij−2)

1 , ekj−2)
y
(ij−1)
0 ·y

(ij)
0 · · · e(Y (i3)

1 , . . . , Y
(ij)

1 , ekj−2)
y
(i1)
0 ·y(i2)

0

· · ·

e(Y
(i1)
1 , ek1)

y
(i2)
0 ···y

(ij)
0 · · · e(Y

(ij)

1 , ek1)
y
(i1)
0 ···y

(ij−1)
0 ,

y0i = y
(i1)
0 · · · y

(ij)

0 ,

set y0i = fiy0i, Y1i = (Y1i)
fi , and Y2i = (Y2i)

fi ;

set y0 = y0 + y0i, Y1 = Y1 · Y1i, and Y2 = Y2 · Y2i.
Server sets σy = (y0, Y1, Y2) and returns σy to verifier.

– Verify(PK, V Kx, σy) → y/⊥. Any third party who wants to verify the result
checks the following equation:

gy0
d+2 · e(Y1, g1) · e(Y2, g1) = V Kx (2)

If the equation holds, verifier outputs y0 as the correct computation result.
Otherwise, outputs an error symbol ⊥.

First we show the correctness of the protocol briefly. Recall that eki = gαi

d−i+1,
if σy is honestly calculated by server, there is

gy0
d+2 · e(Y1, g1) · e(Y2, g1) = g

ρ(b)
d+2, (3)

Notice that V Kx = g
ρ(b)
d+2, then Eq. (2) holds. The honest result returned from

server can be verified correctly.
Now we show the soundness of our protocol. If (k, l)-MDHI assumption holds

in Γk, any PPT adversary can’t get any secret keys from public key PK and
evaluation key EK.

Theorem 2. If co-CDH assumption holds in Γk, then any PPT adversary A
making at most l = poly(n) queries has advantage

AdvPubV er
A (VC, f, l, n) ≤ neg(n),

where neg(·) is a negligible function.

102 J. Hong et al.

Proof. The proof follows by a standard hybrid argument based on the following
games:

–Game 0: this is the real game same as ExpPubV er
A (VC, f, l, n).

–Game 1: this is Game 0 except for the following change in the evaluation of
ρ(b). For any x asked by the adversary during the game, instead of computing
ρ(b) using the Step 1 and Step 2, which is efficient in an amortized notion,
an inefficient one step evaluation ρ(b) = f(ρ1(b), . . . , ρm(b)) is used. One can
easily argue that Game 1 is indistinguishable with Game 0.

–Game 2: this is Game 1 except that PRF is replaced by a truly random function
R : {0, 1}n ×{0, 1}n → G1. Let R be a set of m random values generated by
this random function where R is a set of m numbers. One can easily argue
that Game 2 is indistinguishable with Game 1 as the randomness of our
PRF.

Now we show if there exists a PPT adversary A who can win in Game 2
with a non-negligible probability, then there is a challenger C who can solve the
co-CDH problem with the same probability.

C takes as input a group description Γk, chooses r
U←− ZN . For a query

x = (x1, . . . , xm) from A, C chooses m random values β1, . . . , βm ∈ ZN , sets
R(i) = gβi

1 , for i = 1, . . . ,m. all R(i) = gβi

1 are random values in G1. Set σx =
(σ1, . . . , σm) where σi = (y(i)

0 , Y
(i)
1 , Y

(i)
2), y

(i)
0 = xi, Y

(i)
1 = (R(i) · g−xi

1)
1
r , Y

(i)
2 =

1 ∈ G1. Set ek = (ek0, ek1, . . . , eki, . . . , ekd) where eki = gri

d−i+1. C computes
V Kx = g

f(β1,...,βm)
d+2 and returns V Kx and σx to A. The distribution of V Kx and

σx are exactly the same as the one in Game 2.
Finally, let σ∗

y = (y∗
0 , Y

∗
1 , Y ∗

2 ,W ∗) be the output of A at the end of the game,
such that for some x∗ chosen by A it holds Verify(PK, V Kx∗ , σy∗) = y∗, y∗
= ⊥
and y∗
= f(x∗). By verification, this means that

g
y∗
0

d+2 · e(Y ∗
1 · Y ∗

2 , g1) = V Kx. (4)

Let σy = (y0, Y1, Y2,W) be the correct output of the computation. Then, by
correctness it also holds:

gy0
d+2 · e(Y1 · Y2, g1) = V Kx. (5)

Dividing the verification Eq. (4) by (5),

g
y∗
0−y0

d+2 = e(Y1/Y ∗
1 · Y2/Y ∗

2 , g1). (6)

That is, for a false y∗
0 , A can find a Y ∗

1 and a Y ∗
2 to satisfy Eq. (6) in a

non-negligible probability, then B solves the co-CDH problem with the same
probability.

