
Diversification of System Calls in Linux Binaries

Sampsa Rauti(B), Samuel Laurén, Shohreh Hosseinzadeh,
Jari-Matti Mäkelä, Sami Hyrynsalmi, and Ville Leppänen

University of Turku, 20014 Turku, Finland
{sjprau,smrlau,shohos,jmjmak,sthyry,villep}@utu.fi

Abstract. This paper studies the idea of using large-scale diversification
to protect operating systems and make malware ineffective. The idea is
to first diversify the system call interface on a specific computer so that
it becomes very challenging for a piece of malware to access resources,
and to combine this with the recursive diversification of system library
routines indirectly invoking system calls. Because of this unique diversi-
fication (i.e. a unique mapping of system call numbers), a large group of
computers would have the same functionality but differently diversified
software layers and user applications. A malicious program now becomes
incompatible with its environment. The basic flaw of operating system
monoculture – the vulnerability of all software to the same attacks –
would be fixed this way.

Specifically, we analyze the presence of system calls in the ELF bina-
ries. We study the locations of system calls in the software layers of
Linux and examine how many binaries in the whole system use sys-
tem calls. Additionally, we discuss the different ways system calls are
coded in ELF binaries and the challenges this causes for the diversifica-
tion process. Also, we present a diversification tool and suggest several
solutions to overcome the difficulties faced in system call diversification.
The amount of problematic system calls is small, and our diversifica-
tion tool manages to diversify the clear majority of system calls present
in standard-like Linux configurations. For diversifying all the remaining
system calls, we consider several possible approaches.

1 Introduction

Malicious software, or malware, is one of the main security challenges in today’s
information security. Malware uses knowledge about the identical interfaces of
operating systems to achieve its goals. To access resources on a computer, a
malicious program has to know the interface that provides the resources. Because
of the prevailing operating system monoculture, an adversary can create a single
malicious program that works for hundreds of millions of computers that use the
same operating system.

The operation of malware would become considerably more difficult if it could
not issue system calls and successfully use resources on a computer. Therefore,

This research has been funded by MATINE project 3301.

c© Springer International Publishing Switzerland 2015
M. Yung et al. (Eds.): INTRUST 2014, LNCS 9473, pp. 15–35, 2015.
DOI: 10.1007/978-3-319-27998-5 2

16 S. Rauti et al.

our approach is to make malware ineffective by using large-scale system call
diversification. All software on a certain computer can be diversified so that it
becomes very challenging for a malicious program to access resources. As a result
of this, a large set of computers would have exactly the same functionality but
differently diversified software layers and user applications. Because of the diver-
sification of software layers, a piece of malware no more knows the “language”
used in the system and becomes incompatible with its environment.

Even if a piece of malware would be able to find out how the resources are
accessed on one computer, large-scale attacks are still very difficult, as malware
knows the secret of applied diversification on one computer only. A costly analysis
needs to be separately performed on each host. In other words, the diversification
can be seen as a computer-specific secret. Our diversification scheme does not
affect the work of a software developer because it is done on the binary level. Only
some problematic cases, often found in libraries, may have to be dealt on source
code level. The diversification of binaries does not change the user experience
in any way, because the semantics and functionality of programs are preserved.
Changing the system call numbers or mangled names of library routines does
not affect performance either.

One part of this diversification process is to diversify the system calls that
are used to access resources in an operating system. The idea of this paper is to
study the diversification of system calls in Linux (see Sect. 2). More specifically,
we discuss the challenge of recognizing and diversifying the direct system calls in
Linux ELF (Executable and Linkable Format) binaries. We present a method for
API diversification and describe a concrete tool used to achieve diversification.
Based on the tests performed with this tool, we also present an experimental
study of presence and distribution of system calls in Linux ELF binaries. We
also discuss several possible solutions for the challenges faced when recognizing
the system calls from binary files. By using our tool and these methods together,
we believe 100 % accuracy in system call diversification can be achieved.

1.1 Our Goal

In this paper, our first goal is to characterize where the system calls are applied,
what can be said about their distribution in the different software layers of
an operating system that will be diversified. For example, how many binaries
perform system calls and how often system calls are used in libraries and user
applications. It obvious that libraries perform the majority of system calls, but
statistics of the role of direct system calls in application binaries is also important
for considering schemes for securing a whole system. If applications often perform
such calls, an automatic binary transformation tool seems necessary instead of
just recompiling the diversified libraries from sources.

As the second goal, we want to find out how system calls are coded in ELF
binaries. Understanding this is essential to successfully diversify all the system
calls in binary files. We study the different ways system calls can be coded in
ELF files. We chose to diversify applications and libraries on binary level rather
than on source code level. This way, we do not need to have diversifiers for several

Diversification of System Calls in Linux Binaries 17

high-level programming languages. It is also easier to handle updates that arrive
in binary form. Moreover, commercial applications or device drivers are usually
not available in source code form.

The third goal is to present different ways to diversify the system calls in
ELF binaries. Because system calls are not always presented in binaries in the
same straightforward way, we may need to make use of several approaches to
ensure that the system call diversification scheme is as perfect as possible.

1.2 Contributions and Structure of the Paper

To the best of our knowledge, our work is the first detailed study of static
system call diversification in Linux ELF binaries. We also provide a concrete
implementation of an automatic diversifier tool. This paper makes the idea of
static system call number remapping, previously presented by Chew and Song
[3], more concrete. We apply the system call diversification in practice to solve a
more general problem of rendering malware useless. Unlike some earlier work on
system call diversification (see for example [10,13]), our tool performs the diver-
sification statically after compilation and thus does not introduce any runtime
performance loss. Compared to the earlier similar solutions, our approach is also
more system-wide because it also diversifies the kernel. We implement a proof of
concept diversifier and test our solution using two popular Linux distributions.
We provide a detailed description of this tool and also present results on its
accuracy.

One of the contributions of this paper is an empirical study of the presence of
system calls in ELF binaries. We conclude that most system calls in two Linux
distributions we tested are found in libraries like libc. Also, the vast majority of
binaries do not contain direct system calls at all, which makes their diversification
much easier. Another contribution of this paper is to present various solutions to
diversify the differently coded system calls in ELF binaries. We believe that even
though there are many challenges, diversifying 100 % of system calls is feasible
by applying the different methods we consider in Sect. 6.

The rest of the paper is organized as follows. Section 2 presents an overview
of our API diversification method for operating system protection. Section 3
covers some basic concepts needed to understand our diversification method and
experimental tool in more concrete sense, like Linux layer structure and ELF
binary files.

Section 4 discusses coding of system calls in ELF binaries and the challenges
faced when trying to identify and diversify them. Section 5 presents our study of
presence of system calls in the ELF binaries. We discuss our diversifier tool imple-
mentation and the experimental setting. We also present some results; where in
the system are system calls located, and how many binaries contain direct sys-
tem calls in the tested Linux distributions? Many possible solutions for these
challenges and achieving 100 % diversification accuracy are covered in Sect. 6.
Section 7 concludes the paper.

18 S. Rauti et al.

2 An Overview of Our API Diversification Scheme
and Threat Scenarios

2.1 Our API Diversification Scheme

An operating system provides a variety of services that user application can
utilize in a shared manner [25]. Therefore, the operating system and its system
call interface can be thought as an abstraction between user applications and the
services provided by hardware of a computer. System calls are a fundamental
set of services in an operating system [23].

In order to interact with its environment, an application needs to use system
calls. This can be achieved by either calling the system call interface directly
or using libraries that provide wrappers for system calls. Therefore, in our view
preventing a piece of malware from accessing the system call interface consists
of two separate parts:

1. Diversify the system call numbers.
2. Diversify the system call implementations in the kernel and all the functions

calling them directly or indirectly.

Diversification refers to meaning-preserving mapping in a programming lan-
guage. That is, the program code is transformed to a different form, but its
semantics are preserved so that the user of the program experiences no visible
change when using the program. In this paper, system call diversification simply
refers to changing the mapping of system call numbers.

The first part of our scheme means that we change the system call numbers
defined in the operating system kernel. As a consequence, all code in libraries
and user applications that call system calls directly using these numbers must
be diversified accordingly as well, or they will stop working.

On the other hand, when a system call is not invoked directly, the call passes
through several software layers before it reaches the system call implementa-
tion. In order to prevent a piece of malware from invoking system calls, we
have to recursively diversify all the functions that make these system calls. We
refer to the set of these functions directly or indirectly calling the system call
implementations as the transitive closure. All these functions must be diversified
(by changing their function signature, for example) to prevent a piece malware
from using them to access a computer’s resources. Trusted applications that are
diversified correctly can still access the resources.

This paper deals with changing the system call numbers and diversifying all
the direct system calls accordingly in user applications and libraries. Another
part of our protection scheme, diversifying the transitive closure, has already
been discussed in our other publication [17] and is not covered in this paper.

The trusted software layers and user applications are diversified with a secret
diversification function which makes them compatible with new system call num-
bers defined in the kernel. As a result, the entry points that lead to the system
calls are diversified in the whole system, preventing malware and any untrusted
applications from using them to invoke system calls.

Diversification of System Calls in Linux Binaries 19

2.2 Threat Scenarios

Our solution is meant to protect computers from the malicious code that is
either executed as its own process or as a part of another executing process. In
the second case, the malicious code can observe the system calls its host pro-
gram invokes and gradually learn the system call mappings used in the system.
However, this would still require advanced analysis.

Without observing any program’s actions, it is very difficult to guess correct
system call numbers. Linux currently only uses around 320 system calls and their
numbers are 32-bit, so there is a very high chance that our function can map
calls so that malware cannot make valid system calls even by mistake. Of course,
the mapping function should be designed so that it never maps an ID to itself.
Illegal system calls could also be logged for further inspection. A program that
randomly tries invoking large amount of system calls can be seen as suspicious.

It is important to note that in our approach we assume that a piece of
malware has no access to the file system, for example, and has no way to analyze
files or our secret diversification function that has been applied to binary files.
File system access requires using system calls and thus an external malware does
not have an easy access to the file system.

Our approach adopts a proactive view by preventing malware from harmfully
interacting with its environment before its execution. As the number of malicious
programs keeps growing and they keep transforming, traditional fingerprint-
based antivirus software is becoming increasingly inefficient in the fight against
malware [1]. Also, antivirus programs often only detect the threats they are
already aware of. This is why complementary approaches are needed.

Together with diversifying the transitive closure, the system call number
diversification should make it much harder for malicious programs from opening
any resources on a computer. Untrusted programs do not know either the system
call numbers nor the names of functions in other applications or libraries that
lead to system calls.

3 Linux Layer Structure and ELF Binary Files

3.1 Linux Layer Structure

Linux system calls are implemented as named routines in the operating system
kernel. In the user-space facing system call ABI, each call routine corresponds
to a kernel-defined system call number. There are around 320 system calls in
Linux, each with its own number [27].

The software layer structure of Linux is very roughly illustrated in Fig. 1.
Linux contains wrappers in order to make it easier to issue system calls, which
are implemented in different parts of kernel. However, as explained in Sect. 2,
in this paper we are only interested in the cases where either libraries or user
applications call the system call interface directly. We aim at recognizing and
diversifying all these entry points in the binaries of the whole system.

20 S. Rauti et al.

Fig. 1. Linux layer structure.

The most important library making the system calls in Linux is libc, which
most user applications use to access operating system services. However, several
other libraries, many command line tools and even some web browsers also make
direct system calls. The distribution of system calls will be examined closer in
two test environments in Sect. 4.2.

3.2 Structure of ELF Files

The Executable and Linkable Format (ELF) is a standard file format for executa-
bles, object code and shared libraries. It is used on many different platforms and
in several operating systems. It is the standard binary file format for Unix-like
systems.