Verifiable Computation of Large Polynomials 103

5 Conclusion

In this paper, we propose a delegated computation protocol on high degree poly-
nomials over a large amount of variables which allows public verification. Assume
that the delegated polynomial is of m variables and degree at most d. The off-
line pre-computation cost is O((m + 1)d), same as the cost of performing the
outsourcing polynomial computation. The on-line pre-computation cost is O(d)
in addition with a multilinear map operation. Using the notion of amortization,
off-line pre-computation cost can be amortized if the client delegates the same
function f several times on different inputs. This protocol is efficient in average.

Acknowledgment. This work is supported by the National Natural Science Foun-
dation of China (No.61379140) and the National Basic Research Program of China
(973 Program) (No. 2013CB338001). The authors wish to acknowledge the anonymous
referees for helpful suggestions.

References

1. Barbosa, M., Farshim, P.: Delegatable homomorphic encryption with applications
to secure outsourcing of computation. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 296–312. Springer, Heidelberg (2012)

2. Backes, M., Fiore, D., Reischuk., R. M.: Verifiable delegation of computation on
outsourced data. In: CCS 2013, pp. 863–874. ACM press (2013). A full version is
avaliable at http://eprint.iacr.org/2013/469 (2013)

3. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

4. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011)

5. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001)

6. Catalano, Dario, Fiore, Dario, Gennaro, Rosario, Nizzardo, Luca: Generalizing
homomorphic MACs for arithmetic circuits. In: Krawczyk, Hugo (ed.) PKC 2014.
LNCS, vol. 8383, pp. 538–555. Springer, Heidelberg (2014)

7. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013)

8. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using
fully homomorphic encryption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 483–501. Springer, Heidelberg (2010)

9. Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the inte-
gers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042,
pp. 476–493. Springer, Heidelberg (2013)

10. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical Verified Computation with
Streaming Interactive Proofs. In: ITCS 2012, pp. 90–112. ACM press, New York
(2012)

http://eprint.iacr.org/2013/469

104 J. Hong et al.

11. Cormode, G., Thaler, J., Yi, K.: Verifying computations with streaming interactive
proofs. Proc. VLDB Endowment 5(1), 25–36 (2011)

12. Fiore, D., Gennaro, R.: Publicly Verification delegation of large polynomials and
matrix computations, with applications. In: CCS 2012, pp. 501–512. ACM press,
New York (2012)

13. Gentry, C.: A fully homomorphic encryption scheme. In: Stanford University (2009)
14. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.

In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013)

15. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

16. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010)

17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive
proofs for muggles. In STOC 2008, pp. 113–122. ACM press, New York (2008)

18. Goldwasser, S., Lin, H., Rubinstein, A.: Delegation of computation without rejec-
tion problem from designated verifier cs-proofs. In: IACR Cryptology ePrint
Archive, avaliable at http://eprint.iacr.org/2011/456 (2011)

19. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005)

20. Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear
maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013)

21. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC 2012, pp. 1219–
1234. ACM press (2012)

22. Lewko, A.B., Waters, B.: Efficient pseudorandom functions from the dicisional
linear assumption and weaker variants. In: CCS 2009, pp. 112–120. ACM press,
New York (2009)

23. Mohassel, P.: Efficient and secure delegation of linear algebra. In: IACR Cryptology
ePrint Archive, avaliable at http://eprint.iacr.org/2011/605, (2011)

24. Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public:
verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012)

25. Rothblum, G.N., Vadhan, S., Wigderson, A.: Interactive proofs of proximity: del-
egating computation in sublinear time. In: STOC 2013, pp. 793–802. ACM press,
New York (2013)

26. Zhang, L.F., Safavi-Naini, R.: Private outsourcing of polynomial evaluation and
matrix multiplication using multilinear maps. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 329–348. Springer, Heidelberg
(2013)

http://eprint.iacr.org/2011/456
http://eprint.iacr.org/2011/605,

	Verifiable Computation of Large Polynomials
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Preliminaries
	2.1 Multilinear Maps
	2.2 Pseudorandom Function
	2.3 Computational Assumptions
	2.4 Basic Model

	3 Multi-labeled Program
	4 Our Protocol
	4.1 PRF with Amortized Closed-Form Efficiency
	4.2 Construction

	5 Conclusion
	References