Figure 2 shows the structure of an ELF file. An ELF header in the begin-
ning of the ELF file describes the file’s organization. The header also contains
information on object file type and the instruction set architecture, for example.

Sections contain lots of miscellaneous information: instructions, data, symbol
table, relocation information etc. Some sections are special, like sections for unini-
tialized and initialized data, sections holding debug information and comments,
sections for read-only data and strings and sections for symbol tables [6].

A program header table is an optional part of ELF files. It tells the system
how to create a process image and execute the program. Relocatable files do not
need a process image. Information in a section header table describes the ELF
file’s sections. Each section has its own entry in the table. Every entry provides
information such as the section name, the section size etc. Files used during
linking always have a section header table, otherwise it is optional.

The sections in ELF files have a type attribute. For example, PROGBITS-type
sections are reserved for program-specific data. This can be either executable
code or other data. In order to diversify the system calls in ELF files, our diver-

Diversification of System Calls in Linux Binaries 21

Fig. 2. ELF file structure.

sifier tool analyzes the PROGBITS-type sections that are marked the be executable
with SHF EXECINSTR flag.

4 On Coding of System Calls in ELF Files

For the purposes of this paper, a system call can be seen consisting of two
separate phases. As we have already seen, the first phase puts the value of the
system call into a predefined register. The second phase transfers control to
the operating system’s system call handler. The exact mechanism for this is
architecture and operating system dependent. On x86-64 Linux system calls are
made using the SYSCALL instruction. For instance, the following commands are
used to invoke sys write (system call number 1):

mov $1, %eax
syscall

However, there are several factors that make identifying the system calls more
difficult. For example, there might be a jump command between the two phases:

cmp $1, %eax
je equal
mov $0, %eax
jmp over

equal:
mov $1, %eax

over:
syscall

22 S. Rauti et al.

Here, system call 1 is invoked if the value in EAX register is 1, otherwise system
call 0 is invoked. It is much harder for the analyzer to deduce what system call
will be invoked.

Also, when the analysis is restricted to simple mov commands that directly
move a value to a register where a system number is stored, many problems
arise. For example, this leaves out a complicated setting where a value is moved
to a register indirectly through other registers. Also, it seems compilers often
write the binary so that the register value is first put to the memory and then
into an appropriate register. These kind of indirect approaches are difficult to
analyze without tracing the control flow of the program. There might also be
other commands affecting the register values before the system call is made, say
incrementing EAX register, for example.

Of course, it is interesting to ask whether these different ways to code the
system calls in binaries have any visible reasons in the source code. It is pretty
clear some of them do. For example, the jump we saw in the example earlier
is probably created as a result of a conditional statement, like an if-statement,
in the source code. It also seems that loop structures in the source code often
create coding in the binary where the two phases the system call consists of are
not consecutive. For example, we noticed that setting register values indirectly
through other registers can be a result of a loop structure in the source code.
Use of function pointers in the source code probably also affects the coding of
the binary file.

On the other hand, all the binary codings of system calls do not seem to have
clear explanations in the source code. For example, the fact that register values
are sometimes circulated through memory seems very arbitrary and apparently
associated with optimization made by the compiler. We noticed the version of
compiler may greatly affect the coding of system calls in the binaries it creates.
The compiler configuration and compiling environment probably also have an
effect on this. Many compilers have switches that can be used to configure the
level of optimization.

One more noteworthy problem is alignment, that is, the way data is arranged
and accessed. Because our tool disassembles the binary file in a straightforward
manner by processing it from the beginning to the end, any excessive data or
empty space between instructions (zero bytes) lead to failure. There is no reli-
able way to detect when this failure takes place. In the worst case scenario, an
erroneous system call could be found from a binary file. In practice, however,
compilers usually should not produce this kind of faulty program code. Pro-
grams that somehow determine the system call at runtime based on the user
input would naturally also be problematic, as it is impossible to identify the
correct system call number in this case with static analysis. Some commercial
products may also use different obfuscation methods in their binaries, which
ironically makes our diversification task much harder. Moreover, different kinds
of self-modifying programs are always difficult to handle for diversifiers.

Diversification of System Calls in Linux Binaries 23

5 Experimental Study on the Presence of System Calls
in Linux Binaries

To find out how system calls are distributed between different parts and binaries
in Linux distributions, we performed an experimental study on the presence of
system calls in all binaries in tested systems.

5.1 Settings of Studied Linux Environments

We conducted our study using 64-bit Fedora and Gentoo Linux distributions.
Fedora Linux was selected because it provided a full-fledged desktop environ-
ment with all the associated software out of the box. In contrast, the Gentoo
installation we used was fairly minimal with only a few packages outside of
the default/linux/amd64/13.0 profile. Additionally, we conducted separate
tests with C standard library implementation glibc. We concentrated on glibc
specifically because it is one of the main libraries containing system calls. Char-
acterization of test environment was deemed to be especially important since
there are multiple factors that can cause results to vary considerably. When
analyzing binary files, the most obvious source of differentiation is the compiler
used to create the said binaries. Using a different compiler and even different
version of the same compiler can lead to differences in produced binaries, which
in turn might affect the results our system call analysis. Aside from the com-
piler version, the compiler settings used to produce the binaries play a central
role. For example, we noticed that our analysis tool performed radically worse
when the binaries were compiled with no optimizations at all. Because our tools
performance is highly dependent upon how the register allocation is done, all
compiler settings that might affect this can potentially alter our results.

Because we are analyzing all the installed applications and shared libraries,
precisely describing our experimental setting would require us to list all the
specific versions of the installed packages including potential distribution specific
changes. Also we would have to record detailed information about the build
environment, including compiler versions and settings.

Because of how compiler dependent our analysis is, conducting experimental
studies using Linux distributions with binary based packaging, presents us with
certain challenges. As we are using precompiled binaries we cannot know how
they were produced, let alone control the specific compiler settings. This might
make precisely replicating our results more complicated, but at the same time,
it means that our test environment resembles a real-world test scenario more
closely, since we assume that a typical end-user does not have control over how
their binaries have been produced.

We used 64-bit Fedora Linux version 20 based installation (kernel version
3.14.4) as our test platform. We had also installed various other applications
and libraries that were needed during the development of our analysis software.
Of course, knowing only the release number of the distribution leaves out many
details about the system, since the software has received various updates during

24 S. Rauti et al.

the release cycle. The Gentoo installation (kernel version 3.6.0) was considerably
more minimal and contained relatively small number of packages. No desktop
environment was installed for this system.

5.2 Distribution of System Calls in Binaries

We analyzed the direct system calls found in the binary files of two Linux distri-
butions, Fedora and Gentoo. In addition to amount and distribution of system
calls, we also wanted to see how well our diversification tool could identify the
system calls in binaries.

In Fedora, 5649 binaries were analyzed. Only 18 of those contained any sys-
tem calls. These binaries are shown in Table 1. For each binary, the amount of
system calls successfully identified by our tool, the amount of unidentified calls
and the total amount of system calls in that binary are shown. In this context,
identifying refers to successfully recognizing the correct system call number. In
unidentified cases, we find a SYSCALL command but cannot recognize a system
call number associated with it.

Table 1. System calls found in binaries of Linux Fedora distribution.

Binary path Identified Not identified Total calls

/lib64/libunwind-x86 64.so.8.0.1 1 0 1

/lib64/libcrypt-2.18.so 1 0 1

/lib64/librt-2.18.so 24 5 29

/lib64/libc-2.18.so 394 35 429

/lib64/libanl-2.18.so 3 3 6

/lib64/libnss db-2.18.so 1 0 1

/lib64/libgomp.so.1.0.0 17 13 30

/lib64/libaio.so.1.0.0 5 0 5

/lib64/libaio.so.1.0.1 5 0 5

/lib64/ld-2.18.so 31 5 36

/lib64/libunwind.so.8.0.1 2 0 2

/lib64/rtkaio/librtkaio-2.18.so 45 14 59

/lib64/xulrunner/crashreporter 0 6 6

/lib64/xulrunner/libxul.so 3 56 59

/lib64/firefox/crashreporter 0 6 6

/lib64/firefox/libxul.so 3 56 59

/sbin/ldconfig 109 9 118

/sbin/sln 79 8 87

Total 723 216 939

Diversification of System Calls in Linux Binaries 25

We can see that large amount of system calls is located in libc, the C
standard library. With this library, our diversifier performs well, recognizing over
90 % of calls. A few other libraries like rtkaio – a library used for asynchronous
I/O – also contain direct system calls.

Some command line tools like ld, a dynamic linker, ldconfig, which is used
configure dynamic linker run-time bindings, and sln, symbolic link creator also
seem to make quite many system calls. Our tool performs well with all of these
binaries.

There are also a few problematic binaries, like Mozilla’s libxul library in
this case. This binary encodes system calls in difficult ways, as it seems to favor
using intermediate registers for passing values instead of direct assignments to
appropriate registers to make a system call (see Sect. 4). Because of this prob-
lematic library, which appears in the system two times, our tool identifies about
70 % of the system calls in binaries in this system.

In the same way as with Fedora, binaries in Gentoo distribution were also
analyzed. Only 9 of 569 binaries contained direct system calls. These binaries are
shown in Table 2. There was no desktop environment installed in this system,
which explains the smaller amount of binaries. Most system calls are in libraries,
and about half of system calls are made in libc. Our tool performs well in this
distribution, identifying 92 % of the system calls.

We can conclude from these results that even in rather large standard dis-
tributions, there are very few binaries with direct system calls. User application
very rarely make direct system calls and use libc instead. This makes our diver-
sification task easier. Especially in restricted environments with only a few user
programs our diversifier would perform well.

However, even though our tool can recognize the system calls pretty well,
there are still some problematic cases that were not identified correctly. We will
look at some solutions to these problems in Sect. 6.

Table 2. System calls found in binaries of Linux Gentoo distribution.

Binary path Identified Not identified Total calls

/lib64/libanl-2.17.so 1 5 6

/lib64/libc-2.17.so 411 19 430

/lib64/librt-2.17.so 24 5 29

/lib64/libnss db-2.17.so 1 0 1

/lib64/ld-2.17.so 32 5 37

/lib64/libcrypt-2.17.so 3 0 3

/lib64/libpthread-2.17.so 144 23 167

/sbin/sln 84 5 89

/sbin/ldconfig 102 5 107

Total 802 67 869

26 S. Rauti et al.

5.3 A Closer Look at Diversification of System Calls in Libc

In the experiments, we also analyzed and diversified different versions of libc
library. Because most of the system calls are located in standard libraries and
not in the application’s code (see Sect. 4.2), these libraries are a good target
for analysis. User applications do not usually have any need to use the system
call interface directly, and invoking the system calls indirectly using a standard
library makes the application less dependent on certain operating system version
by including an additional abstraction level.

We studied glibc version 686554bff63dff0f8b20c84e9bdca45e643f9d9c,
which we compiled with gcc (GCC) 4.8.2 20131212 (Red Hat 4.8.2-7). This
library was analyzed with our diversification tool both on Fedora 20 (64-bit)
and on Gentoo. The results for both distributions are shown in Table 3.

Table 3. The system calls found in libc.

Distribution Identified Not identified Total calls

Fedora 380 35 415

Gentoo 398 18 416

As, we can see, over 90 % of calls were successfully diversified in Fedora and
over 95 % in Gentoo. Identifying the system calls succeeded well in our tests,
because many routines in standard libraries are just simple wrappers for system
calls. These routines simply take a set of parameters for system calls, put them
into appropriate registers so that the system call can use them, and then invoke
the system call with a predefined number.

However, some of the routines in libc include conditional execution of system
calls. That is, these routines decide the system call to be invoked based on some
external factor or invoke system calls as a part of a loop. These cases are of
course more problematic. Additionally, standard libraries also usually contain
routines that can be used to invoke an arbitrary system call. These routines take
a system call number as their parameter, which makes it hard to rewrite them
statically.

We also studied systems calls in musl, an implementation of C standard li-
brary. The version we used was 8a2d8719873a46d5cc5c54e688d47ea134c67c84.
This library was compiled with several different optimization settings, which
demonstrates well the effects that optimization performed by the compiler may
have on our diversifier tool. musl was tested on Fedora and the same compiler
was used as in previous tests with libc.

musl was compiled using several different optimization options. Results are
shown in Table 4. Switch -O0 means no optimization. As shown in Table 4 results
for the library with no optimization are really bad. However, with all optimized
binaries, our tool performs well, identifying over 90 % of system calls. The switch

Diversification of System Calls in Linux Binaries 27

-Os means the binary is optimized for size. -O1, -O2 and -O3 refer to increas-
ing level of optimization. Generally, it seems that optimization performed by a
compiler is a big advantage for our tool.

We can also see that there are much less system calls in total in the binary
that has not been optimized. It seems that leaving the optimization out results
in more calls to the functions wrapping system calls in libc instead of inlining
the syscall instruction in each function. This also explains why our tool does
not perform that well with non-optimized binaries. This is because the wrappers
circulate the system call number through the stack instead of putting it directly
to a register, which causes problems for our diversifier tool.

It would be interesting to test more libc implementations with several ver-
sions of different compilers and see how well our tool performs when analyzing
the compiled binaries.

Table 4. The effects of compiler optimization to diversification of musl library.

Optimization Identified Not identified Total calls

-O0 7 291 298

-Os 372 27 399

-O1 379 27 406

-O2 373 29 402

-O3 375 31 406

6 Methods for System Call Diversification

Basically, the idea of system call diversification simply means that a system call
number is replaced with another number. The easiest part in diversifying system
calls is changing their numbers in the kernel code. How this is done depends on
the architecture and kernel version. In x86-64 architecture, for example, the sys-
tem call numbers are listed in arch/x86/syscalls/syscall 64.tbl. On com-
piling, definitions in this file are propagated to several header files.

The part that causes more problems is changing the system calls numbers
in all binary files to correspond the new numbers we have set in the kernel. As
we have seen, the system calls take place in several phases in the binary code,
which causes several problems described in the previous section. In this section,
we take a look at our own diversification tool and then present some solutions
that would help to increase its accuracy to 100 %.

6.1 Our Tool and Recognizing the System Calls

To demonstrate the feasibility of system call diversification, we implemented
an experimental diversification tool as a proof of concept. Our tool rewrites

28 S. Rauti et al.

the system calls in x86-64 ELF-64 binaries by making use of a simple linear
sweep algorithm [22]. This is a straightforward disassembly method that decodes
everything appearing in sections of the executable that are typically reserved for
machine code. We limit the analysis to executable PROGBITS-type sections in
ELF binaries. The diversification is done after compile time before execution.

The tool tries to find system calls by walking through the program code sec-
tions linearly. It looks for SYSCALL commands used in x86-64 architecture. When
such a command is found, it starts searching the system call number associated
with this call. This is done by backtracking from the location of SYSCALL com-
mand and trying to find the command where the system call number is set. As
the number of system call to be invoked is put into a register, our tool looks for
commands that change values of RAX, EAX, AX, AH or AL registers.

Therefore, our diversifer tool uses the following two methods to identify the
system calls:

1. Recognize two consecutive phases. As we have seen, in the simplest scenario
we simply recognize two consecutive phases of the system call in the binary
code. However, when there are other commands between these phases, this
trivial approach will not work.

2. Recognize two phases with a gap. When the two phases of the system call
are not consecutive, we have to find the command making the system call
first and then backtrack to the call that puts the system call number into a
register. Here, the potential jumps between the two phases should be somehow
recognized and handled.

Table 5. Amount of gaps in system calls in Fedora and Gentoo.

Gap size Fedora Gentoo

0 722 736

1 34 29

2 15 19

3 17 8

4 42 6

5 4 7

Over 5 0 2

Total 834 807

Table 5 shows the amount of gaps found in Fedora and Gentoo distributions.
In Fedora, 87 % of the system calls have no gaps and in Gentoo, 91 % of the
system calls have no gaps. The vast majority of system calls are trivial in this
sense. Fedora did not have any gaps bigger than 5 instructions. Gentoo has only
two of these, the largest gap being 9 instructions.

Diversification of System Calls in Linux Binaries 29

When testing our tool, we used SysTap, a tool for real time analysis of running
processes in user and kernel spaces. This way, we made sure that the programs
that had been diversified with our tool worked correctly during this dynamic
instrumentation – that is, they used the new system call numbers changed by
our diversifier tool.

As seen from the results in Sect. 5.2, our tool still needs improvement. Next,
we will take a look at many approaches that could be used to further improve
our diversifier tool.

6.2 Challenges

During the development of our tool, we identified some problems in our approach
to system call identification. Most of the challenges were linked to the use of a
simple linear-sweep based disassembly algorithm. These problems are well known
in literature and have for example been discussed by Schwarz et al. [22].

Our algorithm works by first disassembling the executable PROGBITS-type
sections of the ELF files. After the initial disassembly we scan the binary for
x86-64 specific SYSCALL instructions. If we find such instructions we stop the dis-
assembly process and start backtracking. The backtracking process starts looking
for preceding instructions that could assign a value to one of the accumulator
registers RAX, EAX, AX, AH, AL. These registers are used for storing the system call
number, and as our intention is to patch the system call numbers, we have to
figure out what the original system call number was. The backtracking process
might fail if it finds a control flow instruction or an instruction that might mod-
ify one of the accumulators in an unknown way. Also, we can only identify the
system call numbers if the assignments assigning them use only immediate values
for storing the numbers. This leaves out all cases where the system call number
is assigned indirectly from memory or from another register.

There are various problems in this approach. First of all, the linear-sweep
based disassembly process is susceptible to several hard to identify errors. If
there is empty space or program data between instructions this might cause the
disassembly to produce incorrect results. The fact that the malfunction might
not be identified makes the situation even worse, the disassembly process might
continue as if nothing unusual had happened producing false instructions or it
might stop if the disassembler confronts an invalid instruction.

To solve this problem we would have to utilize a recursive disassembly algo-
rithm. Such algorithm would first start the disassembly from a prespecified offset
and continue until a control flow instruction is found. Then the algorithm would
have to figure out the possible targets of the control flow instruction and continue
the decoding process from there. This approach would solve some of the prob-
lems but increases the complexity of the tool considerably, because the recursive
approach requires us to figure out the potential control flow paths. For example,
if a jump target is specified to be in a certain register we have to figure out how
that register gets its value. We would have to perform some form of data-flow
analysis to be able to handle these kinds of indirect jumps. The situation is even
more complicated. In order to build a control-flow graph we need a data-flow

30 S. Rauti et al.

graph which in turn requires a control-flow graph to be in place. Henrik Theiling
[26] refers to this as a chicken and egg problem.

Reconstruction of control-flow graphs from binaries has been widely stud-
ied. Theiling presented an bottom-up approach for the flow graph approxima-
tion [26]. Cooper et al. introduced an algorithm for building a control flow
graph approximation and then refines it [7]. Kinder et al. devised an abstract
interpretation-based framework that produces the most precise overapproxima-
tion of the control-flow graph with respect to the used abstract domain [12].

Performing a proper data-flow analysis would also help us figure out how
the system call numbers are assigned. With a data-flow graph in place we could
backtrack through the indirect assignments and find out how the registers’ values
are formed. The control-flow graph would also help us solve challenges like the
ones presented in Sect. 6.2.

6.3 Methods to Improve System Call Diversification

There are several methods we can use to improve the system call diversifier so
that it can handle the remaining problematic system calls:

1. Include the diversification calculation in the binary. We can embed the diversi-
fication calculation – that is, the calculation determining the new diversified
system call number – somewhere in the binary. However, this might cause
some relocation problems. This approach would also make a potential leak-
age of diversified code quite dangerous. As a result, the secret new system call
mappings defined by the diversification function would be revealed. However,
considering we assume a piece of malware should not be able to perform sys-
tem calls and get access to the file system in order to analyze the diversified
binary code, this approach should be pretty safe. If the malware finds some
way to get into the memory space of an executing process, however, it can
try to analyze the meanings of diversified system calls.

2. Change compiler or compiler switch settings. Sometimes the order of com-
mands in the machine code can be changed as an optimization made by the
compiler and system call numbers can be circulated through registers and
memory before they are put in the appropriate registers in order to make a
system call. This could probably often be prevented with correct compiler
settings. This method naturally has some problems. For example, we cannot
expect all software developers – like the major browser suppliers – to compile
their binaries for us using a certain compiler or some specific configuration.
Many open source applications could be compiled from source codes on the
target machine using a specific compiler, though.

3. Rewriting parts of the source code. Many problems faced in the binary code
diversification process can probably be traced back to the source code. As
a consequence, rewriting some of the source code differently might solve the
problem. In many systems, rewriting would cause too much work if it would
be done for all user applications. However, it is a possible solution for example
for many standard libraries like libc.

Diversification of System Calls in Linux Binaries 31

4. Hard-code the diversification. For some of the most problematic code sec-
tions, the diversification could be hard-coded in binaries. While not usually a
preferable solution, this could be done for some standard parts of the Linux
operating system.

The various methods for more accurate diversification we have discussed in
this section all have some challenges. However, they can still be successfully used
at least for some standard set of libraries and applications. Also, these methods
are very feasible in some more or less restricted environments. Systems used in
industry or military and embedded systems in general are easier to adapt this
way, and security is often a major concern for these systems. In these systems,
we believe we can reach 100 % diversification accuracy.

7 Related Work

To better position our work in the Linux based software ecosystem, we shortly
discuss existing related technologies in this section and provide a summary of
related research in the field.

7.1 Related Technologies

The traditional UNIX point of view to security is based on a discretionary user
and group based restriction of file/process privileges to perform operations, with
the exception of a superuser with access to all such resources. The system is
binary in nature, i.e. an operation is either prohibited or allowed to full extent.
It was later extended with more flexible access control lists (ACL) and policy
based controlling mechanisms (PolKit) [9].

Another way to control actions is sandboxing. The chroot mechanism [9]
provides an isolated view of the file system. As the superuser is allowed to break
out from the chroot “jail”, local root exploits pose a security threat. The chroot
also has other attack vectors such as the ptrace system call. For mount points
there is a noexec flag that prevents the execution of binaries from that file system,
but will not prevent interpreting scripts from such locations.

Sandboxing is not limited to file systems. For example, Linux provides
namespace isolation for process identifiers, network interfaces, firewall rules,
routing, and inter-process communication and a related container framework
(LXC) [11]. Other types of resource limits can be imposed via the ulimits,
sysctl, and control group interfaces. The Linux Secure Computing Mode (sec-
comp) mechanism can be used to isolate a process from system on system call
level with only a very limited interface to outside system via already-open file
descriptors.

A more disciplined approach to security is mandatory access control. Frame-
works such as SELinux and AppArmor introduce a policy based mechanism to
security with modular hooks directly on kernel level. The policy is enforced by
kernel, but its definition comes from userspace, which also deals with logging

32 S. Rauti et al.

and informing about policy violations. The frameworks enable a fine-grained
policy control with a small runtime overhead, and while the framework can be
transparently set up on a system without changing the userspace applications,
programs that are not designed for such a rigorous enforcement of permissions
may trigger false warnings with careless resource usage patterns.

7.2 Related Research

In 1993, Cohen [4] introduced a general method of program diversity to protect
operating systems. He proposed the exploitation of the evolutionary defenses to
produce more complex and unique program instances. The higher complexity
of the program increases the work an attacker has to do to understand the
program’s behavior in order to perform an attack. Moreover, with the uniqueness
of the program, the attacker is no longer able to impact a substantial number of
program versions with a single attack. This way, the attacker is forced to design
individual attack versions for each of the program instances.

According to the classification of Collberg [5], there are various obfuscation
techniques available: code obfuscation, data obfuscation, layout obfuscation, and
preventing transformation. Based on the distribution format of the software,
different techniques are applicable [15]. In [15] these techniques are used at the
binary level.

Binary obfuscation makes reverse engineering the software significantly
harder. In the reverse engineering process the machine code is disassembled into
assembly code. The assembly code is then decompiled and the high-level code
is recovered [14]. Linn and Debray [14] propose adding “junk bytes” into the
instructions where the disassembler is expecting code. This method can disrupt
the disassembly process to produce disassembly errors or at least make disassem-
bled code more complex. The candidate instruction code should be incomplete
(to confuse disassembler) and unreachable during the execution (to save the pro-
gram’s semantics). In [16], similar to [14], the goal is to make the disassembly
of the machine code and thus the reverse engineering harder. They propose two
different obfuscation techniques that make it more difficult for the disassembler
to find the actual control flow of the binary code. One technique is to modify the
control transfer instructions so that they cause traps and signals. The other tech-
nique is to add new bogus instructions (e.g., adding the conditional jumps that
are disassembled but are never taken, or adding junk bytes that cause incorrect
disassembly). Falcarin et al. [8] propose a novel binary obfuscation technique
that is based on code mobility and code splitting at binary level. Their approach
aims at obstructing the static and dynamic analysis and therefore the reverse
engineering. Mimimorphism [28] is another binary obfuscation technique that
the malware can use to hide itself from static and semantic analysis.

The idea of system call diversification was introduced by Chew and Song[3]
for the first time, to mitigate the computer intrusions. In [3], the randomization
is applied to operating system to defeat buffer overflows. One of their proposed
methods is randomizing the system call mappings. Each system call is mapped

Diversification of System Calls in Linux Binaries 33

to a corresponding numbers in a table. By altering (randomizing) the mappings,
the original system call will no longer work.

System call diversification has also been studied in [13]. The authors pro-
pose it as a countermeasure against injection code attacks. This work is contin-
ued in [10], where the authors apply instruction set randomization and address
space layout randomization simultaneously. These papers advocate randomiza-
tion (diversfication) that happens dynamically at load time or run time, which
causes some performance loss. They also require de-randomization, because the
kernel is not diversified. We diversify binaries after they have been compiled so
that the run-time performance is not affected. Unlike these earlier papers, our
approach also provide system-wide protection by also diversifying the kernel.

Srivastava et al. [24] have designed an attack called Illusion. Illusion obfus-
cates the kernel’s system calls that are used by the attacker to hide the actual
operation of the malicious program. With the help of Illusion, attackers can stay
invisible to the malware analyzers; since these analyzers rely on the standard sys-
tem call interface to detect any changes and also the analyzers do not consider
the actual execution behavior of the system call in the kernel. Moreover, Illusion
is not detected by the tools checking the integrity of the kernel; because it does
not make any alteration in data structure or code of the kernel. In addition, they
have designed a detection system for detecting their attack.

The basic behavior of a program is recognizable by following its execution
flow, i.e. by tracing the sequence of the system calls the program invokes in
execution phase. Brusch et al. [2], proposed an obfuscator that works at kernel-
level and randomizes the sequence of the invoked system calls. Randomization
makes the program’s execution flow unpredictable for attacks.

In our previous research we have studied the applicability of diversification
techniques in different levels of software. In [17] we aim at concealing the system
call interface in order to protect the operating system, while in [21] we focus
on diversification at higher levels, i.e. Ajax applications. We propose a proxy-
like obfuscator [21] to defeat the online banking Trojans. We implemented our
approach in [19] and illustrated its efficiency. In two other papers [18,20] we
consider the use of diversification techniques to mitigate the man-in-the-browser
attacks.

8 Conclusions

In this paper, we have presented a scheme for large-scale system call diversifica-
tion for operating system protection and also implemented a concrete diversifier
tool to demonstrate feasibility of our approach. Our experiments show that a
large majority of system calls is handled well by our tool, but there are still some
challenges. Still, the numbers of unidentified calls were usually relatively small
for analyzed binary files.

To overcome the challenges, we have also discussed several ways to increase
the accuracy of our diversification scheme to 100 %. Based on this, we believe
system call diversification is a feasible approach for protecting operating systems

34 S. Rauti et al.

from malware. This is especially true for systems where a certain set of well-
known libraries and applications is used and in many embedded systems that
are more restricted in nature.

The small total amount of system calls also makes things easier. As we have
seen, very few binaries in the tested Linux distributions contained direct system
calls. Most direct system calls are in standard libraries and well-known command
line tools, not in the ordinary applications.

There are still many open questions related to our diversification scheme.
How and where do we store the system call number mapping as a secret? How
would we invoke our diversification tool in an operating system? Would it run in
the kernel or in user space? How is it protected? These details will be discussed
in future work.

Only Linux has been covered in this paper. It would be interesting to also
study our diversification scheme in other operating systems. Most likely, similar
methods can be used and there are similar challenges present in the contexts of
those systems, too.

References

1. Apvrille, A., Strazzere, T.: Reducing the window of opportunity for android mal-
ware gotta catch ’em all. Int. J. Ambient Comput. Intell. 8(1–2), 61–71 (2012)

2. Bruschi, D., Cavallaro, L., Lanzi, A.: An efficient technique for preventing mimicry
and impossible paths execution attacks. In: Performance, Computing, and Commu-
nications Conference, 2007, IPCCC 2007. IEEE Internationa, pp. 418–425, April
2007

3. Chew, M., Song, D.: Mitigating buffer overflows by operating system randomization
(2002)

4. Cohen, F.B.: Operating system protection through program evolution. Comput.
Secur. 12(6), 565–584 (1993)

5. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscation tranformations.
Technical report 148, The University of Auckland (1997)

6. TIS Committee: Tool Interface Standard. Executable and Linking Format (ELF)
Specification. Version 1.2. Submitted to Journal of Information Security and Appli-
cations (Elsevier), under evaluation (1995)

7. Cooper, K.D., Harvey, T.J., Waterman, T.: Building a control-flow graph from
scheduled assembly code. Technical report 02–399, Rice University (2002)

8. Falcarin, P., Carlo, S.D., Cabutto, A., Garazzino, N., Barberis, D.: Exploiting
code mobility for dynamic binary obfuscation. In 2011 World Congress on Internet
Security (WorldCIS), pp. 114–120, February 2011

9. Jang, M.H., Jang, M.: Security Strategies in Linux Platforms and Applications.
Jones & Bartlett Publishers, Burlington (2010)

10. Jiang, X., Wang, H.J., Xu, D., Wang, Y.-M.: Randsys: thwarting code injection
attacks with system service interface randomization. In: IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2007, pp. 209–218 (2007)

11. Kerrisk, M.: The Linux Programming Interface. No Starch Press, San Francisco
(2010)

12. Kinder, J., Zuleger, F., Veith, H.: An abstract interpretation-based framework for
control flow reconstruction from binaries. In: Jones, N.D., Müller-Olm, M. (eds.)
VMCAI 2009. LNCS, vol. 5403, pp. 214–228. Springer, Heidelberg (2009)

Diversification of System Calls in Linux Binaries 35

13. Liang, Z., Liang, B., Li, L.: A system call randomization based method for coun-
tering code injection attacks. In: International Conference on Networks Security,
Wireless Communications and Trusted Computing, NSWCTC 2009, pp. 584–587
(2009)

14. Linn, C., Debray, S.: Obfuscation of executable code to improve resistance to sta-
tic disassembly. In: Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, pp. 290–299. ACM, New York, USA (2003)

15. Madou, M., Anckaert, B., De Bus, B., De Bosschere, K., Cappaert, J., Preneel,
B.: On the effectiveness of source code transformations for binary obfuscation. In:
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP06), pp. 527–533. CSREA Press (2006)

16. Popov, I.V., Debray, S.K., Andrews, G.R.: Binary obfuscation using signals. In:
USENIX Security (2007)

17. S. Rauti, J. Holvitie, and V. Leppänen. Towards a Diversification Framework for
Operating System Protection. In: Proceedings of International Conference on Com-
puter Systems and Technologies, CompSysTech 2014 (2014)

18. Rauti, S., Leppänen, V.: Browser extension-based man-in-the-browser attacks
against Ajax applications with countermeasures. In: Proceedings of International
Conference on Computer Systems and Technologies, CompSysTech 2012, pp. 251–
258. ACM Press (2012)

19. Rauti, S., Leppänen, V.: A proxy-like obfuscator for web application protection.
Int. J. Inf. Technol. Secur. 5(1) (2014)

20. Lee, J.W., Lee, Y.J., Kim, H.K., Hwang, B., Ryu, K.H.: Discovering temporal rela-
tion rules mining from interval data. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-
ICT 2002. LNCS, vol. 2510, pp. 57–66. Springer, Heidelberg (2002)

21. Rauti, S., Leppänen, V.: Resilient code protection by JavaScript and HTML obfus-
cation for Ajax applications against man-in-the-browser attacks. Submitted to
Journal of Information Security and Applications (Elsevier), under evaluation
(2014)

22. Schwarz, B., Debray, S., Andrews, G.: Disassembly of executable code revisited.
In: Proceedings of Ninth Working Conference on Reverse Engineering, pp. 45–54
(2002)

23. Sobell, M.G.: A Practical Guide to Linux. Addison-Wesley, Boston (1999)
24. Srivastava, A., Lanzi, A., Giffin, J., Balzarotti, D.: Operating system interface

obfuscation and the revealing of hidden operations. In: Holz, T., Bos, H. (eds.)
DIMVA 2011. LNCS, vol. 6739, pp. 214–233. Springer, Heidelberg (2011)

25. Tanenbaum, A.S.: Modern Operating Systems, 3rd edn. Prentice Hall Press, Upper
Saddle River (2007)

26. Theiling, H.: Extracting safe and precise control flow from binaries. In: Proceed-
ings of Seventh International Conference on Real-Time Computing Systems and
Applications, pp. 23–30. IEEE (2000)

27. Wang, S.P.: Mastering Linux. CRC Press, Boca Raton (2011)
28. Wu, Z., Gianvecchio, S., Xie, M., Wang, H.: Mimimorphism: a new approach to

binary code obfuscation. In: Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, pp. 536–546. ACM, New York, USA
(2010)

	Diversification of System Calls in Linux Binaries
	1 Introduction
	1.1 Our Goal
	1.2 Contributions and Structure of the Paper

	2 An Overview of Our API Diversification Scheme and Threat Scenarios
	2.1 Our API Diversification Scheme
	2.2 Threat Scenarios

	3 Linux Layer Structure and ELF Binary Files
	3.1 Linux Layer Structure
	3.2 Structure of ELF Files

	4 On Coding of System Calls in ELF Files
	5 Experimental Study on the Presence of System Calls in Linux Binaries
	5.1 Settings of Studied Linux Environments
	5.2 Distribution of System Calls in Binaries
	5.3 A Closer Look at Diversification of System Calls in Libc

	6 Methods for System Call Diversification
	6.1 Our Tool and Recognizing the System Calls
	6.2 Challenges
	6.3 Methods to Improve System Call Diversification

	7 Related Work
	7.1 Related Technologies
	7.2 Related Research

	8 Conclusions
	References

